Intelligent Transformer Substations for Future-Proof Power Distribution

The Modular 3-Level Concept of Siemens
The requirements on power distribution and therefore on medium- and low-voltage grids are increasing continuously. Changing directions of power flow, load and voltage fluctuations, which are caused especially by the strongly growing number of power supplies from volatile power sources, e.g. photovoltaic/biogas plants and wind farms, make the distribution grids of today go to their capacity limits.
Always well supplied – no chance for blackouts

Many of today’s transformer substations, originally designed for a merely unidirectional energy flow and equipped with conventional transformers, are no longer capable of coping with the effects of volatile power sources. The consequences are more and more frequent supply breakdowns in the classical distribution grid, with ever increasing downtimes. In order to reduce such downtimes notably and to limit the associated blackout costs, quick adjustments to the changed load conditions must be possible.

Active distribution grid with intelligent transformer substations for a smooth infeed of renewable energies

While the additional load capacity required due to the expansion of renewable energies can be provided by means of grid expansion, the effects resulting from the alternating direction of power flow, load fluctuations, and voltage range limitation can only be handled with intelligent solutions. The answer is an active distribution grid with intelligent transformer substations as key components. These contribute to an active load management in the distribution grid and enable an automatic and fast fault clearance in case of blackouts. In this way, you are always well supplied.

Benefits of intelligent transformer substations

- Monitoring and assurance of power quality
- Controlling of overload situations
- Minimization of loss of power grid revenue by notably reduced interruption times
- Optimization of grid expansion
- Object monitoring of the transformer substation
Conventional grid with unidirectional power flow

Active distribution grid with intelligent transformer substations

Legend

- Communication
- Power flow to:
 - High-voltage grid
 - Medium-voltage grid
 - Low-voltage grid
- Primary transformer substation
- Secondary transformer substation

* The given voltage values are exemplary
A consistent concept:
The suitable component for every task

Modular design
The following components can be integrated in an intelligent transformer substation:
- Remote terminal units SICAM CMIC
- Uninterruptible power supplies SITOP
- Communication solutions with TCP/IP, GSM, UMTS, LTE, WiMAX, BPL, etc., e.g. with SCALANCE or RUGGEDCOM
- Short-circuit/ground fault direction indicators SICAM FCM, SICAM FPI
- Current and voltage sensors
- Regulated distribution transformers FITformer® REG
- Power meter/Power quality recorder SICAM P850/855
- Medium-voltage switchgear from the 8DJH family
- Decentralized energy management DEMS
- Control center system for utility companies SICAM 230
- Switchgear visualization SICAM SCC

- Connection to:
 - Network control system SINAUT PowerCC
 - Substation automation SICAM PAS/AK 3
 - Electronic meters AMIS
 - Protection and switching devices from the SENTRON portfolio for protection of the low-voltage power distribution.

Solutions out of one hand make the distribution grids ready for the challenges created by the growing integration of renewable energies. In addition, they allow utilities a more efficient operation of their infrastructure, thus offering important competitive advantages.
Conceptual design of an intelligent transformer substation

The above illustration shows the conceptual design of an intelligent transformer substation.

1. Medium-voltage switchgear
 with motor operating mechanisms to actuate the switch disconnectors or circuit breakers from external switching points (e.g. network control center), sensors to measure currents and voltages, and intelligent short-circuit/ground fault direction indicators.

2. Transformer
 Standard transformer or regulated distribution transformer.

3. Low voltage
 Protection with integrated measuring functions, motor operator and communication for power monitoring and energy management of the individual low-voltage feeders.

4. Telecontrol unit
 RTU*, communication device, uninterruptible power supply.

* Remote Terminal Unit
Planning, design and maintenance of a smart distribution grid are complex tasks for municipalities and distribution grid operators. The ability to seamlessly integrate sensors, actuators, communication and IT systems into the existing infrastructure significantly reduces these challenges. Intelligent transformer substations – with switchgear, transformers, protection devices, as well as telecontrol and automation solutions – allow applications for higher reliability of supply.

Intelligent transformer substations as key components of the modern distribution grid

In the future, transformer substations will become a key component in the distribution grid.

Intelligent transformer substations allow for:
- Management of the low-voltage distribution grid for each outgoing feeder with handling of meter data, compensation of reactive power and harmonics, regulation of the distribution transformer, as well as the coordination of supply and load
- Supervision and control of the transformer substation on the medium-voltage side regarding fault location and automatic recovery of supply.
- Provision and transmission of measured values and indications from the medium- and low-voltage system.

The key components in the grid
A basic precondition for the operation of smart grids is the monitoring and control of as many grid components as possible. The basis for this is a reliable telecommunication infrastructure.

This telecommunication infrastructure on the medium- and low-voltage level is usually heterogeneous. The most suitable technologies for this are substantially determined by the local structure (big city, rural region, distances), the regulatory marginal conditions (transmission power, availability of frequency bands and associated licenses), as well as the applications used. They must therefore be adjusted individually to every customer and every case of application.

The following telecommunication technologies can usually be selected:

- Fiber optic or copper cables
- Broadband powerline communication systems
- Private wireless networks (e.g. WiMAX)
- Public wireless networks.

Essential prerequisites for successful operation are both the contractual assurance of a stable communication, also in case of blackouts, and permanently attractive data tariffs for machine-to-machine-connections (M2M).

Siemens offers solutions for all mentioned telecommunication technologies, including especially hardened, standard-compliant routers and switches, in order to enable your grid to communicate intelligently.
Universal remote terminal unit

SICAM CMIC is a universal automation and remote terminal unit. With a temperature range from –40 °C to +70 °C, a high EMC resistance and the small, compact dimensions, SICAM CMIC can be used in a rough environment also under smallest space conditions. With its technical and mechanical benefits, SICAM CMIC is suitable for electrical distribution substations, gas distribution stations, hydro-power plants, pipelines, railway power supplies, object protection, or as an alarm device.

Versatility of SICAM CMIC:
- Nodal functionality for use as subordinate remote terminal unit with serial and Ethernet connection
- Extension with up to 6 module assemblies
- Coupling of additional devices over Modbus RTU
- Freely programmable user programs for local control, interlocking or regulation tasks, according to IEC 61131-3
- Remote maintenance, remote diagnostics, and remote parameterizing
- Configuration, diagnostics and test through a web browser with SICAM WEB, alternatively via SICAM TOOLBOX II.
- Diagnostics via SNMP-integrated IPSEC encryption.

Intelligence of SICAM CMIC:
If all possibilities offered by SICAM CMIC are retrieved, the unit can be integrated into an intelligent transformer substation in three steps:
1. Supervision/monitoring
2. Telecontrol
3. Automation and load flow control.

SICAM CMIC: Portrait

Communication interfaces and protocols
- Ethernet: IEC 61850, IEC 60870-5-104, DNP(i)
- Serial: IEC 60870-5-101/-103, Modbus RTU

Operation and display
- Display (128 x 96 pixels) incl. operation via 4 function keys
- LEDs for status indications and status of the communication interfaces
- Integrated web server for configuration and diagnostics

Inputs/outputs
- 12 digital inputs (24-60 V DC)
- 8 digital outputs
- Extension modules

Auxiliary voltage
- 18-72 V DC

Temperature range
- From –40 °C to +70 °C

Safety
- Security requests from tomorrow (BDEW white paper conformity and integrated crypto chip)
A reliable, constant power supply is imperative for safe system operation. Depending on the requirements, the SITOP power supply units can be individually upgraded with extension modules as well as with uninterruptible power supply units.

The SITOP product range offers high-quality power supply units for almost every requirement. Thereby, the technology product line SITOP modular satisfies the highest demands regarding functionality and efficiency. Thanks to their wide-range input, the compact power supply units guarantee constantly regulated 24 volts even in case of large voltage fluctuations. The power boost delivers up to three times the rated current for a short time in order to switch high loads also without problems.

DC-UPS for 24 volts nonstop

In case of a power failure, guaranteed uninterrupted operation of protection and control units is decisive. The motor operating mechanism of the switch disconnector or circuit breaker must also still operate safely in case of a power failure. To ensure this, the SITOP power supply units can be upgraded to an uninterruptible 24 V DC power supply system. Depending on the energy demand, maintenance-free battery modules with lead batteries enable further operation in the range of hours. The intelligent battery management of the DC-UPS module SITOP UPS1600 monitors all relevant operating data.

Extremely communicative

The grid and battery status can even be transmitted to PC or PLC systems via Ethernet/PROFINET. The integrated web server also enables remote diagnostics.
Mobile wireless router SCALANCE M and 5TT7 GSM alarm module

SCALANCE M
Mobile wireless routers enable the cost-effective and secured connection of transformer substations via the mobile network. The SCALANCE M876-4 communicates via LTE (4G). It reaches transmission rates of up to 100 Mbit/s downlink, and up to 50 Mbit/s uplink (depending on the infrastructure of the mobile network provider). SCALANCE M874-3 uses the UMTS network (3G) and supports HSPA+ (High Speed Packet Access). For communication via GSM (2G), SCALANCE M874-2 is suitable. It supports GPRS (General Packet Radio Service) and EDGE (Enhanced Data Rates for GSM Evolution). With the integrated security functions Firewall and VPN, the security for access and data transmission can be increased. The connection to the substations can be permanent or set up on demand (key-operated switch or wake-up SMS), as required by the application.

The SCALANCE M mobile wireless routers are universally applicable. Due to their design and electrical properties, they are especially suitable for industrial applications:
- World-wide flexible system access for maintenance and diagnostics purposes
- Connection of static and mobile wireless subscribers for control and monitoring of e.g.
 - Sewage and water treatment plants
 - Oil and gas supply
 - District heating networks
 - Power distribution
 - Pumping stations
 - Traffic engineering
- Applicable world-wide* by
 - LTE (penta-band technology)
 - UMTS (penta-band technology)
 - GSM (quad-band technology).

5TT7 GSM alarm module
For mobile transmission of potential-free signaling contacts, e.g. of temperature measuring devices, door contact switches, tripping positions.

* Note: Country-specific approvals must be observed!

SCALANCE M: Portrait
- Robust plastic housing
- Automatic dial-up and holding of the IP-based online connection to the Internet
- Integrated IPsec VPN tunnel encryption
- Management and configuration via comfortable WBM
- Diagnostics via SNMP
- Comprehensive logging information available via SysLog
- Extended event management via e-mail, SMS and digital input
- Fast mobile diagnostics with smartphone/tablet thanks to WebApp

5TT7 GSM alarm module: Portrait
- Mobile transmission of potential-free signaling contacts
- 8 signaling contacts for state transmission
- 4 relay contacts
On the pulse of your distribution grid

SICAM FCM is a short-circuit and ground fault indicator with direction indication, operating with protection algorithms and the latest low-power sensor technology according to IEC 60044. This provides best results, especially in isolated or compensated distribution grids. For workload monitoring of distribution grid components, SICAM FCM offers comprehensive measured values. The evaluation of this data can be used for a specific network planning regarding grid expansion and the application of investment funds. Through a Modbus RTU interface, SICAM FCM delivers all relevant information, thus allowing to evaluate and display the status of the distribution grid correctly and precisely.

Benefits at a glance:
- The first short-circuit indicator to employ sensors conforming to the standard IEC 60044-7/-8
- High-precision measurement without calibration and adjustment to the primary values
- Usable in all grid types
- Precise and fast fault localization for minimum expenses regarding personnel and traveling costs
- Selective fault information with direction indication as a basis for “self-healing” applications
- Resupply times possible in the range of minutes or seconds (depending on the primary equipment)
- Minimum loss of power grid and end customer revenue
- Reliable measured values for operational management and planning.

Digital SC indicator with measuring function

SICAM FCM feeder condition monitor

SICAM FCM: Portrait

Communication
- Interface RS485 Modbus RTU

Operation and display
- 4 function keys, 3 LEDs and display

Inputs/outputs
- 3 inputs for alternating voltage 100 V/\sqrt{3} or low-power sensors 3.25 V/\sqrt{3}
- Alternatively: 3 direct inputs for 400 V AC
- 3 inputs for alternating current low-power sensors 225 mV@300 A
- Alternative current input L2 for low-power sensor 225 mV@60 A for sensitive ground fault detection

Auxiliary voltage
- 24-60 V DC, 230 V AC
- Battery for 2,000 hours, service life approx. 20 years

Temperature range
- From –40 °C to +70 °C

Measurands
- TRMS (True RMS) measured values
- Phase voltage and currents; ground current; power frequency and cos φ; active, reactive and apparent power
Successful distribution grid automation requires detecting faults in the distribution grid, packing them into messages and making them available for further processing. The SICAM Fault Passage Indicator (FPI) is one component for that.

The FPI is used for phase fault detection and indication, and for detection of earth faults in radial or open ring medium-voltage cable networks. 4 external current sensors detect the phase faults (L1, L2, L3) and earth fault (IE). The current sensor detects phase-fault and earth-fault currents based on the set current threshold detection and communicates to SICAM FPI via an optical signal. By using the rotary switch available on the individual sensor, you can set the fault current threshold for phase sensors from 200 A to 1,200 A (Type 1 Series), 200 A to 800 A (Type 2 Series) and for earth sensors from 10 A to 100 A (Type 1 Series), 40 A to 300 A (Type 2 Series).

Benefits at a glance
• Self-sustained, continues functioning using internal lithium battery even after the main incomer feeder has tripped
• Safe, complies with the IEC 61010-1 safety standards
• Simple, DIP switch based setting for configuration and diagnostic testing
• Configurable binary outputs, for remote indication to SCADA for faults/diagnostics via RTU
• Enhanced diagnostics, self and sensor cable diagnostics is supported
• User-configurable momentary fault override function (AR)
• Extended battery life, enhanced energy management enabling more than 2,000 hours of operation under fault conditions (blinking)
• Sensors, IP67-compliant, self-sustained, accurate sensors with a noise immune plastic fiber-optic cable interface to the SICAM FPI indicator unit.
Low-power sensors
Our low-power sensors conform to the standards IEC 60044-7 and -8 and certification in compliance with GOST. They offer measured values for current and voltage which are e.g. acquired and processed in SICAM FCM. This enables high-precision measurements without calibration or adjustment to the primary values.

Current sensors
The current sensors are inductive current transformers whose secondary winding delivers a voltage signal through a precision shunt. At the rated primary current, this is 225 mV. The current sensors are available in two versions: Divisible cable-type current transformers – used especially for retrofitting existing switchgear, and closed ring cores – mounted on the outside-cone bushing of the 8DJH switchgear in a single- or three-phase version.

In this context, the three-phase version can also be equipped with two phase current sensors and a zero-sequence current sensor for sensitive ground fault detection.

Voltage sensors
The voltage sensors are resistor dividers which provide an output signal of 3.25 V/√3 at the rated primary voltage. The voltage sensors are available as cast-resin plugs, which are inserted into the cable T-plugs instead of the blind plugs. Thereby, the voltage sensor contour conforms to the type C standardized in EN 50180/50181, but it is also available for shorter cable plug types.
With the 3WL air circuit breaker, the modular 3VA molded case circuit breaker or the 3KD switch disconnector from the SENTRON portfolio, the transformer can be easily disconnected from the low-voltage part, in order to prevent possible feedbacks from the low-voltage grid. The maintenance personnel are thus optimally protected. For working in the low-voltage part, the authorized disconnection of the medium-voltage part is therefore not absolutely necessary anymore. Furthermore, the 3WL and 3VA circuit breakers offer a central and selective protection function. Motor operators and optional communication connections allow for both remote control and remote diagnostics.

3WL air circuit breaker
From 630 A to 2,000 A, the 3WL air circuit breaker is available in one uniform size. Components such as auxiliary releases, motor operators, electronic trip units, current transformers, auxiliary circuit signaling switches, automatic reset devices, interlocks and engagement operating mechanisms can all be easily retrofitted or exchanged, thus allowing the circuit breaker to be adapted to new and changing requirements. The main contact elements can all be replaced in order to increase the endurance of the circuit breaker.

3VA molded case circuit breaker
The 3VA molded case circuit breaker is a complete system designed with you in mind: Apart from a large selection of basic devices, the portfolio also comprises a wide range of accessories, and can thus be exactly adapted to your individual conditions. Thanks to its compact dimensions, you will moreover save precious space in the low-voltage part of your transformer substation. For rated currents above 630 A, the 3VL molded case circuit breaker is used.

3KD switch disconnector
The 3KD switch disconnector up to 1,600 A serves for manually disconnecting the low-voltage part of your plant.

Main switches on the low-voltage side: Portrait

- **3WL air circuit breaker**
 - Size 1 up to 2,000 A
 - Size 2 up to 4,000 A
 - With communication and motor operator
 - Available in fixed-mounted and withdrawable design

- **3VA molded case circuit breaker**
 - Compact and consistent up to 630 A
 - Comprehensive accessories
 - Optional communication connection
 - Integrated measuring function
 - Motor operator
 - Available in fixed-mounted, plug-in and withdrawable design
 - 3VL molded case circuit breaker for up to 1,600 A

- **3KD switch disconnector**
 - Compact and consistent up to 1,600 A
Protection and management of low-voltage feeders

Renewable energy sources with strongly fluctuating yields, and distributed power generation with variable load flows set new challenges on power distribution. Besides the classical protection of the individual low-voltage feeders, power monitoring and energy management are becoming more and more important. With the new 3VA molded case circuit breaker, you will be perfectly prepared for these challenges. Furthermore, our 3NJ4/5 in-line fuse switch disconnector with LV HRC fuses type 3NA and 3ND offers a proven solution for classical applications.

For rated currents above 630 A, the 3VL molded case circuit breaker is used.

3NJ4/5 in-line fuse switch disconnector with 3NA and 3ND fuses
In combination with the LV HRC fuses type 3NA and 3ND, the 3NJ4/5 in-line fuse switch disconnector provides for proven protection of the individual outgoing low-voltage feeders up to 1,250 A.
Protection of the auxiliary supply by low-voltage protection devices

Intelligent transformer substations contain many control and communication components with a high asset value. Therefore, not only plant protection and availability, but also the protection of maintenance personnel play an important part. Our devices for line, residual current and overvoltage protection reliably protect both systems and people and provide a high system availability.

3NP1 fuse switch disconnector
The 3NP1 fuse switch disconnector provides the basic protection of the electrical auxiliary supply of your transformer substation.

5SL miniature circuit breaker
Suitable for fast and simple installation of components such as auxiliary switches and fault signal contacts. The 5SL4 miniature circuit breaker can additionally be combined with shunt releases, under-voltage releases and AFD units (arc fault detection units).

5SV and 5SM residual current operated circuit breaker (RCCB)
According to DIN VDE 0100-410, all socket outlet circuits up to 20 A must be provided with residual current protective devices with a rated residual current up to max. 30 mA. The 5SV and 5SM RCCBs for all kinds of residual currents offer a standard-compliant protection for persons, property and fire - for your safety.

5SD7 overvoltage protection device
More than one million lightning flashes per year over Germany involve a high risk for buildings and plants. The direct impact of lightning currents and over-voltages can seriously damage your system and electronics. With the 5SD7 overvoltage protection device, you can avert this danger.
Regulated distribution transformer
FITformer® REG

As one of the main components in distribution stations, transformers fulfill an important task: They are responsible for the final customers being supplied with the correct voltage. Grid operators must therefore guarantee a low voltage supply within the allowed voltage band for every household. However, the rising infeed of renewable energies overstrain many transformer substations. Considerable voltage fluctuations are the consequence and can even lead to an infringement of the permissible voltage band.

Increasing trend towards regulated distribution transformers

In case of non-compliance with the voltage quality criteria due to the decentralized supply from renewable energies, grid operators are forced to a costly expansion of the distribution grid. However, the rising infeed of renewable energies overstrain many transformer substations. Considerable voltage fluctuations are the consequence and can even lead to an infringement of the permissible voltage band.

FITformer® REG – the adaptable distribution transformer

The ratio of the regulated distribution transformer FITformer® REG can be changed under load. These adjustments are possible due to the three-step low-voltage load regulation range of the transformer. With this transformer, energy suppliers can guarantee the supply voltage within the tolerance limits, and comply with the standard EN 50160.

FITformer® REG: Portrait

- Power range up to 630 kVA, max. operating voltage: 36 kV
- Low-voltage load regulation range in three steps
- Operating properties and dimensions correspond to those of common distribution transformers
- Design example 21 kV/420 V

Example for possible load regulation range:
+/- 3.57% @ 400 kVA
+/- 4.34% @ 630 kVA

- Additional setting range on the high-voltage side for optimum operation:
 +/- 2.5% and +/- 5% (adjustable in de-energized condition)
Power meter and power quality recorder
SICAM P850/855

Device description
The multifunction measuring device SICAM P85x serves for acquisition, visualization, and transmission of measured electrical values such as alternating current, alternating voltage, frequency, power, harmonics, etc. Acquisition and processing of measurands and events are performed according to the power quality standard IEC 61000-4-30. Through the communication interfaces, the measurands can be transmitted to a PC and to the control and protection system, or shown on a display. As an all-in-one device, SICAM P855 offers a combined recording and evaluation function in addition to the monitoring function: Measured values can be recorded at programmable time intervals with various recorders, e.g. power quality and fault recorders. Long-time data and events are evaluated directly in the device according to the power quality standards (e.g. EN 50160), and issued as a report.

Benefits at a glance:
• Universal for single-phase, three- and four-wire grids (with neutral conductor)
• Large current measuring range (up to 10 A max.)
• High accuracy due to small measuring error
• Easy parameterizing by integrated web server
• Safe data storage by battery buffering
• High interference immunity.

SICAM P850/855: Portrait

Communication interfaces and protocols
• Ethernet: MODBUS TCP, IEC 61850 Edition 2
• Serial: Modbus RTU, IEC 60870-5-103

Operation and display
• Full graphic display incl. operation via 4 function keys
• 4 LEDs for status and fault indications
• Integrated web server for interaction with PC via HTML pages

Input measuring circuits
• 4 x alternating voltage, 3 x alternating current up to max. 10 A

Auxiliary voltage
• 24 - 250 V DC
• 110 - 230 V AC, 50/60 Hz

Housing specification
• Plastic enclosure for top-hat-rail mounting, optionally flush mounting
• Dimensions: 96 x 96 x 100 mm (W / H / D)
• Degree of protection: max. IP51
The 8DJH family for the medium-voltage distribution grid

Medium-voltage switchgear
8DJH and 8DJH 36
The gas-insulated medium-voltage switchgear types 8DJH and 8DJH 36 are the basis for applications in intelligent transformer substations. These modular switchgear assemblies allow the variable arrangement of the functions – both within a panel block and in more complex switchgear layouts. All individual panels and panel blocks can optionally be extended. Thus, almost all scheme arrangements can be implemented with 8DJH switchgear.

The compact 8DJH Compact
8DJH Compact has been especially developed for transformer substations in which space requirements are an important issue. This switchgear provides maximum functionality on minimum space. With its smaller standing surface in comparison to other block-type or extendable switchgear types, 8DJH Compact leaves more space for additional low-voltage feeders, more medium-voltage cable feeders, or intelligent functions. Shorter transformer cables and reduced expenses for laying these cables inside the transformer substation provide further advantages, reducing the investment costs.

Space saving:
The 8DJH Compact
The illustration shows the space gained for four low-voltage in-line feeders, or an additional medium-voltage cable feeder, by installing 8DJH Compact with a width of 700 mm in comparison with a conventional ring-main unit with a width of 1,050 mm
Characteristics of the 8DJH family:

Environmentally independent

Hermetically welded switchgear vessels made of stainless steel as well as single-pole solid insulation make the parts under high voltage of 8DJH switchgear

• Insensitive to aggressive ambient conditions, such as:
 – Saline air
 – Air humidity
 – Dust
 – Condensation

• Tight to ingress of foreign objects, such as:
 – Dust, pollution
 – Liquids
 – Small animals
 – Humidity.

Compact

Thanks to the use of SF₆ insulation, compact dimensions are possible. Thus:

• Existing switchgear rooms and substation rooms can be used effectively
• New constructions cost little
• Costly city-area space is saved.

Safe for operation and cost-efficient

Switchgear vessels designed as sealed pressure systems, maintenance-free switching devices and enclosed cable plugs ensure:

• Maximum supply reliability
• Personnel safety
• Sealed-for-life design according to IEC 62271-200 (sealed pressure system)
• Installation, operation, extension and replacement without SF₆ gas work
• No maintenance cycles
• Reduced operating costs
• Cost-efficient investment.
The integration of components into the medium-voltage switchgear
The switchgear of the 8DJH series is optionally equipped with motor operating mechanisms, short-circuit indicators, voltage detecting systems, as well as with further sensors. RTUs can be optionally integrated inside the switchgear, in additional low-voltage compartments or in a separate wall cubicle via a plug connection. In this way, the switchgear fulfills all preconditions for integration in an intelligent network infrastructure.

Depending on the purpose, different components for monitoring and control are used. These components can also be easily and quickly retrofitted at a later time.

Overview and explanation of the components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninterruptible power supply (UPS)
Depending on the requested bridging time in case of power failures, an uninterruptible power supply based on battery or capacitor modules is used.</td>
<td>The task of the UPS is to continue to ensure the communication and/or the possibility to telecontrol the transformer substation in case of power failure.</td>
</tr>
<tr>
<td>Remote terminal unit
The remote terminal unit (RTU) is equipped with binary inputs and outputs, various communication interfaces, and freely programmable user programs.</td>
<td>Inside the intelligent transformer substation, the RTU serves as a connecting element to the network control center. It collects all relevant signals and receives control commands, or works autonomously according to pre-determined control or regulation algorithms.</td>
</tr>
<tr>
<td>Communication devices
The selection of the communication device to be used is determined by the selected or available telecommunication technology.</td>
<td>Communication devices are employed for safe data transmission from the remote terminal unit to the network control center using the selected telecommunication technology.</td>
</tr>
<tr>
<td>Intelligent SC indicators
Intelligent short-circuit and ground fault indicators with or without direction indication can be used in all grid types. For communication with the RTU, a Modbus RTU interface is available.</td>
<td>Intelligent short-circuit /ground fault direction indicators report short-circuits or ground faults in the medium-voltage distribution grid. Relevant measured values are acquired, allowing for an active load management in the distribution grid.</td>
</tr>
<tr>
<td>Remotely controllable operating mechanisms
Motor operating mechanisms inside the ring-main unit are available in original equipment manufacturer quality. If required, retrofitting is easily possible.</td>
<td>In order to reduce the reclosing times in case of fault, the switch disconnectors or circuit breakers are equipped with motor operating mechanisms for remote control.</td>
</tr>
<tr>
<td>Current sensors
Current sensors with low-power transformer technology are available as closed or divisible ring cores.</td>
<td>The current signal serves to detect short-circuits and ground faults, and can be used as a measured value for load flow control or for optimal utilization of the grid capacity.</td>
</tr>
<tr>
<td>Voltage sensors
Voltage sensors as resistor dividers are available as cast-resin plugs for insertion into the cable T-plug.</td>
<td>The voltage signal serves to detect the direction of the short-circuit or ground fault, and can be used as a measured value for load flow control or voltage regulation.</td>
</tr>
</tbody>
</table>
Step by step to more intelligence

The illustration shows the stepwise expansion levels: Monitoring, telecontrol and load flow control.
The 3-level concept

In order to conform to the increased requirements also in the future, three levels of intelligence can be implemented.

In the first level, the focus is on substation monitoring, in order to increase the availability and to allow for a fast fault localization.

The second level contains, besides monitoring, also the possibility to telecontrol the switchgear, thus allowing the minimization of downtimes.

In the third level, the effects of decentralized power supplies are managed via automation. Grid losses can thus be notably reduced.

By installation of intelligent control, measurement and regulation systems, conventional transformer substations can be upgraded step by step. In this way they are perfectly prepared for their integration into smart grids. Depending on the desired expansion level, the necessary components must be configured.

The modular concept for the smart grid of the future

3. Load flow control

- Minimization of losses
- Management of decentralized power supplies

- Remote terminal unit with communication connection
- Short-circuit/ground fault direction indicators
- Current sensors
- Voltage sensors
- Auxiliary switch contacts
- Uninterruptible power supply
- Low-voltage components with integrated measuring function

- Motor operators for low- and medium-voltage switch disconnectors and circuit breakers

- Power meter and power quality recorder
- Regulated distribution transformer
- Regulation algorithms, software components for flow control
- Regulation algorithms for the regulated distribution transformer
The expansion levels for the modular concept

1st level: Monitoring

Benefits

- Higher availability
- Faster fault localization
- Object monitoring of the transformer substation
- Current and voltage values from the low-voltage and medium-voltage side

Target:

In the first level, the focus is on transformer substation monitoring, in order to allow for a fast fault localization and to reach a higher availability. However, travel time to the transformer substations is still necessary to eliminate the fault, preventing a substantial reduction of the downtimes.

To do this, the following components are used:

- Remote terminal unit with communication connection
- Short-circuit/ground fault direction indicators
- Current sensors
- Voltage sensors
- Auxiliary switch contacts
- Uninterruptible power supply
- Low-voltage components with integrated measuring function.
2nd level: Telecontrol

Target:
Today, typical downtimes of transformer substations are in the range of hours, as the maintenance teams must identify the fault location in the affected ring on site, drive to the individual transformer substation, and isolate the fault. The application of short-circuit or ground fault direction indicators only represents an improvement for a fast fault localization.

A further reduction of time is possible today by using remote terminal units, with characteristics especially tailored for this task. Downtimes can thus be reduced from hours to just a few minutes.

To do this, the following components are used:
- Remote terminal unit with communication connection
- Short-circuit/ground fault direction indicators
- Current sensors
- Voltage sensors
- Auxiliary switch contacts
- Uninterruptible power supply
- Low-voltage components with integrated measuring function
- Motor operators for the switch disconnectors or circuit breakers.

Benefits
- Higher availability
- Faster fault localization
- Object monitoring of the transformer substation
- Current and voltage values from the low-voltage and medium-voltage side
- Minimization of downtimes
- Reduction of the reclosing times
3rd level: Load flow control

Target:
Changing directions of the energy flow as well as load and voltage fluctuations, caused by a continuously rising number of renewable energy producers, make the distribution grids of today go more and more to their limits, and partially also exceed the allowed voltage limits. The aim of the third level is to counteract these effects by means of control and regulation algorithms, to adhere to the allowed limits of the distribution grid again, and to postpone or even avoid an expensive grid expansion.

To do this, the following components are used:
- Remote terminal unit with communication connection
- Short-circuit/ground fault direction indicators
- Current sensors
- Voltage sensors
- Auxiliary switch contacts
- Uninterruptible power supply
- Low-voltage components with integrated measuring function
- Motor operators of the switch disconnectors or circuit breakers
- Power meter and power quality recorder
- Regulated distribution transformer
- Regulation algorithms, software components for flow control
- Regulation algorithms for the regulated distribution transformer.

Benefits
- Higher availability
- Faster fault localization
- Object monitoring of the transformer substation
- Current and voltage values from the low-voltage and medium-voltage side
- Minimization of downtimes
- Reduction of the reclosing times
- Minimization of losses
- Management of effects from decentralized power supplies
- Reduction of grid losses
- Regulation of RDT
Able to cope with all requirements: The communication for an intelligent secondary distribution grid

Communication concept: Transformer substation – RTU – network control center including time synchronization

- NTP
- Ethernet
 - IEC 60870-5-104
- SICAM
 - CMIC
- RS485
 - Modbus RTU
- Control system
- Low-voltage main switch and feeder protection, e.g. 3WL, 3VA circuit breaker
- Power meter and power quality recorder, e.g. SICAM P850/P855
- Regulated distribution transformer (RDT), e.g. FITformer® REG
- MV switchgear with motor operating mechanisms, e.g. 8DJH with Modbus MCU
- Intelligent short-circuit/ground fault direction indicator, e.g. SICAM FCM

* NTP (Network Time Protocol)
8DJH

<table>
<thead>
<tr>
<th>Technical features</th>
<th>17.5 kV, 25 kA, 1 s</th>
<th>24 kV, 20 kA, 3 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated values up to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60 Hz</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Busbar current up to</td>
<td>630 A</td>
<td>630 A</td>
</tr>
<tr>
<td>Feeder current up to</td>
<td>630 A</td>
<td>630 A</td>
</tr>
<tr>
<td>Busbars</td>
<td>Single busbar</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>Gas-insulated</td>
<td></td>
</tr>
<tr>
<td>Switchgear vessel</td>
<td>Hermetically enclosed</td>
<td></td>
</tr>
<tr>
<td>Type of switchgear</td>
<td>Factory-assembled, type-tested, metal-enclosed switchgear according to IEC 62271-200, modular and extendable (option), panel blocks consisting of 2, 3 and 4 panels</td>
<td></td>
</tr>
<tr>
<td>Internal arc classification (option)</td>
<td>IAC A FL/FLR 21 kA, 1 s</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block width</td>
<td>620 mm to 1,720 mm</td>
<td></td>
</tr>
<tr>
<td>Block height</td>
<td>Optionally 1,200 mm, 1,400 mm or 1,700 mm (each without low-voltage compartment)</td>
<td></td>
</tr>
<tr>
<td>Height of LV compartment</td>
<td>Optionally 200 mm, 400 mm, 600 mm, 900 mm</td>
<td></td>
</tr>
<tr>
<td>Block depth</td>
<td>775 mm, 890 mm (with pressure relief duct at the rear)</td>
<td></td>
</tr>
</tbody>
</table>

8DJH Compact

<table>
<thead>
<tr>
<th>Technical features</th>
<th>17.5 kV, 25 kA, 1 s</th>
<th>24 kV, 20 kA, 3 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated values up to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60 Hz</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Busbar current up to</td>
<td>630 A</td>
<td>630 A</td>
</tr>
<tr>
<td>Feeder current up to</td>
<td>630 A</td>
<td>630 A</td>
</tr>
<tr>
<td>Busbars</td>
<td>Single busbar</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>Gas-insulated</td>
<td></td>
</tr>
<tr>
<td>Switchgear vessel</td>
<td>Hermetically enclosed</td>
<td></td>
</tr>
<tr>
<td>Type of switchgear</td>
<td>Factory-assembled, type-tested, metal-enclosed switchgear according to IEC 62271-200, panel blocks consisting of 3, 4 and 6 panels</td>
<td></td>
</tr>
<tr>
<td>Internal arc classification (option)</td>
<td>IAC A FI/FLR 21 kA, 1 s</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block width</td>
<td>620 mm, 700 mm, 930 mm, 1,010 mm, 1,240 mm, 1,400 mm</td>
<td></td>
</tr>
<tr>
<td>Panel height</td>
<td>Optionally 1,400 mm or 1,700 mm</td>
<td></td>
</tr>
<tr>
<td>Panel depth</td>
<td>775 mm</td>
<td></td>
</tr>
</tbody>
</table>

8DJH 36

<table>
<thead>
<tr>
<th>Technical features</th>
<th>36 kV, 20 kA, 3 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated values up to</td>
<td></td>
</tr>
<tr>
<td>Rated frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Busbar current up to</td>
<td>630 A</td>
</tr>
<tr>
<td>Feeder current up to</td>
<td>630 A</td>
</tr>
<tr>
<td>Busbars</td>
<td>Single busbar</td>
</tr>
<tr>
<td>Insulation</td>
<td>Gas-insulated</td>
</tr>
<tr>
<td>Switchgear vessel</td>
<td>Hermetically enclosed</td>
</tr>
<tr>
<td>Type of switchgear</td>
<td>Factory-assembled, type-tested, metal-enclosed switchgear according to IEC 62271-200, modular and extendable, individual panels and panel blocks</td>
</tr>
<tr>
<td>Internal arc classification (option)</td>
<td>IAC A FI/FLR 21 kA, 1 s</td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>Panel width according to panel type</td>
<td>430 mm, 500 mm</td>
</tr>
<tr>
<td>Panel height</td>
<td>1,600 mm (without low-voltage compartment)</td>
</tr>
<tr>
<td>Panel depth</td>
<td>920 mm</td>
</tr>
</tbody>
</table>
1. Monitoring

Configuration

<table>
<thead>
<tr>
<th>MV switchgear</th>
<th>Cable feeder</th>
<th>Transformer feeder with switch disconnector/fuse combination</th>
<th>Transformer feeder with circuit breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Auxiliary switch at the three-position switch</td>
</tr>
<tr>
<td></td>
<td>- Phase fault detection and indication SICAM FPI</td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Auxiliary switch at the three-position switch</td>
</tr>
<tr>
<td></td>
<td>- Intelligent short-circuit/ground fault direction indicator with associated current and voltage sensors SICAM FCM</td>
<td>- Signaling switch “HV HRC fuse tripped”</td>
<td>- Signaling switch “HV HRC fuse tripped”</td>
</tr>
<tr>
<td>Protection of the auxiliary supply</td>
<td>- Low-voltage protection devices</td>
<td>- SITOP power supply units</td>
<td>- SITOP power supply units</td>
</tr>
<tr>
<td>Uninterruptible power supply</td>
<td>- DC-UPS SITOP UPS1600 with battery modules</td>
<td>- DC-UPS SITOP UPS500S with capacitors</td>
<td>- DC-UPS SITOP UPS500S with capacitors</td>
</tr>
<tr>
<td>Communication</td>
<td>- Mobile wireless communication (GSM), 5TT7 GSM alarm module</td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
</tr>
<tr>
<td></td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- WiMax, e.g. RUGGEDCOM WIN</td>
<td>- WiMax, e.g. RUGGEDCOM WIN</td>
</tr>
<tr>
<td></td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- Broadband powerline communication, e.g. MV300</td>
<td>- Broadband powerline communication, e.g. MV300</td>
</tr>
<tr>
<td></td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- Fiber optic, e.g. SCALANCE X</td>
<td>- Fiber optic, e.g. SCALANCE X</td>
</tr>
<tr>
<td></td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- xDSL (ADSL, SHDSL), e.g. SCALANCE X</td>
<td>- xDSL (ADSL, SHDSL), e.g. SCALANCE X</td>
</tr>
<tr>
<td>Remote terminal unit</td>
<td>- Remote terminal unit as compact unit, optionally with extension modules for binary inputs/outputs SICAM CMIC</td>
<td>- Remote terminal unit as compact unit, optionally with extension modules for binary inputs/outputs SICAM CMIC</td>
<td>- Remote terminal unit as compact unit, optionally with extension modules for binary inputs/outputs SICAM CMIC</td>
</tr>
<tr>
<td>Low-voltage main switch</td>
<td>- 3WL air circuit breaker with communication and measuring function</td>
<td>- 3VA, 3VL molded case circuit breakers with communication and measuring function</td>
<td>- 3VA, 3VL molded case circuit breakers with communication and measuring function</td>
</tr>
<tr>
<td>Low-voltage feeder protection</td>
<td>- 3NJ4, 3NJ5 in-line fuse switch disconnectors with fuse monitoring</td>
<td>- 3VA, 3VL molded case circuit breakers with communication and measuring function</td>
<td>- 3VA, 3VL molded case circuit breakers with communication and measuring function</td>
</tr>
</tbody>
</table>

2. Telecontrol

Configuration

<table>
<thead>
<tr>
<th>MV switchgear</th>
<th>Cable feeder</th>
<th>Transformer feeder with switch disconnector/fuse combination</th>
<th>Transformer feeder with circuit breaker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Auxiliary switch at the three-position switch</td>
</tr>
<tr>
<td></td>
<td>- Phase fault detection and indication SICAM FPI</td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Auxiliary switch at the three-position switch</td>
</tr>
<tr>
<td></td>
<td>- Intelligent short-circuit/ground fault direction indicator with associated current and voltage sensors SICAM FCM</td>
<td>- Signaling switch “HV HRC fuse tripped”</td>
<td>- Signaling switch “HV HRC fuse tripped”</td>
</tr>
<tr>
<td>Protection of the auxiliary supply</td>
<td>- Low-voltage protection devices</td>
<td>- SITOP power supply units</td>
<td>- SITOP power supply units</td>
</tr>
<tr>
<td>Uninterruptible power supply</td>
<td>- DC-UPS SITOP UPS1600 with battery modules</td>
<td>- DC-UPS SITOP UPS500S with capacitors</td>
<td>- DC-UPS SITOP UPS500S with capacitors</td>
</tr>
<tr>
<td>Communication</td>
<td>- Mobile wireless communication (GSM), 5TT7 GSM alarm module</td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
</tr>
<tr>
<td></td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- WiMax, e.g. RUGGEDCOM WIN</td>
<td>- WiMax, e.g. RUGGEDCOM WIN</td>
</tr>
<tr>
<td></td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- Broadband powerline communication, e.g. MV300</td>
<td>- Broadband powerline communication, e.g. MV300</td>
</tr>
<tr>
<td></td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- Fiber optic, e.g. SCALANCE X</td>
<td>- Fiber optic, e.g. SCALANCE X</td>
</tr>
<tr>
<td></td>
<td>- Mobile wireless communication (GSM, UMTS, LTE), e.g. SCALANCE M or RUGGEDCOM RX1400</td>
<td>- xDSL (ADSL, SHDSL), e.g. SCALANCE X</td>
<td>- xDSL (ADSL, SHDSL), e.g. SCALANCE X</td>
</tr>
<tr>
<td>Remote terminal unit</td>
<td>- Remote terminal unit as compact unit, optionally with extension modules for binary inputs/outputs SICAM CMIC</td>
<td>- Remote terminal unit as compact unit, optionally with extension modules for binary inputs/outputs SICAM CMIC</td>
<td>- Remote terminal unit as compact unit, optionally with extension modules for binary inputs/outputs SICAM CMIC</td>
</tr>
<tr>
<td>Low-voltage main switch</td>
<td>- 3WL air circuit breaker with communication and measuring function</td>
<td>- 3VA, 3VL molded case circuit breakers with communication and measuring function</td>
<td>- 3VA, 3VL molded case circuit breakers with communication and measuring function</td>
</tr>
<tr>
<td>Low-voltage feeder protection</td>
<td>- 3NJ4, 3NJ5 in-line fuse switch disconnectors with fuse monitoring</td>
<td>- 3VA, 3VL molded case circuit breakers with communication and measuring function</td>
<td>- 3VA, 3VL molded case circuit breakers with communication and measuring function</td>
</tr>
</tbody>
</table>
3. Load flow control

Configuration

<table>
<thead>
<tr>
<th>MV switchgear</th>
<th>Cable feeder</th>
<th>Transformer feeder with switch disconnector/fuse combination</th>
<th>Transformer feeder with circuit breaker</th>
<th>Protection of the auxiliary supply</th>
<th>Uninterruptible power supply</th>
<th>Communication</th>
<th>Remote terminal unit</th>
<th>Cable feeder MV switchgear</th>
<th>Power meter and power quality recorder</th>
<th>Regulated distribution transformer</th>
<th>Regulation algorithms and software components</th>
<th>Low-voltage main switch</th>
<th>Low-voltage feeder protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Phase fault detection and indication SICAM FPI Fault Passage Indicator</td>
<td>- Intelligent short-circuit/ground fault direction indicator with associated current and voltage sensors SICAM FCM</td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Phase fault detection and indication SICAM FPI Fault Passage Indicator</td>
<td>- Intelligent short-circuit/ground fault direction indicator with associated current and voltage sensors SICAM FCM</td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Signaling switch “HV HRC fuse tripped”</td>
<td>- Auxiliary switch at the circuit breaker</td>
<td>- Signaling switch “HV HRC fuse tripped”</td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Auxiliary switch at the three-position switch</td>
<td>- Definite-time overcurrent protection SIPROTEC</td>
<td>- Low-voltage protection devices</td>
</tr>
</tbody>
</table>
Intelligent transformer substation version with the RTU in the low-voltage compartment of the switchgear

The solution

In order to install the RTU in a space-saving way inside the existing substation building without having to change to a bigger substation type, there is the following possibility: The 8DJH is planned with a switchgear height of 1,200 mm instead of the normal 1,400 mm, and the RTU is integrated in the 200 mm high low-voltage compartments mounted on the top. In this way, the overall switchgear height of 1,400 mm remains.
Intelligent transformer substation version with the RTU in a separate RTU cubicle

The solution

For retrofitting or to clearly divide competencies between the grid operation and the telecontrol departments, the version with the RTU in a separate RTU cubicle is particularly suitable. For this purpose, the RTU cubicle is placed in a separate telecontrol area of the transformer substation, and connected to the medium-voltage switchgear via a plug-in connection. This solution also allows an easy replacement of the whole RTU cubicle at the end of the service life. Through the uninterruptible 24 V power supply SITOP UPS1600, the substation is still supplied even in case of power failure.

SICAM CMIC installed in a separate RTU cubicle inside the transformer substation
Intelligent transformer substation version with the RTU integrated in the switchgear

The solution

In order to design intelligent transformer substations in an especially compact and space-saving way, the version with the RTU integrated in the front operating mechanism of the 8DJH is particularly suitable.

SICAM CMIC integrated in the front operating mechanism of the transformer feeder of the 8DJH