

Sustainable high-voltage products Blue Portfolio

Dr.-Ing. Dirk Helbig I Senior Principal High Voltage Products & Innovationmanager

Unrestricted © Siemens 2019.

siemens.at/future-of-energy

Megatrends that are changing our world

Sustainability is a key enabler

We make real what matters by enhancing responsible business practices, preserving the environment and developing people and society.

Environment

- Decarbonization
- Resource conservation
- Product stewardship

Example: **Decarbonization**

- Environmental Portfolio helped our customers to reduce their CO₂-footprint by 521 million tons in FY16
- Siemens aims to become carbon neutral by 2030

Ownership and Operation

- Reliability
- Performance
- Economic efficiency

THE SECOND SECON

Reliable and cost-efficient

- Deliver proven reliability of Siemens HV Products
- Economics: Drive
 Decarbonization and life-cycle cost-efficiency:
 Investment, Operation,
 Maintenance, CO₂ compensation costs and Recycling

People and Society

- Health & Safety
- Diversity
- Education
- Corporate Citizenship
- Business to Society

Example: **Health & Safety**

- Our goal: Every employee should rely on an intact and safe working environment to return healthily and safely to their family and friends
- Programs: Healthy@Siemens and Zero Harm Culture

The high voltage product family – a comprehensive portfolio for long-term business sustainability

Ingenuity for life

Gas-insulated switchgear

- GIS 8VM1 72,5 kV Vacuum Circuit Breakers+Clean Air
- GIS 8VN1 145 kV Vacuum Circuit Breakers+Clean Air
- GIS 8DN8 170 kV SF₆ & Vacuum Circuit Breakers+Clean Air (in dev.)
- GIS 8DN9 245 kV SF₆
- GIS 8DQ1 550 kV SF₆

Circuit breakers

- Live Tank SF₆ & Vacuum Circuit Breakers+Clean Air
- Dead Tank SF₆ & Vacuum Circuit Breakers+Clean Air (in dev.)
- **Dead Tank** Compact / Hybrid Modules SF₆
- Disconnecting Circuit Breaker SF₆
- Circuit Breakers for GIS SF₆

Disconnectors and Surge arresters earthing switches

- Centre Break
- Pantograph
- Semi-Pantograph
- Vertical Break
- Side Break
- Double Side Break
- Knee-Type
- V-Type
- **Earthing Switches**

- AIS Porcelain
- AIS Polymer
- GIS SF₆ & Clean Air
- **HVDC**
- **FACTS**
- Distribution
- Railways
- Line Arresters

Instrument transformers

- Current Transf. AIS (Oil, SF₆ & Clean Air) GIS (Ind. & Sensors)
- Voltage Transf. AIS (Inductive: Oil, SF₆ & Clean Air; Cap) GIS (Ind. & RC-D.)
- Combined Transf. AIS (Oil, SF₆ & Clean Air)
- HVDC (RC-Div.) Capacitor
- **Products**

Coil products

- Air Core Dry Type Reactors
- Line Traps
- Arc Suppression Coils
- Super-conducting Fault Current Limiters

Bushings

- Transformer Bushings AC & DC OIP, RIP, RIS
- Wall Bushings AC & DC **RIP**
- **GIS** Bushings (SF₆ & Clean Air)
- **Generator Bushings RIP**

Long rod insulators

Transmission line polymer insulators for systems up to 550 kV

SF₆ Zero CO₂e

Zero CO₂e

Zero CO₂e Zero CO₂e Zero CO₂e

Properties of SF₆ and alternative gases Clean Air most sustainable & stable with lowest operational costs

	SF ₆	Clean Air	Fluornitrile	C5-Fluorketone	
Chemical formular	SF ₆	N ₂ + O ₂ (79,5%/20,5%)	(CF ₃) ₂ CFCN	(CF ₃) ₂ CFC(O)CF ₃	
CO ₂ -equivalent	22.800	0	2.100 [2]	1[3]	
Boiling point (°Celsius)	-64°	<-183°	-4,7° [2]	+26,9° [3]	
Gas mixture Gas mixture					
Carrier gas	Pur or mixed with N_2 , CF_4	-	96% for GIL [4] 94% CO ₂ for GIS [5]	83% CO ₂ / 11% O ₂ [6]	
CO ₂ -equivalent	≤ 22.800	0	327462 [4]	<1[3]	
Boiling point (°Celsius)	<- 64° (variable)	<-183°	-30°25°C [4, 5]	~ 0° [6]	
Dielectric strength (at same pressure)	1 (normiert)	~ 0,43	0,70,75 for GIL [5] > 0,75 for GIS [5]	~ 0,7 [8] mixed with air	
Arcing impact					
Dissociation/decomposition	~ 2000 K (reversib.) [1]	~ 7000 K (N2 reversib.) [1]	> 920 K (irreversib.) [4]	~ 970 K (irreversib.) [7]	
Decomposition products	HF, SO ₂ , sulphur compounds	None under normal operating conditions (VIU)	F-Nitrile [4]: HF, CO, COF ₂ C5-K. [6]: HF, CF ₄ , C ₂ F ₆ , C ₅		
		If failure: ozone, NOx	C ₄ F ₈ , C ₄ F ₆ , C ₃ F ₆ , C ₂ F ₃ N, C ₂	N ₂ in MV GIS with air [7]	

Vacuum interrupter technology Operational and environmental value

For more than 40 years successful operational experience in medium-voltage, since 2010 in high-voltage

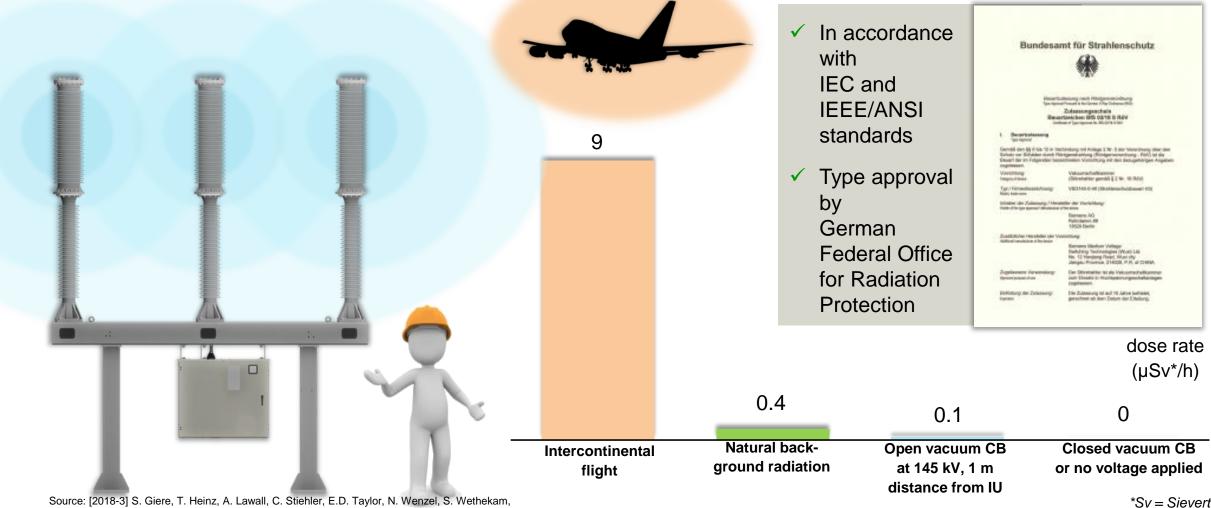
High reliability due to the hermetically tight vacuum interrupter, eliminating any influence of decomposition products

High performance

Perfect for frequent switching applications: Excellent interrupting performance at rated nominal current and rated short-circuit currents throughout life-time of the vacuum circuit-breaker, up to 30 short-circuit interruptions

Perfect for low temperature No liquefaction of switching medium

No maintenance Maintenance free due to sealed for life technology; no spare part costs

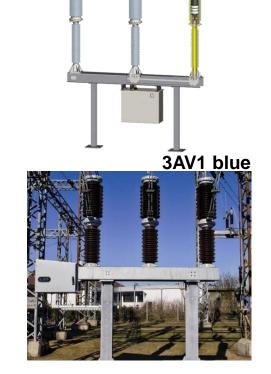

No CO₂e emissions Switching media (vacuum) with GWP=0; no CO₂e emissions during operation, maintenance or recycling

Is x-ray radiation emitted by vacuum interrupters at high voltage an issue? No, all values are well below limits of IEEE/ANSI and IEC standards. Type approval by German Federal Office for Radiation Protection

"X-Radiation Emission of High-Voltage Vacuum Interrupters: Dose Rate Control under Testing and Operating Conditions", ISDEIV International Symposium on Discharges and Electrical Insulation in Vacuum, Greifswald, 2018 Unrestricted © Siemens 2019.

Page 7

The Future of High Voltage Switchgear Technology Siemens CO₂ Neutral Switchgear Portfolio


Air-insulated switchgear

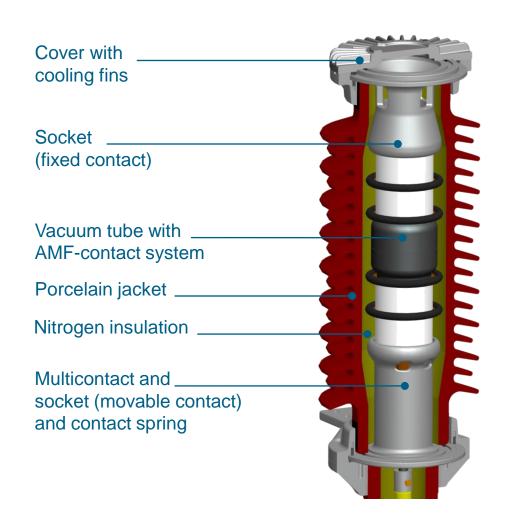
Circuit Breaker

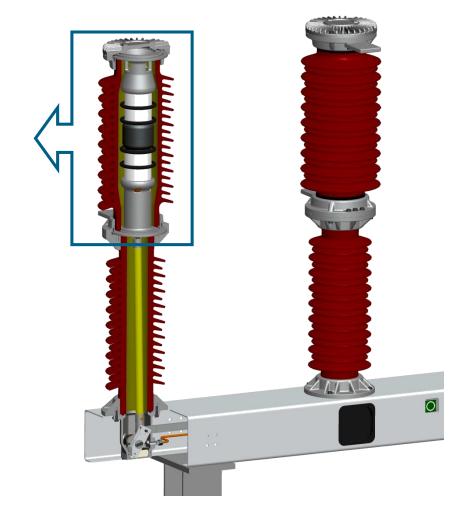
Instrument Transformer

Gas-insulated switchgear

145 kV

8VN1 blue


8VM1 blue


Unrestricted © Siemens 2019.

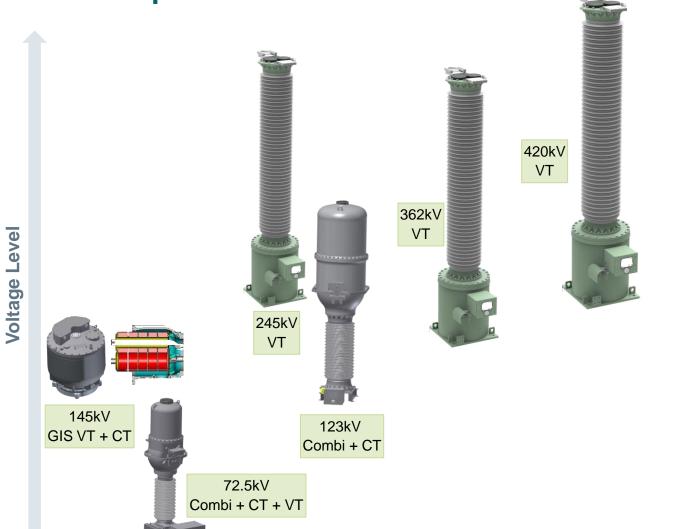
72,5 kV

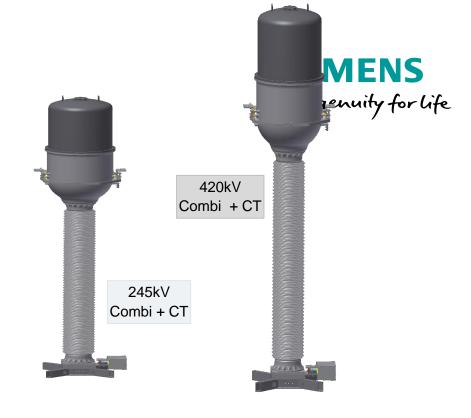
3AV1 72.5 kV Circuit-breaker design

3AV1 Live Tank 72.5 kV Type tested by PEHLA in 2010

The 3AV1 FG 72.5 kV has successfully been type tested according to latest IEC standard by the independent institute PEHLA. This also includes the necessary test concerning the potential emission of X-rays.

3AV1 Blue live tank circuit-breaker up to 145 kV Technical data





Switchgear type	3AV1 FG	
Rated voltage	up to	145 kV
Rated frequency		50 Hz
Rated short-duration power-frequency withstand voltage (1 min)	up to	275 kV
Rated lightning impulse withstand voltage (1.2 / 50 µs)	up to	650 kV
Rated continuous current	up to	3150 A
Rated short-circuit breaking current	up to	40 kA
Rated peak withstand current	up to	108 kA
Rated short-time withstand current (up to 3 s)	up to	40 kA
Leakage rate per year and gas compartment (type-tested)		< 0.1 %
Driving mechanism of circuit-breaker		stored-energy spring
Data damanation a community		O-0.3 s-CO-3 min-CO
Rated operating sequence		CO-15 s-CO
Interrupter technology		Vacuum
Insulation medium		Clean Air
Weight of flourinated greenhouse gases		0 kg
GWP global warming potential		0
CO ₂ equivalent		0 kg
Ambient temperature range	up to	-60 °C to +55 °C
First inspection		> 25 years
Expected lifetime		> 50 years
Standards		IEC
Other values on request		

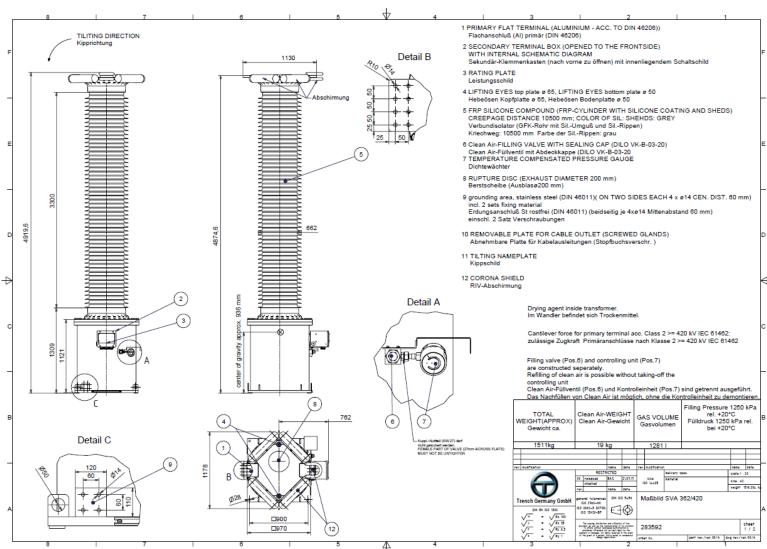
Other values on request

Blue Instument Transformer - Portfolio Roadmap

Type-tested

Under development

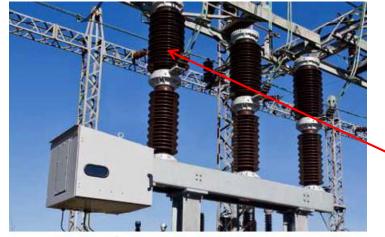
Future development


CO₂

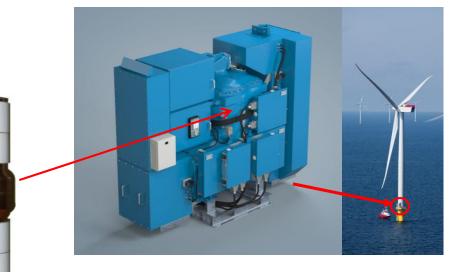
2017 2018 2019 2020

June 27, 2019

First Blue product available for 420 kV: Blue Voltage Transformer in Sensgear-Technology introduced at Hannovermesse 2019






Vacuum-Interrupter are a joint base for air- and gas-insulated products and systems up to 420 kV

3AV1 vacuum circuit breaker, 72,5 kV, since 2010

8VM1 GIS, 72,5 kV, first installation in 2017

- Worldwide leading Fgas free environmental friendly technology
- Safe and easy handling and work procedures
- Sealed for life vacuum interrupter and GIS bay: no gas maintenance for lifetime

Vacuum Technology with more than 40 years operational experience in medium-voltage

Circuit Breaker Innovation Roadmap

- > 72,5 kV successful pilots since 2010
- > 145 kV first installation 2017

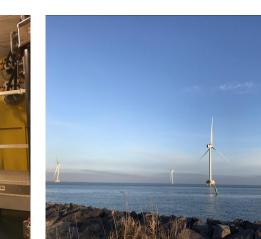
GIS Innovation Roadmap

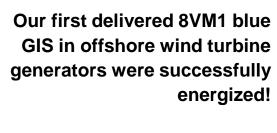
- > 72,5kV first installation 2017
- > 145 kV first installation 2019

Gas-Insulated Switchgear 8VM1 blue GIS up to 72.5 kV / 25 kA Technical data

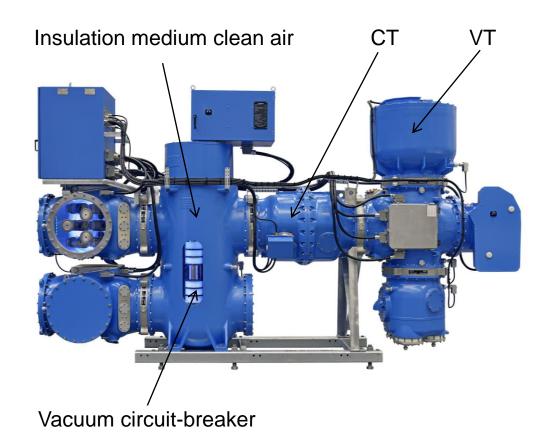
Switchgear type	8VM1	
Rated voltage	up to	72.5 kV
Rated frequency		50 / 60 Hz
Rated short-duration power-frequency withstand voltage (1 min)	up to	140 kV
Rated lightning impulse withstand voltage (1.2 / 50 µs)	up to	325 kV
Rated continuous current	up to	1250 A
Rated short-circuit breaking current	up to	25 kA
Rated peak withstand current	up to	68 kA
Rated short-time withstand current (up to 1 s)	up to	25 kA
Leakage rate per year and gas compartment (type-tested)		< 0.1 %
Driving mechanism of circuit-breaker		stored-energy spring
Dated an anti-		O-0.3 s-CO-3 min-CO
Rated operating sequence		CO-15 s-CO
Interrupter technology		Vacuum
Insulation medium		Clean air
Weight of SF ₆ or other flourinated greenhouse gases		0 kg
GWP Global Warming Potential		0
CO ₂ equivalent		0 kg
Rated filling pressure		0,56 MPa abs
Bay width common pole drive		1050 mm
Bay hight, depth (depending on bay arrangement)		2330 mm x 2500 mm
Bay weight (depending on bay arrangement)		1,6 t
Ambient temperature range		-30 °C up to +45 °C
Installation		indoor
First major inspection		> 25 years
Expected lifetime		> 50 years
Standards		IEC / IEEE
Other values on request		

Other values on request


8VM1 - First installations 2017, energized 2018



The "Nissum Bredning" wind farm is online since 17.02.2018 and generating energy.

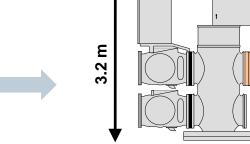


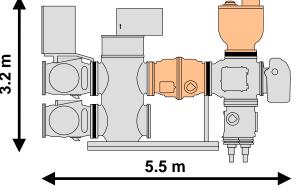
Gas-Insulated Switchgear 8VN1 blue GIS up to 145 kV / 40 kA Technical data (with Conventional Instrument Transformer)

Switchgear type	8VN1	
Rated voltage	up to	145 kV
Rated frequency		50 / 60 Hz
Rated short-duration power-frequency withstand voltage (1 min)	up to	275 kV
Rated lightning impulse withstand voltage (1.2 / 50 µs)	up to	650 kV
Rated continuous current - busbar	up to	3150 A
Rated continuous current - feeder / bus coupler	up to	3150 A
Rated short-circuit breaking current	up to	40 kA
Rated peak withstand current	up to	108 kA
Rated short-time withstand current (up to 3 s)	up to	40 kA
Leakage rate per year and gas compartment (type-tested)		< 0.1 %
Driving mechanism of circuit-breaker		stored-energy spring
		O-0.3 s-CO-3 min-CO
Rated operating sequence		CO-15 s-CO
Interrupter technology		Vacuum
Insulation medium		Clean air
Weight of SF ₆ or other flourinated greenhouse gases		0 kg
GWP Global Warming Potential		0
CO ₂ equivalent		0 kg
Rated filling pressure		0,79 MPa abs
Bay width common pole drive		1000 mm
Bay hight, depth (depending on bay arrangement)		3200 mm x 5500 mm
Bay weight (depending on bay arrangement)		4.7 t
Ambient temperature range		-50 °C up to +55 °C
Installation		indoor / outdoor
First major inspection		> 25 years
Expected lifetime		> 50 years
Standards		IEC / IEEE
Other values on request	'	

Other values on request

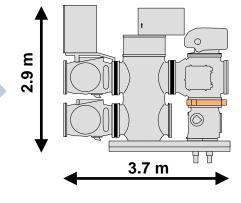
Gas-Insulated Switchgear 8VN1 blue GIS up to 145 kV / 40 kA **Conventional - / Low Power - Instrument Transformer Technology**


Instrument Transformer Technologie (Conventional)


Inductive Voltage Transformer (VT)

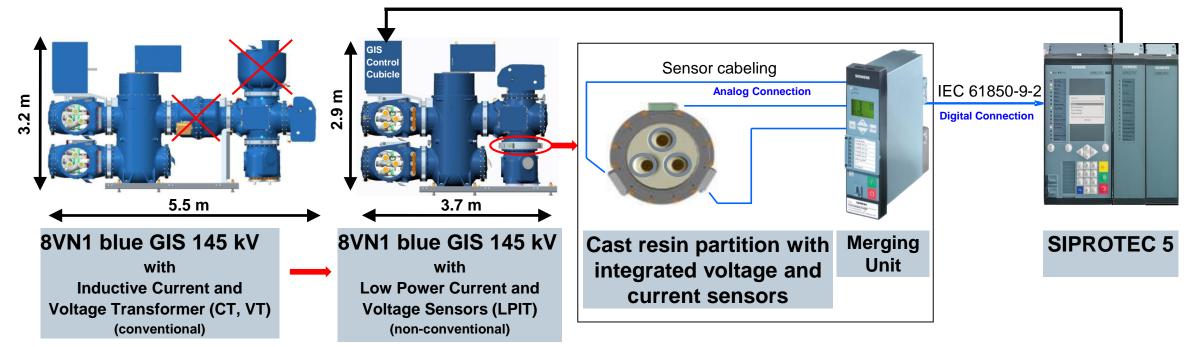
Inductive Current Transformer (CT)

Low Power Instrument Transformer (LPIT) Technology (Non-Conventional)



1 x Electric Field Probe

2 x Rogowski Coils for Current **Measurement (redundant)**



Cast resin partition with integrated voltage and current sensors

Gas-Insulated Switchgear 8VN1 blue GIS up to 145 kV / 40 kA Low Power Instrument Transformer (LPIT) - Technology

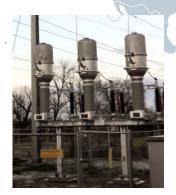
- Combined electronic Voltage and Current Sensor (eVT/eCT) according to IEC / IEEE
- Applied technologies: Rogowski Coil & Electric Field Probe
- One common measuring system für protection and metering

	realized	achievable
Current range:	100 A up to 3.150 A; 100 kA	up to 6.000 A; 216 kA
Voltage range:	72.5 kV up to 145 kV	up to 550 kV

References – Blue Products 45 bays in operation, 870 bays ordered

72,5 kV Blue Circuit Breakers, LT 6 in operation in FRA, LUX, DEN, AUS since 2010

72,5 kV Blue Circuit Breakers, DT 3 ordered in USA



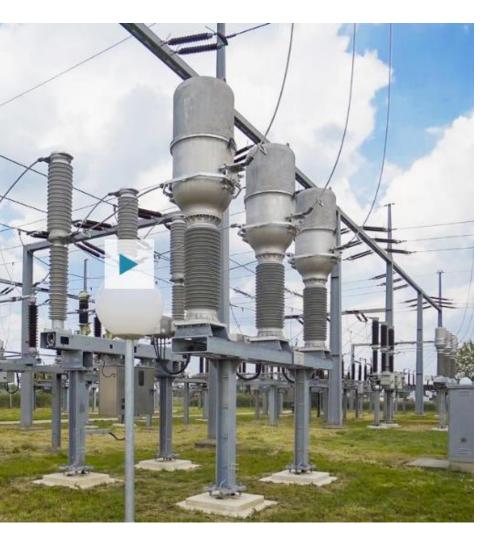
72.5 kV **Blue GIS Wind** 4 in operation in DEN since 2018 815 ordered in GBR, NDL, DEN, USA, TAI

145 kV Blue Circuit Breakers, LT 30 in operation in GER, POL since 2018 15 ordered in NOR, SWE, GER, SUI, GBR, POL, ROM, KAZ, USA

Unrestricted © Siemens 2019.

145 & 245 & 420 kV Blue **Instrument Transformers** 2 x 145 kV and 3 x 245 kV in operation in GER since 2018 14 ordered in NOR, SWE, GER thereof 3 x 245 kV VTs and 2 x 420 kV VTs

145 kV Blue Circuit Breakers, DT 3 ordered in USA



145 kV Blue GIS 20 ordered in USA, 3 x NOR, ESP

In OperationOrdered

Blue Products Referenz Umspannwerk Nördlingen, Deutschland

Eine sichere, zuverlässige Stromversorgung und nachhaltigen Klimaschutz miteinander in Einklang zu bringen, ist technisch höchst anspruchsvoll. Während die Energieversorgungsunternehmen ihre Netze für die Energiewelt von morgen umgestalten, wächst zugleich der Bedarf an nachhaltigen, umweltfreundlichen Lösungen.

Die Siemens Lösung: Blue Products mit Vakuum-Schaltröhren und Isolation mit komprimierter Luft, sogenannte Clean Air

- Freiluft-Leistungsschalter mit Vakuum-Schalttechnologie und Clean Air Isolationstechnologie: 3AV1, 145 kV, 40 kA, 3150 A, -60°C bis 55°C
- Freiluft Strom- und Spannungswandler SVAA, 145 kV, -60°C bis 55°C

"Innovation und Umweltschutz sind für uns sehr wichtige Werte. Mit Siemens, unserem langjährigen Partner, verbinden wir genau diese Werte."

Dr. Martin Konermann, Geschäftsführer Technik, NetzeBW

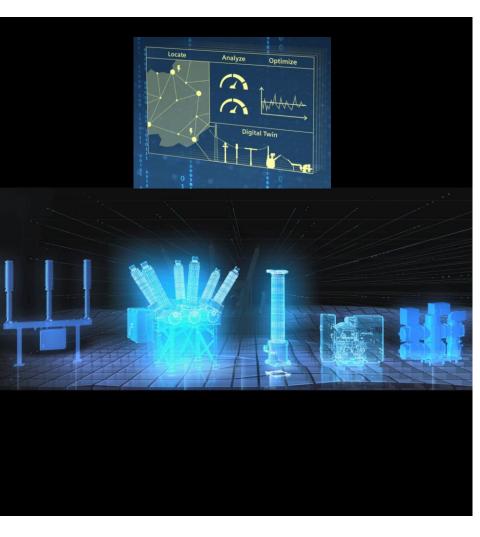
Next generation Circuit Breakers are Vacuum Circuit Breaker, when available for EHV

Source: Cigre Greenbook Switching Equipment, Springer 2018 & Cigre A3 T&D switching equipment tutorial, August 2018

Cigre 2018 Highlight: Vacuum Interrupters up to 245 kV and 63 kA for Siemens Blue Circuit Breaker & GIS up to 420 / 550 kV / 63 kA

Market requirements

- High reliability and high performance
- Easy operation and minimal maintenance
- Sustainable regarding environment, society and regulations


Solution

Vacuum switching technology for high-voltage circuit-breakers and GIS up to 420 / 550 kV and 63 kA combined with clean air insulation.
 Exhibits: Vacuum-Interrupters for 170 kV / 50 kA and 245 kV / 63 kA

Customer benefits

- **High reliability** due to the hermetically tight vacuum interrupter, no decomposition products; extraordinary lifetime endurance
- High performance: Excellent interrupting performance at rated continuous and rated short-circuit currents throughout life-time of the vacuum circuitbreaker. Outstanding for frequent switching applications.
- For all service conditions: Perfect for low temperatures No liquefaction of switching medium
- No maintenance: Maintenance free due to sealed for life technology
- No CO₂e emissions: Switching media (vacuum) with GWP=0; no CO₂e emissions during operation, maintenance or recycling www.siemens.com/eco-transparency

Let us us jointly improve the sustainability of our transmission and distribution systems

Dr.-Ing. Dirk HelbigSenior Principal High Voltage Products

Siemens AG Transmission Products / Digital Enterprise Freyeslebenstr. 1 91058 Erlangen

Mobil: +49 173 255 89 08

E-Mail: dirk.helbig@siemens.com

siemens.com/transmissionproducts siemens.com/eco-transparency

Disclaimer

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

All product designations, product names, etc. may contain trademarks or other rights of Siemens AG, its affiliated companies or third parties. Their unauthorized use may infringe the rights of the respective owner.

References

- [2012-1] **S. Giere, R. Renz, F. Richter, N. Trapp**, "Capacitive Current Switching Capability of 72.5 kV High-Voltage Vacuum Interrupters", XXV International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Tomsk, p. 217-220, 2012
- [2012-2] **N. Wenzel, S. Kosse, A. Lawall, R. Renz, W. Hartmann**, "Numerical Simulation of Multi-Component Arcs in High-Current Vacuum Interrupters", XXV International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Tomsk, p. 321–324, 2012
- [2014-1] CIGRE Technical Brochure 589, "The Impact of the Application of Vacuum Switchgear at Transmission Voltages", Cigre 2014, ISBN 978-2-85873-287-6
- [2014-2] **T. Psotta, V. Hinrichsen, E. Kynast**, , **F. Richter, Wethekam, S**. "Investigation on the conditioning of high-voltage vacuum interrupters", XXVI International Symposium on Discharges and Electrical Insulation in Vacuum (ISDIEV), Mumbai, p. 1-4, 2014
- [2014-3] **N. Wenzel, A. Lawall, U. Schümann, S. Wethekam**, "Combined experimental and theoretical study of constriction threshold of large-gap AMF vacuum arcs", XXVI International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Mumbai, p. 193–196, 2014
- [2015-1] J. Teichmann, "Vakuumschaltröhren bei höheren Spannungen" FKH Fachtagung Hochspannungs-Leistungsschalter (Schaltgeräte), Rapperswil, 24. November 2015
- [2016-1] N. Presser, C. Orth, B. Lutz, M. Kuschel, J. Teichmann, "Advanced insulation and switching concepts for next generation High Voltage Substations", Cigré Session 2016, Paris
- [2017-1] S. Kosse, P. Nikolic, G. Kachelriess, "Holistic evaluation of the performance of today's SF6 alternatives proposals", CIRED Int. Conf., Glasgow, June 2017, paper 0819
- [2017-2] **B. Lutz, K. Juhre, M. Kuschel, P. Glaubitz**: "Behavior of gaseous dielectrics with low global warming potential considering partial discharges and electric arcing", Cigré Winnipeg Canada 2017 D1 Colloquium
- [2017-3] **B. Lutz, C. Orth, K. Juhre, N. Presser, M. Kuschel**, "Dielectric Performance of Insulator Surfaces in Clean Air for High Voltage Gas Insulated Switchgear Application", 20th Intl. Symp. on High Voltage Engineering, Argentina, August 2017
- [2017-4] **B. Lutz, M. Kuschel, P. Glaubitz**: "Future Challenges for the Grid Integration of environment friendly gas-insulated substations", Cigré 2017 B3 Colloquium, Recife Brazil [2017-5] **Siemens Tech Topics** for users and specifiers of technical equipment.
- Internet: https://www.downloads.siemens.com/download-center/Download.aspx?pos=download&fct=getasset&id1=BTLV 41965
- [2018-1] **J. Teichmann, S. Kosse, M. Koletzko, N. Wenzel, S. Giere, D. Helbig, U. Prucker, M. Engel, C. Wolf**, "145/170 kV Vacuum Circuit Breakers and Clean-Air Instrument Transformers Product performance and first installations in AIS substations", Cigré Session 2018, Paris
- [2018-2] **M. Kuschel, C. Bradler, C. Bütüner, L. Hansen, A.-S. Bonde Mortensen, J. Gaard**, "On-site experiences of 72.5 kV Clean-air GIS for Wind-turbine On- and Offshore application", Cigré Session 2018, Paris
- [2018-3] **S. Giere, T. Heinz, A. Lawall, C. Stiehler, E.D. Taylor, N. Wenzel, S. Wethekam,** "X-Radiation Emission of High-Voltage Vacuum Interrupters: Dose Rate Control under Testing and Operating Conditions", ISDEIV International Symposium on Discharges and Electrical Insulation in Vacuum, Greifswald, 2018
- [2018-4] S. Giere, T. Heinz, J. Teichmann, "Capacitive Current Switching with HV Vacuum Circuit Breakers", Technical Report, Siemens 2018
- [2019-1] T. Rak, "PG&E phases out SF₆ greenhouse gas", T&D world, January 2019