

Safety Programming
Guideline for SIMATIC
S7-1200/1500

SIMATIC Safety Integrated

https://support.industry.siemens.com/cs/ww/en/view/109750255

Siemens
Industry
Online
Support

https://support.industry.siemens.com/cs/ww/en/view/109750255

Warranty and Liability

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 2


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete regarding the
circuits shown, equipping and any eventuality. The Application Examples do not represent
customer-specific solutions. They are only intended to provide support for typical
applications. You are responsible for ensuring that the described products are used
correctly. These Application Examples do not relieve you of the responsibility to use safe
practices in application, installation, operation and maintenance. When using these
Application Examples, you recognize that we cannot be made liable for any
damage/claims beyond the liability clause described. We reserve the right to make
changes to these Application Examples at any time without prior notice.
If there are any deviations between the recommendations provided in these Application
Examples and other Siemens publications – e.g. Catalogs – the contents of the other
documents have priority.

We do not accept any liability for the information contained in this document.
Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this Application Example shall be excluded. Such an exclusion shall
not apply in the case of mandatory liability, e.g. under the German Product Liability
Act (“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life,
body or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The damages for a breach of a substantial
contractual obligation are, however, limited to the foreseeable damage, typical for
the type of contract, except in the event of intent or gross negligence or injury to
life, body or health. The above provisions do not imply a change of the burden of
proof to your detriment.
Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of the Siemens AG.

Security
informa-
tion

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.
In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions only form one element of such a
concept.
Customer is responsible to prevent unauthorized access to its plants, systems, machines
and networks. Systems, machines and components should only be connected to the
enterprise network or the internet if and to the extent necessary and with appropriate
security measures (e.g. use of firewalls and network segmentation) in place.
Additionally, Siemens’ guidance on appropriate security measures should be taken into
account. For more information about industrial security, please visit
http://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more
secure. Siemens strongly recommends to apply product updates as soon as available and
to always use the latest product versions. Use of product versions that are no longer
supported, and failure to apply latest updates may increase customer’s exposure to cyber
threats.
To stay informed about product updates, subscribe to the Siemens Industrial Security
RSS Feed under http://www.siemens.com/industrialsecurity.

http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity

Table of Contents

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 3


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of Contents
Warranty and Liability ... 2

1 Introduction .. 4

2 Configuring Fail-Safe Controllers .. 6

2.1 Selecting the suitable F-CPU ... 6
2.2 PROFIsafe address types .. 8
2.3 Protecting the F-CPU against unauthorized access 9
2.4 F-change history ... 11
2.5 Consistently uploading F-CPUs ... 12
2.6 Know-how protection .. 13

3 Methods for Safety Programming .. 14

3.1 Program structures ... 14
3.1.1 Defining a program structure .. 14
3.1.2 Call levels of F-FBs/F-FCs ... 16
3.1.3 Call sequence of the blocks in the Main Safety 16
3.1.4 F-suitable PLC data type .. 18
3.2 Block information and comments ... 20
3.3 Functional identifiers of variables ... 21
3.4 True & False ... 22
3.5 Standardizing blocks .. 23
3.5.1 Standardizing sensor evaluation .. 23
3.5.2 Standardizing actuator control ... 25
3.6 Programming logic operations ... 26
3.7 Programming mode-dependent safety functions 26
3.8 Connecting global data... 27
3.9 Data exchange between standard user program and safety

program .. 28
3.9.1 Reading diagnostic and message information from the safety

program .. 29
3.9.2 Transferring operational information to the safety program 30
3.9.3 Using non-safe inputs in the safety program...................................... 30
3.9.4 Transferring HMI signals to the safety program 31
3.10 Resetting functional switching .. 33
3.11 Reintegrating fail-safe I/O modules/channels 34
3.11.1 Evaluating passivated modules/channels .. 34
3.11.2 Automatic reintegration .. 36
3.11.3 Manual reintegration ... 37

4 Optimizing Safety Programs .. 38

4.1 Optimizing the compilation duration and runtime 38
4.1.1 Jumps in the safety program .. 39
4.1.2 Timer blocks ... 41
4.1.3 Multi-instances ... 41
4.2 Avoiding data corruption... 43

5 Glossary ... 45

6 Appendix .. 47

6.1 Service and Support ... 47
6.2 Links and literature ... 48
6.3 Change documentation .. 48

1 Introduction

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 4


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Introduction

The new controller generation SIMATIC S7-1200 and S7-1500 has an up-to-date
system architecture and, together with TIA Portal, offers new and efficient
programming and configuration options.

If the programming is sloppy, the many options provided by STEP 7 can also
produce negative results:

 CPU stops

 Long compilation processes

 Additional, comprehensive acceptance testing

This document provides you with many recommendations and notes for the optimal
configuration and programming of S7-1200/1500 controllers. This helps you create
standardized and optimal programming of your automation solutions.

The examples described in this document can be universally used on the S7-1200
and S7-1500 controllers.

Advantages

Following the recommendations given in this document provides you with many
advantages:

 Reusability of program parts

 Easier acceptance (code review, error detection and correction)

 More flexibility in terms of program changes

 Reduction of programming errors

 Increased plant availability by avoiding CPU stops

 Easier readability for third parties

 Reduced runtime of the safety program

Note Not all the recommendations provided in this document can be applied at the
same time. In these cases, it is up to you as the user to decide on the
prioritization of the recommendations (e.g., standardization or runtime
optimization of the safety program).

1 Introduction

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 5


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Programming guideline and styleguide

The recommendations given in the programming guideline and the programming
styleguide always apply to programming safety programs.

Programming Guideline for SIMATIC S7-1200/1500:

https://support.industry.siemens.com/cs/ww/en/view/90885040

Programming Styleguide for SIMATIC S7-1200/1500:

https://support.industry.siemens.com/cs/ww/en/view/109478084

This document is a supplement to the documents above and deals with special
aspects of programming safety programs with STEP 7.

https://support.industry.siemens.com/cs/ww/en/view/90885040
https://support.industry.siemens.com/cs/ww/en/view/109478084

2 Configuring Fail-Safe Controllers

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 6


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 Configuring Fail-Safe Controllers

2.1 Selecting the suitable F-CPU

Selecting the F-CPU depends on the following factors:

 Runtime of the safety program

 PROFIsafe communication time

 Response time of the safety function

 Number of required inputs and outputs

 Number of connected I/O devices

Estimate of the response time

If you already have a rough idea of the automation system you want to use, you
can estimate the response time of your safety program using the SIMATIC STEP 7
Reaction Time Table or go through various scenarios to select the suitable F-CPU:

https://support.industry.siemens.com/cs/ww/en/view/93839056

Figure 2-1: Reaction time wizard of the SIMATIC STEP 7 Reaction Time Table

Influence of the safety program's cycle time on the standard user program

A long cycle time of the safety program slows down the response time of your
safety functions, but allows more time for processing the standard user program.

A short cycle time of the safety program increases the response time of your safety
functions, but allows less time for processing the standard user program.

https://support.industry.siemens.com/cs/ww/en/view/93839056

2 Configuring Fail-Safe Controllers

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 7


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following figure shows the influence of the safety program's cycle time on the
time that is available for processing the standard user program.

Figure 2-2: Influence of the safety program's cycle time on the standard user program

Note Please note that higher-priority organization blocks (e.g., cyclic interrupt OBs or
motion control OBs) can interrupt the safety program in the same way as shown
in Figure 2-2.

To make sure that the safety program cannot be interrupted, you can customize
the priorities in the properties of the appropriate OBs.

NOTICE The cycle time must be longer than the execution duration of the safety program.

2 Configuring Fail-Safe Controllers

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 8


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.2 PROFIsafe address types

The PROFIsafe address is used to uniquely address F-I/O and protect standard
addressing mechanisms such as IP addresses. Uniqueness is defined differently
for F-I/O of PROFIsafe address type 1 and F-I/O of PROFIsafe address type 2.

Table 2-1: Differences between the PROFIsafe address types

PROFIsafe address type 1 PROFIsafe address type 2

 The uniqueness of the PROFIsafe
address is ensured only by the F-
destination address.

 The F-destination address must be
unique throughout the network and the
CPU.

 In the safety summary, each F-
destination address has to be checked
for network- and CPU-wide uniqueness
by making sure that the F-destination
address ranges of all F-CPUs do not
overlap.

 The F-destination address and the F-
source address are included in the
safety program's CRC.

 The uniqueness of the PROFIsafe
address is ensured by combining the F-
source address and the F-destination
address.

 The F-destination address must be
unique throughout the CPU and differ
from all other F-destination addresses
of PROFIsafe address type 1 in the
same network.

 The F-destination address used for the
F-I/O of an F-CPU must be unique
throughout the network.

 The F-destination address and the F-
source address are included in the
safety program's CRC.

You must ensure that each PROFIsafe address is unique.

The ever increasing networking of plants and plant sections – especially if
configured separately – makes accurate planning of the PROFIsafe address
assignment all the more necessary.

The use of F-I/O of PROFIsafe address type 2 makes handling PROFIsafe
addresses easier. With mixed configurations or pure address type 1 configurations,
however, one has to be more careful.

Recommendation

 Already at the outset of the project, look at possible communication
relationships and network topologies. Consult with the parties involved to
derive measures for assigning PROFIsafe addresses.

 Assign separate address ranges to PROFIsafe address types 1 and 2:

– Assign a low number range to F-I/O of PROFIsafe address type 1
1)

.

– Assign a high number range to F-I/O of PROFIsafe address type 2.

 Always define unique F-source addresses for all F-CPUs. This makes both
working across projects and later extensions easier.

2 Configuring Fail-Safe Controllers

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 9


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1)
 You can define the allowed range for F-destination addresses of PROFIsafe

address type 1 in the CPU properties.

Figure 2-3: Defining the address range for F-destination addresses

Additional information

For more information about PPROFIsafe address types, visit Siemens Industry
Online Support:

What is the difference between the PROFIsafe address types 1 and 2 in relation to
the uniqueness of the PROFIsafe address?

https://support.industry.siemens.com/cs/ww/en/view/109479905

How do you assign PROFIsafe addresses so that they are unique network-wide
and CPU-wide?

https://support.industry.siemens.com/cs/ww/en/view/109740240

2.3 Protecting the F-CPU against unauthorized access

To prevent unauthorized modifications or tampering with a safety program, you
must implement appropriate access protection.

This can be done, for example, through organizational measures (such as locking
the control cabinet).

However, easier and more efficient access protection can be achieved by
assigning passwords.

You can set up separate access protection mechanisms for the safety program and
the F-CPU.

Access protection for the safety program

Access protection for the safety program makes sure that the F-program is not
modified by unauthorized persons.

You define the password for access protection for the safety program in Safety
Administration in TIA Portal.

https://support.industry.siemens.com/cs/ww/en/view/109479905
https://support.industry.siemens.com/cs/ww/en/view/109740240

2 Configuring Fail-Safe Controllers

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 10


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 2-4: Defining the password for the safety program

Once you have logged in with the password for the safety program, you can
remove the access rights to the safety program as follows:

 Log out of Safety Administration

 In the menu bar, "Online > Delete access rights"

 Close TIA Portal

Note Collaboration of programmers with and without rights for the user program

Changes to standard DBs that are read/write accessed by the safety program
require a recompilation of the safety program. These standard DBs are not
subject to the access permission for the safety program. Therefore, data
exchange between the F-program and the standard program requires a defined
interface that the programmer of the standard user program does not have to
change during his work.

For more information about this data exchange, please refer to Chapter 3.9.

Access protection for the F-CPU

Access protection for the F-CPU ensures that only authorized persons can
download a safety program to the device or disable safety mode.

The password for the F-CPU is defined in the CPU properties.

Figure 2-5: Defining the password for the F-CPU

Access protection applies only to the appropriate F-CPU. This password is also
used for identification of the F-CPU and must therefore be unique throughout the
network.

2 Configuring Fail-Safe Controllers

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 11


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.4 F-change history

F-change history acts like the standard user program's change history. In the
project tree, "Common data > Logs", one F-change history is created for each
F-CPU.

F-change history logs the following:

 F-collective signature

 User name

 Compile time stamp

 Download of the safety program with time stamp

 Compiled F-blocks with signature and time stamp

Figure 2-6: F-change history

Recommendation

Activate change history when you start configuring or at the latest when you have
defined the final project-specific CPU name as the change history is linked to the
CPU name.

Figure 2-7: Activating F-change history

2 Configuring Fail-Safe Controllers

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 12


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Advantages

 Ensures that the last change was loaded by comparing the online and offline
status of the CRC.

 Which user changed or downloaded the safety program can be tracked in
multi-user projects.

 Matching of online and offline status without an online connection between
CPU and PG/PC.

NOTICE F-change history must not be used to detect changes in the safety program or
when accepting changes in the F-I/O configuration.

2.5 Consistently uploading F-CPUs

TIA Portal V14 SP1 and higher allows you to consistently upload fail-safe SIMATIC
S7-1500 CPUs from the automation system to TIA Portal.

Recommendation

An upload from the automation system is only possible if the project has been
released for it.

When you start configuring, check the "Consistent upload" check box in Safety
Administration in TIA Portal.

Figure 2-8: Enabling "Consistent upload"

Advantages

As there is no complex "offline" project management, you can avoid errors and
further reduce the service effort.

2 Configuring Fail-Safe Controllers

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 13


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6 Know-how protection

STEP 7 Safety V14 or higher allows you to activate know-how protection for fail-
safe blocks (FCs and FBs).

Know-how protection protects specific program parts against access by
unauthorized persons, regardless of the F-CPU's and the safety program's access
protection. The contents of an FC or FB cannot be viewed or modified without a
password.

Recommendation

During the project phase, determine to what extent it makes sense to protect the
blocks of a safety program against third-party access.

Advantages

 Protects your know-how across contents of program parts.

 Accepted blocks cannot be modified.

Additional information

The following documentation provides instructions for using know-how protection
for different scenarios:

https://support.industry.siemens.com/cs/ww/en/view/109742314

https://support.industry.siemens.com/cs/ww/en/view/109742314

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 14


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 Methods for Safety Programming

3.1 Program structures

3.1.1 Defining a program structure

Recommendation

 Modularly divide the program code, e.g.,

– into subparts for detecting, evaluating, reacting or

– plant sections.

 In the preliminary stages, create a specification for each module (based on the
risk assessment requirements).

 Avoid complex signal paths.

Advantages

 Minimizes complexity.

 Reduces programming errors.

 Allows the program code to be analyzed/tested without running the program
(e.g., code review or PLCSIM).

 Easily expandable. Simplifies renewed acceptance.

 Reuse of program parts without renewed acceptance.

 Allows advance testing and acceptance of finished program parts.

Example

The following figure shows a safety application that is divided into three machine
areas (safety zones).

As some of the sensor signals are interconnected across areas (e.g., emergency
stop functions that act globally), they are grouped into a "Sensors" FB (they could
also be split up into physical or logical areas). The respective sensors are
evaluated using standardized function blocks (e.g., "GuardDoor").

The Mobile Panels' blocks are also called here.

Separate logic and actuator FBs are created for each machine area. The actuators
are controlled using standardized function blocks (e.g., "ContactorControl").

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 15


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-1: Example of a program structure

Note The structure shown here is an example. Depending on the size and complexity
of the safety program, you can also choose a different structure. In smaller
applications, it would, for example, also be possible to implement the logic and
actuator control in a shared function block.

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 16


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.2 Call levels of F-FBs/F-FCs

For standard user programs, the number of call levels is limited depending on the
CPU. For safety programs, you can use a maximum of eight call levels. A warning
appears when this limit is exceeded and an error message is displayed for pure FC
and multi-instance call chains.

System instructions ("ESTOP1", "SF_DOOR", etc.) are not included in the number
of call levels.

Note On the system side, functions are mapped as FBs with a multi-instance call in
the protection program; this is the reason why an error message is also
displayed for FC call chains with more than eight call levels.

The program structure in Figure 3-1 shows one way of keeping the call levels
relatively flat so that the safety program remains within the limit specified here.

3.1.3 Call sequence of the blocks in the Main Safety

Recommendation

Within the Main Safety, call blocks in the following sequence:

1. Receive blocks from other CPUs (F-CPU-F-CPU communication)

2. Error acknowledgment/reintegration of F-modules/F-channels

3. Evaluation block of the sensors

4. Operating mode evaluation

5. Logic operations, calculations, evaluations, etc.

6. Control blocks for safe actuators

7. Send blocks to other CPUs (F-CPU-F-CPU communication)

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 17


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-2: Call sequence in the Main Safety

Advantages

 The CPU always uses the latest values

 Facilitates orientation in the Main Safety

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 18


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.1.4 F-suitable PLC data type

For safety programs, too, it is possible to optimally structure data using PLC data
types.

F-suitable PLC data types have the following features:

 F-suitable PLC data types are declared and used in the same way as PLC data
types.

 All data types that are allowed in the safety program can be used in F-suitable
PLC data types.

 Nesting F-suitable PLC data types within other F-suitable PLC data types is not
supported.

 F-suitable PLC data types can be used both in the safety program and in the
standard user program.

Recommendation

 Create F-suitable PLC data types to structure data also in the safety program.

 Use F-suitable PLC data types to transfer large numbers of variables to blocks.

 Use F-suitable PLC data types for access to I/O ranges.

In this context, follow the below rules:

– The structure of the tags of the F-suitable PLC data type must match the
channel structure of the F-I/O.

– Example of an F-suitable PLC data type for an F-I/O with 8 channels:

 8 BOOL variables (channel value) or

 16 BOOL variables (channel value + value status)

– Access to F-I/O is only allowed for activated channels. When configuring a
1oo2 evaluation, the higher-level channel is always deactivated.

Advantages

A change in a PLC data type is automatically updated in all points of use in the
user program.

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 19


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example

Figure 3-3: Access to I/O ranges with F-suitable PLC data types

F-I/OF-suitable PLC data type

PLC tag

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 20


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2 Block information and comments

General

In SIMATIC Safety, the Function Block Diagram (FBD) and Ladder Diagram (LAD)
programming languages are available to you. Both languages provide the option to
store block and network comments.

Comments have no influence on the signature of F-FBs/F-FCs and can therefore
also be edited after acceptance.

Recommendation

In the block comment of your block, enter formal information about the block with
the aid of the following template.

If you implement diagnostic functions relevant to the PL / SILCL of another
subsystem (Detect or Evaluate) in an F-FB, include normative parameters such as
PL / SILCL and category (according to ISO 13849-1), DC measures, CCF
measures, etc. in the block comment.

After successful acceptance of the block, also include the signature in the block
comment. This makes it easier to track functional changes of the block.

//==

// Company

//--

// Library: (that the source is dedicated to)

// Tested with: (test system with FW version)

// Engineering: TIA Portal (SW version)

// Restrictions: (OB types, etc.)

// Requirements: (hardware, technological package, memory needed, etc.)

// Functionality: (that is implemented in the block)

//--

// Reference to Safety Requirement Specification:

// Safety related information: (SIL/PL (Cat.), DC, methods against CFF for connected

subsystems)

//--

// Change log table:

// Version Date Signature Expert in charge Changes applied

// 01.00.00 (dd.mm.yyyy) (Block CRC) (Name of expert) First released version

//==

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 21


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3 Functional identifiers of variables

Safety often uses the terms 'shutdown' or 'shutdown signals'. In practice, a safety
function is described using this terminology:

"When a safety door is opened, drive XY must be safely shut down."

However, release signals are generally programmed in the technical
implementation as a safety program. This is due to the fact that safety
interconnections are designed based on the closed-circuit principle.

If, for example, a safety door is closed, it gives the enable to switch on a safe
actuator.

Recommendation

Before the start of the project, define a uniform name of the variables with the
appropriate suffixes. The identifier reflects the meaning and purpose of the
variables in the source code context.

Choose the variable identifier such that it reflects the logic "1" state ("true").

For example, "maintDoorEnable" or "conveyorSafetyRelease".

Note The standardized names of the drive functions (e.g., STO and SLS) according to
IEC 61800-5-2 do not comply with the above recommendation.

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 22


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.4 True & False

Regarding the use of "TRUE" and "FALSE" signals in safety programs, there are
two different use cases:

 Actual parameters on blocks

 Assignments on operations

Actual parameters on blocks

For S7-1200/1500 controllers, you can use the Boolean constants "FALSE" for "0"
and "TRUE" for "1" as actual parameters for interconnecting formal parameters
during block calls in the safety program. Only the keyword "FALSE" or "TRUE" is
written to the formal parameter.

Figure 3-4: "TRUE" / "FALSE" signals as actual parameters

Assignments on operations

To generate "TRUE" / "FALSE" signals for operations, proceed as follows:

8. Create two static tags, "statTrue" and "statFalse", of the BOOL data type.

9. Assign the default "true" to the "statTrue" tag.

10. Assign the default "false" to the "statFalse" tag.

In the complete function block, you can use the tags as reading "TRUE" and
"FALSE" signals.

Figure 3-5: Declaration of "TRUE" and "FALSE" signals

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 23


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.5 Standardizing blocks

Aside from the actual evaluation of a sensor / control of an actuator, the same
conditioning of input and output parameters is often necessary (e.g., edge
evaluation, time functions, acknowledgment, etc.).

To this end, it is useful to create and reuse modular blocks.

Siemens Industry Online Support provides block libraries you can use in your
project, for example "LDrvSafe":

https://support.industry.siemens.com/cs/ww/en/view/109485794

Recommendation

Create modular blocks you can reuse:

 Blocks for typical fail-safe sensors

 Blocks for typical fail-safe actuators

 Blocks for frequently used functions (e.g., reintegration, operating mode)

Advantages

 Reused blocks have to be accepted only once

 Quick programming of additional functions and projects

 Versioning possible with the TIA Portal library concept

 Standardization of formal parameters across projects and programmers,
resulting in easy readability and testability

Note The following block programming shows examples. The actual function depends
on the application's risk assessment or the project requirements.

3.5.1 Standardizing sensor evaluation

Recommendation

Create a separate function block for each sensor type (e.g., emergency stop
command device, safety door, light curtain, etc.) that combines the evaluation of
the sensor and the necessary auxiliary functions. Use this sensor block for other
sensors of the same type.

Create F-data types for complex sensors.

Auxiliary functions for a safe sensor include, for example:

 Reset

 Restart interlock

 Time functions

 Edge evaluation

 Startup test

 Provision of diagnostic information

https://support.industry.siemens.com/cs/ww/en/view/109485794

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 24


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-6: Standardizing sensor evaluation

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 25


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.5.2 Standardizing actuator control

Recommendation

Create a separate function block for each actuator type (e.g., contactors, valves,
drives, etc.) that combines actuator control and the necessary auxiliary functions.
Use this actuator block for other actuators of the same type.

Create F-data types for complex actuators.

Auxiliary functions for a safe actuator include, for example:

 Feedback circuit monitoring

 Error acknowledgment

 Edge evaluation

 Time functions

 Functional switching

 Provision of diagnostic information

Figure 3-7: Standardizing actuator control

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 26


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6 Programming logic operations

Tasks of the blocks

 Generate release signals to control the safety-related actuators based on the
relevant safety functions

 Link the sensor enables, operating mode enables, etc. to the control signals of
the actuators

Recommendation

 Use mainly AND and OR logic elements

 Reduce the use of SR blocks to a minimum

 Avoid jumps in binary logic

3.7 Programming mode-dependent safety functions

Recommendation

Divide the logic into different levels (see IEC 62061):

 Level 1: All safety functions that are independent of modes and plant statuses.

– Logic ANDing of all safety functions that are always active.

– These are typically emergency stop facilities.

 Level 2: All mode-dependent safety functions.

– Logic ORing of safety functions that are only active in certain modes.

– For example, safety doors in automatic mode, alternating with enabling
buttons in service mode.

Example

Three safety functions are implemented on a machine: The "estop" emergency
stop function is active in each mode. The "guardDoor" safety door monitoring and
the "enablingSwitch" enabling function are only active in one mode.

Figure 3-8: Programming modes

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 27


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8 Accessing global data

Recommendation

 Connect global data (inputs, outputs, data blocks) at the highest block
hierarchy level (Main Safety).

 Use the block interfaces to pass signals to lower levels.

Advantages

 Modular block concept

 Reuse of program parts in other projects without modifications

 Reduces programming errors

 Makes the overall program easier readable as the general function of a block
can already be estimated from the interfaces.

Figure 3-9: Connecting global data

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 28


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9 Data exchange between standard user program and
safety program

The safety program's task is to execute all the functions that represent a risk-
reducing action. All other operational functions and functions for operation and
maintenance are part of the standard user program.

In practice, information for the diagnostic and signaling concept is also generated
in the safety program and operational information is also relevant to the safety
program. As a result, it is not possible to completely separate both program parts.

In order to move non-safety-related functions to the standard user program, you
have to define an interface. Global data blocks are best suited for this purpose.

Recommendation

Use global standard data blocks to exchange data between the standard user
program and the safety program.

To ensure a good overview of which program part reads and which one writes, it is
recommended to create two data blocks for the two directions.

You should not store any other information (e.g., diagnostic data from the standard
user program) in the data blocks as each modification of the data block involves a
modification of the safety program.

Figure 3-10: Data exchange between standard user program and safety program

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 29


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Advantages

 Lean F-runtime group

 Better overview of the exchanged data

 Changes of the diagnostic and signaling concept in the standard user
program do not affect the safety program's signature

 Minimized risk of downtimes caused by data corruption due to write access
to the safety program

 Simplified typing of F-blocks

 Changes to the standard user program can be loaded without stopping the
CPU

 Standard user program and safety program can be created independently
of each other, provided that interfaces have already been defined

3.9.1 Reading diagnostic and message information from the safety program

A frequent application for data exchange between the standard user program and
the safety program is the visualization of diagnostic and message information such
as:

 Acknowledgment requests of errors

 Reset requests of safety functions

 Error messages

 States of safety functions

Transfer the "raw data" from the safety program. The logic operation then takes
place in the standard user program. This has the advantage that the safety
program is kept lean and is independent of changes in the standard user program.
Smaller changes at a later stage (e.g., changes to the control of an indicator light)
are made in the standard user program. This does not change accepted F-blocks.

If you transfer a large amount of diagnostic data from the safety program, create an
F-data type for this purpose. A tag with a self-defined data type keeps the block
interface compact and clear. For data always to be transferred in a similar way, it is
recommended to standardize these F-data types across all F-function blocks.

Figure 3-11: Reading diagnostic and message information from the safety program

Status DataFromSafety Sensors

Standard user program Safety program

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 30


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9.2 Transferring operational information to the safety program

In many applications, it is essential that specific non-safety-related results of logic
operations are transferred from the standard user program to the safety program.
These are typically operational switch-on conditions (e.g., operational and fail-safe
switching of a motor starter) or machine states for mode preselection.

Prepare the data in the standard user program to the greatest possible extent. The
more non-safety-related logic is implemented in the standard user program, the
easier it is to implement changes to the logic relevant to the process.

3.9.3 Using non-safe inputs in the safety program

Standard inputs that are required directly in the safety program must be read
directly in the safety program. A "detour" via the standard user program should be
avoided.

The background to this is that non-safety-related signals are also included in the
application's systematic integrity. Typical examples are acknowledgment / reset
buttons or mode selectors. Which button / switch is allowed to reset which safety
function is a direct result of the risk assessment. A change of the command
devices must therefore influence the signature and must be made only
accompanied by a reassessment and an acceptance test for changes.

NOTICE The assessment of the specific signals that influence an application's systematic
integrity and, depending on this, are evaluated in the standard user program or in
the safety program depends on the risk assessment of an application.

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 31


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9.4 Transferring HMI signals to the safety program

Human-machine interfaces (HMIs) are convenient, essential components in a
machine operator's daily work. In order to use this convenience for operator control
and monitoring of processes and plants even in safety-related applications,
additional measures are required.

Writing tags from the HMI to the safety program is a problem for the following
reasons:

 Signals from the HMI panel are not safety-related and not monitored. An error
can result in forbidden changes of safety-related values, which increases the
risk.

 Communication between the HMI and the CPU is acyclic. As a result, the
HMI's write access may take place while processing the safety program.
The first program run then still uses the original value. The encoded user
program uses the value that has been updated in the meantime. This causes
data corruption in the safety program and therefore a stop of the CPU (see
Chapter 5).

Recommendation

Use another data block for communication with the HMI and copy the safety-
related data in the standard user program to the data buffer.

Figure 3-12: Data exchange between HMI and safety program

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 32


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Create a data type for the data from the HMI to the safety program. Use this data
type in the HMI tags, in the data buffer for the safety program and in the standard
user program where the data is copied.
To add more tags to be written from the HMI to the safety program, merely modify
this data type.

Figure 3-13: Copying data from the HMI to the safety program in the standard user program

Safe signal transmission

Communication between the HMI and the CPU is not safe. Transferring safety-
related data requires measures that ensure the safe transfer.

This application example shows a suitable safety concept:

https://support.industry.siemens.com/cs/ww/en/view/67634251

Resetting safety functions

For resetting safety functions or acknowledging errors using an HMI, TIA Portal
provides the "ACK_OP" system block.

An acknowledgment consists of two steps:

1. Change in/out IN to value "6" for exactly one cycle.

2. Change in/out IN to value at input "ACK_ID" for exactly one cycle within one
minute.

This system block is an exception to the recommended data exchange.

In each cycle, the system block resets the "IN" InOut parameter to "0". If the data
from the HMI is copied in the standard user program, "0" is overwritten with the
value from the HMI in each cycle and the condition that the values are present for
exactly one cycle is not met.

Therefore, write the tag at the "IN" input directly from the HMI and set the safety
program priority higher than that of communication to avoid potential data
corruption.

Figure 3-14: "ACK_OP" system block

https://support.industry.siemens.com/cs/ww/en/view/67634251

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 33


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10 Resetting functional switching

Safe actuators are frequently used for functional switching. The relevant safety
standards require that resetting the safety function does not trigger a restart of the
machine. When the safety function is triggered, functional switching must therefore
be reset and a new switch-on signal must be required.

Recommendation

 Lock process control in the standard user program with the release signal from
the safety program. As a result, safe shutdown also resets process control.

 Transfer the release signal from the safety program using a global data block
(see also Chapter 3.9).

Figure 3-15: Locking process control with the release signal

Standard user program Safety program

Safety

release

ProcessControl

start

stop

DataFromSafety

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 34


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.11 Reintegrating fail-safe I/O modules/channels

If the F-CPU detects an error relevant to safety, it passivates the relevant fail-safe
channel or the entire module. Once the error has been corrected, the passivated
channel must be reintegrated (depassivated).

As long as a channel is passivated, it uses substitute values. An input provides the
process image with the substitute value "0". The substitute value "0" is assigned to
an output, regardless of whether or not the program controls the output.

3.11.1 Evaluating passivated modules/channels

General

Whether a channel is passivated can be evaluated as follows:

 The channel's value status is "false"

 The "QBAD" tag of the module's F-I/O data block is "true"

 LEDs of channel and module light up red

 Entry in diagnostic buffer

Reintegration can be either manual or automatic. Define the acknowledgment
behavior depending on the risk assessment.

Once an error has been corrected, 'ready for acknowledgment' is indicated as
follows:

 The "ACK_REQ" tag of the module's F-I/O data block is "true"

 LEDs of channel and module flash alternately between red and green

Globally evaluating the status of F-I/Os / F-channels

STEP 7 V14 SP1 or higher allows you to have a block generated by the system to
globally evaluate the status of all F-I/Os / F-channels of an F-runtime group.

This block evaluates whether instead of the process values, substitute values are
output for at least one F-I/O or at least one channel of an F-I/O of an F-runtime
group. The "QSTATUS" output shows the result of the evaluation. This process
does not consider F-I/Os you disabled using the DISABLE tag in the F-I/O DB.

Figure 3-16: System-generated block for global evaluation of F-I/Os

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 35


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Generate the block in Safety Administration in the settings of the appropriate F-
runtime group.

Figure 3-17: Generating the block for global evaluation of F-I/Os

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 36


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.11.2 Automatic reintegration

Depending on whether the respective module supports the "RIOforFA" standard
(see Chapter 5), you can implement automatic reintegration in different ways.

WARNING

Automatic reintegration can lead to dangerous situations

If automatic reintegration is permissible for a certain process depends on the risk
assessment.

NOTE Automatic reintegration concerns F periphery/channel faults (e.g., discrepancy
faults, short-circuits). Communication faults require manual reintegration (see
chapter 3.11.3).

Modules that support "RIOforFA"

For modules that support "RIOforFA", you can parameterize automatic
reintegration either for the entire module or for single channels.

Figure 3-18: Parameterizing automatic reintegration

Modules that do not support "RIOforFA"

For modules that do not support "RIOforFA", program automatic reintegration in the
safety program. To do this, set the "ACK_REQ" tag of the respective F-I/O data
block to "false":

Figure 3-19: Programming automatic reintegration

3 Methods for Safety Programming

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 37


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.11.3 Manual reintegration

Global reintegration of all passivated F-modules

To reintegrate all passivated F-modules / F-channels of an F-runtime group, use
the "ACK_GL" instruction:

Figure 3-20: "ACK_GL" instruction

Separate reintegration of modules (or of a group of modules)

In distributed plants, it may be required that only local reintegration is allowed (e.g.,
separate command devices on the control cabinet). To do this, interconnect the
"ACK_REI" tags of the respective F-I/O data blocks:

Figure 3-21: Separate reintegration of modules

4 Optimizing Safety Programs

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 38


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Optimizing Safety Programs

4.1 Optimizing the compilation duration and runtime

Introduction

User programming protection by coded processing is an important part of a safety
program (see Chapter 5). The objective is to detect any data corruption in the
safety program and thus prevent non-safe states.

This protection program is generated during the compilation, which extends the
compilation duration. The protection program also extends the F-CPU's runtime as
the F-CPU additionally processes this program and compares the results with the
user program.

You will find the protection program that is automatically generated by the system
in the system block folder of your F-CPU.

Figure 4-1: Protection program

User-generated
F-blocks

System-generated
F-blocks

Some of the instructions that can be used in the safety program influence a fail-
safe controller's performance to a greater extent than others.

This chapter shows different options for reducing the compilation and program
runtime.

4 Optimizing Safety Programs

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 39


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note Depending on the application, it is not always possible to use all the suggestions.
However, they show why certain programming methods cause shorter
compilation and program runtimes than a non-optimized program.

Determining the runtime

TIA Portal automatically creates a data block, "RTGxSysInfo", for each F-runtime
group. Among other things, this block contains the current and the longest runtime
of this F-runtime group.

You will find this system-generated block in the project tree ("Program blocks >
System blocks > STEP 7 Safety").

Figure 4-2: System-generated DB: "RTGxSysInfo"

4.1.1 Jumps in the safety program

In a standard user program, a jump from one network to another (jump to label) or
from the block (return) is a simple program branch that is recalculated for each
cycle but not additionally protected. This means there is no check whether or not,
for example due to a memory error caused by EMC, a jump takes place despite the
"false" condition.

This is not allowed in a fail-safe program as it must be ensured at all times that the
program is in the correct branch.

This requires that both alternatives (jump to label is "true" or "false") be calculated
in their entirety in the protection program.

The more jumps you use in a safety program, the greater the influence on the
controller's performance.

4 Optimizing Safety Programs

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 40


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 Where possible, avoid jumps in the safety program.

 Use state machines instead of jumps in FBs with binary logic.

Figure 4-3: Avoiding jumps

4 Optimizing Safety Programs

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 41


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.1.2 Timer blocks

Timers are an integral part of a safety program as many of the system functions
such as "ESTOP1" internally use these timers. Despite this fact, generating a fail-
safe time value requires considerable effort and regeneration for each single timer
block.

Recommendation

Reduce the number of timer blocks to a minimum.

4.1.3 Multi-instances

Recommendation

Use multi-instances for fail-safe function blocks. This means that the block-internal
tags are integrated into the block interface of the calling block.

Advantages

 Standardization of safety programs:
No global data is used for block tags. This allows reuse of the calling block
(including the integrated blocks).

 Optimizing the compile performance:

– Using multi-instances requires less protection code than using instance
data blocks.

– The use of multi-instances reduces the number of F-blocks on the system
side. This optimizes the compilation of the safety program.

4 Optimizing Safety Programs

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 42


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example

Two drives are safely controlled with the same "LDrvSafe_CtrlT30SinaS" function
block. The data is stored in multi-instances with unique names.

Figure 4-4: Multi-instances

The "LDrvSafe" library for controlling the safety functions of SINAMICS drives is
available in Industry Online Support:

https://support.industry.siemens.com/cs/ww/en/view/109485794

https://support.industry.siemens.com/cs/ww/en/view/109485794

4 Optimizing Safety Programs

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 43


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 Avoiding data corruption

The protection mechanisms within the scope of coded processing (see Chapter 5)
cyclically analyze the program's execution for data corruption. In case of data
corruption, a special system function block triggers an F-STOP of the CPU.

The purpose of this mechanism is to detect influences such as EMC, defect
components, etc. and bring the system to a safe state before the machine
becomes a risk for humans and the environment.

Aside from external influences, data corruption can also be caused by incorrect
programming. The most frequent cause of data corruption is that the standard user
program or an external device (e.g., HMI) writes data while the safety program
reads that data.

This can occur in the following situations:

– Write access by higher-priority alarms

– Write access by HMI / communication

– Use of clock memories

– Update of a partial PII by higher-priority alarms

For information about how to correctly program access from the standard user
program to the safety program, see Chapter 3.9.

4 Optimizing Safety Programs

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 44


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Checklist

The following checklist allows you to identify and correct user-generated STOP
causes.

Table 4-1: Checklist

Possible causes Checked

Overflow

Underflow or overflow can occur in arithmetic functions. This must be caught by the user in
the program. A library with arithmetic functions for the safety program is available in SIOS:

https://support.industry.siemens.com/cs/ww/en/view/109482083

Division by 0

If a division by 0 occurs in the safety program, the F-CPU goes to STOP. Prior to the
division, the divisor must be checked for 0 and the division must be conditionally skipped.

Access via HMI

An HMI is used to write (modify) data (bit memories, DBs) that is read in the safety
program. By default, communication has a higher priority than safety. This can result in
data corruption. For possible solutions, see Chapter 3.9.

Standard access to F-data

The standard user program modifies data of fail-safe tags or parts of their protection. Write
access to F-data is only allowed in the safety program.

Pointer access to F-data

Identical to standard access; can occur at runtime when there are unfavorable defaults for
generating a pointer to F-areas (inputs, outputs, data blocks, etc.).

Changing start values in F-instance data blocks

Start values may only be changed in the interfaces of F-FBs.

Read / write standard data

Read / write access to the same standard data from the safety program is not allowed.

Additional information

For more information and causes of data corruption, visit Siemens Industry Online
Support:

https://support.industry.siemens.com/cs/ww/en/view/19183712

https://support.industry.siemens.com/cs/ww/en/view/109482083
https://support.industry.siemens.com/cs/ww/en/view/19183712

5 Glossary

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 45


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5 Glossary

Coded processing

To meet the normative requirements in terms of redundancy and diversity, all
SIMATIC F-CPUs use the "coded processing" principle. In coded processing, the
safety program is processed twice by a single processor.

To this end, the compiler generates a diverse (encoded) safety program that is
referred to as the protection program.

The first program run processes the unmodified safety program of the user. After
that, the protection program is processed. Then the F-CPU compares the results. If
processed correctly, the safe outputs are written. If there are differences between
the two program parts (e.g., due to data corruption), the F-CPU goes to stop and
generates an entry in the diagnostic buffer.

Figure 5-1: Safety program processing sequence

Sicherheitsprogramm bearbeiten

Absicherungsprogramm bearbeiten

 F-PAE lesen (F_CTRL_1)

Ergebnisse vergleichen

F-PAA schreiben (F_CTRL_2)

Main Safety

(F-CALL)

F-Ablaufgruppe
Zeit

Data corruption

Data corruption means that data of the safety program has been tampered with by
external influences (e.g., EMC influences) or illegal write access.

F-CPU

An F-CPU is a controller suitable for safety-related tasks.

PROFIsafe

PROFIsafe is a protocol for fail-safe communication via PROFINET.

Cross-circuit

Cross-circuit detection is a diagnostic function of an evaluation unit that detects
short-circuits or cross-circuits between two input channels (sensor circuits).

A cross-circuit can be caused, for example, by a squashed light plastic-sheathed
cable. Without cross-circuit detection, this would result in, for example, a two-
channel emergency stop circuit not tripping even though only one normally closed
contact is faulty (secondary error).

5 Glossary

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 46


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

RIOforFA

RIOforFA (Remote IO for Factory Automation) is a standard from the PROFIBUS &
PROFINET International organization. Among other features, it describes the
following functions:

 Synchronous provision of channel-specific diagnostics of remote IOs for high
performance

 Channel-specific passivation and reintegration of PROFIsafe remote IOs

Feedback circuit

A feedback circuit is used for monitoring controlled actuators (e.g., relays or load
contactors) with positive-action contacts or mirror contacts. The outputs can only
be activated when the feedback circuit is closed. When using a redundant
shutdown path, the feedback circuit of both actuators must be evaluated. For this
purpose, they may also be connected in series.

Reset function / resetting

When a safety function has been triggered, the system must remain in stop until it
returns to a safe state for restarting.

Restoring the safety function and clearing the stop command is referred to as the
reset function / resetting.

In this context, "acknowledging the safety function" is another frequently used
phrase.

Safety program

Part of the safety program that processes safety-related tasks.

STEP 7 Safety Basic / Advanced

STEP 7 Safety Basic and Advanced are STEP 7 option packages that allow you to
configure F-CPUs and create a safety program.

 STEP 7 Safety Basic allows you to configure the fail-safe SIMATIC S7-1200
controllers.

 STEP 7 Safety Advanced allows you to configure all fail-safe SIMATIC
controllers.

6 Appendix

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 47


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6 Appendix

6.1 Service and Support

Industry Online Support

Do you have any questions or do you need support?

With Industry Online Support, our complete service and support know-how and
services are available to you 24/7.

Industry Online Support is the place to go to for information about our products,
solutions and services.

Product Information, Manuals, Downloads, FAQs and Application Examples – all
the information can be accessed with just a few clicks:
https://support.industry.siemens.com

Technical Support

Siemens Industry’s Technical Support offers you fast and competent support for
any technical queries you may have, including numerous tailor-made offerings
ranging from basic support to custom support contracts.

You can use the web form below to send queries to Technical Support:
www.siemens.com/industry/supportrequest.

Service offer

Our service offer includes the following services:

 Product Training

 Plant Data Services

 Spare Part Services

 Repair Services

 Field & Maintenance Services

 Retrofit & Modernization Services

 Service Programs & Agreements

For detailed information about our service offer, please refer to the Service
Catalog:
https://support.industry.siemens.com/cs/sc

Industry Online Support app

The "Siemens Industry Online Support" app provides you with optimum support
while on the go. The app is available for Apple iOS, Android and Windows Phone:
https://support.industry.siemens.com/cs/ww/en/sc/2067

https://support.industry.siemens.com/cs/?lc=en-DE
https://support.industry.siemens.com/cs/sc/2100/support-request?lc=en-WW
https://support.industry.siemens.com/cs/sc?lc=en-DE
https://support.industry.siemens.com/cs/ww/en/sc/2067

6 Appendix

Safety Programming Guideline
Entry ID: 109750255, V1.0, 10/2017 48


 S

ie
m

e
n

s
 A

G
 2

0
1

7
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6.2 Links and literature

Table 6-1: Links and literature

No. Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to the entry page of the application example

https://support.industry.siemens.com/cs/ww/en/view/109750255

\3\ Programming Guideline for SIMATIC S7-1200/1500

https://support.industry.siemens.com/cs/ww/en/view/90885040

\4\ Programming Styleguide for SIMATIC S7-1200/1500

https://support.industry.siemens.com/cs/ww/en/view/109478084

\5\ SIMATIC Industrial Software SIMATIC Safety – Configuring and Programming

https://support.industry.siemens.com/cs/ww/en/view/54110126

\6\ Topic page: "Safety Integrated – Safety in Factory Automation"

https://support.industry.siemens.com/cs/ww/en/view/109747812

6.3 Change documentation

Table 6-2: Change documentation

Version Date Modifications

V1.0 10/2017 First version

https://support.industry.siemens.com/cs/start?lc=en-DE
https://support.industry.siemens.com/cs/ww/en/view/109750255
https://support.industry.siemens.com/cs/ww/en/view/90885040
https://support.industry.siemens.com/cs/ww/en/view/109478084
https://support.industry.siemens.com/cs/ww/en/view/54110126
https://support.industry.siemens.com/cs/ww/en/view/109747812

	Safety Programming Guideline for SIMATIC S7-1200/1500
	Warranty and Liability
	1 Introduction
	2 Configuring Fail-Safe Controllers
	2.1 Selecting the suitable F-CPU
	2.2 PROFIsafe address types
	2.3 Protecting the F-CPU against unauthorized access
	2.4 F-change history
	2.5 Consistently uploading F-CPUs
	2.6 Know-how protection

	3 Methods for Safety Programming
	3.1 Program structures
	3.1.1 Defining a program structure
	3.1.2 Call levels of F-FBs/F-FCs
	3.1.3 Call sequence of the blocks in the Main Safety
	3.1.4 F-suitable PLC data type

	3.2 Block information and comments
	3.3 Functional identifiers of variables
	3.4 True & False
	3.5 Standardizing blocks
	3.5.1 Standardizing sensor evaluation
	3.5.2 Standardizing actuator control

	3.6 Programming logic operations
	3.7 Programming mode-dependent safety functions
	3.8 Accessing global data
	3.9 Data exchange between standard user program and safety program
	3.9.1 Reading diagnostic and message information from the safety program
	3.9.2 Transferring operational information to the safety program
	3.9.3 Using non-safe inputs in the safety program
	3.9.4 Transferring HMI signals to the safety program

	3.10 Resetting functional switching
	3.11 Reintegrating fail-safe I/O modules/channels
	3.11.1 Evaluating passivated modules/channels
	3.11.2 Automatic reintegration
	3.11.3 Manual reintegration

	4 Optimizing Safety Programs
	4.1 Optimizing the compilation duration and runtime
	4.1.1 Jumps in the safety program
	4.1.2 Timer blocks
	4.1.3 Multi-instances

	4.2 Avoiding data corruption

	5 Glossary
	6 Appendix
	6.1 Service and Support
	6.2 Links and literature
	6.3 Change documentation

