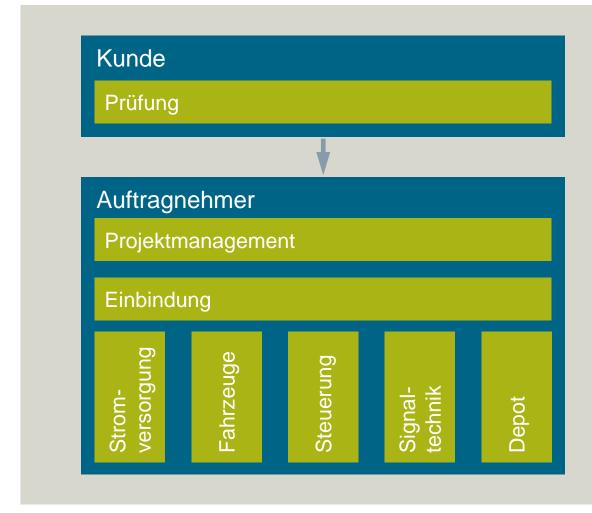



© Siemens AG 2015 siemens.com

Eisenbahngesamtanlagen

Vorteile der Turnkey-Projektabwicklung vs. "Silo"-Abwicklung


Eisenbahngesamtanlagen

Vorteile der Turnkey-Projektabwicklung vs. "Silo"-Abwicklung

Vorteile eines Turnkeyprojekts

Alle ziehen an einem Strang!

- Ein einziger Vertrag mit dem Kunden über alle Leistungen
- Der Auftragnehmer wird zum Partner
- Der Auftragnehmer muss ausreichend Erfahrung haben und finanziell robust sein
- Keine konkurrierenden Gewerke alle tragen das Risiko gemeinsam
- Kein Integrationsrisiko für den Kunden
- Der Auftragnehmer ist voll verantwortlich für die Erfüllung der technischen Anforderungen
- Weniger Potential f
 ür Versp
 ätungen
- Leichter zu finanzieren

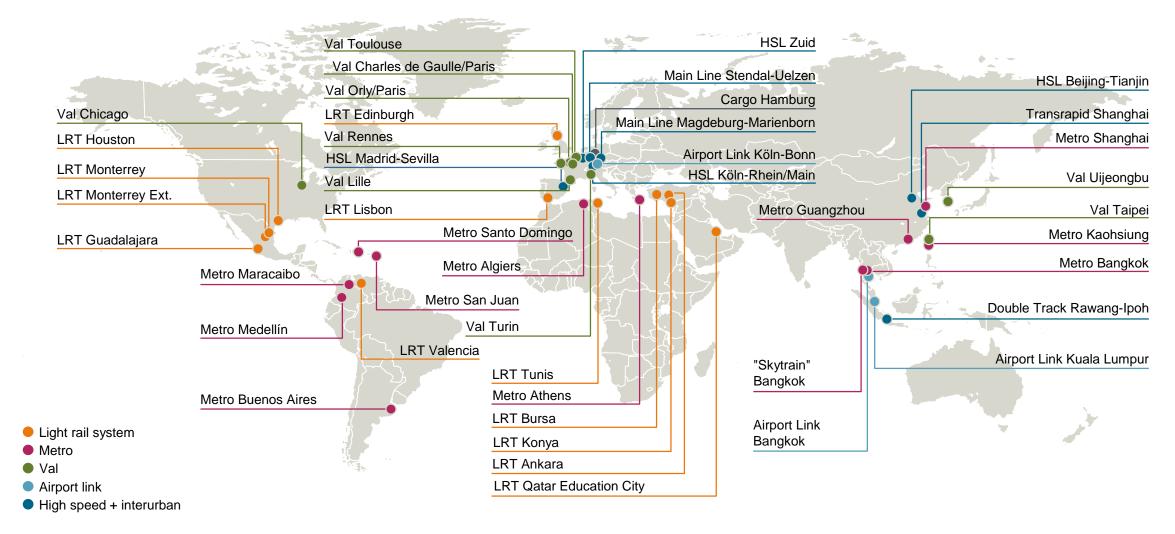
Eisenbahngesamtanlagen

Vorteile der Turnkey-Projektabwicklung vs. "Silo"-Abwicklung

Siemens bietet mehr als reine Systemintegration

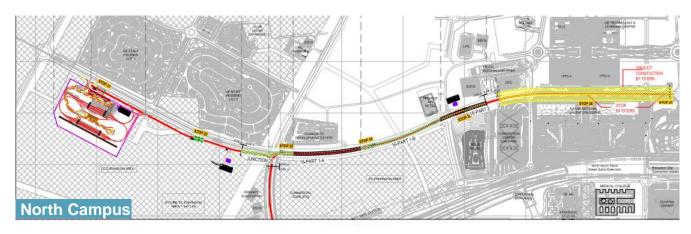
Vorteile eines Siemens Turnkey-Projekts

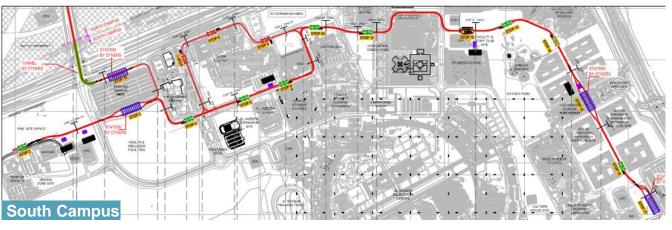
- Projektmanagement, Systemintegration, Koordination und technische Lösungen aus einer Hand
- Leistungsfähige Eisenbahnsysteme (Fahrzeuge, Signaltechnik, Bahnstromversorgung und weitere Infrastruktur) von Siemens mit bewährten Schnittstellen
- Erfahrene Mitarbeiter mit optimierten Prozessen und Tools für die Implementierung
- Kundentraining und Kundenbegleitung/-beratung während der Betriebsaufnahme
- Weltweite Wartungs- und Serviceorganisation für Eisenbahnsysteme und -anlagen sichert Kundennähe während des Betriebs
- Unterstützung bei der Projektfinanzierung
- Finanzielle Stärke
- Erfolgreich auch in Konsortien mit externen Partnern
- umfangreiche, weltweite Erfahrung/Referenzen


Kundennutzen

Zufriedene Passagiere und Betreiber

- Erfüllung höchster Sicherheitsstandards für den Betrieb
- Wir haben immer wieder die Leistungsfähigkeit und Zuverlässigkeit der von uns errichteten Gesamt-anlagen bewiesen
- Optimierte Lebenszykluskosten und das umfangreiche Angebot an Wartungs- und Servicedienstleistungen skalierbar nach den Wünschen des Kunden


Turnkey- Referenzen weltweit



© Siemens AG 2015

Seite 6 April 2015 Division Mobility

Qatar Education City People Mover System Projektübersicht

Kunde	Katar Foundation
Auftragsvergabe	16.05.2012
Streckenlänge	Ca. 12 km
Anzahl Stationen/Stopps	4 + 20
Fahrzeuge	19 Avenio Straßenbahnen mit HES Energiespeichern
Betriebsart	Fahren auf Sicht
Geplante Fertigstellung: South Campus	Juni 2016
Geplante Fertigstellung: North Campus	Dezember 2016

"Durch die Wüste ohne Fahrleitung" Besonderheiten dieses Projekts

Hohe Ansprüche an Design und Architektur:

QEC – ist ein Ausdruck für die Vision Katars in der Zukunft

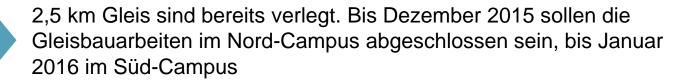
Oberleitungsfreies Fahren zwischen Haltestellen

Anwendung eines neuartigen hybriden Energiespeichersystems (HES)

Hohe klimatische Anforderungen

- Tagestemperaturen über 50 Grad Celsius
- Hohe Luftfeuchtigkeit
- Hohe Staubbelastung
- Gelegentliche Starkregen

Hohe Sicherheitsanforderungen


Siemens wird für 3 Jahre den Betrieb und die Wartung durchführen

Qatar Education City People Mover System

Projektstatus (1)

Gleisbau

Depot

Errichtung der Wagenhalle, der Werkstätte und der Trafostation in vollem Gang. Im Juni soll hier der erste Avenio ankommen

Stationen/Stopps

Errichtung der Fundamente mit hohen Anforderungen durch das außergewöhnliche Design der Haltestellen, Bau der Technikräume (tiefgelegt)

Stromversorgung

Energiekabelverlegung begonnen, Transformatoren geliefert, Schaltanlagen vor Auslieferung

Signaltechnik

Produktion der Signaltechnikkomponenten

© Siemens AG 2015

Seite 9

Qatar Education City People Mover System

Projektstatus (2)

Fahrzeuge

Der erste Avenio wird derzeit im PCW Wildenrath getestet. Die restlichen 18 Fahrzeuge werden bis Februar 2016 fertiggestellt. Im Juni 2015 soll das erste Fahrzeug in Doha eintreffen

Kommunikations- & Sicherheitstechnik

Erste Installationen auf der Baustelle. Fertigstellung des Konzepts des Kontrollzentrums, Lieferung der Komponenten

Depot & Werkstattausrüstung

Werksabnahmen und Vorbereitung der ersten Lieferungen. Schnittstellenklärungen mit dem Bau für Großmaschinen (Unterflurdrehbank, Waschanlage, Kräne, Hubanlage)

Straßenverkehrsbeeinflussung

Fertigung der Ampelsteuergeräte. Abstimmung der endgültigen Straßenführungen mit dem Kunden

Betrieb & Wartung

Detailierung der Betriebs- und Wartungskonzepte. Personalaufbau vor Ort. Vorbereitung des Trainings für das Betriebs- und Wartungspersonal

© Siemens AG 2015

© Siemens AG 2015 siemens.com

Unsere Straßenbahnen

SIEMENS

Ergebnis aus über 130 Jahren Erfahrung

- Einzelwagen
- Keine Oberleitung

- Einzelgelenkfahrzeug
- Über 500 Fahrzeuge (für München, Nürnberg, Frankfurt/M und weitere Städte)

- Multigelenkfahrzeug
- Über 550 Fahrzeuge (für Bern, Amsterdam, Melbourne und weitere Städte)

- Einzelgelenkfahrzeug
- 64 Fahrzeuge (Lissabon, Budapest)

- Einzel- oder Multigelenkfahrzeug
- Optimale Synthese aus Erfahrung und Innovation

Berlin 1881: Erste Straßenbahn der Welt 1992 – 2000 **GT Trams** 1996 – 2010 **Combino**

2005 – 2009 **Combino Plus** Heute
Avenio / Avenio M

Avenio

SIEMENS

Höchster Nutzen für Betreiber, Fahrgäste und Umwelt

Die Synthese aus Erfahrung und Innovation

Gemacht für jede Infrastruktur und jedes Straßenbahnsystem

Gemacht für jeden Bedarf und mehr Fahrgäste

Gemacht für Ihr Stadtbild und Ihr Budget

Bewährt und zuverlässig vom ersten Tag an

Leicht, leise und komfortabel

Unübertroffene Fahrgastkapazität

Design trifft
Wirtschaftlichkeit über die
gesamte Betriebsdauer

Modulbauweise für individuelle Anforderungen

Fahrzeuglängen

Fahrgastzahlen bei unterschiedlichen Fahrzeugbreiten¹⁾

2,30 m	2,40 m	2,65 m	
35 + 69 = 104	46 + 64 = 110	46 + 76 = 122	MD
24 + 79 = 103	36 + 73 = 109	36 + 86 = 122	BD
53 + 108 = 161	70 + 101 = 171	73 + 119 = 192	MD
42 + 118 = 160	50 + 122 = 172	52 + 140 = 192	BD
69 + 153 = 222	90 + 146 = 236	94 + 166 = 260	MD
52 + 170 = 222	72 + 164 = 236	72 + 192 = 264	BD
89 + 189 = 278	120 + 174 = 294	127 + 201 = 328	MD
68 + 211 = 279	96 + 200 = 296	96 + 235 = 331	BD
105 + 233 = 338	138 + 222 = 360	142 + 256 = 398	MD
80 + 260 = 340	112 + 250 = 362	112 + 292 = 404	BD
128 + 265 = 393	170 + 247 = 417	179 + 286 = 465	MD
104 + 292 = 396	144 + 276 = 420	144 + 326 = 470	BD
149 + 303 = 452	190 + 239 = 429	198 + 336 = 534	MD
116 + 341 = 457	160 + 326 = 486	160 + 382 = 542	BD

MD = Einrichtungsfahrzeug (Mono-directional vehicle); BD = Zweirichtungsfahrzeug (Bi-directional vehicle)

¹⁾ Sitzplatzanzahl + pro m² 4 Stehplätze

AvenioDoha Education City (Qatar)

Anzahl Fahrzeuge	19 Fahrzeuge
Lieferzeit	2015-2016
Konfiguration	3 Wagen (Zweirichtungsbetrieb)
Achsfolge	Bo' 2' Bo'
Fahrzeuglänge	27.700 mm (über Kupplung)
Fahrzeugbreite	2.550 mm
Spurweite	1.435 mm
Kapazität (4 P/m²)	165, einschl. 56 Sitzplätze/3 Klappsitze
Einstiegshöhe	350/435 mm
Besonderheiten	Anpassung an die klimatischen Bedingungen, Fahrzeug für komplett oberleitungsfreien Betrieb (Hybrid- Ultrakondensatoren + Batterie), WLAN und Infotainment

Avenio

Doha Education City (Qatar) – Innenraum und Test

© Siemens AG 2015

Seite 16 April 2015 Division Mobility

© Siemens AG 2015 siemens.com

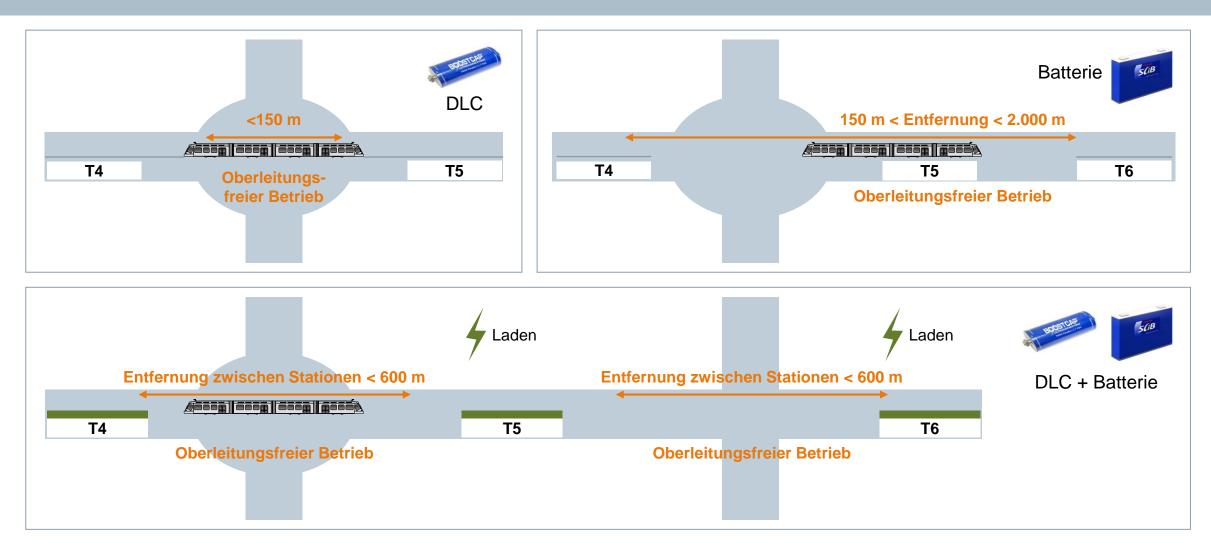
Oberleitungsfreie Lösung von Siemens Hybrides Energiespeichersystem

Kondensatoren

Kondensatoreinheiten sorgen für höchste Leistung und kurze Ladezeiten

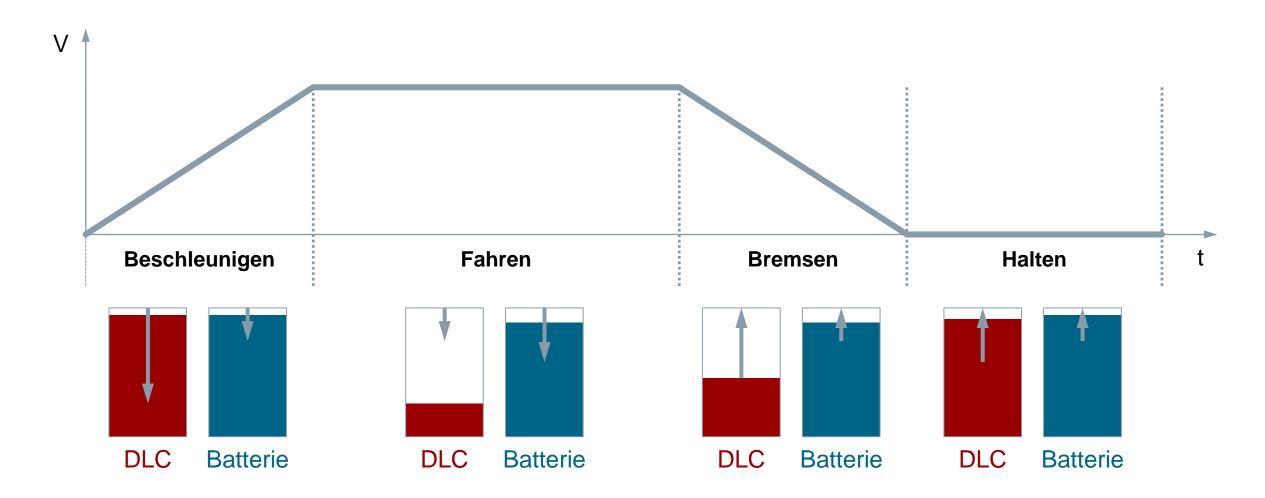
Hochleistungsbatterien

Batterien sorgen bei außerplanmäßigem Halt und längeren Abschnitten ohne Oberleitung für höchste Energieleistung



Oberleitungsfreie Lösung von Siemens

Anwendungsbereiche des hybriden Energiespeichersystems



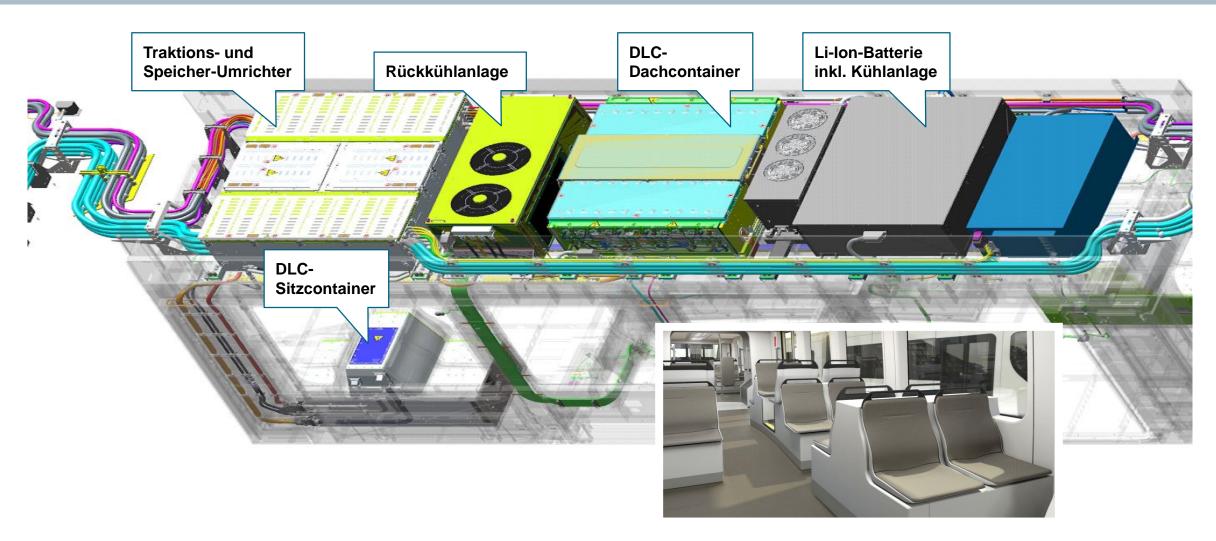
© Siemens AG 2015

Oberleitungsfreie Lösung von Siemens

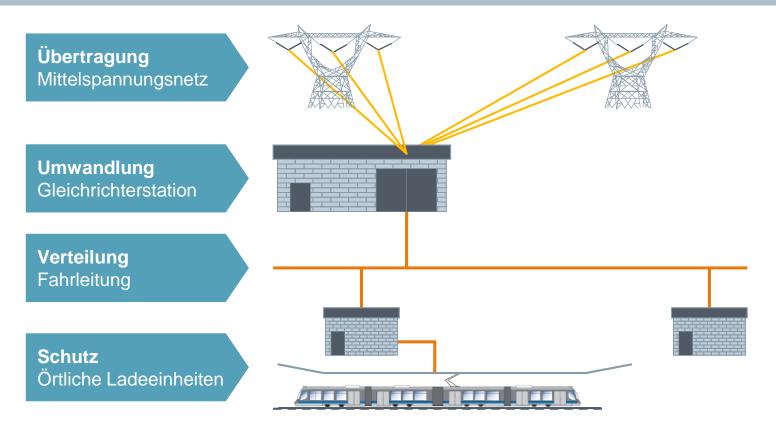
Funktionsweise des hybriden Energiespeichersystems

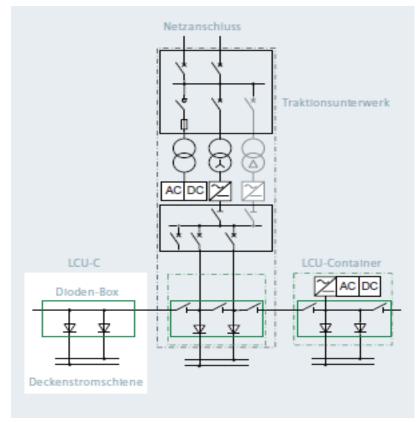
Seite 20 April 2015

Oberleitungsfreie Lösung von Siemens Technische Umsetzung in Education City


Ladevorgang an den Stationen – Herausforderungen und Realisierung:

- Einsatz von festen Stromschienen nur an Stationen und Halten
- Vermeidung von Lichtbögen während des Ladevorgangs
- Nutzung von möglichst viel Energie während der Haltezeit
- Automatische Steuerung des Energieflusses / Optimierung durch Betriebsprognose
- Keine "intelligente" Technik in den Ladestationen Fahrzeug steuert den Ladevorgang selbst




Oberleitungsfreie Lösung von Siemens

Technische Umsetzung in Education City

Oberleitungsfreie Lösung von Siemens Ladeinfrastruktur

- Dezentrale, konventionelle Gleichrichterstationen entlang der Strecke erzeugen Strom in einer festgelegten Qualität
- Zentralisierte örtliche Ladeeinheiten an jedem Halt verteilen den Ladestrom & schützen die gesamte Ausrüstung für einen sicheren Ladevorgang

Oberleitungsfreie Lösung von Siemens

Vorteile einer Energiespeicherlösung

Sicherheit

- Mehr Sicherheit, keine Gefahr durch Magnetfelder und Berührungsspannungen
- Keine Auswirkungen auf Straßenbau und -pflege
- Keine Beeinträchtigung durch Sand, Wasser, Hochwasser, ...

Umwelt

- Bis zu 25 Prozent Energieeinsparung
- Bis zu 25 Prozent weniger CO₂-Emissionen
- Kein zusätzliches Gewicht durch leichte und optimierte Fahrzeugkonstruktion

Wartung

- Niedrige Betriebskosten
- Wartungsfreie Technologie / keine aufwendige Schalttechnik
- Einfache Erweiterung und Aufrüstung

Markt

- Mitwirkung an globaler Zukunftstechnologie
- Offene Systeme, keine Abhängigkeit von einem einzigen Lieferanten

Siemens UITP Press Conference, PCW Wildenrath, 2015-04-21

© Siemens AG 2015 siemens.com