NXAIR C
The Optimum
Air-Insulated Medium-Voltage Switchgear

Catalog
HA 25.81
Edition 2020
Possibilities of application

Characteristics

NXAIR C versions

Circuit-breaker panel
Disconnecting panel
Bus sectionalizer – circuit-breaker panel
Bus sectionalizer – bus riser panel
Switch-disconnector panel
Metering panel
Busbar connection panel
Possibilities of application
Requirements and solutions for the industrial sectors

General requirements of the applications
• Reliable power supply
• High number of operating cycles
• Maximum availability
• Space-saving panels
• Protection of small distribution transformers
• Setup of billing metering systems
• Protection of the switchgear room from the effects of an internal arc
• Fire protection

Solution with NXAIR C
• SION-type vacuum circuit-breakers are at the core
• No handling of insulating gas; no pressure monitoring
• Factory-assembled, type-tested switchgear
• Compact design enabling constructional efficiency
• Short-circuit protection via HV HRC fuses with switch-disconnector/fuse combination
• Availability of metering panel
• Horizontal pressure relief ducts for evacuation of the hot gases out of the switchgear room (building)
• Shortening the effective arc duration through optional light-sensitive or pressure-sensitive sensors
• Minimum use of insulation material
Characteristics

Features

Compact design

Thanks to the ingenious design – with a panel depth starting from 1025 mm and a panel height starting from 2100 mm and leading to a required ceiling height of only ≥ 2200 mm –, NXAIR C enables constructional efficiency and the realization of alternative substation concepts. Thus:

- Existing switchgear rooms and substation rooms can be used effectively
- New constructions cost little
- Costly city-area space is saved.

Peace of mind

NXAIR C, from the platform concept of NXAIR family, has concrete advantages for smooth operation, exemplary availability, and optimum safety.

- No handling of insulating gas; no pressure monitoring
- As insulating medium, air is always available
- Factory-assembled, type-tested switchgear according to IEC 62271-200
- Platform concept with centrally controlled development
- Use of standardized components available worldwide
- More than 510,000 air-insulated switchgear panels of Siemens in operation worldwide
- Use of maintenance-free vacuum circuit-breakers or switch-disconnectors
- Type testing of the switching devices and the make-proof earthing switch in the panel
- Flexibility regarding the low-voltage equipment via removable low-voltage compartment and plug-in wires
- Quality assurance in accordance with DIN EN ISO 9001.

Increased productivity

A high level of operational reliability through:

- Partition class PM (P for switch-disconnector)
- Use of standardized instrument transformers
- Cable testing without isolating the busbar
- Use of maintenance-free switching devices
- Control cables in metallic wiring ducts
- Easy access to all panel components.

Digitally enhanced

The use of digitally enabled secondary systems and combined protection/control devices make NXAIR C able to:

- Connect to on-site substation control services
- Connect to cloud-based remote control services without boundaries, thanks to the open protocol OPC UA
- Easily integrate in process control systems
- Flexibly adapt to new system conditions and thus cost-efficient operation.

Service life

Under normal operating conditions, the expected service life of air-insulated switchgear NXAIR C is at least 30 years. The service life is limited by the maximum number of operating cycles of the switching devices installed:

- For circuit-breakers according to the endurance class defined in IEC 62271-100
- For earthing switches according to the endurance class defined in IEC 62271-102
- For switch-disconnectors according to the endurance class defined in IEC 62271-105 for transformer switches.

Recycling

The switchgear can be recycled in ecological manner in compliance with the existing legislation.
Safety

Switchgear type NXAIR C is approved with internal arc classification IAC A FLR, loss of service continuity category LSC2, and partition class PM.* This makes it a suitable product for high requirements regarding personal safety.

Personal safety

- All operations with closed high-voltage door
- Safe-to-touch metallic enclosure, earthed shutters and partitions
- Internal arc classified switchgear according to IAC A FLR; front, lateral and rear accessibility for all short-circuit currents and an arc duration of 1 s
- Unambiguous position indicators and control elements on the high-voltage door
- Optional capacitive voltage detecting system to verify safe isolation from supply
- Comfortable cable access from front, eliminating the need for additional surveillance and ensuring effective supervision during site activities

- Standard degree of protection IP3XD
- Logical mechanical interlocking system preventing maloperation
- Make-proof earthing type-tested inside the switchgear.

Reliability

- Type- and routine-tested as per IEC 62271-200
- Standardized production processes
- Quality assurance in accordance with DIN EN ISO 9001
- More than 510,000 air-insulated switchgear panels of Siemens in operation worldwide for many years.

* Partition class PI for switch-disconnector

Air-insulated switchgear for primary distribution

Characteristics

Technology

General
- Air as insulating medium; always available and absolutely neutral to the environment
- Make-proof earthing switch
- Maintenance-free circuit-breakers
- Wall-standing or free-standing arrangement
- Comfortable cable connection access from front
- Integrated mimic diagram on high-voltage door with display of the respective:
 - Mode of operation
 - Position of the high-voltage switch
 - Status of the withdrawable parts
- Unambiguous assignment of actuating openings and control elements to the corresponding position indicators
- All switching operations always with closed high-voltage door
- Ergonomically favorable height for all control and indication elements
- **Option**: Flexible pressure relief duct systems.

Interlocks
- According to IEC 62271-200
- Logical mechanical interlocks prevent maloperation
- The operation of the feeder earthing switch is prevented unless the switching device is in the disconnected or removed position
- Racking the switching device in or out is prevented unless it is in the OPEN position
- Racking the switching device in is prevented unless the earthing switch is in the OPEN position
- Operation of the switching device is prevented unless it is either in service position, in interlocked disconnected position, or in removed position
- **Option**: Electromagnetic interlocks and padlocks.

Vacuum circuit-breaker
- SION vacuum circuit-breakers type 3AE5 for different switching duties
- According to IEC 62271-100
- Spring-operated/stored-energy mechanism with both motor or manual charging possibility
- Racking the circuit-breaker with manual operating mechanism, optionally with motor operating mechanism
- Truck-type or withdrawable circuit-breaker
- 64-pole low-voltage plug connector between circuit-breaker and fixed part of the panel
- Maintenance-free under normal ambient conditions according to IEC 62271-1 and for the max. permissible number of operating cycles
- No relubrication or readjustment
- Up to 10,000 operating cycles
- Vacuum-tight for life.

Switch-disconnector
- According to IEC 62271-105 for transformer switch
- Making capacity suitable for transformers and cables
- Short-circuit protection via HV HRC fuses for switch-disconnector/fuse combination
- Maintenance-free under normal ambient and operating conditions up to the max. permissible number of operating cycles
- Low operating torques.

Instrument transformers
- Block-type current transformers based on the inductive principle according to IEC 61869-2
 - Standardized, available worldwide
 - Cast-resin insulated
 - Certifiable
 - Secondary multiratio possible
 - **Option**: With capacitive layer for capacitive voltage detecting systems
- Voltage transformers based on the inductive principle according to IEC 61869-3
 - Cast-resin insulated
 - Single-pole
 - **Option**: With earth-fault winding
 - **Option**: Double-pole.
Sensors

To prevent the effects of the thermal phase and to significantly reduce the gas discharge by shortening the effective arc duration, NXAIR C is optionally equipped with:

- **Option 1** – Light sensitive sensors for immediate detection of an internal arc, in combination with overcurrent sensing
- **Option 2** – Pressure sensors for immediate detection of an internal arc.

Low-voltage compartment

- Customary protection, measuring and control equipment
- **Option**: Numerical multifunction protection relay with integrated protection, control, communication, operating and monitoring functions
- Can be integrated in process control systems
- Partitioned safe-to-touch off the high-voltage part
- **Option**: Capacitive voltage detecting system for the feeder or for the busbar, also with integrated test sockets acc. to LR specification in IEC 61243-5, to be used for phase comparison and phase sequence test
- **Option**: Higher version of low-voltage compartment
- Low-voltage compartment removable, plug-in bus wires from panel to panel.

Color of the panel front

RAL 7035 / light gray.

Modular design

Panel replacement and extension possible without modification of existing panels. In the case of extensions, just by replacing the end walls and joining further panels.
Characteristics

Room planning

Switchgear installation
• For single-busbar applications:
 – Wall-standing arrangement
 – Free-standing arrangement.

Room and door dimensions
See dimension drawings above.

Weights
12 kV panels: 600 mm: approx. 475 kg
12 kV panels: 800 mm: approx. 560 kg
24 kV panels: 800 mm: approx. 680 kg

1 Width of end-wall
2 1250 mm including LV compartment
3 Aisle for operating in front of the switchgear
4 Aisle for panel replacement
Overview of applicable standards

The switchgear complies with the relevant standards and specifications applicable at the time of type tests.

<table>
<thead>
<tr>
<th>Switchgear</th>
<th>IEC standard</th>
<th>VDE standard</th>
<th>EN standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>NXAIR</td>
<td>IEC 62271-1</td>
<td>VDE 0671-1</td>
<td>EN 62271-1</td>
</tr>
<tr>
<td></td>
<td>IEC 62271-200</td>
<td>VDE 0671-200</td>
<td>EN 62271-200</td>
</tr>
<tr>
<td>Devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit-breakers</td>
<td>IEC 62271-100</td>
<td>VDE 0671-100</td>
<td>EN 62271-100</td>
</tr>
<tr>
<td>Disconnectors and earthing switches</td>
<td>IEC 62271-102</td>
<td>VDE 0671-102</td>
<td>EN 62271-102</td>
</tr>
<tr>
<td>Switch-disconnectors</td>
<td>IEC 62271-103</td>
<td>VDE 0671-103</td>
<td>EN 62271-103</td>
</tr>
<tr>
<td>Switch-disconnector/fuse combination</td>
<td>IEC 62271-105</td>
<td>VDE 0671-105</td>
<td>EN 62271-105</td>
</tr>
<tr>
<td>HV HRC fuses</td>
<td>IEC 60282-1</td>
<td>VDE 0670-4</td>
<td>EN 60282-1</td>
</tr>
<tr>
<td>Voltage detecting systems</td>
<td>IEC 61243-5</td>
<td>VDE 0682-415</td>
<td>EN 61243-5</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP-code</td>
<td>IEC 60529</td>
<td>VDE 0470-100</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IK-code</td>
<td>IEC 62262</td>
<td>VDE 0470-100</td>
</tr>
<tr>
<td>Insulation</td>
<td>--</td>
<td>IEC 60071</td>
<td>VDE 0470-100</td>
</tr>
<tr>
<td>Instrument transformers</td>
<td>--</td>
<td>IEC 61869-1</td>
<td>VDE 0414-9-1</td>
</tr>
<tr>
<td>Current transformers</td>
<td>IEC 61869-2</td>
<td>VDE 0414-9-2</td>
<td>EN 61869-2</td>
</tr>
<tr>
<td>Voltage transformers</td>
<td>IEC 61869-3</td>
<td>VDE 0414-9-3</td>
<td>EN 61869-3</td>
</tr>
<tr>
<td>Installation, erection</td>
<td>--</td>
<td>IEC 61936-1</td>
<td>VDE 0101-1</td>
</tr>
</tbody>
</table>

Degree of protection

NXAIR C fulfills the following degrees of protection according to the following standards:

- **Degree of protection for the enclosure**: IP3X
- **Degree of protection for the partitions**: IP2X
- **Degree of protection against mechanical impacts from outside**: IK07

Dielectric strength

- The dielectric strength is verified by testing the switchgear with rated values of short-duration power-frequency withstand voltage according to IEC 62271-1 (see table "Dielectric strength").
- The rated values are referred to sea level and to normal atmospheric conditions (air pressure 1013 hPa, temperature 20 °C, absolute humidity 11 g/m³ according to IEC 60071).

Altitude derating

As the site altitude increases, the density and dielectric strength (insulating property) of air decreases. This reduction is permitted up to a site altitude of 1000 m according to IEC and VDE. For site altitudes above 1000 m (above sea level), special service conditions shall be taken into account and a higher insulation withstand level must be selected by multiplying the rated insulation levels for 0 to 1000 m by the altitude correction factor K_a (see figure on the right).

Altitude correction factor K_a

For low-voltage auxiliary and control equipment, no special precautions need to be taken if the altitude is lower than 2000 m. For higher altitudes, refer to the standard IEC 60664-1.

The NXAIR C switchgear is suitable for application in indoor installations under normal operating conditions as defined in the standard IEC 62271-1.

- Temperature: $-5 \degree C$ up to $+55 \degree C$
- Relative air humidity: Mean value over 24 hours $\leq 95 \%$
- Mean value over 1 month: $\leq 90 \%$
- Condensation: Occasionally
- Site altitude: The correction factor K_a must be taken into account and a higher insulation withstand level must be selected if the altitude is lower than 2000 m.
- No significant pollution of the ambient air (dust, gases, vapors, salts).

Furthermore, the high-voltage part of the NXAIR C switchgear can be used in environmental conditions of the climatic category 3K3 and 3K5 according to the standard IEC 60721-3-3.

NXAIR C has been subjected to a climatic test according to IEC 60932, Level 2, and is suitable for operating conditions according to “Design Class 2”. This test also meets the requirements of IEC 62271-304 for “Design Class 2”.

Example:

- Site altitude = 3000 m above sea level
- Rated voltage of switchgear = 17.5 kV
- Rated lightning impulse withstand voltage = 95 kV

Corrected rated lightning impulse withstand voltage shall be $95 kV \times 1.28 = 122 kV$.

For site altitudes above 1000 m, the altitude correction factor K_a is recommended, depending on the site altitude above sea level.

Table – Dielectric strength

<table>
<thead>
<tr>
<th>Rated voltage (r.m.s. value)</th>
<th>kV</th>
<th>7.2</th>
<th>12</th>
<th>15</th>
<th>17.5</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated short-duration power-frequency withstand voltage (r.m.s. value)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Between phases and to earth</td>
<td>kV</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>– Across isolating distances</td>
<td>kV</td>
<td>23</td>
<td>32</td>
<td>40</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage (peak value)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Between phases and to earth</td>
<td>kV</td>
<td>60</td>
<td>75</td>
<td>95</td>
<td>95</td>
<td>125</td>
</tr>
<tr>
<td>– Across isolating distances</td>
<td>kV</td>
<td>70</td>
<td>85</td>
<td>105</td>
<td>110</td>
<td>145</td>
</tr>
</tbody>
</table>
Circuit-breaker panel

Overview

Circuit-breaker panel
Disconnector panel
Bus sectionalizer - circuit-breaker panel
Bus sectionalizer - bus riser panel
Switch-disconnector panel
Metering panel
Busbar connection panel

Technical data

Configuration

Circuit-breaker panel

<table>
<thead>
<tr>
<th>Rated voltage (U_r) kV</th>
<th>7.2</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Hz</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated normal current of feeders (I_n) A</td>
<td>630, 1250, 2000</td>
<td>630, 1250, 2000</td>
<td>630, 1250, 2000</td>
</tr>
<tr>
<td>Rated short-time withstand current (I_{kt}) for rated duration of short circuit (t_k = 1 \text{s}) and (3 \text{s}) kA</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
</tr>
<tr>
<td>Rated peak withstand current (I_p) kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit making current (I_{ma}) kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit breaking current (I_{sc}) kA</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage (U_p) kV</td>
<td>60</td>
<td>75</td>
<td>125</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage kV</td>
<td>20</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Rated duration of short circuit (t_k) 1 s, 3 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to internal arc faults (I_{AC A FLR}) 1 s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical endurance of vacuum circuit-breakers

- at rated normal current 10,000 operating cycles
- at rated short-circuit breaking current 30 to 70 breaking operations based on the breaking current
- endurance classes acc. to IEC 62271-100 M2, E2, C2

Endurance classes acc. to IEC 62271-102

- isolating distance (withdrawable part) M0
- earthing switch M0, E1
NXAIR C versions

Circuit-breaker panel

Overview

Circuit-breaker panel
Disconnector panel
Bus sectionalizer - circuit-breaker panel
Bus sectionalizer - bus riser panel
Switch-disconnector panel
Metering panel
Busbar connection panel

Technical data

Configuration

Busbar compartment

Switching-device compartment

Cable / instrument transformer compartment

Legend configuration

Make-proof busbar earthing switch
Capacitive voltage detecting system
Circuit-breaker withdrawable unit
Reserve unit prepared for vacuum circuit-breaker
Cable connection
Voltage transformer
Capacitive voltage detecting system
Current transformer
Make-proof earthing switch
Surge arrester
Zero-sequence current transformer
Technical data

Disconnecting panel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>kV</th>
<th>7.2</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage U_r</td>
<td>kV</td>
<td>7.2</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Frequency f</td>
<td>Hz</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated normal current of feeders I_r</td>
<td>A</td>
<td>630, 1250, 2000</td>
<td>630, 1250, 2000</td>
<td>630, 1250, 2000</td>
</tr>
<tr>
<td>Rated short-time withstand current I_{kt} for rated duration of short circuit $t_k=1$ s and 3 s</td>
<td>kA</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20, 25</td>
<td>20, 25</td>
<td>20, 25</td>
</tr>
<tr>
<td>Rated peak withstand current I_p</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit making current I_{ma}</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit breaking current I_{sc}</td>
<td>kA</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage U_{lp}</td>
<td>kV</td>
<td>60</td>
<td>75</td>
<td>125</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage U_{lp}</td>
<td>kV</td>
<td>20</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Rated duration of short circuit t_k</td>
<td>s</td>
<td>1 s, 3 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to internal arc faults</td>
<td></td>
<td></td>
<td>IAC A FLR, 1 s</td>
<td></td>
</tr>
<tr>
<td>Endurance classes acc. to IEC 62271-102</td>
<td></td>
<td></td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>− isolating distance (withdrawable part)</td>
<td></td>
<td></td>
<td>M0, E1</td>
<td></td>
</tr>
</tbody>
</table>
Technical data

Overview
- Circuit-breaker panel
- Disconnecting panel
- Bus sectionalizer - circuit-breaker panel
- Bus sectionalizer - bus riser panel
- Switch-disconnector panel
- Metering panel
- Busbar connection panel

Configuration

Bus sectionalizer - circuit-breaker panel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rated voltage U_r kV</th>
<th>7.2</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Hz</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated normal current of feeders I_r</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-time withstand current I_{tk}</td>
<td>kA</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>for rated duration of short circuit $t_k = 1$ s and 3 s</td>
<td></td>
<td>20, 25</td>
<td>20, 25</td>
<td>20, 25</td>
</tr>
<tr>
<td>Rated peak withstand current I_p</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit making current I_{ma}</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit breaking current I_{sc}</td>
<td>kA</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage U_{lp}</td>
<td>kV</td>
<td>60</td>
<td>75</td>
<td>125</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage</td>
<td>kV</td>
<td>20</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Rated duration of short circuit t_k</td>
<td>1 s, 3 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to internal arc faults</td>
<td></td>
<td>IAC A FLR, 1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical endurance of vacuum circuit-breakers</td>
<td></td>
<td>10,000 operating cycles</td>
<td>30 to 70 breaking operations based on the breaking current</td>
<td>M2, E2, C2</td>
</tr>
<tr>
<td>- at rated normal current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- at rated short-circuit breaking current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- endurance classes acc. to IEC 62271-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance classes acc. to IEC 62271-102</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- isolating distance (withdrawable part)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- earthing switch</td>
<td></td>
<td>M0, E1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NXAIR C versions

Bus sectionalizer - circuit-breaker panel

Overview
- Circuit-breaker panel
- Disconnecting panel

Bus sectionalizer - circuit-breaker panel
- Bus sectionalizer - bus riser panel
- Switch-disconnector panel
- Metering panel
- Busbar connection panel

Technical data

Configuration

Legend configuration

- Make-proof busbar earthing switch
- Capacitive voltage detecting system
- Circuit-breaker withdrawable unit
- Disconnecting unit
- Reserve unit prepared for vacuum circuit-breaker or for disconnecting unit

- Current transformer
- Capacitive voltage detecting system

Side view
Technical data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>kV</th>
<th>7.2</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage U_r</td>
<td>U_r</td>
<td></td>
<td>7.2</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated normal current of feeders I_r</td>
<td>I_r</td>
<td>A</td>
<td>630, 1250, 2000</td>
<td>630, 1250, 2000</td>
<td>630, 1250, 2000</td>
</tr>
<tr>
<td>Rated short-time withstand current I_{sk}</td>
<td>I_{sk}</td>
<td>kA</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>for rated duration of short circuit t_k = 1 s and 3 s</td>
<td></td>
<td></td>
<td>20, 25</td>
<td>20, 25</td>
<td>20, 25</td>
</tr>
<tr>
<td>Rated peak withstand current I_{pk}</td>
<td>I_{pk}</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit making current I_{mak}</td>
<td>I_{mak}</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit breaking current I_{scb}</td>
<td>I_{scb}</td>
<td>kA</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage U_{lp}</td>
<td>U_{lp}</td>
<td>kV</td>
<td>60</td>
<td>75</td>
<td>125</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage U_{p}</td>
<td>U_{p}</td>
<td>kV</td>
<td>20</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Rated duration of short circuit t_k</td>
<td>t_k</td>
<td>1 s, 3 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to internal arc faults</td>
<td></td>
<td>IAC A FLR, 1 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance classes acc. to IEC 62271-102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– isolating distance (withdrawable part)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– earthing switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M0, E1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NXAIR C versions

Bus sectionalizer - bus riser panel

Overview
Circuit-breaker panel
Disconnecting panel
Bus sectionalizer - circuit-breaker panel
Bus sectionalizer - bus riser panel
Switch-disconnector panel
Metering panel
Busbar connection panel

Configuration

Technical data

Legend configuration

- Capacitive voltage detecting system
- Make-proof busbar earthing switch
- Disconnecting unit
- Metering unit
- Voltage transformer
- Current transformer
- Capacitive voltage detecting system

Busbar compartment

Switching-device compartment

Cable / instrument transformer compartment
Switch-disconnector panel

<table>
<thead>
<tr>
<th>Rated voltage U_r (kV)</th>
<th>7.2</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Hz</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated normal current of feeders I_r (without HV HRC fuse) (A)</td>
<td>630</td>
<td>630</td>
<td>630</td>
</tr>
<tr>
<td>Rated normal current of feeders I_r (with HV HRC fuse)* (A)</td>
<td>80</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Rated short-time withstand current I_k (kA) for rated duration of short circuit $t_k = 1$ s and 3 s</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>20, 25</td>
<td>20, 25</td>
<td>20, 25</td>
<td></td>
</tr>
<tr>
<td>Rated peak withstand current I_p (kA)</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit making current I_{ma} (kA)</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit breaking current I_{sc} (kA)</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage U_p (kV)</td>
<td>60</td>
<td>75</td>
<td>125</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage (kV)</td>
<td>20</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Rated duration of short circuit t_k (1 s, 3 s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to internal arc faults</td>
<td>IAC A FLR, 1 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance of switch-disconnectors</td>
<td>1500 operating cycles</td>
<td>2 operations</td>
<td>E1</td>
</tr>
<tr>
<td>– mechanical operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– at rated short-circuit making current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– endurance classes acc. to IEC 62271-103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance classes acc. to IEC 62271-102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– earthing switch</td>
<td>M0, E1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Max. permissible in-panel current depends on the max. permissible let-through current of the HV HRC fuse-link to be used
Overview
Circuit-breaker panel
Disconnecting panel
Bus sectionalizer - circuit-breaker panel
Bus sectionalizer - bus riser panel
Switch-disconnector panel
Metering panel
Busbar connection panel

Technical data

Configuration

Legend configuration

Capacitive voltage detecting system
Switch-disconnector with fuse combination
Switch-disconnector without fuse
Cable connection
Capacitive voltage detecting system
Current transformer
Make-proof earthing switch (standard)
Zero-sequence current transformer
Technical data

<table>
<thead>
<tr>
<th>Metering panel</th>
<th>kV</th>
<th>7.2</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage U_r</td>
<td>kV</td>
<td>7.2</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Frequency</td>
<td>Hz</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Rated short-time withstand current I_k</td>
<td>kA</td>
<td>16</td>
<td>20, 25</td>
<td>16</td>
</tr>
<tr>
<td>for rated duration of short circuit t_k = 1 s and 3 s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated peak withstand current I_p</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit making current I_mak</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage U_p</td>
<td>kV</td>
<td>60</td>
<td>75</td>
<td>125</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage</td>
<td>kV</td>
<td>20</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Rated duration of short circuit t_k</td>
<td>s</td>
<td>1 s, 3 s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to internal arc faults</td>
<td>IAC A FLR, 1 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance classes acc. to IEC 62271-102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– isolating distance (withdrawable part)</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NXAIR C versions

Metering panel

Overview
- Circuit-breaker panel
- Disconnecting panel
- Bus sectionalizer - circuit-breaker panel
- Bus sectionalizer - bus riser panel
- Switch-disconnector panel

Metering panel
- Busbar connection panel

Technical data

Legend configuration
- Make-proof busbar earthing switch
- Capacitive voltage detecting system
- Metering unit

Configuration

Busbar compartment

Switching-device compartment

Cable / instrument transformer compartment

Side view
Busbar connection panel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>7.2 kV</th>
<th>12 kV</th>
<th>24 kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>U_r</td>
<td>kV</td>
<td>7.2</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Frequency</td>
<td>f</td>
<td>Hz</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Rated normal current of feeders</td>
<td>I_r</td>
<td>A</td>
<td>630</td>
<td>1250</td>
<td>2000</td>
</tr>
<tr>
<td>for rated duration of short circuit $t_k = 1$ s and 3 s</td>
<td>I_{k1}</td>
<td>kA</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Rated peak withstand current</td>
<td>I_p</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit making current</td>
<td>I_{ma}</td>
<td>kA</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
<td>40, 50, 63</td>
</tr>
<tr>
<td>Rated short-circuit breaking current</td>
<td>I_{sc}</td>
<td>kA</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
<td>16, 20, 25</td>
</tr>
<tr>
<td>Rated lightning impulse withstand voltage</td>
<td>U_p</td>
<td>kV</td>
<td>60</td>
<td>75</td>
<td>125</td>
</tr>
<tr>
<td>Rated short-duration power-frequency withstand voltage</td>
<td>U_{pf}</td>
<td>kV</td>
<td>20</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Rated duration of short circuit</td>
<td>t_k</td>
<td>s</td>
<td>1 s, 3 s</td>
<td>1 s, 3 s</td>
<td>1 s, 3 s</td>
</tr>
<tr>
<td>Resistance to internal arc faults</td>
<td>I_{Ac}</td>
<td>A FLR</td>
<td>1 s</td>
<td>1 s</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Front view

Technical data

Configuration

Overview
- Circuit-breaker panel
- Disconnecting panel
- Bus sectionalizer - circuit-breaker panel
- Bus sectionalizer - bus riser panel
- Switch-disconnector panel
- Metering panel
- Busbar connection panel
OVERVIEW
Circuit-breaker panel
Disconnecting panel
Bus sectionalizer - circuit-breaker panel
Bus sectionalizer - bus riser panel
Switch-disconnector panel
Metering panel
Busbar connection panel

TECHNICAL DATA
Configuration

Legend configuration

Make-proof busbar earthing switch

Cable connection
Voltage transformer
Capacitive voltage detecting system
Current transformer
Surge arrester
Zero-sequence current transformer
Info

Attention:
You will obtain the comprehensive functionality of the ipdf by using Acrobat reader, or the browser Chrome. For use on an ipad, the free PDF viewer version 3.4 from PSPDFKit is suitable.

Chapter navigation

Overview

Circuit-breaker panel
Disconnecting panel
Bus sectionalizer - circuit-breaker panel
Bus sectionalizer - bus riser panel
Switch-disconnector panel
Metering panel
Busbar connection panel

Imprint

Published by
Siemens AG
Smart Infrastructure
Distribution Systems
Mozartstraße 31 C
91052 Erlangen, Germany
For further information, please contact our Customer Support Center:
Phone: +49 180 524 70 00
Fax: +49 180 524 24 71
E-mail: support.energy@siemens.com
siemens.com/nxair
© Siemens 2020
Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

For the U.S. published by
Siemens Industry Inc.
100 Technology Drive
Alpharetta, GA 30005
United States

© Siemens 2020
Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.