Reliability and efficiency in continuous gas analysis
A strong family for your success
Process analysis.
Why with Siemens?

Siemens’ success in process analytics is founded on comprehensive process know-how and on the reliability of our products. Efficiency and effectiveness are combined into a unique added value for customers, for example comparatively low operating costs. Covering development, production, commissioning and maintenance: as a global player we are able to competently support your process from the idea up to the product.

As a result of the systematic expansion of our product range for continuous gas analysis, we can currently offer our customers worldwide a comprehensive range of modern equipment for process analysis – from single analyzers up to individual system solutions. Thanks to our many years of experience we are acquainted with the important aspects of a production process, and are therefore able to satisfy individual requirements. This is particularly carried out with FEED for Process Analytics – a service which helps toward optimization of the analytical systems in a production plant and thus minimization of your investment and operating costs.
Contents

Process analysis. Why with Siemens? 03
Solutions from a single source 06
Completely up-to-date with Siemens 07
Siemens gas analyzers – at home in many industries 08
Applications of Siemens process gas analyzers 09 – 12
Communication 13
Advantages of the Siemens product family 14
How to find the right product 15 – 17
Siemens gas analyzers – extractive and in-situ 18 – 20
Service and support 22
In this sense, innovative products with state-of-the-art technologies on the one hand and compatibility, availability of spare parts, and service on the other are a significant component of our market policy.

We offer our customers tailored solutions up to a fully air-conditioned analyzer shelter. In addition to consulting, our specialists plan analyzer systems together with the user, and implement systems with state-of-the-art process analyzers. Siemens Process Analytics has consistently expanded this competence worldwide and supports its global customers by means of analytical specialists with long-term experience and industrial expertise.

Your benefits

- Fast implementation of planning and assembly through reduced number of interfaces
- Lower costs thanks to solutions from a single source, flexible and optimized handling
- Increase in efficiency and saving of costs through predictive servicing and maintenance
- Global availability of spare parts and servicing

In our solutions, we focus on continuously increasing quality so that your processes profit from our expertise and experience.
Completely up-to-date with Siemens

Siemens is acquainted with the demands placed on process gas analysis and continuously studies market developments. We are therefore able to recognize future trends and develop efficient and individual solutions together with our customers.

Process optimization provides cost optimization
Our reliable and efficient gas analyzers support you in the optimization of your processes.

Quality control
One of the most important customer demands is a uniformly high product reliability. This target can be reached using the continuous gas analyzers from Siemens. High customer satisfaction is thus guaranteed.

Safety for persons and machines
Safety is particularly important when handling chemicals. Therefore reliable and safe equipment – Siemens gas analyzers have been assigned the relevant safety certificates – and continuous monitoring of the processes are essential. Plant safety, with the associated safeguarding of investments, as well as the protection of employees must be guaranteed.

Environmental protection
Siemens Process Analytics is well aware of its responsibility toward the environment. The environmentally-friendly design together with the quality and reliability of our gas analyzers support your environmental management obligations.
Siemens gas analyzers – at home in many industries

Siemens has traditionally set a strong focus on industrial applications. For only those who are acquainted with the specific requirements of the individual industries can develop and offer tailored products.

Chemical industry
The significance of process analysis is increasing in all sectors of the chemical industry. Gas analysis is also a central consideration in many sectors of process control. Siemens gas analyzers increase the yield and guarantee a uniformly high product quality.

Power generation
In the power industry, new technologies are improving the efficiency of power plants and reducing the emission of toxic materials, thus lowering the environmental impact. Process analysis provides exact and reliable data, thus enabling optimization of the various processes. High-performance measuring technologies are of great significance here.

Oil and gas industries
Siemens has the appropriate answers to analytical questions concerning the oil and gas industries. From the characterization of basic materials up to the production of fuels – Siemens can offer the correct solution for the respective production step.

Cement industry
Process optimization is only possible with reliable process data. Efficient measuring techniques are essential for this, and rugged devices are required for the harsh environmental conditions.
Applications of Siemens process gas analyzers

Siemens gas analyzers have been used in the process industry for more than 50 years. Their use in an extremely wide variety of applications is proof of their quality, reliability and measuring accuracy.
One of the key issues in power plant operation is emission monitoring. This takes place with the help of the LDS 6 in-situ gas analyzer and the ULTRAMAT 6, OXYMAT 6 and FIDAMAT 6 or ULTRAMAT 23 extractive analyzers.

Which of these analytical techniques is used depends on the following factors:

- Measuring range
- Components to be measured
- Measurement location: standard power plant or waste incinerator power plant

The ULTRAMAT 23 is an approved analyzer for measuring CO, NO, SO2 and O2 in the exhaust gases of power plants with gas, oil or coal firing. The Series 6 analyzers – ULTRAMAT 6, OXYMAT 6, FIDAMAT 6 and LDS 6 – are also approved analyzers, and can be used in waste incinerator power plants. These analyzers can be used to measure CO, NO, SO2, O2, NH3, HCl and hydrocarbons.

All these factors must be considered before deciding on a particular measuring method. Nevertheless, the objective is quite clear: environmental protection.

The main technology of a cement plant is the rotary kiln. This is the sector with the highest investment costs and the largest energy requirements. The optimum range of a rotary kiln with regard to the use of fuel is extremely limited. It is defined by the concentrations of oxygen and carbon monoxide.

The ULTRAMAT 23 determines the concentration of these gases and thus permits optimization of the combustion process. The use of fuel can be reduced by setting the ideal oxygen concentration.

Siemens offers a liquid-cooled probe for sampling the flue gases from a rotary kiln. This probe has been specially developed for the harsh operating conditions encountered there. The interaction between sampling probe and gas analysis technology is the basis for process economy.

ULTRAMAT 6

- Precise measurement of complex gas mixtures
- Reliably determines concentrations in the smallest measuring ranges, in line with legal requirements

ULTRAMAT 23

- Innovative multicomponent analyzer
- Using an electrochemical cell, oxygen can be measured in addition to the infrared-active gases
Turbo generators in power plants are gas-cooled to increase the efficiency. Hydrogen is used as the cooling gas. This provides the following advantages compared to air:

- Significantly better cooling properties
- Reduced friction losses on rotating parts due to lower gas density
- Higher electrical disruptive strength

Together with air, hydrogen forms an explosive mixture over a wide component ratio. In addition to safety aspects, it must also be considered that impurities in the hydrogen cooling gas can negatively influence the positive properties mentioned above. They increase the danger of explosion and reduce the efficiency. There are therefore significant economical reasons why the cooling gas should be continuously monitored for contamination.

Ethylene is an easily flammable gas which is highly explosive when mixed with oxygen. It is therefore important to monitor the oxygen concentration in the process gas for safety reasons. However, the yield increases proportionally with the oxygen concentration in the process gas. In order to optimize the yield, the oxygen concentration is set as close as possible to the lower explosion limit.

The economic efficiency of ethylene oxide plants can be decisively improved by monitoring the oxygen concentration using the OXYMAT 6 with its extremely fast and exact measurement.

The LDS 6 and SITRANS SL in-situ gas analyzers can be used to measure concentrations of oxygen directly in the process – without sample preparation.

CALOMAT 6

- For quantitative determination of hydrogen and helium in binary and quasi-binary non-corrosive gas mixtures
- Measurement of the concentrations of further gases if their thermal conductivity differs significantly from that of the residual gases

OXYMAT 6

- Due to its extremely short response time, it is unbeatable for the monitoring of safety-relevant systems
- Extremely versatile applications: whether for emission measurement or the control of production processes
- Long service life
- Corrosion-resistant
Flue gas denitrification is divided into primary and secondary measures. Primary measures are carried out directly on the burner. Secondary measures are based on chemical reactions between the flue gas and an additionally introduced reagent.

The DeNOx plant is responsible for flue gas denitrification. Ammonia is added for this purpose and reacts with the nitrogen oxides to produce nitrogen and water. Measurement of the leakage is used to control the quantity of ammonia added. This serves to optimize the denitrification process in two respects: on the one hand, the addition of a suitable quantity of ammonia significantly reduces costs, and on the other minimizes the emissions. The ammonia concentration is measured in real time by means of the LDS 6 in-situ gas analyzer which is installed directly in the exhaust stream. The measured values are used to guarantee the observation of limits, and also to control and optimize the DeNOx plant. Environmental protection in the petrochemical industry can therefore be taken into account through application of the in-situ gas measurement.

With operations involving coal silos there is always a danger of random occurrences of partial spontaneous combustion of the coal. The resulting smoldering fires result in increased concentrations of CH₄ and CO at the top of the silo. These dangerous levels can be extractively measured with the ULTRAMAT 23. This is important since increased concentrations of CO not only indicate an active source of fire, they also constitute an independent hazard due to their toxic properties and potentially explosive atmosphere when mixed with air.

The almost immediate determination of the CO concentration using the SITRANS SL and LDS 6 in-situ analyzers provides an early warning and enables appropriate countermeasures to be taken in time.

LDS 6
- Diode laser gas analyzer
- Works according to the principle of the specific light absorption of different gas components
- Suitable for contactless measurement within seconds of gas concentrations and temperatures in process and flue gases
- Can also be used together with a flow cell for extractive measurements

SITRANS SL
- Diode laser gas analyzer
- In-situ measurements – no gas sampling required
- Inline reference cell – stable measuring operations even with “zero concentration” of the measured gas in the process
- Short response time
- Virtually immune to negative interference
- SIL 1 hardware
Communication

Communication between operator or control system and the device is an important part of process analysis.

The facilities offered by a device have therefore become an important performance feature of analyzers.

Reliable functioning of analyzers is of decisive importance for process control. It is necessary to record, correct and transmit measured values, to set and modify parameters, to check functions, to update calibrations, and to scan status signals e.g. for preventive maintenance.

Continuous gas analysis – extractive
The Series 6 analyzers (ULTRAMAT 6, ULTRAMAT/OXYMAT 6, OXYMAT 6, OXYMAT 61, FIDAMAT 6 and CALOMAT 6) as well as the ULTRAMAT 23 offer the following communications facilities in addition to data transmission over analog and binary outputs:

- RS 485 interface
- PROFIBUS DP/PA
- Ethernet
- AK interface (only OXYMAT 6, ULTRAMAT 6 and ULTRAMAT/OXYMAT 6)

The SIPROM GA software or SIMATIC PDM tool can be used as the service and configuration tool.

Continuous gas analysis – in-situ
LDS 6 and SITRANS SL feature 4–20 mA and digital IO interfaces, and the SITRANS SL also includes a PROFIBUS DP or Modbus option. Data can be sent and received using the LDScomm software, which also enables settings to be made on the system. This installation and service tool can also remotely monitor and modify device status and calibration parameters. If required, complete system diagnostics can be carried out via the the data communication line.

If servicing is necessary, the required information (e.g. characteristics for the laser measurement, measuring and operating data of the laser) can be sent by modem to servicing technicians at Siemens who then prepare the appropriate measures or carry them out from the service center over the data link. This facility for remote maintenance and diagnostics is implemented using a standard LAN modem. Remote access is protected, and is administered on the central unit at the customer.
Advantages of the Siemens product family

The answer to the special requirements of the individual industries: products from Siemens for continuous analysis of process gases. With our process gas analyzers, you profit from the advantages of a totally integrated product family.

The continuous gas analyzers have a common menu structure. Therefore, the handling is intuitive for a user who is already acquainted with one analyzer from the family. The uniform operating approach is embedded in the user functions. For example, selection of the gas for which the settings are to be made is followed by the main menu with its uniform functions. The operating functions are self-explanatory.

The analyzer parameters can be set on site specific to customer requirements.

Parameterization and configuration correspond to the NAMUR recommendations, and can be protected against impermissible operation using various code levels.

With gas analyzers from Siemens, you can be sure that you are always in full control of your production, and that you can react flexibly and rapidly to new requirements.
Gases to be measured (examples)

<table>
<thead>
<tr>
<th></th>
<th>Measurement method</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF, HCl</td>
<td>In-situ</td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
</tr>
<tr>
<td>NH₃</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td></td>
</tr>
<tr>
<td>CO, CO₂</td>
<td></td>
</tr>
<tr>
<td>NOₓ, SOₓ, H₂S</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td></td>
</tr>
<tr>
<td>CₙHₘ</td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td></td>
</tr>
<tr>
<td>He, Ar</td>
<td></td>
</tr>
</tbody>
</table>

How to find the right product

The diagram will help you find the appropriate analyzer for your measurement task.
Analyzer Possible versions

LDS 6
SITRANS SL

OXYMAT

ULTRAMAT

FIDAMAT

CALOMAT

Rack unit with in-situ laser Ex version
Field devices also in Ex version

Rack unit Field device Ex version

Rack unit Field device Ex version

Rack unit

Rack unit Field device Ex version
Siemens gas analyzers – extractive and in-situ
<table>
<thead>
<tr>
<th>Measuring properties</th>
<th>Extractive analyzers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring methods</td>
<td>OXYMAT 6</td>
</tr>
<tr>
<td>Measurement method</td>
<td>Extractive</td>
</tr>
<tr>
<td>Measuring method</td>
<td>Paramagnetism</td>
</tr>
<tr>
<td>Max. number of sensors</td>
<td>1</td>
</tr>
<tr>
<td>Components</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Smallest measuring range</td>
<td>0–0,5%</td>
</tr>
<tr>
<td>Detection limit</td>
<td>50 ppm</td>
</tr>
<tr>
<td>Housing / material</td>
<td>19” rack unit</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP20</td>
</tr>
<tr>
<td>Material of gas path</td>
<td>Viton, stainless steel, titanium</td>
</tr>
<tr>
<td>Material of measuring chamber</td>
<td>Stainless steel, tantalum</td>
</tr>
<tr>
<td>Connections</td>
<td>6 mm / ⅛”</td>
</tr>
<tr>
<td>Heater option</td>
<td>–</td>
</tr>
<tr>
<td>Special applications</td>
<td>Further materials with special applications</td>
</tr>
<tr>
<td>Certificates / signals</td>
<td>19” rack unit</td>
</tr>
<tr>
<td>TÜV</td>
<td>13 /17. BImSchV</td>
</tr>
<tr>
<td>EX</td>
<td>ATEX II 3G Class I Div 2</td>
</tr>
<tr>
<td>Analog output</td>
<td>0/2 / 4–20 mA</td>
</tr>
<tr>
<td>Communication</td>
<td>PROFIBUS, RS 485 / Ethernet</td>
</tr>
<tr>
<td>Binary inputs / outputs</td>
<td>6 of each as standard, expandable</td>
</tr>
<tr>
<td>Sample gas conditions</td>
<td>19” rack unit</td>
</tr>
<tr>
<td>Temperature</td>
<td>Below the gas dew point, but min. 0 °C max. 50 °C</td>
</tr>
<tr>
<td>Pressure (abs.)</td>
<td>500 to 1,500 hPa</td>
</tr>
</tbody>
</table>

Image:
![Image of extractive analyzer](image-url)
<table>
<thead>
<tr>
<th>ULTRAMAT 23</th>
<th>ULTRAMAT / OXYMAT 6</th>
<th>CALOMAT 6</th>
<th>CALOMAT 62</th>
<th>FIDAMAT 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractive</td>
<td>Extractive</td>
<td>Extractive</td>
<td>Extractive</td>
<td>Extractive</td>
</tr>
<tr>
<td>NDIR single-beam principle</td>
<td>Combination device</td>
<td>Thermal conductivity</td>
<td>Thermal conductivity</td>
<td>Flame ionization</td>
</tr>
<tr>
<td>3 IR + O₂, H₂S</td>
<td>2 IR + O₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>e.g. CO, CO₂, NO, SO₂, CH₄, O₂, H₂S</td>
<td>e.g. H₂, He</td>
<td>e.g. H₂, Cl₂, HCl</td>
<td>Total hydrocarbons</td>
<td></td>
</tr>
<tr>
<td>Component-specific: 0–50/0–500 ppm</td>
<td>See U6 and O6</td>
<td>0–1 %</td>
<td>Component-specific: 0–1 %/0–10 %</td>
<td>0–10 vpm</td>
</tr>
<tr>
<td>Component-specific: from 0.5 ppm</td>
<td>See U6 and O6</td>
<td>0.01 %</td>
<td>Component-specific: from 0.01 %</td>
<td>50 / 100 ppb</td>
</tr>
<tr>
<td>19” rack unit</td>
<td>19” rack unit</td>
<td>19” rack unit</td>
<td>Field housing</td>
<td>19” rack unit</td>
</tr>
<tr>
<td>IP20</td>
<td>IP20</td>
<td>IP20</td>
<td>IP65</td>
<td>IP20</td>
</tr>
<tr>
<td>Viton, stainless steel</td>
<td>Viton, stainless steel, titanium</td>
<td>Stainless steel</td>
<td>Stainless steel</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Aluminum</td>
<td>See U6 and O6</td>
<td>Stainless steel</td>
<td>Stainless steel</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>6 mm / ⅛”</td>
<td>6 mm / ¼”</td>
<td>⅛” – 27 NPT</td>
<td>⅛” – 27 NPT</td>
<td>6 mm / ⅛”</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>70 °C</td>
<td>up to 200 °C</td>
</tr>
<tr>
<td>19” rack unit</td>
<td>19” rack unit</td>
<td>19” rack unit</td>
<td>Field housing</td>
<td>19” rack unit</td>
</tr>
<tr>
<td>QAL1, MCERTS</td>
<td>QAL1, MCERTS</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>ATEX II 3G</td>
<td>ATEX II 3G</td>
<td>ATEX II 3G/2G/3G</td>
<td>ATEX II 2G</td>
<td>ATEX II 2G [ATEX II 3 G] with cabinet</td>
</tr>
<tr>
<td>Class I Div 2</td>
<td>Class I Div 2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>0 / 2 / 4–20 mA per component</td>
<td>0 / 2 / 4–20 mA</td>
</tr>
<tr>
<td>PROFIBUS, RS 485/Ethernet</td>
</tr>
<tr>
<td>8 of each as standard, expandable</td>
<td>6 of each as standard, expandable</td>
</tr>
<tr>
<td>19” rack unit</td>
<td>19” rack unit</td>
<td>19” rack unit</td>
<td>Field housing</td>
<td>19” rack unit</td>
</tr>
<tr>
<td>Below the gas dew point, but min. 0 °C max. 50 °C</td>
<td>Below the gas dew point, but min. 0 °C max. 50 °C</td>
<td>Below the gas dew point, but min. 0 °C max. 50 °C</td>
<td>Below the gas dew point, but min. 0 °C max. 50 °C</td>
<td>Below the gas dew point, but min. 0 °C max. 60 °C; with heated version max. 65 °C</td>
</tr>
<tr>
<td>unpressurized < 1,200 hPa</td>
<td>See U6 and O6</td>
<td>800 to 1,100 hPa</td>
<td>800 to 1,100 hPa</td>
<td>800 to 1,100 hPa</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Measurement method

- **Extractive analyzers**
- **Extractive and in-situ analyzers**

Measuring properties

- **EXATEX II 3G**
- **500 to 1,500 hPa**
- **Pressure (abs.)**

Communication

- **PROFIBUS, RS 485/Ethernet**

Conformity

- **13. / 17. BImSchV**

Further materials with heater option

- **Stainless steel, steel, titanium**

Connections

- **Material of measuring chamber**
- **Material of gas path**

Degree of protection

- **IP20**
- **IP65**

Further approvals

- **13. / 17. BImSchV**

Further materials and connections

- **LDS 6**
- **SITRANS SL**
- **Certificates / signals**
- **Purging tubes**
- **Component-specific**

Temperature

- **≤ –20 °C (up to 3 channels)**
- **0–50 / 0–500 vpm**
- **0–200 °C**

Components

- **Components**
- **Max. number**
- **IP20**
- **IP65**
- **50 / 100 ppb**

Certificates / signals

- **QAL1, MCERTS**

Components

- **Components**
- **Material of measuring chamber**
- **Material of gas path**
- **Material of measuring chamber**

Degree of protection

- **IP20**
- **IP65**

Further approvals

- **13. / 17. BImSchV**

Further materials and connections

- **LDS 6**
- **SITRANS SL**
- **Certificates / signals**
- **Purging tubes**
- **Component-specific**
Extractive and in-situ analyzers

<table>
<thead>
<tr>
<th>LDS 6</th>
<th>SITRANS SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ/extractive</td>
<td>In-situ/extractive</td>
</tr>
<tr>
<td>TDLS</td>
<td>TDLS</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>O₂, NH₃, HF, H₂O, CO₂, CO, HCl</td>
<td>O₂, CO</td>
</tr>
<tr>
<td>Component-specific: 0–5 ppm to 0–5%</td>
<td>Component-specific: O₂: 0–1% @ 1 m effective opt. path length, CO: 0–100 ppm @ 1 m effective opt. path length</td>
</tr>
<tr>
<td>Component-specific: from 0.1 ppm @ 1 m effective opt. path length</td>
<td>Component-specific: O₂: 200 ppm @ 1 m effective opt. path length, CO: 0.6 ppm @ 1 m effective opt. path length</td>
</tr>
<tr>
<td>Central unit: 19” unit, sensors: field version</td>
<td>Field version</td>
</tr>
<tr>
<td>Central unit: IP20, sensors: IP65</td>
<td>IP65</td>
</tr>
<tr>
<td>Purging tubes: stainless steel, special materials on request</td>
<td>Purging tubes: stainless steel</td>
</tr>
<tr>
<td>Sensor connections in DN 65 / PN6, ANSI 4”/150 lbs, DN 80 / PN 16</td>
<td>Sensor connections in DN 50 / PN 16, ANSI 4”/150 lbs</td>
</tr>
<tr>
<td>Extractive cell 200 °C</td>
<td>Connections</td>
</tr>
<tr>
<td>Further materials and connections with special applications</td>
<td>Further materials and connections with special applications</td>
</tr>
<tr>
<td>Central unit: 19” unit, sensors: field version</td>
<td>Central unit: 19” unit, sensors: field version</td>
</tr>
<tr>
<td>NH₃, NH₃/H₂O, H₂O, HCl, HClI₂O applications: 17. BImSchV</td>
<td>–</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ATEX II 1GD T 135° EEx ia IIC T4</td>
<td>ATEX II 2 G Ex de op iis IIC T6 / ATEX II 2 D Ex tD A21 IP65 T85, FM Class I, II, III Div 1, FM Class I, Zone 1, FM Class II, Zone 21</td>
</tr>
<tr>
<td>2 per channel (measurement spot) (up to 3 channels)</td>
<td>2</td>
</tr>
<tr>
<td>Analog, Ethernet</td>
<td>Analog, PROFIBUS DP, Modbus RTU, Ethernet</td>
</tr>
<tr>
<td>6 per channel (measurement spot) (up to 3 channels)</td>
<td>2/2</td>
</tr>
<tr>
<td>Central unit: 19” unit, sensors: field version</td>
<td>Central unit: 19” unit, sensors: field version</td>
</tr>
<tr>
<td>Depends on component and application: 0–1,200 °C</td>
<td>Depends on component and application: –20–700 °C</td>
</tr>
</tbody>
</table>

Measuring properties

Measuring method
- LDS 6
- TDLS

Max. number of components
- 6

Components
- O₂, CO

Smallest measuring range
- O₂: 0–1% @ 1 m effective opt. path length, CO: 0–100 ppm @ 1 m effective opt. path length

Detection limit
- O₂: 200 ppm @ 1 m effective opt. path length, CO: 0.6 ppm @ 1 m effective opt. path length

Housing / material
- Field version
- IP65

Degree of protection
- –

Material of gas path
- Purging tubes: stainless steel

Material of measuring chamber
- Sensor connections in DN 65 / PN6, ANSI 4”/150 lbs

Connections
- Sensor connections in DN 50 / PN 16, ANSI 4”/150 lbs

Heater option
- Extractive cell 200 °C

Special applications
- Further materials and connections with special applications

Certificates / signals
- TÜV
- Further approvals (emission)

Analog output
- 2

Communication
- Analog, PROFIBUS DP, Modbus RTU, Ethernet

Binary inputs / outputs
- 2/2

Sample gas conditions
- Temperature
- Pressure

Further ranges with special applications
- Depends on component: 0.8–5 bar
- Depends on component: 0.7–5 bar

Pressure
- Depends on component and application: 0–1,200 °C
- Depends on component and application: –20–700 °C

Max. number
- 6
Service and support

Siemens offers proven concepts for process analytics and instrumentation from a single source.

Uniform development and a high level of safety are benefits you profit from.

Our range of services extends from planning and competent technical consulting, via interfacing to the control system, up to comprehensive servicing:

- Plant planning and deadlines
- Complete design planning and engineering of the analysis systems (FEED for PA)
- Specialists advise you on the selection of analytical and process devices
- Plant documentation
- Installation, test and commissioning
- Comprehensive after-sales service

Repairs
Identified repairs are carried out in certified repair workshops worldwide and at short notice. In order to shorten downtimes, certain devices and components can be replaced from a pool of exchange units.

Service worldwide
Plants must work reliably around the clock. Efficient process analytics and instrumentation are indispensable prerequisites. It must also be possible to rely on the fast and competent servicing of the supplier. Siemens is a globally active company. Whether you require consulting, fast delivery, or the installation of new devices, Siemens offers a network of experts who you can reach worldwide.

Training
To optimize system availability, Siemens Process Analytics offers a comprehensive training program for the customer’s planning, operation and maintenance personnel. Training can be carried out specific to the system and application in the Siemens training centers (Karlsruhe, Houston, Shanghai) or also on site on the customer’s system. Servicing can be carried out by customers using their own trained servicing personnel, and certain repair work can also be carried out.

Service round the clock
Our online support can help you rapidly and comprehensively independent of the time and location. Whether you require product support or service information, the Online Support from Siemens Process Analytics is always your first choice, 24 hours / 365 days a year.

www.siemens.com/automation/support-request