PROFINET – RT vs IRT
Communication Basics
Ethernet + Profinet = Industrial Ethernet

• Profinet is complimentary to Ethernet
• Profinet is “Industrial Ethernet”
• Profinet devices include IO-controllers and IO-Devices
• Profinet is “Fast Ethernet” ie 100Mbit/s Full Duplex
• Profinet devices, connectors and cable are suited to industrial applications
Communication Basics
Transmission methods

- PROFINET follows a “Consumer-Provider” Model
- **Cyclic**, deterministic data transfer for time-critical applications
- Prioritization of time-critical data
- **Acyclic** data transmission for configuration, monitoring and diagnostics/alarming

![Diagram showing PROFINET communication between IO-Supervisor, IO-Controller, and IO-Device]

- **Cyclic Data:** Process Data
- **Acyclic Data:** Parameterization, Diagnostics, Monitoring/Controlling
- **Acyclic Data:** Configuration, Alarms
Communication Basics
Profinet communication channels

None Real Time (NRT) <100ms cycle
- **Acyclic**
- Uses TCP/IP
- Left lane

Real Time (RT) <10ms cycle
- **Cyclic**
- Skips the TCP/IP layers
- Over taking lane

Isochronous Real Time (IRT) <1ms cycle
- **Cyclic**
- Reserved Bus lane
Communication Basics
Controller selection

RT
• ~80% applications require RT only
• In this case any controller is suitable

IRT
• The remaining applications will require high speed capabilities
 • Synchronised Motion
 • Precision Measuring
 • Precision IO
• Ethernet switches can be used but selection guidelines must be followed
 • ie IRT = Conformance Class C

<table>
<thead>
<tr>
<th>Function</th>
<th>Controller</th>
<th>IO-Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S7-1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S7-1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S7-300 / S7-400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Controller</td>
<td></td>
</tr>
</tbody>
</table>
Communication Basics
OSI 7 layer model

- Each layer adds processing time
- NRT is used for configuration, web server, diagnostics and other none real time tasks
- RT is typically used for standard cyclic data acquisition
- IRT is used for high speed data transfer
Communication Basics
OSI 7 layer model – closer look

<table>
<thead>
<tr>
<th>Layer</th>
<th>Services</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Application</td>
<td>HTTP, SNMP usw.</td>
</tr>
<tr>
<td>6</td>
<td>Presentation</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Session</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Transport</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>3</td>
<td>Network</td>
<td>IP</td>
</tr>
<tr>
<td>2</td>
<td>Data link</td>
<td>Ethernet</td>
</tr>
<tr>
<td>1</td>
<td>Physical</td>
<td>100 Base TX/FX</td>
</tr>
</tbody>
</table>

The OSI layer model for structured communication:

- **Physical Layer (1)**: 100 Base TX/FX
- **Data Link Layer (2)**: Ethernet
- **Network Layer (3)**: IP
- **Transport Layer (4)**: TCP, UDP
- **Session Layer (5)**:
- **Presentation Layer (6)**:
- **Application Layer (7)**: HTTP, SNMP usw.

Services
- **Web pages, email, live pictures, etc.**
- **IO data**
Profinet RT
No synchronization of cycles

RT – Real Time:
• **Real-time communication** between controller and device
• Each device has its own update time
• Processing in the standard user program (e.g. OB1)

Reaction time (input-output)
• Best case: sum of all individual cycles
• Worst case: 2 x (sum of all individual cycles)

Time precision of output signal (OB1-output)
2 x sum of all cycles from CPU to output (T4 - T7)

Various uncoordinated cycles
• T1: sampling of input
• T2: backplane bus ET 200
• T3: Profinet I/O
• T4: CPU cycle (OB1)
• T5: Profinet I/O
• T6: backplane bus ET 200
• T7: setting output
Profinet IRT
Isochronous mode for fast reaction time

System clock

T\textsubscript{i}: Read in ALL inputs of ALL devices at a fixed predefined time

OB: processing in the CPU

T\textsubscript{0}: Writes ALL outputs of all devices at a fixed predefined time

IRT – Isochronous Real Time:
- All **cycles** are **synchronized** with each other
- **Special hardware** is needed ie HF modules
- IRT packets are transmitted in a **reserved bandwidth**
- **Isochronous mode: Synchronized processing** in the user program using "synchronous cycle" OB6x (T8)
Profinet IRT
Additional capabilities

Cycle time

Typical 500 µs cycle
CPU1518 V2.0: **125 µs**

By optimized packing of data the transmission time gets reduced:

- Less time on LAN
- More time of the cycle for Sync-OB
- More time for Non-IRT on LAN

Oversampling

Peripheral module separates PN cycle into smaller sampling cycle. All samples are sent to the PLC.

Time based IO

Rising and falling edge of signal are transmitted with timestamp → high precision signal capturing

Outputs triggered with timestamp → high precision reaction

![Diagram](image)

Value capturing

Sending 16 values

System update time

Synchronous OB

\[t_\Delta := t_2 - t_1; \]
\[s_\Delta := v \cdot t_\Delta; \]
Profinet RT/IRT
Functional Overview

<table>
<thead>
<tr>
<th>RT</th>
<th>IRT</th>
<th>Isochronous</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Real-time communication</td>
<td>• Real-time communication with reserved bandwidth and synchronized cycles</td>
<td>• Real-time communication with synchronized OB61</td>
</tr>
<tr>
<td>• Update time >=250µs</td>
<td>• Update time >=125µs</td>
<td>• Synchronization of the user program to all other synchronized cycles</td>
</tr>
<tr>
<td>• Applications:</td>
<td>• Special hardware</td>
<td>• Requirement for further functions e.g. Oversampling and time-based IO</td>
</tr>
<tr>
<td>• manufacturing engineering</td>
<td>• Requirement for isochronous mode</td>
<td>• Applications:</td>
</tr>
<tr>
<td>• building automation</td>
<td>• Applications:</td>
<td>• Motion control</td>
</tr>
<tr>
<td>• automation equipment</td>
<td>• Precise reactions</td>
<td>• Precise reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• measuring technology</td>
</tr>
</tbody>
</table>
Profinet IRT
Key requirements

• Define Topology in TIA ‘Topology view’
 o Ensures optimised data transfer
 o Allows scheduled transfers

• Configure interface real time settings and set synchronization role

• Ensure correct settings for the sync domain
 o Optional High performance
 o Optional Fast forwarding
Profinet IRT
Key requirements

Insert Synchronous OB6x or Motion OB

Enable Isochronous mode on each IO Device
• Will ensure IO is sync’d with Motion or OB6x
IRT on the oscilloscope vs. TIA Portal

- TIA / Step7 calculates timing beforehand
- Reaction time predefined
- Live result as expected
Profinet IRT
Time slice model

Partitioning of the bus cycle
- Separate time slices (time domains) for IRT and rest (RT, TCP/UDP,..)
- High precision cycle synchronization
- Based on optimized switch ASIC → special hardware needed

Diagram:
- IRT-channel
- Standard channel
- IRT-channel
- Standard channel
- IRT-channel

Cycle 1 → Cycle 2 → Cycle n

= time domain

E.g. 1 ms position control cycle

- Isochronous communication
 - IRT-data
- RT/Standard communication
 - RT-data / TCP/IP-data

Syncronization
Profinet IRT
Time slice model in detail

Fixed bandwidth for IRT in theory:

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Cycle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRT-channel</td>
<td>Standard channel</td>
</tr>
<tr>
<td>IRT-channel</td>
<td>Standard channel</td>
</tr>
</tbody>
</table>

Send clock 250µs
PN 0% - 100µs
0% - 250µs

Send clock 500µs – 1ms
PN 0% - 100µs
0% - 250µs

Send clock > 1ms
PN 0% - 100µs
0% - 500µs

Overview in TIA Portal:

1. Reserved bandwidth can be set in TIA Portal
2. Used bandwidth is displayed separately for IRT and RT
Profinet IRT
Fast forwarding

- To forward frames, a device needs to see the frame ID

- This typically takes 1440ns

- Using performance mode, this is improved to 320ns

- Frame ID leads the Profinet frame
Profinet IRT
Dynamic Frame Packing

• Each DFP frame includes a specific device data along with other devices on the line

• Each device takes its data and forwards on

• This leads to an overall improvement in network bandwidth
Profinet IRT
Fragmentation

• A complete standard Ethernet TCP/IP frame takes 125uS so cycle time cannot be reduced

• Performance mode allows fragmentation of these frames into sub frames

• Cycles times <250us are achievable

• Fragmented frames reassembled at the target device

• Fragmentation requires one port to be blocked on the IO controller
IRT Use Case 1: Motion Control

Flying Saw

- Saw axis is synchronised to the primary feed axis
- Configuration of Topology
- Each Servo drive is assigned to a Technology Object (TO)
 - Primary = Positioning axis
 - Saw = Synchronous axis
- Synchronisation done via OB91 MC-Servo
Measure box length on conveyor

- Speed detection can be from various sources
 - Sinamic Drive/Servo
 - Profinet encoder
 - TM Timer DIDQ and a suitable encoder

- Sensor input via TM Timer DIDQ 16x24V or TM Timer DIDQ 10x24V

- Sensor input rising and failing edges are time stamped

- Measuring function block is called within Synchronous OB6x

- Independant of varying cyclic variations of standard OBs
IRT Use Case 3: Precise Control

Precise hydraulic pressure control

- Utilises ET200SP TM Pulse 2x24V

- Various output modes to suit proportional valve
 - PWM
 - Pulse train
 - On/Off delay
 - Freq output
 - PWM with DC motor

- Dithering can be superimposed on the PWM output to ensure easy movement even with sticky valves

- Isochronous mode improves control properties but not essential
IRT Use Case 4: Precise measurements

CAM shaft measurement

- Measure each cam during rotation with high accuracy
- Measurements are synchronously captured while in motion
- Program code is managed within Synchronous OB6x
- Due to high speed measurements, machine cycle is reduced
IRT Use Case 5: Measured values

Signal Oversampling

• Allows high speed inline testing of product

• Can be activated in ET200SP High Speed (HS) modules

• Requires distributed IO

• Oversample range 2 - 16 sub cycles/cycle

• Requires Isocronous mode via OB6x
1. RT monitoring via Oscilloscope

2. TIA Portal Settings

3. Isochronous OB + Settings

4. IRT monitoring via Oscilloscope