

Distributed Energy Systems

Neue Chancen durch dezentrale Energiesysteme

Carl Carl Carl Carls

111

Unrestricted © Siemens 2020

siemens.at/future-inside

The "old" energy system

The energy system of tomorrow

Cold/heat storage

CCPP

C(C)HP

Battery storage

Allt

Smart Building

H₂ storage

·

Superior Superior

Grid access 🏾 🏾

19

Wind power

eMobility

Photovoltaics

Heat pump

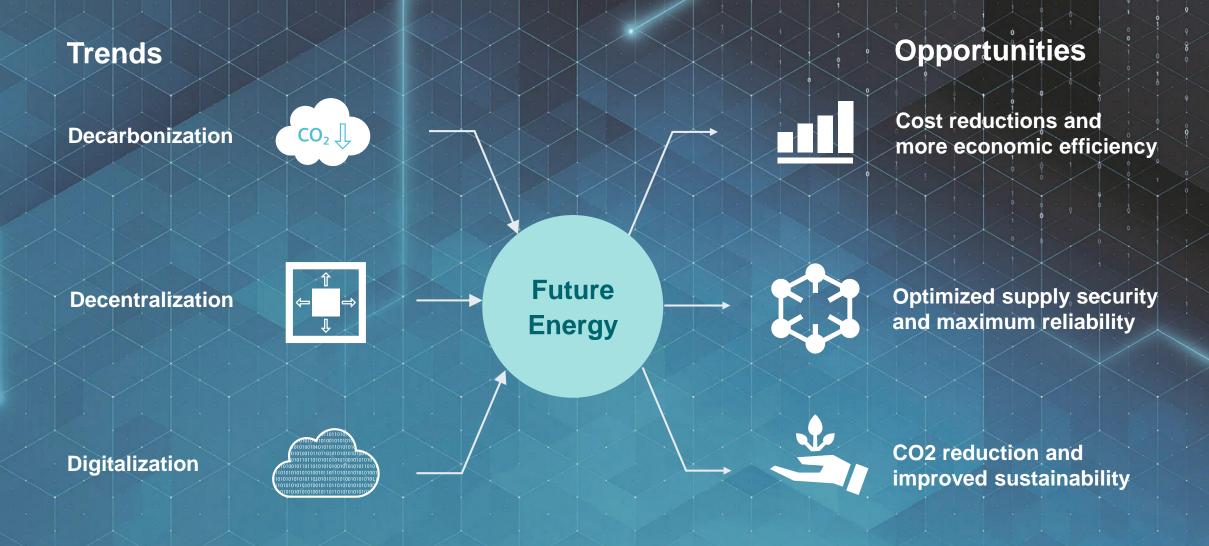
District heating

TP FF FF FF FF

Unrestricted © Siemens 2020

Three trends are shaping the energy system ...

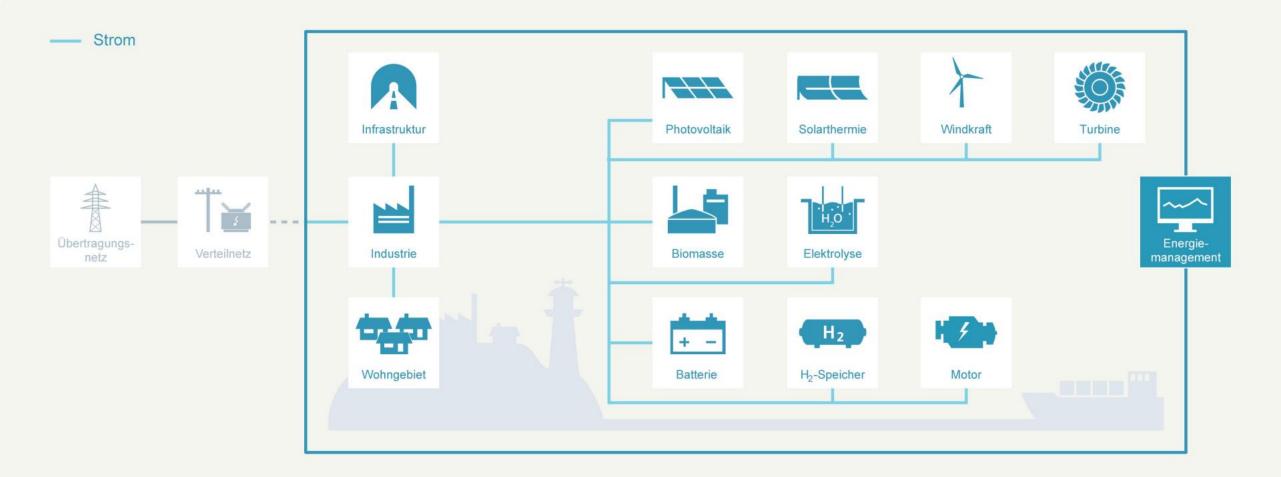
decarbonization, decentralization and digitalization


100% electricity from renewables by 2030 **45-50%** renewable annual energy

by 2030

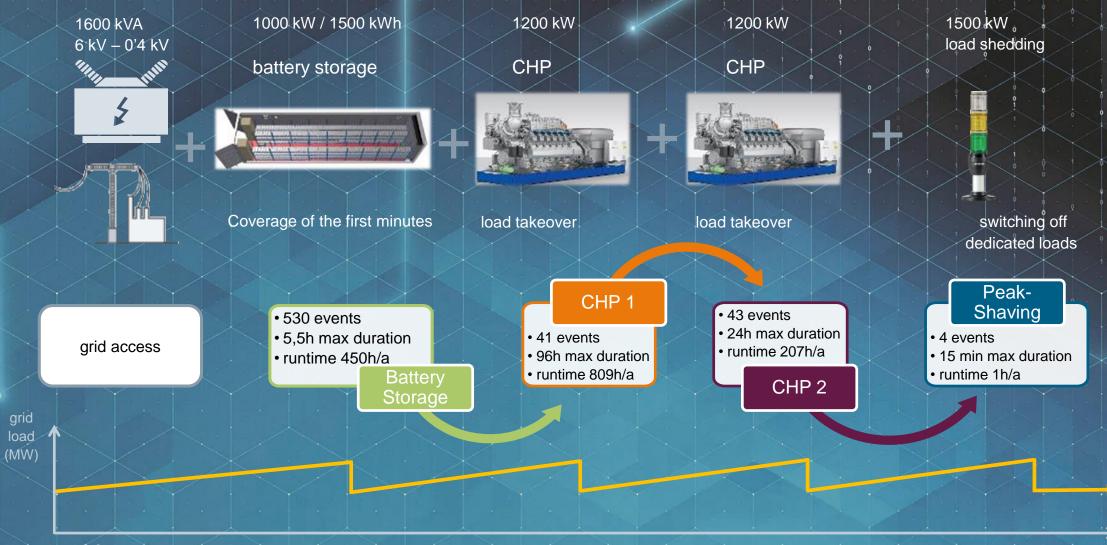
Austria's #mission2030

Unrestricted © Siemens 2020


... leading to Opportunities for industries, cities, infrastructure facilities, communities and campuses

SIEMENS

Ingenuity for life


Building blocks of a DES (Decentral Energy System)

Example: Load management at an energy intensive factory

time (15 min)

Unrestricted © Siemens 2020

Page 7

Campuses and infrastructure facilities Algonquin College, Ottawa, Canada

Algonquin is the largest college in

Scale: 4 MW

Eastern Ontario, with 63,000 students

Challenge

- Paving the way for a zero carbon footprint
- Creating a unique culture of sustainability

Solution

 Sustainable campus-wide energy system backed by a long-term partnership

Scope

- 4 MW CoGen plant and 500kW PV plant
- Energy storage
- Microgrid Management System (MGMS)
- Infrastructure upgrades
- EV charging stations
- Financing

Benefits

- 1,200 tons less CO₂ per year
- Annual operating cost savings \$3,200,000
- Annual energy cost reduction of

48%

Unrestricted © Siemens 2020 Page 8 April 2020

Completion: 2017

Remote locations Isabela Island Hybrid Power Plant, Galapagos Islands, Ecuador

First of its kind local energy system

located on the Galapagos Islands

Scale: 1.2 MW

Challenge

 Sustainable, reliable energy supply for a UNESCO world heritage site

Solution

 Hybrid Power Plant based on 100% renewables

Scope

- Solar PV plant
- Pure plant oil gensets
- Energy storage
- Control system
- Performance guarantees for renewables
- Remote monitoring

Benefits

- Designed to run completely carbon-neutral
- 30 dB noise reduction
- 99% availability
- Shut down of engines at good solar radiation
- Guaranteed renewable
 plant performance
- Average monthly reduction of CO₂

85 tons

Unrestricted © Siemens 2020 Page 9 April 2020

Completion: 2018

SIEMENS Ingenuity for life

Campuses and infrastructure facilities Sello Shopping Center, Espoo, Finland

Sello is one of the largest shopping malls in Scandinavia

Scale: 2 MW Completion: 2018

Challenge

 Achieving substantial energy savings, sustainability and long-term improvement of indoor air quality

Solution

 Distributed Energy Resource Performance Monitoring and Siestorage

Scope

- Smart energy management as a service
- 600 kW solar panels
- 1.68 MW battery storage
- LED-lighting system
- Upgrade of automation system

Benefits

- 125,000€ annual heat and electricity cost savings
- 271 t reduction of annual CO₂ emissions
- 470 MWh energy production per year
- Annual profit on the energy market of

480,000 €

Unrestricted © Siemens 2020 Page 10 April 2020

Remote locations Island of Ventotene, Italy

Ventotene Island is not connected to the Italian national distribution network

Scale: 2 MW Completion: 2015

Challenge

• Sustainable and stable power supply for a remote island in the Mediterranean Sea

Solution

• Hybrid solution comprising generators, renewable energies and a storage system

Scope

- Use of renewable sources instead of four diesel generators with 480 kW each
- Increasing number of PV plants
- Integration of a SIESTORAGE system
- Microgrid controller

Benefits

- Operating hours of all generators reduced by approx. 55.5 percent
- 91% operating time during which grid stability is guaranteed
- Reduced fuel consumption and CO₂ emissions per year by

15%

Remote locations Blue Lake Rancheria, California, USA

Blue Lake Rancheria is a federally recognized tribal community

Scale: 700 kW Completion: 2017

Challenge

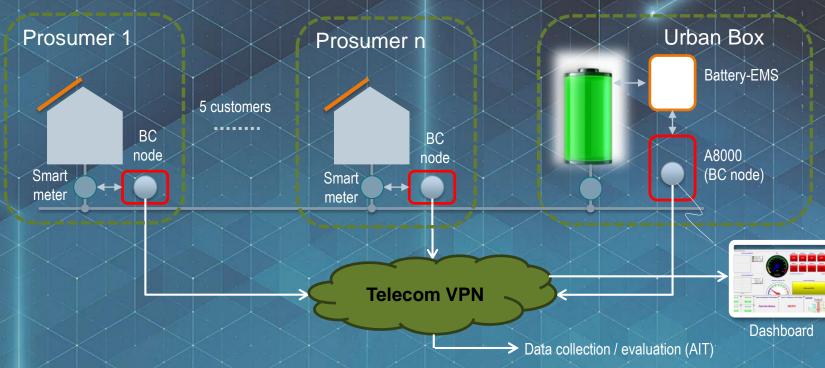
 Increase the reliability of the electrical system as well as reducing carbon footprint

Solution

 First-of-its kind low-carbon based microgrid solution for critical community buildings

Scope

- Siemens Spectrum Power™ Microgrid Management System (MGMS)
- Integration of one existing 500 kW solar photovoltaic system, battery, building automation system and diesel engine gen set
- Consulting engagement


Benefits

- Annual energy cost savings by at least 25%
- 195 metric tons less annual CO₂ emissions
- > 40% renewable energy generation of annual production
- Available on-site power independent from the utility

7 days

Unrestricted © Siemens 2020 Page 12 April 2020

Leafs / Blockchain pilot project Heimschuh Provisioning of storage capacity to prosumers

Project Partners: Energienetze Steiermark (DSO), AIT (Austrian Institute of Technology), Siemens

Solution concept: Private Ethereum Parity Blockchain

Prosumer:
 Forecast based request of storage capacity

<u> 3000:</u>

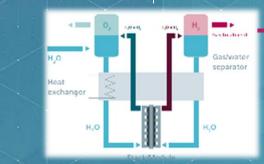
- Check of all capacity requests a available sorage capacity and
- max. inverter power
 - signment of storage capac

<u>A8000:</u>

- Execution of battery charging supporting volta management within the LV grid segment
- Delivery of stored energy
- Keeping an account per prosumer

To be extended in the R&D proje Blockchain Grid

Logistics Company with long-term Storage for PV with Battery Aystem and/or Power-to-X (e.g. Hydrogen)


SIEMENS Ingenuity for life

consumpttion: 2-6 MW

generation:4..8 MWpeak

battery system x MW @ y MWh

Unrestricted © Siemens 2020 Page 14

TSS BIS PILST

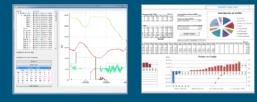
ACRES 1

electrolysis x MW

measurement (P) grid acess: 0.4/10..20 kV

Our Digitalization / Automization Portfolio is the Brain and the Heart of an efficient Distributed Energy System

Monetization Efficiency and optimization **Transparency and awareness Resiliency and control** Planning **Spectrum Power MGMS PSS DE** Microgrid & Photovoltaic DEOP DEMS **Power Plant Controller Technical feasibility &** Local Hardware Controller, **Digital Services for Trading optimization** App site Energy economic simulation **Microgrid Optimization and Monitoring** egat fail safe and real time and ancillary services market Cloud Office u O Back Aggr # H74 6 \bigcirc Measuring Monitoring/Reporting Virtual Power Plant **Optimize** Cost Network stability Archiving Reduce لا و الا و الا الا Optimize reliability Storage ť cost **H** Generation Price X Optimized supply Demand response 1 Control Control forecasting of supply Security Ŗ of Optimize Peak Load Load Load -<u>^</u> 4.**4** Enhance sustainability supply Management forecasting Sustainability shaving forecasting Sustain-Optimization of own Monitoring/ Islanding / ability Maximized efficiency Market interaction Black start Reporting requirements


SIEMENS Ingenuity for life

Siemens Digital Grid provides the whole Digital Value Chain for Distributed Energy Systems

SIEMENS Ingenuity for life

Simulation services

Simulate project, Evaluate DES baseline and DES solution benefit (hardware and software)

Managed services

Customer DES solution, operation recommendations

Unrestricted © Siemens 2020 Page 16

Optimization

Historical or predictive data: Evaluate best solution configuration (incl. the optimum function setting for the control) and operation minimizing operation cost and verifying grid stability

Microgrid controller offering

Simulation data to design optimized control functionalities in a modular way

Consulting

Consulting offering: Energy site improvement recommendation and services based on data

DER Performance Monitoring and Analytics Campus/C&I/IPP Performance monitoring plus data analytics

Connected Field Devices

Reliability, energy efficiency, market interaction and data gathering

Decentralized Energy Monitoring Optimization

DES Data gathering, reporting, benchmarking data analytics (Actual vs. Historical, Simulation baseline, anomalies detected)

Distributed Energy Systems provide Value with comprehensive Lifecycle Services and utilize the full Breadth of Technology

Resilient energy supply

Reduced costs

Improved sustainability

Heating Power **Unrestricted © Siemens 2020**

- Cooling

Building management Energy management

MindSphere

Grid access

eMobility

Data

Cold/heat storage

Heat pump

Smart Building

Wind power

Photovoltaics

Battery storage

H₂ storage

Combined cycle power plant

C(C)HP

Page 17

Vielen Dank für Ihre Aufmerksamkeit

DI, DWT Robert Tesch, MBA

Head of Digital Grid and Distribution Systems in CEE

Siemensstraße 90 1210 Wien Telefon: +43 51707 36030

E-Mail: robert.tesch@siemens.com

siemens.at/future-inside

Unrestricted © Siemens 2020