

Emissionsüberwachung auf Schiffen

IMO-konforme Emissionsüberwachung in der Schifffahrtsindustrie mit kontinuierlichen Gasanalysatoren von Siemens

Emissionskontrolle in der Schifffahrtsindustrie

Die Schifffahrtsindustrie generiert einen beträchtlichen und steigenden Anteil der weltweiten Schadstoffemissionen einschließlich der Treibhausgase. In manchen Küstenregionen wird der Beitrag sogar auf 50% der SO₂- und 30% der NO_x-Emissionen geschätzt. Verschärfte Emissionsvorschriften haben, zusammen mit dem Wunsch nach höherer Effizienz beim Betrieb der Schiffe, zu steigender Akzeptanz von Einrichtungen zur Emissionsüberwachung auf Schiffen geführt. Derartige CEMS (Continuous Emission Monitoring Systems) haben sich seit über 30 Jahren bei der Überwachung stationärer Emissionsquellen aller Art als zuverlässige Technologie bewährt. Erste Systeme wurden auf Schiffen installiert und überwachen dort die Einhaltung der vorgegebenen Grenzwerte für NO_x und SO₂ im Abgas der Schiffsantriebe. Für beide Gase sind im "Annex VI" (siehe Tabelle 1) Grenzwerte festgeschrieben,

die über die kommenden Jahre stufenweise sinken. Für die Einhaltung der SO_2 -Werte bedeutet das entweder die Verwendung von Treibstoff mit entsprechend niedrigem Schwefelgehalt oder den Einsatz von Gaswäschern zur Abgasreinigung auf den Schiffen. Für NO_x kommen Minderungsmaßnahmen (Katalysatoren) direkt an den Motoren in Betracht. CO_2 wird – in seinem Mengenverhältnis zu SO_2 – als Maß für die SO_2 -Emission und zugleich zur Bestimmung der Abgasmenge gemäß dem " NO_x Technical Code" genutzt. Die Überwachung von CO_2 ist jedoch in der gegenwärtigen Fassung von Annex VI (noch) nicht enthalten.

Auf Offshore-Plattformen müssen zusätzlich zu NO_x und SO_x auch die Emissionen von Kohlenmonoxid (CO) und unverbrannten Kohlenwasserstoffen (HC) im Rahmen einer umfassenden Emissionskontrolle überwacht werden.

ULTRAMAT-Gasanalysatoren in CEM-Systemen

Kontinuierliche Gasanalysatoren sind die wichtigsten Komponenten von CEM-Systemen, wobei die Betriebssicherheit bzw. Verfügbarkeit der Geräte zusammen mit ihrer Messgenauigkeit die Gesamt-Leistungsfähigkeit der CEM-Systeme bestimmen. Die Gasanalysatoren ULTRAMAT 23 und ULTRAMAT 6 sind hier erste Wahl: Seit vielen Jahrzehnten sind sie bzw. ihre Vorgänger in allen Industriebranchen als außerordentlich zuverlässig bekannt und haben sich in unzähligen CEM-Systemen bewährt. Einer von vielen Gründen dafür ist ihre leichte Integrierbarkeit in von Systembauern gefertigte komplette Messeinrichtungen, wie sie jetzt auch in der Schifffahrtsindustrie Einzug halten.

Das IMO-Regelwerk in seiner zeitlichen Entwicklung

Angesichts der Internationalität der Schifffahrtsindustrie werden deren Umwelt-Standards von der IMO (International Maritime Organization), einer Organisation der Vereinten Nationen, erarbeitet und festgelegt.

- Das Reglement der IMO bezüglich Verschmutzungen durch Schiffe ist in der "International Convention on the Prevention of Pollution from Ships" enthalten, bekannt als MAR-POL (Marine Pollution) 73/78, welche bereits 1973 formuliert wurde. Nach einer Überarbeitung in 1978 trat die Konvention im Oktober 1983 endgültig in Kraft.
- 1997 wurde die MARPOL Convention durch das "1997 Protocol" ergänzt, welches mit seinen 6 Anhängen alle Arten von Verschmutzungen durch Schiffe behandelt.
- Die "MARPOL Annex VI" von Mai 2005 mit dem Titel "Regulations for the Prevention of Air Pollution from Ships" beinhaltet zahlreiche Vorgaben, unter denen sich die "Regulations 13 and 14" mit der Überwachung von NO_x- und SO_x in Abgasen von Schiffen befassen.

- Ebenfalls 1997 wurde der "MARPOL Technical Code on Control of Emission of Nitrogen Oxides from Marine Diesel Engines" (NO_x Technical Code) verabschiedet. Ziel dieses Regelwerkes ist die Vorgabe verpflichtender Regeln bei Test und Zertifizierung von Schiffsdieseln. Maschinenhersteller und Schiffseigner sollen damit sicherstellen können, dass alle eingesetzten Schiffsdiesel bezüglich ihrer NO_x-Emission den aktuellen Grenzwerten der o.g. "Regulation 13" entsprechen.
- MEPC (Marine Environment Protection Committee) ist ein Komitee der IMO, welches internationale Regeln für das gesamte Umfeld der Schifffahrtsindustrie bezüglich Umweltfragen einschließlich Recycling, Emissionsüberwachung u.a. festlegt. Die Verordnung MEPC 184(59) trägt den Titel "Guidelines for exhaust gas cleaning systems (EGCS)"
- Im Jahr 2008 traten überarbeitete Standards der Annex VI in Kraft (Tabelle 1):
- (a) Grenzwerte für den Schwefelgehalt von Brennöl für Schiffe
- (b) Grenzwerte für den Gehalt an NO_{x} im Abgas von Schiffsmotoren
- (c) Festlegung von "Emission Control Areas" (ECAs) für stärkere Begrenzung von Emissionen innerhalb dieser Zonen als außerhalb.
- 2011 ergänzte die IMO die "MARPOL Annex VI" mit dem EEDI (Energy Efficiency Design Index) für neue Schiffe und dem SEEMP (Ship Energy Efficiency Management Plan) für existierende Schiffe. Beide Vorgaben haben zum Ziel, die Energieeffizienz der Schiffe zu verbessern und den CO₂-Gesamtausstoß der Schifffahrtsindustrie zu reduzieren. Beide Vorgaben sind seit 01. Januar 2013 in Kraft.

		2011	ab 2012	ab 2015	ab 2016	ab 2020	ab 2025	
Schwefelge- halt im Treibstoff	Grenzwerte außerhalb ECAs	4.5%	3.5%	3.5%	3.5%	0.5%	0.5 %	
	Grenzwerte innerhalb ECAs	1%	1%	0.1%	0.1%	0.1%	0.1%	
ECAs (Emission Control Areas)		Ostsee Nordsee Kanal	Nordamerika	US Karibik (ab 2014)				
NO _x Emissionsgrenzwerte für neue		ab 2021						
NO _x Emissions	grenzwerte für neue			ab 2	:021			
Schiffsdiesel	grenzwerte für neue	Tier II	Tier II	ab 2	1021	Tier III		
^ •	grenzwerte für neue	von 14.4 bis	Tier II 7.7 g/kWh abhä otordrehzahl in rp	Tier II ngig von der	Von 3.4 bis 1	Tier III 1.96 g/kWh abhäi otordrehzahl in rp	5 5	
Schiffsdiesel EDDI Target (CC Schiffe, noch nic) ₂ Reduzierung) für neue	von 14.4 bis	7.7 g/kWh abhä	Tier II ngig von der om	Von 3.4 bis 1	l.96 g/kWh abhäi	5 5	

Tabelle 1: Festlegungen von MARPOL Annex VI, Stand 2013

Zugelassene Messmethoden

 ${\rm Im}$ "NO $_{\rm x}$ Technical Code" (siehe oben) sind zur Bestimmung der Gaskomponenten im Abgas von Schiffsantrieben bestimmte Messmethoden festgelegt (Tabelle 2). Es wird jedoch zusätzlich darauf hingewiesen, dass auch andere Methoden bzw. Analysatoren zulässig sind, wenn sie vergleichbare Ergebnisse liefern.

Siemens ist einer der führenden Lieferanten von Prozessanalysatoren und Prozessanalytik-Systemen zum Einsatz in allen Bereichen der produzierenden Industrie sowie zur Emissionskontrolle auf gasförmige Schadstoffe mit einer weltweiten Vertriebs- und Supportpräsenz. Zum breiten Gerätespektrum gehören u. a. kontinuierlich arbeitende Gasanalysatoren wie ULTRAMAT 23 und ULTRAMAT 6.

Analysenmethoden gemäß $\mathrm{NO_x}$ Technical Code						
СО	NDIR					
CO ₂						
NO_x	CLD					
SO ₂	Keine Angabe					
O ₂	Paramagnetisch, Zirkondioxid oder elektrochem. Zelle					
NH ₃	Keine Angabe					
НС	FID					
Andere Analysenmethoden sind möglich						

Tabelle 2: Empfohlene Analysenmethoden

ULTRAMAT 23

Der ULTRAMAT 23 ist seit Jahrzehnten am Markt bewährt und vereint dank regelmäßiger Weiterentwicklung seine Spitzentechnologie mit höchster Betriebsbewährung. Durch seine Vier-Kanaligkeit mit NDIR-, elektrochemischer und paramagnetischer Sensorik sind viele Applikationen mit einem einzigen Gerät durchführbar, was zu sehr wirtschaftlichen Lösungen führt.

Eine typische Bestückung erlaubt z. B. die zeitgleiche Bestimmung von CO, CO_2 , SO_2 und O_2 in einem Gerät. Für die Emissionsüberwachung ist der ULTRAMAT 23 durch den TÜV (Deutschland) und SIRA (UK) gemäß EN 14181/EN 15267 zugelassen.

ULTRAMAT 6

Der ULTRAMAT 6 eignet sich für Messungen in besonders anspruchvollen Applikationen mit z. B. korrosiven Gasen, dem Einsatz in explosionsgefährdeten Bereichen oder bei sehr niedrigen Messbereichen mit höchster Messqualität. Moderne Elektronik und ausgewählte, an die Applikation angepasste, Materialien bilden dafür die Basis. Der ULTRAMAT 6 erlaubt die Bestimmung von bis zu vier NDIR-aktiven Komponenten in einem Gerät. Durch Einsatz von optischen Kopplern und Filtern wird eine besonders hohe Selektivität für die Analyse auch komplexer Gasgemische sowie eine hohe Empfindlichkeit zum Nachweis besonders niedriger Gaskonzentrationen erreicht.

Eigenschaften und Nutzen (Auswahl)

	ULTRAI	MAT 23	ULTRAM	ULTRAMAT 6	
	min. Bereich	max. Bereich	min. Bereich	max. Bereich	
SO ₂	150 vpm	2,5 % vol.	50 vpm	100 % vol.	
NO	100 vpm	5000 vpm	100 vpm	3 % vol.	
CO	50 vpm	100 % vol.	10 vpm	100 % vol.	
CO ₂ *)	50 vpm	100 % vol.	5 vpm	100 % vol.	
O ₂	5 % vol.	25 % vol.	0,5 % vol. **)	100 % vol. **)	

^{*)} Typische Bereiche für Emissionsüberwachung: 0 ... 5 / 25 % vol.

Tabelle 3: Minimale und maximale Messbereiche

ULTRAMAT 23

- Unerreichtes Preis-Leistungs-Verhältnis
- Selektive Bestimmung von bis zu drei IR-aktiven Komponenten und O₂ oder H₂S mit elektrochemischer oder paramagnetischer Zelle
- Kein Kalibriergas zur täglichen Kalibrierung erforderlich: Automatische Nullpunktkalibrierung mit Umgebungsluft
- · Automatische Luftdruckkorrektur
- Wartungsfreundlich durch mechanisch reinigbare Messzelle
- Flexible Kommunikationslösungen und Fernwartung durch RS 485, RS 232, PROFIBUS PA/DP und SIPROM GA

ULTRAMAT 6

- Hoch-selektive Bestimmung von bis zu vier IR-aktiven Gaskomponenten
- Messbereiche bis in den ppm-Bereich
- Verschiedene Ausführungen verfügbar einschließlich Geräte mit korrosionsbeständigem Material im Gasweg
- Wartungsfreundlich durch mechanisch reinigbare Messzelle
- Gasdichte Trennung von physikalischem und elektronischem Geräteteil mit Spülmöglichkeit
- Flexible Kommunikationslösungen und Fernwartung durch RS 485, RS 232, PROFIBUS PA/DP und SIPROM GA

Siemens AG Sektor Industry Sensors and Communication Prozessanalytik 76181 KARLSRUHE DEUTSCHLAND

Anderungen vorbehalter © 03/2014, Siemens AG Die Informationen in dieser Case Study enthalten lediglich allgemeine Beschreibungen bzw. Leistungsmerkmale, welche im konkreten Anwendungsfall nicht immer in der beschriebenen Form zutreffen bzw. welche sich durch Weiterentwicklung der Produkte ändern können. Die gewünschten Leistungsmerkmale sind nur dann verbindlich, wenn sie bei Vertragsschluss ausdrücklich vereinbart werden. Liefermöglichkeiten und technische Änderungen vorbehalten. Alle Erzeugnisbezeichnungen können Marken oder Erzeugnisnamen der Siemens AG oder anderer, zuliefernder Unternehmen sein, deren Benutzung durch Pritte für deren Zwecke die Bechte der Inbaher verletzen kann

^{**)} Bereiche beziehen sich auf den Analysator ULTRAMAT 6/ OXYMAT 6