Benefits of continuous data acquisition from critical large drive systems in a mine operation

Luis Galarza
Benefits of continuous data acquisition from critical large drive systems in a mine operation

Introduction
Operational safety, optimized plant availability (system reliability) and energy efficiency are basic requirements to remain competitive in the current mining market. Rotary electrical machines (motors) alone or in combination with mechanical gear such as speed reducers (gearboxes), couplings, brakes and rigging must run trouble-free 24/7. This applies everywhere: at the pit of a mine or underground, along the coarse ore transportation, bulk material handling yard or at the ore processing facility for grinding, pumping or material segregation. However in this paper we will focus on the reliability of drive trains for grinding.

With power sizes commonly exceeding thousands of kilowatts (>1340 hp) Squirrel Cage Induction Motors (SCIM) and Synchronous Motors (SM) are frequently used as part of large Variable Speed Drive trains (VSD), mostly in combination with power electronic devices in the form of Variable Frequency Converters (VFC), to enable process speed regulation either a) to maintain good product quality / process effectiveness, b) to adjust the throughput in an efficient manner or c) to mitigate collateral effects to other users (as soft starters). Wound Rotor (slip ring) Induction Motors (WRIM) can also be used; adding diversity to the installed equipment population and consequently requiring additional specific know-how, capital spares and skilled labor for maintenance, service and troubleshooting in order to minimize downtimes and keep operating expenses under control.

Grinding and Drive Train Diversity
High Pressure Grinding Rolls (HPGR) have been used for many years in comminution circuits [1], with each roll nowadays reaching power ratings of up to 5700 kW (7,640 hp). A HPGR uses gearboxes to operate at a very low speed (rpm) and electrical powered Variable Speed Drives to maintain optimal performance and to equalize roll wear. A complete HPGR drive train nowadays consists of:

- Medium Voltage Isolation Transformers
- Variable Frequency Converters
- Squirrel Cage Induction Motors
- Couplings with articulated shaft extensions
- Gearboxes (speed reducers)

The challenges for HPGRs include the dynamic behavior of the power network (voltage fluctuations) and the movable roll (ore hardness and its size variations) which can lead to collateral effects in the moving parts with large inertia such as coupling and gear reducers. Figure 1 shows a drive train of a 2x 5700 kW (~15,000 hp) power rating.

Figure 1: Typical mechanical Drive Train of a large HPGR, powered up by two squirrel cage induction motors with variable frequency converters
By scaling the power rage up to the megawatt range we start to work with Autogenous (AG), Semi-Autogenous (SAG) and Ball mills. Traditionally moved through a girth gear either with single or dual pinion, there are several variable speed drive trains alternatives in the market:

a) using gearboxes attached to high speed Squirrel Cage (SC) motors with VFCs or Wound Rotor Induction Motors (WRIM) using slip energy Recovery (SER) devices, with a typical motor shaft rated speed of 750 rpm up to 1200 rpm, depending on the electrical network (50 Hz or 60 Hz) and
b) the simplified direct drive type; a more energy efficient solution either with Low Speed Synchronous Motors (LSSM) and most recently the highly reliable Low Speed Induction Motors [2].

Figure 3 shows a ball mill with a dual pinion drive 2x 6500 kW with low speed induction motors (LSIM). The dual pinion drives demand tight tolerances in the torque between the two motors [2] to dynamically equalize the load on both pinions so that, in the long run, their duration is secured and the system availability guaranteed.

For larger applications the well-proven Gearless Mill Drive (GMD) technology has shown to be very effective since its introduction in mining in 1980; currently in operation for horizontal mills up to 40 feet (~12.2m) diameter with power ratings up to 28 MW, GMD offers the best solution in terms of energy efficiency and availability [3].

The GMD performance may offer the highest availability [4] but there are still auxiliary parts subject to wear and tear such as motors for blowers and pumps and dust filters which require attention.

Even the primary components like the associated Cyclo-Converter or the motor itself may, from time to time, need expert factory support to diagnose or troubleshoot in particular situations. Figure 4 shows four GMDs installed at high elevation, the two 28 MW SAG mills are beyond the capabilities of other drive technologies.
Transforming Data into Information

The key is how to use the data available for predictive maintenance purposes; for an accurate prognosis (early detection) of events, i.e. to identify and eliminate or mitigate any potential problem before it actually causes an unscheduled shutdown. Continuous condition monitoring with real time analysis of the status of the operations, vibration and torque measurements, or even noise tracking are typical examples of predictive measures used in modern mining applications. The use of state-of-the-art condition monitoring together with routine inspections by the maintenance staff or operator are all important condition monitoring techniques making use of the senses: look, listen, touch and smell.

There are three simple steps to follow with condition monitoring:

1) set up alarm limits based on manufacturer or standard recommendations
2) correlate the fault symptoms and
3) derive solutions based on the fault diagnosis by certified experts.

Case Studies

Case 1) a condition monitoring system was installed in a 2500 kW gear reducer for a ball mill. After a number of years of smooth operation an abnormal increase in vibration was automatically detected by the system. Fault symptoms indicated a significant increase of bearing play, causing gear meshing problems.

After cautious analysis of the operating parameters, experts found that the problem was caused by water content in the oil.
Once the oil was changed, the vibration did not increase any further. The mill has been in operation one year since the lubrication problem was detected at an early stage. Case 2) asset analytics system installed to overlook two (2) GMDs of 38 feet (~11.6 m) diameter SAG mill drives; in a remote location, recording simultaneously data of relevant electrical and mechanical parameters with focus on the wraparound gearless mill motor (synchronous machines), its VFC (Cyclo-Converter), isolation transformers and their collateral and services (stator – rotor airgap, cooling media, ambient / electrical room temperatures, etc.).

This data is the basis of offline analysis:
1. aside of the traditional trend forecasting for early recognition of asset condition changes;
2. it also contrast the actual operating conditions with
 a) the engineering design parameters;
 b) vs. historical data to establish a graphical representation or “finger print”; the collection of fingerprints and measurements. The BIG DATA is transformed into information, via continuous streaming, pre-analyzing and structuring, into SMART DATA – graphic trends (path depending on load and surrounding conditions). With this information on hand the thermal utilization of the GMD is found; which particularly depends on an effective cooling system, the difference between measured and theoretical values also gives an accurate indication of the motor cooling condition.

Measurements are considered as valid and different data-sets are collected when the operation point (speed and power) is stable during a pre-defined period. Not only potential issues with the GMD motor cooling system are detected in advance and the predictive maintenance action is proactively planned for the next scheduled shutdown; but also data acquisition helped to identify the real thermal reserve, potential for a future power increase in the electrical power of the entire GMD drive system to gain additional plant throughput.
Conclusions

Data retrieved from the field devices with the appropriate accuracy can be transformed into valuable information. If sufficient know-how is not available on site to analyze the data, the use of on-line expert advice can result in the prompt implementation of risk mitigation measures. This can maximize the remaining useful life of the worn/damaged mechanical gear under the careful eye of remote service experts. Early problem detection means that repair activities can be better harmonized with production plans, resulting in increased plant availability and a consequent reduction in repair and maintenance costs. Although the main focus of data acquisition for a condition monitoring system is to minimize machine failures and increase the availability of the monitored asset, it also opens an opportunity window to maximize plant throughput under certain operating conditions.

References

Notice

This paper was first published at the SME Annual Conference & Expo 2016 in Phoenix – USA on the 21st to 24th February 2016 and contains 6 pages.