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Artificial intelligence (Al) and machine learning (ML) tools are being
applied in the process industries to improve a variety of operations

and maintenance tasks.
Q rtificial intelligence (AI) and machine learning (ML)

are ready to be deployed on the plant floor. In the
past, technical and economic hurdles made applica-

tion impractical, but those hurdles have been overcome and
the chemical process industries (CPI) are now embracing Al
and ML technology in their plants for a variety of opera-
tions and maintenance use cases. Before getting into more
detail about potential applications, let’s cover some basics
on Al and ML.

It’s likely that you are familiar with the general idea of
Al which is defined as “the ability of a digital computer
or computer-controlled robot to perform tasks commonly
associated with intelligent beings” (7). Fields as diverse as
theology, mathematics, philosophy, and writing have specu-
lated about the concept of Al for centuries, even though the
term to describe it would not come about until much later (2).
The term was officially coined in 1956 as part of the “Dart-
mouth Summer Research Project on Artificial Intelligence”
(3) and is attributed to Dartmouth College’s John McCarthy,
considered to be one of the founders of Al, and three other
researchers involved in the project.

ML is a branch of Al that pertains to the ability of a
software application or machine/system to learn through

experience, becoming more intelligent over time through data
and algorithms rather than programming. The term ML has
been in existence almost as long as the term Al; it was intro-
duced as part of a 1959 article by IBM’s Arthur L. Samuel
entitled “Some Studies in Machine Learning Using the Game
of Checkers” (4).

Al and ML for the process industries

Al and ML have come a long way since its inception
at an Ivy League workshop and the use case of winning a
game of checkers; in fact, it’s now considered industry-ready.
In “Prediction Machines: The Simple Economics of Arti-
ficial Intelligence,” authors Agrawal ef al. use the example
of autonomous vehicles to argue that Al lowers the cost of
prediction (5). For many years, autonomous vehicles were
programmed with “if/then” statements to behave in spe-
cific ways based on the situation. However, an autonomous
vehicle can encounter an almost infinite number of situations,
making it virtually impossible to code all of them.

The breakthrough for autonomous vehicles came when
the problem was converted to a prediction problem. Sensors
were installed in human-driven vehicles to collect enormous
amounts of data about what drivers did in all types of driv-
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ing scenarios. Al analyzed this data to progressively learn
what good drivers do and then applied that learning to the
mechanical aspects of driving.

It is not too difficult to take this same approach in the
CPI. Process automation systems have historically done an
excellent job of collecting data, some of which has been
used to assist plant operations. However, much of the data
goes unused. Now we have a great application for that data
— as input into Al. Like the autonomous vehicle example,
Al can learn about how a plant operates and start to make
correlations between the data and the results. These correla-
tions can be supplemented with plant know-how and applied
to various use cases — some of which are covered later in
this article — that help to solve basic business issues in areas
such as maintenance and operations optimization. Al corre-
lations can be used to keep production lines running and also
to help them run more efficiently.

For all of this to happen, several critical pieces must be
in place:

* Data. Process automation systems are great at col-
lecting data. In addition, many new types of sensors are
available for locations where data is needed but has not
been available.

» Communications networks. 1t is critical to have com-
munication networks to move data. A combination of wired
networks and the ongoing evolution of wireless technolo-
gies, such as industrial wireless internet and 5G, are facilitat-
ing data movement.

* Data integration. Once data has been moved from the
sensors on the plant floor to the data analytics engine on a
computer or the cloud, it must be seamlessly integrated. The
combination of industry standards and commercially avail-
able tools are enabling this to happen.

» Computing power. Processing the enormous amounts of
data needed by Al requires powerful computers that are now
commonly available, affordable, and compact.

* AI- and ML-based tools. With all of the above pieces in
place, suppliers have the motivation to develop Al- and ML-
based tools that address key industry drivers and maximize
uptime, improve operational efficiency, and support deci-
sion accuracy. These tools provide the ability to build asset
models, train the models based on ML and domain experi-
ence, and use them to generate maintenance and inspection
requests. They can also predict equipment condition-related
deviations and send an alert when they occur, as well as con-
solidate expert knowledge to reduce the workload of over-
extended operators, engineers, and maintenance technicians.

When combined with real-life knowledge, Al and ML
can holistically analyze equipment, process areas, and/or
entire plants. This provides an intuitive picture of the equip-
ment, process, and plant health; enables remote monitoring;
identifies correlations and anomalies; and predicts failures.
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Data is the fuel

It is important to understand that Al is only useful with
the input of high-quality data. Data is the fuel for Al and is
combined with the input of subject matter experts as part of
the model building process. Once the models are built utiliz-
ing correlations analysis and pattern recognition, the monitor-
ing, evaluation, and diagnosis phases can begin.

Before the Industry 4.0 revolution, transferring data from
one level to another or one component to another was more
difficult due to the disparate nature of the data and the lack of
network infrastructure to support it. Embarking on a digi-
tal transformation as part of Industry 4.0 requires breaking
down silos to get something useful from the data lake. This
involves combining various data sources and their semantics
in a meaningful way that can then act as the input to the Al
and be used for ML. For example, pre-defined semantics will
identify a temperature sensor as having a temperature output.
This ontology is used in the connectivity model for various
functions and analytics. Automatic contextualization of the
data provides an intuitive exploration of the many aspects,
alarms, and assets in a specific plant.

The AT algorithm can determine what is currently hap-
pening or what is likely to happen based on the usage of
historical and statistical data patterns. With the successful
integration of Al across a fleet of plants, companies are not
only able to optimize and monitor operation from a single
plant, but across the entire fleet. In addition, it is possible to
monitor the health status of all plant assets, including field
network and automation assets, which can lead to improved
maintenance. This holistic view of all assets provides trans-
parency of plant modifications and enables synchronization
with engineering data.

Next, we look at some specific use cases where Al and
ML can be applied in the CPI, including:

* business-target-driven process control

* predictive monitoring for assets and processes

» predictive analytics for batch processes.

Business-target-driven process control

In many of today’s companies, the connection between
process control, business objectives, and product strategy
is not direct. The result is that process control adjustments
are not performed with a focus on the company’s business
targets. A better option is business-target-driven process
control, where processes are aligned with business goals and
intelligent insight into the production process is gained with
Al through anomaly assistance.

Al anomaly assistance begins with using Al and ML to
predict future production process issues or anomalies. The
next step is to classify the business impact of each anomaly.
For example, what is most impacted? Is it quality? (Lab
data is often “after the fact” and not readable online.) Or
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stability? (Stabilizing the process will save costs on raw
materials, equipment, energy, and maintenance resources.)
Or, perhaps it’s a combination of factors such as the ratio
between throughput and quality. Different companies have
different business drivers. And, over time, the business
drivers will often change within a single company based on
business conditions. This information comes from person-
nel at the company.

Once the anomalies have been identified and the business
drivers are known, a mapping between the two is completed
to classify each anomaly by business impact. Focusing on the
anomalies with the most significant business impact enables
process control based on current business drivers. And, as
time progresses and more learning is accomplished, ML can
continue to refine the relationship between anomalies and
business drivers, further increasing the business impact.

The current situation in the CPI involves complex
processes with internal relationships or quickly developing
issues that often cannot be effectively controlled by the pro-
cess automation system, monitored by the operators, and/or
manually addressed in an acceptable timeframe. Al anomaly
assistance provides early detection of production process
issues caused by complex internal process behaviors, increas-
ing the time that operators have to respond.

Functionally, this process involves gathering data from
the process automation system or historian and then transfer-
ring the data to the Al-based tool for analysis, correlation
detection, and anomaly detection (Figure 1). This process
continues to progressively improve the models. Next, a
dashboard presents the anomalies to plant personnel to alert
when they occur. From there, the personnel can take a deep
dive into the most critical anomalies (i.e., those with the most

A Figure 1. An Al anomaly assistant analyzes process data to detect issues early. Anomalies on the left are sorted
based on priority (e.g, "Alarm” is a higher priority than “Warning"), and the trend chart on the right depicts the time-

frame when the selected anomaly occurred (shaded red).

significant business impact) to determine which actions will
lead to the most positive business impact.

For example, an anomaly dashboard and deep dive sum-
mary may include:

« an anomaly history area with the latest anomalies of all
controlled processes or of a selected process

« the anomaly level indicating the degree of deviation in
the production process (this provides a better understanding
of the process to help predict the probability of an anomaly)

« a display of the production process with the latest
predicted anomaly on the top of the list of the production
processes

« additional useful information (perhaps integrated by
links) regarding the production process coming from the
process automation system, plant engineers, etc.

The deep dive should use root cause analysis to better
understand the issue and explore actions that can reduce the
negative business impact. It may include anomaly history and
management information, such as:

* business relevance rating (i.e., define the level of impor-
tance of the anomaly)

* business impact classification (i.e., define the business
target with which the anomaly is associated)

« links to documentation that may support root cause
analysis

« trends for the corresponding process values.

Predictive monitoring for assets and processes

With the constant pressure to increase plant efficiency
and uptime in a highly competitive environment, condition-
based maintenance has become increasingly important
for a plant’s economic success. In most modern plants,
significant process equipment
data is available in the process
automation system, but how can
it be leveraged to implement
efficient and effective condition-
based maintenance?

Personnel who have experi-
ence in the plant can combine
process knowledge with ML
capabilities to extract relevant
information from the equipment
and process status. From an
analysis standpoint, it is important
to not only monitor the operat-
- ing data of the equipment itself,
but also to analyze the process
around it. The result can be early
detection of changes in equip-
ment behavior that enables better
decisions regarding the opera-
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tion of processes and the required maintenance, which is a
big step toward implementing advanced predictive main-
tenance (Figure 2).

One example of where this has been applied is at a
refinery in China that was seeking to increase plant avail-
ability, avoid unplanned shutdowns, and reduce maintenance
through predictive monitoring. The plant chose to implement
AI/ML-based condition monitoring on a compressor that had
failed in the past. These failures led to unplanned outages
that had an average cost of hundreds of thousands of dollars
per incident.

The engineers began the process by collecting months
of past data from the plant historian and other data sources
such as maintenance reports, monitoring systems, etc. In
this case, eight months of data were reviewed, including
key variables such as compressor speed, input and output
pressures, input temperature, output flow, and lube oil level.
The facility held a workshop for plant personnel where they
defined the models that Al would develop. The models were
then developed from the data and refined by examining
multiple training periods.

Once the models were defined, analyses of past data
could be executed to see where anomalies were detected.
Leading up to one of the past compressor failures, the Al-
based analysis detected unhealthy behavior on the compres-
sor’s output pressure 18 hours before an alarm occurred
in the distributed control system (DCS). This would have
provided sufficient time for the plant maintenance personnel
to address the issue and avoid the shutdown. Over time, ML
will continue to improve the models.

Predictive analytics for batch processes

Batch processes have additional complexity due to their
sequential nature and the fact that desirable process condi-
tions are continually changing during the batch production
process. When combined with process know-how, Al and
ML can provide insight into the performance of past batches
that can be used to improve the production of future batches

A Figure 2. Al/ML-based tools can monitor the health status of process equip-
ment and alert operators when issues arise.
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and ensure that key metrics around plant production perfor-
mance, batch variability, and quality are met (Figure 3). A
variety of sources are included in the analysis, such as batch
data, process data, and lab data.

Visually, the results of the data analysis can be depicted
in a way that includes:

* Production overview. Display the batches with and
without anomalies over a given time period (e.g., per day).
* Batch details. From the production overview, dive
into any batch for a comprehensive overview that includes
information such as the anomalies that occurred per batch

phase.

* Anomalies overview. From the batch details display,
analyze any deviation to compare the measured value to the
Al calculated value.

In addition, analyzing data from past batches helps
develop models that support operations. The models can
be used to detect anomalies and enable real-time fault
detection so that prompt action can be taken to prevent off-
spec batches.

Building and maintaining a set of models in a library is
also essential. Model building should allow for models to
be built down to the phase level to produce a golden batch
comprising a set of “golden phases.” Retraining the models
(i.e., improving the ML) accounts for process conditions
that change over time.

Getting started

What is the best way to get started? As a first step,
before considering any specific digital and Industry 4.0-
based solutions whether they be AI/ML-based or not, it is
important that you assess your overall situation and identify
what is the best fit. To guide the process, develop a digital
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A Figure 3. Al and ML analyze the performance of past batches to provide insight
on how to improve the production of future batches.
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transformation framework using these steps:

1. Educate yourself by assessing the current landscape of
use cases and tools to address them.

2. Evaluate your current industrial internet of things
(IToT) maturity level through a maturity assessment. This will
give you a realistic view of your starting point.

3. Define your desired IIoT future state. What goals are
you trying to achieve?

4. Create an IIoT action plan that will take you from
Point A, your current I[IoT maturity level, to Point B, your
desired IoT future state. This is accomplished through proj-
ect prioritization and roadmapping to identify low hanging
fruit and maximize business impact. The roadmap should
include return on investment (ROI) projections, budget plan-
ning, and a proposed implementation schedule.

5. Propose solutions that will enable you to complete your
[oT action plan. This will include detailed projects, require-
ments, and investments. It is important to gain management
support to be successful.

The future of Al and ML in the process industries

Now that Al and ML have arrived on the plant floor, the
number and types of use cases where the technology can be
applied will continue to increase. And, the prevalence of the
technology will only continue to expand and improve: more
data and better network infrastructures to get the data where
it needs to go, better data integration capabilities to enable
the ML to process the data and improve its knowledge, faster
computers to do the processing, and more tools to address the
expanding number of use cases.

In the very near future, Al and ML will be used on the
factory floor to address a wide range of use cases, including
many that have not yet been considered. This will occur on
such a widespread basis that we will wonder how we ever got
by without them in the first place. If you have not yet consid-
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ered utilizing AI/ML tools in your plant, there is no time like
the present to start learning about them. At some point, all
manufacturers in the CPI will evolve to the use of Al and ML
in order to gain and keep a competitive edge. =
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