Existing mechanical check valves often foul due to carbon deposits.

This makes it necessary for Operators to shut down and clean the check valves every 3-6 months to keep the engine operating properly. A fouled check valve can cause the engine to misfire resulting in high hydrocarbon emissions and potential damage to the engine. In addition, the pre-chamber injection event is mechanically fixed and cannot be optimized for different operating conditions.

To address this issue, Siemens has developed a simple, yet advanced Electronic Pre-Combustion Chamber (EPCi) injector, which allows for increased reliability and durability compared to a standard mechanical pre-combustion chamber. It uses an electro-magnet to force the valve open and closed by spring force instead of relying on the standard pressure differential-based mechanical check valve. This EPCi system enables control of the start-of-admission and end-of admission events, minimizing contamination during cylinder scavenging and giving precision fuel admission control for improved fuel mixture tuning across all loads and speeds.

The EPCi control hardware can be fully integrated with existing systems or comes in a standalone sub-panel built to the end users’ specific requirements.

Features & Benefits
The new EPCi product is designed to be tolerant to carbon contamination and can reduce the time between maintenance intervals from three months to two years. This also reduces the chance of misfiring that can cause engine damage.

Manual Check Valve

siemens.com
Technical Descriptions

The product is ideal for slow speed, two and four-stroke integral gas compression engines. In addition, clients with medium speed gas compression engines can benefit from this product.

- Environmental Operating Temperature: -4 to 302°F (-20 to 150°C)
- Gas Supply Pressure: 0 to 100 psig (0 to 689.5 kPa)
- Gas Supply Temperature: -4 to 185°F (-20 to 85°C)
- Gas Quality: pipeline quality natural gas (Gas must contain negligible amounts of H2S)

- Process Connections:
 - Inlet: female 7/16-20, -04 Port per SAE J514 Table 11
 - Outlet: male 9/16-18, -06 JIC 37° flare per SAE J514
- Valve Response (assumes the use of Woodward In-Pulse control):
 - Time to full open after signal on: <1.3 msec open response
 - Time to full close after signal off: <1.3 msec closing response
- Minimum Valve Cracking Pressure: 115 psig (793 kPa)
- Forward Flow Seat Leakage: <0.5% of wide open flow at 75 psig
- Reverse Flow Seat Leakage: <0.5% of wide open flow at 500 psig
- Vibration Qualification Test: US MIL-STD-810C method 514.2, curve F
- Built-in Last Chance Filtration: 25 micron absolute
- Hazardous Location Classification:
 - CSA Class I, Division 2 Groups C & D Temp. Class T5 @ 85°C ambient Temp. Class T3B @ 150°C ambient
 - ATEX Class I, Zone 2 AEx/EX na IIB Temp. Class T5 @ 85°C ambient Temp. Class T3B @ 150°C ambient
- Peak Cylinder Firing Pressure: 2,000 psig (13.8 MPa)

Support Services & Implementation

Typical manufacturing lead times range for standard parts depending on factory workload.

Optional Services

EPCi can be bundled with larger scope emission reduction and reliability improvement projects.

Published by Siemens AG 2018:
Siemens Energy, Inc.
4400 Alafaya Trail
Orlando, FL 32826-2399

For more information, please contact our Customer Support Center
Phone: 978-391-7040
Fax: 978-772-3019

Power Generation Services
Freyerslebenstraße 1
91058 Erlangen, Germany

For more information, please contact our Customer Support Center
Phone: +49 180 524 70 00
Fax: +49 180 524 24 71
(charges depending on provider)
Email support.energy@siemens.com
siemens.com/energy