Fixed-Mounted Circuit-Breaker Switchgear
Type 8DA and 8DB up to 40.5 kV, Gas-Insulated
Medium-Voltage Switchgear
Application
Public power supply system

Application
Traction power supply

Application Industry

Application Offshore and industry
Contents

Application
Versions, typical uses, ratings
Page 4 and 5

Requirements
Features, safety, technology
Page 6 and 7

Technical data
Electrical data
Page 8 and 9
Room planning
Page 10 and 11
Shipping data
Page 12
Classification
Page 13

Dimensions
Front views, sections, floor openings, fixing points
Page 14 to 21

Product range
Single-busbar panels
Page 22 and 23
Double-busbar panels
Page 24 to 30
Single-pole and double-pole single-busbar panels 8DA11/12
Page 31

Design
Basic panel design
Page 32 and 33
Gas compartment scheme
Page 34 and 35

Components
Vacuum circuit-breaker
Page 36 and 37
Three-position disconnector
Page 38 and 39
Control board
Page 40
Busbar, busbar components
Page 41
Current and voltage transformers
Page 42 and 43
Panel connection
Page 44 and 45
Panel connection (commercially available cable plugs and bar connections)
Page 46
Indicating and measuring equipment
Page 47 to 50
Protection, control, measuring and monitoring equipment
Page 51 to 53
ANSI design
Page 54 to 57

Standards
Standards, specifications, guidelines
Page 58 and 59
First 8DA10 – Year of manufacture 1982
Page 60

The products and systems described in this catalog are manufactured and sold according to a certified management system (acc. to ISO 9001, ISO 14001 and BS OHSAS 18001).
Fixed-mounted circuit-breaker switchgear 8DA and 8DB is indoor, factory-assembled, type-tested, single-pole metal-enclosed, gas-insulated switchgear with metallic partitions 3), for single-busbar and double-busbar applications, as well as for traction power supply systems. It is used in transformer and switching substations, e.g., in:

- Power supply companies
- Power stations
- Cement industry
- Automobile industry
- Iron and steel works
- Rolling mills
- Mining industry
- Textile, paper and food industries
- Chemical industry
- Petroleum industry
- Pipeline installations
- Offshore installations
- Electrochemical plants
- Petrochemical plants
- Shipbuilding industry
- Diesel power plants
- Emergency power supply installations
- Lignite open-cast mines
- Traction power supply systems.

Electrical data (maximum values) and dimensions

Single-busbar and double-busbar switchgear

<table>
<thead>
<tr>
<th>Rated voltage kV</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>40.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated frequency Hz</td>
<td>50/60</td>
<td>50/60</td>
<td>50/60</td>
<td>50/60</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage kV</td>
<td>28</td>
<td>50</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage kV</td>
<td>75</td>
<td>125</td>
<td>170</td>
<td>185</td>
</tr>
<tr>
<td>Rated peak withstand current kA</td>
<td>100/104</td>
<td>100/104</td>
<td>100/104</td>
<td>100/104</td>
</tr>
<tr>
<td>Rated short-circuit making current kA</td>
<td>100/104</td>
<td>100/104</td>
<td>100/104</td>
<td>100/104</td>
</tr>
<tr>
<td>Rated short-time withstand current 3 s kA</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Rated short-circuit breaking current kA</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Rated normal current of the busbar A</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Rated normal current of feeders A</td>
<td>2750</td>
<td>2750</td>
<td>2750</td>
<td>2750</td>
</tr>
<tr>
<td>Width mm</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Depth (wall-standing arrangement) mm</td>
<td>1625</td>
<td>1625</td>
<td>1625</td>
<td>1625</td>
</tr>
<tr>
<td>- Single busbar</td>
<td>2665</td>
<td>2665</td>
<td>2665</td>
<td>2665</td>
</tr>
<tr>
<td>- Double busbar</td>
<td>2665</td>
<td>2665</td>
<td>2665</td>
<td>2665</td>
</tr>
<tr>
<td>Height mm</td>
<td>2350</td>
<td>2350</td>
<td>2350</td>
<td>2350</td>
</tr>
<tr>
<td>- Standard</td>
<td>2700</td>
<td>2700</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>- With high low-voltage compartment</td>
<td>2350</td>
<td>2350</td>
<td>2350</td>
<td>2350</td>
</tr>
</tbody>
</table>

Single-pole and double-pole traction power supply switchgear

<table>
<thead>
<tr>
<th>Rated voltage kV</th>
<th>17.25</th>
<th>27.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated frequency Hz</td>
<td>16.7</td>
<td>50/60</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage kV</td>
<td>50</td>
<td>95</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage kV</td>
<td>125</td>
<td>200</td>
</tr>
<tr>
<td>Rated peak withstand current kA</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Rated short-circuit making current kA</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Rated short-time withstand current 3 s kA</td>
<td>31.5</td>
<td>31.5</td>
</tr>
<tr>
<td>Rated short-circuit breaking current kA</td>
<td>31.5</td>
<td>31.5</td>
</tr>
<tr>
<td>Rated normal current of the busbar A</td>
<td>3150</td>
<td>3150</td>
</tr>
<tr>
<td>Rated normal current of feeders A</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>Width mm</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Depth mm</td>
<td>865</td>
<td>865</td>
</tr>
<tr>
<td>- Single-pole traction switchgear</td>
<td>1245</td>
<td>1245</td>
</tr>
<tr>
<td>- Double-pole traction switchgear</td>
<td>865</td>
<td>865</td>
</tr>
<tr>
<td>Height mm</td>
<td>2350</td>
<td>2350</td>
</tr>
<tr>
<td>- Standard</td>
<td>2700</td>
<td>2700</td>
</tr>
<tr>
<td>- With high low-voltage compartment</td>
<td>2350</td>
<td>2350</td>
</tr>
</tbody>
</table>

1) 42 kV / 70 kV according to some national requirements
2) 95 kV / 190 kV according to some national requirements
3) Corresponds to "metal-clad" according to former standard IEC 60298
4) 2750 A without forced ventilation (8DB10 on request)
5) 3150 A with forced ventilation (8DB10 on request)
Environmental independence
The enclosed high-voltage part of 8DA and 8DB switchgear is suitable for applications under aggressive ambient conditions, such as:
- Saline air
- Air humidity
- Dust
- Condensation.

It is tight to ingress of foreign objects, such as:
- Dust
- Pollution
- Small animals.

The application is independent of the site altitude.

Compact design
Thanks to the use of gas insulation, compact dimensions are possible.

Thus:
- Existing switchgear rooms can be used effectively
- New constructions cost little
- Costly city-area space is saved.

Maintenance-free design
Switchgear housings designed as sealed pressure systems, maintenance-free switching devices and enclosed cable plugs ensure:
- Maximum supply reliability
- Personnel safety
- Sealed-for-life design according to IEC 62271-200 (sealed pressure system)
- Reduced operating costs
- Cost-efficient investment.

Innovation
The use of digital secondary systems and combined protection and control devices ensures:
- Clear integration in process control systems
- Flexible and highly simplified adaptation to new system conditions and thus to cost-efficient operation.

Service life
Under normal operating conditions, the expected service life of gas-insulated switchgear 8DA and 8DB is at least 35 years, probably 40 to 50 years, taking the tightness of the enclosed high-voltage part into account. The service life is limited by the maximum number of operating cycles of the switching devices installed:
- For circuit-breakers, according to the endurance class defined in IEC 62271-100
- For three-position disconnectors and earthing switches, according to the endurance class defined in IEC 62271-102.

Personal safety
- Safe-to-touch and hermetically sealed primary enclosure
- All high-voltage parts including the cable terminations, busbars and voltage transformers are metal-enclosed
- Capacitive voltage detecting system to verify safe isolation from supply
- Operating mechanisms and auxiliary switches safely accessible outside the primary enclosure (switchgear housings)
- Due to the system design, operation is only possible with closed switchgear enclosure
- Standard degree of protection IP 65 for all high-voltage parts of the primary circuit, IP 3XD for the switchgear enclosure according to IEC 60529
- High resistance to internal arcs by logical mechanical interlocks and tested switchgear enclosure
- Panels tested for resistance to internal faults up to 40 kA
- Logical mechanical interlocks prevent maloperation
- Make-proof earthing by means of the vacuum circuit-breaker.

Security of operation
- Hermetically sealed primary enclosure independent of environmental effects (pollution, humidity and small animals)
- Maintenance-free in an indoor environment according to IEC 62271-1
- Two-phase and three-phase short-circuits between the primary conductors are excluded by the single-pole primary enclosure
- In isolated or compensated systems, low-current earth-fault currents are self-extinguishing
- Operating mechanisms of switching devices accessible outside the primary enclosure (switchgear housings)
- Metal-enclosed, plug-in inductive voltage transformers mounted outside the switchgear housings
- Current transformers as ring-core current transformers mounted outside the switchgear housings
- Complete switchgear interlocking system with logical mechanical interlocks
- Bolted switchgear housings sealed for life
- Minimum fire load
- Option: Aseismic design.

Reliability
- Type and routine-tested
- Standardized, NC production processes
- Quality assurance in accordance with DIN EN ISO 9001, DIN EN ISO 14001 and BS OHSAS 18001
- More than 100,000 switchgear panels of Siemens in operation worldwide for many years.
General
• Single-pole enclosure of the primary part by modular switchgear housings made of corrosion-resistant aluminum alloy
• Insulating gas SF_6 (fluorinated greenhouse gas in sealed pressure system according to IEC 62271-1)
• Three-position disconnector as busbar disconnector and feeder earthing switch
• Make-proof earthing by means of the vacuum circuit-breaker
• Compact dimensions due to gas insulation
• Hermetically bolted switchgear housings made of corrosion-resistant aluminum alloy
• Single-pole metal-enclosed, gas-insulated busbars
• Cable connection with inside-cone plug-in system, or for connection of gas-insulated and solid-insulated bars
• Wall-standing or free-standing arrangement
• Installation and extension of existing switchgear at both ends without modification of existing panels.

Interlocks
• According to IEC 62271-200
• Logical mechanical interlocks prevent maloperation
• Three-position disconnector can only be operated with circuit-breaker in OPEN position
• Circuit-breaker can only be operated with three-position disconnector in end position and operating lever removed
• Locking device for circuit-breaker
• Locking device for three-position disconnector
• “Feeder earthed” locking device
• Option: Electromagnetic interlocks.

Modular design
• Replacement of the panel connection housings or the circuit-breaker possible without interrupting busbar operation
• Low-voltage compartment removable, plug-in bus wires
• Extension of double-busbar switchgear 8DB10 possible without interrupting operation
• Option: Extension of single-busbar switchgear 8DA10 possible without interrupting operation.

Instrument transformers
• Current transformers not subjected to dielectric stress
• Metal-enclosed, plug-in and disconnectable voltage transformers.

Vacuum circuit-breaker
• Maintenance-free under normal ambient conditions according to IEC 62271-1
• No relubrication or readjustment
• Vacuum interrupters sealed for life
• Up to 10,000 operating cycles (maintenance-free)
• Option: Up to 30,000 operating cycles (maintenance required).

Secondary systems
• Protection, measuring and control equipment
• Option: Numerical multifunction protection relay with integrated protection, control, communication, operating and monitoring functions
• Can be integrated in process control systems.
Technical data

Electrical data, functional level, temperature for single-busbar and double-busbar switchgear

<table>
<thead>
<tr>
<th>Common electrical data, functional level and temperature</th>
<th>Rated insulation level</th>
<th>Rated voltage U_r (kV)</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>40.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration power-frequency withstand voltage U_{d}:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– phase-to-earth, open contact gap kV</td>
<td>28</td>
<td>50</td>
<td>70</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– across the isolating distance kV</td>
<td>32</td>
<td>60</td>
<td>80</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage U_p:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– phase-to-earth, open contact gap kV</td>
<td>75</td>
<td>125</td>
<td>170</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– across the isolating distance kV</td>
<td>85</td>
<td>145</td>
<td>195</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated frequency f_r</td>
<td>Hz</td>
<td>50/60</td>
<td>50/60</td>
<td>50/60</td>
<td>50/60</td>
<td></td>
</tr>
<tr>
<td>Rated normal current I_{nr} of the busbar</td>
<td>A</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2500</td>
<td>2500</td>
<td>2500</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3150</td>
<td>3150</td>
<td>3150</td>
<td>3150</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Rated functional level p_{re} (relative) of the busbar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70/120 kPa at 20 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum functional level p_{me}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/100 kPa at 20 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient air temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– 5 ºC to + 55 ºC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data of the switchgear panels

Circuit-breaker panel, disconnector panel	Rated normal current I_{nr} (A)	1250	1250	1250	1250	
		1600	1600	1600	1600	
		2500	2500	2500	2500	
		3150 (10)	3150 (10)	3150 (10)	3150 (10)	
		4000	4000	4000	4000	
		5000	5000	5000	5000	
Rated short-time withstand current I_{k}	up to kA	40	40	40	40	
Rated peak withstand current I_{p}	up to kA	100/104	100/104	100/104	100/104	
Rated short-circuit making current I_{ma}	up to kA	100/104	100/104	100/104	100/104	
Rated short-circuit breaking current I_{sc}	up to kA	40	40	40	40	
Electrical endurance of vacuum circuit-breakers	at rated normal current	10,000 operating cycles				
	at rated short-circuit breaking current	50 breaking operations				
Rated functional level p_{re} (relative) for feeders						
		70/120 kPa at 20 ºC				
Minimum functional level p_{me}						
		50/100 kPa at 20 ºC				

Bus sectionalizer, bus coupler	Rated normal current I_{nr} (A)	1250	1250	1250	1250	
		2500	2500	2500	2500	
		2750 (10)	2750 (10)	2750 (10)	2750 (10)	
		3150 (11)	3150 (11)	3150 (11)	3150 (11)	
Rated short-time withstand current I_{k}	up to kA	40	40	40	40	
Rated peak withstand current I_{p}	up to kA	100/104	100/104	100/104	100/104	
Rated short-circuit making current I_{ma}	up to kA	100/104	100/104	100/104	100/104	
Rated short-circuit breaking current I_{sc}	up to kA	40	40	40	40	
Electrical endurance of vacuum circuit-breakers	at rated normal current	10,000 operating cycles				
	at rated short-circuit breaking current	50 breaking operations				
Rated functional level p_{re} (relative) for feeders						
		70/120 kPa at 20 ºC				
Minimum functional level p_{me}						
		50/100 kPa at 20 ºC				

Cable connection panel, metering panel	Rated normal current I_{nr} (A)	1250	1250	1250	1250	
		2500	2500	2500	2500	
		2750 (10)	2750 (10)	2750 (10)	2750 (10)	
		3150 (11)	3150 (11)	3150 (11)	3150 (11)	
Rated short-time withstand current I_{k}	up to kA	40	40	40	40	
Rated peak withstand current I_{p}	up to kA	100/104	100/104	100/104	100/104	
Rated functional level p_{re} (relative) for feeders						
		70/120 kPa at 20 ºC				
Minimum functional level p_{me}						
		50/100 kPa at 20 ºC				
Technical data

Electrical data, functional level, temperature for single-pole and double-pole traction power supply switchgear

<table>
<thead>
<tr>
<th>Common electrical data, functional level and temperature</th>
<th>Rated insulation level</th>
<th>Rated voltage (U_r)</th>
<th>kV</th>
<th>17.25</th>
<th>27.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage according to IEC 60850/EN 50163</td>
<td>kV</td>
<td>15</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage (U_{dc}):</td>
<td>kV</td>
<td>50</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- phase-to-earth, open contact gap</td>
<td>kV</td>
<td>60</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- across the isolating distance</td>
<td>(U_{lp}):</td>
<td>kV</td>
<td>125</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>- phase-to-earth, open contact gap</td>
<td>kV</td>
<td>145</td>
<td>220</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Rated frequency \(f_r \) | Hz | 16.7 | 50/60 |

<table>
<thead>
<tr>
<th>Rated normal current (I_{tr}) of the busbar</th>
<th>A</th>
<th>1250</th>
<th>1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2000</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2500</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>3150</td>
<td>3150</td>
<td></td>
</tr>
</tbody>
</table>

| Rated functional level \(p_{re} \) (relative) of the busbar | kPa | 120 kPa at 20 °C |

| Minimum functional level \(p_{me} \) | kPa | 100 kPa at 20 °C |

| Ambient air temperature | °C | –5 °C to +55 °C |

Data of the switchgear panels

Circuit-breaker panel, disconnector panel

<table>
<thead>
<tr>
<th>Rated normal current (I_{tr})</th>
<th>A</th>
<th>1250</th>
<th>1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1600</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2000</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2500</td>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

| Rated short-time withstand current \(I_{kt} \), \(t_k = 3 \) s | up to kA | 31.5 | 31.5 |

| Rated peak withstand current \(I_{tp} \) | up to kA | 80 | 80/82 |

| Rated short-circuit making current \(I_{ma} \) | up to kA | 80 | 80/82 |

| Rated short-circuit breaking current \(I_{sc} \) | up to kA | 31.5 | 31.5 |

| Electrical endurance of vacuum circuit-breakers | at rated normal current | 20,000 operating cycles |

| Rated functional level \(p_{re} \) (relative) for feeders | kPa | 120 kPa at 20 °C |

| Minimum functional level \(p_{me} \) | kPa | 100 kPa at 20 °C |

| Ambient air temperature | °C | –5 °C to +55 °C |

Bus sectionalizer

<table>
<thead>
<tr>
<th>Rated normal current (I_{tr})</th>
<th>A</th>
<th>1250</th>
<th>1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2000</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2500</td>
<td>2500</td>
<td></td>
</tr>
</tbody>
</table>

| Rated short-time withstand current \(I_{kt} \), \(t_k = 3 \) s | up to kA | 31.5 | 31.5 |

| Rated peak withstand current \(I_{tp} \) | up to kA | 80 | 80/82 |

| Rated short-circuit making current \(I_{ma} \) | up to kA | 80 | 80/82 |

| Rated short-circuit breaking current \(I_{sc} \) | up to kA | 31.5 | 31.5 |

| Electrical endurance of vacuum circuit-breakers | at rated normal current | 20,000 operating cycles |

| Rated functional level \(p_{re} \) (relative) for feeders | kPa | 120 kPa at 20 °C |

| Minimum functional level \(p_{me} \) | kPa | 100 kPa at 20 °C |

| Ambient air temperature | °C | –5 °C to +55 °C |

Footnotes for pages 8 and 9

1) Higher values of the rated short-duration power-frequency withstand voltage available with:
- 42 kV for phase-to-earth and open contact gap, as well as
- 48 kV across the isolating distance
2) Higher values of the rated short-duration power-frequency withstand voltage available with:
- 65 kV for phase-to-earth and open contact gap, as well as
- 75 kV across the isolating distance
3) Higher values of the rated short-duration power-frequency withstand voltage available with:
- 95 kV for phase-to-earth and open contact gap, as well as
- 120 kV across the isolating distance
4) Higher values of the rated lightning impulse withstand voltage available with:
- 190 kV for phase-to-earth and open contact gap, as well as
- 230 kV across the isolating distance
5) Higher value applies to 60 Hz
6) Disconnector panel available for single-busbar switchgear 8DA10
7) Bus coupler available for double-busbar switchgear 8DB10
8) Rated normal current \(I_{tr} \) for cable connection panels
9) Maximum permissible normal current dependent on ambient air temperature
10) 2750 A without forced ventilation (8DB10 on request)
11) 3150 A with forced ventilation (8DB10 on request)
12) Option: 30,000 operating cycles
13) Option: Ambient air temperature –25 °C to +55 °C

Fixed-Mounted Circuit-Breaker Switchgear Type 8DA and 8DB up to 40.5 kV, Gas-Insulated · Siemens HA 35.11 · September 2017
Technical data

Room planning

<table>
<thead>
<tr>
<th>Wall-standing arrangement (top view)</th>
<th>Free-standing arrangement (top view)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room planning for single-busbar switchgear 8DA10</td>
<td></td>
</tr>
</tbody>
</table>

Wall-standing arrangement (top view)

- Room planning for traction power supply switchgear 8DA11
- Room planning for traction power supply switchgear 8DA12
Switchgear installation
- Wall-standing arrangement without rear wall (IAC AFL)
- Free-standing arrangement without rear wall (IAC AFL)
- Free-standing arrangement with rear wall (IAC AFLR).

Room dimensions
See dimension drawings above.
Room height: ≥ switchgear height + 200 mm.
If there are any busbar components, the minimum room height may have to be higher.
For switchable busbar components in 8DB10, free-standing arrangement is required.

Door dimensions
The door dimensions depend on the dimensions of the individual panels (see pages 14 to 21).

Switchgear fixing
- For floor openings and fixing points of the switchgear, see pages 14 to 21
- Foundations:
 - Steel girder construction
 - Steel-reinforced concrete with foundation rails, welded or bolted on.

Panel dimensions
See pages 14 to 21.

*) Depending on national requirements
**) Lateral wall distance ≥ 500 mm optionally required on the left or on the right
***) Lateral minimum wall distance ≥ 100 mm optionally possible on the left or on the right
Transport

Single-busbar switchgear 8DA10 and traction power supply switchgear 8DA11/12 is delivered in transport units comprising up to four panels. Double-busbar switchgear 8DB10 is delivered in transport units comprising up to three panels.

Please observe the following:
- Transport facilities on site
- Transport dimensions and transport weights
- Size of door openings in building

Packing

- Means of transport: Truck
 - Panels on pallets
 - Open packing with PE protective foil
- Means of transport: Ship and airplane
 - Panels on pallets
 - In closed crates with sealed upper and lower PE protective foil
 - With desiccant bags
 - With sealed wooden base
 - Max. storage time: 6 months.
- Long-time packing
 - Panels on pallets
 - In closed crates with sealed, aluminum-coated PE protective foil
 - With desiccant bags
 - With sealed wooden base
 - Max. storage time: 12 months.

Transport dimensions, transport weights 1)

<table>
<thead>
<tr>
<th>Panel widths (mm)</th>
<th>Width × Height × Depth (mm × mm × mm)</th>
<th>Transport weight with packing (approx. kg)</th>
<th>Transport weight without packing (approx. kg)</th>
</tr>
</thead>
</table>

Single-busbar switchgear 8DA10

Means of transport: Truck

- 1 × 600: 1370 × 2550 × 1888, 850 kg
- 2 × 600: 1764 × 2550 × 1870, 1700 kg
- 3 × 600: 2400 × 2550 × 1870, 2550 kg
- 4 × 600: 2964 × 2550 × 1870, 3400 kg

Means of transport: Ship and airplane

- 1 × 600: 1388 × 2700 × 1888, 850 kg
- 2 × 600: 1764 × 2700 × 1888, 1700 kg
- 3 × 600: 2400 × 2700 × 1888, 2550 kg
- 4 × 600: 2964 × 2700 × 1888, 3400 kg

Double-busbar switchgear 8DB10

Means of transport: Truck

- 1 × 600: 1370 × 2550 × 3124, 1300 kg
- 2 × 600: 1870 × 2550 × 3124, 2600 kg
- 3 × 600: 2416 × 2550 × 3124, 3900 kg

Means of transport: Ship and airplane

- 1 × 600: 1388 × 2850 × 3124, 1300 kg
- 2 × 600: 1888 × 2850 × 3124, 2600 kg
- 3 × 600: 2440 × 2850 × 3124, 3900 kg

Traction power supply switchgear 8DA11/12

Means of transport: Truck

- 1 × 600: 1370 × 2550 × 1888, 600 kg
- 2 × 600: 1764 × 2550 × 1870, 1200 kg
- 3 × 600: 2400 × 2550 × 1870, 1800 kg
- 4 × 600: 2964 × 2550 × 1870, 2400 kg

Means of transport: Ship and airplane

- 1 × 600: 1388 × 2700 × 1888, 600 kg
- 2 × 600: 1764 × 2700 × 1888, 1200 kg
- 3 × 600: 2400 × 2700 × 1888, 1800 kg
- 4 × 600: 2964 × 2700 × 1888, 2400 kg

1) Average values based on standard subframe with LV compartment 850 mm depending on the degree to which panels are equipped.
Classification of 8DA and 8DB switchgear according to IEC 62271-200

Design and construction

<table>
<thead>
<tr>
<th>Classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition class</td>
<td>PM (metallic partition) (^1)</td>
</tr>
<tr>
<td>Loss of service continuity category</td>
<td>LSC2</td>
</tr>
<tr>
<td>Accessibility to compartments (enclosure)</td>
<td>Tool-based</td>
</tr>
<tr>
<td>Busbar compartment</td>
<td>Tool-based</td>
</tr>
<tr>
<td>Switching-device compartment</td>
<td>Tool-based</td>
</tr>
<tr>
<td>Low-voltage compartment</td>
<td>Tool-based</td>
</tr>
<tr>
<td>Cable compartment</td>
<td>Tool-based</td>
</tr>
</tbody>
</table>

Internal arc classification

<table>
<thead>
<tr>
<th>Classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation of the internal arc classification IAC</td>
<td>IAC AFL 40 kA, 1 s</td>
</tr>
<tr>
<td>IAC class for:</td>
<td>IAC AFLR 40 kA, 1 s</td>
</tr>
<tr>
<td>Wall-standing arrangement</td>
<td></td>
</tr>
<tr>
<td>Free-standing arrangement</td>
<td></td>
</tr>
<tr>
<td>Type of accessibility A</td>
<td>Switchgear in closed electrical service location, access “for authorized personnel only” according to IEC 62271-200</td>
</tr>
<tr>
<td>– F</td>
<td>Front</td>
</tr>
<tr>
<td>– L</td>
<td>Lateral</td>
</tr>
<tr>
<td>– R</td>
<td>Rear (for free-standing arrangement)</td>
</tr>
<tr>
<td>Rated short-time withstand current</td>
<td>40 kA</td>
</tr>
<tr>
<td>Rated duration of short-circuit</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Classification of 8DA and 8DB switchgear according to IEEE Std C37.20.7™-2007

Internal arc classification

<table>
<thead>
<tr>
<th>Classification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation of the internal arc classification IAC</td>
<td></td>
</tr>
<tr>
<td>IAC class for:</td>
<td></td>
</tr>
<tr>
<td>Wall-standing arrangement</td>
<td>Type 1B 40 kA, 0.5 s</td>
</tr>
<tr>
<td>Free-standing arrangement</td>
<td>Type 2B 40 kA, 0.5 s</td>
</tr>
<tr>
<td>Type of accessibility</td>
<td>Switchgear in closed electrical service location, access “for authorized personnel only” according to IEEE Std C37.20.7™-200</td>
</tr>
<tr>
<td>– Type 1B</td>
<td>Front</td>
</tr>
<tr>
<td>– Type 2B</td>
<td>Front, lateral, rear (for free-standing arrangement)</td>
</tr>
<tr>
<td>– Type BC</td>
<td>Front with open low-voltage compartment</td>
</tr>
<tr>
<td>Rated short-time withstand current</td>
<td>40 kA</td>
</tr>
<tr>
<td>Rated duration of short-circuit</td>
<td>0.5 s</td>
</tr>
</tbody>
</table>

^1\) Corresponds to “metal-clad” according to former standard IEC 60298
Disconnector panel up to 3150 A

Cable connection panel up to 3150 A

Metering panel

Dummy panel

Legend and footnotes for pages 14 and 15
1 Fixing hole for 26 mm × 45 mm
2 Base frame
3 Floor opening for high-voltage cables
4 Area for floor openings for control cables
Dimensions
Front views, sections, floor openings, fixing points for 8DB10
Bus sectionalizer up to 2500 A (busbar system 1 and 2)

Bus sectionalizer with panel connection up to 2500 A (busbar system 1 and 2)

Legend and footnotes for pages 16 and 17

1 Fixing hole for 26 mm × 45 mm
2 Base frame
3 Floor opening for high-voltage cables
4 Area for floor openings for control cables
Dimensions
Front views, sections, floor openings, fixing points for 8DB10

Bus sectionalizer up to 2500 A (busbar system 1)

Bus sectionalizer up to 2500 A (busbar system 2)
Dimensions

Front views, sections, floor openings, fixing points for 8DB10

Cable connection panel up 2500 A

Dummy panel

Legend and footnotes for pages 18 and 19
1 Fixing hole for 26 mm × 45 mm
2 Base frame
3 Floor opening for high-voltage cables
4 Area for floor openings for control cables
Dimensions
Front views, sections, floor openings, fixing points for 8DB10 ANSI

Example: Circuit-breaker panel with three-position disconnector at the feeder (option)

Example: Circuit-breaker panel with disconnector bypass
Dimensions

Front views, sections, floor openings, fixing points for 8DA11/12

Single-pole circuit-breaker panel up to 2500 A

Double-pole circuit-breaker panel up to 2500 A

Legend and footnotes for pages 20 and 21

1 Fixing hole for 26 mm x 45 mm
2 Base frame
3 Floor opening for high-voltage cables
4 Area for floor openings for control cables
Product range
Single-busbar panels 8DA10

Circuit-breaker panel

Disconnector panel

Bus sectionalizer (2 panels)

- Three-position disconnector
- Vacuum circuit-breaker
- Plug-in voltage transformer (directly plugged or with cable connection)
- Voltage transformer with or without three-position disconnector
- Current transformer
- Capacitive voltage detecting system
- Busbar – earthing switch and – make-proof earthing switch
- Busbar connection with or without three-position disconnector
- Surge arrester
- Panel connection with inside-cone plug or bar connection
- Zero-sequence current transformer
- Top-mounted bus sectionalizer
Product range
Single-busbar panels 8DA10

Metering panel

Cable connection panel

Bus sectionalizer (2 panels)

- Three-position disconnector
- Vacuum circuit-breaker
- Plug-in voltage transformer (directly plugged or with cable connection)
- Voltage transformer with or without three-position disconnector
- Current transformer
- Capacitive voltage detecting system
- Busbar
 - earthing switch
 - make-proof earthing switch
- Busbar connection with or without three-position disconnector
- Panel connection with inside-cone plug or bar connection

HA 35.11 · September 2017
Product range
Double-busbar panels 8DB10

Metering panel

Cable connection panel

Three-position disconnector

Plug-in voltage transformer (directly plugged)

Voltage transformer with or without three-position disconnector

Current transformer

Capacitive voltage detecting system

Busbar
– earthing switch and
– make-proof earthing switch

Busbar connection with or without three-position disconnector

Panel connection with inside-cone plug or bar connection
Bus sectionalizer (busbar system 1 and 2)

Three-position disconnector

Vacuum circuit-breaker

Voltage transformer with or without three-position disconnector

Current transformer

Capacitive voltage detecting system

Busbar – earthing switch and – make-proof earthing switch

Busbar connection with or without three-position disconnector

Panel connection with inside-cone plug or bar connection

Zero-sequence current transformer
Product range
Double-busbar panels 8DB10

Bus sectionalizer (busbar system 2)

Three-position disconnector
Vacuum circuit-breaker
Voltage transformer with or without three-position disconnector
Current transformer
Capacitive voltage detecting system
Busbar – earthing switch and – make-proof earthing switch
Busbar connection with or without three-position disconnector
Bus sectionalizer (busbar system 1 and 2)

Three-position disconnector

Voltage transformer with or without three-position disconnector

Current transformer

Capacitive voltage detecting system

Busbar – earthing switch and – make-proof earthing switch

Busbar connection with or without three-position disconnector

Product range
Double-busbar panels 8DB10
Product range
Single-pole and double-pole single-busbar panels 8DA11/12

Single-pole circuit-breaker panel

Double-pole circuit-breaker panel

- Three-position disconnector
- Vacuum circuit-breaker
- Plug-in voltage transformer (directly plugged or with cable connection)
- Voltage transformer with or without three-position disconnector
- Current transformer
- Capacitive voltage detecting system
- Busbar – earthing switch and – make-proof earthing switch
- Busbar connection with or without three-position disconnector
- Surge arrester
- Panel connection with inside-cone plug or bar connection
- Zero-sequence current transformer
- Top-mounted bus sectionalizer

Product range
Single-pole and double-pole single-busbar panels 8DA11/12

Single-pole circuit-breaker panel

Double-pole circuit-breaker panel

- Three-position disconnector
- Vacuum circuit-breaker
- Plug-in voltage transformer (directly plugged or with cable connection)
- Voltage transformer with or without three-position disconnector
- Current transformer
- Capacitive voltage detecting system
- Busbar – earthing switch and – make-proof earthing switch
- Busbar connection with or without three-position disconnector
- Surge arrester
- Panel connection with inside-cone plug or bar connection
- Zero-sequence current transformer
- Top-mounted bus sectionalizer
Insulating system

- Switchgear housing filled with SF₆ gas
- Features of SF₆ gas:
 - Non-toxic
 - Odorless and colorless
 - Non-inflammable
 - Chemically neutral
 - Heavier than air
 - Electronegative (high-quality insulator)
 - GWP (Global Warming Potential) = 22,800
- Pressure of the SF₆ gas in the switchgear housing dependent on the electrical ratings (relative pressure at 20 °C):
 - Rated functional level (relative): 70 kPa to 120 kPa
 - Design pressure: 190 kPa
 - Design temperature of the SF₆ gas: 90 °C
 - Operating pressure of bursting disc: ≥ 300 kPa
 - Bursting pressure: ≥ 600 kPa
 - Gas leakage rate: < 0.1 % per year.

Panel design

- Factory-assembled, type-tested
- Single-pole metal-enclosed, with metallic partitions
- Hermetically bolted switchgear housings made of corrosion-resistant aluminum alloy
- Switchpanel poles arranged one behind the other
- Maintenance-free in an indoor environment (IEC 62271-1)
- Degree of protection
 - IP 65 for all high-voltage parts of the primary circuit
 - IP 3XD for the switchgear enclosure
 - Option: IP 31D for the switchgear enclosure
 - Option: IP 41 for the low-voltage compartment
- Vacuum circuit-breaker
- Three-position disconnector for disconnecting and earthing
- Make-proof earthing by means of the vacuum circuit-breaker
- Cable connection with inside-cone plug-in system according to EN 50181
- Wall-standing or free-standing arrangement
- Instrument transformers removable, located outside the gas compartments
- Subframe, front cover, rear cover and end walls powder-coated in color “light basic” (SN 700)
- Low-voltage compartment removable, plug-in bus wires
- Standardized production processes and certified quality and environmental management system according to ISO 9001 and ISO 14001.

1) Corresponds to “metal-clad” according to former standard IEC 60298
Single-pole and double-pole design for AC traction power supply

Typical uses
• Single-pole and double-pole panels 8DA11/12 for the supply of overhead contact line sections in AC traction power supply systems
• Double-pole panels 8DA12 for application in traction power supply systems with autotransformers, e.g. for high-speed railway traffic.

Panel design
• Panel design based on standard version of single-busbar switchgear 8DA10.

8DA11
Single-pole switchgear panel for traction power supply.

8DA12
Double-pole switchgear panel for traction power supply.

Legend for 8DA11 and 8DA12
1 Low-voltage compartment
2 Electronic control board, e.g. multifunction protection
3 Operating mechanism and interlock for three-position disconnector, as well as mechanical position indicators for three-position disconnector and circuit-breaker
4 Manometer for gas monitoring of feeder gas compartments
5 Circuit-breaker operating mechanism
6 Voltage detecting system
Gas compartment scheme

- Sealed pressure system (according to IEC 62271-1)
- No refilling required throughout the entire service life
- Gas compartments distributed to several areas
- Simple, visual check of the ready-for-service indicator by red/green indication areas
- Indication of gas pressure also guaranteed without auxiliary voltage supply
- Gas pressure manometers arranged at the switchgear front
- Gas filling equipment with non-return valve arranged at the switchgear front beside the associated gas pressure manometer
- Gas pressure manometers with two signaling contacts for “gas pressure too low/gas pressure too high” indication
- Option: Gas pressure manometers with three signaling contacts for “gas pressure too low/very low” and “gas pressure too high” indication
- Option: Gas pressure manometers with temperature and pressure compensation.

Example: Gas quantity circuit-breaker panel (36 kV, 40 kA, 1250 A, cable connection 1 × plug size S2)
- 8DA10:
 - \(SF_6 = 2.5 \text{ kg}\)
 - \(\text{CO}_2e = 57 \text{ t}\)
- 8DB10:
 - \(SF_6 = 4.5 \text{ kg}\)
 - \(\text{CO}_2e = 105 \text{ t}\).
Arrangement of gas compartments in 8DB10

Legend for 8DB10

1 Busbar system 1, L1 (manometer B11)
2 Busbar system 1, L2 (manometer B12)
3 Busbar system 1, L3 (manometer B13)
4 Busbar system 2, L1 (manometer B21)
5 Busbar system 2, L2 (manometer B22)
6 Busbar system 2, L3 (manometer B23)
7 Three-position disconnector, busbar system 1, L1, L2, L3 (manometer B1)
8 Disconnector, busbar system 2, L1, L2, L3 (manometer B2)
9 Circuit-breaker L1, L2, L3 (manometer B0)
10 Top-mounted bus sectionalizer, busbar system 1, L1, L2, L3 (manometer B15)
11 Top-mounted bus sectionalizer, busbar system 2, L1, L2, L3 (manometer B25)
Features

- According to IEC 62271-100 (for standards, see page 58)
- Application in hermetically bolted switchgear housings in conformity with the system
- Vacuum interrupter in gas-filled switchgear housing
- Maintenance-free for indoor installation according to IEC 62271-1
- Individual secondary equipment
- A metal bellows is used for gasketless separation between the gas insulation and the vacuum (already used with success for over 5 million vacuum interrupters).

Trip-free mechanism

The vacuum circuit-breaker is fitted with a trip-free mechanism according to IEC 62271-100.

Switching duties and operating mechanisms

The switching duties of the vacuum circuit-breaker are dependent, among other factors, on its type of operating mechanism.

Motor operating mechanism

- Motor-operating stored-energy mechanism
 - For auto-reclosing (K)
 - For synchronization and rapid load transfer (U)

Further operating mechanism features

- Located outside the switchgear housings in the operating mechanism box and behind the control board
- Stored-energy spring mechanism for 10,000 operating cycles
- Optional: Stored-energy spring mechanism for 30,000 operating cycles.

Operating mechanism functions

Motor operating mechanism 1) (M1 *)

In the case of motor operating mechanism, the closing spring is charged by means of a motor and latched in the charged position ("spring charged" indication is visible). Closing is effected either by means of an ON pushbutton or a closing solenoid. The closing spring is recharged automatically (for auto-reclosing).

Endurance class of circuit-breaker

<table>
<thead>
<tr>
<th>Function</th>
<th>Class</th>
<th>Standard</th>
<th>Property of 8DA and 8DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREAKING</td>
<td>M2</td>
<td>IEC 62271-100</td>
<td>10,000 times mechanically without maintenance</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>IEC 62271-100</td>
<td>10,000 times rated normal current without maintenance</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>IEC 62271-100</td>
<td>Very low probability of restrikes</td>
</tr>
</tbody>
</table>

Operating times

<table>
<thead>
<tr>
<th>Time</th>
<th>Closing solenoid</th>
<th>1st shunt release</th>
<th>2nd shunt release</th>
<th>Undervoltage release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing time</td>
<td>< 95 ms</td>
<td>< 65 ms</td>
<td>< 55 ms</td>
<td>< 55 ms</td>
</tr>
<tr>
<td>Opening time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st shunt release</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd shunt release</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage release</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcing time at 50 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Break time at 50 Hz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st shunt release</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd shunt release</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undervoltage release</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total charging time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 15 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Abbreviations for switching duties:
U = Synchronization and rapid load transfer
K = Auto-reclosing
1) Motor rating at 24 V to 250 V DC: max. 500 W
 110 V and 240 V AC: max. 650 VA
* Item designation
For further technical data and description of typical applications, please refer also to Catalog HG 11.04 "3AH4 Vacuum Circuit-Breakers"
Secondary equipment
The scope of the secondary equipment of the vacuum circuit-breaker depends on the type of application and offers a wide range of possible variations, allowing almost every requirement to be satisfied.

Closing solenoid
• Type 3AY15 10 (Y9 *)
• For electrical closing.

Shunt releases
• Types:
 – Standard: 3AY15 10 (Y1 *)
 – Option: 3AX11 01 (Y2 *), with energy store
• Tripping by protection relay or electrical actuation.

Undervoltage release
• Type 3AX11 03 (Y7 *)
• Comprising:
 – Energy store and unlatching mechanism
 – Electromagnetic system, which is permanently connected to voltage while the vacuum circuit-breaker is closed; tripping is initiated when this voltage drops
• Connection to voltage transformers possible.

Anti-pumping
• Function: If constant CLOSE and OPEN commands are present at the vacuum circuit-breaker at the same time, the vacuum circuit-breaker will return to the open position after closing. It remains in this position until a new CLOSE command is given. In this manner, continuous closing and opening (= pumping) is avoided.

Circuit-breaker tripping signal
• For electrical signaling (as pulse > 10 ms), e.g. to remote control systems, in the case of automatic tripping (e.g. protection)
• Via limit switch (S6 *) and cutout switch (S7 *).

Varistor module
• To limit overvoltages to approx. 500 V for protection devices (when inductive components are mounted in the vacuum circuit-breaker)
• For auxiliary voltages ≥ 60 V DC.

Auxiliary switch
• Type 3SV9 (S1 *)
• Standard: Up to 22 NO + 22 NC.

Position switch
• Type 3SE4 (S4 *)
• For signaling “closing spring charged”.

Mechanical interlock
• Mechanical interlocking to the three-position disconnector
• During operation of the three-position disconnector, the vacuum circuit-breaker cannot be operated.

Abbreviations: NO = normally open contact, NC = normally closed contact
* Item designation
Components
Three-position disconnector

Features
• Rated normal currents up to 3150 A
• 2000 operating cycles for the disconnector
 (higher operating cycles on request)
• 1000 operating cycles for the earthing switch
 (higher operating cycles on request)
• Option: Up to 2000 operating cycles for the earthing
 switch
• Operating shaft and contact blades with common center
 of rotation and reliable switch position up to the operat-
 ing front of the panel
• Gas-tight bushings separate the busbar and circuit-
 breaker housings underneath the busbar disconnector
 contacts
• Cable connection and circuit-breaker housings can be
 removed without interrupting busbar operation
• Maintenance-free.

Switch positions
• CLOSED, OPEN, EARTHED or READY-TO-EARTH
• CLOSED: Contact blades connected with the busbar:
 Main circuit closed between busbar and circuit-breaker
• OPEN: Main circuit open between busbar and circuit-
 breaker: Test voltages for isolating distances are with-
 stood
• READY-TO-EARTH: Contact blades connected with the
 earthing contact
• EARTHED: Feeder earthed and short-circuited by closing
 the circuit-breaker.

Operating mechanism
• Only permissible operations possible due to logical
 mechanical interlocks
• Mechanically coupled position indicator
• Separate operating shafts for the “DISCONNECTING”,
 “EARTHING” and “READY-TO-EARTH” functions
• With manual operating mechanism
• Option: With motor operating mechanism
 Motor rating at 24 V to 250 V DC: max. 100 W
 110 V to 240 V AC: max. 130 VA
• Same sense of rotation for the switching operations of
 the “CLOSE” or “OPEN” functions.

Endurance class of three-position disconnector

<table>
<thead>
<tr>
<th>Function</th>
<th>Class</th>
<th>Standard</th>
<th>Property of 8DA and 8DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCONNECTING</td>
<td>M1</td>
<td>IEC 62271-102</td>
<td>2000 times mechanically without maintenance</td>
</tr>
<tr>
<td>READY-TO-EARTH</td>
<td></td>
<td></td>
<td>1000 times mechanically without maintenance</td>
</tr>
<tr>
<td>EARTHING</td>
<td>E2 1)</td>
<td>IEC 62271-102</td>
<td>50 times rated short-circuit making current (I_{\text{ima}}) without maintenance</td>
</tr>
</tbody>
</table>

Endurance class of make-proof earthing switch

<table>
<thead>
<tr>
<th>Function</th>
<th>Class</th>
<th>Standard</th>
<th>Property of 8DA and 8DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>EARTHING</td>
<td>E1</td>
<td>IEC 62271-102</td>
<td>1000 times mechanically without maintenance</td>
</tr>
</tbody>
</table>
 2 times rated short-circuit making current \(I_{\text{ima}}\) without maintenance

1) By closing the circuit-breaker
Interlocks

- Selection of permissible switching operations by means of a control gate with mechanically interlocked vacuum circuit-breaker
- Selection of permissible switching operations in double-busbar switchgear additionally by means of a control gate with mechanically interlocked vacuum circuit-breaker
- Corresponding operating shafts are not released at the operating front until they have been pre-selected with the control gate
- Operating lever cannot be removed until switching operation has been completed
- Circuit-breaker cannot be closed until the control gate is in neutral position again
- Option: Switchgear interlocking system with electromechanical interlocks (mechanical interlocking for manual operation remains).
Features

- Mechanical control board below the low-voltage compartment
- Actuations directly at the operating mechanisms
- Mechanical position indicators integrated in the switchgear front
- Unambiguous assignment of actuating openings and control elements to the corresponding position indicators
- Ergonomic height of all control elements.

Interlocking

- Panel-internal mechanical interlocks
- Operation of three-position disconnector (CLOSED, OPEN, EARTHED or READY-TO-EARTH)
- Vacuum circuit-breaker interlocked mechanically
- Control gate for opening the actuating openings (with single-busbar systems it can only be operated if the interrogation lever (4) is pushed downwards)
- Actuating openings (2, 3 and 8) cannot be opened as long as the vacuum circuit-breaker is in CLOSED position
- Operating lever can be inserted when the actuating openings are open
- Operating lever cannot be removed before the definite end position of the disconnecting or earthing function is reached
- Feeder de-earthing is secured by the vacuum circuit-breaker
 - electrically via the auxiliary switch
 - mechanically through the lever (14) of the mechanical circuit-breaker tripping block.

Components

Control board

A

Operating mechanism of the three-position disconnector

B

Operating mechanism of the vacuum circuit-breaker
Busbar features
• Single-pole enclosure with modular switchgear housings made of corrosion-resistant aluminum alloy
• Continuous gas insulation without plug-in connections or adapters
• No alteration of the insulating medium throughout the complete busbar assembly
• Up to 4000 A with copper bar connection in one busbar housing
• 5000 A with copper bar connection in two busbar housings (twin busbar).

Design of busbar components
The busbars of single-busbar switchgear 8DA and double-busbar switchgear 8DB can be equipped with the following busbar components:
• Plug-in, metal-enclosed busbar voltage transformers with or without three-position disconnector
• Busbar current transformers
• Busbar connection with cable plug, or with solid-insulated or gas-insulated bar connection, with or without three-position disconnector
• Busbar earthing switch or make-proof earthing switch
• Capacitive voltage detecting system according to IEC 61243-5 or IEC 61958
• Top-mounted bus sectionalizer for distribution into two busbar sections without additional switchgear panels and space requirements.
Features

• According to IEC 61869-2
• Designed as ring-core current transformers, single-pole
• Free of dielectrically stressed cast-resin parts (due to design)
• Insulation class E
• Inductive type
• Certifiable
• Climate-independent
• Secondary connection by means of a terminal strip in the low-voltage compartment of the panel
• Cast-resin insulated.

Installation

• Arranged outside the primary enclosure (switchgear housing).

Components

Current transformers

Electrical data *

<table>
<thead>
<tr>
<th>Designation</th>
<th>Type 4MC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>max. 0.8 kV</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage (winding test)</td>
<td>3 kV</td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Rated continuous thermal current</td>
<td>max. 1.2 × rated current (primary)</td>
</tr>
<tr>
<td>Rated thermal short-time current, max. 3 s</td>
<td>max. 40 kA</td>
</tr>
<tr>
<td>Rated current dynamic primary secondary</td>
<td>unlimited 40 A to 3150 A 1 A and 5 A</td>
</tr>
</tbody>
</table>

Designation | Type 4MC4 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiratio (secondary)</td>
<td>200 A – 100 A up to 3150 A – 1575 A</td>
</tr>
<tr>
<td>Core data according to rated primary current:</td>
<td></td>
</tr>
<tr>
<td>Measuring core</td>
<td>max. 3 cores</td>
</tr>
<tr>
<td>Rating Class Overcurrent factor</td>
<td>2.5 VA to 30 VA 0.2 to 1 FS 5, FS 10</td>
</tr>
<tr>
<td>Protection core</td>
<td>2.5 VA to 30 VA 5P or 10P 10 to 30</td>
</tr>
<tr>
<td>Permissible ambient air temperature</td>
<td>max. 60 °C</td>
</tr>
<tr>
<td>Insulation class</td>
<td>E</td>
</tr>
</tbody>
</table>

* Further electrical data on request
Features

- According to IEC 61869-3
- Single-pole, plug-in design
- Connection system with plug-in contact according to EN 50181
- Inductive type
- Safe-to-touch due to metal enclosure
- Certifiable
- Climate-independent
- Secondary connection by means of plugs in the low-voltage compartment of the panel
- Cast-resin insulated.

Installation

- Arranged outside the primary enclosure (switchgear housing).

Mounting locations

- On the busbar
- At the panel connection housing.

Voltage transformer types

Busbar voltage transformers 4MT3 and 4MU4

- Pluggable on the busbar with plug-in system according to EN 50181
- No separate metering panel required
- Option: Three-position disconnector for busbar voltage transformer CLOSED – OPEN – EARTHEDE
- Option 4MU4: Repeat test at 80 % of the rated short-duration power-frequency withstand voltage possible with mounted voltage transformer.

Feeder voltage transformers 4MT7 and 4MU3

- Pluggable at the feeder with plug-in system according to EN 50181
- Connection of 4MT7 directly at the panel connection housing
- Connection of 4MU3 via flexible cable with plug size S2 at the panel connection housing, and metal-enclosed voltage transformer.

Electrical data (maximum values)

<table>
<thead>
<tr>
<th>Designation</th>
<th>4MT3</th>
<th>4MU4</th>
<th>4MT7</th>
<th>4MU3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage kV</td>
<td>24.0</td>
<td>40.5</td>
<td>40.5</td>
<td>40.5</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage kV</td>
<td>65</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage kV</td>
<td>125</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Rated voltage factor</td>
<td>$U_{\text{r/8h}} = 1.9$</td>
<td>$U_{\text{r/8h}} = 1.9$</td>
<td>$U_{\text{r/8h}} = 1.9$</td>
<td>$U_{\text{r/8h}} = 1.9$</td>
</tr>
<tr>
<td></td>
<td>$U_{\text{r/continuous}} = 1.2$</td>
<td>$U_{\text{r/continuous}} = 1.2$</td>
<td>$U_{\text{r/continuous}} = 1.2$</td>
<td>$U_{\text{r/continuous}} = 1.2$</td>
</tr>
<tr>
<td>Standard</td>
<td>IEC</td>
<td>IEC</td>
<td>IEC</td>
<td>IEC</td>
</tr>
<tr>
<td></td>
<td>GOST</td>
<td>GOST</td>
<td>GOST</td>
<td>GOST</td>
</tr>
<tr>
<td></td>
<td>GB</td>
<td>GB</td>
<td>GB</td>
<td>GB</td>
</tr>
</tbody>
</table>
Features

- Bushings for plugs with inside-cone plug-in system according to EN 50181
- Inside-cone plug-in system for plug sizes 2, 3 and 4
- Single and multiple connections possible per phase
- Connection of several cables with different plug sizes possible per phase
- Connection of solid-insulated or gas-insulated bar possible
- Connection of 4MT7 voltage transformer plugged in at the panel connection housing version 3
- Connection of 4MU3 voltage transformer via flexible cable and plug size 2 at the panel connection housing
- For rated normal currents up to 3150 A.

Surge arresters

- Pluggable via inside-cone plug-in system size 2 or 3
- Surge arresters recommended if, at the same time,
 - the cable system is directly connected to the overhead line,
 - the protection zone of the surge arrester at the end tower of the overhead line does not cover the switchgear.

Panel connection of 8DA10, 8DB10 and 8DA11/12 for cable plugs and bar systems

Legend

1. Panel connection housing
2. Subframe
3. Connection height of panel connection versions

1) 3150 A on request
Panel connection of 8DA10, 8DB10 and 8DA11/12 for cable plugs and bar systems

Components

Panel connection

<table>
<thead>
<tr>
<th>Version 4</th>
<th>Version 5</th>
<th>Version 6</th>
<th>Version 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>S3</td>
<td>Solid-insulated bar connection</td>
<td>S2</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>–</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Connection height of panel connection versions (mm)

| | | | | |
|---|---|---|---|
| 222 | 219 | -15 | 290 |
| 442 | 439 | 205 | 510 |
| 22 | 19 | -215 | 90 |
| 442 | 439 | 205 | 510 |

Fixed-Mounted Circuit-Breaker Switchgear Type 8DA and 8DB up to 40.5 kV, Gas-Insulated · Siemens HA 35.11 · September 2017
Components

Busbar and panel connection (commercially available cable plugs)

<table>
<thead>
<tr>
<th>Cable type</th>
<th>Make</th>
<th>Type</th>
<th>Size</th>
<th>Diameter across cable insulation mm</th>
<th>Conductor cross-section mm²</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermoplastic-insulated cables ≤ 12 kV according to IEC 60502-2</td>
<td>nkt cables</td>
<td>CPI 2</td>
<td>2</td>
<td>12.7 - 33.6</td>
<td>25 - 300</td>
<td>Insulation material silicone rubber, with or without metal housing, installation without special tools</td>
</tr>
<tr>
<td></td>
<td>CPI 3</td>
<td>3</td>
<td>21.2 - 45.6</td>
<td>185 - 630</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pfisterer</td>
<td>CONNEX</td>
<td>2</td>
<td>13.5 - 44.0</td>
<td>25 - 400</td>
<td>Insulation material silicone rubber, with metal housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONNEX</td>
<td>3</td>
<td>15.5 - 55.0</td>
<td>35 - 800</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CONNEX</td>
<td>4</td>
<td>33.0 - 78.5</td>
<td>95 - 1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Südkabel</td>
<td>SEIK 14</td>
<td>2</td>
<td>13.0 - 40.6</td>
<td>25 - 300</td>
<td>Insulation material silicone rubber, with metal housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEIK 15</td>
<td>3</td>
<td>19.3 - 50.6</td>
<td>120 - 630</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tyco Electronics</td>
<td>RPIT-321x</td>
<td>2</td>
<td>19.5 - 36.0</td>
<td>95 - 300</td>
<td>Insulation material silicone rubber, with metal housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RPIT-331x</td>
<td>3</td>
<td>26.0 - 50.0</td>
<td>240 - 630</td>
<td></td>
</tr>
</tbody>
</table>

Thermoplastic-insulated cables ≤ 24 kV according to IEC 60502-2	nkt cables	CPI 2	2	17.0 - 40.0	25 - 300	Insulation material silicone rubber, with or without metal housing, installation without special tools
	CPI 3	3	21.2 - 51.0	50 - 630		
	Pfisterer	CONNEX	2	13.5 - 44.0	25 - 400	Insulation material silicone rubber, with metal housing
		CONNEX	3	15.5 - 55.0	35 - 800	
		CONNEX	4	33.0 - 78.5	95 - 1600	
	Südkabel	SEIK 24	2	13.0 - 40.6	25 - 300	Insulation material silicone rubber, with metal housing
		SEIK 25	3	19.3 - 50.6	50 - 630	
	Tyco Electronics	RPIT-521x	2	19.5 - 36.0	50 - 300	Insulation material silicone rubber, with metal housing
		RPIT-531x	3	26.0 - 50.0	150 - 630	

Thermoplastic-insulated cables ≤ 40.5 kV according to IEC 60502-2	nkt cables	CPI 2	2	17.0 - 40.0	25 - 300	Insulation material silicone rubber, with or without metal housing, installation without special tools
	CPI 3	3	21.2 - 51.0	50 - 630		
	Pfisterer	CONNEX	2	13.5 - 44.0	25 - 400	Insulation material silicone rubber, with metal housing
		CONNEX	3	15.5 - 55.0	35 - 800	
		CONNEX	4	33.0 - 78.5	95 - 1600	
	Südkabel	SEIK 34	2	13.0 - 40.6	35 - 300	Insulation material silicone rubber, with metal housing
		SEIK 35	3	19.3 - 50.6	50 - 630	
	Tyco Electronics	RPIT-621x	2	19.5 - 36.0	50 - 185	Insulation material silicone rubber, with metal housing
		RPIT-631x	3	26.0 - 50.0	95 - 630	

Bar type

<table>
<thead>
<tr>
<th>Bar type</th>
<th>Bar connection</th>
<th>Make</th>
<th>Type</th>
<th>Conductor material</th>
<th>Max. rated current ¹</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid-insulated bar</td>
<td></td>
<td>MGC Moser Glaser</td>
<td>Duresca DE</td>
<td>Copper, aluminum</td>
<td>2500 A</td>
<td>Outer sheath made of polyamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duresca DG</td>
<td>Copper, aluminum</td>
<td>2500 A</td>
<td>Outer sheath made of CrNi steel or aluminum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tefelen Preissinger</td>
<td>ISOBUS MR</td>
<td>Copper, aluminum</td>
<td>2500 A</td>
<td>Outer sheath made of heat shrinkable tube</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ritz</td>
<td>SIS</td>
<td>Copper, aluminum</td>
<td>2500 A</td>
<td>Outer sheath made of heat shrinkable tube</td>
</tr>
<tr>
<td>Gas-insulated bar</td>
<td></td>
<td>MGC Moser Glaser</td>
<td>Gaslink</td>
<td>Copper</td>
<td>2500 A</td>
<td>Aluminum housing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tefelen Preissinger</td>
<td>ISOBUS MG</td>
<td>Copper</td>
<td>2500 A</td>
<td>Aluminum housing</td>
</tr>
</tbody>
</table>

Busbar and panel connection (commercially available dummy plugs)

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Dummy plug</th>
<th>Make</th>
<th>Type</th>
<th>Size</th>
<th>Rated voltage</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside-cone plug-in system according to EN 50181</td>
<td>nkt cables</td>
<td>FPI 2</td>
<td>2</td>
<td>40.5 kV</td>
<td>Insulation material silicone rubber, with metal housing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FPI 3</td>
<td>3</td>
<td>40.5 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pfisterer Blindstecker</td>
<td></td>
<td>2</td>
<td>40.5 kV</td>
<td>Insulation material silicone rubber, with metal housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>40.5 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>40.5 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Südkabel</td>
<td>ISIK 14/24/34</td>
<td>2</td>
<td>12 / 24 / 40.5 kV</td>
<td>Insulation material silicone rubber, with metal housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISIK 15/25/35</td>
<td>3</td>
<td>12 / 24 / 40.5 kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyco Electronics</td>
<td>RPIC-2</td>
<td>2</td>
<td>40.5 kV</td>
<td>Insulation material silicone rubber, with metal housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RPIC-3</td>
<td>3</td>
<td>40.5 kV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹) Higher values on request
Components

Indicating and measuring equipment

Voltage detecting systems according to IEC 61243-5 or VDE 0682-415, IEC 62271-206

- To verify safe isolation from supply
- LRM detecting systems
 - with plug-in indicator
 - with integrated indicator, type VOIS+, VOIS R+
 - with integrated indicator, with integrated repeat test of the interface, with integrated function test, type CAPDIS-S1+, WEGA 1.2 C, WEGA 1.2 C Vario, with integrated signaling relay, type CAPDIS-S2+, WEGA 2.2 C, WEGA 3.

Plug-in voltage indicator
- Verification of safe isolation from supply phase by phase
- Indicator suitable for continuous operation
- Measuring system and voltage indicator can be tested, repeat test according to local specifications and standards
- Voltage indicator flashes if high voltage is present.

VOIS+, VOIS R+
- Integrated display, without auxiliary power
- With indication "A1" to "A3" (see legend)
- Maintenance-free, repeat test according to local specifications and standards required
- With integrated 3-phase LRM test socket for phase comparison
- With integrated signaling relay (only VOIS R+)
- Degree of protection IP54.

Common features of CAPDIS-Sx+
- Maintenance-free
- Integrated display, without auxiliary power
- Integrated repeat test of the interfaces (self-monitoring)
- With integrated function test (without auxiliary power) by pressing the "Display-Test" pushbutton
- Adjustable for different operating voltages (adjustable capacitance C2)
- With integrated 3-phase LRM test socket for phase comparison
- With connectable signal-lead test
- With overvoltage monitoring and signaling (1.2 times operating voltage)
- Degree of protection IP54.

CAPDIS-S1+
- Without auxiliary power
- With indication "A1" to "A7" (see legend)
- Without ready-for-service monitoring
- Without signaling relays (without auxiliary contacts).

CAPDIS-S2+
- With indication "A0" to "A8" (see legend)
- Only by pressing the "Test" pushbutton: "ERROR" indication (A8), e.g. in case of missing auxiliary voltage
- With ready-for-service monitoring (auxiliary power required)
- With integrated signaling relay for signals (auxiliary power required).

Indicators and detecting systems

Symbols shown

<table>
<thead>
<tr>
<th>VOIS+, VOIS R+</th>
<th>CAPDIS-S1+</th>
<th>CAPDIS-S2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 L2 L3</td>
<td>L1 L2 L3</td>
<td>L1 L2 L3</td>
</tr>
<tr>
<td>A0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 $$$ $$</td>
<td>$$$ $$</td>
<td>$$$ $$</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3 $$$ $$</td>
<td>$$$ $$</td>
<td>$$$ $$</td>
</tr>
<tr>
<td>A4 $$$ $$</td>
<td>$$$ $$</td>
<td>$$$ $$</td>
</tr>
<tr>
<td>A5 $$$ $$</td>
<td>$$$ $$</td>
<td>$$$ $$</td>
</tr>
<tr>
<td>A6 $$$ $$</td>
<td>$$$ $$</td>
<td>$$$ $$</td>
</tr>
<tr>
<td>A7 $$$ $$</td>
<td>$$$ $$</td>
<td>$$$ $$</td>
</tr>
<tr>
<td>A8 $$$ $$</td>
<td>$$$ $$</td>
<td>$$$ $$</td>
</tr>
</tbody>
</table>

CAPDIS S2+: The red and green LEDs show the state of the relay contacts
- O O LED doesn’t light up
- O LED lights up
- U = Operating voltage

A0 CAPDIS-S2+: Operating voltage not present
A1 Operating voltage present
A2 – Operating voltage not present
 – For CAPDIS-S2+: Auxiliary power not present
A3 Failure in phase L1, operating voltage at L2 and L3
 (for CAPDIS-Sx+ also earth-fault indication)
A4 Voltage (not operating voltage) present
A5 Indication “Test” passed
 (lights up briefly)
A6 Indication “Test” not passed
 (lights up briefly)
A7 Overvoltage present
 (lights up permanently)
A8 Indication “ERROR”, e.g.: in case of missing auxiliary voltage

Voltage indication via capacitive voltage divider (principle)

- C1 Capacitance integrated into bushing
- C2 Capacitance of the connection leads and the voltage indicator to earth
 \[U_{LE} = U_N \sqrt{3} \text{ during rated operation in the three-phase system} \]
 \[U_2 = U_A = \text{Voltage at the capacitive interface of the switchgear or at the voltage indicator} \]
Components

Indicating and measuring equipment

WEGA 3
- Display indication “A1” to “A5”
- Integrated repeat test of the interface (self-monitoring)
- With integrated 3-phase LRM test socket for phase comparison.

WEGA 1.2 C, WEGA 1.2 C Vario
- Display indication “A1” to “A6” (see legend)
- Maintenance-free
- Integrated repeat test of the interface (self-monitoring)
- With integrated function test (without auxiliary power) by pressing the “Display Test” pushbutton
- With integrated 3-phase LRM test socket for phase comparison
- Without integrated signaling relay
- Without auxiliary power
- Degree of protection IP54
- Adjustable for different operating voltages (adjustable capacitance C2) (only for WEGA 1.2 C Vario).

WEGA 2.2 C
- Display indication “A0” to “A7” (see legend)
- Maintenance-free
- Integrated repeat test of the interface (self-monitoring)
- With integrated function test (without auxiliary power) by pressing the “Display Test” pushbutton
- With integrated 3-phase LRM test socket for phase comparison
- With two integrated signaling relays (auxiliary power required)
- Degree of protection IP54.

Symbols shown

<table>
<thead>
<tr>
<th>WEGA 3</th>
<th>WEGA 1.2 C</th>
<th>WEGA 2.2 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L2</td>
<td>L3</td>
</tr>
<tr>
<td>A0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LC display gray: not illuminated
LC display white: illuminated

WEGA 2.2 C: The red and green LEDs show the state of the relay contacts
- ○ LED doesn’t light up
- ● LED lights up
- U = Operating voltage

- A0 For WEGA 2.2 C: Operating voltage not present, auxiliary power present, LCD illuminated
- A1 Operating voltage present
 For WEGA 2.2 C: Auxiliary power present, LCD illuminated
- A2 Operating voltage not present
 For WEGA 2.2 C: Auxiliary power not present, LCD not illuminated
- A3 Failure in phase L1, operating voltage at L2 and L3
 For WEGA 2.2 C: Auxiliary power present, LCD illuminated
- A4 Voltage present, current monitoring of coupling section below limit value
 For WEGA 2.2 C: Auxiliary power present, LCD illuminated
- A5 Indication “Display-Test” passed
 For WEGA 2.2 C: Auxiliary power present, LCD illuminated
- A6 Indication “Display Test” passed
 For WEGA 2.2 C: Auxiliary power present
- A7 For WEGA 2.2 C: LCD for missing auxiliary voltage is not illuminated

Voltage indication
via capacitive voltage divider (principle)
- C1 Capacitance integrated into bushing
- C2 Capacitance of the connection leads and the voltage indicator to earth
- \(U_{LE} = U_A / \sqrt{3} \) during rated operation in the three-phase system
- \(U_2 = U_4 \) = Voltage at the capacitive interface of the switchgear or at the voltage indicator

Components

Indicating and measuring equipment

WEGA 3
- Display indication “A1” to “A5”
- Integrated repeat test of the interface (self-monitoring)
- With integrated 3-phase LRM test socket for phase comparison.

WEGA 1.2 C, WEGA 1.2 C Vario
- Display indication “A1” to “A6” (see legend)
- Maintenance-free
- Integrated repeat test of the interface (self-monitoring)
- With integrated function test (without auxiliary power) by pressing the “Display Test” pushbutton
- With integrated 3-phase LRM test socket for phase comparison
- Without integrated signaling relay
- Without auxiliary power
- Degree of protection IP54
- Adjustable for different operating voltages (adjustable capacitance C2) (only for WEGA 1.2 C Vario).

WEGA 2.2 C
- Display indication “A0” to “A7” (see legend)
- Maintenance-free
- Integrated repeat test of the interface (self-monitoring)
- With integrated function test (without auxiliary power) by pressing the “Display Test” pushbutton
- With integrated 3-phase LRM test socket for phase comparison
- With two integrated signaling relays (auxiliary power required)
- Degree of protection IP54.

Symbols shown

<table>
<thead>
<tr>
<th>WEGA 3</th>
<th>WEGA 1.2 C</th>
<th>WEGA 2.2 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L2</td>
<td>L3</td>
</tr>
<tr>
<td>A0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LC display gray: not illuminated
LC display white: illuminated

WEGA 2.2 C: The red and green LEDs show the state of the relay contacts
- ○ LED doesn’t light up
- ● LED lights up
- U = Operating voltage

- A0 For WEGA 2.2 C: Operating voltage not present, auxiliary power present, LCD illuminated
- A1 Operating voltage present
 For WEGA 2.2 C: Auxiliary power present, LCD illuminated
- A2 Operating voltage not present
 For WEGA 2.2 C: Auxiliary power not present, LCD not illuminated
- A3 Failure in phase L1, operating voltage at L2 and L3
 For WEGA 2.2 C: Auxiliary power present, LCD illuminated
- A4 Voltage present, current monitoring of coupling section below limit value
 For WEGA 2.2 C: Auxiliary power present, LCD illuminated
- A5 Indication “Display-Test” passed
 For WEGA 2.2 C: Auxiliary power present, LCD illuminated
- A6 Indication “Display Test” passed
 For WEGA 2.2 C: Auxiliary power present
- A7 For WEGA 2.2 C: LCD for missing auxiliary voltage is not illuminated

Voltage indication
via capacitive voltage divider (principle)
- C1 Capacitance integrated into bushing
- C2 Capacitance of the connection leads and the voltage indicator to earth
- \(U_{LE} = U_A / \sqrt{3} \) during rated operation in the three-phase system
- \(U_2 = U_4 \) = Voltage at the capacitive interface of the switchgear or at the voltage indicator
Verification of correct terminal-phase connections

- Verification of correct terminal-phase connections possible by means of a phase comparison test unit (can be ordered separately)
- Safe-to-touch handling of the phase comparison test unit by inserting it into the capacitive taps (socket pairs) of the switchgear.

Phase comparison test units according to IEC 61243-5 or VDE 0682-415

Phase comparison test unit make Pfiisterer, type EPV
as combined test unit (HR and LRM) for:
- Voltage detection
- Phase comparison
- Interface test
- Integrated self-test
- Indication via LED.

Phase comparison test unit make Kries, type CAP-Phase
as combined test unit (HR and LRM) for:
- Voltage detection
- Repeat test
- Phase comparison
- Phase sequence test
- Self-test
The unit does not require a battery.

Phase comparison test unit make Horstmann, type ORION 3.1
as combined test unit (HR and LRM) for:
- Phase comparison
- Interface testing at the switchgear
- Voltage detection
- Integrated self-test
- Indication via LED and acoustic alarm
- Phase sequence indicator.

Phase comparison test unit make Horstmann, type ORION M1
as combined test unit (HR and LRM) for:
- Phase comparison
- Interface testing at the switchgear
- Voltage detection
- Integrated self-test
- Indication via LED and acoustic alarm
- Phase sequence indicator.
- Measurement of interface current up to 25µA
- Measurement of phase angle from -180° to +180°
- Measurement of harmonics up to 40th harmonic
- Securing the measured values via PC software (ORION explorer) and USB.
Components
Indicating and measuring equipment

Ready-for-service indication

Features
- Simple, visual check of the ready-for-service indicator by red/green indication areas
- Indication of gas pressure also guaranteed without auxiliary voltage supply
- Gas pressure manometers arranged at the switchgear front
- Gas filling equipment with non-return valve arranged at the switchgear front beside the associated gas pressure manometer
- Gas pressure manometers with two signaling contacts for “gas pressure too low / gas pressure too high” indication
- **Option:** Gas pressure manometers with three signaling contacts for “gas pressure too low / very low” and “gas pressure too high” indication
- **Option:** Gas pressure manometers with temperature and pressure compensation.

Low-voltage compartment
- For accommodation of protection, control, measuring and metering equipment
- Partitioned safe-to-touch from the high-voltage part of the panel
- Low-voltage compartment can be removed, bus wires and control cables are plugged in
- **Option:** Higher low-voltage compartment (1200 mm instead of 850 mm) possible.

Gas monitoring of single-busbar switchgear 8DA10

Gas pressure manometer (1) for circuit-breaker housing (arranged at the panel front)

Gas monitoring of double-busbar switchgear 8DB10

Gas pressure manometers (3) for circuit-breaker and disconnector housings (arranged at the panel front)

Gas pressure manometers (4) for busbar housings (arranged at the lateral switchgear termination)
Protecting, controlling and monitoring are the basic requirements placed on a complete bay controller across all technology generations. The properties the user expects from modern bay controllers are: multifunctionality, reliability, safety and communication capability.

The increasing integration of many functions in one multifunctional device leads to an optimally supported engineering process, IT security, service and testability, or simple and safe operability of the devices and tools.

On the following pages you will find functional descriptions for some selected devices. The low-voltage compartment can accommodate all customary protection, control, measuring and monitoring equipment available on the market:

Overview of digital protection devices

<table>
<thead>
<tr>
<th>Main function</th>
<th>SIPROTEC 5</th>
<th>SIPROTEC Compact</th>
<th>SIPROTEC 4</th>
<th>Reyrolle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent and feeder protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent protection with PMU and control</td>
<td>7SJ82/85</td>
<td>7SJ80/81</td>
<td>7SJ61/62/63/64/66</td>
<td>7SR10/11/12/21/22</td>
</tr>
<tr>
<td>Self powered overcurrent protection</td>
<td>7SJ45</td>
<td></td>
<td></td>
<td>7SR45</td>
</tr>
<tr>
<td>Line protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance protection with PMU and control</td>
<td>7SA82/86/87</td>
<td></td>
<td>7SA61/63/64</td>
<td></td>
</tr>
<tr>
<td>Line differential protection with PMU and control</td>
<td>7SD82/86/87</td>
<td>7SD80</td>
<td>7SD610, 7SD5</td>
<td>7SR18 Solkor</td>
</tr>
<tr>
<td>Combined line differential and distance protection with PMU and control</td>
<td>7SL82/86/87</td>
<td></td>
<td></td>
<td>7SD5</td>
</tr>
<tr>
<td>Breaker management with PMU and control</td>
<td>7VK87</td>
<td></td>
<td></td>
<td>7VK61</td>
</tr>
<tr>
<td>Overcurrent protection for lines with PMU</td>
<td>7SJ86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer differential protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformer differential protection with PMU, control and monitoring</td>
<td>7UT82/85/86/87</td>
<td>7UT612/613/63</td>
<td>7SR242 Duobias</td>
<td></td>
</tr>
<tr>
<td>Motor- and generator protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor protection with PMU and control</td>
<td>7SK82/85</td>
<td>7SK80/81</td>
<td>7SJ61/62/63/64/66</td>
<td>7SR105 Argus, 7SR17 Argus</td>
</tr>
<tr>
<td>Generator protection with PMU and control</td>
<td>7UM85</td>
<td>7UM61/62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Busbar differential protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centralized busbar differential protection</td>
<td>7SS85</td>
<td></td>
<td></td>
<td>7SS52</td>
</tr>
<tr>
<td>Bay controller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bay controller for control/interlocking tasks with PMU, monitoring and protection functions</td>
<td>6MD85/86</td>
<td>6MD63/66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault recorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault recorder, fault recorder with power quality recordings and fault recorder with PMU</td>
<td>7KE85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage and frequency protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable for system decoupling, load shedding and load restoration</td>
<td>7RW80</td>
<td></td>
<td>7SR158 Argus</td>
<td></td>
</tr>
<tr>
<td>Synchronizing</td>
<td></td>
<td>7VE61/63</td>
<td>7SR157 Argus</td>
<td></td>
</tr>
<tr>
<td>Distribution automation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection and automation for overhead lines</td>
<td>7SC80</td>
<td></td>
<td>7SR224 Argus</td>
<td></td>
</tr>
<tr>
<td>Capacitor bank protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitor bank protection</td>
<td>7SJ82/85</td>
<td></td>
<td>7SR191 Capa</td>
<td></td>
</tr>
<tr>
<td>High impedance protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High impedance protection</td>
<td></td>
<td></td>
<td></td>
<td>7SR23 DAD</td>
</tr>
<tr>
<td>High speed busbar transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High speed busbar transfer</td>
<td></td>
<td></td>
<td></td>
<td>7VU68</td>
</tr>
</tbody>
</table>

1) Optional for SIPROTEC 5
Components
Protection, control, measuring and monitoring equipment

SIPROTEC 5 device series
- Powerful automation with graphical CFC (Continuous Function Chart)
- Secure serial protection data communication, also over large distances and all available physical media (fiber-optic cable, 2-wire connections and communication networks)
- Recognition of static and transient earth faults (passing contact function in resonant-earthed and isolated systems)
- Measurement of operational values
- Phasor Measurement Unit (PMU) for synchrophasor measured values and IEEE C37.118 protocol
- Powerful fault recording
- Control of switching devices.

Overcurrent protection device SIPROTEC 7SJ82
- Directional and non-directional time-overcurrent protection with additional functions
- Time optimization of the tripping times by directional comparison and protection data communication
- Frequency protection and rate-of-frequency-change protection for load shedding applications
- Overvoltage and undervoltage protection in all required variations
- Power protection, configurable as active or reactive power protection
- Control, synchrocheck and system interlocking
- Firmly integrated electrical Ethernet port J for DiGSI
- Complete IEC 61850 (reporting and GOOSE) via integrated port J
- Two optional, pluggable communication modules usable for different and redundant protocols (IEC 61850, IEC 60870-5-103, DNP3 (serial+TCP), Modbus RTU Slave, protection data communication).

Distance protection SIPROTEC 7SA86
- Line protection for all voltage levels with 3-pole tripping
- Very short tripping time
- Selective protection of overhead lines and cables with single- and multi-ended infeeds
- Time-graded backup protection to differential protection relays
- Suitable for radial, ring-shaped, or any type of meshed systems of any voltage level with earthed, resonant-earthed or isolated neutral point
- Main protection function: 6-system distance protection
- Detection of current transformer saturation for fast tripping with high accuracy at the same time.

Differential protection SIPROTEC 7SD86
- Line protection for all voltage levels with 3-pole tripping
- Phase-selective protection of overhead lines and cables with single- and multi-ended infeeds of all lengths with up to 6 line ends
- Transformers and shunt reactors within the protection zone are possible
- Suitable for radial, ring-shaped, or any type of meshed systems of any voltage level with earthed, resonant-earthed or isolated neutral point
- Protection of lines with capacitive series compensation
- Directional backup protection and various additional functions.
Transformer differential protection SIPROTEC 7UT85
- Transformer differential protection for two-winding transformers with versatile additional protection functions
- Universal utilization of the permissible measuring points
- Flexible adjustment to the transformer vector group, controlling of making and overexcitation processes, secure performance in case of current transformer saturation with different saturation degrees.
- Protection of standard power transformers and auto-transformers
- Increased sensitivity in case of earth short-circuits close to the neutral point by means of a separate earth-fault differential protection
- Additional current and voltage inputs can be provided for standard protection functions such as overcurrent, voltage, frequency, etc.
- In the standard version, two communication modules can be plugged in, and different protocols can be used (IEC 61850, IEC 60870-5-103, DNP3 (serial, TCP), Modbus RTU Slave).

Digital fault recorder SIPROTEC 7KE85
- Fast-scan recorder
- Up to 2 slow scan recorders
- Up to 5 continuous recorders
- Usable as Phasor Measurement Unit (PMU) according to IEEE C37.118 Standard
- Transfer of recordings and triggering via IEC 61850
- Variable sampling rates programmable between 1 kHz – 16 kHz
- No-loss data compression
- Time synchronization via IRIG-B, DCF77 and SNTP
- Free mapping of measured values to the individual recorders
- Free combination of measuring groups for power calculation
- Quality bits for displaying the momentary channel quality
- The trigger functions of a function block are the fundamental value, r.m.s. value, zero-sequence, positive-sequence, negative-sequence system, Σ active, Σ reactive and Σ apparent power
- Level trigger and gradient trigger for each trigger function
- Flexible cross and network trigger
- Creation of trigger functions with the graphical automation editor CFC (Continuous Function Chart)
- Trigger functions by combination of single signals, double signals, analog values, binary signals, Bool signals and GOOSE messages.

SIPROTEC Compact series
Overcurrent protection SIPROTEC 7SJ80
- Pluggable current and voltage terminals
- Binary input thresholds settable using DIGSI (3 stages)
- Secondary current transformer values (1A/5A) settable using DIGSI
- 9 programmable function keys
- 6-line display
- Buffer battery exchangeable from the front
- USB front port
- 2 additional communication ports
- IEC 61850 with integrated redundancy (electrical or optical)
- Relay-to-relay communication through Ethernet with IEC 61850 GOOSE
- Millisecond-accurate time synchronization through Ethernet with SNTP.
Components

ANSI design

Panel design
- Factory-assembled, type-tested according to IEC 62271
- Single-pole metal-enclosed, with metallic partitions 1)
- Hermetically bolted switchgear housings made of corrosion-resistant aluminum alloy
- Switchpanel poles arranged one behind the other
- Maintenance-free in an indoor environment (IEC 62271-1)
- Cable connection with inside-cone plug-in system according to EN 50181
- Wall-standing or free-standing arrangement
- Subframe, front cover, rear cover and end walls powder-coated in color “light basic” (SN 700)
- Low-voltage compartment removable, plug-in bus wires
- Degree of protection
 - IP 65 for all high-voltage parts of the primary circuit
 - IP 3XD for the switchgear enclosure
- Option: IP 31D for the switchgear enclosure
- Option: IP 41 for the low-voltage compartment
- Vacuum circuit-breaker
- Three-position disconnector for disconnecting and earthing by means of the circuit-breaker
- Make-proof earthing by means of the vacuum circuit-breaker
- Option: Three-position disconnector for disconnecting and earthing at the feeder
- For further dimensions and product range, see pages 14 to 31.

Insulating system
- Switchgear housing filled with SF₆ gas
- Features of SF₆ gas:
 - Non-toxic
 - Odorless and colorless
 - Non-inflammable
 - Chemically neutral
 - Heavier than air
 - Electronegative (high-quality insulator)
 - GWP (Global Warming Potential) = 22,800
- Pressure of the SF₆ gas in the switchgear housing dependent on the electrical ratings (relative pressure at 20 °C):
 Rated functional level (relative): 120 kPa
 Gas leakage rate: < 0.1 % per year.

Camera system
- Camera system for visual monitoring of the switch positions of the disconnectors and earthing switches (see also page 54).

UL certification
- For 8DA and 8DB ANSI design options there is a UL or cUL certificate available.

1) Corresponds to “metal-clad” according to former standard IEC 60298
Electrical data, functional level, temperature for single-busbar and double-busbar switchgear according to ANSI

<table>
<thead>
<tr>
<th>Common electrical data, functional level and temperature</th>
<th>Rated insulation level</th>
<th>Rated voltage U_r (kV)</th>
<th>4</th>
<th>7.6</th>
<th>8.25</th>
<th>15</th>
<th>27</th>
<th>38</th>
<th>40.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rated short-duration power-frequency withstand voltage U_{d1}:</td>
<td>phase-to-phase, phase-to-earth, open contact gap kV</td>
<td>19</td>
<td>21</td>
<td>36</td>
<td>36</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– across the isolating distance kV</td>
<td>21</td>
<td>40</td>
<td>40</td>
<td>80</td>
<td>95</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rated lightning impulse withstand voltage U_{p1}:</td>
<td>phase-to-phase, phase-to-earth, open contact gap kV</td>
<td>60</td>
<td>66</td>
<td>95</td>
<td>95</td>
<td>125</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– across the isolating distance kV</td>
<td>66</td>
<td>105</td>
<td>105</td>
<td>138</td>
<td>220</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rated frequency f_r</td>
<td>Hz</td>
<td>50</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rated normal current I_r (A)</td>
<td>of the busbar</td>
<td>1250</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min.</td>
<td>1250</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>1250</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>4000</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rated functional level p_{rel} (relative) of the busbar</td>
<td>120 kPa at 20 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum functional level p_{me}</td>
<td>100 kPa at 20 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambient air temperature</td>
<td>–5 °C to +55 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data of the switchgear panels

<table>
<thead>
<tr>
<th>Circuit-breaker panel, disconnector panel 2), bus sectionalizer, bus coupler 3)</th>
<th>Rated normal current I_r (A)</th>
<th>1250</th>
<th>1600</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>Max.</td>
<td>1250</td>
<td>1600</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>5000</td>
</tr>
<tr>
<td>Rated short-time withstand current I_k, $t_k = 3 , s$</td>
<td>bis kA</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Rated peak withstand current I_p</td>
<td>bis kA</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>Rated short-circuit making current I_{ma}</td>
<td>bis kA</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>Rated short-circuit breaking current I_{ms}</td>
<td>bis kA</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Electrical endurance of vacuum circuit-breakers</td>
<td>at rated normal current</td>
<td>10,000 operating cycles 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at rated short-circuit breaking current</td>
<td>50 breaking operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated functional level p_{rel} (relative) for feeders</td>
<td>120 kPa at 20 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum functional level p_{me}</td>
<td>100 kPa at 20 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Higher values of the rated voltage available with 42 kV
2) Disconnector panel available for single-busbar switchgear 8DA10
3) Bus coupler available for double-busbar switchgear 8DB10
4) Maximum permissible normal current dependent on ambient air temperature
5) 2700 A without forced ventilation (8DB10 on request)
6) 3000 A with forced ventilation (8DB10 on request)
7) Option: 30,000 operating cycles
8) Option: Ambient air temperature –30 °C to +55 °C
Components
ANSI design

Camera system
8DA and 8DB switchgear can be designed according to ANSI requirements. For this purpose, every three-position disconnector is equipped with a digital camera monitoring system VDMS (Visible Disconnect Monitoring System). The CLOSED - OPEN - EARTHED positions are transmitted per phase through a USB / RJ45 interface and signaled to a mobile computer.

Current transformer features
• Designed as ring-core current transformers, single-pole
• Free of dielectrically stressed cast-resin parts (due to design)
• Inductive type
• Climate-independent
• Secondary connection by means of a terminal strip in the low-voltage compartment of the panel
• Cast-resin insulated.

Voltage transformer features
• Single-pole, plug-in design
• Connection system with plug-in contact according to EN 50181
• Inductive type
• Safe-to-touch due to metal enclosure
• Climate-independent
• Secondary connection by means of plugs in the low-voltage compartment of the panel
• Cast-resin insulated.

Installation
Arranged outside the primary enclosure (switchgear housing).

Internal arc classification
• Internal arcing test according to IEEE Std C37.20.7™-2007 (see also page 13).

Current transformer installation (basic scheme)
C Feeder current transformer (type 4MC4_90)
D Feeder current transformer (type 4MC4_10)
E Busbar current transformer (type 4MC4_40)
Option:
A Feeder current transformer between circuit-breaker and three-position disconnector on the busbar (type 4MC4_90)

Voltage transformer installation (basic scheme)
1 Busbar voltage transformer 4MU4_FUSE with primary fuses and three-position disconnector
2 Feeder voltage transformer 4MU3_FUSE with primary fuses (not in the panel, connection via flexible cable with plug size S2 at the panel connection housing and metal-enclosed voltage transformer)

USB and LAN interface for visual monitoring of the positions of the three-position disconnector.
Option:
In accordance with ANSI requirements, 8DA and 8DB switchgear can be equipped with an additional three-position disconnector at the feeder.

Features
- Rated normal currents up to 2000 A
- 2000 operating cycles for the disconnector (higher operating cycles on request)
- 1000 operating cycles for the earthing switch (higher operating cycles on request)
- Operating shaft and disconnector contacts with common center of rotation and reliable switch position up to the operating front of the panel
- Gas-tight bushings separate the busbar and circuit-breaker housings underneath the busbar disconnector contacts
- Cable connection and circuit-breaker housings can be removed without interrupting busbar operation
- Maintenance-free.

Switch positions
- CLOSED, OPEN, EARTHED or READY-TO-EARTH
- CLOSED: Disconnector contact connected with the busbar: Main circuit closed between busbar, circuit-breaker and feeder
- OPEN: Main circuit open between busbar, circuit-breaker and feeder: Test voltages for isolating distances are withstood
- READY-TO-EARTH: Contact blades connected with the earthing contact
- EARTHED: Circuit-breaker closed. Three-position disconnector at the feeder connected with earthing contact.

Operating mechanism
- Only permissible operations possible due to logical mechanical interlocks
- Mechanically coupled position indicators
- Separate operating shafts for the "DISCONNECTING", "EARTHING" and "READY-TO-EARTH" functions
- With manual operating mechanism
- Option: With motor operating mechanism
 Motor rating at 24 V to 250 V DC: max. 100 W
 110 V to 240 V AC: max. 130 VA
- Same sense of rotation for the switching operations of the "CLOSE" or "OPEN" functions.
Fixed-Mounted Circuit-Breaker Switchgear Type 8DA and 8DB up to 40.5 kV, Gas-Insulated · Siemens HA 35.11 · September 2017

Standards

Type of service location
The switchgear can be used as indoor installation according to IEC 61936 (Power installations exceeding 1 kV AC)
• Outside lockable electrical service locations at places which are not accessible to the public. Enclosures of switchgear can only be removed with tools
• In lockable electrical service locations. A lockable electrical service location is a place outdoors or indoors that is reserved exclusively for housing electrical equipment and which is kept under lock and key. Access is restricted to authorized personnel and persons who have been properly instructed in electrical engineering. Untrained or unskilled persons may only enter under the supervision of authorized personnel or properly instructed persons.

Terms
“Make-proof earthing switches” are earthing switches with short-circuit making capacity according to IEC 62271-102 and EN 62271-102.

Dielectric strength
• The dielectric strength is verified by testing the switchgear with rated values of short-duration power-frequency withstand voltage and lightning impulse withstand voltage according to IEC 62271-1 (see table "Dielectric strength").
• The rated values are referred to sea level and to normal atmospheric conditions (1013 hPa, 20 °C, 11g/m3 humidity according to IEC 60071).
The gas insulation at a relative gas pressure of > 50 kPa permits switchgear installation at any desired altitude above sea level without the dielectric strength being adversely affected.

Standards
8DA and 8DB switchgear complies with the relevant standards and specifications applicable at the time of type tests. In accordance with the harmonization agreement reached by the countries of the European Union, their national specifications conform to the IEC standard.

Overview of standards (September 2017)

<table>
<thead>
<tr>
<th>Switchgear</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>8DA and 8DB</td>
<td>IEC 62271-1</td>
<td>VDE 0671-1</td>
<td>EN 62271-1</td>
</tr>
<tr>
<td></td>
<td>IEC 62271-200</td>
<td>VDE 0671-200</td>
<td>EN 62271-200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Devices</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit-breakers</td>
<td>IEC 62271-100</td>
<td>VDE 0671-100</td>
<td>EN 62271-100</td>
</tr>
<tr>
<td>Disconnectors and earthing switches</td>
<td>IEC 62271-102</td>
<td>VDE 0671-102</td>
<td>EN 62271-102</td>
</tr>
<tr>
<td>Voltage detecting systems</td>
<td>IEC 61243-5</td>
<td>VDE 0682-415</td>
<td>EN 61243-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree of protection</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP code</td>
<td>IEC 60529</td>
<td>VDE 0470-1</td>
<td>EN 60529</td>
</tr>
<tr>
<td>IK code</td>
<td>IEC 62262</td>
<td>VDE 0470-100</td>
<td>EN 50102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insulation</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>IEC 60071</td>
<td>VDE 0111</td>
<td>EN 60071</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument transformers</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>IEC 61869-1</td>
<td>VDE 0414-9-1</td>
<td>EN 61869-1</td>
</tr>
<tr>
<td>Current transformers</td>
<td>IEC 61869-2</td>
<td>VDE 0414-9-2</td>
<td>EN 61869-2</td>
</tr>
<tr>
<td>Voltage transformers</td>
<td>IEC 61869-3</td>
<td>VDE 0414-9-3</td>
<td>EN 61869-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation, erection</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>IEC 61936-1</td>
<td>VDE 0101</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insulating gas SF₆</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use and handling of SF₆</td>
<td>IEC 62271-4</td>
<td>VDE 0671-4</td>
<td>EN 62271-4</td>
</tr>
<tr>
<td>Specification for new SF₆</td>
<td>IEC 60376</td>
<td>VDE 0373-1</td>
<td>EN 60376</td>
</tr>
<tr>
<td>Guidelines for the checking and treatment of SF₆ taken from electrical equipment</td>
<td>IEC 60480</td>
<td>VDE 0373-2</td>
<td>EN 60480</td>
</tr>
</tbody>
</table>

Overview of standards for traction applications

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>8DA11 and 8DA12</td>
<td>IEC 60850</td>
<td>VDE 0115-102</td>
<td>EN 50163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switchgear</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>8DA11 and 8DA12</td>
<td>IEC 62505</td>
<td>VDE 0115-320</td>
<td>EN 50152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insulation</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>8DA11 and 8DA12</td>
<td>–</td>
<td>VDE 0115-107</td>
<td>EN 50124</td>
</tr>
</tbody>
</table>

Table – Dielectric strength
Single-busbar and double-busbar switchgear 8DA10 and 8DB10

<table>
<thead>
<tr>
<th>Rated voltage kV</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>40.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration power-frequency withstand voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Between phase and earth kV</td>
<td>28</td>
<td>50</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td>– Across isolating distance kV</td>
<td>32</td>
<td>60</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Between phase and earth kV</td>
<td>75</td>
<td>125</td>
<td>170</td>
<td>185</td>
</tr>
<tr>
<td>– Across isolating distance kV</td>
<td>85</td>
<td>145</td>
<td>195</td>
<td>220</td>
</tr>
</tbody>
</table>

Table – Dielectric strength
Traction power supply switchgear 8DA11/12

| Rated voltage according to EN 50124-1 kV | 17.25 | 27.5 |
| Nominal voltage according to IEC 60850 / EN 50163 kV | 15 | 25 |
| Rated short-duration power-frequency withstand voltage |
| – Between phase and earth kV | 50 | 95 |
| – Across isolating distance kV | 60 | 110 |
| Rated lightning impulse withstand voltage |
| – Between phase and earth kV | 125 | 200 |
| – Across isolating distance kV | 145 | 220 |
Current carrying capacity
• According to IEC 62271-200 or IEC 62271-1, the rated normal current refers to the following ambient air temperatures:
 – Maximum of 24-hour mean $+35^\circ C$
 – Maximum $+40^\circ C$
• The current carrying capacity of the panels and busbars depends on the ambient air temperature outside the enclosure.

Internal arc classifications
• Protection of operating personnel by means of tests for verifying the internal arc classification
• Internal arcing tests must be performed in accordance with IEC 62271-200 and IEEE Std C37.20.7™-2007
• Definition of criteria according to IEC:
 – Criterion 1
 Correctly secured doors and covers do not open, limited deformations are accepted
 – Criterion 2
 No fragmentation of the enclosure, no projection of small parts above 60 g
 – Criterion 3
 No holes in accessible sides up to a height of 2 m
 – Criterion 4
 No ignition of indicators due to hot gases
 – Criterion 5
 The enclosure remains connected to its earthing point.

Resistance to internal faults
Due to the single-pole enclosure and the gas insulation of the switchgear and the switching devices, the possibility of faults in gas-insulated switchgear is a mere fraction of that typical of other switchgear types:
• There are no effects due to external influences, such as:
 – Pollution layers
 – Humidity
 – Small animals and foreign objects
• Maloperation is practically excluded due to logical arrangement of operating elements
• Short-circuit-proof feeder earthing by means of the circuit-breaker.

In the unlikely event of a fault within the switchgear housing, the energy conversion in the case of an internal arc fault is minor thanks to the SF₆ insulation and the shorter length of the arc, approximately only ⅓ of the converted energy of an arc in air insulation.

Resistance to short circuits and earth faults
Two-phase and three-phase short circuits between the primary conductors are excluded by the single-pole primary enclosure.

Seismic withstand capability (optional)
8DA and 8DB switchgear can be upgraded for regions at risk from earthquakes.

For upgrading, earthquake qualification testing has been carried out in accordance with the following standards:
• IEC 60068-3-3 “Guidance – seismic test methods for equipment”
• IEC 60068-2-57 “Test Ff: Vibration – Time-history method”
• IEC 60068-2-6 “Test Fc: Vibration (sinusoidal)”
• IEEE 693-2005 “Recommended Practice for Seismic Design of Substations”
• IEEE 344-2004 “IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations”
• IEC 60980-1989 “Recommended practices for seismic qualification of electrical equipment of the safety system for nuclear generating stations”.

For installation on even and rigid concrete or steel structure (without considering building influences), the tested ground accelerations meet the following requirements:
• Uniform Building Code 1997 (UBC) – Zone 4
• California Building Code 1998 (CBC) – Zone 4
• International Building Code 2006 (IBC) – 200 %
• American Society of Civil Engineers 2005 (ASCE) – 200 %
• IEEE 693-2005 – High required response spectrum (Figure A.1).

Color of the panel front
Siemens standard (SN) 47 030 G1, color “light basic” (SN700) (similar to RAL 7044/silk grey).

Climate and environmental influences
8DA and 8DB switchgear is completely enclosed and insensitive to climatic influences.
• All medium-voltage devices are installed in gas-tight and bolted switchgear housings made of corrosion-resistant aluminum alloy and filled with SF₆ gas
• Live parts inside and outside the switchgear housing are provided with single-pole enclosure
• At no point can creepage currents flow from high-voltage potentials to earth
• Operating mechanism parts which are functionally important are made of corrosion-resistant materials
• Bearings in the operating mechanism are designed as dry-type bearings and do not require lubrication.

Recycling
The switchgear can be recycled in ecological manner in compliance with existing legislation. Auxiliary devices such as short-circuit indicators have to be recycled as electronic scrap. Batteries have to be recycled professionally. Insulating gas SF₆ has to be evacuated professionally as a reusable material and recycled (SF₆ must not be released into the environment).

Protection against solid foreign objects, electric shock and water
8DA and 8DB switchgear fulfills according to the standards

<table>
<thead>
<tr>
<th>International standard</th>
<th>European standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 62271-1</td>
<td>EN 62271-1</td>
</tr>
<tr>
<td>IEC 62271-200</td>
<td>EN 62271-200</td>
</tr>
<tr>
<td>IEC 60529</td>
<td>EN 60529</td>
</tr>
<tr>
<td>IEC 62262</td>
<td>EN 50102</td>
</tr>
</tbody>
</table>

the following degrees of protection:

<table>
<thead>
<tr>
<th>Degree of protection</th>
<th>Type of protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP 65</td>
<td>for parts of the primary circuit under high voltage</td>
</tr>
<tr>
<td>IP 3X0</td>
<td>for switchgear enclosure</td>
</tr>
<tr>
<td>IP 31D</td>
<td>for switchgear enclosure (optional)</td>
</tr>
<tr>
<td>IP 41</td>
<td>for low-voltage compartment (optional)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree of protection</th>
<th>Type of protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>IK 07</td>
<td>for switchgear enclosure</td>
</tr>
</tbody>
</table>
First circuit-breaker switchgear 8DA10 – 1982

Up to now, more than 100,000 8DA and 8DB switchgear panels successfully in operation worldwide.