A Tale of Two Technologies For MV Generator Breaker Switchgear SF6 Vacuum # Vacuum Technology – Success Story Overview of the global market share of MV Circuit Breakers #### Market Penetration of vacuum breakers for MV - In 1980 20% - Nowadays around 80% #### Reasons for success - High number of operation cycles - Preservation of the quality of the vacuum throughout the entire life time - No monitoring system required - Maintenance-free - Environmentally friendly - Compact construction # **Advantages of Vacuum Interruption over Gas** ## Vacuum Interrupters are sealed for life - Breaking capability not affected by pressure and temperature of gas - No maintenance and monitoring of contact system - No capacitor required for High short circuit applications - No low ambient temperature concerns ## **Spring-Spring Drive Mechanism** - Opening time and speed are not affected by pressure and temperature of hydraulic oil - No blocking of trip on low gas/hydraulic pressure #### **Number of Operations:** - 10,000 operation electrical and mechanical cycles at rated current - 30 interruptions at 100% of short circuit current - 300 interruptions at 10-100% of short circuit current ## **Siemens Technology** Comparison of Lifecycle Costs # SIEMENS Ingenuity for life # Minimum operational and maintenance costs # Higher number of switching operations (*) SF6 GCB according to manual HECS - 100L document no. 1HC0066312 AC D01 (**) Vacuum GCB according to HB3 100 manual ## **Generator Circuit-Breaker Switchgear Portfolio** Removable type up to 400 MW up to 24 kV up to 12,500 A up to 100 kA, 3 s Removable type up to 170 MW up to 24 kV up to 6,700 A up to 72 kA, 1 s VB1 - Vertical busbar Removable type up to 140 MW up to 24 kV up to 5,500 A up to 72 kA, 1 s VB1-D - Vertical busbar. Drawable Withdrawable type up to 110 MW up to 17.5 kV up to 5,100 A up to 63 kA, 3 s Withdrawable type, ANSI up to 80 MW up to 15 kV up to 4,000 A up to 63 kA, 3 s Withdrawable type, IEC up to 50 MW up to 17.5 kV up to 4,000 A up to 50 kA, 3 s # **Generator Circuit-Breaker Switchgear GM-SG – Technical Data** ## **Application:** Practical range 10 - 80 MW Generators ### **Ratings:** - U_r:15 kV - I_r:up to 3,000 A (4,000 A forced cooling) - I_{sc} (3 s):up to 63 k A ### **Breaker types:** - Type tested to IEEE C37.013a - Arc Resistant Type 2B #### **Dimensions:** • 914 x 2,507 x 2,419 mm (W x D x H) #### Installation Indoor or outdoor application #### **Connection methods** - Cable - Bus ducts #### **Degree of protection** NEMA1 / NEMA3R ## Replacing Existing Gas GCBs with Vacuum GCB Frontview of the existing SF6-generator breaker (24kV - 8500A - 100kA) #### Existing set-up since year 2000 Main leads coming up downstairs from generator Cut-line of the connections to implement the first approach with 3AH38 breakers Main leads going upstairs to phase reveral disconnectors and step-up transformer #### Connection terminal Existing flex-connection straps shall be re-used. Re-use of the existing. Details: 12 straps CU, each 48 x 80mm, thickness 15mm # Replacing Existing Gas GCBs with Vacuum GCB Main leads towards generator Main leads towards step-up transformer Only horizontal bus had to be shortened by approx. 400mm Pictures of 3AH36-generator breaker module for first group in PSP Markersbach. (The disconnector function is disabled for this application as there are separate disconnectors at the floor level above) Siemens AG, EM MS PLM GBS (Oct. 2017) Generator Breaker Systems / Retrofit Solutions ## **Contact Information** ## **Danish Mirza Baig** Business Developer, Energy Management, Medium Voltage Calgary, AB Mobile: +1 (403) 607-7617 E-mail: danish.baig@siemens.com siemens.ca/energymanagement