SOGIC 2018

May 8, 2018 | Hyatt Regency, Calgary, Alberta

SIEMENS

ilililiti

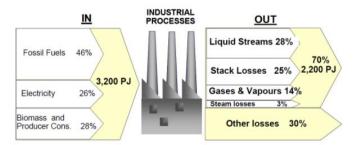
Ingenuity for life

Power from Waste -Convert Waste Heat into Power

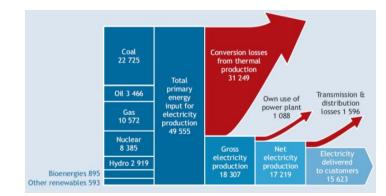
Thomas Soulas Director Business Development, Advanced Energy Systems

111111

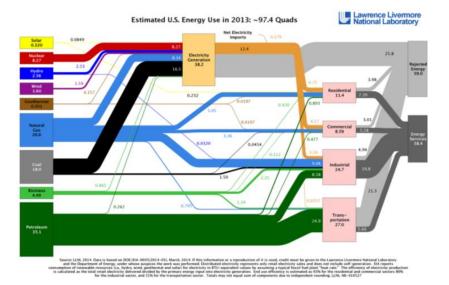
Table of contents



Introduction to Waste Heat to Power 3
What is Supercritical CO₂ Waste Heat to Power? 4
Value Proposition 5
Technology Status & Solution Offerings 7
Tell Us About Your Waste Heat 12


Restricted © Siemens Canada 2018 Page 3 May 2018

Introduction to Waste Heat to Power



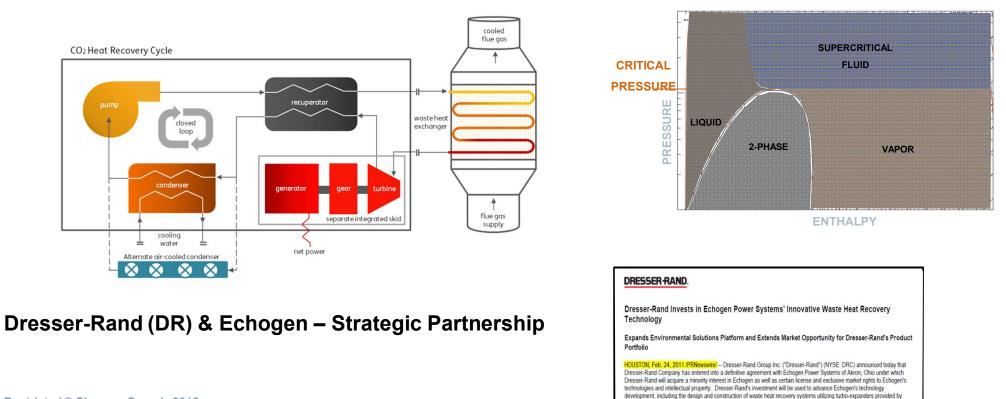
<u>Canada</u>, rejected heat corresponds to 70% of net input

Energy Flows in the <u>Global</u> Electricity System, ~65% of total energy input is lost

Restricted © Siemens Canada 2018Page 4May 2018

<u>US</u> Energy in 2013: ~60% rejected/wasted

Waste/lost heat can be converted into useful energy


Rejected and unused Energy continues to be a REALITY

What is Supercritical CO₂ Waste Heat to Power?

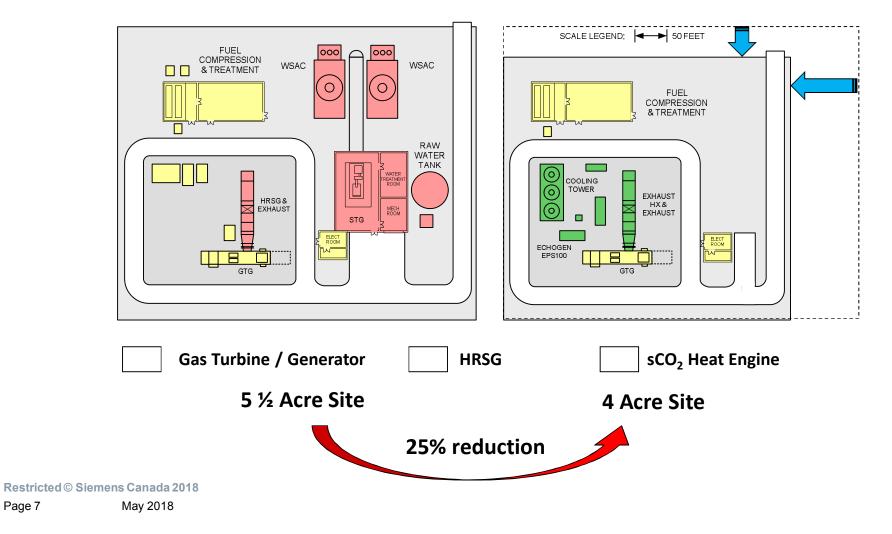
Supercritical CO₂ (sCO₂) Waste Heat to Power Technology Solution

http://www.dresser-rand.com/products-solutions/systems-solutions/waste-heat-recovery-system/

Dresser-Rand

Restricted © Siemens Canada 2018Page 5May 2018

Value Proposition



Water-Free Option	 Totally dry, water-free, closed-loop process Air cooled condenser (water cooled condenser optional) 		
Compact	 No exhaust bypass stack required 25-40% smaller footprint than steam; minimally invasive retrofit 		
Flexible	 Suitable for remote operation; no boiler operator required 20-30 minutes to full load 		
Efficient	Simple heat transfer, no boiling process (supercritical) Direct in-stack WHX, no intermediate fluid required		
Competitive	 Lower LCOE (Levelized Cost of Electricity) Competitive OPEX and long term services contracts 		
Clean	 Produces electricity without incremental emissions Working fluid is stable, benign and non-flammable 		

Page 7

The EPS100 – Commercialization of Pilot Unit

Designed for 20-35 MW Gas Turbines (GTs)

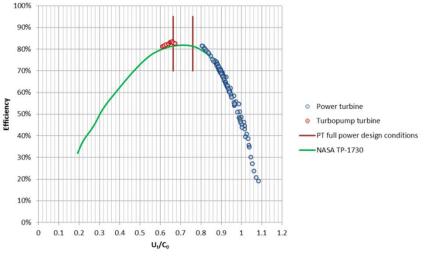
- Siemens SGT-600, SGT-700, SGT-750
- Siemens SGT-A30 RB & SGT-A35 RB [Industrial RB211]
- GE LM2500 / Solar Titan 250 / Combination of smaller GTs
- 8.0 MW gross / 7.3 MW net (ISO)
- Work conducted on further cycle efficiency enhancements toward 9.5 MW gross

Physical Configuration (see EPS100 flyer)

- Process skid (right) + Power skid (above)
- Control house + CO₂ storage tank and transfer system
- Cooling system (air or water) + Waste heat exchanger

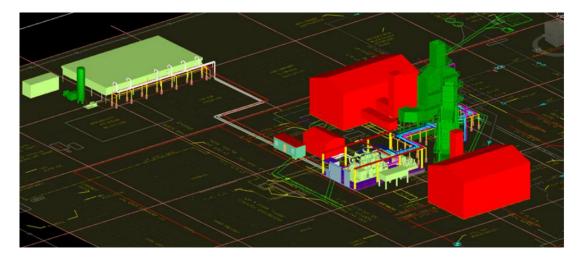
Accomplished: Factory qualification testing Final step: Field deployment & operation Commercially available

Restricted © Siemens Canada 2018Page 8May 2018


SIEMENS Ingenuity for life

EPS100 – Factory Qualification Testing

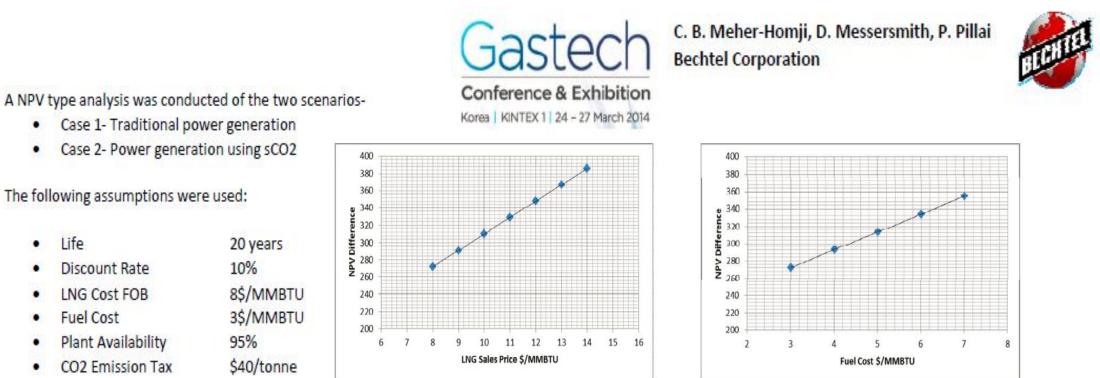
- Completed all Phases I-IV of testing
 - I: Validation of components
 - II: Full speed no load
 - **III: Durability**
 - IV: Partial load endurance test
- 2 System control & stability fully demonstrated
- 3 Component performances meet or exceed expectations
- 4 Turbopump run to max conditions
- 5 Generator speed control stability demonstrated
- 6 Power turbine electrical output = 3.1 MWe max to date (limited by available heat on test stand)
- 7 Run time: 310 hours turbopump / 150 hours power turbine



EPS100 Pilot Project – Compression Station in North America

SIEMENS Ingenuity for life

- Opportunity installation for gas turbine exhausts
- Remote operation
 - Control and isolation of GT exhaust stream
 - No impact on station operation
- Compact arrangement
- Skid-mounted equipment with minimal installation
- Air-cooled condensers
- Option for bypass stack & diverter valve

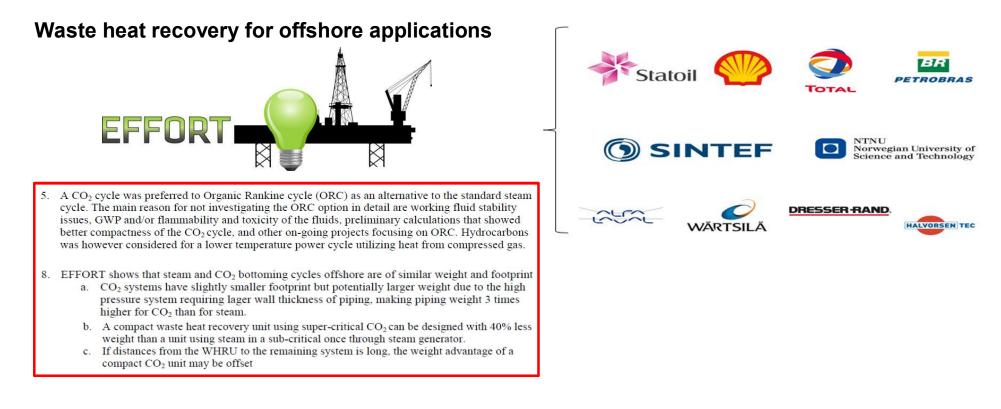


- Dresser-Rand offering:
 - Turnkey solution
 - Service contracts
- Power sold to the grid by host
- Option of project developer
- FEED under way (commissioning targeted early 2020)

Restricted © Siemens Canada 2018 Page 10 May 2018

Application in LNG – Value Proposition of EPS100

SIEMENS Ingenuity for life


Acknowledgements: We gratefully acknowledge the assistance of Dresser-Rand and Echogen Power Systems.

٠

٠

Future Applications Offshore

EFFORT Consortium in Norway

Tell Us About Your Waste Heat

If you would like more information about how your application can benefit from the Dresser-Rand / Echogen Technology, please complete the "Tell Us About Your Project" form

Potential waste heat source(s) at the facility:

Waste Heat Source	Source 1	Source 2	Source 3
Source Description (if gas turbine exhaust, exact model)			
How is heat currently removed (vented, stack, cooling tower, etc.)?			
Temperature (indicate unit)			
Throughput; Flow rate (indicated unit)			
Exhaust gas composition (list or attach)			
Minimum allowable reduced temperature (indicate unit) (e.g., temperature of waste heat leaving our exchanger, if available)			
Maximum allowable pressure drop in the stack/system, if available			
Existing power demand in kW or MW			
Preferred voltage output from Echogen system (e.g. 480 volt, 3 phase, 60 hertz)			
Average ambient air temperature (indicate unit)			
Ambient air temperature range throughout the year, if available (indicate unit)			
 Heat sink preference: Air cooling? Water cooling? If so, average temperature of cooling water as already available (indicate unit)? No preference 			
Current or anticipated cost of power @ plant			
Are operational data available (Y/N)			
Are site layout drawings available (Y/N)			

Tell Us About your Project


 $\textbf{Restricted}\, \textcircled{\textbf{C}}\, \textbf{Siemens}\, \textbf{Canada}\, \textbf{2018}$

May 2018

Page 13

Thank you!

Thomas Soulas Director Business Development, Advanced Energy Systems PG DR

Houston, Texas, USA

Mobile: +1 713 598 4425

E-mail: thomas.soulas@siemens.com

siemens.com

Restricted © Siemens Canada 2018 Page 14 May 2018