Siemens
Ingenuity for life

SGT-8000H gas turbine series – proven in commercial operations
High efficiency, low emissions, fast start-up capability

siemens.com/gasturbines
The proven Siemens SGT-8000H series is a gas turbine model of top performance and efficiency. Short start-up times, high operational flexibility, and simple plant integration make it the gas turbine of choice for state-of-the-art combined cycle plants. In the Lausward power plant in Düsseldorf, Germany, the SGT5-8000H demonstrated an outstanding combined cycle efficiency of around 61.5 percent.
SGT5-8000H gas turbine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>ISO base power output</td>
<td>450 MW</td>
</tr>
<tr>
<td>Efficiency</td>
<td>> 41%</td>
</tr>
<tr>
<td>Exhaust mass flow</td>
<td>935 kg/s / 2,061 lb/s</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>630 °C / 1,166 °F</td>
</tr>
</tbody>
</table>

Physical dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>445 t</td>
</tr>
<tr>
<td>Length x Height x Width</td>
<td>12.6 m x 5.5 m x 5.5 m (41 ft x 18 ft x 18 ft)</td>
</tr>
</tbody>
</table>

Combined cycle plant (single-shaft 1S / multi-shaft 1 x 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net power output</td>
<td>665 MW</td>
</tr>
<tr>
<td>Net efficiency</td>
<td>61%</td>
</tr>
</tbody>
</table>

Combined cycle plant (multi-shaft 2 x 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net power output</td>
<td>1,335 MW</td>
</tr>
<tr>
<td>Net efficiency</td>
<td>61%</td>
</tr>
</tbody>
</table>

SGT6-8000H gas turbine

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>ISO base power output</td>
<td>310 MW</td>
</tr>
<tr>
<td>Efficiency</td>
<td>> 40%</td>
</tr>
<tr>
<td>Exhaust mass flow</td>
<td>650 kg/s / 1,433 lb/s</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>645 °C / 1,193 °F</td>
</tr>
</tbody>
</table>

Physical dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>289 t</td>
</tr>
<tr>
<td>Length x Height x Width</td>
<td>10.5 m x 4.3 m x 4.3 m (34 ft x 14 ft x 14 ft)</td>
</tr>
</tbody>
</table>

Combined cycle plant (single-shaft 1S / multi-shaft 1 x 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net power output</td>
<td>460 MW</td>
</tr>
<tr>
<td>Net efficiency</td>
<td>61%</td>
</tr>
</tbody>
</table>

Combined cycle plant (multi-shaft 2 x 1 / 3 x 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net power output</td>
<td>930 MW / 1,390 MW</td>
</tr>
<tr>
<td>Net efficiency</td>
<td>61% / 61%</td>
</tr>
</tbody>
</table>
The Siemens H-class: Proven design, high efficiency

The SGT-8000H series design concept is mainly based on proven features of predecessor gas turbines, and was validated by a thorough test program at the Siemens testing facility, as well as an intense prototype testing in the Irsching power plant. In July 2017, about 50 Siemens H-class gas turbines were installed worldwide, cumulating a fleet experience of around 500,000 fired hours.

Outstanding reliability
The SGT-8000H gas turbine series offers outstanding performance and highest flexibility at minimized risk. The rotor design is based on individual discs, spanned to a stiff rotor by a central tie rod. Internal cooling air passages from compressor to turbine section ensure fast thermal response of the rotor in case of high load transients and fast cold starts.

Moderate firing temperatures allow the use of proven materials and provide for high reliability, low maintenance, and excellent availability. The blades and vanes of the SGT-8000H series are based on an evolutionary design approach, combining high efficiency with low outage risk. Hydraulic clearance optimization (HCO) reduces clearance losses to increase the gas turbine efficiency. The simple, fail-safe technology is validated for more than 10 years and provides high performance and high operational flexibility at low degradation.

Features
- Start time: Base load within 30 min for hot start (combined cycle)
- Low emissions: NOx ≤ 25 ppmvd at 15% O2 on fuel gas, CO ≤ 10 ppmvd at 15% O2 on fuel gas
- GT design: Full on-board air cooling
- Maintenance: Optimized design for short outages

Benefits
- High efficiency (up to 41% SC, 61% CC)
- Fast start-up capability, high operational flexibility
- Low lifecycle costs
- High reliability and availability
- High serviceability
- Reduced emissions per kWh
- High efficiency and low emission also in part-load operation
Key features of the SGT-8000H gas turbine series

- Evolutionary 3D blading
- 4 stages of fast acting variable-pitch guide vanes (VGV) allowing for improved part load efficiency and high load transients
- Rotating blades replaceable without rotor destack or lift
- Proven rotor design (Hirth serration, central tie rod, internal cooling air passages) for world-class fast (cold) start and hot restart capability
- Easy rotor destacking on site: Disc assembly with Hirth serration and central tie rod
- 3D four stage turbine with advanced materials and thermal barrier coating
- High cycling capability due to on-board air-cooled turbine section
- Shorter outages: All turbine vanes and blades replaceable without rotor lift; vane 1, blade 1 and 4 replaceable without cover lift
- Advanced can annular combustion system
- 61% combined cycle efficiency
- Performance
- Flexibility
- Serviceability

- HCO for reduced clearance losses
- Transient protection of clearances for reduced degradation with hydraulic clearance optimization (HCO) active clearance control
- 61% combined cycle efficiency
- Evolutionary 3D blading
- 4 stages of fast acting variable-pitch guide vanes (VGV) allowing for improved part load efficiency and high load transients
- Rotating blades replaceable without rotor destack or lift
- Proven rotor design (Hirth serration, central tie rod, internal cooling air passages) for world-class fast (cold) start and hot restart capability
- Easy rotor destacking on site: Disc assembly with Hirth serration and central tie rod
- 3D four stage turbine with advanced materials and thermal barrier coating
- High cycling capability due to on-board air-cooled turbine section
- Shorter outages: All turbine vanes and blades replaceable without rotor lift; vane 1, blade 1 and 4 replaceable without cover lift
- Advanced can annular combustion system
- 61% combined cycle efficiency
- Evolutionary 3D blading
- 4 stages of fast acting variable-pitch guide vanes (VGV) allowing for improved part load efficiency and high load transients
- Rotating blades replaceable without rotor destack or lift
- Proven rotor design (Hirth serration, central tie rod, internal cooling air passages) for world-class fast (cold) start and hot restart capability
- Easy rotor destacking on site: Disc assembly with Hirth serration and central tie rod
- 3D four stage turbine with advanced materials and thermal barrier coating
- High cycling capability due to on-board air-cooled turbine section
- Shorter outages: All turbine vanes and blades replaceable without rotor lift; vane 1, blade 1 and 4 replaceable without cover lift
- Advanced can annular combustion system
- 61% combined cycle efficiency
Efficient and flexible plant technology

Siemens offers a flexible scope of supply, varying from gas turbine package to extended power train, power island, power block, up to complete turnkey power plants, allowing best fit to customer requirements. All solutions provide optimal balance between capital costs, performance, and operational considerations.

Single-shaft power plants
The main components of the single-shaft (1S) combined cycle power plant are arranged on one shaft, with a synchronous self-shifting (SSS) clutch between the generator and the steam turbine. This enables a compact footprint and provides high operating flexibility and reliability. The single-shaft plants can also be applied for CHP applications. Despite the space-saving footprint with floor-mounted turbine generator train, it is possible to provide up to a three stage extraction for district heating or process steam.

Multi-shaft power plants
The SGT-8000H multi-shaft combined cycle power plants can be based on one or two H-class gas turbine packages. The multi-shaft plants are available as Flex-Plant series for optimized operational flexibility.

Flexible plant solutions
Integrating proven fast-start technology in a high-efficiency, three-pressure reheat combined cycle, Siemens plant technology allows full load in less than half the time required by traditional combined cycle plants. Shorter start-up times reduce the amount of fuel consumed during the start-up of fossil power plants. The gas and steam turbines start, stop, load and unload fast and with reliable predictability. With steam turbine start on the fly, the full combined cycles can be up and running in less than an hour. BENSON® boilers are applied for high steam parameters, high efficiency and outstanding flexibility.

Siemens fast-start technology improves the flexibility of SCC-8000H combined cycle plants:
• Fast start: Gas turbine ramp up to full load at full speed
• Fast load change, up and down: Combined cycle load follows the gas turbine ramp rate
• Expanded power output range: Plant can operate from part loaded simple cycle up to full load combined cycle
• High part load efficiency
• Significant fuel savings
• Low water consumption: Air-cooled configurations available which scale footprint down and water usage low
• Low start-up emissions
SCC5-8000H 1S combined cycle plant

Example of a full turnkey solution: Lausward power plant (Stadtwerke Düsseldorf AG)

- Combined heat and power plant (CHP)
- Power output > 600 MWel in CC operation
- Net efficiency ≈ 61.5%
- District heating of up to 300 MWth, fuel efficiency > 85%
- Hot start: 40 minutes from zero to full load
- Load gradients: 35 MW/min
Outstanding maintainability
In times of widely fluctuating energy prices, market instability, and a highly competitive environment, Siemens remains a consistent and reliable partner. Highly qualified power plant engineers, technicians, and service specialists are at work all over the world keeping our technology running.

The SGT-8000H series is designed for outstanding serviceability. A number of tools and features, such as the combustor handling tool, are designed for efficient maintenance and reduced scheduled down time throughout the lifecycle. All blades are designed to be removable without rotor lift. To make inspection even more comfortable, stage 1 vane as well as stage 1 and 4 blade are removable without cover lift. Optimized outage times mean higher reliability and availability.

Continuous improvements
Our customized performance enhancement programs help prepare power plants for tomorrow and beyond. Many options for power increase are available e.g. increasing the gas turbine's firing temperature or upgrading the power train including boiler, generator and steam turbine. This is to maximize the benefits of the plant investments. Siemens will continue to develop and implement complex new power plant technologies and solutions to define milestones in advanced technology.

Every step matters
A service concept is the best way to plan ahead and to support your target achievement. Siemens provides programs to ensure highest power output as well as outstanding plant availability with state-of-the-art service solutions. We offer customized service options based on large service fleet experience including preventive maintenance, scheduled inspections, replacement-part programs, on-site support and much more.

World-class service to improve plant performance and profitability
People working at Siemens are passionate about power plants. Their dedication is key to the excellent performance of the power plants we plan, build, service, operate and modernize.
SGT-8000H gas turbine series: Projects on five continents

To date, Siemens has more than 80 H-class turbines under contract, with about 50 units in commercial operation already. This adds up to a fleet experience of around 500,000 fired hours globally.

Number of sold units (Status: July 2017)
SGT-8000H series reference examples

Proven performance and reliability

<table>
<thead>
<tr>
<th>Location</th>
<th>Plant Details</th>
<th>Performance Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cengiz Enerji Samsun, Turkey</td>
<td>SCC5-8000H 1S combined cycle plant, 1 x SGT5-8000H for a power island installation</td>
<td>583 MW net, ~61% net efficiency, Start-up within 30–40 min, Commercial operation 2 months prior to time schedule</td>
</tr>
<tr>
<td>Düsseldorf, Germany</td>
<td>SCC5-8000H 1S combined cycle plant</td>
<td>595 MW net, >61% net efficiency, CHP plant, district heating 300 MWth, 85% fuel efficiency, >61% net efficiency</td>
</tr>
<tr>
<td>Cape Canaveral, FL, USA</td>
<td>3 x SGT6-8000H gas turbines, 3 x SGT6-8000H gas turbine packages for 3 x 1 plant</td>
<td>3 x 274 MW net, >60% net efficiency, Commercial operations 5 weeks ahead of schedule, High operational flexibility, Short start-up times</td>
</tr>
</tbody>
</table>
Dangjin, South Korea
SCC6-8000H 1S combined cycle plant
- Total power output: 415 MW net
- CC plant efficiency: > 60% net
- First H-class plant for 60 Hz market
- Commercial operation 12 days ahead schedule
- Plant formerly known as Bugok 3

Andong, South Korea
SCC6-8000H 1S combined cycle plant
- Total power output: 415 MW net
- CC plant efficiency: > 60% net
- Designed for 250 starts per year
- Fast start capability: only 30 min for a hot start
- Fast track project: 24 months

Ansan, South Korea
SCC6-8000H 2 x 1 combined cycle plant
- Total power output: 834 MW net
- CC plant efficiency: > 60% net
- Construction period just 24 months
- CHP plant, more than 75% fuel utilization
- NOx emissions of 7 ppmvd, the lowest in Korea
For more information, please contact our Customer Support Center.
Phone: +49 180/524 70 00
Fax: +49 180/524 24 71
(Charges depending on provider)
E-mail: support.energy@siemens.com

Article No. PGGT-B10005-03-7600
Dispo 34802
TH 565-170661 | BR | 07172.0

Subject to changes and errors.
The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.