Transform(ers) – Our Future
Siemens AG Österreich – Transformers Weiz
Safety information for visitors

Basic rules of conduct

- Follow the instructions of your tour guide
- Wear **personal protective equipment** wherever necessary
- Visitors have to **wear safety helmets** within the production areas
- **Safety shoes** are mandatory if you depart from the red-orange marked route
- Be careful during lifting operations, keep distance
- **Watch out for transport vehicles**
- Do not touch production equipment and products
- Use the **designated smoking places**
- Photography and filming is forbidden
- In case of an emergency use the marked **emergency exits**
Factory map

Transformer Plant North

Core-Cutting-Center Plant South

Legend:
- Warehouse areas
- Production area / assembly point S1
- Production area / assembly point S2
- Production area / assembly point S3
- Office buildings / assembly point S4
- Production area / assembly point S5
- Assembly point in core of Crisis

1. Main office building / gate 1
2. CT - production
3. CT - test department
4. Incoming goods department
5. PT - windings
6. PT - core manufacture
7. PT - core-and-coil assembly
8. PT - finalization
9. Insulating part production
10. PT - test department

© Siemens AG Österreich 2019
<table>
<thead>
<tr>
<th>1</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Facts & Figures</td>
</tr>
<tr>
<td>3</td>
<td>Product & Service Portfolio</td>
</tr>
<tr>
<td>4</td>
<td>References</td>
</tr>
<tr>
<td>5</td>
<td>Business excellence</td>
</tr>
</tbody>
</table>
Siemens AG Österreich
Transformers Weiz consisting of multiple business segments

- Large Power Transformers
- Distribution Transformers
- Service
- Global Core Cutting Center
Transmission Products
Major backbone of the Energy Value Chain

Conventional power generation

Renewable power generation

Transmission Products & Systems

Industry & infrastructure

Distribution network

Our functionality offer

- Transmission products & systems for:
 - Efficient power transformation
 - Reliable protection
 - Precise measurement
 - Safe switching & operation
 - Power quality
 - Future built in connectivity & intelligence
 - Improved grid resilience & sustainability

single source for products & systems from generation via transmission to distribution
Transmission Products comprising all products of high voltage substations including their electrical integration into systems

Sensors & connectivity, protection equipment, parametrization, system engineering
Global factory network for highest performance & customer intimacy

- Worldwide #2 position
- ~13,300 employees
- 30 factory locations in 14 countries

Factory Network

- Air Insulated Switchgear
- Gas Insulated Switchgear
- Power Transformers

➢ Clear global product responsibility in Lead Factories for highest performance of entire factory network
Siemens Distribution Transformer Factories
Global Footprint: 10 locations specialized in Windpower

- Tenjo, Colombia
- Jundiai, Brazil
- Kirchheim, Germany
- Budapest, Hungary
- Kalwa, India
- Jinan, China
- Guangzhou, China

Liquid immersed Distribution Transformers
Cast Resin Distribution Transformers

Lead Factory: Weiz, Austria
Experience pays off - over 1,500 Offshore Transformers reliably in operation

High-quality transformers in operations (EU)

- Siemens Transformers: 33%
- Other manufacturers: 67%

9 years of experience in Offshore Wind

References

Siemens Transformers
Agenda

1 Overview

2 Facts & Figures

3 Product & Service Portfolio

4 References

5 Business excellence
Austria

- Member of the European Union
- 8,8 million population
- 83,878 km² (32,385 mile²) area

Plant Weiz

- Established 1892
- 1,150 employees
- 54,300 m² (584,000 square feet) area
Plant history since 1892

2012 “SIEMENS Aktiengesellschaft Österreich – Transformers Weiz”

2007 “Siemens Transformers Austria GmbH & Co KG”

2005 Integration into SIEMENS

2003 VA TECH ELIN Transformatoren is one of two competence centers of VA TECH Transformers worldwide

2000 “VA TECH ELIN Transformatoren GmbH & Co”

1990 “ELIN Transformatoren GmbH”

1988 Transformer Division was established

1959 “ELIN Union AG für Elektrische Industrie”

1922 “ELIN Aktiengesellschaft für Elektrische Industrie”

1892 “Franz Pichler Werke” – first transformer
Our principles

- Strategic partner for our customers
- Utmost performance by motivated & qualified employees
- Customer oriented, ecological & economical solutions
- Technology leader through innovation
Apprenticeship program as foundation for excellent performance

Two fields of apprenticeships:

- Mechatronics - electric machine technology
- Metal technology - mechanical engineer

Education goals:

- Training in the workshop
- Field experience for apprentices aged 18 years
- Health & safety
- Social skills

Currently are approx. 50 Siemens apprentices in training
Significant milestones in the history of the Weiz plant

- **1892**: First Transformer
- **1896**: 1300 MVA Transformer (USA)
- **1892**: "Franz Pichler" First Transformer
- **1951**: 230 kV Transformer (Austria)
- **1965**: 400 kV Transformer (Sweden)
- **1986**: 975 MVA Transformer (USA)
- **1989**: 765 kV – BIL 2050 Transformer (USA)
- **2005**: 420 MVA / 345 kV - 57 dB(A) Transformer (USA)
- **2012**: 100 MVA / 735 kV Single Phase SVC Transformer (Canada)
- **2014**: 1200 MVA / 410 / 410 ± 20° (No Load) ± 32 steps Phase Shifter (Poland)
- **2016**: 1st Resiliency Transformer 133 MVA, 345 kV (USA)
- **2017**: 1st Ester-filled Phase Shifter, Low – Noise-Design, 300 MVA 138 kV (USA)
- **2018**: 1st Ester-filled Offshore Shunt Reactor, 20 MVar 155kV (North Sea)
- **2007**: 1200 MVA / 400 kV / ±24° ±32 Taps Phase Shifter (Germany)
- **2008**: 133 MVar / 765 kV Single Phase Shunt Reactor (South Africa)
- **2005**: 420 MVA / 345 kV - 57 dB(A) Transformer (USA)
- **2015**: 240 MVA / 400/132 kV Transformer with Ester-filling, Low-Noise-Design and Utilization of waste heat
- **2018**: 1st Ester-filled Offshore Shunt Reactor, 20 MVar 155kV (North Sea)

Additional Highlights

- **1993**: 650 MVA / 525 kV / ±24° Phase Shifter (USA)
- **1996**: 1300 MVA Transformer (USA)
- **1993**: 650 MVA / 525 kV / ±24° Phase Shifter (USA)
- **1998**: 975 MVA Transformer (USA)
- **1999**: 975 MVA Transformer (USA)
- **2009**: 1200 MVA / 410 / 410 ± 20° (No Load) ± 32 steps Phase Shifter (Poland)
- **2012**: 100 MVA / 735 kV Single Phase SVC Transformer (Canada)
- **2014**: 1200 MVA / 410 / 410 ± 20° (No Load) ± 32 steps Phase Shifter (Poland)
- **2016**: 1st Resiliency Transformer 133 MVA, 345 kV (USA)
- **2017**: 1st Ester-filled Phase Shifter, Low – Noise-Design, 300 MVA 138 kV (USA)
- **2018**: 1st Ester-filled Offshore Shunt Reactor, 20 MVar 155kV (North Sea)

Unrestricted © Siemens AG Österreich 2019
Figures
Fiscal Year (FY) 2018

<table>
<thead>
<tr>
<th></th>
<th>FY 2018</th>
<th>FY 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order Intake</td>
<td>€ 373 Mio</td>
<td>€ 384 Mio</td>
</tr>
<tr>
<td>Sales</td>
<td>€ 380 Mio</td>
<td>€ 409 Mio</td>
</tr>
<tr>
<td>Production Area</td>
<td>54,300 m²</td>
<td>54,300 m²</td>
</tr>
<tr>
<td>Production Capacity in MVA</td>
<td>47,600</td>
<td>47,000</td>
</tr>
<tr>
<td>Distribution Transformers</td>
<td>7,600</td>
<td>7,000</td>
</tr>
<tr>
<td>Power Transformers and Shunt Reactors</td>
<td>40,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Employees (Office)</td>
<td>1,023*</td>
<td>1,034*</td>
</tr>
<tr>
<td>Employees (Workshop)</td>
<td>440</td>
<td>436</td>
</tr>
<tr>
<td>Apprentices</td>
<td>535</td>
<td>549</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>49</td>
</tr>
</tbody>
</table>

*) incl. temp. staff

Fiscal Year (FY) 2018
Order Intake/Sales
Fiscal Year (FY) 2018

Order Intake: EUR 373’2
Sales: EUR 379’8

Europe 52%
Austria 7%
USA 36%
Canada / Central & South America 2%
Near & Middle East / Arica 3%
Asia / Australia 3%

Europe 56%
Austria 6%
USA 29%
Canada / Central & South America 4%
Near & Middle East / Arica 6%
Asia / Australia 2%
Order Intake/Sales - Large Power Transformers only
Fiscal Year (FY) 2018

Order Intake: EUR 206’5

Sales: EUR 231’7

Europe 46%
Austria 3%
USA 41%
Canada 3%
Middle East / Africa 3%
Asia / Australia 3%
Products – Large Power Transformers

- **Power Transformers**
 - Generator Step Up Transformers
 - Substation Transformers (Multiwinding- & Autotransformers)
 - 1ph and 3ph up to 1,300 MVA / 765 kV

- **Phase Shifting Transformers**
 - Single- & Dualltank
 - Symmetric & asymmetric Phase Angle
 - 1ph and 3ph up to 1,200 MVA / 765 kV

- **Reactors**
 - (Adjustable) Shunt Reactors
 - Seriesreactors
 - 1ph up to 150 MVar / 765 kV
 - 3ph up to 250 MVar / 765 kV
Products – Distribution Transformers

- **Distribution Transformers**
 - 3-phase
 - For small & large power applications

- **Converter Transformers**
 - Multiple tier windings
 - 12-pulse
 - 18-pulse
 - 24-pulse

- **Special Transformers**
 - Subsea Transformer
 - 1 phase Autotransformer
 - ATEX directive 2014/34/EU Zone 2

- **Renewable Transformers**
 - Wind
 - PV

Unrestricted © Siemens AG Österreich 2019

Page 23

Fiscal Year 2018

Transformers Weiz
Modular Product Architecture "Mix and Play" for Power Transformers
Service

Repair & Retrofit

Spare Parts & Accessories

- Seals
- Special production series
- Oil level indicators
- Terminal tags
- Resin bushings
- Oil flow indicators

On site repair

Commissioning

Contion Assessment Level

<table>
<thead>
<tr>
<th>Level</th>
<th>Perspective</th>
<th>Condition Assessment Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>Oil sampling</td>
<td>„Inside Tank“</td>
</tr>
<tr>
<td>1.</td>
<td>Energized</td>
<td>+ Visual & thermal inspection + Historical & operational data</td>
</tr>
<tr>
<td>2.</td>
<td>De-Energized</td>
<td>+ Electrical measurements</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>+ High Voltage testing</td>
</tr>
</tbody>
</table>

“Holistic transformer evaluation”
Total MVA delivery and number of units worldwide – Large Power Transformers

From 1937 to date STW has supplied transformers to 78 different countries and by deploying supervisors STW has been physically present in almost all countries.

*) based on a 40 year lifetime
Reference for Autotransformer

Autotransformer

Customer
- American Electric Power, USA

Destination
- Kammer & Amos Substation
- 3 units delivered 2015 & 2018

Rating
- 750 MVA, single-phase AUT
- 746/√3 // 345/√3 // 34.5 kV

Key Features
- Geomagnetically induced current (GIC) capability
- Supplied with a monitoring system which includes bushing health monitoring, on line dissolved gas monitoring, UHF based partial discharge monitoring and fibre optic probes for direct temperature measurement
- Since 1977 more than 150 transformers and shunt reactors have been delivered to various AEP substations
Reference for Autotransformer

Autotransformer

Customer
- Center Point, USA

Destination
- TH Wharton and other substations
- 3 units delivered 2018 and 1 further unit under manufacturing

Rating
- 800 MVA AUT
- 345 kV

Key Features
- Supplied with a monitoring system
Reference for Autotransformer

Customer
- Georgia Power Company, USA

Destination
- Mobile units
- 2 units delivered 2018

Rating
- 35 MVA AUT
- 230 kV

Key Features
- Extremely low weight
- Dimensional limitations

Since nearly 20 years we delivered much more than 100 transformers and shunt reactors to Georgia Power Company substations and power plants. 10 further units are under manufacturing.
Reference for Autotransformer

Customer
- Consolidated Edison of New York, USA

Destination
- Astoria Substation
- 4 units have been delivered since 2015 and further 1 in order

Rating
- 300 MVA, three-phase AUT
- 345 kV

Key Features
- Plugin Bushings
- Midel fluid
- Low noise design
- GIC
Reference for Autotransformer

Autotransformer

Customer
- TenneT TSO B.V., Netherlands

Destination
- Landstation Borssele
- Delivery 2018 (4 units)

Rating
- 400 MVA AUT
- 380 kV

Key Features
- Voltage regulation at HV-system
- Lightning impulse test with positive polarity
- Aggressive environment (near shore location)
- Earthquake requirement
Reference for Autotransformer

Autotransformer

Customer
- National Grid, UK

Destination
- Tilbury SGT and other substations
- 44 units Delivery 2006 - 2018

Rating
- 240 MVA, three-phase AUT
- 403/132/14 kV

Key Features
- 100% first pass yield
Reference for Autotransformer

Customer
- National Grid, UK

Destination
- Highbury – London Inner City
- Delivery 2015 (3 units)

Rating
- 240 MVA, three-phase AUT
- 403/132/14 kV

Key Features
- Esther filled
Reference for Autotransformer

Autotransformer

Customer
- Pacific Gas and Electric, USA

Destination
- Gates, Table Mountain and other substations
- 22 units since 2002, 7 under manufacturing

Rating
- 374 MVA, three-phase AUT
- 525 kV

Key Features
- Two DETC’s with voltage regulation on HV and LV sides
- High seismic qualification level (IEEE 693)
Reference for Shunt Reactor

Shunt Reactor

Customer
- ELIA System Operator NV, Belgium

Destination
- STEVIN I - IV
- 4 units delivered 2017 & 2018

Rating
- 130 MVAR, three-phase SHR
- 225 kV

Key Features
- Low Noise
- PN Shift
Reference for Shunt Reactor

Shunt Reactor

Customer
- First Energy Corporation, USA

Destination
- Pierce Brook Substation
- Delivery 2018

Rating
- 125 MVar, three-phase SHR
- 345 kV

Key Features
- First shunt reactor supplied to First Energy Corp.
- Supplied with a monitoring system which includes bushing health monitoring and on line dissolved gas monitoring
Reference for Shunt Reactor

Customer
- Pacific Gas and Electric / Dashiell, USA

Destination
- Bellota Substation
- Delivery 2018

Rating
- 100 MVAR, three-phase SHR
- 230 kV

Key Features
- High seismic qualification level (IEEE 693)
Reference for Shunt Reactor

Shunt Reactor

Customer
- Hydro Quebec, Canada

Destination
- Varennes Storage
- 5 units delivered 2012 & 2018

Rating
- 110 MVAr, single-phase SHR
- 735 kV

Key Features
- Low Noise
- High seismic requirements
- Tank rupture resistant design

We delivered more than 20 shunt reactors and transformers since 2011 to Hydro Quebec.
Reference for Shunt Reactor

Shunt Reactor

Customer
- BC Hydro, Canada

Destination
- Kelly Lake Substation
- Delivery 2015 and one further unit under manufacturing

Rating
- 135 MVAr, three-phase SHR
- 525 kV

Key Features
- High seismic requirements (dynamic analysis)
Reference for Shunt Reactor

Shunt Reactor

Customer
- American Electric Power, USA

Destination
- Dumont and other substations
- Delivery since 2005

Rating
- 100 MVar SHR
- 765/√3 kV

Key Features
- ONAN
- Low Loss Design
- Full Type Tests

68 units have been delivered in the past 13 years to several AEP substations.
Reference for Shunt Reactor

Variable Shunt Reactor

Customer
- Iberdrola S.A., UK

Destination
- East Anglia Offshore Windfarm
- 2 units delivered 2018 to the Onshore Substation

Rating
- 228 MVar, three-phase SHR
- 220 kV

Key Features
- Regulating range 114-228 MVar
- The delivery have been included an insulation house

To the East Anglia Offshore Windfarm we also delivered 2 190 MVar 380kV Offshore Shunt Reactors in 2017.
Reference for Generator Step Up Transformer

Generator Step-Up Transformer

Customer
- Southern Nuclear, USA

Destination
- Plant Vogtle
- 3 units delivered since 2017, one further unit under manufacturing

Rating
- 446 MVA, single-phase GSU
- 240 kV
Reference for Generator Step Up Transformer

Generator Step-Up Transformer

Customer
▪ ESKOM, South Africa

Destination
▪ Medupi, Kendal Power Station and others
▪ 21 units delivered 2009 – 2018

Rating
▪ 910 MVA, three-phase GSU
▪ 420 kV

Key Features
▪ Highest 3ph rating 50 Hz built up to now
Reference for Generator Step Up Transformer

Customer
- ESKOM, South Africa

Destination
- Kendal & Majuba Power Station
- 2 units delivered since 2008 and 1 in order

Rating
- 800 MVA, three-phase GSU
- 420 kV
Reference for Generator Step Up Transformer

Generator Step-Up Transformer

Customer

- EDF, France

Destination

- Cattenom and Paluel Nuclear Power Plants
- Delivery 2010 – 2018 (14 units)

Rating

- 570 MVA, single-phase GSU
- 405/20 kV

Key Features

- Short Circuit Capability proven with tests on 2 model transformers at Kema laboratories
- Successful GIC test with 25 A DC per phase
- Designed to replace existing transformers at 3 different nuclear power stations
- Replacement of existing transformers under very limited space and timely conditions
Reference for Phase Shifting Transformer

Phase Shifting Transformer

Customer
- Swissgrid, Switzerland

Destination
- Laufenburg and other stations
- Delivery 2015 - 2018

Rating
- 267 MVA, single-phase PST
- 400 kV

Key Features
- ONAN / ODAF
- Scope includes one spare each
- GIC- with standability tested up to 150 A DC
- Lightning Impulse Test in addition with positive polarity
- Low Noise and Low Partial Discharge Level

12 units have been supplied to several Swissgrid stations.
Reference for Phase Shifting Transformer

Phase Shifting Transformer

Customer
- Consolidated Edison of New York, USA

Destination
- Ramapo Substation
- Delivered 2014 and 1 further unit under manufacturing

Rating
- 575 MVA, three-phase PST
- 345 kV

Key Features
- Low Noise
- GIC- with standability tested up to 150 A DC

1 further unit on order with bulletproof recovery
Reference for transformer for static VAR compensation

SVC

Customer
- Hydro One Networks, Inc., Canada

Destination
- Nanticoke SVC Project
- Delivery 2010 (4 units)

Rating
- 116.67 MVA, single-phase SVC
- 500/3/16.5 kV

Key Features
- A static VAR compensator is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks.
- SVCs are part of the flexible AC transmission system device family, regulating voltage, power factor, harmonics and stabilizing the system.
Reference for Distribution Transformer

Customer
▪ Georgia Power, USA

Destination
▪ Forest Park, Georgia, USA

Rating
▪ 3.5MVA 3-Phase, 60Hz, ONAN
▪ 45kV/480V

Key Features
▪ Low maintenance
▪ Plug & play solution- Supplied fully assembled filled with oil
▪ Compact corrugated tank design and Hermetically sealed
▪ High corrosion protection
▪ Optimized winding design with many years of experience
Reference for Distribution Transformer

Auxiliary power transformer

Customer
- Atlantic Projects Company

Project Location
- Spalding, Lincolnshire - UK

Rating
- 9,0 MVA
- Ratio 20,000 V / 6,900 V

Key Features
- ONAN cooling, flat tank with radiators
- Patented IPB connection via plug connectors
- Multisense 9 (Siemens gas sensor DGA – Online monitoring)
- Voltage free adjustability from ground
- Infinite grid short circuit power
- Converter duty
Reference for Distribution Transformer

Transformer for wind turbines

Customer
- Siemens Gamesa Renewable Energy

Destination
- Offshore Wind Parks
- Prototype successfully tested in 2017

Rating
- 8.8 MVA
- Ratio 33,000 / 690 V

Key Features
- Offshore application
- Siemens Gamesa SWT 8.0 154
- KFWF Cooling
- Installation inside the wind turbine
- Approved for vibrations
- Open system with dehydrating breather
Reference for Distribution Transformer

Autotransformer for railway electrification system

Customer
- Siemens Mobility / Banedanmark

Destination
- Denmark
- Delivery 2016, 2 units

Rating
- 8 MVA, 1 phase
- Ratio 55,000 V / 27,500 V

Key Features
- Autotransformer
- Low short circuit impedance
- Succeeded short circuit test
- High overload capability
- Elaborate core an winding system
- Active winding support
Reference for Distribution Transformer

Converter transformer

Destination
- Peru
- Delivery 2015, 1 unit

Rating
- 13.6 MVA
- Übersetzung 33,000 V / 2,400 V

Key Features
- ONAN Cooling, Flat tank with radiators
- Double-tier-transformer, Dd0y5
- HV- Insulationlevel LI200 AC70
- 4200 m above Sealevel
- Converter duty
- Service in one of the biggest copper-mines in the world
Reference for Distribution Transformer

Convertertransformer

Destination
- United Arab Emirates
- Delivery 2017, 3 units

Rating
- 11 MVA (4 x 2.75 MVA)
- Ratio 11,000 V / 1,840 V

Key Features
- ONAN cooling, flat tank with radiators
- Double-double-tier, D(±7,5)y5d0, 24 pulse
- 2 active parts in one transformer-tank
- 55 °C ambient temperature
- Supply voltage and frequency variations
- Converter duty
- Heaviest and largest unit manufactured by STW DT
Reference for Distribution Transformer

<table>
<thead>
<tr>
<th>Converter transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
</tr>
<tr>
<td>▪ Mexico</td>
</tr>
<tr>
<td>▪ Delivery 2016, 8 units</td>
</tr>
<tr>
<td>Rating</td>
</tr>
<tr>
<td>▪ 11.8 MVA (ONAN) / 13 MVA (ONAF)</td>
</tr>
<tr>
<td>▪ Ratio 13,200 V / 2 x 1,350 V</td>
</tr>
<tr>
<td>Key Features</td>
</tr>
<tr>
<td>▪ ONAN/ONAF cooling, flat tank with radiators</td>
</tr>
<tr>
<td>▪ CTC - Winding</td>
</tr>
<tr>
<td>▪ Double-tier-transformer, D(+7,5)y5d0 D(-7,5)y5d0, 24 Pulse</td>
</tr>
<tr>
<td>▪ 45 °C ambient temperature</td>
</tr>
<tr>
<td>▪ 2,000 m above Sea level</td>
</tr>
<tr>
<td>▪ Converter duty</td>
</tr>
<tr>
<td>▪ Asymmetric DC-burden caused by ignition pulses of the converter</td>
</tr>
</tbody>
</table>
Agenda

1 Overview

2 Facts & Figures

3 Product & Service Portfolio

4 References

5 Business excellence
Our manufacturing processes in operation

1) Transformer design

- A strong global network of highly experienced engineers (>500)
- Proven standard design or Individual mechanical and electrical design to customers requirements
- State of the art design processes using CAE* methods, pre-testing algorithms and latest results of our R&D departments and materials and high voltage laboratories

*CAE : Computer Aided Engineering e.g. finite elements analysis

2) Core building

- Fully automated core cutting
- Stacked cores with GOES steel
- Manual core stacking up to 350 tons according to customer requirements and product type

3) Winding shop

- Manual laying of windings for optimal materials handling with perfect results according to product type
- Layer or disc windings with copper or aluminum conductors
- Winding processing including pressing and pre-drying
- Inhouse insulation workshops
Our manufacturing processes in operation

4) Active part
- Inhouse lead preparation
- Arranging winding, core, lead and other components (e.g. tap changers) to active parts up to 400 tons
- Complex active part assembly in desert climate chambers for highest manufacturing quality

5) Final assembly
- Assembly area with equipment up to 400 tons of total weight capacity to unify tank and active part
- Sophisticated vacuum and oil filling processes with final filtration

6) Testing
- High tech test field suitable to test units up to 800 kV
- Full compliance with any existing international standard
- Guaranteed functionality of all devices
Our manufacturing processes in operation

7) Transport
- We check and handle the complete transport procedure from our manufacturing facility to the customer on site
- Long experience with first class transportation partners for rail, water and road all over the world

8) Commissioning
- Deep knowledge and experience in installing and commissioning our products worldwide (incl. nuclear power plant certification)
- Customer trainings in the factory and on site
- Highest level of EHS-regulations (zero harm culture)

9) Service & Repairs
- Strong global network of experts from 14 countries for unparalleled expertise and every-time and every-place support
- Customer Services with condition assessment, diagnostics, online monitoring, repair and retrofit
- Facilities and experience with Siemens and competitor products
For us, excellence is leadership in quality, environmental care and health and safety.

- Excellence in processes leads to operational excellence
- Good processes are prerequisite to achieve customer satisfaction

Our Management Policy and Business Charter build the basic framework for business excellence.
Excellence in operation – this is our quality

We believe in quality to be the primary lever for products and solutions with exceptionally successful innovations

- **Experienced Workforce**
 Periodic and standardized training
 Competence management

- **Modern and reliable equipment**
 Highest quality
 Fast and flexible

- **Standardized Production Processes**
 World wide production standards
 Clear commitment to EHS (zero harm culture)

- **Environmental Friendly Production**
 Avoid energy wasting processes
 Energy recycling

- **Siemens Production System**
 Lean production
 Continuous improvement
All our locations are ISO 9001, ISO 14001 and OHSAS 18001 certified

1) Extension of certificate in progress

This is to certify that the management system of Siemens Aktiengesellschaft Österreich Transformers Weiz Engasse 3, 8700 Weiz, Austria has been found to conform to the Management System standards:

ISO 9001:2015
ISO 14001:2015
BS OHSAS 18001:2007

This certificate is valid for the following scope:
Design, manufacture and sale of power transformers up to 705 kV and 1300 MVA (incl. auto-transformers), shunt reactors, phase shifting transformers, special transformers and distribution transformers, as well as Commissioning and Service.
Environmental Portfolio audited and approved by Ernst&Young since 2011
Siemens AG Österreich – Transformers Weiz