

Zero Carbon Growth

A Sustainable Development Vision of Nanjing

Siemens Cities Center of Competence Asia

"Zero Carbon Growth" – A sustainable development vision of Nanjing

By taking decisive actions and implementing effective technical levers, it will be possible for Nanjing to achieve "Zero Carbon Growth" by 2020. Total CO₂ emission of the city will be lower than that of 2012 and air quality can also be improved consistently.

Figure 1: "Zero Carbon Growth" Vision for Nanjing

Action Plan

- Further optimize industrial structure in the city to match the needs of social and economic development;
- Enhance institutional framework for emission reduction, such as energy monitoring and verification of key enterprises, establishment of carbon trading scheme;
- Fully leverage technology levers to reduce emission with enhanced regulations, focusing on:
 - Industrial energy-saving
 - Coal-fired power plant retrofitting
 - Distributed energy supply (CCHP)
 - Green and intelligent building (building automation, efficient lighting, building envelop etc.)
 - New metro lines, intelligent traffic management and e-vehicles

Background

Considering future economic development and transition, population growth, progress in technology deployment and changes in consuming-style, it is predicted that the GHG emission in Nanjing will keep increasing but the growth rate will be slow down. Even though, 136.7 million tons GHG emission will be emitted from the city in 2020, which is almost 20% more than its emission level in 2012.

Figure 2: Forecast of energy consumption in BaU scenario

Key Findings

Energy

Due to its heavy reliance of electricity grid on coal consumption, our result shows that the largest contribution in energy sector to reduce GHG emission comes from combined cycle gas turbine. Other technical levers which will increase the use of clean and renewable energy from generation side are also working well, such as PV, wind and CHP.

In addition, distributed energy and smart grid application will also contribute to GHG emission reduction and further enhance overall energy efficiency.

Energy: 3,379.4	Combined cycle gas turbine: 2,174.2
	PV, Wind: 616.5
	Power System Automation: 202.7
	Networkoptimization: 173.8
	CHP: 127.8
Unit: kton CO ₂ e reduction	Smart Grid for monitoring and control: 84.4

Building

Efficient lighting and building envelop are top performers in building sector, while enhancing the application of building automation and building performance optimization will also contribute to GHG emission reduction significantly.

It will be important to secure green building implementation from design stage, and promote **demand-oriented energy** supply by integrating its development with distributed energy in district level.

Non-Residential - Demand controlled ventilation: 5.7 Non-Residential - Heat recovery: 5.6

Unit: kton CO2e reduction

Transport

New metro lines provide the most significant impact in GHG emission reduction, due to Nanjing's ambitious plan on railbound transportation.

Other technical levers with less impact but also very significant come from intelligent traffic management and e-vehicle, including intermodal traffic management, intelligent traffic light control, city tolling and e-car sharing etc.

Industry

The energy saving performance and competitiveness of industrial enterprises is highly relying on the level of energy management and process automation. Isolated measurements to improve productivity in the past need to be integrated toward Industry 4.0, in terms of automation, electrification and digitalization.

Cement & Glasses	Steel	Petro & Oil	Chemical
 Improve productivity Increase mill efficiency Optimize driving system Shifting peak production Energy recovery Waste fuelfor kiln Optimize burner Electricity from waste heat Process automation and management optimization Reduce excess oxygen concentration by 2% Production process prediction control Energy management 	 Enhance production integration Avoid unnecessary cooling and heating Reduce energy demand Saving electricity Energy recovery Electricity from waste heat Increase heat efficiency Process automation and management optimization Energy management 	 Optimize powerand heating supply Local heating/power generation Heat recovery Optimize steam electricity system Utilize low-temperature heat CHP Enhance maintenance Leakage prevention Upgrade and improve equipment and process 	 Enhance production integration Ionic membrane cathode technology Ionic membrane oxidation to reduce energy by 25% Improve cooling facility, reduce use of cooling water Renewable energy Use of renewable energy Use of by-product in CHP Process automation and management optimization

Key technical levers in industry

Summary

	Levers	Action Plan	Projects
Industry	 Energy saving revamping forexisting factories Industrial shift and restructuring 	 Fully enhance the technical measures to secure GDP growth and employment Shift and restructure industry following "Industry 4.0" 	 Energy saving retrofit for typical plants in key industries
Energy	 Deploying clean energies Existing power plant upgrade Grid optimization 	 Promote the use of clean and renewable energies, apply CCHP in new district Close down inefficient boilers and coal-fired plants, while upgrade plants and grid 	 CCHP applications Upgrade to combined cycle power plant Smart grid deployment
Transport	 Further extending rail-bound transportation network Further advancing ITS Deploying electric vehicles 	 Extend rail-bounded public transport network with more coverage/ convenience Extend ITS, launch feasibility study for congestion charging, promote eVehicles 	 ITS eBus,eCarcharging network, eHighway and off-shore power to ship
Building	 Promoting efficient lighting Enhancing building envelop Scaling up Intelligent buildings 	 Implement low-carbon standards for new residential and commercial buildings when issuing land plots Scale up building energy saving retrofit 	 Low-carbon technologies on landmark buildings EPC for government and public buildings

Economics

Figure 3: Economic analysis of technical levers

Implementation Rate

Technical levers	Implementation rate		
reclinical levers	2020		
Combined cycle gas turbine	20%		
CHP	2%		
Wind	2%	CCGT: 1,500 MW	
PV	4%	PV: 400 MW Wind: 200 MW	
Network optimization	40% of grid	CHP: 200 MW	
Smart Grid for monitoring and control	70% of grid		
Power System Automation	60% of user		
Residential - Wall insulation	2% stock/year		
Residential - Glazing	2% stock/year	All new residential building (10,000,000 m ² per year) will meet the basic green building	
Residential - Efficient lighting	2% stock/year		
Non-Residential - Wall insulation	1% stock/year		
Non-Residential - Glazing	1% stock/year	requirements of building	
Non-Residential - Efficient lighting	1% stock/year	envelop and efficient lighting.	
Non-Residential - Demand oriented lighting	0.5% stock/year		
Non-Residential - Building Efficiency Monitoring (BEM)	0.5% stock/year	All new public and commercial building (3,500,000 m ² per	
Non-Residential - Building Performance Optimization (BPO)	0.5% stock/year	year) will meet the basic green	
Non-Residential - Demand controlled ventilation	0.5% stock/year	building standard (1 star), of	
Non-Residential - Heat recovery	0.5% stock/year	which 30% will achieve at least	
Residential - Home Energy Monitoring	1% stock/year	2 star local green building standard.	
Residential - Home Automation	1% stock/year	standard.	
Residential - Building Envelope	2% stock/year	500,000 m ² public and	
Non-Residential - Building Envelope	1% stock/year	commercial building will be	
Non-Residential - Room Automation, BACS C	0.4% stock/year	upgraded and retrofitted every	
Non-Residential - Room Automation, BACS B	0.3% stock/year	year, to achieve higher level of energy efficiency.	
Non-Residential - Room Automation, BACS A	0.2% stock/year	energy enterency.	
Non-Residential - Efficient Motors	0.5% stock/year		

Technical levers	Implementation rate		
recificatievers	2020		
Non-Residential - Room Automation, HVAC	0.4% stock/year		
Non-Residential - Room Automation, HVAC+lighting	0.3% stock/year		
Non-Residential - Room Automation, HVAC+lighting+blind	0.2% stock/year		
Non-Residential - Building Remote Monitoring (BRM)	0.5% stock/year		
Metro - new line	10 lines		
Hybrid electric buses	20% replacement		
Electric taxis	10% replacement		
Bike sharing	7/ 1000		
Tram - New line	2 lines		
Automated train operation (ATO) Metro	100%	10 new metro lines with	
Intelligent traffic light management	30%	more than 350 km will be	
Intermodal traffic management	70% of user	implemented. Headway during	
LED Street lighting	20% replacement	peak time will be further reduced to 120s.	
E-Highways	10% of highway		
Demand oriented street lighting	30%	1.500 new E-buses and 1.000	
Electric car sharing	2/1000	E-taxies will be applied.	
Electric cars	5%		
Plug-in hybrid electric cars	5%	10,000 E-cars will be applied	
e-BRT (Bus Rapid Transit) - New line	2 lines	for city wide E-car sharing program.	
Car - Eco-Driver Training and consumption awareness	30%		
Metro - Reduced headway	120 seconds		
Car & Motorcycle - City tolling	20% reduction of traffic		
Lorries/Trucks - Low emission zone	Euro 4		
Smart Streetlighting (LED & msb dimming)	30%		
Harbors - Onshore Power Supply	40%		

Introducing CyPT

The City Performance Tool is a dynamic simulation tool which studies a series of more than 70 technologies from Building, Transport and Energy Technologies – at different time periods and implementation rates. It is designed to reduce the environmental impact of everyday activities in your city. It covers GHG emission from buildings and transport, as well as air pollutants such as particulate matter (PM) and nitrogen oxides (NOx). The model is based on life cycle assessment methodology and builds upon Siemens' technology expertise and global databases of deep vertical process knowledge, calculates the environmental and economic impacts of individual technologies at different implementation levels.

Xu Li

Business Developer, Cities Center of Competence Asia

Tel: +86 (0) 21 38892046 Email: xu_li@siemens.com www.siemens.com

