

#### **INSTALLATION & OPERATION**

# A53105 WAYSIDE COMMUNICATION PACKAGE CENTRAL PROCESSING UNIT II (WCP CPU II)

SEPTEMBER 2013 (REVISED MAY 2014)

DOCUMENT NO. COM-00-97-10 VERSION E.1

Siemens Industry, Inc., Rail Automation 9568 Archibald Ave., Suite 100, Rancho Cucamonga, California 91730 1-800-793-SAFE

Copyright © 2013- 2014 Siemens Industry, Inc. All rights reserved

#### PROPRIETARY INFORMATION

Siemens Industry, Inc. has a proprietary interest in the information contained herein and, in some instances, has patent rights in the systems and components described. It is requested that you distribute this information only to those responsible people within your organization who have an official interest.

This document, or the information disclosed herein, shall not be reproduced or transferred to other documents or used or disclosed for manufacturing or for any other purpose except as specifically authorized in writing by Siemens Industry, Inc.

#### **TRANSLATIONS**

The manuals and product information of Siemens Industry, Inc. are intended to be produced and read in English. Any translation of the manuals and product information are unofficial and can be imprecise and inaccurate in whole or in part. does not warrant the accuracy, reliability, or timeliness of any information contained in any translation of manual or product information from its original official released version in English and shall not be liable for any losses caused by such reliance on the accuracy, reliability, or timeliness of such information. Any person or entity who relies on translated information does so at his or her own risk.

#### WARRANTY INFORMATION

Siemens Industry, Inc. warranty policy is as stated in the current Terms and Conditions of Sale document. Warranty adjustments will not be allowed for products or components which have been subjected to abuse, alteration, improper handling or installation, or which have not been operated in accordance with Seller's instructions. Alteration or removal of any serial number or identification mark voids the warranty.

#### SALES AND SERVICE LOCATIONS

Technical assistance and sales information on products may be obtained at the following locations:

SIEMENS INDUSTRY, INC., RAIL AUTOMATION
2400 NELSON MILLER PARKWAY
SIEMENS INDUSTRY, INC., RAIL AUTOMATION
939 S. MAIN STREET

LOUISVILLE, KENTUCKY 40223 MARION, KENTUCKY 42064

TELEPHONE: **TELEPHONE:** (270) 918-7800 (502) 618-8800 (502) 618-8810 CUSTOMER SERVICE: (800) 626-2710 FAX: SALES & SERVICE: (800) 626-2710 TECHNICAL SUPPORT: (800) 793-7233 WEB SITE: http://www.rail-automation.com/ FAX: (270) 918-7830

#### **FCC RULES COMPLIANCE**

The equipment covered in this manual has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his/her own expense.

#### **DOCUMENT HISTORY**

| Version | Release<br>Date | Sections<br>Changed | Details of Change                                     |
|---------|-----------------|---------------------|-------------------------------------------------------|
| Α       | 9-18-98         |                     | Initial Release                                       |
| В       | 6-8-99          |                     | First Revision                                        |
| С       | 7-23-01         |                     | Update to reflect changes to WCP CPU II configuration |
| D       | 4-11-13         | Entire Book         | MCS2000 radio replacement with MDS9710                |
|         |                 |                     | Update XCMMAINT software                              |
| E       | 9-6-13          | Entire Book         | Update to include replacement radio MDS SD9           |
|         |                 |                     | Update XCMMAINT Software                              |
|         |                 |                     | Rebrand to Siemens Rail Automation                    |
| E.1     | 5-13-14         | Entire Book         | Remove old branding references                        |

#### **Table of Contents**

| Section        | Title                                         | Page |
|----------------|-----------------------------------------------|------|
|                | PROPRIETARY INFORMATION                       | ii   |
|                | TRANSLATIONS                                  | ii   |
|                | WARRANTY INFORMATION                          | ii   |
|                | SALES AND SERVICE LOCATIONS                   | ii   |
|                | FCC RULES COMPLIANCE                          |      |
|                | DOCUMENT HISTORY                              |      |
|                | NOTES, CAUTIONS, AND WARNINGS                 |      |
|                | ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS     |      |
|                | GLOSSARY                                      |      |
|                | CHANGE NOTICE                                 |      |
| 1              | INTRODUCTION                                  |      |
| 1.1            | SCOPE                                         |      |
| 1.2            | WAYSIDE COMMUNICATIONS MODULE II OVERVIEW     |      |
| 1.3            | SPECIFICATIONS                                | 1-2  |
| 1.4            | ORDERING INFORMATION                          | 1-2  |
| 2              | FUNCTIONAL DESCRIPTION                        | 2-1  |
| 2.1            | WAYSIDE COMMUNICATIONS PACKAGE OVERVIEW       | 2-1  |
| 2.2            | ATCS/APPLICATION MESSAGE TRANSMISSION         | 2-1  |
| 2.2.1          | ATCS RF Message Reception                     |      |
| 2.2.2<br>2.2.3 | Communication LinksInitialization             |      |
| 2.3            | WAYSIDE COMMUNICATIONS MODULE II DESCRIPTION  | 2-2  |
| 3              | PHYSICAL DESCRIPTION                          |      |
| 3.1            | GENERAL                                       |      |
| 3.2            | FRONT PANEL CONTROLS AND INDICATORS           |      |
| 3.3            | EXTERNAL CONNECTORS                           |      |
| 3.3.1<br>3.3.2 | 25-Pin D-Type Client Port Connectors (Female) |      |
| 3.3.3          | 9-Pin D-Type Diagnostic Connector (Female)    |      |
| 3.3.4<br>4     | 8-Pin Power Connector (Male)                  |      |
| 4.1            | CODE PLUG CONFIGURATION                       |      |
| 4.2            | EEPROM MEMORY STRUCTURE                       |      |
| 4.2.1          | Boot Code                                     |      |
| 4.2.2          | Debugger                                      | 4-3  |
| 4.2.3<br>4.2.4 | Code PlugLadder Logic                         |      |
| 4.2.5          | Executive                                     |      |

| 4.2.6<br>4.3       | Application TaskFRONT PANEL CONFIGURATION  | 4-4<br>4-4 |
|--------------------|--------------------------------------------|------------|
| 4.3.1              | Alphanumeric Display                       | 4-8        |
|                    | Site Edit                                  |            |
|                    | RF Edit                                    |            |
|                    | Port J1                                    |            |
| 4.3.5              | Port J2                                    | 4-9        |
| 4.3.6              | Port DC                                    | 4-11       |
| 4.3.7              | Diagnostics                                | 4-11       |
| 4.3.8              | Date and Time                              | 4-12       |
|                    | Reset                                      |            |
| 4.4                | WCP CPU II CONFIGURATION PROGRAM           | 4-14       |
| 4.4.1              | Installation                               | 4-14       |
|                    | Using the WCP CPU II Configuration Program |            |
| 4.4.2.1            |                                            |            |
| 4.4.2.2            |                                            |            |
| 4.4.3              | Using The Main Editor Screen               | 4-17       |
| 4.4.3.1            | File Menu                                  | 4-18       |
| 4.4.3.2            | Edit Function                              | 4-21       |
| 4.4.3.3            | Online Menu                                | 4-21       |
| 4.4.3.4            | Upload (Alt-U)                             | 4-29       |
| 4.4.3.5            | Help Window                                | 4-30       |
| 4.4.3.6            | Version Window (Alt-V)                     | 4-31       |
| 4.4.4              | RF Settings Displays                       |            |
| 4.4.4.1            | Radio Type and Usage Fields                |            |
| 4.4.4.2            |                                            |            |
| 4.4.4.3            |                                            |            |
| 4.4.4.4            |                                            |            |
| 4.4.4.5            |                                            |            |
| 4.4.4.6            |                                            |            |
|                    | Site Setting Displays                      |            |
| 4.4.5.1            | Local Addr Field                           |            |
| 4.4.5.2            |                                            |            |
| 4.4.5.3            | 11                                         |            |
| 4.4.5.4            |                                            |            |
| 4.4.5.5            |                                            |            |
| 4.4.5.6            |                                            | 4-41       |
|                    | LonTalk® Network Configuration             | 4-43       |
| 4.4.6.1<br>4.4.6.2 | Install MenuFile Menu                      |            |
|                    | WCP CPU II Port Configuration              |            |
| 4.4.7              |                                            |            |
| 4.4.7.2            |                                            |            |
| 4.4.7.3            |                                            |            |
| 4.4.7.4            |                                            |            |
| 4.4.7.5            |                                            |            |
| 4.4.7.6            |                                            |            |
| 4.4.7.7            | •                                          |            |
| 4.4.7.8            |                                            |            |
| 4.4.7.9            |                                            |            |
| 4.4.7.1            | · · · · · · · · · · · · · · · · · · ·      |            |
| 4.4.7.1            |                                            |            |
| 4.4.7.1            | · · · · · · · · · · · · · · · · · · ·      |            |
| 4.4.7.1            |                                            |            |
|                    | DIAGNOSTICS                                |            |

5

| 5.1                                                       | SELF TEST                                                                                                                                                                                            | 5-1                      |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 5.2                                                       | ON-LINE TERMINAL                                                                                                                                                                                     | 5-1                      |
| A.                                                        | ADVANCED TRAIN CONTROL SYSTEM                                                                                                                                                                        | A-1                      |
| A.1                                                       | OVERVIEW                                                                                                                                                                                             | A-1                      |
| A.2                                                       | ATCS ADDRESSING                                                                                                                                                                                      | A-2                      |
| A.2.1<br>A.2.2<br>A.2.3<br>A.2.4<br>A.2.5<br>A.2.6<br>A.3 | Locomotive Addresses (Type 1)  Office Equipment Addresses (Type 2)  Base Station Address (Type 3)  Wayside Equipment (Type 5)  Wayside Equipment (Type 7)  Other Address Types  ATCS MESSAGE FORMATS | A-2<br>A-3<br>A-3<br>A-4 |
| A.4                                                       | ATCS RADIO NETWORK – LAYER 1                                                                                                                                                                         | A-5                      |
| B.                                                        | ATCS SPECIFICATION 250 RAILROAD CODE LIST                                                                                                                                                            | B-1                      |
| C.                                                        | WCP CODEPLUG PARAMETERS                                                                                                                                                                              | C-1                      |
| D.                                                        | GENERIC GROUNDING PROCEDURES                                                                                                                                                                         | D-1                      |
| D.1                                                       | EXTERNAL BUILDING GROUND                                                                                                                                                                             | D-1                      |
| D.2                                                       | INTERNAL BUILDING GROUND                                                                                                                                                                             | D-3                      |
| D.3                                                       | ANTENNA GROUND                                                                                                                                                                                       | D-4                      |
| D.3.1<br>D.3.2<br>D.4                                     | Antenna Ground – Roof-Mount Yagi<br>Antenna Ground – Towers and PolesAC POWER GROUND                                                                                                                 | D-4                      |
| D.5                                                       | COMMUNICATIONS GROUND                                                                                                                                                                                | D-7                      |
| D.6                                                       | CABLING                                                                                                                                                                                              | D-7                      |
| D.7                                                       | SURGE PROTECTION                                                                                                                                                                                     | D-7                      |

#### **LIST OF FIGURES**

| Section     | Title                                                | Page |
|-------------|------------------------------------------------------|------|
| Figure 2-1  | WCP II Simplified Block Diagram                      | 2-1  |
|             | WCP II Simplified Block Diagram                      |      |
| Figure 3-1  | Wayside Communications Module, A53105                |      |
| Figure 4-1  | WCM II Memory Configuration Map                      | 4-2  |
| Figure 4-2  | Wayside Communications Module II Front Panel         | 4-5  |
| Figure 4-3  | WCP CPU II Function Menu Structure                   | 4-7  |
| Figure 4-4  | WCP CPU to Personal Computer Interconnection Diagram | 4-14 |
| Figure 4-5  | Configuration Editor Startup Screen                  |      |
| Figure 4-6  | Codeplug File List                                   |      |
| Figure 4-8  | Read WCP Codeplug                                    | 4-16 |
| Figure 4-9  | Codeplug Data Read from WCP                          | 4-17 |
| Figure 4-10 | Main Editor Screen                                   | 4-18 |
| Figure 4-11 | XCM File Name Path                                   | 4-19 |
| Figure 4-12 | Terminal Sub Menus                                   | 4-22 |
| Figure 4-13 | Online Terminal Screen Event Log                     | 4-24 |
| Figure 4-14 |                                                      |      |
| Figure 4-15 | Bitmap Display Screen                                | 4-27 |
| Figure 4-16 | Main Editor Screen - Radio and Usage Selection       | 4-34 |
| Figure 4-17 | RF Channel Setting Selection                         | 4-34 |
| Figure 4-18 |                                                      |      |
| Figure 4-19 |                                                      |      |
| Figure 4-20 |                                                      |      |
| Figure 4-21 |                                                      |      |
| Figure 4-22 |                                                      |      |
| Figure 4-23 |                                                      |      |
| Figure 4-24 |                                                      |      |
| Figure 4-25 |                                                      |      |
| Figure 4-26 |                                                      |      |
| Figure 4-27 |                                                      | 4-43 |
| Figure 4-28 | · · · · · · · · · · · · · · · · · · ·                |      |
| Figure 4-29 |                                                      |      |
| Figure 4-30 |                                                      |      |
| Figure 4-31 |                                                      |      |
| Figure 4-32 |                                                      |      |
| Figure 4-33 |                                                      |      |
| Figure 4-34 | · · · · · · · · · · · · · · · · · · ·                |      |
|             | LON Enable Select                                    |      |
| Figure 4-36 |                                                      |      |
| Figure 4-37 |                                                      |      |
| Figure 4-38 |                                                      |      |
| Figure A-1  | Typical ATCS Network                                 |      |
| Figure D-1  | Typical External Ground Connections                  |      |
| Figure D-2  | Typical Internal Ground Connections                  |      |
| Figure D-3  | Typical Tower and Pole Ground Connections            | D-5  |
| Figure D-4  | Typical Connections for Grounding and Bonding        | D-6  |

#### **LIST OF TABLES**

| Section   | Title                                          | Page |
|-----------|------------------------------------------------|------|
| Table 3-1 | Front Panel Control & Indicator Functions      | 3-1  |
| Table 3-2 | 25-Pin Female D-Type Connector Pin Assignments | 3-3  |
| Table 3-3 | 15-Pin Female D-Type Connector Pin Assignments | 3-3  |
| Table 3-4 | 9-Pin Female D-Type Connector Pin Assignments  | 3-4  |
| Table 3-5 | 8-Pin Male Connector Pin Assignments           | 3-4  |
| Table 4-1 | Alphanumeric Display Acronyms                  | 4-8  |
| Table 4-2 | Site Edit Subfunctions                         | 4-8  |
| Table 4-3 | RF Edit Subfunctions                           | 4-9  |
| Table 4-4 | Port J1 Subfunctions                           | 4-10 |
| Table 4-5 | Diagnostic Subfunctions                        | 4-12 |
| Table 4-6 | WCP CPU II Self Tests                          | 4-13 |
| Table 4-7 | Client Port Field Descriptions                 | 4-49 |
| Table 4-8 | Client Port Protocol Descriptions              | 4-50 |
|           | On-Line Terminal Commands                      |      |

#### NOTES, CAUTIONS, AND WARNINGS

Throughout this manual, notes, cautions, and warnings are frequently used to direct the reader's attention to specific information. Use of the three terms is defined as follows:

#### WARNING



INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, COULD RESULT IN DEATH OR SERIOUS INJURY. WARNINGS ALWAYS TAKE PRECEDENCE OVER NOTES, CAUTIONS, AND ALL OTHER INFORMATION.

#### **CAUTION**



REFERS TO PROPER PROCEDURES OR PRACTICES WHICH IF NOT STRICTLY OBSERVED, COULD RESULT IN A POTENTIALLY HAZARDOUS SITUATION AND/OR POSSIBLE DAMAGE TO EQUIPMENT. CAUTIONS TAKE PRECEDENCE OVER NOTES AND ALL OTHER INFORMATION, EXCEPT WARNINGS.

#### NOTE

#### **NOTE**

Generally used to highlight certain information relating to the topic under discussion.

If there are any questions, contact Siemens Application Engineering.

#### **ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS**

Static electricity can damage electronic circuitry, particularly low voltage components such as the integrated circuits commonly used throughout the electronics industry. Therefore, procedures have been adopted industry-wide which make it possible to avoid the sometimes invisible damage caused by electrostatic discharge (ESD) during the handling, shipping, and storage of electronic modules and components. Siemens Rail Automation has instituted these practices at its manufacturing facility and encourages its customers to adopt them as well to lessen the likelihood of equipment damage in the field due to ESD. Some of the basic protective practices include the following:

- Ground yourself before touching card cages, assemblies, modules, or components.
- Remove power from card cages and assemblies before removing or installing modules.
- Remove circuit boards (modules) from card cages by the ejector lever only. If an ejector lever is not provided, grasp the edge of the circuit board but avoid touching circuit traces or components.
- Handle circuit boards by the edges only.
- Never physically touch circuit board or connector contact fingers or allow these fingers to come in contact with an insulator (e.g., plastic, rubber, etc.).
- When not in use, place circuit boards in approved static-shielding bags, contact fingers first.
   Remove circuit boards from static-shielding bags by grasping the ejector lever or the edge of the board only. Each bag should include a caution label on the outside indicating static-sensitive contents.
- Cover workbench surfaces used for repair of electronic equipment with static dissipative workbench matting.
- Use integrated circuit extractor/inserter tools designed to remove and install electrostaticsensitive integrated circuit devices such as PROM's (OK Industries, Inc., Model EX-2 Extractor and Model MOS-40 Inserter (or equivalent) are highly recommended).
- Utilize only anti-static cushioning material in equipment shipping and storage containers.

For information concerning ESD material applications, please contact the Technical Support Staff at 1-800-793-7233. ESD Awareness Classes and additional ESD product information are also available through the Technical Support Staff.

AAR: <u>Association of American Railroads</u> - An organization that establishes uniformity and

standardization among different railroad systems.

ABM: <u>Asynchronous Balance Mode</u> – Used as an identifier for a HDLC protocol.

ADM: Asynchronous Disconnect Mode – Used as an identifier for a HDLC protocol.

AEI: Automatic Equipment Identification - Equipment installed at sites along the track to read

and report train consist information.

ARES: Advanced Railroad Electronics System - Made by Rockwell International as an alternative

to AAR ATCS.

ATCS: Advanced Train Control System - A set of standards compiled by the AAR for controlling all

aspects of train operation.

BCM II: Base Control Module II – The Safetran 53444 assembly that centrally controls the functions

of the BCP II.

BCP II: Base Communications Package II - Defined by the ATCS specifications as the transmitter /

receiver base station and associated processors to handle communications between mobile

and central office equipment.

BER: Bit Error Rate - Expresses the quality of a communications in the number of errors per bits

sent.

BPSK: Binary Phase Shift Keying - A method of modulating a carrier signal to carry two bits of

information in every cycle.

CBT: Common Base Technology – A term referring to product design using a modular based

approach.

CC: Cluster Controller - An ATCS ground network node responsible for the control of BCP II's.

CHIPS: The number of bits in the PN code used to represent each data bit.

CODEPLUG: An area of non-volatile memory in a BCM II or WCM that contains site configuration data.

CPC: <u>Central Protocol Converter</u> - Modular component of Safetran's R/Link™ Radio Control

System that converts CTC code line control and indication message data to ATCS-

compatible data.

CRC: <u>Cyclic Redundancy Check</u> - The CRC on a data packet is normally calculated and

appended to the data so that the receiver can verify that no data was lost or corrupted

during transit.

CSAT: Cut Section SAT - A Signaling Application Task allowing a Virtual Circuit to be broken in a

manner similar to a relay contact in a pole line system.

CMSA/CA: <u>Carrier-Sense-Multiple-Access/Collision Avoidance</u> - A scheme for allowing multiple

transmitters sharing a single medium to cooperatively timeshare with a minimum of overlap

and interference.

CTC: Central Traffic Control System

CTS: <u>Clear To Send</u>

DAX: Downstream Adjacent Crossing - A prediction indication for a remote GCP located

somewhere other than the equipment feed point.

DATAGRAM: In general, any ATCS packet. Several types of datagrams are defined for specific functions

within an ATCS environment.

dB: Abbreviation for decibel. The standard unit for expressing transmission gain or loss and

relative power levels. Decibels indicate the log ratio of power output to power input.

dBi: Abbreviation for decibels referenced to an isotropic (unipole) antenna.

dBm: Abbreviation for decibels above (or below) one milliwatt.

DCE: <u>Data Communications Equipment</u> - A device that merely transports but does not originate

or consume data.

DEVICE: Specific to the Contents Listing, MCF Approval Listing, and Diagnostic Terminal Utility, a

device represents the smallest possible breakdown of an ATCS address which may identify

a Virtual Circuit, cut section, signal SAT, module, etc.

DT: Diagnostic Terminal - A DOS-based PC utility for configuring a module and reading status

and diagnostic information.

DTE: Data Terminal Equipment - Any device (printer, terminal, PC, host computer) that originates

or consumes data over a transmission facility.

ECD: External Configuration Device - The EEPROM on the interface connector used for storing

the module configuration data.

EIA: <u>Electronics Industries Association</u> - A standards organization in the U.S. specializing in the

electrical and functional characteristics of interface equipment.

ECP: Emergency Control Protocol

ERP: <u>Effective Radiated Power</u> - The product of the antenna power (transmitter power less

transmission-line loss) times either the antenna power gain or the antenna field gain

squared.

FEP: Front End Processor - An ATCS ground network node responsible for providing network

access to ground host and terminal users (provides network interfacing).

FIFO: First In, First Out - A buffer or shift register configured so that the first data queued is the

first data dequeued - i.e. the sequence is preserved.

FSK: Frequency Shift Keying - A baseband modulation technique that conveys digital information

over analog facilities by associative discrete logical states with pre-defined frequencies.

GMSK: Gausian Mask Shift Keying - A complex signal conditioning process employed by the BCM

Il prior to audio transmission.

GENI (F): Genesys Field Protocol

GENI (O): Genesys Office Protocol

GTC: <u>Ground Terminal Computer</u>

HAYES AT A set of commands defined by the Hayes Corporation for the control and configuration of

COMMAND: modems.

HD POLE LINE: Wires strung along wayside poles for carrying signal aspect and other train control signals.

HD stands for Home/Distant, referring to track block signals.

HDF: <u>Hardware Description Files</u> - A utility file for configuring a module and reading status and

diagnostic information.

HDLC: High-level Data Link Control - A serial protocol for exchanging synchronous information.

IDTU: Installers Diagnostic Terminal Utility - A DOS-based PC utility for configuring a module and

reading status and diagnostic information.

IN SERVICE CHECK

NUMBER:

A number, unique to a particular HD/LINK module, that is logged in the Event Log when the

HD/LINK module is in service.

IP: <u>Internet Protocol</u> - ISO Model Layer 3 (network) protocol that performs proper routing of

packets.

LAN: Local Area Network - A limited network where the data transfer medium is generally wires

or cable.

LEFT NEIGHBOR: The Group displayed on the Main Window virtual-circuit configuration display to the left of

the MCF documented Group.

LINK MARGIN: The amount of received signal strength beyond the receiver threshold reserved to

compensate for normal signal fluctuations.

LOD: <u>Light Out Detector</u> - A device that monitors current flowing in a circuit such as a signal light,

switch, etc., for the purpose of detecting a fault condition in the circuit.

LSB: Least Significant Bit of a binary number (having the lowest numerical weight)

MCF: Module Configuration File - The HD/LINK configuration software.

MCI: <u>Module Configuration Information</u> - The collection of database records that represents the

MCF data.

MCP/WCP: Mobile/Wayside Communications Package - The radio and associated processor used by

mobile and wayside ATCS compatible equipment to communicate to the central office.

MCP: <u>Mobile Communications Package</u> - The radio and associated processor used by mobile

ATCS compatible equipment to communicate to the central office.

MCS: Harmon Protocol

MCS2000 The Motorola 900MHz radio used in the WCP.

MDF: Module Description Files – The configuration and capability information for the MEF.

MEF: Module Executable File - The HD/LINK executable software.

MSB: Most Significant Bit of a binary number (having the greatest numerical weight)

NUL: Null – Used as an identifier for a HDLC protocol.

NULL MODEM: A cable or other device that connects two DTE devices directly by emulating the physical

connections of a DCE (the Transmit output of each DTE is connected to the Receive input

of the other DTE).

OUT SERVICE CHECK NUMBER:

A number, unique to a particular HD/LINK module, that is logged in the Event Log when

the HD/LINK module is out of service.

POL Polled – Used as an identifier for a HDLC protocol.

PN CODE: Pseudo Noise code - A binary code mathematically optimized in such a way that when used

to modulate a transmit carrier signal, the energy is spread evenly over the complete band.

QPSK: Quadrature Phase Shift Keving - A method of modulating a carrier signal in such a way that

each cycle carries four bits of information.

RCI: Receive Clock In

RIGHT NEIGHBOR: The Group displayed on the Main Window virtual-circuit configuration display to the right of

the MCF documented Group.

RS232: EIA interface standard between DTE and DCE, employing serial binary data interchange.

RS422: EIA interface standard that extends transmission speeds and distances beyond RS232.

employing a balanced-voltage system with a high level of noise immunity.

RSSI: Received Signal Strength Indication - A numerical value indicating the relative strength of

received carrier.

RTS: Ready To Send

RTU: Remote Terminal Unit - Also known as Field Code Unit or Code Unit. Used to perform non-

vital I/O under control of a central office unit.

RXD: Receive Data

SAT: Signaling Application Task - A Virtual Circuit of cut sections.

SB9600: A specification for a proprietary 2-wire data bus used bus Motorola for control and

programming of microprocessor-based two-way radio equipment.

SCM: System Control Module – The module within a Motorola ATCS base station that centrally

controls the functions of the transceiver and all other components of the station.

SCS: <u>Safetran Code System</u>

SIGNAL ASPECT: The appearance of a fixed signal conveying an indication as viewed from the direction of an

approaching train; the appearance of a cab signal conveying an indication as viewed by an

observer in the cab.

SIN: Site (Subnode) Identification Number - A twelve-digit ATCS address representing the

module as a subnode on the network.

SPREAD A method of radio transmission in which the transmitted energy is evenly spread over the

SPECTRUM: complete bandwidth of the radio, resulting in a low RF profile.

SSI: Signal Strength Indicator - A measure of the relative strength of an incoming RF signal

when it was received by a BCP II.

SSR: <u>Spread Spectrum Radio</u> - A transmitter/receiver that uses a method of radio transmission in

which the transmitted energy is evenly spread over the complete bandwidth of the radio,

resulting in small RF signature.

TCI: <u>Transmit Clock In</u>

TCO: Transmit Clock Out

TCP/IP: <u>Transmission Control Protocol / Internet Protocol</u> - The Internet protocol used to connect a

world-wide internetwork of universities, research laboratories, military installations, organizations, and corporations. The TCP/IP includes standards for how computers

communicate and conventions for connecting network and routing traffic.

TXD: Transmit Data

UAX: <u>Upstream Adjacent Crossing</u> - A control indication typically driven from a remote GCP

(DAX) location.

UCN: <u>Unique Check Number</u> - A configuration validation number calculated from the contents of

an approved MCF and issued to be entered into an HD/LINK module for the purpose of

verifying proper configuration.

UDP: <u>User Datagram Protocol</u> - A transport protocol used primarily for the transmission of

network management information. Not as reliable as TCP.

VCE: <u>Virtual Circuit Editor</u> - The functional element of the HD/LINKer program used to graphically

design the group-specific virtual line circuit configurations of the H/D LINK Vital I/O

Modules.

VPI: <u>Vital Parallel Input</u> – A module input circuit the function of which affects the safety of train

operation.

VRO: <u>Vital Relay Output</u> – A module output circuit the function of which affects the safety of train

operation.

VSAT: <u>Virtual Circuit SAT</u> – A software Virtual Circuit termination device known as a Signaling

Application Task for providing logical functionality, and possessing its own unique ATCS

address

WCM: Wayside Control Module – The Safetran A53105 assembly that centrally controls the

functions of a WCP

WCP: <u>Wayside Communications Package</u> – The transmitter/receiver and associated control

processors that handle communications between field equipment and BCP II equipment.

WIU Wayside Interface Unit –

XCM FILE: An MS-DOS file with an ".XCM" extension. A Safetran codeplug file for the BCM II or

WCM.

#### **CHANGE NOTICE**

The following changes have been incorporated into Revision E of the WCP CPU II Installation and Operation Manual, Document No. COM-00-97-10.

8-9-13:

#### Global

- ♦ Changed Version from D to E
- ♦ Changed "WCP Radio" to "ATCS Radio"
- ◆ Automated TOC
- Updated paragraph numbering
- Changed font to Verdana

#### Section 1

#### Page 1-2

- ♦ 1.1 Add bullet "uses UHF 900 MHz, 30 watt radio"
- 1.3 Specifications, Input Voltage: changed 9V to 10V

#### Section 2

No Change

#### Section 3

No Change

#### Section 4

Page 4-3

◆ Para 4.2.3, NOTE, Updated MDS publication information for SD9 radio

#### Page 4-15

♦ Replaced Figure 4-5, replaced Figure 4-6

#### Page 4-16

♦ Replaced Figure 4-7, replaced Figure 4-8

#### Page 4-17

♦ Replaced Figure 4-9

#### Page 4-18

♦ Replaced Figure 4-10

#### Page 4-19

♦ Replaced Figure 4-11

#### Page 4-31

♦ Para 4.4.3.6, replaced Figure

#### Page 4-33

Addition of MDSvR9 and MDSSD9 Radio Settings

#### Page 4-34

◆ Para 4.4.4.2, Addition of: "Some radio selections will not show the Channel Field"

#### Page 4-35

♦ Replace Figure 4-18

#### Page 4-36

♦ Replace Figure 4-19, Replace Figure 4-20

#### Section 5

No Change

#### Appendix A

No Change

#### Appendix B

Replaced with new Railroad List

#### Appendix C

No Change

Appendix D
No Change
Index
No Change

# SECTION I

#### 1.0 INTRODUCTION

#### 1.1 SCOPE

This manual describes the installation, operation, and diagnostics of the WCP CPU II portion of the Siemens Rail Automation WCP Radio System. The system includes the 53105 WCP CPU II, the 53106 DC/DC Converter, and the 53412 ATCS Radio. Complete installation instructions for all WCP components are provided in the Wayside Communications Package Installation Manual (Document No. COM-00-98-01).

The WCP CPU II is periodically upgraded with additional features; therefore, prospective users are encouraged to contact Siemens Rail Automation Corporation for the latest technical information, or to request customization.

#### 1.2 WCP CPU II OVERVIEW

Major features of the unit are:

- Full software compatibility with existing Motorola mobile radio
- RS232 / RS422 connection option on two client ports
- High-speed (1.2Mb/s) client LAN port allows WCP to directly connect to other Safetran vital and non-vital I/O modules concurrently.
- 16-character front-panel display provides clear diagnostic messages
- Front-panel push-button configuration no laptop needed during routine maintenance
- Outbound RSSI reading provides additional system information of signal strength at WCP location.
- Split WCP CPU II / ATCS Radio / DC-DC converter package simplifies maintenance issues, and provides for more flexible installation options
- Optional on-board ladder-logic processing for code system applications
- Protocol emulation and conversion of many industry standard code-line protocols
- Full non-volatile event log built in with hardware real-time clock
- Can be software upgraded to 9600 baud RF operation
- Uses UHF 900 MHz data radio

#### 1.3 SPECIFICATIONS

Input Voltage: 10V to 36V DC

Input Isolation: 2000V rms

Power 295mA @ 13.8V

Consumption:

Client Ports: 2 x RS232 / RS422 25-pin D connectors, software selectable to

256k baud.

1 x LonTalk® 1.2Mb/s twisted pair

Display: 16-character Alphanumeric

Configuration: Locally via front-panel switches / display

Locally via laptop PC

Remotely via Siemens Network Management System

Aux I/O: Two opto-isolated inputs 10V DC to 36V DC

Two switchable supply outputs to 1.5A

LED Indications: RF TX, RF RX, Power On, LAN activity, Echelon<sup>®</sup> Service

Dimensions: 2.44 inches (6.2 centimeters)wide

8.82 inches (22.4 centimeters) high 9.57 inches (24.31 centimeters) deep

Weight: 4.625 pounds (2.1 kilograms)

Operating

Temperature Range: -40 °F to +158 °F (-40 °C to +70 °C)

#### 1.4 ORDERING INFORMATION

To order, specify the WCP CPU II part number, 9000-53105-0001.

#### SECTION II FUNCTIONAL DESCRIPTION

#### 2.0 FUNCTIONAL DESCRIPTION

#### 2.1 WAYSIDE COMMUNICATIONS PACKAGE OVERVIEW

The WCP CPU II, Figure 2-1, is used in an Advanced Train Control System (ATCS) data network. It provides the interface between the ATCS RF network, an Echelon® LonTalk® Local Area Network (LAN), vital and non-vital code units, wayside inspection devices, and RS232/422 communication devices.

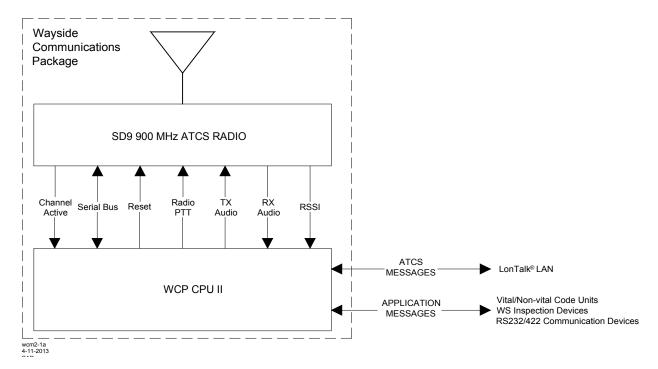



Figure 2-1 WCP II Simplified Block Diagram

#### 2.2 ATCS/APPLICATION MESSAGE TRANSMISSION

ATCS messages (see Appendix A) to be transmitted over the ATCS RF network are processed by the WCP CPU II into two functional signals: Radio PTT (push-to-talk), which initiates Mobile Radio transmission; and TX Audio, a sinusoidal representation of the ATCS and Application Messages. The TX Audio signal is used within the Mobile Radio to FM modulate an RF carrier, which is fed to the antenna for transmission over the ATCS RF network. At the completion of the ATCS messages, the Radio PTT signal is removed and Mobile Radio transmission stops. The transmitted messages may be received via a serial port or from the LAN.

#### 2.2.1 ATCS RF Message Reception

Messages received from the ATCS RF network are demodulated by the Mobile Radio and a corresponding RX Audio signal is fed to the WCP CPU II. This signal, together with a Receive Signal

Strength Indication (RSSI) signal, are processed by the WCP CPU II and applied in the ATCS Message format to the LAN or in various Applications Message formats (protocols) to units connected to the serial port. The ATCS Message destination is determined by the ATCS Address (see Appendix A for a description of the ATCS address scheme).

#### 2.2.2 Physical Communication Links

Physical Communication between the WCP and other devices is via serial cable. Communication between the WCP and the LAN is via twisted wire pair.

#### 2.2.3 Initialization

At WCP startup, the WCP CPU II generates a Reset signal to initialize the ATCS Radio.

#### 2.3 WCP CPU II DESCRIPTION

The WCP CPU II, Figure 2-2, consists of three functional circuits interconnected by a common data bus, the Transceiver/Processor (T/P), the Gausian Mask Shift Key (GMSK) Modem, and the LAN Controller. Each of these circuits is able both to receive and transmit message data. Transmission circuit selection is determined by the ATCS destination address. For example, when an ATCS message is received via the serial port addressed to equipment on the ATCS RF network, the GMSK Modem is enabled to transmit. In the same way, when equipment connected to the LAN is addressed, LAN Controller transmission is enabled.

Master control of the data bus is exercised by the T/P. Messages are routed through the WCP CPU II in accordance with client (configuration) data resident within memory (flash EEPROM) of the T/P. ATCS messages are converted from serial to parallel format by the receiving circuit and placed on the data bus. The message is then analyzed by the T/P and the appropriate circuit is enabled for transmission. During the transmission process, the parallel message data is converted to serial format by the transmitting circuit and routed to the specified ATCS address.

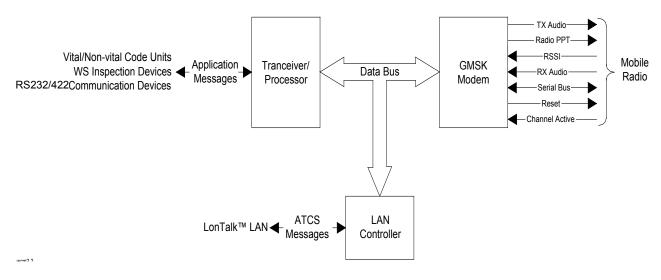



Figure 2-2 WCP II Simplified Block Diagram

### SECTION III PHYSICAL DESCRIPTION

#### 3.0 PHYSICAL DESCRIPTION

#### 3.1 GENERAL

The WCP CPU II is designed to replace existing WCP CPU Modules, in particular for wayside signaling applications. It is designed to work in conjunction with the ATCS mobile radio family and the A53106 DC/DC converters.

#### 3.2 FRONT PANEL CONTROLS AND INDICATORS

The front panel controls and indicators, and the function of each, are listed in Table 3-1 and are identified on Figure 3-1.

Table 3-1 Front Panel Control & Indicator Functions

| Indicator/Control                 | Type                  | Function                                                                                                                                                                              |
|-----------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POWER                             | LED                   | Lighted when power is applied to the 53105                                                                                                                                            |
| LAN                               | LED                   | Lights to indicate activity on the local area network (LAN)                                                                                                                           |
| SERVICE                           | LED                   | Echelon® service indication. Normally extinguished. Lighted to indicate Echelon® adapter is not configured or is malfunctioning. Also lights when the SERVICE push button is pressed. |
| SERVICE                           | Push-button<br>Switch | Used to identify the 53105 on the twisted pair LonTalk® LAN during installation. This allows the network installer to download custom configuration data to the 53105.                |
| RF-RX                             | LED                   | Lighted to indicate 53105 is successfully synchronized to an incoming message                                                                                                         |
| RF-TX                             | LED                   | Lighted when WCP radio is keyed and transmitting                                                                                                                                      |
| ENTER Push-button Switch          |                       | Confirms selection options (see below)                                                                                                                                                |
| SELECT                            | Push-button<br>Switch | Selects between various operating and configuration options                                                                                                                           |
| 16-Character Alphanumeric Display |                       | Displays various status and configuration messages depending on display mode                                                                                                          |

#### 3.3 EXTERNAL CONNECTORS

The WCP CPU II is equipped with five connectors (see Figure 3-1) which include two 25-pin D-type client port connectors, a 15-pin D-type radio connector, a 9-pin D-type diagnostic connector, and an 8-pin power connector. The pin assignments for each of these connectors are described in the following paragraphs.

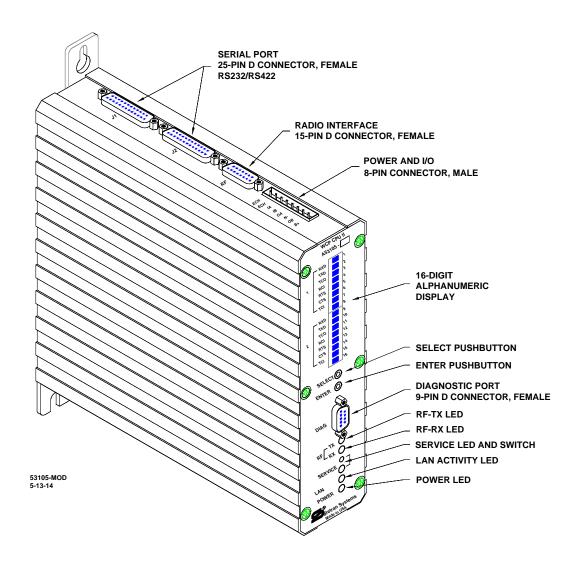



Figure 3-1 WCP CPU II, A53105

#### 3.3.1 25-Pin D-Type Client Port Connectors (Female)

The female, 25-pin, D-type connectors (J1 and J2) located on the top of the 53105 enclosure provide serial client ports that can be configured for RS232 or RS422 operation during configuration. Similarly, for synchronous protocols, the direction of the transmit clock for each port is software configurable to work either as a DCE or DTE device. Table 3-2 lists the pin assignments for the 25-pin connectors.

Table 3-2 25-Pin Female D-Type Connector Pin Assignments

| Pin | RS232        | RS422            |
|-----|--------------|------------------|
| 2   | TX Data out  | TX data (-) out  |
| 3   | RX Data in   | RX data (-) in   |
| 4   | RTS out      | RTS (-) out      |
| 5   | CTS in       | CTS (-) in       |
| 7   | Common       | Common           |
| 9   |              | RX Clock (+) in  |
| 12  |              | TX Clock (+) in  |
| 13  |              | CTS (+) in       |
| 14  |              | TX data (+) out  |
| 15  | Tx clock in  | TX clock (-) in  |
| 16  |              | RX data (+) in   |
| 17  | Rx clock in  | RX clock (-) in  |
| 18  |              | TX clock (+) out |
| 19  |              | RTS (+) out      |
| 24  | Tx clock out | TX clock (-) out |

#### 3.3.2 15-Pin D-Type Radio Connector (Female)

The female, 15-pin, D-type connector (RF) located on the top of the 53105 enclosure provides interface to the ATCS radio. Table 3-3 lists the pin assignments for the 15-pin connector.

Table 3-3 15-Pin Female D-Type Connector Pin Assignments

| Pin | Function               |
|-----|------------------------|
| 2   | Radio Push-to-Talk out |
| 3   | TX Audio               |
| 4   | Analog Ground          |
| 5   | RX Audio               |
| 7   | Radio Reset            |
| 8   | Logic Ground           |
| 9   | SB9600 bus (+)         |
| 10  | SB9600 bus (-)         |
| 12  | RSSI                   |

#### 3.3.3 9-Pin D-Type Diagnostic Connector (Female)

The female, 9-pin, D-type connector located on the front panel provides access to the 53105 diagnostic and configuration data during maintenance operations. Table 3-4 lists the pin assignments for this connector. Use a straight-through cable to connect to the diagnostic computer.

Table 3-4 9-Pin Female D-Type Connector Pin Assignments

| Pin | Function                     |
|-----|------------------------------|
| 2   | TX data out                  |
| 3   | RX data in                   |
| 5   | Common                       |
| 7   | RTS out                      |
| 8   | CTS in                       |
| 9   | Test pin (Factory use only). |

#### 3.3.4 8-Pin Power Connector (Male)

The male, 8-pin, power, LonTalk<sup>®</sup>, and I/O connector contacts are numbered from the front of the 53105 case with pin 8 nearest the 15-pin connector. Table 3-5 lists the connector pin assignments.

**Table 3-5 8-Pin Male Connector Pin Assignments** 

| Pin | Function                                             |
|-----|------------------------------------------------------|
| 1   | B12 +                                                |
| 2   | Output B                                             |
| 3   | N12 -                                                |
| 4   | Output A                                             |
| 5   | Input B                                              |
| 6   | Input A                                              |
| 7   | Echelon LonTalk <sup>®</sup> TWP (twisted wire pair) |
| 8   | Echelon LonTalk <sup>®</sup> TWP (twisted wire pair) |

## SECTION IV CONFIGURATION

#### 4.0 CONFIGURATION

#### 4.1 CODE PLUG CONFIGURATION

Ordinarily, initial setup and routine maintenance tasks consist of making changes to the site configuration (code plug) and storing the data permanently in the WCP CPU II. While most of the parameters are factory set and do not require user alteration, site-specific data such as local ATCS address, remote FEPCC address, client port assignments, system timers, hardware configuration, and etc. may be programmed on site by field maintenance personnel. This is accomplished in one of four ways:

- 1. Manually, by means of the front panel push buttons and display (see paragraph 4.2).
- 2. Using the configuration editor in XCMMAINT.EXE and uploading the complete modified code plug information (see paragraph 4.4). This is the recommended method.
- 3. The MCM II Configuration Utility (9VB26) is a windows based configuration program. Uploading the complete modified code plug information is the recommended method.
- 4. Patching the code plug data one byte at a time in the online terminal mode of XCMMAINT.EXE. This method is more likely to be used by experienced maintenance personnel for updating or making small changes at an in-service site.

The advantage of the front-panel method is that no diagnostic equipment (typically a laptop computer) is necessary to check configuration data or to perform routine maintenance.

When using the XCMMAINT configuration/on-line utility, all code plug data (as well as other site data) may be stored in a PC data file. The MS-DOS file extension for this type of file is ".XCM" and is used to refer to code plug files for the WCP CPU II. This allows code plug files for each WCP to be saved with a unique file name. In addition, one or more 'default' code plug files may be generated and saved to disk. The advantage to this method is that commonly-used configurations may be conveniently stored and later used by the XCMMAINT utility to configure new units as they are installed.

A complete list of all code plug parameters is provided in Appendix C.

#### 4.2 EEPROM MEMORY STRUCTURE

All user data and executable programs within the WCP CPU II are stored in a 256kbyte block of on-board flash EEPROM memory. The WCP CPU II logical memory map is shown in Figure 4-1.

| Debugger            | 400000 |
|---------------------|--------|
| Configuration       | 410000 |
| Xilinx              | 420000 |
| DSP                 | 440000 |
| Ladder Logic Appl.  | 460000 |
| Ladder Logic Labels | 470000 |
| Executive Firmware  | 480000 |
| HWCT                | 4F0000 |

BOOT CODE AND DEBUGGER

CODE PLUG (CONFIGURATION DATA)

LADDER LOGIC (IF USED)

EXECUTIVE FIRMWARE

APPLICATION SOFTWARE

OFFFFh

BCP6-1
06-23-98

Figure 4-1 WCM II Memory Configuration Map

The memory sections of the WCP CPU II's on-board flash EEPROM are described in the following paragraphs.

#### 4.2.1 Boot Code

Boot Code refers to the bootstrap program that is run when the system is powered up or reset. This code performs a system self-test and exits to the loaded application software or the debugger. The boot code is preloaded at the factory but can be updated with newer versions by field personnel.

#### 4.2.2 Debugger

This program provides low-level diagnostics and direct access to hardware and firmware for testing purposes. The debugger is bundled with the boot code and is therefore field upgradable.

#### 4.2.3 Code Plug

The code plug is the section of memory set aside for storage of configuration data specific to the installation site. All field-programmable data such as ATCS addresses, channel information, timer values, etc. are stored in the code plug. See Appendix C for details.



#### NOTE

The term "code plug" is also used for the same configuration data storage function in the associated ATCS radio, but access to the latter is only possible by using a separate utility with different maintenance hardware.

MDS™ SD9 Data Radio Service Instructions (MDS Publication MDS 05-4846A01, Rev F)

#### 4.2.4 Ladder Logic

The ladder logic is an optional application task that consists of compiled Boolean equations for decision-making based on local I/O and data traffic. There is a stand-alone utility for creating and compiling ladder logic files that is separate from the module configuration utility.

#### 4.2.5 Executive

The executive program is a set of application tasks that can be considered the "operating system" for the Wayside Communications Module. These application tasks are preloaded at the factory but may be field upgraded to accommodate newer applications.

#### 4.2.6 Application Task

An application task accommodates any site-specific program that is run or loaded, and which uses components of the executive program for I/O, system access and low-level functions.

#### 4.3 FRONT PANEL CONFIGURATION

Each time power is applied, the WCP CPU II performs a series of tests to evaluate its operational status. The tests performed and their results are presented on the alphanumeric display (see Figure 4-2). At the completion of these tests, a TESTS COMPLETE message is displayed. This message is automatically turned off approximately 5 minutes after test completion.



#### **NOTE**

Pressing the **SELECT** push button while the **Reset** function is displayed, turns off the display and returns the WCP CPU II to normal operation. (If the **ENTER** push button is pressed, the unit will reset.)

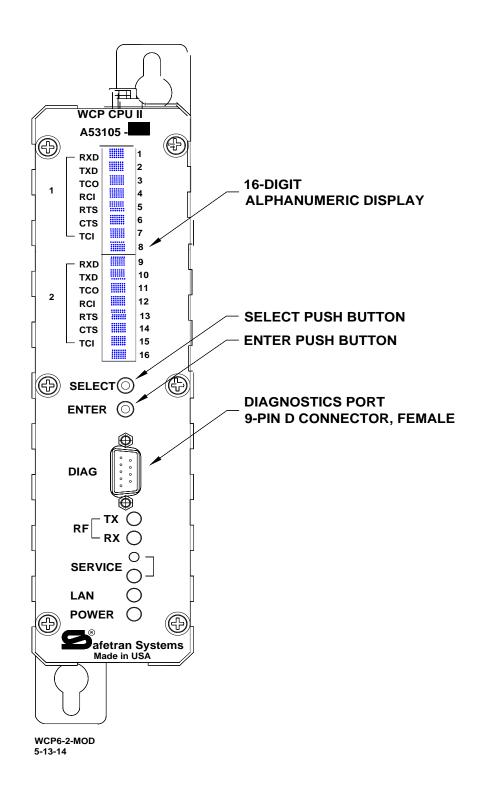



Figure 4-2 WCP CPU II Front Panel

 The display is reactivated by the SELECT push button. When this push button is pressed, Site Edit, the first of eight functions, is displayed. Subsequently, each time the SELECT push button is pressed, the display advances to a new function.

These functions may be sequentially accessed as follows:

- Site Edit
- RF Edit
- Port J1
- Port J2
- Port DC
- Diagnostics
- Date/Time
- Reset

Most of the display functions listed above contains subfunctions that allow the user to change and/or monitor Codeplug data. The subfunctions accessible from each function are identified in the following paragraphs and displayed graphically in Figure 4-3. Subfunctions are selected as follows:

- Capitalione are colocion de lonewe.
- 1. Press and release the **SELECT** push button until the desired function is displayed.
- 2. Press the **ENTER** push button.

The first subfunction listing is displayed.

- 3. Press and release the SELECT push button until the desired subfunction is displayed.
- 4. Press the **ENTER** push button.

An "\*" appears at the right of the subfunction display.

- 5. Press and release the **SELECT** push button until the desired value or item is displayed.
- 6. Press the **ENTER** push button.

Confirm (Enter) is displayed.

- 7. Press the **ENTER** push button to confirm the selected value or item.
- 8. Press and release the **SELECT** push button until the function of step 1 is again displayed.
- 9. Repeat steps 1 through 8 as required.

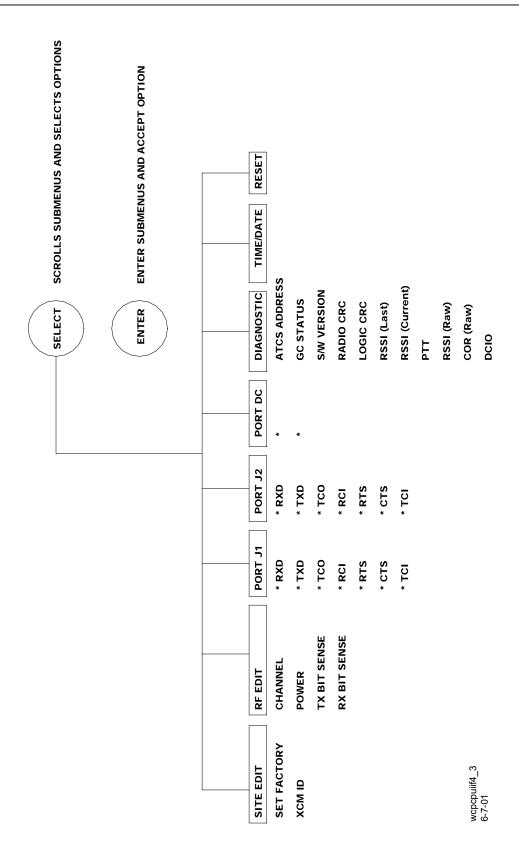
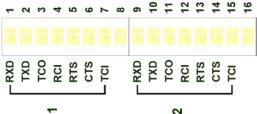




Figure 4-3 WCP CPU II Function Menu Structure

#### 4.3.1 Alphanumeric Display

The Alphanumeric Display is divided into two sections as shown in Figure 4-2. The seven most-significant bits of each section are identified by an acronym as shown at right.



The acronyms in section 1 have no relevance at this time. The acronyms in section 2 correspond to and identify the relevant serial bits of WCP CPU II ports J1 and J2 and the local, opto-isolated I/O of the power connector J4. The definitions for these acronyms are listed in Table 4-1.

 Acronym
 Definition

 RXD
 Receive Data

 TXD
 Transmit Data

 TCO
 Transmit Clock Out

 RCI
 Receive Clock In

 RTS
 Ready To Send

 CTS
 Clear To Send

Transmit Clock In

**Table 4-1 Alphanumeric Display Acronyms** 

#### 4.3.2 Site Edit

The **Site Edit** function display is shown at right.

TCI

The subfunctions listed in Table 4-2 may be accessed from this function.

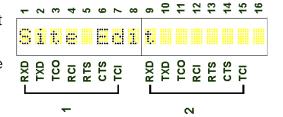



Table 4-2 Site Edit Subfunctions

| Subfunction<br>Display | Item/Value Range | Description                                   |
|------------------------|------------------|-----------------------------------------------|
| . 3                    |                  |                                               |
| Set                    | Default CP       | Default codeplug setting                      |
| XCM id:                | Enable           | Uses configured ATCS address                  |
| (1)                    | Disable          | Obtains ATCS address from connected code unit |
| Railroad:              | 001 – 999        | Railroad number of local address              |
| Line:                  | 001 – 999        | Code-line number of local address             |
| Group:                 | 000 – 999        | Group number of local address                 |
| Snode:                 | 00 – 99          | Subnode number of local address               |

<sup>(1)</sup> Should be Enabled for MCP

#### 4.3.3 RF Edit

The **RF Edit** function display is shown at right.

The subfunctions listed in Table 4-3 may be accessed from this function.

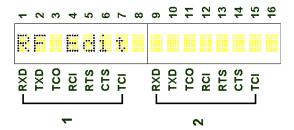
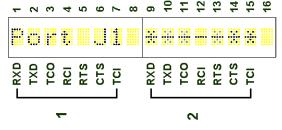



Table 4-3 RF Edit Subfunctions

| Subfunction Display | Item/Value Range | Description                              |
|---------------------|------------------|------------------------------------------|
| Chan:               | 1-6              | Selects radio channel                    |
| Power:              | Auto             | Refer to paragraph 4.4                   |
|                     | Low              |                                          |
|                     | High             |                                          |
| ТХ                  | Normal           | Normal bit-sense transmission            |
|                     | Invert           | Invert the bit-sense of transmitted data |
| RX                  | Normal           | Normal bit-sense reception               |
|                     | Invert           | Inverts the bit-sense of receive data    |


#### 4.3.4 Port J1

The Port J1 function display is shown at right.

The subfunctions listed in Table 4-4 may be accessed from this function.

This function also monitors the serial bit activity of connector J1. The serial bits are displayed in section 2.

A zero (0) is represented by a dash (-) and a one (1) is represented by an asterisk (\*).



#### 4.3.5 Port J2

The **Port J2** function display is shown at right.

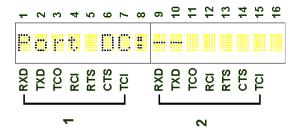
Subfunctions corresponding to those listed in Table 4-4 may be accessed from this function. This function also monitors the serial bit activity of connector J2. The serial

bits are displayed in section 2. A zero (0) is represented by a dash (-) and a one (1) is represented by an asterisk (\*).

Table 4-4 Port J1 Subfunctions

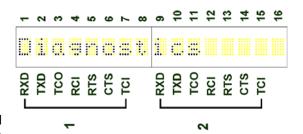
| Subfunction Display         | Item/Value Range    | Description                                   |
|-----------------------------|---------------------|-----------------------------------------------|
| See Note below.             | Wayside             | Selects wayside equipment. Default Value.     |
|                             | Mobile              | Selects mobile equipment.                     |
| See Note below.             | Not Used            | Selects serial port communications protocol.  |
|                             | HDLC ADM            | ·                                             |
|                             | HDLC ABM            |                                               |
|                             | HDLC POL            |                                               |
|                             | HDLC UI             |                                               |
|                             | HDLC NUL            |                                               |
|                             | GENI (0)            |                                               |
|                             | ECP                 |                                               |
|                             | BCP GENI            |                                               |
|                             | MCS 1               |                                               |
|                             | ASYNC               |                                               |
|                             | SSR                 |                                               |
|                             | DC                  |                                               |
|                             |                     |                                               |
|                             | SCS128              |                                               |
|                             | GENI (F)<br>CN2000A |                                               |
|                             | CN2000A<br>CN2000B  |                                               |
|                             | CN DHP              |                                               |
|                             | SLIP                |                                               |
|                             | SLIPMCas            |                                               |
|                             | CENTRA              |                                               |
|                             | FRM RLY             |                                               |
|                             | BGENI(O)            |                                               |
|                             | GESERIES6 PPP       |                                               |
|                             | PPPMCast            |                                               |
|                             | GPRS(bu)            |                                               |
|                             | GPRScont            |                                               |
|                             | GENIO(A)            |                                               |
|                             | ARES                |                                               |
| Baud: ###                   | 300                 | Selects serial port communications baud rate. |
| See Note below.             | 600                 |                                               |
|                             | 1200<br>2400        |                                               |
|                             | 4800                |                                               |
|                             | 9600                |                                               |
|                             | 19.2 (K)            |                                               |
| See Note below.             | RS422               | Serial port configuration.                    |
|                             | RS232               |                                               |
| See Note below.             | SYNC                | Clock sync mode.                              |
| Dall #                      | ASYNC               | Madda as Passadas as                          |
| Poll = #<br>See Note below. | 0 – 127             | Module polling address                        |
| Max Poll                    | 0 – 127             | Sets poll range                               |
| linax i on                  | 0 121               | Octo poil range                               |




### NOTE

Subfunction default display is dependent on current Codeplug parameters.

### 4.3.6 Port DC


The Port DC function display is shown at right.

This function monitors the I/O bit activity of connector J4. The I/O bits are displayed at the RXD and TXD positions of section 2. Zero (0) bits are represented by a dash (–) and one (1) bits are represented by an asterisk (\*). No subfunctions are available from this function.



### 4.3.7 Diagnostics

The **Diagnostics** function display is shown at right.



The subfunctions listed in Table 4-5 may be accessed from this function. Typical values for each subfunction display are shown.

Table 4-5 Diagnostic Subfunctions

| Subfunction<br>Display | I tem/Value           | Description                                                                        |
|------------------------|-----------------------|------------------------------------------------------------------------------------|
| X:                     | <b>755AA5AAA1A1A1</b> | Local ATCS address display. Varies per site.                                       |
| GC:                    | Passive               | Displays whether ground contact has been established.                              |
|                        | Active                |                                                                                    |
| XCM Ver.               | MCM-II V01.17.40      | Displays version of installed software                                             |
| Conf. CRC:             | D757                  | CRC of site configuration file                                                     |
| TEST                   | F3FF                  | Name and CRC of installed logic file                                               |
| RSSI (L)               | -70dB                 | RSSI of last data packet                                                           |
| RSSI(C)                | -120dB                | Current signal strength of received carrier                                        |
| PTT                    | off                   | Toggles push-to-talk line to radio                                                 |
|                        | on                    |                                                                                    |
| COR raw                | 000                   | Carrier Operated Relay(Not Used)                                                   |
| RSSI raw               | 000                   | Current RSSI value read from analog input.                                         |
| DCIO_IN                | LL                    | State of parallel input channels1 and 2. H is                                      |
|                        | нн                    | for high and L is for low. Leftmost value is channel 1 and rightmost is channel 2. |

### 4.3.8 Date and Time

The **Date and Time** function display is shown at right.

This is a display of the date and time obtained from the Central Office. No subfunctions are available from this function.

#### 4.3.9 Reset

The **Reset** function display is shown at right:

When this function is activated, it first resets the WCP CPU II and then conducts a series of tests to determine WCP CPU II operational status. Table 4-6 list the tests performed.

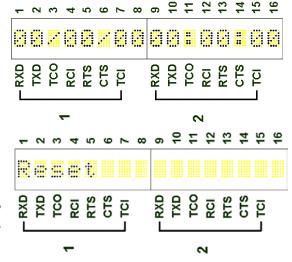



Table 4-6 WCP CPU II Self Tests

| Subfunction<br>Display | Test Results<br>Displayed | Test Description                                                                                     |
|------------------------|---------------------------|------------------------------------------------------------------------------------------------------|
| ROM RAM ******         | OK /FAILED                | Performs CRC of Executive Firmware in ROM and performs memory test on RAM                            |
| CODEPLUG *****         | OK /FAILED                | Verifies CRC of configuration data in codeplug                                                       |
| MODULATOR ****         | OK /FAILED                | Verifies the modulator & demodulator via an internal loopback test of the TX and RX audio data paths |
| RADIO *******          | OK /FAILED                | Resets Motorola radios equipped with an SB9600 bus; has no effect on other radios                    |
| HDLC PORT 0 **         | OK /FAILED                | Verifies the client ports via an internal loopback test of the TX and RX data paths                  |
| HDLC PORT 1 **         | OK /FAILED                | Verifies the client ports via an internal loopback test of the TX and RX data paths                  |
| DC PORT                | OK/FAIL                   | Test DC input channels by looping DC outputs to inputs. Test is disabled.                            |
| LON PORT *****         | OK/FAILED                 | Resets LON port                                                                                      |

# NOTE

### NOTE

Function and subfunction displays are automatically turned off approximately 12 minutes after the **SELECT** or **ENTER** push buttons are last activated.

### 4.4 WCP CPU II Configuration PROGRAMS

The WCP CPU II Configuration programs (XCMMAINT.EXE, MCM II Configuration Utility, or similar name) and associated files are distributed on a CD ROM.

• The XCMMAINT.EXE program, MCM II Configuration Utility, or similar name must be installed on an MS-DOS compatible computer with a serial port. For computers without a serial port, use a USB-to-Serial adapter. Not all adapters will work for all computers. A suggested adapter is the Cables Unlimited USB-2920, USB 2.0 to Serial DB-9 Adapter.

### 4.4.1 Installation

To install the XCMMaint Configuration or the MCM II Configuration Utility program proceed as follows:

- 1. Insert the installation CD to the CD Drive.
- 2. Make a folder on the drive where CD Files will reside.
- 3. Copy the files from CD to the folder.
- 4. Create a shortcut to the XCMMaint's executable file onto the computer desktop.

4-13

### 4.4.2 Using the WCP CPU II Configuration Program

Connect the serial port of the PC to the Diagnostic Port on the front of the WCP CPU II as shown in Figure 4-4.

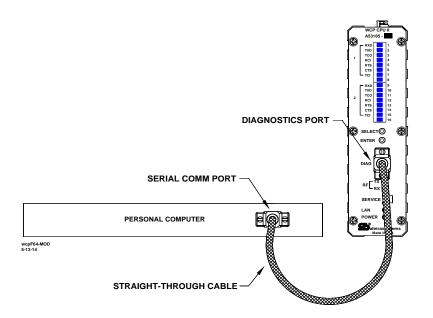



Figure 4-4 WCP CPU to Personal Computer Interconnection Diagram

Start the XCMMAINT configuration Editor by opening the XCMMAINT.EXE file. The name of this executable file will change per the installation CD.



Figure 4-5 XCMMAINT Opening Screen

### 4.4.2.1 Accessing A Saved Codeplug

To access a saved configuration code-plug file from the Configuration Editor Startup Screen:

- 1. Press the **ENTER** key.
  - A list of Codeplug files (\*.xcm), Figure 4-6, displays within the Startup Screen.

```
Enter Filename

*.xcm

C:\IN_PRO~1\SD9RAD~1\INSTAL~1\MCMII\BMBMAINT\*.XCM

DPLTMCM.XCM MDSSD9.XCM MDS_R9.XCM ...\
```

Figure 4-6 Codeplug File List

- 2. Place the cursor on the desired codeplug file name within the list using the arrow keys.
- 3. Press the ENTER key.

  The selected codeplug file is displayed within the Main Editor Screen,
  - Figure 4-7.

```
ox XCMMAI~1.EXE
                                       Online Help Version
\SD9RAD~1\INSTAL~1\MCMII\BMBMAII
        Radio Settings
e: MDSSD9Usage: MCP
                                                                              Local Addr: 7.55A.A5A.AA1.A1 Enable
FEPCC Addr: 2.AAA.AA.AAAAAAA
Radio CRC:7008 Enable Code App: No
Beacontime: Enable Simulation: No
Logic CRC:0000 Enable Ladder Logic: No
 Rssi: Scale: 020/038
Radio Gain: In: 109
                                                   Yes

Ase:-126 dB Beacontime: Enable Structure: Enable Structure: Enable Structure: Enable Lagic CRC:0000 Enable Lagic File:

-Lontalk-Network-Configuration
Node Type Description
                                             RX: Yes
                             In: 1024 Out:
                              Description
/A53408 XCM
                                                                                                                                                         CRC: CØ4B
   Node
                                                                                              Unused
                                                                                               Unused
                 Unused
                                                                                               Jnused
                 Unused
                                                                                              Unused
      De 1
                                                                            CTS-TXC-FLG-Timer-Usage-LL-
                                                            KS232, No
Subnode: 01
3B9B
                                                    CRC:
                       Used
```

Figure 4-7 Typical Main Editor

### 4.4.2.2 Read WCP Codeplug

To read the codeplug currently stored in WCP CPU II unit for display on editor screen:

• Enter Alt-O and use down arrow key to select 'Read Codeplug from Unit'. Press Enter key.

```
File Edit Online Help Version

FILE: C:XCT500\I Radio Settings
Type: MDSSD9Usag
Invert: TX:N
Rssi: Scale: 020/
Radio Gain: In:

Node Type De

01 A53105/A53408 XCM
02 Unused
05 Unused
07 Unused
09 Unused
09
```

Figure 4-8 Read WCP Codeplug

• The codeplug file is read from the WCP CPU II and displayed as shown in Figure 4-9

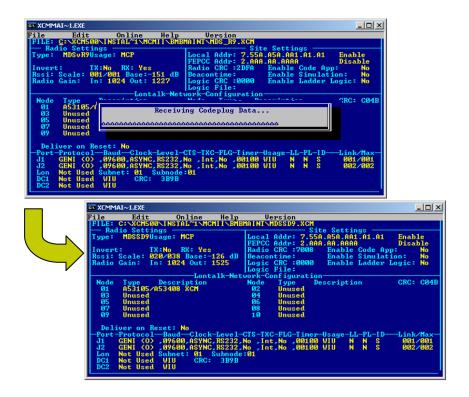



Figure 4-9 Codeplug Data Read from WCP

### 4.4.3 Using The Main Editor Screen

Codeplug configuration is performed from the Main Editor Screen. This screen is divided into four functional sections:

- RF Settings
- Site Settings
- LonTalk® Network Configuration
- Port Selection

These sections are described in the following paragraphs.

The name and path for the selected file is identified at the upper left corner of the display.

- At the top of the display is the Menu Bar.
- The Menu Bar contains the names of three drop-down menus or functions and a Help and Version screen that are accessible from the Main Editor Screen
- To display a drop-down menu or access the indicated function, simultaneously press the **ALT** key and the letter key corresponding to the first letter of the menu name (e.g., **ALT-F** for the **File** menu).

Items are highlighted within each drop-down menu by using the arrow keys or mouse. Pressing **Enter** selects the highlighted item.

```
■ XCMMAI~1.EXE

                                                                                                                  Online Help Version
NINSTAL TINGCHILLEMBMAINT NDSSD9.XCM
File
  Load
                Settings
                                                                         7.55A.A5A.AA1.A1.A1 Enabl
2.AAA.AA.AAAA Disab
2008 Enable Code App:
Enable Simulation:
3000 Enable Ladder Logic:
               SSD9Usage: MCP
                                                       Local
FEPCC
  Save
                                                                Addr:
                                                                                                            Enable
Disable
                                                       FEPCC Addr: 2.A
Radio CRC :7008
  Save
  Save+ABS
                                RX: Yes
                     020/038 Base:-126
 Exit
                                                dB
                                                       Beacontime:
Logic CRC:0000
Logic File:
                           1024 Out: 1525
           Lon
A53105/A53408 XCM
Unused
Unused
                                    Lontalk-Neti
                                                       ork-Configuration-
                                                                                                            CRC: CØ4B
                                                                              Description
   Node
                                                       Node
                                                         02
04
    01
03
                                                                  Unused
                                                                  Unused
            Unused
                                                                  Unused
                                                         08
            Unused
                                                                  Unused
                                                         10
                                                                  Unused
            Unused
    Deliver on Reset:
                                                     -CTS-TXC-FLG-Timer-Usage-LL-PL-
                  (0)
                                          | RSZ32 | 101
| Subnode : 01
                Used
                                     CRC:
                Used
Used
                                              3B9B
          Not
```

Figure 4-10 Main Editor Screen

#### 4.4.3.1 File Menu

The **File** (**Alt-F**) drop-down menu contains the following five entries:

• **Load** – this entry allows another codeplug file (.XCM extension) to be loaded, replacing the one currently displayed.

The **Load** entry is selected as follows:

1. Highlight the **Load** entry using the arrow keys, as required.



2. Press the Enter key.

The following prompt is displayed:

```
Enter Filename

*.xcm
```

- 3. Enter a file name by performing one of the following actions:
  - a. Type the file name (maximum of eight characters plus the .XCM extension) at the **Enter Filename** prompt.
  - b. Press the **Enter** key to bring up the Codeplug File List, Figure 4-6 and make a file selection from the presented list using the arrow keys.
- Press the Enter key.

The file path is shown on the first line of the screen as shown in Figure 4-11.

```
File Edit Online Help Uersion

FILE: C:XCM500\INSTal^\indexidential NCMII\SMBMAINI\MDSSD9.XCM

Radio Settings

Type: MDSSD9Usage: MCP

Invert: IX:No RX: Yes
Radio Gain: In: 1024 Out: 1525

Local Addr: 7.55A.A5A.AA1.A1.A1 Enable
Radio Gain: In: 1024 Out: 1525

Logic RC: 7008 Enable Code App: No
Radio Gain: In: 1024 Out: 1525

Logic RC: 0000 Enable Ladder Logic: No
Logic File:

Logic File:

Logic File:

Logic RC: 0000 Enable Ladder Logic: No
Logic File:

Logic File:

Logic Pile:

Logic Pile:

Unused

01 A53105\A53408 XCM

02 Unused

03 Unused

04 Unused

05 Unused

06 Unused

07 Unused

08 Unused

09 Unused

Deliver on Reset: No

Port-Protocol—Baud—Clock—Level—CIS—IXC—FLG—Timer—Usage—LL—PL—ID—Link/Max—Ji GENI (0) .99600_ASYNC.RS232.No .Int.No .00100 WIU N N S 001/001

DCI Not Used WIU CRC: 3B9B

DC2 Not Used WIU CRC: 3B9B

DC2 Not Used WIU

DC2 Not Used WIU

DC3

CCM

Site Settings

FPCC Addr: 2.A0A.AA1.A1.A1 Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addr: 2.A0A.AA1.A1.A1

Enable

PEPCC Addre: 2.A0A.AA1.A1.A1

Enable

Pile

FEPCC Addre: 2.A0A.AA1.A1.A1

Enable

FEPCC Addre: 2.A0A.AA1.A1.A1

Enable

FEPCC Addre: 2.A0A1.AA1.A1

Enable

FEPCC Addre: 2.A0A1.AA1.A1

Enable

File

File
```

Figure 4-11 XCM File Name Path

### Save

This entry saves the currently displayed code-plug configuration data to the file listed in the upper left corner of the Main Editor Screen. After the file is saved, the code-plug configuration data remains displayed within the Screen.



#### Save As

This entry permits the currently displayed code-plug configuration data to be saved to a file other than the one named in the upper left corner of the Main Editor Screen.



The Save As entry is selected as follows:

- 1. Highlight the **Save As** entry using the arrow keys.
- 2. Press the **Enter** key.

The following prompt is displayed:



- 3. Enter a file name by performing one of the following actions:
  - a. Type the file name (maximum of eight characters plus the .XCM extension) at the Enter Filename prompt.
  - b. Press the **Enter** key to bring up the Codeplug File List, **Error! Reference source not found.**, and then make a file selection from the presented list using the arrow keys.
- 4. Press the **Enter** key.



#### NOTE

When a file name is selected from the Codeplug File List, the currently displayed codeplug configuration data overwrites any data in the selected file.

#### Save + ABS

This entry permits the currently displayed code-plug configuration data to be saved in the modified binary s-record format (ABS).



### **Exit**

Select this entry to quit the Configuration program and return to the DOS prompt or Desktop.



- The Exit entry is selected as follows:
- 1. Highlight the **Exit** entry using the arrow keys.
- 2. Press the **Enter** key.

If the codeplug has been changed without being saved, the **Verify** prompt is displayed (see right).



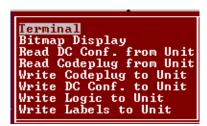
- a. Type  $\mathbf{Y}$  (yes) to save the changes to the configuration or  $\mathbf{N}$  (no) to discard the changes to the configuration.
- b. Press the Enter key.

The Main Editor Screen closes and the DOS prompt is displayed or the Desktop is shown.

### 4.4.3.2 Edit Function

The **Edit** function (**Alt-E**) does not display a drop-down menu, but is used to move from one editing data field to the next.

- When editing the LonTalk<sup>®</sup> Network Configuration, selection of Alt-E, while an I/O device is selected, will cause a secondary edit screen to be displayed. Refer to paragraph 4.4.6 for additional information.
- When editing the 'Type' field in Radio Settings section, selecting Alt-E results in default radio settings to be automatically set. See section 4.4.3.2.


#### 4.4.3.3 Online Menu

The **Online** (**Alt-O**) drop-down menu contains eight entries that are described below.

### **Terminal**

This entry provides access to a number of diagnostic tools and access to the event log.

A blank screen appears displaying only the Menu bar containing the name of the three available drop down menus: **File, Online,** and **Upload.** 



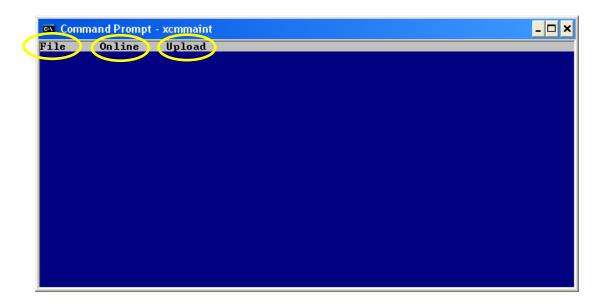



Figure 4-12 Terminal Sub Menus

### File Menu

The **File** menu contains five entries that function as follows:

#### **Edit**

This closes the Online Terminal Screen and returns to the Main Editor Screen display.

# Edit Status Log Open Log Close

#### Status

Status is identical in display and function to the **Terminal** entry described above.



Edit

### Log Open

This brings up the following prompt:



Type a log file name to be created (the .log extension will be appended) and press Enter.

All subsequent WCP CPU II log entries will be written to this file until it is closed or until the XCMMAINT.EXE utility is exited.



### NOTE

Only one log capture file may be opened at one time. If a log capture file is already open, the prompt to enter a log file name will not display.

### Viewing and/or Logging the WCP CPU II Event Log

a. Press the ENTER key.

A "\*" prompt is displayed.

- b. To create a new event log for logging WCP CPU II events, select Log Open from the Terminal's drop-down File menu.
  - 1) Type a log file name to be created (the .log extension will be appended) and press Enter.
- c. Type **LOG** at the "\*" prompt.
- d. Press the Enter key.

The event log of the WCP CPU II is displayed on the Screen as shown in figure 4-9a. As each new event occurs, it is added to the end of the event log file. Note that each new event also displays at the bottom of the screen as it occurs.

While viewing the event log, the following commands may be executed:

- Typing B moves the previous sixteen entries to the bottom of the display.
- Typing F moves the display down (forward) sixteen entries.
- Typing S moves the display to the start of the log.
- Typing E moves the display to the end of the log.
- Typing P pauses the log updates.
- Typing W erases all events in the log.
- Pressing the Esc key interrupts the log display and disables log command execution.
- Pressing the Esc key interrupts the log display and disables log command execution.
  - e. At the completion of event log viewing and logging, perform the following:
    - (1) If a log file is open, select **Log Close** from the **Terminal's** drop-down **File** menu.
    - (2) To return to main edit screen, select **Edit** from the drop-down **File** menu.

Figure 4-13 Online Terminal Screen Event Log

#### Log Close

This will close the currently open log file, if any, without prompting.

#### Exit

This terminates the program and the DOS prompt is displayed or the Desktop is shown.





#### **Online Menu**

This screen is the same as the Main Editor's **Online** drop-down menu.

Online Terminal Screen Commands

From the terminal screen (Alt-O, Terminal), a number of diagnostic, status, and troubleshooting commands may be initiated. To obtain a list of available commands:

- a. Press the Enter keyA "\*" prompt is displayed.
- b. Type HELP.HELP appears on the screen to the right of the \*.
- Press the Enter key.
   The Command List is displayed within the Online Terminal Screen as shown in Figure 4-14

```
ox XCMMAI~1.EXE
                                                                                                                                                                                                                                                                                                                                        File
                                       Online
                                                                                   Upload
*HELP
Display Codeplug Contents -
Display DC Configuration -
Display Client List -
Enter Service Mode -
Uersion Identification -
Base Station List -
Communication Statistics -
HDLC Statistics -
Manufacturer Statistics -
Alarm Logging -
Uiew log -
Status Logging -
Status Logging -
Key or Dekey Radio -
Radio Simplex Operation -
COS status -
Enter Channel Number -
   HELP
                                                                                                                            CL
SERU
                                                                                                                            HSTAT
                                                                                                                            MSTAT
                                                                                                                                                 <en/ds>
<CLEAR>
                                                                                                                          LOG (CLEAR)
SL (en/ds)
PTT (en/ds)
SIMP (en/ds)
COS (en/ds)
COS (en/ds)
CHAN (number)
LOCAL (label) (message)
TEST (1=cold / 0=warm)
PCP (location) (new_value)
MOND (layer) (port) (link)
SEND (layer) (port) (link)
SEND (layer) (port) (link)
SENT (mode) (layer) (port) (
ERT (mode) (layer) (port) (
SWI en/ds
LADL en/ds
FPROG
SCT
RSSI
RIFRESET 1=MCS reset, 2=SB 1
COS status -
Enter Channel Number -
Send Local Message -
Self Test -
Patch Codeplug -
Disable Tracing Mechanism -
Enable Tracing Mechanism -
Send Mobile Message -
Error Rate Test -
Enable / Disable SWI -
Enable / Disable LADL -
Program Codeplug -
Show HW/SW Version Info -
Reset RSSI Statistics -
Reset MCS/SB9600
PPP Status -
Ping -
                                                                                                                                                                                                                                                  <msg>
<full report> <pattern>
                                                                                                                            RIFRESET 1=MCS reset, 2=SB reset, 3=SB prog, other=P
  Ping
Timer Status
Set Date
Set Time
                                                                                                                            PINGIP address, client num (0:1)
                                                                                                                            TIMERS
DATE <
                                                                                                                            DATE (year) (month) (day)
TIME (hour) (minute) (second)
```

Figure 4-14 Online Terminal Screen Command List

NOTE

#### **NOTE**

<Page Up> may be used to view lines that have scrolled off the screen

Online Terminal Screen Command Initiation

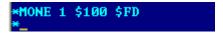
To implement a command from the Online Terminal Screen proceed as follows:

a. Press the Enter key.

An  $^{\star}$  is displayed at the top left of the Screen, verifying that the program is communicating with the WCP CPU II.

b. Type the command followed by a space and the desired parameter designation.

Commands requiring multiple parameters are entered with a space between each parameter. For example; a 'Enable Tracing Mechanism' command is entered as:


\*MONE <space><layer><space><port> ,space><link>.

Valid layers for this command are 1 and 2.

Typical Port numbers are:


- \$100 for serial port J1
- \$101 for serial port J2
- \$300 for the RF Port
- c. Press the **Enter** key.

The command executes and the results are displayed on the Screen as shown below:



### **Bitmap Display**

**Bitmap Display** – This entry displays the Bitmap screen, Figure 4-15, which is an online dynamic display of the logic state of any physical inputs or outputs associated with the WCP CPU II via ladder logic. The logic state of all internal bit fields are displayed as well. When properly configured I/O modules are installed on the local Echelon® LAN, the current state of their inputs and outputs can be determined using this screen.



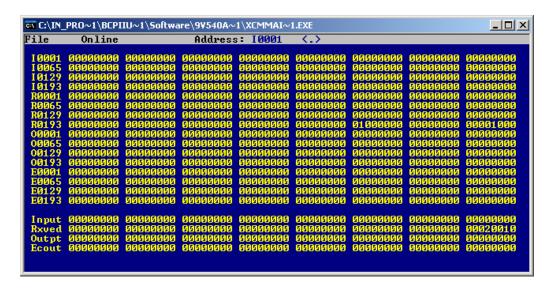



Figure 4-15 Bitmap Display Screen

#### Read DC Conf. From Unit

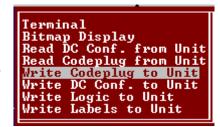
**Read DC Conf. from Unit.** – by selecting this function and pressing **ENTER**, the configuration of the DC port of the WCP CPU II (associated with connector J4) is read. The **Receiving data** popup box will display briefly as the data is read. The main edit screen will be updated to reflect the configuration data that is read.



```
Receiving Codeplug Data...
```

### **Read Codeplug From Unit**

**Read Codeplug from Unit** – by selecting this function and pressing **ENTER**, the Codeplug portion of the WCP CPU II configuration data is read. This is a 512-byte data array that stores all the user-modifiable WCP CPU II configuration information. The **Receiving data** popup box (see above) will display briefly as the data is read. The main edit screen is updated to reflect the codeplug data that is read. See Appendix C for code plug parameter details.


```
Terminal
Bitmap Display
Read DC Conf. from Unit
Read Codeplug from Unit
Write Codeplug to Unit
Write DC Conf. to Unit
Write Logic to Unit
Write Labels to Unit
```

```
Receiving Codeplug Data...
```

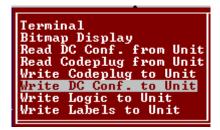
### Write Codeplug To Unit

**Write Codeplug to Unit**– by selecting this function and pressing **ENTER**, all the configuration data appearing on the main edit screen will be written to the WCP CPU II's non-volatile memory.

The **sending data** popup box will display briefly as codeplug data is written.

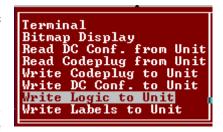


# **A** CAUTION


#### CAUTION

EXISTING CODEPLUG DATA IN THE WCP CPU II WILL BE OVERWRITTEN AND IRRETRIEVABLY LOST.

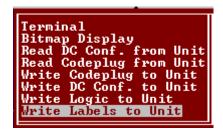
### Write DC Configuration To Unit


**Write DC Conf to Unit.** – by selecting this function and pressing **ENTER**, the DC configuration data on the main edit screen (**DC1**) will be written to the WCP CPU II. Note that this data is not part of the 512-byte codeplug described in Appendix C.

The **Sending data** popup box (see previous page) will display briefly while the data is being uploaded.



### Write Logic To Unit


- Write Logic to Unit This function uploads compiled ladder logic to the WCP CPU II if the following conditions are met:
  - 1. Appropriate ladder logic has been compiled
  - The name of the logic file generated has been entered on the main edit screen (in the Site Settings section). The file extension (.LLW) is omitted.



After the upload sequence is complete, the WCP CPU II calculates a CRC value for the ladder logic. If this CRC value does not match the CRC embedded in the logic file, the process aborts with the WCP CPU II unchanged.

### Write Labels To Unit

Write Labels to Unit – by selecting this function and pressing ENTER, the tokenized label file associated with the ladder logic is uploaded to the WCP CPU II. The conditions for uploading are the same as for the logic upload described above. The label file and the logic file are generated by the logic compiler and will have the same base filename, but file extension (.LLM). As a result, it is only necessary to specify the base filename in the **Logic File** field on the main edit screen.



### 4.4.3.4 Upload (Alt-U)

This performs firmware upgrading and has the following three drop-down selections:



The files associated with each of the three drop-down menus are stored on the installation CD. File 'xcmmaint.ini' specifies the path to each of these files.

#### **Executive**

The executive firmware consists of MCM II's operating system software and system application software. As MCM II's executive firmware is changed and updated by Siemens, select this command to flash an updated executive into MCM II. Upon selecting this command, configuration program will automatically establish a session with the MCM II unit and write new executive to flash memory. The entire operation takes about 6 minutes.

To begin this operation, enter **Alt-U** and use up/down arrow keys to highlight **Executive** selection. Then press **ENTER** key.



The following sequence of screens show the steps automatically performed by MCM II configuration program to accomplish re-flashing of executive firmware:

As shown below, XCMMaint.exe establishes a connection with MCMII.



Then, new executive firmware is serially sent to MCM II as shown below. Screen is updated to reflect serial completion status.



New executive firmware is now completely serially sent to MCM II. New executive firmware is written to flash memory. Upon completion of flash operation, MCM II will automatically reboot.

FlashRAM. Rebooting.

\*
\*
\*
\*
Flash programming completed
Booting from Diagnostic ROM

Safetran MCM II 68302 Debugger Version 2.00

Booting from Diagnostic ROM

### 4.4.3.5 Help Window

The **Help** window, Figure 4-16, provides general help instructions.

```
MCMMaint 1.17.41 (c) Safetran Systems Corp. 24 Jun 2013

IMAIN_HELP1
Place the cursor over the field to be modified. Some fields can be overtyped, while others require you to make a selection using the TAB (or Shift-TAB) key. You can also use the mouse to move the cursor.

Context-sensitive help is available for some configuration fields by entering Alt-H (or right-clicking the mouse) while the cursor is in that field. Some fields need to be expanded with the Alt-E option.

Call Safetran at 1-800-793-7233 for support on this product.
```

Figure 4-16 MCMMAINT Help Window

Help text is available for each configuration parameter by one of two methods:

- 1. Use arrow keys to move cursor to a configuration parameter and press Alt-H.
- 2. Use mouse to move cursor to a configuration parameter and **right-click** the mouse.

For example the figure below shows the help text for 'protocol' parameter in port configuration section of configuration screen:

```
CON XCMMAI~1.EXE
                                                                                                                           _ 🗆 ×
                                                 Help
File
                                Online
                                                                  Version
      Radio Settings
                                                                                   Site Settings
                                                                                                                        able
               [GENI (0)]
              Code plug location $10B (J1) or $121 (J2); value = 7
 Rssi: S
Radio G
              Configures port as Genisys Office interface. Polling range is determined by the LINK (start) and MAX (end) fields.
              Any station answering a recall will be registered as client on this WCP using the LOCAL ADDRESS as the roo address and the poll address as the group number.
                                                                                                                             CØ4B
  Node
    03
    Deliu
   J2
                 Used Subnet: 01 Subnode:01
Used WIU CRC: 3B9B
                 Used
Used
```

Figure 4-17 Help Window Example

To return back to main configuration screen press **ESC** key.

### 4.4.3.6 Version Window (Alt-V)

The Version (Alt-V) window shown below displays the executive software version.

```
Esc to exit

MCMMaint 1.17.41 (c) Safetran Systems Corp. 24 Jun 2013

Built Jun 26 2013 08:10:27
```

To return back to main configuration screen press ESC key.

### 4.4.4 RF Settings Displays

### 4.4.4.1 Radio Type and Usage Fields

The **Radio Settings** section configuration is determined by the **Type** field setting.

1. The **Type:** field selection range and the default field configuration for each selected radio type are shown below. To set radio settings' parameters to their default values, enter **Alt-E** while cursor is positioned on **Type** field. The following shows the default settings for each radio type.

♦ None

```
— Radio Settings
Type: None Usage: ---
```

♦ MCS

```
Radio Settings
Type: MCS Usage: _--
Channel: Min:01 Max:06 Def:02
Invert: TX:No RX: Yes
Rssi: Scale: 009/025 Base:-137 dB
Radio Gain: In: 1024 Out: 1250
```

♦ MSF

```
Type: MSF Usage: _--

Invert: TX:Yes RX: Yes
Rssi: Scale: 060/210 Base:-132 dB
Radio Gain: In: 1024 Out: 1664
```

♦ MTR

```
Radio Settings
Type: MTR Usage: ---

Invert: TX:No RX: Yes
Rssi: Scale: 001/002 Base:-125 dB
Radio Gain: In: 1024 Out: 0970
```

MTR3000 - Gain Out = 0970

♦ PHD

```
Radio Settings
Type: PHD Usage: _--

Invert: TX:Yes RX: Yes
Rssi: Scale: 070/067 Base:-152 dB
Radio Gain: In: 1024 Out: 1664
```

♦ ASTRO

```
Radio Settings
Type: ASTRO Usage: ---
Channel: Min:01 Max:06 Def:02
Invert: TX:Yes RX: Yes
Rssi: Scale: 070/067 Base:-152 dB
Radio Gain: In: 0000 Out: 0000
```

♦ EFJ

```
Radio Settings
Type: EFJ Usage: ---

Invert: IX:Yes RX: No
Rssi: Scale: 040/206 Base:-110 dB
Radio Gain: In: 1024 Out: 1664
```

```
Radio Settings
Type: MTR Usage: _--

Invert: TX:No RX: Yes
Rssi: Scale: 001/002 Base:-125 dB
Radio Gain: In: 1024 Out: 0640
```

MTR2000 (Discontinued) - Gain Out = 0640

### **♦ KENWD**

```
Radio Settings
Type: KENWD Usage: ---
Channel: Min:01 Max:06 Def:02
Invert: TX:No RX: Yes
Rssi: Scale: 001/001 Base:-151 dB
Radio Gain: In: 1024 Out: 1227
```

♦ MDS

```
Type: MDS Usage: _--
Channel: Min:01 Max:06 Def:02
Invert: TX:Yes RX: No
Rssi: Scale: 060/138 Base:-146 dB
Radio Gain: In: 1024 Out: 1250
```

♦ MDSvR9

```
Radio Settings
Type: MDSvR9Usage: MCP
Invert: TX:No RX: Yes
Rssi: Scale: 001/001 Base:-151 dB
Radio Gain: In: 1024 Out: 1227
```

♦ MDSSD9

```
Radio Settings
Type: MDSSD9Usage: MCP
Invert: TX:No RX: Yes
Rssi: Scale: 020/038 Base:-126 dB
Radio Gain: In: 1024 Out: 1525
```

- The Usage: field selection range is as follows:
- **♦** BCP
- ♦ MCP

For current WCP applications, set Usage: to MCP and MDS for the Radio: field. See Figure 4-18.

### NOTE

#### NOTE

- 1. As shown above, not all of the **Radio Settings** fields are displayed for each radio.
  - The fields displayed are dependent on the radio selected

```
ox XCMMAI~1.EXE
                                                                                                                    ile Edit Online Help Version
FILE: C:\XCM500\INSTAL~1\MCMII\BMBMAINT\MDSSD9.XCM
                                                                                   Setting
A5A.AA1.A1.A1
AA.AAAA
Enable Code App:
Enable Simulation:
Ladder Logi
           MDSSD9Usage: MCP
                                                        FEPCC Addr: 2.A
Radio CRC :7008
                                                                                                              Disable
                                                        Beacontime:
                                                       Logic CRC :0000
Logic File:
work-Configuration-
 Radio Gain:
                     In: 1024 Out:
                                           1525
                                                                                               Ladder Logic:
                                     Lontalk-Net
                                                                   Type
Unused
Unused
            Type Description
A53105/A53408 XCM
                                                                                Description
                                                                                                              CRC: CØ4B
            Unused
            Unused
                                                                    Inused
            Unused
                                                                   Unused
                                                      CTS-TXC-FLG-Timer
                                           Subnode: 01
3B9B
                                     CRC:
```

Figure 4-18 Main Editor Screen - Radio and Usage Selection

#### 4.4.4.2 Channel Field

Each of the **Channel:** fields, figure 4-12, may be set to any value from **01** to **06**. However, to avoid unwanted channel scanning, it is recommended that the **Min:** and **Max:** fields be set to the value of the **Def:** (Default) field. Some radio selections will not show the Channel Field.

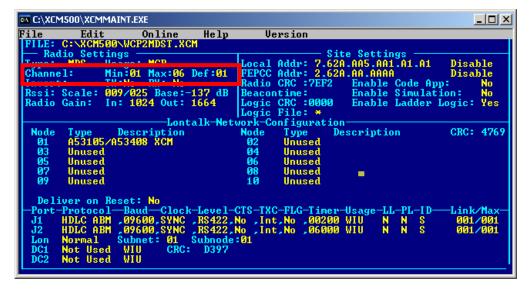



Figure 4-19 RF Channel Setting Selection

### 4.4.4.3 Invert Field

The Invert TX and Invert RX field has the following options:

No Yes The Invert: fields, Figure 4-20, may be used to invert the bit-sense of the transmitted data from or the received data by the WCP. This function is intended for cross-functionality with foreign equipment.

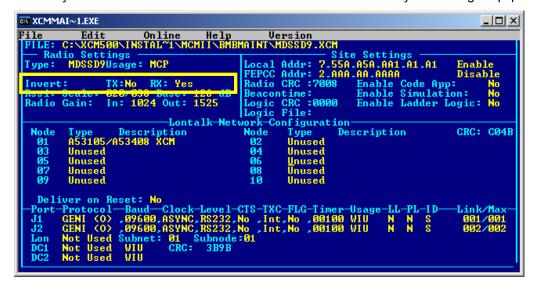



Figure 4-20 Main Editor Screen - Bit-sense Setting Selection

#### 4.4.4.4 RSSI Scale and Base Fields

RSSI (Received Signal Strength Indicator) scaling and base values (see Figure 4-21) are included on the configuration screen only for compatibility with foreign equipment. Default values will result in proper RSSI reporting for current Siemens WCP equipment.

 To set fields to their default values, move cursor to 'Type" field in Radio Settings section and enter Alt-E.

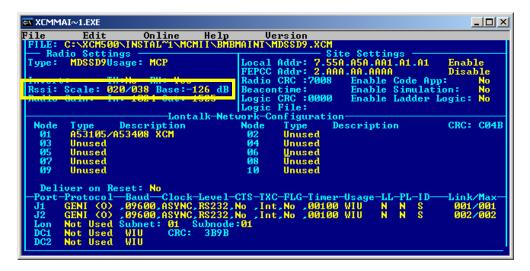



Figure 4-21 Main Editor Screen - Radio SSI (RSSI) Selection

### 4.4.4.5 Radio Gain

Radio Gain is used to control the sensitivity of the RX audio detector (In), or to adjust the radio deviation (Out).

• Radio input gain is normally not changed from the default values.

```
File Edit Online Help Uersion

FILE: C:\XCM500\INSTAL^\IndextI\BhBMAINT\MDSSD9.XCM

Radio Settings

Type: MDSSD9Usage: MCP

Invert: TX:No RX: Yes

Radio Gain: In: 1024 Out: 1525

Local Addr: 7.55A.A5A.AA1.A1.A1 Enable
FEPCC Addr: 2.AAA.AAAAA

Radio Gain: In: 1024 Out: 1525

Lotalk-Network-Configuration

Node Type Description Node Type Description CRC: C04B

01 A53105/A53408 XCM
02 Unused
05 Unused
06 Unused
07 Unused
09 Unused
```

Figure 4-22 Main Editor Screen - Radio Gain

### 4.4.4.6 Default Value Setup

When the cursor is in the **Radio Settings' Type** field, pressing **<Alt-E>** will cause XCMMaint to load the default values for the radio type selected.

This will overwrite the following radio parameters (when applicable):

Invert: TX Invert: RX Rssi: Scale Base:

Radio Gain: In Radio Gain: Out

### 4.4.5 Site Setting Displays

#### 4.4.5.1 Local Addr Field

1. This address defines the ATCS address assigned to this unit. Field selection range:

0.000.00.0000 to 9.999.99.9999

NOTE

#### **NOTE**

A numeric zero is translated to an alphabetic 'A'. The default value of **A.AAA.AAAA** corresponds to a setting of **0.000.00.0000**.

This represents the local ATCS address assigned to MCM II. Since MCM II is a wayside equipment, ATCS address format is 7.RRR.LLL.DDD.SS.DD where:

7 = wayside address type

RRR = Railroad number(see Appendix B)

LLL = Code-line or region number(railroad defined)

DDD = Group or location number(railroad defined)

SS = Equipment or subnode

DD = Device controlled by this equipment

- 2. This address should be set to **Enable** when non-vital I/O is not using Siemens **R/Link I/O modules**.(see figure 4-16).
- 3. This address should be set to **Disable** when non-vital I/O uses Siemens **R/Link I/O modules**.

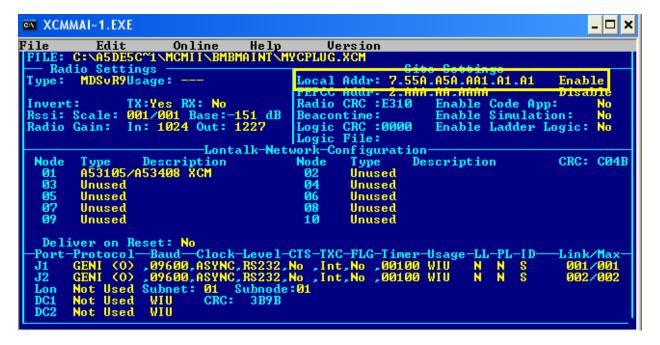



Figure 4-23 Main Editor Screen - Site Local Address Selection

### 4.4.5.2 FEPCC Addr Field

1. Field selection range:

0.000.00.0000 to 9.999.99.9999



#### NOTE

A numeric zero is translated to an alphabetic 'A'. The default value of **A.AAA.AAAA** corresponds to a setting of **0.000.00.0000**.

- 2. When the **Enable** function is selected, this field sets FEP/CC address to use on initial inbound transmissions (see figure 4-18). This field is needed on systems where the WCP equipment does not support packets with a zero destination length.
- 3. When the **Disable** function is selected, the address set into the **FEPCC Addr:** field is ignored. This field normally set to **Disable.**

```
Online
                       '1\MCMII\BMBMAINT\M
   Radio Settings —
pe: MDSvR9Usage: -
                  TX:Yes RX: No 001/001 Base:
                                                    Kadio CKC
                                 Ase:-151 dB Beacontime:
Out: 1227 Logic CRC:0000
Logic File:
-Lontalk-Network-Configuration-
Rssi: Scale:
                                                                              Enable Simulat
Radio Gain:
                        1024 Out: 1227
                                                                              Enable Ladder Logic:
                                                                         Description
                                                                                                     CRC: CØ4B
                                                               ype
                                                             Unused
                                                    04
                                                             Unused
                                                    Ø6
                                                             Unused
                                                             Unused
                                                 CTS-TXC-FLG-Timer
                                 CRC:
```

Figure 4-24 Main Editor Screen - FEPCC Address Selection

#### 4.4.5.3 Enable Code App Field

1. Field selection range:

**No** = If not using Siemens R/Link I/O modules **Yes** = If using Siemens R/Link I/O modules

This field enables the internal MCM code system application when used with Siemens R/Link I/O modules (see Figure 4-25).

```
C:\A5DE5C~1\MCMII\BMBMAINT\MYCPLUG.XCM
    Radio Settings —
e: MDSvR9Usage:
                                                            Local Addr: 7.5
FEPCC Addr: 2.A
Radio CRC :E310
Invert: TX:Yes RX: No
Rssi: Scale: 001/001 Base:-151
Radio Gain: In: 1024 Out: 1227
                                                            Beacontime:
Logic CRC:0000
Logic File:
ork-Configuration-
Node Type Des
Radio Gain:
                                                                                            Enable Ladder Logic:
           Type Description
A53105/A53408 XCM
                                                                                       Description
                                                                                                                        CRC: CØ4B
  01
03
                                                              02
04
                                                                         Unused
           Unused
                                                                         Unused
  05
07
           Unused
                                                                         Unused
                                                              08
           Unused
                                                                         Unused
           Unused
  Deliver
                on Reset:
         Protocol
GENI (0)
                                                          -CTS-TXC-FLG-Timer-Usage-LL-PL-ID-
                                              , RS232 , No
, RS232 , No
Subnode : 01
3898
 J1
J2
                 (0)
 Lon
DC1
                                       CRC:
```

Figure 4-25 Main Editor Screen - Site Enable Code Application Selection

#### 4.4.5.4 Enable Simulation Field

1. Field selection range:

**No** = Disables manipulation of bits from diagnostic terminal **Yes** = Enables manipulation of bits from diagnostic terminal

2. This field enables simulation, allowing inputs from the diagnostic program to toggle bits in the ladder logic application (see Figure 4-26).

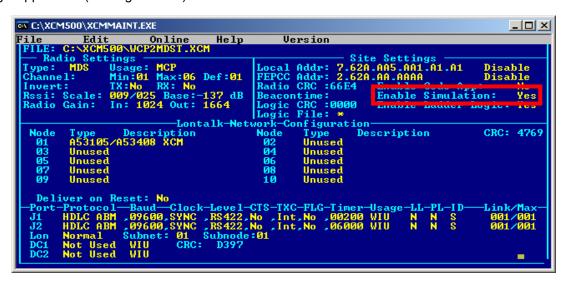



Figure 4-26 Main Editor Screen - Site Enable Simulation Selection

### 4.4.5.5 Enable Ladder Logic Field

1. Field selection range:

```
No = Don't use Ladder Logic
Yes = Use Ladder Logic
```

2. This field enables the internal ladder (PLC) logic. If disabled, indications from the R/Link I/O modules are passed straight through to the office, and office controls are passed straight through to the R/Link I/O module outputs. If enabled, indications and controls data are processed by ladder logic program before being routed to destination for final processing (see Figure 4-27).

```
Edit Online Help Version
ASDESC~1\MCMII\BMBMAINT\MYCPLUG.XCM
                                                         Local Addr: 7.5
FEPCC Addr: 2.A
Radio CRC :E310
          MDSvR9Usage:
                                                        Beacontime:
Logic CRC :0000
Logic File:
work-Configuration
         Scale:
Rssi: Scale
Radio Gain:
                                     Lontalk-Net
                                                                                                                 CRC: CØ4E
                                                         Node
                                                                                  Description
                                                                     llnused
           Unused
                                                                     Unused
                                                                     Unused
            Jnused
   De li
                                                        CTS-TXC-FLG-Timer
                                                                                     -Usage--LL--PL--ID
```

Figure 4-27 Main Editor Screen - Site Enable Ladder Logic Selection

### 4.4.5.6 Logic File Field

1. Field selection range:

Blank with Enable Ladder Logic set to No.

- \* with Enable Ladder Logic set to Yes.
- 2. When the **Logic File:** \* field is highlighted and **Enter** is pressed, the following prompt is displayed:

- 3. To enter a ladder logic file name, perform one of the following:
- 4. Type the path name and file name (maximum of eight characters per name plus the .LLW extension) at the **Enter Filename** prompt.

```
Logic CRC:1323 Enable Ladder Logic: Yes Logic File: C:\LLADDE~1\REUTEST.LLW
```

5. Press the **Enter** key to bring up the Ladder Logic File List (see below) and make a file selection from the presented list using the arrow keys.

```
C:\B2A110AN\BUILD\BMBMAINT\*.LLW

MCM159A.LLW MCMCP159.LLW ..\ ARCHIUE\

DELETE~1\
```

The selected Ladder Logic file is displayed in the Logic File: field as shown in Figure 4-28.

```
Online Help Versi
1\MCMII\BMBMAINT\MYCPLUG.XCM
File
                 Edit
                                                                   Version
            C:∖A5DE5C^
      Radio Settings —
e: MDSvR9Usage:
                                                             Site Settings
Local Addr: 7.55A.A5A.AA1.A1 En
FEPCC Addr: 2.AAA.AA.AAAA Di
Radio CRC:611D Enable Code App:
Beacontine: Enable Simulation:
 Type:
                                                                                                                       Enable
                                                                                                                       Disable
                       TX:Yes RX: No
001/001 Base:-151 dB
In: 1024 Out: 1227
  Invert:
                                                                                                                                No
No
 Rssi: Scale:
                                                             Logic CRC :0000
 Radio Gain:
                                                                                                       Ladder
                                                                       File: C:\....LD\BMBMAINT\MCMCP159.LLW
                                        Lontalk-Net
                                                                    Configuration
             Type Description A53105/A53408 XCM
                                                             Node
                                                                         Type
Unused
                                                                                                                       CRC: CØ4B
                                                                                      Description
   Node
                                                               02
     ø3
             Unused
                                                               04
                                                                         Unused
                                                                         Unused
     05
             Unused
                                                               06
             Unused
                                                                         Unused
             Unused
                                                               10
                                                                         Unused
     Deliver on Reset: No
                                                          -CTS-TXC-FLG-Timer-Usage-LL-
.No .Int.No .00100 WIU N
.No .Int.No .00100 WIU N
                          Baud Clock Level CTS-,09600,ASYNC,RS232,No,09600,ASYNC,RS232,No,Subnet: 01 Subnode:01
   Port
            Protoco1
            GENI
GENI
                    (0)
                   (0)
           Not
Not
                  Used
   Lon
                  Used
                                        CRC:
                                                  3B9B
   DC1
                             WIU
```

Figure 4-28 Main Editor Screen - Site Logic File Designation

## 4.4.6 LonTalk® Network Configuration

Siemens R/Link I/O modules are assigned to Echelon<sup>®</sup> nodes in this section (see Figure 4-29). Selections are toggled for each node by using the spacebar (see Figure 4-30).

```
E: C:\A5DE5C^1\MCMII\BMBMAINT\MYCPLUG.XCM
Radio Settings
e: MDS...DOLL
                                                        Local Addr: 7.55A.A5A.AA1.A1.A1
FEPCC Addr: 2.AAA.AA.AAAA
Radio CRC :E310 Enable Code A
Type: MDSvR9Usage: -
                                                                                                               Enable
                                                                                     Enable Code App:
Enable Simulation:
Enable Ladder Logic:
Invert: TX:Yes RX: No
Rssi: Scale: 001/001 Base:
                                Base:
                                                        Beacontime:
                                                         Logic CRC :0000
Radio Gain:
                                                       ork-Configuration
                                      ⊿ontalk
                     Description
/A53408 XCM
                                                                                Description
                                                                                                               CRC: CØ4E
                                                                    [ype
                                                                   Unused
                                                                    Unused
                                                                    Inused
            Jnused
           Unused
                                                                    Unused
                                                                   Unused
                                          Subnode: 01
3B9B
                Used
                         WIU
WIU
```

Figure 4-29 Main Editor Screen - LonTalk® Network Configuration

```
Lontalk-Network-Configuration
                                                                             CRC: 725A
Node
                                       Node
                                                        Description
 01
                                       И2
                                                      SS Radio
 03
 Ø5
                     Output
                                        06
 07
                                        08
              Geo Intlock
                                       10
```

Figure 4-30 LonTalk® Network Configuration Component Selection

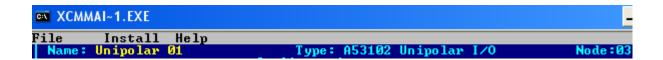
- 1. Field selection range:
  - a. Node 01 A53105/A53408 XCM
  - b. Node 02 Unused

A53301 SS Radio

c. Nodes 03-10 Unused
A53101 Bipolar I/O
A53102 Unipolar I/O
A53103 Relay Output
A53105/A53408 XCM
A53301 SS Radio
A53406 Local Panel
A53XXX Geo Intlock
A50692 Universal LCP

- 2. **R/Link** I/O modules selected for a node require individual configuration and installation. I/O module configuration is accomplished as follows:
  - a. <u>Use arrows keys or mouse to select the node to be configured.</u>
  - b. Press the Space Bar until the desired I/O module is displayed (see Figure 4-31).
  - c. Press Alt E.
- 3. The corresponding **R/Link** I/O configuration screen, Figure 4-31, displays.

```
D21- I--4-11 U-1..
                                         Type: A53102 Unipolar I/O iguration
                                                                                         Node: 03
                                                                       Kindis :
Readback:
                                           Word 1:
Word 2:
  Control Offset
                                                       Input
  Indication_Offset
  Control Delivery
                               50ms
50ms
                                           Word 3:
                                                       Output
                                                                        Flash:
  Indication Holdoff
Railroad: 55A Li
                                                       Output
CRC:
                                           Word
                                       Group: AA1
                                                               13FB
                       Line:
                                    I/O Assignments
```


Figure 4-31 I/O Configuration Screen

d. Select the **Name** field and press **Enter**. The **Enter String** window displays (see right).



- 1) Enter a descriptive name for the module to be configured; i.e. **UNIPOLAR 01**.
- 2) Press Enter.

The name entered appears in the **Name** field.



e. Select the Kindis field (see Figure 4-32) as required.

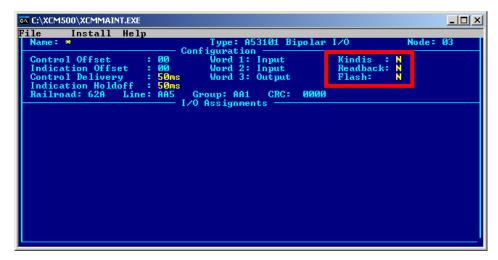



Figure 4-32 Kindis, Readback, Flash Configuration

The **Kindis** field is available for Bipolar and Unipolar I/O. Kindis refers to a local external battery that is used in a hardware checking configuration to verify indications. Selections are toggled using the spacebar.

- 1) Select N (default) to disable the Kindis function
- 2) Select Y to enable the Kindis function.
- f. Select the Readback field as required.

The **Readback** field is available for Bipolar, Unipolar, and Relay Output I/O. Readback refers to a hardware check on delivered outputs, using a logical indication readback to verify that the output was actually delivered. Selections are toggled using the spacebar.

- 1) Select N (default) to disable the Readback function
- 2) Select Y to enable the Readback function.

NOTE

### **NOTE**

Although the **Flash** field is available for Bipolar and Unipolar I/O, it is used in factory testing only.

g. Select the Control Delivery field (see Figure 4-33).

The **Control Delivery** field determines the duration time of the output signal.

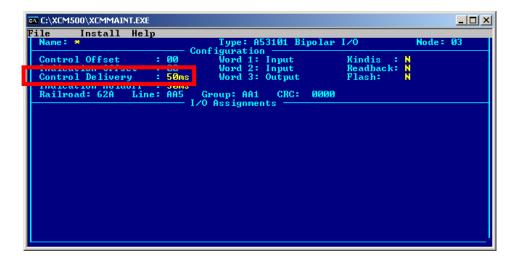



Figure 4-33 Bipolar I/O Delivery and Holdoff Delay

h. Field selection range:

50ms

100ms

200ms

500ms

1sec

2sec

Latch

- i. Using the Spacebar, select appropriate Control Delivery time.
- j. Select the **Indication Holdoff** field (see Figure 4-34).

The **Indication Holdoff** field determines the delay time between the receipt of an input signal and acceptance of the input signal as valid.

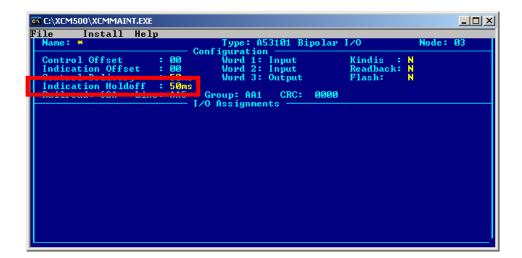



Figure 4-34 Indication Holdoff

k. Field selection range:

50ms

100ms

200ms

500ms

1sec

2sec

I. Using the Spacebar, select the appropriate **Indication Holdoff** time.

### 4.4.6.1 Install Menu

The Install (Alt-I) drop-down menu, accessed from the I/O Configuration screen, contains five entries that are described below. Upon completion of module installation, module will restart.

Read – This entry reads the configuration data from an existing installed R/Link I/O module. This is a similar procedure to reading the code plug of the WCP CPU II. The 'waiting for data' popup box shown below displays briefly as the information is read. The edit screen will update to reflect the configuration data that has been read.



 When the **Install** entry is selected and the **ENTER** key pressed, the system responds with the following popup prompt:





Each R/Link I/O module has a SERVICE button on the front panel. For the I/O module that is to be
configured with the contents on the configuration screen, momentarily press that module's service
button. This will cause the configuration data displayed to be written to the I/O Module. Upon
completion the I/O Module will restart.



 Wink – successful installation of an I/O module may be checked using the WINK function. When this item is selected and the ENTER key pressed, the software will strobe the I/O module under configuration. If the module has been properly installed, the front panel's CONTROL and INDICATE LED will both flash once.



Status – when selected and the ENTER key pressed, this function reads
the I/O status of the module under configuration. The Waiting for data
popup box shown below displays briefly as the information is read.





Etest - This command performs the same operation as the Wink command except it
causes the front panel's CONTROL and INDICATE LEDs to continuously flash
together every once second. To stop this command's operation press the ESC key.



#### 4.4.6.2 File Menu

The File (Alt-F) drop-down menu terminates the I/O Configuration screen and returns to the main configuration screen.



### 4.4.7 WCP CPU II Port Configuration

See Figure 4-35.

#### 4.4.7.1 Serial Client Ports J1 and J2

The **J1** and **J2 Port** field selection range descriptions are presented in Table 4-7.

Table 4-7 Client Port Field Descriptions

| Field Name | Range                                 | Description                                                                                                                                                                |
|------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protocol   | See Table 4-8                         | Serial protocol used by client. See Table 4-8                                                                                                                              |
| Baud       | 00300 to 19200 in 300 baud increments | Baud rate for specified port                                                                                                                                               |
| Clock      | SYNC and ASYNC                        | Specifies synchronous or asynchronous clocking                                                                                                                             |
| Level      | RS232 and RS422                       | Selects RS-232 or RS-422 interface                                                                                                                                         |
| CTS        | No and Yes                            | Handshaking flag. If YES, the serial port uses RTS-CTS flow control.                                                                                                       |
| TXC        | Int and Ext                           | Synchronous clock only: Int sets the MCM client port as clock source                                                                                                       |
| FLG        | No and Yes                            | Synchronous only: YES causes MCM to send HDLC idle flags to serial port                                                                                                    |
| Timer      | 00000 to 99999                        | Code line protocol poll timer in 10ms tics; can be left at 160 (1.6 sec) for most applications                                                                             |
| Usage      | Ground, OBC, and WIU                  | Denotes type of equipment connected to port: Ground network(MCM II application). Onboard(OBC) Controller(mobile application), and Wayside Interface Unit(WCP application). |
| LL         | Y and N                               | Enables ladder logic operations                                                                                                                                            |
| PL         | Y and N                               | Enables polling operations                                                                                                                                                 |
| ID         | L and S                               | Selects (L)ong or (S)hort RX idle character delays.                                                                                                                        |
| Link       | 000 to 999                            | Sets the poll address or start of poll range for some emulations                                                                                                           |
| Max        | 000 to 231                            | Sets the end of poll range for some emulations                                                                                                                             |

```
ile Edit Online Help Version

FILE: C::IN_PRO*1\BCPIIU*1\SOFTWARE\9U540A*1\M2C_0103.XCM

- Radio Settings

Type: MTR Usage: BCP

TX:No RX: Yes

Radio CRC :8B42 Enable Code App: No Beacontime: Enable Simulation: No Enable Ladder Logic: No Enable L
                                                                                                                                                                                                                                     Type
A53105,
A53101
Unused
                                                                                                                                     Description
/A53408 XCM
Bipolar I/O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CRC: E31A
             Node
                        03
                     05
07
09
                                                                                                                                                                                                                                                                                                                                                                                                                                        Unused
                                                                        Unused
Unused
                                                                                                                                                                                                                                                                                                                                                                            08
10
                                                                                                                                                                                                                                                                                                                                                                                                                                       Unused
Unused
                       Deliver on Reset: No
                                                               Not Used
Not Used
Not Used
                                                                                                                                                                                                                                         01
CRC:
                                                                                                                                                                                                                                                                           Subnode:01
: 3B9B
                                                                                                                                                                 WIU
```

Figure 4-35 Serial Port Protocol Select

**Table 4-8 Client Port Protocol Descriptions** 

| Protocol  | Description                                                                       |
|-----------|-----------------------------------------------------------------------------------|
| NOT USED  | No Protocol Selected - Not Used                                                   |
| HDLC ADM  | HDLC Asynchronous Disconnect Mode                                                 |
| HDLC ABM  | HDLC Asynchronous Balanced Mode                                                   |
| HDLC POL  | HDLC polled operation: typically used to poll ATCS base stations                  |
| HDLC UI   | HDLC Unnumbered Information mode                                                  |
| HDLC NULL | HDLC Null (connectionless) mode                                                   |
| GENI (O)  | Emulates US&S Genisys office. Polling range set by Link/Max fields                |
| ECP       | Interface to Safetran Emergency Control Panel                                     |
| BCP GENI  | Emulates Genisys field for sending and receiving Genisys ATCS packets. Link field |
|           | defines Genisys station address.                                                  |
| MCS 1     | Emulates Harmon MCS-1 office. Polling range set by Link/Max fields                |
| ASYNC     | Standard ASYNC port: inbound data converted to ATCS packets and outbound          |
|           | packets are stripped of ATCS headers                                              |
| SSR       | Interfaces to Safetran Spread Spectrum Radio linear network                       |
| SCS128    | Safetran SCS128 office emulation. Polling range set by Link/Max fields            |
| GENI (F)  | Emulates US&S Genisys field. Used for dial backup operation                       |
| CN2000A   | Canadian National proprietary (new) asynchronous field station protocol           |
| CN2000B   | Canadian National proprietary (old) asynchronous field station protocol           |
| CN DHP    | DHP2000 Series equipment                                                          |
| SLIP      | Single Line IP Protocol                                                           |
| CENTRA    | Centra-Code protocol                                                              |
| FRM RLY   | Frame Relay Protocol                                                              |
| BGENI (O) | Genisys ATCS BCP Office interface                                                 |
| PPP       | Point-Point Protocol                                                              |
| PPPMCast  | Point-Point Protocol with Multicast capability                                    |
| GPRS(bu)  | GPRS Backup protocol                                                              |
| GPRSCont  | GPRS Continuous protocol                                                          |
| ARES      | ARES Protocol                                                                     |

# 4.4.7.2 IP Addressing

Six protocol assignments require IP addressing.

- These are:
  - ♦ SLIP
  - ♦ FRM RLY
  - ♦ PPP
  - ♦ PPPMCast
  - ♦ GPRS(bu)
  - **♦** GPRScont
- The IP Address Assignments screen, Figure 4-36, displays when the cursor is placed on one of the above protocol fields and <Alt-E> is pressed.
- The fields in this screen are:
  - ♦ Local IP:
    - IP address of the WCP-II
  - ♦ Remote Host IP:
    - IP address of the packet switch or office equipment

- ♦ Base Route ID:
  - Base routing number (ATCS)
- Port J1 Routing Priority Tag
- ♦ Port J2 Routing Priority Tag
- ♦ RF Port Routing Priority Tag
- One of two separate ATCS Routing Priority Tag values may be assigned to each port.
- \$85 designates that a port is used as a secondary connection to the office
- \$45 designates that a port is used as a primary connection to the office.

```
IP ADDRESS ASSIGNMENTS

Local IP: 192.168.901.005
Remote Host IP: 192.189.001.001

Base Route ID: LCT 001.01.01

Port J1 Routing Priority Tag: $45
Port J2 Routing Priority Tag: $85
RF Port Routing Priority Tag: $45
```

Figure 4-36 IP Address Assignments Screen

#### 4.4.7.3 LON Port

The **Lon Port** field selection ranges are as follows (see Figure 4-37):

- Not Used
- Normal Enables LON Port for R/Link I/O processing

```
File Edit Online Help Uersion

FILE: C:XCM500 WCP2MDSI.XCM

Radio Settings
Type: MDS Usage: MCP
Channel: Min:01 Max:06 Def:01
Invert: IX:No RX: No
Rssi: Scale: 009/025 Base:-137 dB
Radio Gain: In: 1024 Out: 1664

Local Addr: 7.62A.AA5.AA1.A1.A1 Disable
FFPCC Addr: 2.62A.AA5.AA1.A1.A1 Disable
FEPCC Addr: 2.62A.AA5.AA1.A1.A1
FERCE Addr: 7.62A.AA5.AA1.A1.A1
FERCE Addr: 7.62A.AA5.AA1.A1
FERCE Addr: 7.62A.AA1.A1
FERCE Addr: 7.62A.AA1.A1
FERCE Addr: 7.62A.AA1.A1
FERCE Addr: 7.62A.AA1.A1
FERCE Addr: 7.62A.AA1
```

Figure 4-37 LON Enable Select

#### 4.4.7.4 DC1 and DC2 Ports

1. The field port protocol selection ranges for each port are as follows:

| Protocol | Description                                                           | Usage |
|----------|-----------------------------------------------------------------------|-------|
| Not      | Not Used                                                              | WIU   |
| Used     |                                                                       |       |
| 506      | Emulates DC 506 office protocol. Enter ALT-E to access config screen, | WIU   |
| Code     |                                                                       |       |
| 514      | Emulates DC 514 office protocol. Enter ALT-E to access config screen  | WIU   |
| Code     |                                                                       |       |
| J Code   | Not supported                                                         | WIU   |
| K Code   | Not supported                                                         | WIU   |
| Alarms   | J4 alarms report to office: IN1, IN2, OUT1, OUT2                      | WIU   |
| Control  | Control of Outputs OA and/or OB,                                      | WIU   |

DC1 refers to the auxiliary I/O ports (IA and IB) which can be configured to drive a DC code line or to report a change of inputs to the office as alarms. When designated (\*) codes are selected, **Alt** – **E** brings up the DC codeline configuration edit screen (see Figure 4-38).

2. The DC1 and DC2 Port Baud field selection ranges:

| Usage  | Description        |
|--------|--------------------|
| Ground | Ground network     |
| OBC    | mobile application |
| WIU    | WCP application    |

3. The **CRC** value displayed changes with each new protocol selection.

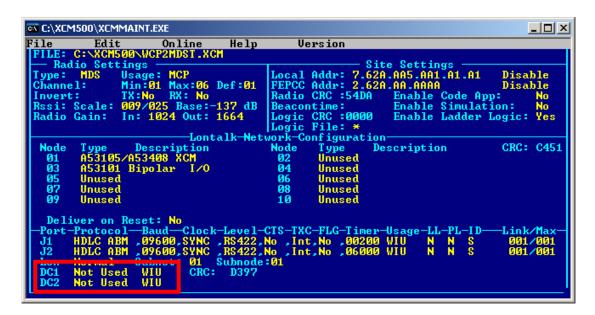



Figure 4-38 DC Protocol Select

# 4.4.7.5 DC1 Codeline Configuration Screen

 The Timecode Configuration Screen, Figure 4-39, is divided into two sections: US&S 5XX Timecode Configuration and Station Data.

```
File
            Edit
                         Help
                                         5XX TIMECODE CONFIGURATION
                                                          Minimum short ind.
Maximim long ind.
                                               10ms
       Control Step1:
                                               10ms
10ms
10ms
10ms
10ms
                                                                                                 10ms
       Long:
       Short:
                                                           Ind -
                                                                                                 10ms
10ms
                                                                   Ind rest
                                                           Long/short threshold
RX Clearout time
       Cont -
                Cont Rest:
                Cont Rest:
                                                                                                 10ms
       Ind. -
       Step 9 recall:
                                                           Invert input:
Invert output:
                                               10ms
       Extension bit:
                                        Station Data
```

Figure 4-39 DC Codeline Configuration Screen

- a. The **US&S 5XX Timecode Configuration** section provides a means to modify step timing and other parameters as required.
- b. As described below, a default set of parameters may be applied which will be suitable for most configurations.
- The Station Data section allows entry of station and pup addresses. The fields are filled in as follows:

```
Addr C/I Main

Node #: aaa cc/ii mm

where:
    aaa is the 3-digit address of the field unit
    cc is the number of control bits (default of 7)
    ii is the number of indication bits (default of 8)
    mm is the address of the main unit where multiple field units are installed
```

- 2. The DC codeline configuration screen, Figure 4-39 has two pull-down menus (File and Edit) and a Help menu.
  - a. Pressing ALT-F will display the File menu, which has only the option to return to the main edit screen. Any data on the DC codeline configuration edit screen will be saved when the .XCM file is saved from the main screen.



- b. Pressing ALT-E will display the Edit Menu, which has three options:
  - Default when this option is selected and the ENTER key pressed, the most commonly used timing defaults are entered in the Timecode Configuration section. These defaults are shown in Figure 4-31.



2) Copy - when this option is selected and the ENTER key pressed, the contents of all fields on the screen are saved in memory and are held until the XCMMAINT.EXE utility exits. This is similar to the familiar Windows copy/paste function but is local to the XCMMAINT.EXE application only. The purpose of this feature is to facilitate multiple copies of identical DC codeline parameters and/or addressing across multiple .XCM files.



3) Paste - when this option is selected and the ENTER key pressed, the fields on the edit screen are filled in with values saved in a previous COPY operation.



- c. Pressing ALT-H provides help text for each configuration parameter on the screen using either of the following methods:
  - 1. Use arrow keys to move cursor to a configuration parameter and press Alt-H.
  - 2. Use mouse to move cursor to a configuration parameter and **right-click** the mouse.



```
C:\XCM500\XCMMAINT.EXE
                                                                                                                        Help
File
              Edit
                                                                    Minimum short ind.
Maximim long ind.
Ind - Ind rest
Long/short threshold
RX Clearout time
        Control Step1:
                                                       10ms
                                                                                                                  10ms
        Long:
                                                    ×
                                                      10ms
10ms
        Short:
                                                                                                                 10ms
10ms
        Cont - Cont Rest:
Ind. - Cont Rest:
Step 9 recall:
                                                       10ms
                                                                                                                  10ms
                                                       10ms
                                                                    Invert input:
        Extension bit:
                                                                    Invert output:
                                               Station Data
```

Figure 4-40 Timecode Configuration Default Settings

# 4.4.7.6 Loading A New Executive

New versions of the executive program are distributed as m2xxxy.BIN, where xxx is the major version number and y is the minor revision number.

Two methods may be used to install the executive program.

# 4.4.7.7 Installing New Executive Program Version

See Section 3.0.

# 4.4.7.8 Reinstalling Existing Executive Program Version

When installing an executive program whose version is older than the version currently running in the WCP/CPU II, the following message will appear:

```
Upload file is older version of software, upload canceled._

* Hit <ESC> to continue *
```

Go to Section 4.4.7.13 (GF1, GF2, GF4) for the procedure to install an existing executive program.

# 4.4.7.9 Installing New Xilinx Program Version

See Section 3.0

# 4.4.7.10 Reinstalling Existing Xilinx Program Version

When installing a Xilinx program whose version is older than the version currently running in the MCM II, the following message will appear:

```
Upload file is older version of software, upload canceled._

* Hit <ESC> to continue *
```

Go to Section 4.4.7.13 (GF1, GF2, GF4) for the procedure to install an existing Xilinx program.

# 4.4.7.11 Installing New DSP Program Version

See Section 3.0

# 4.4.7.12 Reinstalling Existing DSP Program Version

When installing a DSP program whose version is older than the version currently running in the WCP/CPU II, the following message will appear:

```
Upload file is older version of software, upload canceled.____

* Hit <ESC> to continue *
```

Go to Section 4.4.7.13 (GF1, GF2, GF4) for the procedure to install an existing DSP program.

# 4.4.7.13 GF1, GF2, GF4

Use the following commands for sending and flashing file(s) to WCP/CPU II if file is an older version than what is currently installed:

- **GF1** send and flash Xilinx (Step 12 below)
- **GF2** send and flash DSP (Step 15 below)
- **GF4** send and flash executive (Step 9 below)

NOTE

#### NOTE

File 'xcmmaint.ini' specifies the path to each file to be installed. However, if the file does not exist, then a prompt will appear asking for the path to file to be installed.

- 1. Run the XCMMAINT.EXE program.
  - The Main Editor Screen displays.
- 2. Hold down the **ALT** key and type **O**.
  - The Online drop-down menu displays.
- 3. Select **Terminal** from the drop-down menu.
  - The Online Terminal Screen displays.
- 4. Press the ENTER key
  - Verify that the "\*" prompt is displayed.
- Enter test and then press ENTER key. MCM II will reset.
- 6. While the unit is resetting, press **CTRL** and **A** keys together and hold them down until the following screen is observed:

- 7. When SCC3 debug> appears, press Enter key
- 8. Enter **W** followed by **Enter** key to enable kicking of system watchdog.

```
Safetran BCM II/MCM II 68302 Debugger Version 1.00

Booting from Diagnostic ROM

SCC3 debug> SCC3 debug> '?' for help

SCC3 debug> W

**** WATCHDOG kick enabled ****

SCC3 debug> MCO 00/01/01 00:01:48 Port Contact 1 Alarm On
```

9. For sending and flashing executive firmware enter **GF4** followed by **Enter** key to start the firmware upload operation. A window will appear showing the percentage of upload completed.

```
SCC3
Pile C:\M2A115S1.BIN: sent 2%
SCC3
***
SCC3
Booting from serial port
```

10. After upload is complete, prompt will appear as follows:

```
WARNING: Existing Flash applications will be ERASED
Program the Flash (Y/N)?_
```

Terminal
Bitmap Display
Read DC Conf. from Unit
Read Codeplug from Unit
Write Codeplug to Unit
Write DC Conf. to Unit
Write Logic to Unit
Write Labels to Unit

#### Enter the following:

- Y to write file to flash memory. System will restart.
- **N** to abort operation.
- 11. During system restart, executive firmware will read Xilinx and DSP firmware from flash memory. If there is an incompatibility between executive firmware and Xilinx or DSP one of the following error messages will be displayed on front-panel display:
  - "DSP Load Started" This message stays on the display.
  - "Incorrect Xilinx" This message appears for 2 seconds and then resets.
  - In this case proceed to step 12. Otherwise, firmware updating is complete.
- 12. If coming from step 11, then cycle power and immediately perform steps 6, 7, and 8. Otherwise to upload new **Xilinx** firmware, perform steps 5, 6, 7, and 8. Then, enter **GF1** followed by **Enter** key to start the firmware upload operation. A window will appear showing the percentage of upload completed.

13. After upload is complete, prompt will appear as follows:

```
WARNING: Existing Flash applications will be ERASED
Program the Flash (Y/N)?_
```

## Enter the following:

- Y to write file to flash memory. System will restart.
- **N** to abort operation.
- 14. During system restart, executive firmware will read Xilinx and DSP firmware from the flash memory. If there is an incompatibility between the executive firmware and Xilinx or DSP one of the following error messages will be displayed on front-panel display:
  - "DSP Load Started" This message stays on the display.
  - "Incorrect Xilinx" This message appears for 2 seconds and then resets.
  - In this case proceed to step 15. Otherwise, firmware updating is complete.
- 15. If coming from step 14, then cycle power and immediately perform steps 6, 7, and 8. Otherwise to upload new **DSP** firmware, perform steps 5, 6, 7, and 8. Then, enter **GF2** followed by **Enter** key to start the firmware upload operation. A window will appear showing the percentage of upload completed.

16. After upload is complete, prompt will appear as follows:

WARNING: Existing Flash applications will be ERASED Program the Flash (Y/N)?\_

Enter the following:

- Y to write file to flash memory. System will restart.
- **N** to abort operation.
- 17. Firmware updating is now complete.

# SECTION V DIAGNOSTICS

#### 5.0 DIAGNOSTICS

#### 5.1 SELF TEST

Self test of the WCP CPU II is conducted under the following conditions:

- Power is initially applied
- Requested by the office
- 'TEST' command issued from diagnostic port

Self-test results are reported back to the office.

#### 5.2 ON-LINE TERMINAL

An on-line debugging terminal is built into the XCMMAINT.EXE program (see paragraph 4.2) for extended diagnostics and to access the event log, To access the terminal, use the "ALT-O / Terminal" option from the main XCMMAINT.EXE screen. The commands listed in Table 5-1 are available:

(This listing can also be displayed using the "HELP" command.) When using the "HELP" command, commands that scroll off the screen may be viewed by pressing PAGEUP and PAGEDOWN keys.

**Table 5-1 On-Line Terminal Commands** 

| Command  | Parameters                 | Function                                               |
|----------|----------------------------|--------------------------------------------------------|
| DCP      | None                       | Display Code plug Contents                             |
| DDC      | None                       | Display DC Configuration                               |
| CL       | None                       | Display Client List                                    |
| SERV     | None                       | Enter Service Mode                                     |
| VER      | None                       | Version Identification                                 |
| BSTAT    | None                       | Base Station List                                      |
| CSTAT    | None                       | Communication Statistics                               |
| HSTAT    | None                       | HDLC Statistics                                        |
| MSTAT    | None                       | Manufacturer Statistics                                |
| AL       | None                       | Alarm Logging                                          |
| LOG      | None                       | View log                                               |
| SL       | None                       | Status Logging                                         |
| PTT      | EN / DS                    | Key or De-key Radio                                    |
| SIMP     | EN / DS                    | Radio Simplex Operation                                |
| COS      | EN / DS                    | COS status                                             |
| CHAN     | Number (1 to 6)            | Enter Channel Number                                   |
| LOCAL    | Label, Message             | Send Local Message                                     |
| TEST     | 0 = Warm, 1 = Cold         | Reset and self test                                    |
| PCP      | Location, Value            | Patch Code plug                                        |
| MOND     | Layer, Port, Link          | Disable Tracing Mechanism                              |
| MONE     | Layer, Port, Link          | Enable Tracing Mechanism                               |
| SEND     | Layer, Port, Link, Message | Send Mobile Message                                    |
| ERT      | Mode, Layer, Port, Pattern | Error Rate Test                                        |
| SWI      | EN / DS                    | Enable / Disable SWI                                   |
| LADL     | EN/DS                      | Enable/Disable ladder logic indication/control logging |
| FPROG    | None                       | Program Code plug                                      |
| SCT      | None                       | Show HW/SW version info                                |
| RSSI     | None                       | Reset RSSI Statistics                                  |
| RIFRESET | 1=mcs, 2=sb, 3=sb reset    | Rest MCS/SB9600                                        |
| PPP      | None                       | PPP Status                                             |
| PING     | IP Addr, client num: 0/1   |                                                        |
| DATE     | Year, month, day           | Set date                                               |
| TIME     | Hour, minute, second       | Set time                                               |

# **APPENDIX A**

# ADVANCED TRAIN CONTROL SYSTEM

#### A. ADVANCED TRAIN CONTROL SYSTEM

#### A.1 OVERVIEW

The Advanced Train Control System (ATCS) standardizes the message formats and addressing scheme used by all railroads for train control applications. The system operates by sending and receiving standard datagrams (using a standard addressing scheme) between the various ATCS compatible signaling and operating equipment. Addresses are provided for wayside equipment, central office equipment, on-board equipment, base stations, maintenance equipment, railcars, and anything else found in a railroad environment. These messages convey operating instructions and status information such as track-and-time permits, codeline controls and indications, hot-box data, etc.

A typical ATCS network is shown in Figure A-1. Centralized Train Control (CTC) office equipment communicates with the onboard and wayside equipment via Base Communication Packages (BCPs), controlled by Cluster Controllers (CCs). Network Management System (NMS) office equipment monitors the dynamic performance of the network. Field radios are a mixture of Wayside Communication Packages (WCPs) and Spread-Spectrum Radios (SSRs). All communications use ATCS datagrams or packets.

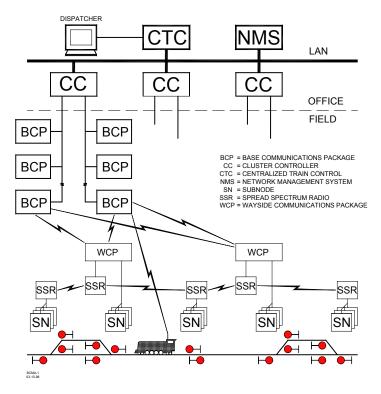



Figure A-1 Typical ATCS Network

#### A.2 ATCS ADDRESSING

Each ATCS datagram carries with it a destination address (i.e., the address of the equipment it is destined for), and a source address (i.e., the equipment that generated it). These addresses are constructed with slight differences for the various uses. For example, on-board equipment will have a Type 1 (locomotive) address while wayside equipment will have a Type 7 (wayside) address. A number of the various types of addresses used are described in the following paragraphs. For further information concerning ATCS addressing, refer to the following specifications:

ATCS Specification 200 (March 1993) - ATCS Protocols

ATCS Specification 250 (March 1993) - ATCS Message Formats

ATCS Specification 700 (March 1993) - CPC Specification

ATCS Specification 157 (March 1993) - CPC Operation

R/Link ATCS Radio Code Line System Application Logic Generation Guide (Siemens Rail Automation Document No. C-00-94-06)

## A.2.1 Locomotive Addresses (Type 1)

Each locomotive address consists of twelve digits in the following format: 1.RRR.VVVVV.DD

where: 1 = Locomotive address type

RRR = Railroad number (see Appendix D)

VVVVVV = Locomotive number

DD = Device on board locomotive (e.g., Engineers display)

# A.2.2 Office Equipment Addresses (Type 2)

Each office equipment address consists of ten digits in the following format: 2.RRR.NN.DDDD

where: 2 = Office equipment address type

RRR = Railroad number (see Appendix D)

NN = Unit in the office (e.g., CTC computer, A53401 Packet Switch,

etc.)

DDDD = Application in the office (e.g., maintenance alarm monitoring)

## A.2.3 Base Station Address (Type 3)

Each address consists of ten digits in the following format: 3.RRR.NN.DDDD

where: 3 = Wire line address type

RRR = Railroad number (see Appendix D)

NN = Node number (railroad defined)

DDDD = Base device number (railroad defined)

The ATCS specification recommends that the BCP node number be the same as the node number of the CC (A47620) to which it is connected. The device number is user defined, and can be set to any convenient value.

## A.2.4 Wayside Equipment (Type 5)

The type 5 wayside address was used on earlier ATCS systems and is the default addressing scheme for Advanced Railroad Electronic System (ARES) wayside equipment. Although the ARES network differs slightly from the ATCS specification, for purposes of this discussion, the two can be considered identical systems.

Each address consists of ten digits in the following format: 5.RRR.NN.LL.GG

where:

5 = Wayside address type

RRR = Railroad number (see Appendix D)
NN = Node or routing region number

LL = Code-line number

GG = Group or location number

This addressing scheme does not have the ability to address multiple devices at each location. The node number typically follows the node number of the CC controlling the base stations for the location.

# A.2.5 Wayside Equipment (Type 7)

This is the default ATCS wayside addressing scheme.

Each address consists of fourteen digits in the following format: 7.RRR.LLL.GGG.SS.DD

where:

7 = Wayside address type

RRR = Railroad number (see Appendix D)

LLL = Code-line or region number GGG = Group or location number

SS = Equipment or subnode at location
DD = Device controlled by this equipment

The LLL fields are normally assigned by each railroad according to internal conventions, and may represent a region, district, code line, or other area designation that shows it is part of the railroad.

The GGG field must be coordinated between the CTC equipment and field equipment configuration.

For the SS field, two subnode numbers are always pre-assigned at each location. The wayside-to-office communications device is defined as number 01, and number 02 is reserved for the wayside-to-wayside communications system. Any additional equipment (e.g., the R/Link $^{\text{TM}}$  I/O modules), will therefore have subnode numbers starting with 03.

Device numbers (DD field) are allocated in sequence beginning at 01. Each piece of field equipment has at least one internal device, but it may have more depending on the equipment.

Examples of full ATCS addresses for a wayside code system would be as follows:

For CP Rail, code line 8, control point 1: 7.105.008.001.03.02.

For the MCP radio at the same location: 7.105.008.001.01.01.

## A.2.6 Other Address Types

Other address types are defined in ATCS for future applications. Please refer to the appropriate ATCS specifications for full details.

#### A.3 ATCS MESSAGE FORMATS

The major fields in an ATCS message are shown in Figure A-2.



Figure A-2 Major Fields Of An ATCS Message

The **Destination** field is the address of the recipient equipment. For example, if this is an indication message coming from a wayside code unit, the destination address will be the CTC dispatching equipment (2.RRR.NN.DDDD).

The **Source** field is the sender's address (e.g., 7.RRR.LLL.GGG.SS.DD).

The number in the message number (**M#**) field is allocated by the sender in a sequential fashion so that the recipient can detect duplicate, missing, or out of order messages.

The **Label** field describes the type of data carried by the message. Many different labels have been defined in ATCS Specification 250. Additional labels are defined by suppliers to perform custom functions.

The **Data** field carries the particular data required for the type of message defined by the Label field.

#### A.4 ATCS RADIO NETWORK – LAYER 1

The ATCS radio network consists of pairs of UHF channels. These channels are as follows:

| Channel Number | Base to Mobile Frequency | Mobile to Base Frequency |
|----------------|--------------------------|--------------------------|
| 1              | 935.8875                 | 896.8875                 |
| 2              | 935.9375                 | 896.9375                 |
| 3              | 935.9875                 | 896.9875                 |
| 4              | 936.8875                 | 897.8875                 |
| 5              | 936.9375                 | 897.9375                 |
| 6              | 936.9875                 | 897.9875                 |
|                |                          |                          |



#### NOTE

Transmission on the channels is baseline FSK. the deviation of the carrier to a higher frequency is interpreted as a logical 0 and to a lower frequency as a logical 1. The bit rate is 4800 bits per second. Nominal channel separation is 12.5kHz.

# **APPENDIX B**

# **ATCS SPECIFICATION 250 RAILROAD CODE LIST**

# B. RAILROAD CODE LISTING

The following chart lists the codes assigned to all carriers in accordance with ATCS Specification No. 250 and includes the railway carrier name along with the alphabetical and numerical codes assigned to each. In the event a discrepancy exists between the information in the following list and the current AAR specification, the AAR specification shall prevail.

| ID  | Company Name                                       | RR Mark | ATCS |
|-----|----------------------------------------------------|---------|------|
| 001 | Aberdeen And Rockfish Railroad Company             | AR      | 009  |
| 002 | Akron & Barberton Belt Railroad Company            | ABB     | 002  |
| 003 | Alabama & Florida Railway Co                       | AF(LR)  | 917  |
| 004 | Alameda Belt Line                                  | ABL     | 014  |
| 005 | Alameda Corridor Transportation Authority          | ACTA    | 015  |
| 006 | Alaska Hydro-Train                                 | AHT     | 039  |
| 007 | Alaska Railroad Corporation                        | ARR     | 005  |
| 800 | Alexander Railroad Company                         | ARC     | 049  |
| 009 | Algers Winslow And Western Railway Company         | AWW     | 004  |
| 010 | Algoma Central Railroad Inc                        | AC      | 008  |
| 011 | Allegheny & Eastern Railroad Inc                   | ALY     | 532  |
| 012 | Alley Railroad Company                             |         | 664  |
| 013 | Almanor Railroad Company                           | AL      | 046  |
| 014 | Alton & Southern Railway Company                   | ALS     | 032  |
| 015 | Amador Central Railraod Company                    | AMC     | 019  |
| 016 | Andalusia & Concecuh Railroad Company              | ACRC    | 173  |
| 017 | Angelina & Neches River Railroad Company           | ANR     | 035  |
| 018 | Anthracite Railway Inc                             | ATRW    | 176  |
| 019 | Apache Railway Company                             | APA     | 011  |
| 020 | Apalachicola Northern Railroad Company             | AN      | 012  |
| 021 | Appanoose County Community Railroad Inc            | APNC    | 226  |
| 022 | Arcade And Attica Railroad Corporation             | ARA     | 013  |
| 023 | Arkansas And Missouri Railroad Co                  | AM      | 906  |
| 024 | Arkansas Louisiana & Mississippi (Missouri) Railro | ALM     | 016  |
| 025 | ARTC                                               |         | 047  |
| 026 | Ashley, Drew & Northern Railway Company            | AND     | 020  |
| 027 | Ashtabula Carson & Jefferson Railroad              | ACJR    | 235  |
| 028 | Atchison, Topeka And Santa Fe Railway Company Ats  | ATSF    | 022  |
| 029 | Atcs Shared Network                                | ATCS    | 340  |
| 030 | Atcs Testing & Field Evaluation                    | ATCR    | 050  |
| 031 | Atcs Testing & Field Evaluation                    | ATCT    | 620  |
| 032 | Atlantic & Western Railway, L P                    | ATW     | 025  |
| 033 | Austin Railroad                                    | AUNW    | 924  |
| 034 | Austin, Todd And Ladd Railroad Company             | ATLT    | 514  |
| 035 | Baltimore And Annapolis Railroad Company           | BLA     | 053  |
| 036 | Bangor & Aroostook Railroad Company                | BAR     | 056  |
| 037 | Bath And Hammodsport Railroad Company              | BH      | 079  |
| 038 | Batten Kill Railroad Inc                           | BKRR    | 086  |
| 039 | Bauxite & Northern Railway Company                 | BXN     | 084  |
| 040 | Bay Colony Railroad Corporation                    | BCLR    | 082  |
| 041 | Bayside Railway Co                                 |         | 021  |
| 042 | BC HYDRO RAIL                                      | BCE     | 072  |
| 043 | BC RAIL LTD                                        | BCOL    | 997  |
| 044 | Beaufort And Morehead Railroad Company             | BMH     | 068  |
| 045 | Beech Mountain Railroad Company                    | BEEM    | 060  |
| 046 | Belfast And Moosehead Lake Railroad Company        | BML     | 087  |
| 047 | Belt Railway Company Of Chicago                    | BRC     | 083  |
| 047 | Belton Railroad Company                            | BRR     | 207  |
| 049 | Berlin Mills Railway                               | BMS     | 073  |
| 050 | Bessemer And Lake Erie Railroad Company            | BLE     | 073  |

| ID         | CompanyName                                                                      | RR Mark  | ATCS       |
|------------|----------------------------------------------------------------------------------|----------|------------|
| 051        | Birmingham Southern Rr Co                                                        | BS       | 065        |
| 052        | Black River & Western Corporation                                                | BRW      | 066        |
| 053        | Bloomer Line, The                                                                | BLOL     | 223        |
| 054        | Blue Mountain And Reading Railroad                                               | BMRG     | 256        |
| 055        | Border Pacific Railroad Co                                                       | ВОР      | 225        |
| 056        | Boston And Maine Corporation                                                     | BM       | 069        |
| 057        | Brandon Corporation                                                              | BRAN     | 081        |
| 058        | Brandywine Valley Railroad Company                                               | BVRY     | 067        |
| 059        | Broken Hill Proprietary Co.                                                      |          | 042        |
| 060        | Brownsville And Rio Grande International Rr                                      | BRG      | 170        |
| 061        | Buffalo Southern Railroad Inc                                                    | BSOR     | 085        |
| 062        | Burlington Junction Railway                                                      | BJRY     | 383        |
| 063        | Burlington Northern (Manitoba) Ltd                                               | BNML     | 457        |
| 064        | Burlington Northern Railroad Company                                             | BN       | 076        |
| 065        | Burlington Northern Santa Fe                                                     | BNSF     | 777        |
| 066        | C&J Railroad Investment Company                                                  | CJRR     | 565        |
| 067        | Cadillac And Lake City Railway Co                                                | CLK      | 093        |
| 068        | Cadiz Railroad Company                                                           | CAD      | 093        |
| 069        | Cairo Terminal                                                                   | CTML     | 162        |
| 070        | California Western                                                               | CWR      | 100        |
| 071        | CALTRAIN                                                                         | CALTRAIN | 708        |
| 072        | Camas Prairie Railnet Inc                                                        | CSP      | 952        |
| 073        | Cambria And Indiana Railroad Company                                             | CI       | 101        |
| 074        | Canada And Gulf Terminal Railway Company, The                                    | CGT      | 116        |
| 075        | Canadian National Railways                                                       | CN       | 103        |
| 076        | Caney Fork And Western Rr                                                        | CFWR     | 187        |
| 077        | Canton Railroad Company                                                          | CTN      | 097        |
| 078        | Cape Fear Railways Inc                                                           | CF       | 097        |
| 079        | Carolina Rail Services Inc                                                       | CRIJ     | 988        |
| 080        | Carrollton Railroad                                                              | CARR     | 113        |
| 080        |                                                                                  | CKSI     | 396        |
| 082        | Carthage Knightstown & Shirley Railroad Cedar Rapids & Iowa City Railway Company | CIC      | 111        |
| 083        | Cedar Valley                                                                     | CVAR     | 313        |
|            | Central California Traction Company                                              | CCT      | 112        |
| 084        |                                                                                  | CEIW     |            |
| 085        | Central Indiana & Western Railroad Co Inc                                        | CEIW     | 949        |
| 086<br>087 | Central Montana Pail Inc                                                         | CMGN     | 472<br>374 |
|            | Central New York Bailroad Corporation                                            | CNYK     |            |
| 088        | Central New York Railroad Corporation                                            | CNYK     | 151        |
| 089        | Central Western Beilway Corn                                                     |          | 120        |
| 090        | Central Western Railway Corp                                                     | CWRL     | 527        |
| 091        | Charles City Rail Lines                                                          | CCRY     | 967        |
| 092        | Chattahoochee Industrial Railroad                                                | CIRR     | 222        |
| 093        | Chalatahia Praira Pailagad                                                       | CHV      | 124        |
| 094        | Chelatchie Praire Railraod                                                       | CCPR     | 155        |
| 095        | Chesapeake And Ohio Railway Company                                              | CO       | 125        |
| 096        | Chesapeake Western                                                               | CHW      | 179        |
| 097        | Chestnut Ridge Railway Company                                                   | CHR      | 117        |
| 098        | Chicago And Northwestern                                                         | CNW      | 131        |
| 099        | Chicago And West Pullman                                                         | CWP      | 172        |
| 100        | Chicago And Western Indiana                                                      | CWI      | 132        |

| ID  | CompanyName                                        | RR Mark | ATCS |
|-----|----------------------------------------------------|---------|------|
| 101 | Chicago Central & Pacific Railroad Co              | CC      | 569  |
| 102 | Chicago Heights Terminal Transfer Railroad Company | CHTT    | 139  |
| 103 | Chicago Illinois Midland                           | CIM     | 130  |
| 104 | Chicago Short Line Railway Company                 | CSL     | 147  |
| 105 | Chicago Southshore & South Bend Railroad           | CSS     | 168  |
| 106 | Cimarron Valley Railroad, L C                      | CVR     | 378  |
| 107 | City Of Columbia                                   | СТ      | 090  |
| 108 | City Of Prineville Railway                         | COP     | 166  |
| 109 | Claremont Concord Railroad Corporation             | CCRR    | 188  |
| 110 | Clarendon And Pittsford Railroad Company, The      | CLP     | 169  |
| 111 | Cliffaide Railroad Company                         | CLIF    | 181  |
| 112 | Colonels Island Railroad Co                        | CISD    | 164  |
| 113 | Colorado & Wyoming Rwy Co                          | CW      | 158  |
| 114 | Colorado Springs & Eastern                         | CSE     | 319  |
| 115 | Columbia & Cowlitz Railway Company                 | CLC     | 163  |
| 116 | Columbia & Silver Creek Railroad Company           | CLSL    | 165  |
| 117 | Columbus And Greenville Railway                    | CAGY    | 177  |
| 118 | Conemaugh & Black Lick Railroad Company            | CBL     | 215  |
| 119 | Connecticut Central                                | CCCL    | 416  |
| 120 | Connecticut Department of Transportation           | CDOT    | 007  |
| 121 | Consolidated Rail Corporation                      | CR      | 190  |
| 122 | Cooperstown And Charlotte Valley Rwy               | CACV    | 114  |
| 123 | Copper Basin Railway Inc                           | CBRY    | 909  |
| 124 | Corinth And Counce                                 | CCR     | 201  |
| 125 | Corman                                             | RJCR    | 970  |
| 126 | Cotton Belt (St. Louis Southwestern Rwy Company)   | SSW     | 694  |
| 127 | CP RAIL SYSTEM                                     | CP      | 105  |
| 128 | Crab Orchard & Egyptian Railroad                   | COER    | 089  |
| 129 | CSXT                                               | CSXT    | 171  |
| 130 | Curtin Milburn                                     | CMER    | 180  |
| 131 | Cuyahoga Valley Railway Company, The               | CUVA    | 186  |
| 132 | D & I Railroad Company                             | DAIR    | 211  |
| 133 | Dakota Minnesota & Eastern Railroad Corp           | DME     | 912  |
| 134 | Dakota Rail Inc                                    | DAKR    | 221  |
| 135 | Dakota Southern Railway Company                    | DSRC    | 526  |
| 136 | Dansville And Mount Morris Railroad Company, The   | DMM     | 220  |
| 137 | Dardanelle & Russellville Railroad Company,        | DR      | 191  |
| 138 | Davenport Rock Island And North Western Railway Co | DRI     | 192  |
| 139 | Delaware & Hudson Railway Company Inc              | DH      | 195  |
| 140 | Delaware Coast Line Rr Co                          | DCLR    | 214  |
| 141 | Delta Valley & Southern Railway Company            | DVS     | 193  |
| 142 | Denver Union Terminal Ry Co.                       | DUT     | 288  |
| 143 | Dequeen And Eastern Railroad Company,              | DQE     | 200  |
| 144 | Des Moines Union                                   | DMU     | 202  |
| 145 | Detroit And Mackinac                               | DM      | 204  |
| 146 | Dominion And Atlantic                              | DA      | 209  |
| 147 | Doniphan Kensett & Searcy Railway                  | DKS     | 210  |
| 148 | DRGW                                               | DRGW    | 197  |
| 149 | Duluth & Northeastern Railroad Company,            | DNE     | 212  |
| 150 | Duluth Missabe And Iron Range Railway Company      | DMIR    | 213  |

| ID  | CompanyName                                 | RR Mark    | ATCS |
|-----|---------------------------------------------|------------|------|
| 151 | Duluth Winnipeg And Pacific Railway Company | DWP        | 216  |
| 152 | Dunn-Erwin Railway Corporation              | DER        | 219  |
| 153 | East Camden & Highland Rr Co                | EACH       | 242  |
| 154 | East Cooper And Berkeley Railroad Company   | ECBR       | 229  |
| 155 | East Erie Commercial Railroad               | EEC        | 040  |
| 156 | East Jersey Railroad And Terminal Company   | EJR        | 245  |
| 157 | East St. Louis Junction Rr                  | ESLJ       | 233  |
| 158 | East Tennessee Railway, L P                 | ETRY       | 257  |
| 159 | Eastern Shore Railroad Inc                  | ESHR       | 251  |
| 160 | Edgmoor & Manetta                           | EM         | 232  |
| 161 | El Dorado And Wesson Railway Company        | EDW        | 247  |
| 162 | Elgin Joliet & Eastern Railway Company      | EJE        | 238  |
| 163 | Escanaba And Lake Superior Railroad Company | ELS        | 241  |
| 164 | Esquimalt And Nanaimo                       | EN         | 246  |
| 165 | Essex Terminal Railway Company The          | ETL        | 228  |
| 166 | Eureka Southern                             | EUKA       | 368  |
| 167 | Everett Railroad                            | EV         | 231  |
| 168 | Falls Creek                                 | FCRK       | 267  |
| 169 | Farmrail Corporation                        | FMRC       | 280  |
|     | FCA - Ferrovia Centro - Atlantica SA        |            | _    |
| 170 |                                             | ??<br>FRDN | 029  |
| 171 | Ferdinand & Huntingburg                     | CHP        | 273  |
| 172 | Ferrocarril De Chihuahua Al Pacifico,       |            | 284  |
| 173 | Ferrocarriles Nacionales De Mexico          | NDM        | 266  |
| 174 | Ferrocarriles Nacionales De Mexico          | SBC        | 283  |
| 175 | Ferrocarriles Nacionales De Mexico -        | FCP        | 738  |
| 176 | Ferrocarriles Unidos Del Sureste, S.A.      | SE         | 281  |
| 177 | Florida Central Railroad Co                 | FCEN       | 986  |
| 178 | Florida East Coast Railway Company          | FEC        | 263  |
| 179 | Florida Midland Railroad Co Inc             | FMID       | 507  |
| 180 | Fonda, Johnstown And Gloversville           | FJG        | 264  |
| 181 | Fordyce And Princeton Railroad Co           | FP         | 265  |
| 182 | Fore River                                  | CRY        | 908  |
| 183 | Fort Smith And Van Buren                    | FSVB       | 279  |
| 184 | Fort Worth & Western Railroad               | FWWR       | 277  |
| 185 | Galveston Railroad L P                      | GVSR       | 567  |
| 186 | Galveston Warves                            | GWF        | 303  |
| 187 | Galveston, Houston And Henderson            | GHH        | 293  |
| 188 | Garden City Western Railway Company, The    | GCW        | 287  |
| 189 | Genesee And Wyoming Railroad Company        | GNWR       | 320  |
| 190 | Georgetown Railroad Company                 | GRR        | 302  |
| 191 | Gettysburg Railway                          | GBRY       | 294  |
| 192 | Gloster Southern Railroad Company           | GLSR       | 916  |
| 193 | GO TRANSIT                                  | GOT        | 954  |
| 194 | Goderich - Exeter Railway Company           | ??         | 027  |
| 195 | Golden Triangle Railroad                    | GTRA       | 295  |
| 196 | Grafton And Upton Railroad Company          | GU         | 323  |
| 197 | Grainbelt Corporation                       | GNBC       | 443  |
| 198 | Grand River                                 | GRNR       | 322  |
| 190 | Grand Trunk Western Railroad Incorporated   | GTW        | 308  |
| 200 | Graysonia, Nashville And Western            | GNA        | 308  |

| ID  | CompanyName                                        | RR Mark | ATCS |
|-----|----------------------------------------------------|---------|------|
| 201 | Great River Railroad                               | GTR     | 271  |
| 202 | Great Southwestern                                 | GSWR    | 305  |
| 203 | Great Western Railway Company, The                 | GWR     | 311  |
| 204 | Green Bay And Western                              | GBW     | 312  |
| 205 | Green Hills Rural Development                      | GHRD    | 980  |
| 206 | Green Mountain Railroad Corporation                | GMRC    | 314  |
| 207 | Gulf And Mississippi                               | GMSR    | 392  |
| 208 | Hammersley Iron (Australia)                        |         | 041  |
| 209 | Hampton & Branchville Railroad Company             | НВ      | 330  |
| 210 | Hartford And Slocomb Railroad Company              | HS      | 366  |
| 211 | Hartwell Railway Company                           | HRT     | 334  |
| 212 | Helena Southwestern Railroad Company               | HSW     | 331  |
| 213 | High Point Thomasville & Denton Railroad Company   | HPTD    | 366  |
| 214 | Hillsboro And North Eastern Railway                | HLNE    | 338  |
| 215 | Hillsdale County Railway Company, Inc.             | HCRC    | 326  |
| 216 | Hillside (Australia)                               |         | 018  |
| 217 | Hollis & Eastern R R Co                            | HE      | 328  |
| 218 | Houston Belt & Terminal Railway Company            | HBT     | 342  |
| 219 | Huntsville & Madison County Railroad Authority     | HMCR    | 391  |
| 220 | Huron And Eastern Railway Company Inc              | HESR    | 890  |
| 221 | Hutchinson And Northern Railway Company, The       | HN      | 332  |
| 222 | Illinois Central Railroad Company                  | IC      | 360  |
| 223 | Indian Creek Railroad Company                      | ICRK    | 380  |
| 224 | Indiana & Ohio Rail Corp.                          | INOH    | 344  |
| 225 | Indiana Hi-Rail Corporation                        | IHRC    | 352  |
| 226 | Indiana Rail Road Corporation                      | INRD    | 780  |
| 227 | Indianapolis Union Railway                         | IU      | 363  |
| 228 | Indonesia (Indonesian State Railways)              |         | 093  |
| 229 | International Bridge And Terminal Company, The     | IBT     | 358  |
| 230 | Interstate Railroad Company                        | SOU     | 381  |
| 231 | Iowa Interstate Railroad Ltd                       | IAIS    | 316  |
| 232 | Iowa Northern Railroad                             | IANR    | 341  |
| 233 | Iowa Southern Railroad Company                     | ISR     | 272  |
| 234 | Iowa Traction Railroad Company                     | IATR    | 994  |
| 235 | ITS - Highway Advanced Transportation Controller   |         | 051  |
| 236 | ITS - Non-ATCS Railroad                            |         | 052  |
| 237 | Jefferson Warrior Railroad Co Inc                  | JEFW    | 254  |
| 238 | Kankakee Beaverville And Southern Railroad Company | KBSR    | 399  |
| 239 | Kansas And Missouri Railway                        | KM      | 414  |
| 240 | Kansas City Southern Railway Company               | KCS     | 400  |
| 241 | Kansas City Terminal Railway Company               | KCT     | 401  |
| 242 | Kentucky And Tennessee Railway                     | KT      | 405  |
| 243 | Keokuk Junction Railway                            | KJRY    | 365  |
| 244 | Kiamichi Railroad Company Llc                      | KRR     | 424  |
| 245 | Knox & Kane Railroad Company                       | KKRR    | 376  |
| 246 | Kwt Railway Inc                                    | KWT     | 996  |
| 247 | Kyle Railroad Company                              | KYLE    | 377  |
| 248 | Lake Erie & Northern                               | LEN     | 421  |
| 249 | Lake Erie, Franklin & Clarion Railroad Company     | LEF     | 423  |
| 250 | Lake Superior & Ishpeming Railroad Company         | LSI     | 425  |

| ID         | CompanyName                                                     | RR Mark     | ATCS       |
|------------|-----------------------------------------------------------------|-------------|------------|
| 251        | Lake Terminal Railroad Company, The                             | LT          | 404        |
| 252        | Lamoille Valley Railroad Company                                | LVRC        | 452        |
| 253        | Lancaster And Chester Railway Company                           | LC          | 426        |
| 254        | Landisville Railroad Inc (Formerly Amherst Industr              | AMHR        | 071        |
| 255        | Laurinburg And Southern Railroad Company                        | LRS         | 427        |
| 256        | Levin-Richmond Terminal Corporation                             | PRT         | 606        |
| 257        | Lewis & Clark Railway Co                                        | LINC        | 355        |
| 258        | Little Rock & Western Railway, L P                              | LRWN        | 485        |
| 259        | Little Rock Port Railroad                                       | LRPA        | 435        |
| 260        | Livonia, Avon & Lakeville Railroad Corporation                  | LAL         | 398        |
| 261        | Logansport & Eel River Short-Line Co Inc                        | LER         | 304        |
| 262        | Long Island Railroad Company                                    | LIRR        | 436        |
| 263        | Longview, Portland & Northerm Railway Company                   | LPN         | 450        |
| 264        | Los Angeles Junction Railway Company                            | LAJ         | 428        |
| 265        | Louisana & Arkansas Railway Company                             | LA          | 441        |
| 266        | Louisiana & Delta Railroad Inc                                  | LDRR        | 972        |
| 267        | Louisiana And North West Railroad Company, The                  | LNW         | 442        |
| 268        | Louisville And Wadley Railway Company                           | LW          | 451        |
| 269        | Louisville New Albany & Corydon Railroad                        | LNAL        | 446        |
| 270        | Lowville And Beaver River Railroad Company, The                 | LBR         | 447        |
| 271        | Ludington & Northern Railway                                    | LUN         | 430        |
| 272        | Madison Railroad (A Div Of City Of Madison Port Au              | CMPA        | 144        |
| 273        | Magma Arizona Railroad Company                                  | MAA         | 463        |
| 274        | Mahoning Valley Railway Company, The                            | MVRY        | 504        |
| 275        | Maine Central Railroad Company                                  | MEC         | 456        |
| 276        | Manufacturers Junction Railway Company                          | MJ          | 459        |
| 277        | Manufacturers Railway Company                                   | MRS         | 460        |
| 278        | Marinette, Tomahawk & Western Railroad                          | MTW         | 520        |
| 279        | Maryland And Delaware Railroad Company                          | MDDE        | 454        |
| 280        | Maryland And Pennsylvania Railroad Company                      | MPA         | 463        |
| 281        | Maryland Midland Railway Inc                                    | MMID        | 495        |
| 282        | Maryland Rail Commuter                                          | MARC        | 003        |
| 283        | Massachusetts Bay Transportation Authority                      | MBTA        | 006        |
|            |                                                                 | MCER        |            |
| 284        | Massachusetts Central Railroad Corporation                      |             | 461        |
| 285<br>286 | Massena Terminal Railroad Company, The                          | MSTR<br>MCR | 471<br>466 |
| 287        | Mccloud Railway Company  Mckeesport Connecting Railroad Company | MKC         | 583        |
|            |                                                                 |             | _          |
| 288        | Meridian & Bigbee Railroad Company  Metra                       | MBRR        | 462        |
| 289        |                                                                 | MDD         | 892        |
| 290        | Mexican Pacific Railroad Company, Inc.                          | MDP         | 285        |
| 291        | Mg Rail Inc                                                     | MGRI        | 388        |
| 292        | Michigan-Wisconsin Transportation Company                       | MWTT        | 512        |
| 293        | Mid Atlantic Railroad Co., Inc.                                 | MRR         | 877        |
| 294        | Middletown & Hummelstown Railroad Company                       | MIDH        | 479        |
| 295        | Middletown & New Jersey Railway Company Inc                     | MNRR        | 475        |
| 296        | Midland Terminal Co, The                                        | MDLR        | 385        |
| 297        | Midlouisana Rail Corporation                                    | MDR         | 919        |
| 298        | Midsouth Corporation                                            | MSRC        | 905        |
| 299        | Milwaukee Road                                                  | MILW        | 140        |
| 300        | Minnesota Commercial Railway Co                                 | MNNR        | 973        |

| ID               | CompanyName                                                              | RR Mark | ATCS |
|------------------|--------------------------------------------------------------------------|---------|------|
| 301              | Minnesota Dakota & Western Railway Company                               | MDW     | 610  |
| 302              | Mississippi & Skuna Valley Railroad Company                              | MSV     | 503  |
| 303              | Mississippi Delta Railroad                                               | MSDR    | 786  |
| 304              | Mississippi Export Railroad Company                                      | MSE     | 506  |
| 305              | Mississippian Railway Cooperative Inc                                    | MSRW    | 502  |
| 306              | Missouri Pacific Railroad Company                                        | MP      | 494  |
| 307              | Missouri-Kansas-Texas Railroad Co.                                       | MKT     | 490  |
| 308              | Mobile & Gulf Railroad Company                                           | MG      | 483  |
| 309              | Modesto And Empire Traction Company                                      | MET     | 524  |
| 310              | Monongahela Connecting Rr Co.                                            | MCRR    | 498  |
| 311              | Monongahela Railway Company                                              | MGA     | 497  |
| 312              | Montana Rail Link Inc                                                    | MRL     | 671  |
| 313              | Morristown & Erie Railway Inc                                            | ME      | 511  |
| 314              | Moscow, Camden & San Augustine Railroad                                  | MCSA    | 548  |
| 315              | MRS Logistics of South America                                           | ??      | 028  |
| 316              | Muncie And Western Railroad Company                                      | MWR     | 464  |
| 317              | N D C Railroad Company                                                   | NDCR    | 902  |
| 318              | N J Transit Rail Operations (Commuter Carrier)                           | NJTR    | 574  |
| 319              | Napa Valley Railroad Co                                                  | NVRR    | 402  |
| 320              | Nash County Railroad Corp                                                | NCYR    | 776  |
| 321              | Nashville And Eastern Railroad Corp                                      | NERR    | 934  |
| 322              | National Railroad Passenger Corporation                                  | AMTRAK  | 891  |
| 323              | National Railways Of Mexico (Ferrocarriles Naciona                       | NDM     | 286  |
| 324              | New Hampshire Northcoast Corp                                            | NHN     | 787  |
| 325              | New Hope & Ivyland Rail Road                                             | NHRR    | 585  |
| 326              | New York & Lake Erie Railroad                                            | NYLE    | 545  |
| 327              | New York Cross Harbor Railroad Terminal Corp                             | NYCH    | 573  |
| 328              | New York Susquehanna And Western Railway Corp                            | NYSW    | 546  |
| 329              | Nicolet Badger Northern Railroad Inc                                     | NBNR    | 476  |
| 330              | Nittany & Bald Eagle Railroad Co                                         | NBER    | 249  |
| 331              | Norfolk & Portsmouth Belt Line Railroad Company                          | NPB     | 549  |
| 332              | Norfolk And Western Railway Company                                      | NW      | 550  |
| 333              | Norfolk Southern                                                         | NS      | 555  |
| 334              | North Carolina & Virginia Railroad Co Inc                                | NCVA    | 531  |
| 335              | North Shore Railroad Co                                                  | NSHR    | 248  |
| 336              | North Stratford Railroad Corporation                                     | NSCR    | 570  |
| 337              | Northwestern Oklahoma Railroad Company                                   | NOKL    | 591  |
| 338              | Northwestern Pacific Railroad Company                                    | NWP     | 559  |
| 339              | Oakland Terminal Railroad Company                                        | OTR     | 586  |
| 340              | Octoraro Railway, Inc.                                                   | OCTR    | 587  |
| 341              | Ogden Union Railway And Depot Company, The                               | OURD    | 956  |
| 342              | Ohi-Rail Corporation                                                     | OHIC    | 579  |
| 343              | Oil Creek & Titusville Lines                                             | OCTL    | 948  |
| 344              | Okanagan Valley Railway Company                                          | OKAN    | 945  |
| 345              | Oklahoma Central Railroad Co                                             | OCR     | 270  |
| 346              | Oklahoma, Kansas And Texas Railroad                                      | OKKT    | 593  |
| 347              | Old Augusta Railroad Company                                             | OAR     | 578  |
| 348              | Ona Augusta Railload Company  Omaha Lincoln And Beatrice Railway Company | OLB     | 598  |
| 348              | Ontario Central Railroad Corporation                                     | ONCT    | 589  |
| 9 <del>4</del> 9 | Ontario Midland Railroad Corporation                                     | OMID    | 588  |

| ID  | CompanyName                                        | RR Mark | ATCS |
|-----|----------------------------------------------------|---------|------|
| 351 | Ontario Northland Railway (Ontario Northland Trans | ONT     | 754  |
| 352 | Oregon & Northwestern Railroad Co.                 | ONW     | 596  |
| 353 | Oregon Pacific & Eastern Railway Company           | OPE     | 597  |
| 354 | Oregon, California & Eastern Railway               | OCE     | 603  |
| 355 | Ottertail Valley Railroad Co Inc                   | OTVR    | 983  |
| 356 | Ottumwa Terminal Railroad Co                       | OTT     | 276  |
| 357 | Paducah & Illinois Railroad Company                | PI      | 614  |
| 358 | Paducah & Louisville Railroad                      | PAL     | 907  |
| 359 | Panther Valley Railroad Corporation                | PVAL    | 575  |
| 360 | Patapsco & Back Rivers Railroad Company            | PBR     | 609  |
| 361 | Pearl River Valley Railroad Company                | PRV     | 636  |
| 362 | Pecos Valley Southern Railway Company, The         | PVS     | 644  |
| 363 | Pee Dee River Railroad Corp                        | PDRR    | 010  |
| 364 | Peninsula Terminal Company                         | PT      | 643  |
| 365 | Peoria And Pekin Union Railway Company             | PPU     | 645  |
| 366 | Philadelphia Belt Line Railroad Company, The       | PBL     | 608  |
| 367 | Philadelphia Bethlehem And New England Railroad Co | PBNE    | 659  |
| 368 | Pickens Railway Company                            | PICK    | 624  |
| 369 | Pioneer And Fayette Railroad Company               | PF      | 630  |
| 370 | Pioneer Valley Railroad Company                    | PVRR    | 611  |
| 371 | Pittsburg & Shawmut Railroad Inc                   | PSR     | 627  |
| 372 | Pittsburgh Chartiers & Youghiogheny Railway Compan | PCY     | 629  |
| 373 | Pittsburgh, Allegheny & Mckees Rocks Rr Co         | PAM     | 607  |
| 374 | Plymouth Short Line Ltd                            | PSLL    | 566  |
| 375 | Pocono Northeast Railway, Inc.                     | PNER    | 618  |
| 376 | Point Comfort & Northern Railway Company           | PCN     | 651  |
| 377 | Port Bienville Railroad                            | PBVR    | 677  |
| 378 | Port Of Tillamook Bay Railroad                     | POTB    | 637  |
| 379 | Port Royal Railroad                                | PRYL    | 393  |
| 380 | Portland Terminal Company                          | PTM     | 619  |
| 381 | Portland Traction Company                          | PRTD    | 632  |
|     |                                                    | PNW     |      |
| 382 | Prescott And Northwestern Railroad Company         | PW      | 634  |
| 383 | Providence And Worcester Railroad Company          | QC QC   | 631  |
| 384 | Quebec Central Railway Company                     | QC      | 658  |
| 385 | Queensland Rail (Australia)                        | ODD     | 036  |
| 386 | Quincy Railroad Company                            | QRR     | 656  |
| 387 | Rac (Railway Association Of Canada)                | DADW    | 033  |
| 388 | Rarus Railway Company                              | RARW    | 516  |
| 389 | Red River Valley & Western Railroad Co             | RRVW    | 321  |
| 390 | Renfe (National Railways Of Spain)                 | DT      | 119  |
| 391 | River Terminal Railway Company, The                | RT      | 665  |
| 392 | Robe (Australia)                                   |         | 044  |
| 393 | Roberval And Saguenay Railway Company, The         | RS      | 669  |
| 394 | Rochester & Southern Railroad Inc                  | RSR     | 941  |
| 395 | Rockdale Sandow & Southern Railroad Company        | RSS     | 675  |
| 396 | Rocky Mountain Railcar And Railroad Inc            | RMRR    | 915  |
| 397 | Roscoe Snyder & Pacific Railway Company            | RSP     | 673  |
| 398 | Sabine River & Northern Railroad Company           | SRN     | 678  |
| 399 | Saint Lawrence Railroad                            | SLAW    | 705  |
| 400 | Saint Marys Railroad Company                       | SM      | 682  |

| ID  | CompanyName                                    | RR Mark | ATCS |
|-----|------------------------------------------------|---------|------|
| 401 | Salt Lake Garfield And Western Railway Company | SLGW    | 690  |
| 402 | San Diego & Imperial Valley Railroad Co Inc    | SDIY    | 315  |
| 403 | San Luis Central Railroad Company              | SLC     | 696  |
| 404 | San Manuel Arizona Railroad Company            | SMA     | 794  |
| 405 | Sand Springs Railway Company                   | SS      | 707  |
| 406 | Sandersville Railroad Company                  | SAN     | 691  |
| 407 | Santa Maria Valley Railroad Company            | SMV     | 741  |
| 408 | Savannah State Docks Railroad Company          | SSDK    | 679  |
| 409 | Sequatchie Valley Railroad Inc                 | SQVR    | 910  |
| 410 | Shore Fast Line Railroad Company Sflr 2        | SFLR    | 255  |
| 411 | Sierra Railroad Company                        | SERA    | 716  |
| 412 | Singapore (Singapore)                          |         | 076  |
| 413 | Sisseton Southern Railway Co                   | SSOR    | 440  |
| 414 | Somerset Railroad Corporation                  | SOM     | 772  |
| 415 | SOO Line Rail Company                          | S00     | 030  |
| 416 | South Branch Valley Rail Road                  | SBVR    | 732  |
| 417 | South Brooklyn Railway Company                 | SBK     | 718  |
| 418 | South Buffalo Railway Company                  | SB      | 719  |
| 419 | South Carolina Central Railroad Co Inc         | SCRF    | 582  |
| 420 | South Central Tennessee Railroad Corporation   | SCTR    | 672  |
| 421 | Southeast Kansas Railroad Company              | SEKR    | 944  |
| 422 | Southeastern Penn Transp Authority             | SEPTA   | 024  |
| 423 | Southern Indiana Railway Inc                   | SIND    | 720  |
| 424 | Southern New Jersey Light Rail Transit         | ??      | 026  |
| 425 | Southern Pacific Transportation Company        | SP      | 721  |
| 426 | Southern Railway Company                       | SOU     | 724  |
| 427 | Southern San Luis Valley Railroad Company      | SSLV    | 706  |
| 428 | St Maries River Railroad Company               | STMA    | 698  |
| 429 | STA                                            |         | 048  |
| 430 | Staten Island Railway Corporation              | SIRY    | 389  |
| 431 | Steelton & Highspire Railroad Company          | SH      | 799  |
| 432 | Stewartstown Railroad Co                       | STRT    | 729  |
| 433 | Stockton Terminal And Eastern Railroad         | STE     | 739  |
| 434 | Strasburg Railroad Company                     | SRC     | 686  |
| 435 | Strouds Creek And Muddlety Railroad            | SCM     | 687  |
| 436 | Sunset Railway Company                         | SUN     | 734  |
| 437 | Tacoma Muncipal Belt Line Railway              | TMBL    | 759  |
| 438 | Tasrail                                        |         | 119  |
| 439 | Tennessee Railway Company                      | SCM     | 767  |
| 440 | Tennessee, Alabama And Georgia Railway         | SOU     | 755  |
| 441 | Tennken Railroad Company Inc                   | TKEN    | 745  |
| 442 | Terminal Railroad Association Of St Louis      | TRRA    | 757  |
| 443 | Terminal Railway Alabama State Docks           | TASD    | 758  |
| 444 | Texas & Northern                               | TN      | 795  |
| 445 | Texas Central Railroad Company                 | TEXC    | 750  |
| 446 | Texas City Terminal Railway Company            | TCT     | 761  |
| 447 | Texas Mexican Railway Company, The             | TM      | 762  |
| 448 | Texas North Western Railway Company            | TXNW    | 747  |
| 449 | Texas South-Eastern Railroad Company           | TSE     | 765  |
| 450 | Texas, Oklahoma & Eastern Railroad Company     | TOE     | 764  |

| ID  | CompanyName                                                                | RR Mark | ATCS |
|-----|----------------------------------------------------------------------------|---------|------|
| 451 | Thailand (Thai State Railways)                                             |         | 102  |
| 452 | Tippecanoe Railroad Company                                                | TIPP    | 753  |
| 453 | Tonawanda Island Railroad Inc                                              | TIRL    | 743  |
| 454 | Towanda And Monroeton Shippers Lifeline, Inc.                              | TMSS    | 752  |
| 455 | Transkentucky Transportation Railroad Co Inc                               | TTIS    | 773  |
| 456 | Tranz Rail (Tasmania)                                                      |         | 057  |
| 457 | Trintity Railway Express                                                   |         | 751  |
| 458 | Trona Railway Company                                                      | TRC     | 779  |
| 459 | TTCI Test Unit 1                                                           | TTCI    | 884  |
| 460 | TTCI Test Unit 2                                                           | TTCI    | 885  |
| 461 | TTCI Test Unit 3                                                           | TTCI    | 886  |
| 462 | TTCI Test Unit 4                                                           | TTCI    | 887  |
| 463 | TTCI Test Unit 5                                                           | TTCI    | 888  |
| 464 | TTCI Test Unit 6                                                           | TTCI    | 889  |
| 465 | Tucson, Cornelia & Gila Bend Railroad Company                              | TCG     | 783  |
| 466 | Tulsa-Sapulpa Union Railway Company L L C                                  | TSU     | 709  |
| 467 | Turtle Creek Industrial Railroad Inc                                       | TCKR    | 709  |
| 468 |                                                                            | TSBY    | 770  |
| 469 | Tuscola And Saginaw Bay Railway Company Inc Union Pacific Railroad Company | UP      | 802  |
|     | 1 ,                                                                        | URR     |      |
| 470 | Union Railroad Company                                                     |         | 803  |
| 471 | Union Railroad Of Oregon                                                   | UO      | 800  |
| 472 | United South Eastern Railways Company                                      | SE      | 281  |
| 473 | Unity Railways Company                                                     | UNI     | 806  |
| 474 | Upper Merion And Plymouth Railroad Company                                 | UMP     | 808  |
| 475 | Utah Railway Company                                                       | UTAH    | 811  |
| 476 | Valdosta Southern Railroad                                                 | VSO     | 816  |
| 477 | Vandalla Railroad Company                                                  | VRRC    | 781  |
| 478 | Ventura County Railway Company                                             | VCY     | 821  |
| 479 | Vermont Railway Inc                                                        | VTR     | 817  |
| 480 | Via Rail Canada Inc                                                        | VIA     | 818  |
| 481 | Victrack (Australia)                                                       |         | 017  |
| 482 | Virginia Railway Express                                                   | VRE     | 023  |
| 483 | Visalla Electric Railroad Company                                          | VE      | 824  |
| 484 | Walking Horse & Eastern Railroad Co Inc                                    | WHOE    | 390  |
| 485 | Warren & Saline River Railroad Company                                     | WSR     | 832  |
| 486 | Washington Central Railroad Company, Inc. Wcrc                             | WCRC    | 943  |
| 487 | Washington County Railroad Corporation                                     | WACR    | 812  |
| 488 | Washington Terminal                                                        | WATC    | 849  |
| 489 | Waterloo Railway Company                                                   | WLO     | 835  |
| 490 | Wctu Railway Company                                                       | WCTR    | 844  |
| 491 | Weatherford Mineral Wells & Northwestern                                   | WMWN    | 837  |
| 492 | West Jersey Short Line, Inc.                                               | WJSL    | 387  |
| 493 | West Shore Railroad Corp                                                   | WTSE    | 882  |
| 494 | West Tennessee Railroad Corp                                               | WTNN    | 258  |
| 495 | West Virginia Northern Railroad                                            | WVN     | 866  |
| 496 | Western Railroad Company                                                   | WRRC    | 838  |
| 497 | Westrail (Australia)                                                       |         | 038  |
| 498 | White Pass & Yukon                                                         | WPY     | 845  |
| 499 | Willamette Valley Railway Company, Inc                                     | WVR     | 863  |
| 500 | Wilmington Terminal Railroad Inc                                           | WTRY    | 981  |

| ID  | CompanyName                                        | RR Mark | ATCS |
|-----|----------------------------------------------------|---------|------|
| 501 | Winchester And Western Railroad Company            | WW      | 850  |
| 502 | Winifrede Railroad Company                         | WNFR    | 852  |
| 503 | Winston-Salem Southbound Railway Company (Csx Tran | WSS     | 854  |
| 504 | Wisconsin & Calumet Railroad                       | WICT    | 382  |
| 505 | Wisconsin & Southern Railroad Company              | WSOR    | 879  |
| 506 | Wisconsin Central Limited                          | WC      | 260  |
| 507 | Yancey Railroad Company                            | YAN     | 876  |
| 508 | Youngstown & Austintown Railroad Co                | YARR    | 372  |
| 509 | Youngstown & Southern Railway Company              | YS      | 875  |
| 510 | Yreka Western Railroad Company                     | YW      | 873  |
| 511 | UK ATCS Testing and Field Evaluations              | ????    | 974  |
| 512 | Network Rail - London North Eastern - UK           | ????    | 975  |
| 513 | Network Rail - London North Western - UK           | ????    | 976  |
| 514 | Network Rail - Scotland - UK                       | ????    | 977  |
| 515 | Network Rail - South East - UK                     | ????    | 978  |
| 516 | Network Rail - Western - UK                        | ????    | 979  |

# APPENDIX C

# WCP CODEPLUG PARAMETERS

# C. WCP CODEPLUG PARAMETERS

Code plug parameters for the WCP Firmware, Version XCM4.05P, are listed in Table C-1. For additional information regarding subsequent revisions to the firmware, contact Siemens Customer Service.

It is recommended that users only modify these parameters using the supplied utility program. However, if the parameters are manipulated directly, care should be taken that the wrong locations are not inadvertently modified.

# NOTE

#### **NOTE**

Time values are expressed in 10-millisecond increments. For example, 15 seconds would be expressed as 1500.

Many values are bit-mapped. Bit 0 is defined as the value 01, bit 1 as 02, bit 3 as 04, etc. Actual value to be programmed is the sum of all required bits (e.g., if bits 1, 2, and 4 are set, the value is (2+4+16) = \$16 (22 decimal)).

All values are in decimal, except where specifically indicated with the hexadecimal prefix (\$).

Figure C-1 WCP CPU II Code Plug Parameters

| Location          | Description                                                                                                                                                                                                                                                                           | Default Value |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| \$01              | Manufacturer equipment code                                                                                                                                                                                                                                                           | \$01          |
| \$02              | ATCS equipment code                                                                                                                                                                                                                                                                   | \$01          |
| \$02 thru<br>\$09 | ATCS address of CC. The values are interpreted as 16 nibbles with the last nibble specifying the address length. Zero is coded as \$A. Example: 7A.22.51.6A.28.A1.A1.0E This is used to set the CC address when the attached equipment cannot provide the address via an XID process. | Null          |
| \$0A thru         | ATCS address to which health and malfunction report                                                                                                                                                                                                                                   | Null          |
| \$11              | messages should be sent.                                                                                                                                                                                                                                                              |               |
|                   | Example: 2A.22.A1.AA.AA.00.00.0A                                                                                                                                                                                                                                                      |               |

| \$12<br>\$13<br>\$14 thru | Description  Local processing options bit map  Bit 0 – Enable site code line application logic  Bit 1 – Enable duplicate reject suppress facility  Bit 2 – Enable site simulation  Bit 6 – Enable AMCI Alert messages  Maximum number of ground contact attempts per radio | Null           |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| \$13<br>\$14 thru         | Bit 0 – Enable site code line application logic Bit 1 – Enable duplicate reject suppress facility Bit 2 – Enable site simulation Bit 6 – Enable AMCI Alert messages                                                                                                        | Null           |
| \$14 thru                 | Bit 1 – Enable duplicate reject suppress facility Bit 2 – Enable site simulation Bit 6 – Enable AMCI Alert messages                                                                                                                                                        |                |
| \$14 thru                 | Bit 2 – Enable site simulation Bit 6 – Enable AMCI Alert messages                                                                                                                                                                                                          |                |
| \$14 thru                 | Bit 6 – Enable AMCI Alert messages                                                                                                                                                                                                                                         |                |
| \$14 thru                 |                                                                                                                                                                                                                                                                            |                |
| \$14 thru                 | Maximum number of ground contact attempts per radio                                                                                                                                                                                                                        |                |
|                           |                                                                                                                                                                                                                                                                            | 6              |
|                           | channel                                                                                                                                                                                                                                                                    |                |
|                           | Time between ground contact attempts                                                                                                                                                                                                                                       | 6000           |
| \$17                      |                                                                                                                                                                                                                                                                            |                |
| \$18 thru                 | Layer 4 duplicate elimination timer value                                                                                                                                                                                                                                  | 1500 (15 sec.) |
| \$1B                      | .3                                                                                                                                                                                                                                                                         | ,              |
| \$1C thru                 | Ground contact expiration timer value                                                                                                                                                                                                                                      | Reserved       |
| \$1F                      | Ground contact expiration times value                                                                                                                                                                                                                                      | Reserved       |
| \$20 thru                 | ATCS address for cluster controller time requests                                                                                                                                                                                                                          | Null           |
| \$27                      | A 100 dudicos foi ciustei controllei time requests                                                                                                                                                                                                                         | INGII          |
| \$28                      | Out-of-coverage radio channel. If this value is \$FF, no                                                                                                                                                                                                                   | 1              |
| \$20                      | channel change is performed when entering out-of-                                                                                                                                                                                                                          | Į.             |
|                           | coverage mode.                                                                                                                                                                                                                                                             |                |
| ¢20 thru                  |                                                                                                                                                                                                                                                                            | Nivill         |
| \$29 thru                 | Not used                                                                                                                                                                                                                                                                   | Null           |
| \$2A                      | Alama analah bita                                                                                                                                                                                                                                                          | NI. II         |
| \$2B                      | Alarm enable bits                                                                                                                                                                                                                                                          | Null           |
|                           | Bit 0 – External alarm 5                                                                                                                                                                                                                                                   |                |
|                           | Bit 1 – Port 0 contact failure                                                                                                                                                                                                                                             |                |
|                           | Bit 2 – Port 1 contact failure                                                                                                                                                                                                                                             |                |
|                           | Bit 3 – Port 2 contact failure                                                                                                                                                                                                                                             |                |
|                           | Bit 4 – Port 0 hardware failure                                                                                                                                                                                                                                            |                |
|                           | Bit 5 – Port 1 hardware failure                                                                                                                                                                                                                                            |                |
|                           | Bit 6 – Port 2 hardware failure                                                                                                                                                                                                                                            |                |
|                           | Bit 7 – Not used                                                                                                                                                                                                                                                           |                |
| \$2C                      | Alarm enable bits                                                                                                                                                                                                                                                          | Null           |
|                           | Bit 0 – Mobile channel usage (COS too long)                                                                                                                                                                                                                                |                |
|                           |                                                                                                                                                                                                                                                                            |                |
|                           |                                                                                                                                                                                                                                                                            |                |
|                           |                                                                                                                                                                                                                                                                            |                |
|                           | Bit 4 – External alarm 1                                                                                                                                                                                                                                                   |                |
|                           |                                                                                                                                                                                                                                                                            |                |
|                           | Bit 6 – External alarm 3                                                                                                                                                                                                                                                   |                |
|                           | Dit 0 – External alarm 3                                                                                                                                                                                                                                                   |                |
|                           | Bit 7 – External alarm 4                                                                                                                                                                                                                                                   | Null           |
| \$2D                      |                                                                                                                                                                                                                                                                            | INUII          |
| \$2D                      | Bit 7 – External alarm 4                                                                                                                                                                                                                                                   | Null           |
| \$2D                      | Bit 7 – External alarm 4 Alarm enable bits                                                                                                                                                                                                                                 | Null           |
| \$2D                      | Bit 7 – External alarm 4  Alarm enable bits  Bit 0 – Radio failure                                                                                                                                                                                                         | Null           |
| \$2D                      | Bit 7 – External alarm 4  Alarm enable bits  Bit 0 – Radio failure  Bit 1 - Radio bus failure                                                                                                                                                                              | Null           |
| \$2D                      | Bit 7 – External alarm 4  Alarm enable bits  Bit 0 – Radio failure  Bit 1 - Radio bus failure  Bit 2 - Radio power amplifier                                                                                                                                               | Null           |
| \$2D                      | Bit 7 – External alarm 4  Alarm enable bits  Bit 0 – Radio failure  Bit 1 - Radio bus failure  Bit 2 - Radio power amplifier  Bit 3 - Radio AC power failure                                                                                                               | Null           |
| \$2D                      | Bit 7 – External alarm 4  Alarm enable bits  Bit 0 – Radio failure  Bit 1 - Radio bus failure  Bit 2 - Radio power amplifier  Bit 3 - Radio AC power failure  Bit 4 - Code plug CRC failure                                                                                | Null           |
| \$2D                      | Bit 7 – External alarm 4  Alarm enable bits  Bit 0 – Radio failure  Bit 1 - Radio bus failure  Bit 2 - Radio power amplifier  Bit 3 - Radio AC power failure  Bit 4 - Code plug CRC failure  Bit 5 - Carrier without data                                                  | Null           |
| \$2D<br>\$2E thru         | Bit 7 – External alarm 4  Alarm enable bits  Bit 0 – Radio failure  Bit 1 - Radio bus failure  Bit 2 - Radio power amplifier  Bit 3 - Radio AC power failure  Bit 4 - Code plug CRC failure  Bit 5 - Carrier without data  Bit 6 - Rf modulator failure                    | Null           |
|                           | Bit 1 – Out of coverage (lost contact) Bit 2 – A/D failure Bit 3 – External alarm 0 Bit 4 – External alarm 1 Bit 5 – External alarm 2                                                                                                                                      | Nivill         |

| Table C-1 Continued |                                                                                                                                                                                                                                                                                                                                                                                     |                |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Location            | Description                                                                                                                                                                                                                                                                                                                                                                         | Default Value  |  |
| \$3D                | This parameter specifies the number of ground network messages that must be received within the period configured (see 'Regain contact window') for contact to be regained (\$44 thru \$47).                                                                                                                                                                                        | 1              |  |
| \$3E                | Ground contact options  Bit 0 - Enable ground contact procedure  Bit 1 - Restrict channel cycle to default only  Bit 2 - Enable passive contact if active contact fails  Bit 3 - Send ground contact status to clients  Bit 4 - Send ground contact status on mode change  Bit 5 - Use time message exchange (Version 1 Spec.)  Bit 6 - Always use code plug address for GC attempt | \$15           |  |
| \$3F                | Not used                                                                                                                                                                                                                                                                                                                                                                            | Null           |  |
| \$40 thru<br>\$43   | Rf poll expiration timer                                                                                                                                                                                                                                                                                                                                                            | 1770 (60 sec.) |  |
| \$44 thru<br>\$47   | Time within which ground contact messages are to be received (see \$3D)                                                                                                                                                                                                                                                                                                             | 1770 (60 sec.) |  |
| \$48 thru<br>\$4B   | Not used                                                                                                                                                                                                                                                                                                                                                                            | Null           |  |
| \$4C thru<br>\$4F   | Channel 2 rf retry interval                                                                                                                                                                                                                                                                                                                                                         | 400 (4 sec.)   |  |
| \$50 thru<br>\$53   | Channel 4 rf retry interval                                                                                                                                                                                                                                                                                                                                                         | 490            |  |
| \$54 thru<br>\$57   | Channel 6 rf retry interval                                                                                                                                                                                                                                                                                                                                                         | 760            |  |
| \$58 thru<br>\$5B   | Channel 8 rf retry interval                                                                                                                                                                                                                                                                                                                                                         | 1080           |  |
| \$5C thru<br>\$5F   | Channel 10 rf retry interval                                                                                                                                                                                                                                                                                                                                                        | 1450           |  |
| \$60 thru<br>\$63   | Channel 12 rf retry interval                                                                                                                                                                                                                                                                                                                                                        | 2000           |  |
| \$64 thru<br>\$67   | Channel 14 rf retry interval                                                                                                                                                                                                                                                                                                                                                        | 2900           |  |
| \$68 thru<br>\$6B   | Channel 16 rf retry interval                                                                                                                                                                                                                                                                                                                                                        | 3900           |  |
| \$6C thru<br>\$6F   | Retry quantum time                                                                                                                                                                                                                                                                                                                                                                  | 91             |  |
| \$70 thru<br>\$73   | Retry slope                                                                                                                                                                                                                                                                                                                                                                         | 30             |  |
| \$74 thru<br>\$77   | Flow recovery time before starting recovery                                                                                                                                                                                                                                                                                                                                         | 500 (5 sec.)   |  |
| \$78 thru<br>\$7B   | Flow recovery time limit                                                                                                                                                                                                                                                                                                                                                            | 1000 (10 sec.) |  |
| \$7C thru<br>\$7F   | Beacon timer                                                                                                                                                                                                                                                                                                                                                                        | \$FFFFFFF      |  |
| \$80 thru<br>\$83   | Cluster controller reset timer                                                                                                                                                                                                                                                                                                                                                      | 1000 (10 sec.) |  |
| \$84 thru<br>\$85   | Number of fast beacons                                                                                                                                                                                                                                                                                                                                                              | 5              |  |

**Table C-1 Continued** 

| Location       | Description                                               | Default Value  |
|----------------|-----------------------------------------------------------|----------------|
| \$86 thru      | Maximum number of beacon retries                          | 6              |
| \$87           | maximan number of bodoon formes                           | J              |
| \$88 thru \$8F | ATCS address to which beacons are to be sent. The         | Null           |
| 700 1111 401   | values are interpreted as 16 nibbles with the last nibble |                |
|                | specifying the address length. Zero is coded as \$A.      |                |
|                | Unused bytes can be set to 0 (null).                      |                |
|                | Example: 2A.22.51.6A.28.00.00.0A                          |                |
| \$90           | Network layer options                                     | Null           |
| *              | Bit 0 - Enable NAK packets to ground network              |                |
|                | Bit 1 - Enable service signals to ground network          |                |
|                | Bit 2 - Enable emergency messages by channel              |                |
|                | group                                                     |                |
|                | Bit 3 - Enable lost contact when out of coverage          |                |
|                | Bit 4 - Suppress layer 3 duplicate elimination            |                |
| \$91           | Broadcast                                                 | Null           |
|                | Bit 0 - Enable wayside broadcast on zero device           |                |
|                | address                                                   |                |
| \$92           | Wireline                                                  | 1              |
|                | Bit 0 - Inhibits rf transmission of wayside wire line ad- |                |
|                | dresses                                                   |                |
| \$93           | Emergency turnaround                                      | 1              |
|                | Bit 0 - No turnaround                                     |                |
|                | Bit 1 - Turnaround on trunk failure                       |                |
|                | Bit 2 - Always turnaround emergencies                     |                |
| \$94 thru      | Network address change time. If the BCM receives a        | 1500 (15 sec.) |
| \$97           | local network address that is different from that of a    |                |
|                | client's current address (i.e. the BCM network address is |                |
|                | redefined), this parameter determines the period before   |                |
|                | the BCM is reset.                                         |                |
| \$98 thru      | Not used                                                  | 0              |
| \$A3           |                                                           |                |
| \$A4 thru      | Number of null rf frames after each transmission. When    | 0              |
| \$A5           | set to \$FFFF, BCP is keyed continuously.                 |                |
| \$A6 thru      | Maximum number of bits per non-emergency message.         | 4800           |
| \$A7           | When set to \$FFFF, no limit applies.                     |                |
| \$A8 thru      | Maximum number of bits per emergency message              | 14400          |
| \$A9           |                                                           |                |
| \$AA thru      | Not used                                                  | 0              |
| \$AD           |                                                           |                |
| \$AE thru      | Minimum value for channel retry random access timer       | 130            |
| \$B1           | (channel idle)                                            |                |
| \$B2 thru      | Maximum value for channel retry random access timer       | 130            |
| \$B5           | (channel idle)                                            |                |
| \$B6 thru      | Minimum value for channel retry random access timer       | 1              |
| \$B9           | (channel receiving sync bits)                             |                |
| \$BA thru      | Maximum value for channel retry random access timer       | 80             |
| \$BD           | (channel receiving sync bits)                             |                |
| \$BE thru      | Minimum value for channel retry random access timer       | 1              |
| \$C1           | (channel receiving busy bits)                             |                |
| \$C2 thru      | Maximum value for channel retry random access timer       | 200            |
| \$C5           | (channel receiving busy bits)                             |                |

|                     | Table C-1 Continued                                                                                                                                                                                                                                                                                              |               |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| Location            | Description                                                                                                                                                                                                                                                                                                      | Default Value |  |  |
| \$C6 thru<br>\$C9   | Minimum value for channel retry random access timer (busy bit status not yet defined - less than 3 received)                                                                                                                                                                                                     | 1             |  |  |
| \$CA thru<br>\$CD   | Maximum value for channel retry random access timer (busy bit status not yet defined)                                                                                                                                                                                                                            | 80            |  |  |
| \$CE thru<br>\$D1   | Maximum time before carrier-without-data alarm                                                                                                                                                                                                                                                                   | \$FFFFFFF     |  |  |
| \$D2 thru<br>\$D5   | Mobile channel usage timer                                                                                                                                                                                                                                                                                       | \$FFFFFFF     |  |  |
| \$D6 thru<br>\$D9   | Out-of-coverage timer since last rf message                                                                                                                                                                                                                                                                      | 6000          |  |  |
| \$DA thru<br>\$DD   | Minimum channel idle time                                                                                                                                                                                                                                                                                        | 75            |  |  |
| \$DE thru<br>\$E1   | Maximum channel idle time                                                                                                                                                                                                                                                                                        | 150           |  |  |
| \$E2                | Rf link options Bit 0 - Enable null rf link address for ground contact messages                                                                                                                                                                                                                                  | 1             |  |  |
| \$E3 thru<br>\$E5   | Not used                                                                                                                                                                                                                                                                                                         | 0             |  |  |
| \$E6 thru<br>\$E9   | Radio key-up time                                                                                                                                                                                                                                                                                                | 4             |  |  |
| \$EA thru<br>\$ED   | Radio dekey time                                                                                                                                                                                                                                                                                                 | 1             |  |  |
| \$EE                | Radio type 0 = None 1 = MTR 2000 2 = MSF                                                                                                                                                                                                                                                                         | 1             |  |  |
| \$EF                | Radio usage                                                                                                                                                                                                                                                                                                      | 5             |  |  |
| \$FO                | Minimum radio channel                                                                                                                                                                                                                                                                                            | 1             |  |  |
| \$F1                | Maximum radio channel                                                                                                                                                                                                                                                                                            | 6             |  |  |
| \$F2 thru \$F7      | Radio channel scan sequence. These parameters determine the scan sequence of the ground contact process. Location \$F2 is the channel on which the unit begins scanning. The channels in the list must be in the range of valid channels. If the complete list is not used, unused channels must be set to \$FF. | 1,2,3,4,5,6   |  |  |
| \$F8                | SSI enable                                                                                                                                                                                                                                                                                                       | 0             |  |  |
| \$F9                | Minimum SSI                                                                                                                                                                                                                                                                                                      | 0             |  |  |
| \$FA                | SSI output scale                                                                                                                                                                                                                                                                                                 | 0             |  |  |
| \$FB                | SSI input scale                                                                                                                                                                                                                                                                                                  | 0             |  |  |
| \$FC                | SSI simulation                                                                                                                                                                                                                                                                                                   | 0             |  |  |
| \$FD thru \$FF      | Not used                                                                                                                                                                                                                                                                                                         | /000          |  |  |
| \$100 thru<br>\$103 | Port 0 contact failure timer                                                                                                                                                                                                                                                                                     | 6000          |  |  |
| \$104 thru<br>\$105 | Port 0 link address (site ID). Undefined when set to \$FFFF                                                                                                                                                                                                                                                      | \$FFFF        |  |  |
| \$106 thru<br>\$107 | Port 0 group link address                                                                                                                                                                                                                                                                                        | \$FFFF        |  |  |

**Table C-1 Continued** 

| Location   | Description                                                | Default Value |
|------------|------------------------------------------------------------|---------------|
| \$108      | Port 0 options                                             | 0             |
| Ψ100       | Bit 0 - Inhibit XID exchange                               | Ü             |
|            | Bit 1 - Enable emergency bit in message                    |               |
|            | Bit 2 - Enable time stamp                                  |               |
|            | Bit 3 - Enable ADM mode failure                            |               |
|            | Bit 4 – Reset BCM on port contact alarm                    |               |
| \$109      | Port 0 usage                                               | 18            |
| *          | 5 - Ground equipment                                       |               |
|            | 6 - OBC equipment                                          |               |
|            | 18 - WIU equipment                                         |               |
|            | \$FF - Not used                                            |               |
| \$10A      | Port 0 configuration                                       | 0             |
| *          | Bit 0 - RTS/CTS handling required                          |               |
|            | Bit 1 – RS232 / RS422 selection                            |               |
|            | Bit 2 - RTS always asserted                                |               |
|            | Bit 3 - Async port configuration                           |               |
|            | Bit 4 - External modem equipped                            |               |
|            | Bit 5 - Idle character enable                              |               |
|            | Bit 6 - Locomotive ID unit equipped                        |               |
|            | Bit 7 – External TXCLOCK port option                       |               |
| \$10B      | Port 0 mode                                                | 1             |
|            | 1 - HDLC ADM Mode                                          |               |
|            | 2 - HDLC ABM Mode                                          |               |
|            | 3 - HDLC Polled Mode                                       |               |
|            | 4 - HDLC UI Mode                                           |               |
|            | 6 - Null HDLC Mode                                         |               |
|            | 7 - Genisys Mode (Office)                                  |               |
|            | 8 - SCS-128 Local Control Panel                            |               |
|            | 9 - LonTalk <sup>®</sup> Mode                              |               |
|            | 10 - MCS-1 Mode                                            |               |
|            | 11 – ASYNC port packetizer mode                            |               |
|            | 12 – Spread-Spectrum Radio Protocol                        |               |
|            | 13 – US&S 506 Emulation                                    |               |
|            | 14 – SCS128 Emulation                                      |               |
|            | 15 - Genisys mode (Field)                                  |               |
| \$10C      | Port 0 baud rate. Value = baud rate/300                    | 32            |
| \$10D      | Port 0 number of poll response information frames per      | 5             |
|            | poll                                                       |               |
| \$10E      | Maximum poll address                                       | 0             |
| \$10F      | Alternate task number (special application)                | \$FF          |
| \$110 thru | Other link address                                         | \$FFFF        |
| \$111      |                                                            |               |
| \$112 thru | General purpose timer value. Used for either locomotive    |               |
| \$115      | ID unit receive time-out or code line protocol poll timer. |               |
|            | Recommended values:                                        |               |
|            | Port mode: Genisys, SCS-128, MCS-1 = \$000000A0            |               |
|            | LonTalk <sup>®</sup> Mode = \$00000F00                     |               |
| \$116 thru | Port 1 contact failure timer                               | 6000          |
| \$119      |                                                            |               |
| \$11A thru | Port 1 link address (site ID). Undefined when set to       | \$FFFF        |
| \$11B      | \$FFFF                                                     |               |

| Location         | Table C-1 Continued  Description                            | Default Value |
|------------------|-------------------------------------------------------------|---------------|
| \$11C thru       | Port 1 group link address                                   | \$FFFF        |
| \$11D            | For a group link address                                    | ФГГГГ         |
| \$11E            | Port 1 options                                              | 0             |
| ΨIIL             | Bit 0 - Inhibit XID exchange                                | O             |
|                  | Bit 1 - Enable emergency bit in message                     |               |
|                  | Bit 2 - Enable time stamp                                   |               |
|                  | Bit 3 - Enable ADM mode failure                             |               |
|                  | Bit 4 – Reset BCM on port contact alarm                     |               |
| \$11F            | Port 1 usage                                                | 18            |
| <b>4</b> · · · · | 5 - Ground equipment                                        | . •           |
|                  | 6 - OBC equipment                                           |               |
|                  | 18 - WIU equipment                                          |               |
|                  | \$FF - Not used                                             |               |
| \$120            | Port 1 configuration                                        | 0             |
| *                | Bit 0 - RTS/CTS handling required                           | -             |
|                  | Bit 1 – RS232 / RS422 selection                             |               |
|                  | Bit 2 - RTS always asserted                                 |               |
|                  | Bit 3 - Async port configuration                            |               |
|                  | Bit 4 - External modem equipped                             |               |
|                  | Bit 5 - Idle character enable                               |               |
|                  | Bit 6 - Locomotive ID unit equipped                         |               |
|                  | Bit 7 – External TXCLOCK port option                        |               |
| \$121            | Port 1 mode                                                 | 1             |
|                  | 1 - HDLC ADM Mode                                           |               |
|                  | 2 - HDLC ABM Mode                                           |               |
|                  | 3 - HDLC Polled Mode                                        |               |
|                  | 4 - HDLC UI Mode                                            |               |
|                  | 6 - Null HDLC Mode                                          |               |
|                  | 7 - Genisys Mode (Office)                                   |               |
|                  | 8 - SCS-128 Local Control Panel                             |               |
|                  | 9 - LonTalk <sup>®</sup> Mode                               |               |
|                  | 10 - MCS-1 Mode                                             |               |
|                  | 11 – ASYNC port packetizer mode                             |               |
|                  | 12 – Spread-Spectrum Radio Protocol 13 – US&S 506 Emulation |               |
|                  | 14 – SCS128 Emulation                                       |               |
|                  | 15 - Genisys mode (Field)                                   |               |
| \$122            | Port 1 baud rate. Value = baud rate/300                     | 32            |
| \$123            | Port 1 number of poll response information frames per       | 5             |
| · · - 0          | poll                                                        | -             |
| \$124            | Maximum Poll Address                                        | 0             |
| \$125            | Alternate task number (special application)                 | \$FF          |
| \$126 thru       | Other link address                                          | \$FFFF        |
| \$127            |                                                             |               |
| \$128 thru       | General purpose timer value. Used for either locomotive     | \$FFFFFFF     |
| \$12B            | ID unit receive time-out or code line protocol poll timer   |               |
| \$12C thru       | Not Used                                                    |               |
| \$141            |                                                             |               |
| \$13E thru       | General purpose timer value. Used for either locomotive     | \$FFFFFFF     |
| \$141            | ID unit receive time-out or code line protocol poll timer   |               |

**Table C-1 Continued** 

| Location            | Description                                                                                                                                                                                                                                                                      | Default Value              |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| \$142 thru<br>\$143 | Internal entity link address                                                                                                                                                                                                                                                     | 1                          |
| \$144 thru<br>\$145 | Link address for ground network                                                                                                                                                                                                                                                  | \$23                       |
| \$146 thru<br>\$147 | Link address for emergency transmission                                                                                                                                                                                                                                          | \$25                       |
| \$148 thru<br>\$149 | Link address for transmission to rf user                                                                                                                                                                                                                                         | \$27                       |
| \$14A thru<br>\$14B | HDLC broadcast address                                                                                                                                                                                                                                                           | \$00FF                     |
| \$14C thru<br>\$14D | HDLC control messages                                                                                                                                                                                                                                                            | \$00FF                     |
| \$14E thru<br>\$155 | Not used                                                                                                                                                                                                                                                                         | \$0000                     |
| \$156 thru<br>\$157 | Rf idle frame address                                                                                                                                                                                                                                                            | \$0000                     |
| \$158 thru<br>\$159 | Rf link layer address for frames to locomotives                                                                                                                                                                                                                                  | \$0001                     |
| \$15A thru<br>\$15B | Rf link layer address for frames to non-locomotives                                                                                                                                                                                                                              | \$0004                     |
| \$15C thru<br>\$15D | Rf link layer address for frames to wire line-connected waysides                                                                                                                                                                                                                 | \$0003                     |
| \$15E thru<br>\$15F | Rf link layer address for frames to rf-connected wayside                                                                                                                                                                                                                         | \$0005                     |
| \$160 thru<br>\$161 | Rf link layer address for frames to ground network                                                                                                                                                                                                                               | \$0023                     |
| \$162 thru<br>\$163 | Rf link layer address for emergency frames to ground network                                                                                                                                                                                                                     | \$0025                     |
| \$164 thru<br>\$165 | Rf link layer address for frames to other rf users                                                                                                                                                                                                                               | \$0027                     |
| \$166 thru<br>\$167 | Rf link layer address for broadcast frames                                                                                                                                                                                                                                       | \$00FF                     |
| \$168 thru<br>\$174 | Reserved for channel frequency configuration                                                                                                                                                                                                                                     |                            |
| \$175               | Not used                                                                                                                                                                                                                                                                         | 0                          |
| \$176               | Asic - not used                                                                                                                                                                                                                                                                  |                            |
| \$177               | Asic configuration value                                                                                                                                                                                                                                                         |                            |
| \$178 thru<br>\$17D | Asic frame sync pattern                                                                                                                                                                                                                                                          | \$90E0<br>\$2254<br>\$00F6 |
| \$17E               | Transmitter configuration digital loopback Bit 0 - Invert busy bit status Bit 1 - Hardware busy bit input Bit 2 - Enable analog loopback Bit 3 - Enable digital loopback Bit 4 - Invert transmit data Bit 5 - Invert receive data Bit 6 - Bit sync enable Bit 7 - N/A (always 0) | \$4A                       |

**Table C-1 Continued** 

| Table C-1 Continued        |                                                                                                                                                                           |                      |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Location                   | Description                                                                                                                                                               | Default Value        |  |
| Location<br>\$17F<br>\$180 |                                                                                                                                                                           | \$41<br>\$41<br>\$51 |  |
|                            | Bit 5 - Invert receive data<br>Bit 6 - Bit sync enable<br>Bit 7 - N/A (always 0)                                                                                          |                      |  |
| \$181 thru<br>\$183        | Not used                                                                                                                                                                  | 0                    |  |
| \$184 thru<br>\$18D        | Hardware initialization values (factory only)                                                                                                                             |                      |  |
| \$18E thru<br>\$191        | Alert initial delay time                                                                                                                                                  | \$FFFFFFF            |  |
| \$192 thru<br>\$195        | Alert response delay time                                                                                                                                                 | \$FFFFFFF            |  |
| \$196 thru<br>\$197        | Alert report rate                                                                                                                                                         | \$FFFF               |  |
| \$198 thru<br>\$199        | Not used                                                                                                                                                                  | \$FFFF               |  |
| \$19A thru<br>\$19D        | Alert retry time                                                                                                                                                          | \$FFFFFFF            |  |
| \$19E thru<br>\$1A1        | Alert delivery delay time                                                                                                                                                 | \$FFFFFFF            |  |
| \$1A2 thru<br>\$1A9        | Alert report address                                                                                                                                                      | 0,0,0,0,0,0,0,0      |  |
| \$1AA thru<br>\$1AD        | Not used                                                                                                                                                                  | 0                    |  |
| \$1B0                      | Enable version field. This parameter determines if the version field is included in datagrams.                                                                            | 1                    |  |
| \$1B1                      | This parameter determines the format of the health and malfunction/self-test report messages. The 89 spec. (0), 90 spec. (1) and latest spec. (3) versions are supported. | 3                    |  |
| \$1B2                      | This parameter determines the format of the communications statistics message. Versions 1 and 3 are supported.                                                            | 3                    |  |
| \$1BE thru<br>\$1BF        | CRC of unprotected portion of code plug                                                                                                                                   | \$DEAD               |  |
| \$1C0 thru<br>\$1C5        | Encrypted password for protected portion of code plug                                                                                                                     | MCP                  |  |

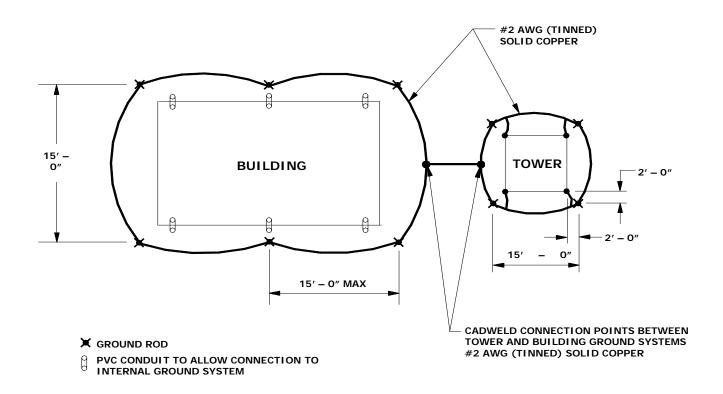
# Table C-1 Concluded

| Location            | Description                                                                                             | Default Value |
|---------------------|---------------------------------------------------------------------------------------------------------|---------------|
| \$1C6 thru          | Serial number as 15 ASCII bytes                                                                         |               |
| \$1D4               |                                                                                                         |               |
| \$1D5 thru          | Maintenance date. Format: 3 unsigned bytes, DD/MM/YY                                                    |               |
| \$1D7               |                                                                                                         |               |
| \$1D8 thru          | Procuring railroad. Format: Unsigned integer. This                                                      |               |
| \$1D9               | parameter is used for the procuring railroad number for                                                 |               |
| 44 D A 11           | the Version 3 Health Report.                                                                            | •             |
| \$1DA thru<br>\$1DB | Not used                                                                                                | 0             |
| \$1DC thru          | ATCS hardware revision number. Format: Unsigned                                                         |               |
| \$1DD               | integer.                                                                                                |               |
|                     | This parameter is used for the ATCS hardware revision in the Version 3 Health Report.                   |               |
| \$1DE thru          | ATCS software revision number. Format: Unsigned                                                         |               |
| \$1DF               | integer                                                                                                 |               |
|                     | This parameter is used for the ATCS software revision in the Version 3 Health Report.                   |               |
| \$1E0 thru          | Power-up count. Format: Unsigned integer. This                                                          | 0             |
| \$1E1               | parameter is used for recording the number of power-                                                    |               |
|                     | ups the unit has performed.                                                                             |               |
| \$1E2 thru          | Rf modulator failure count. Format: Unsigned integer.                                                   | 0             |
| \$1E3               | This parameter is used for recording the number of                                                      |               |
| Φ4Ε4 H              | modulator self- test failures.                                                                          | 0             |
| \$1E4 thru<br>\$1E5 | Radio failure count. Format: Unsigned integer. This parameter is used for recording the number of radio | 0             |
| \$ IES              | self-test failures.                                                                                     |               |
| \$1E6 thru          | A/D converter failure count. Format: Unsigned integer.                                                  | 0             |
| \$1E7               | This parameter is used for recording the number of A/D                                                  | G             |
|                     | self-test failures.                                                                                     |               |
| \$1E8 thru          | Client port 0 failure count. Format: Unsigned integer.                                                  | 0             |
| \$1E9               | This parameter is used for recording the number of                                                      |               |
|                     | client port self- test failures.                                                                        |               |
| \$1EA thru          | Client port 1 failure count. Format: Unsigned integer.                                                  | 0             |
| \$1EB               | This parameter is used for recording the number of                                                      |               |
| ¢1FC +b             | Client port 3 failure sount Format: Unsigned integer                                                    | 0             |
| \$1EC thru<br>\$1ED | Client port 2 failure count. Format: Unsigned integer.                                                  | 0             |
| \$ I E D            | This parameter is used for recording the number of client port self- test failures.                     |               |
| \$1EE thru          | Manufacturer hardware revision number. Format: 8                                                        |               |
| \$1F5               | bytes, ASCII. This parameter is used for the                                                            |               |
|                     | manufacturer hardware revision in the Version 3 Health                                                  |               |
|                     | Report.                                                                                                 |               |
| \$1F6 thru          | Not used                                                                                                | 0             |
| \$1FD               |                                                                                                         |               |
| \$1FE thru          | Restricted code plug CRC. Format: Unsigned integer.                                                     | \$DEAD        |
| \$1FF               | This parameter is the CRC for the restricted code plug                                                  |               |
|                     | area.                                                                                                   |               |

## APPENDIX D

# GENERIC GROUNDING PROCEDURES

### D. GENERIC GROUNDING PROCEDURES


With all R-Link radio applications care should be taken to prevent ground differentials between the grounding points that can cause equipment damage. Perform the following recommendations when grounding equipment and enclosures.

## D.1 EXTERNAL BUILDING GROUND

(Figure D-1) Grounding electrodes should be a minimum of 8 feet in length and located approximately 2 feet away from each corner of the building with the top of each element at least 6 inches below grade. Spacing between electrodes should not exceed 15 feet. The ground elements should be bonded together with a ring of #2 AWG solid copper wire. All below grade connections shall be Cadwelded.

The following items should be connected to the ground ring using a #2 AWG solid copper conductor:

- All hydro ground elements within 6 feet of the ground ring
- All metal objects within 50 feet of the building (e.g., fuel storage tanks)
- Air gap surge protectors on the common ground side of the arrestors (as direct as possible through the floor)
- A conductor from each ground electrode to the closest corner of the building, passed up through the floor and up the inside wall to connect with an internal ground ring located 6 inches from the inside ceiling



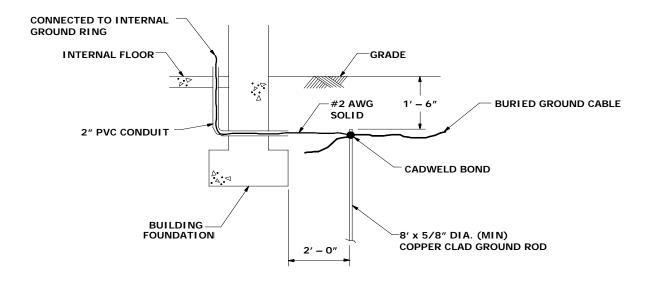



Figure D-1 Typical External Ground Connections

### D.2 INTERNAL BUILDING GROUND

The internal ground ring should be #2 AWG copper, and may be stranded. The following items should be connected to the internal ground ring using a minimum #6 AWG stranded copper conductor:

- All relay racks
- AC panels
- Battery system surge protectors
- Building doors
- Cable trays

# NOTE

## **NOTE**

Bonding conductor connections to the ground ring should be made using split brass bolts (see Figure D-4).

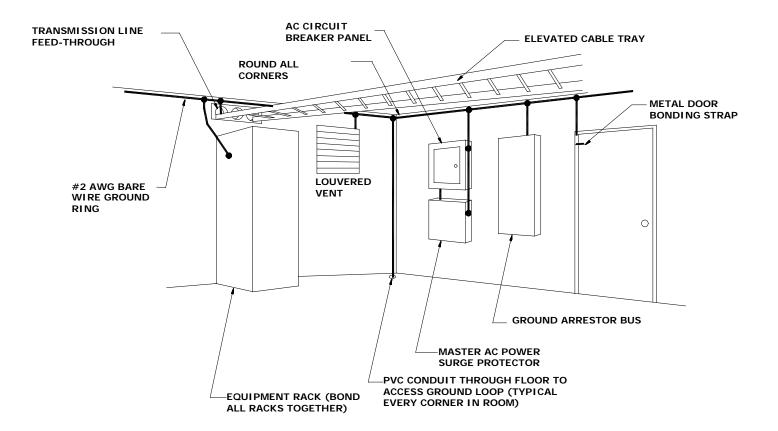



Figure D-2 Typical Internal Ground Connections

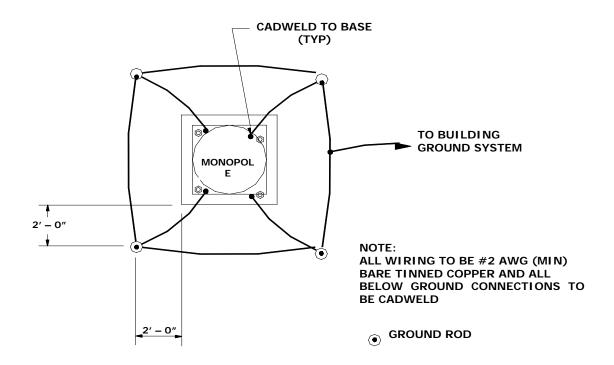
### **ANTENNA GROUND**

A good RF ground will determine the quality of a radio antenna system. Poor grounds result in antennas not operating efficiently. It is possible to burn up between 50 and 90 percent of the RF power heating the ground losses under the antenna instead of propagating into the air. Ground resistances can vary from very low values of 5 ohms to more than 100 ohms. RF power is dissipated in the ground resistance. The following factors that affect ground resistance are:

- The conductivity of the soil
- The composition of the soil
- The water content of the soil

Note that the ideal ground depth depends on the level of the local water table; it is rarely at ground level and can be several feet below grade.

## D.2.1 Antenna Ground – Roof-Mount Yagi


Roof-mounted Yagi antennae should have the pipe mast grounded to the outside grounding ring with a minimum #2 AWG solid copper conductor. The Heliax ground kit should be connected within 1 foot of the cable entry to the building and connected to the copper conductor. A lightning surge protector is not required if the Yagi antenna is less than 10 feet above the building roof. The inside terminating connector on the antenna Heliax should be bonded to the internal ground ring.

### D.2.2 Antenna Ground – Towers and Poles

As with all elevated metal objects, antennas will attract lightning strikes. This necessitates the need for an adequate and effective ground to minimize electrical noise and interference. (Figure D-3) On tower and pole equipped sites, the antenna must be well grounded by means of a #2 AWG solid copper conductor connection from the ground ring to the tower or pole grounding element(s). The tower ground system must have 5 ohms or less earth resistance. The antenna cable should be grounded to the tower/pole-grounding conductor where the cable bends and leaves the tower/pole towards the building.

The messenger wire for the cable should be bonded to the tower/pole ground and the external building ground ring. The antenna cable should be grounded outside the building, within 1 foot of the building entry, to the external building ground ring via a #2 AWG solid conductor. A lightning arrestor should be installed on the Heliax cable within 1 foot of the building entrance, and bonded to the internal ground ring.

Surge arrestors or a lightning protector should be installed at the point where the antenna cable enters the building or cabinet. The lightning protector should be properly grounded at the single-point chassis ground. Connectors must be weatherproofed to prevent corrosion to enable efficient grounding.



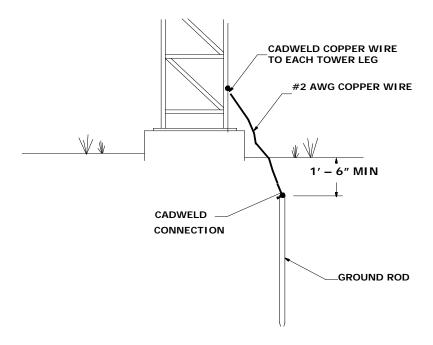



Figure D-3 Typical Tower and Pole Ground Connections

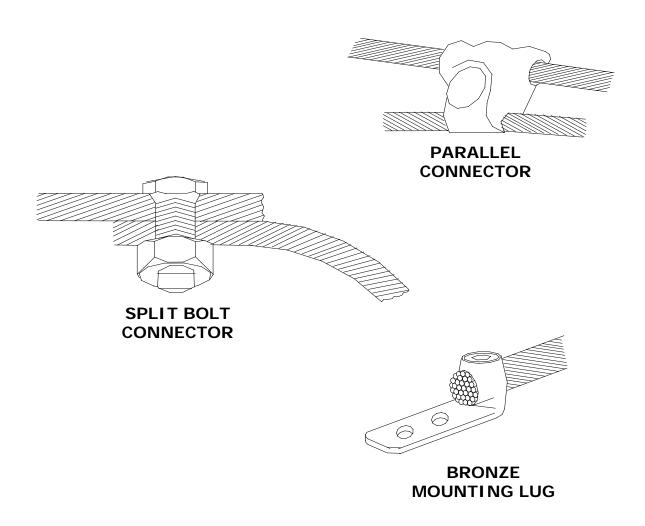



Figure D-4 Typical Connections for Grounding and Bonding

## D.3 AC POWER GROUND

AC power grounding should be to the standards set forth by the applicable local or regional electrical code. When bonding AC panels to the internal ground ring, the connection should be made to the outside surface of the panel. Hydro ground electrodes should be bonded to the building ground electrodes only if they are within 6 feet of each other. A surge protector should be installed on the main electrical panel for any ungrounded electrical feed in or out of the building, and the connection to all air gap suppressors removed.

D-6

COM-00-97-10 SEPTEMBER 2013 Version No.: E

### **D.4 COMMUNICATIONS GROUND**

All power and telephone company grounds should be made common to the communications ground. A surge arrester such as a Polyphaser $^{\text{TM}}$  should be installed at the point where the cable enters the building.

#### D.5 CABLING

Cabling shall be installed to minimize inductive coupling that would otherwise allow surge energy to bypass the protective and isolating elements in the system. The input/output conductors entering the building shall follow a path as short as possible to the air gap surge protectors. These conductors shall not be within 3 inches of other conductors including the signal wires from the surge protectors to the relay racks. The signal wires from the surge protectors to the relay rack shall be dressed together and separated from power and other signal wires by 3 inches. The signal wires between the relay isolation and the Safetran equipment shall be dressed together and separated from power or other signal wires by 3 inches. Where physical separation is not possible, the wires should be run at right angles to each other.

## **D.6 SURGE PROTECTION**

Surge protection should be provided on battery/charger systems to prevent the system from rising to dangerous voltages with reference to building ground. The protectors should be installed in series with a circuit breaker so if they fail in the short mode the circuit breaker will open and the system will remain isolated from ground.

D-7

This Page Intentionally Left Blank

COM-00-97-10 Version No.: E

SEPTEMBER 2013

### **INDEX**

**—5**—

53105, 1-1, 3-1 53106, 1-1, 3-1 53412, 1-1



Advanced Trains Control System (ATCS) data network, 2-1
Alphanumeric Display, 6
application messages, 2-1
application task, 4-3
ATCS Address, 2-2, 4-2
ATCS destination address, 2-2
ATCS message format, 2-2
ATCS messages, 2-1, 2-2
ATCS RF network, 2-1, 2-2



boot code, 4-2



Channel field, 4-27 client port assignments, 4-1 client port connectors, 3-3 code plug configuration, 4-1 code plug, 4-2 codeplug data, 4-5 Configuration Editor startup screen, 4-15

#### —D—

Date and Time function display, 4-10 DC/DC Converter, 1-1 DC1 Port Protocol field, 4-43 debugger, 4-2 diagnostic connector, 3-4 Diagnostics Function display, 4-10

## —F—

Edit function, 4-17 eeprom memory structure, 4-1 executive program, 4-3, 4-46 external connectors, 3-2 —F—

FEPCC address, 4-1 file menu, 4-17 flash EEPROM, 4-1 front panel configuration, 4-3 front panel control and indicators, 3-1



Gausian Mask Shift Key (GMSK) Modem, 2-2



Help window, 4-26



I/O bit activity, 4-10 Invert Field, 4-27



Ladder Logic, 4-3 LAN Controller, 2-2 loading a new executive, 4-46 local area network (LAN), 2-1 local ATCS address, 4-1 Lon Port field, 4-43 LonTalk® network configuration, 4-35

### **—M**—

Main Editor Screen, 4-16 Mobile Radio transmission, 2-1 Mobile Radio, 2-1, 2-2 MDS mobile radio, 1-1, 3-1 MS-DOS file extension, 4-1

#### \_0\_

on-line debugging terminal, 5-1 Online Menu, 4-20 on-line terminal commands, 5-1

### **INDEX**

#### \_\_P\_

Port DC function, 4-10 Port J1 function display, 4-8 Port J2 function display, 4-8 Power field, 4-28

## -R-

Radio connector, 3-3
Radio field, 4-29
Radio PTT (push to transmit), 2-1
Radio Service Software User's Guide, 4-3
receive signal strength indication (RSSI), 2-2, 4-29
Reset function display, 4-11

## <u>\_\_S\_\_</u>

Safetran WCP Radio System, 1-1 self test, 5-1 Site Edit function display, 4-7 Site Settings display, 4-30 Status Log enable command, 4-22 system timers, 4-1

# \_T\_

Timecode Configuration Screen, 4-44 TX audio, 2-1

### \_\_W\_

WAGO® Power Connector, 3-4
Wayside Communications Package
Central Processing Unit II (WCP
CPU II), 1-1, 2-1, 2-2, 3-1, 4-1, 46, 4-14, 4-16, 4-17, 4-20, 4-21, 422, 4-23, 4-24, 4-25, 4-45, 4-47
Wayside Communications Package
Central Processing Unit II logical
memory map, 4-1
Wayside Communications Package, 11, 2-1
WCP CPU II Configuration Program, 412