

Stay in Touch with Factory Automation Technology Webinars

Unrestricted © Siemens Ltd 2020

www.siemens.com/tia

FA Webinar Scheduling Format

Week 18

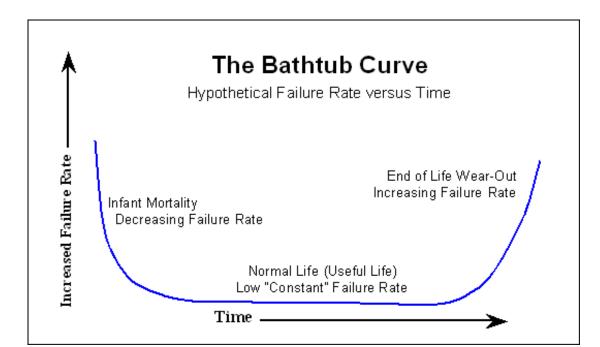
Session Times	This week's webinars		Next week's webinars			
Morning Session	Tuesday 28 th Morning	Thursday 30 th Morning	Tuesday 5 th Morning	Thursday 7 th Morning		
NZ: 11:30am NSW/VIC/QLD 09:30am SA: 09:00am WA: 07:30am	Industrial Internet of Things in Action	Condition Monitoring	TIA Portal Multiuser Engineering	Machine Level Visualisation		
	Callum McIntosh	Chris Mears	Heath Stranger	Mark Karalapillai		
	Tuesday 28 th Afternoon	Thursday 30 th Afternoon	Tuesday 5 th Afternoon	Thursday 7 th Afternoon		
Afternoon Session NZ: 6:00pm NSW/VIC/QLD 4:00pm SA: 3:30pm	Condition Monitoring	Industrial Internet of Things in Action	Machine Level Visualisation	TIA Portal Multiuser Engineering		
WA: 2:00pm	Chris Mears	Callum McIntosh	Mark Karalapillai	Heath Stranger		

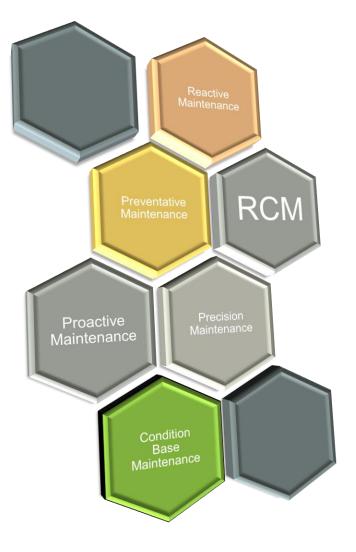
Condition Monitoring Systems for early detection of

mechanical damage

Unrestricted © Siemens 2019

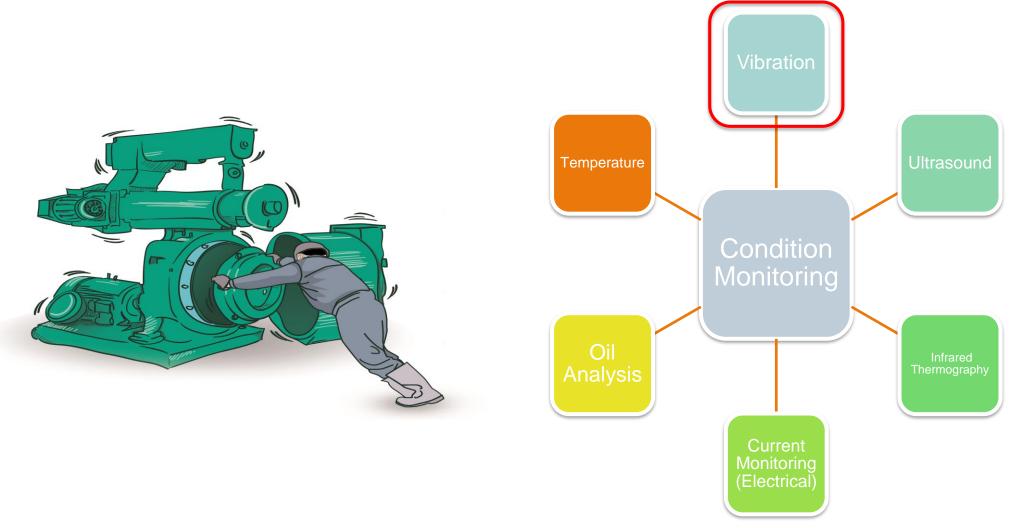
aps


www.siemens.com/siplus-cms


areariestererer

SIEMEN

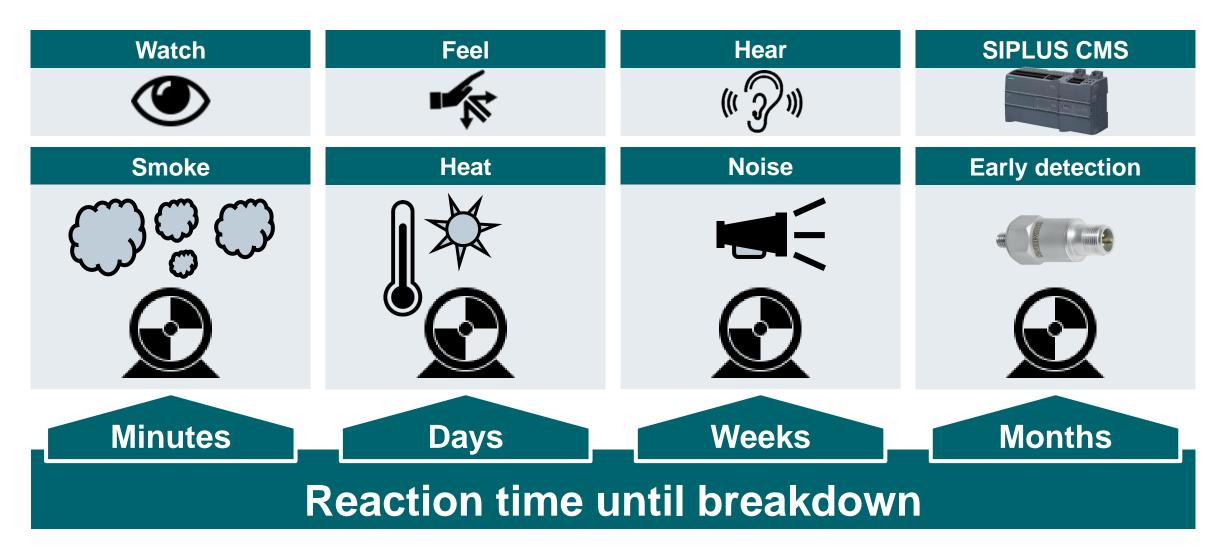
Why do we want to Monitor our machines?



Unrestricted © Siemens 2019

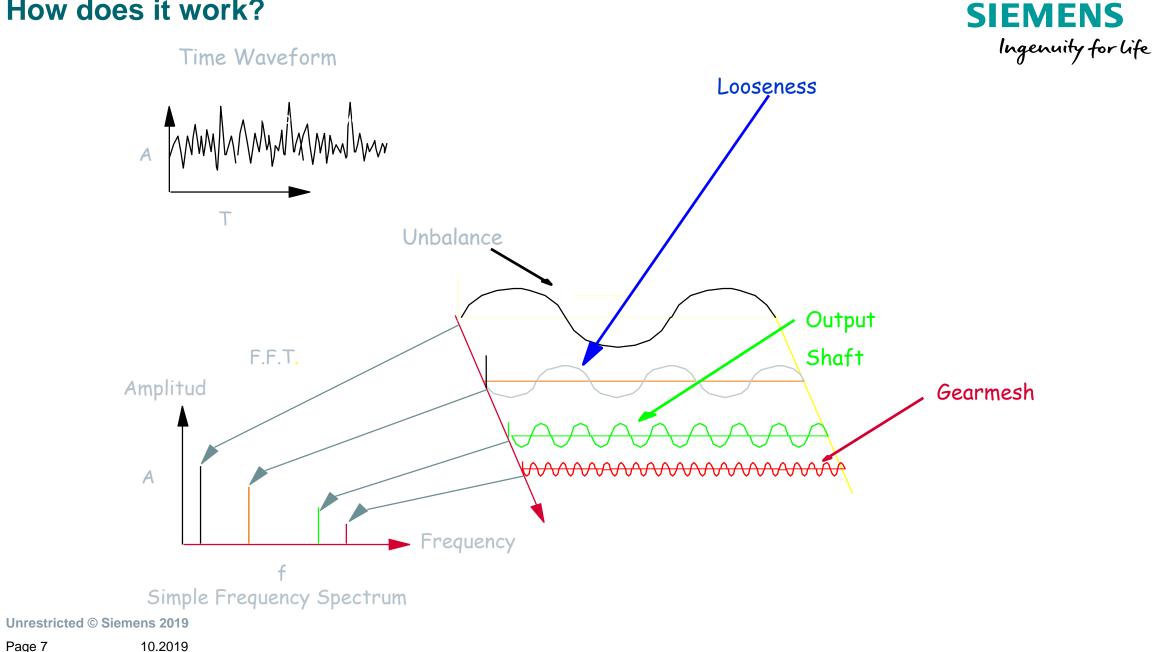
Page 4 10.2019

Types of Condition Monitoring



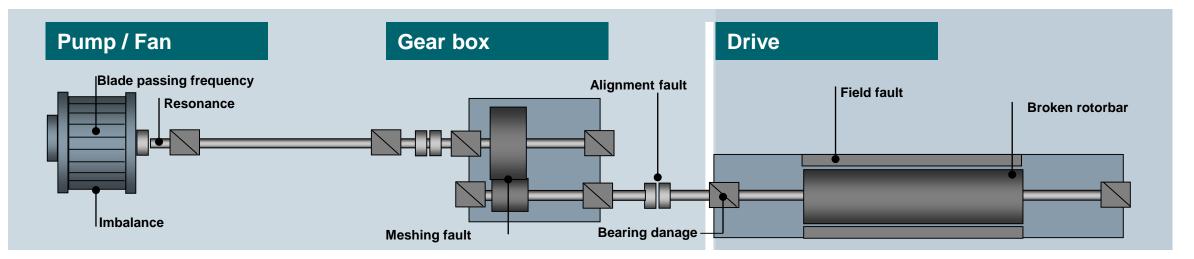
Page 5 10.2019

Why Vibration?



Unrestricted © Siemens 2019

Page 6 10.2019

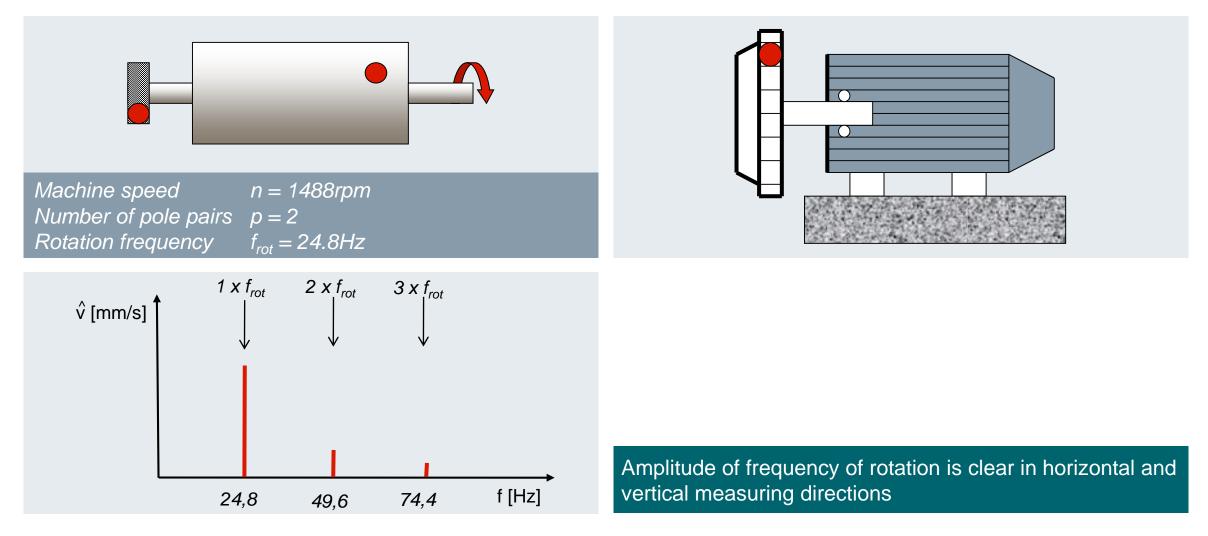

How does it work?

Page 7

What sort of damage can be detected?

Condition Monitoring with SIPLUS CMS - more than just Motor Condition Monitoring

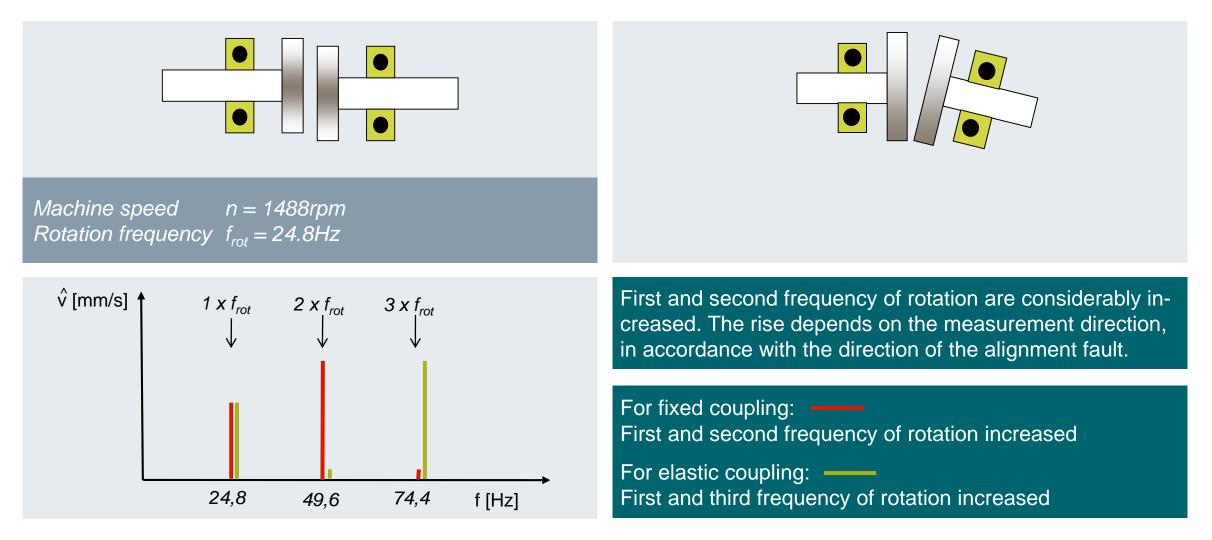
Mechanical damages		Electric
Resonance	Imbalance	
Bearing damage	Meshing fault	
Alignment fault	Blade passing frequency	


Electrical faults			
Field fault stator			
Broken rotorbar			

Unrestricted © Siemens 2019

Page 8 10.2019

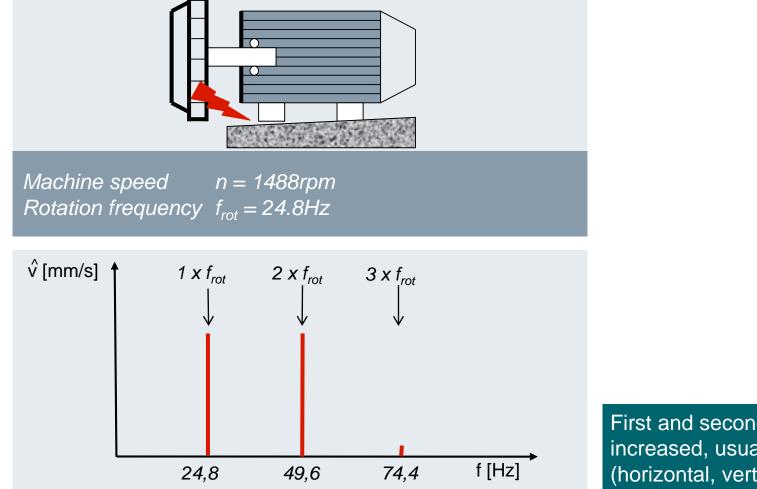
SIPLUS CMS – Analysis methods Examples of typical spectra - Unbalance



Unrestricted © Siemens 2019

Page 9 10.2019

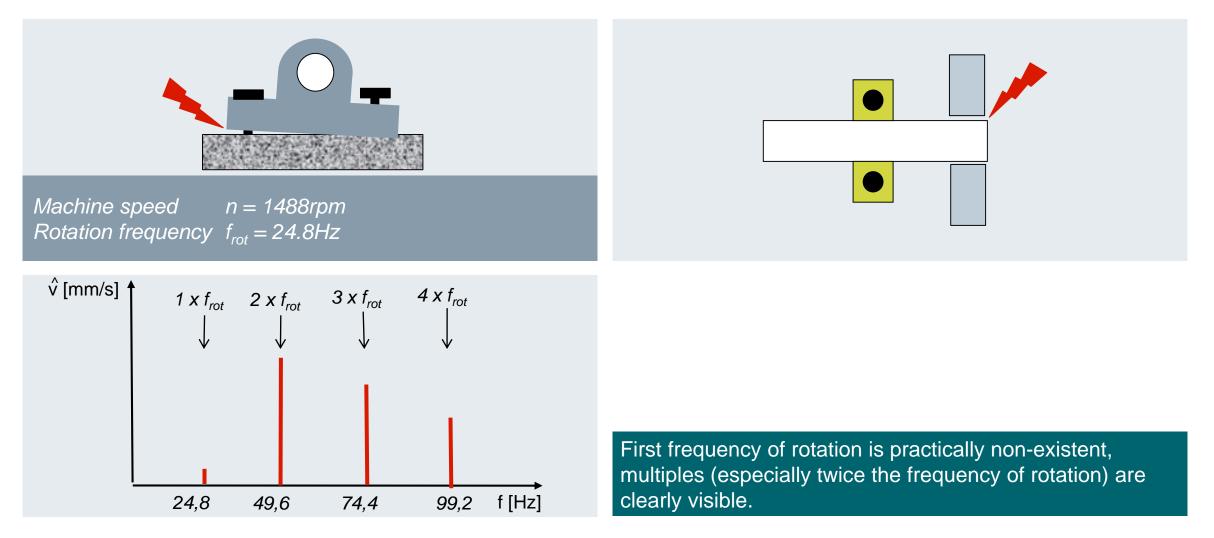
SIPLUS CMS – Analysis methods Examples of typical spectra - Alignment faults



Unrestricted © Siemens 2019

Page 10 10.2019

Examples of typical spectra - Housing mounted with displacement


First and second frequency of rotation are considerably increased, usually in every direction of measurement (horizontal, vertical, axial).

Unrestricted © Siemens 2019

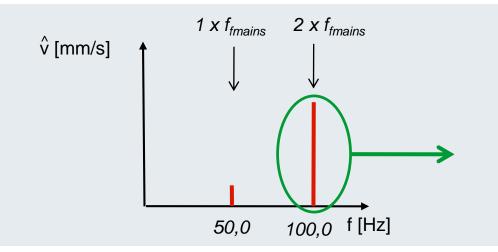
Page 11 10.2019

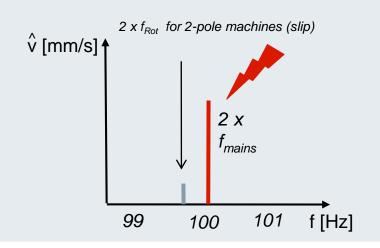
Examples of typical spectra - Mechanical loosening

Unrestricted © Siemens 2019

Page 12 10.2019

Examples of typical spectra - Field faults in stators

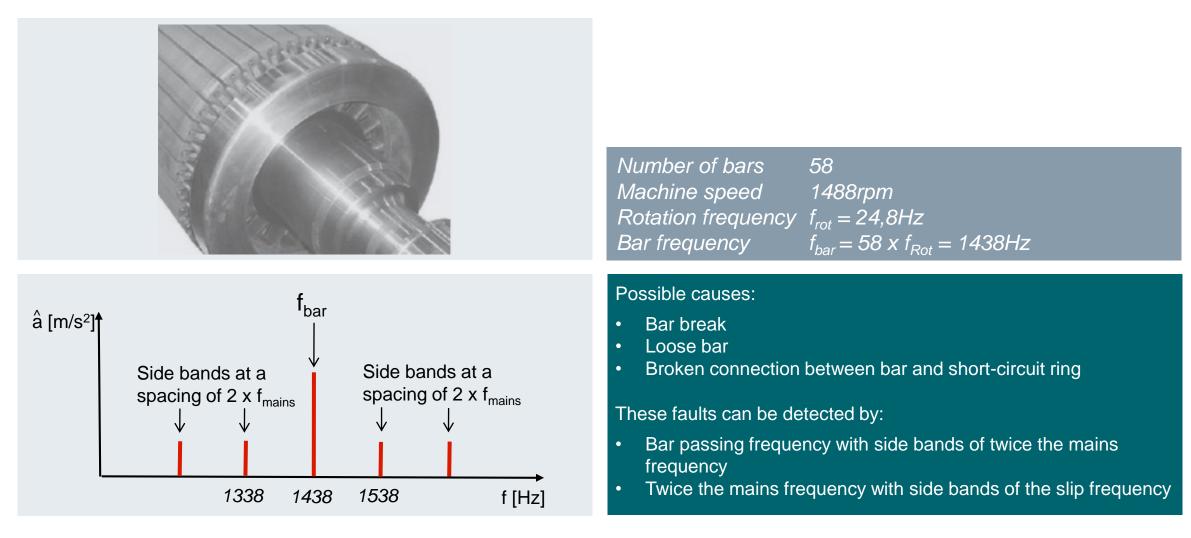




Possible causes:

- Eccentric rotor alignment
- Short circuit in the winding
- Asymmetric supply
- Switching fault in the winding

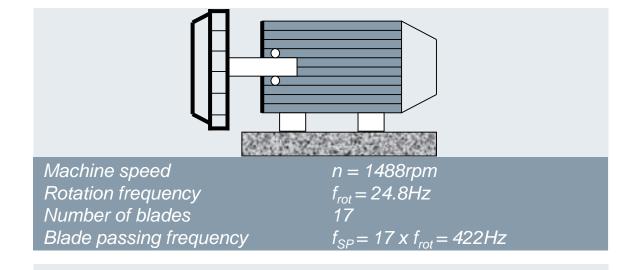
Increased level of twice the mains frequency. Mains frequency is 50/60Hz for direct drives. This varies in the case of converter operation.



Unrestricted © Siemens 2019

Page 13 10.2019

SIPLUS CMS – Analysis methods Examples of typical spectra - Field faults in rotors



Unrestricted © Siemens 2019

Examples of typical spectra - Blade passing frequency

 The blade passing frequency is a product of the number of impeller blades and the rotation frequency.

The impurity is on the housing.

In case of an increase of the blade passing frequency's amplitude

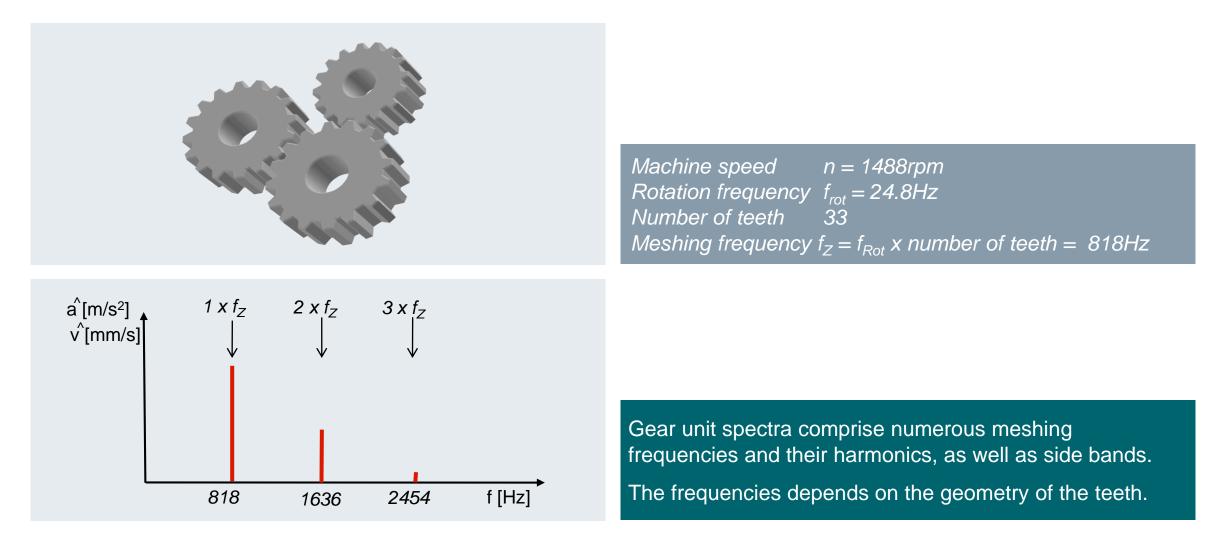
Every impeller blade generates a vibration peak, e.g. when the impeller blade runs past an impurity on the housing and by a short pressure vibration it experiences a shock impetus.

Caution:

Not to confuse with imbalance! Imbalance is usually caused by a part of a rotating component generating a vibration at rotational frequency, e.g. when material deposit at a impeller blade causes a asymmetric mass distribution towards the center.

Possible causes:

- Turbulence
- Suction pressure incorrectly dimensioned
- Adjustable blades have not been accurately set


The amplitude of the blade passing frequency has increased

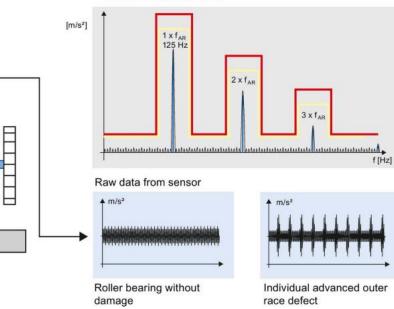
Unrestricted © Siemens 2019

Page 15 10.2019

SIPLUS CMS – Analysis methods Examples of typical spectra - Meshing frequency

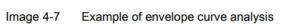
Unrestricted © Siemens 2019

Page 16 10.2019


Rolling Element Bearings

Belt defect Meshing defect Rolling element bearing damage passing Rolling element bearing damage frequency (envelope curve analysis) 500 1000 1500 2000 2500 3000 5000 10000 [kHz]

F


Sensor

Envelope curve spectrum

SIEMENS

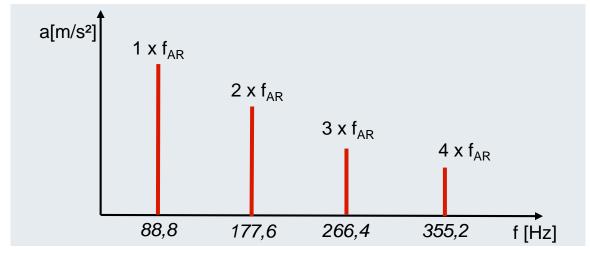
nuity for life

1) Bearing damage

(Outer race defect)

1

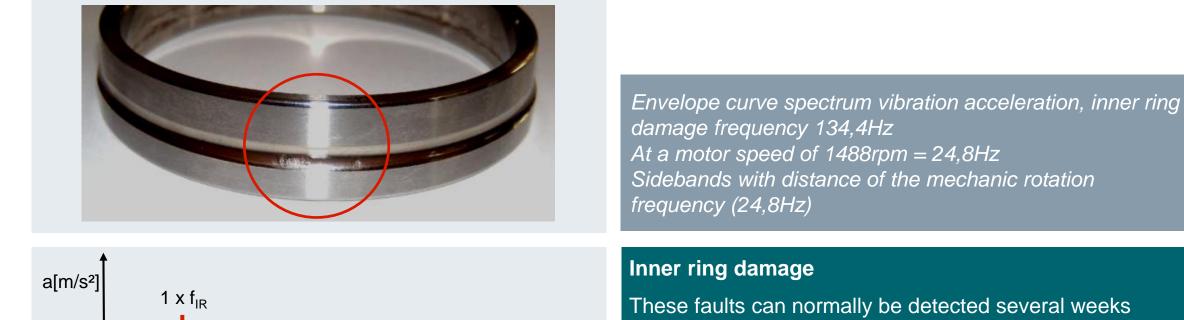
Unrestricted © Siemens 2019


Page 17 10.2019

Accelerometer bearing ш m Ш bearing housing

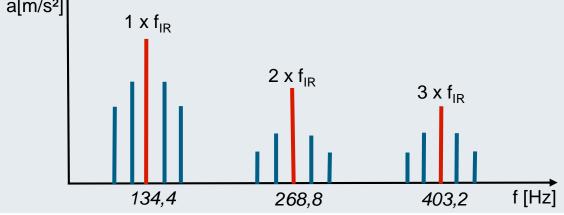
Envelope curve spectrum of vibration acceleration, damage frequency of the outer ring 88,8Hz at a motor speed of 1488rpm = 24,8Hz

Outer ring damage


Damage frequently develops first in the raceway of the outer ring. These faults can normally be detected several months before a critical condition develops by using envelope curve analysis.

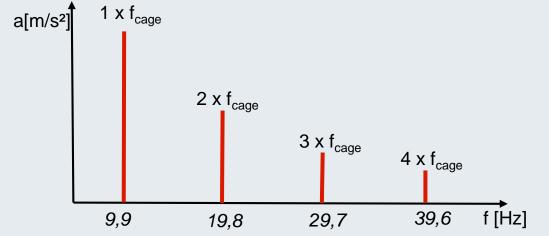
The damage frequency is presented in the envelope curve spectrum without modulation.

Unrestricted © Siemens 2019


Page 18 10.2019

before a critical condition develops by using envelope curve analysis.

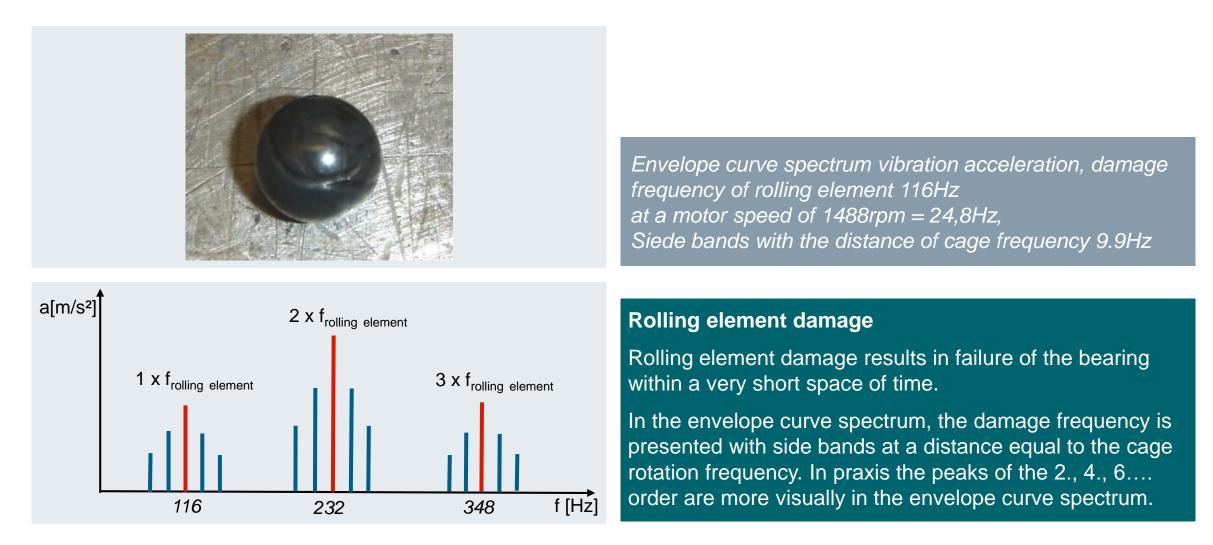
Inner ring damage runs through the load zone periodically. In the envelope curve spectrum, the damage frequency therefore presents with side bands at a distance equal to the frequency of rotation f_{Rot} .



Unrestricted © Siemens 2019

Page 19 10.2019

Cage damage


Cage damage results in failure of the bearing within a very short period of time.

The damage frequency is presented in the envelope curve spectrum without modulation.

Unrestricted © Siemens 2019

Page 20 10.2019

Unrestricted © Siemens 2019

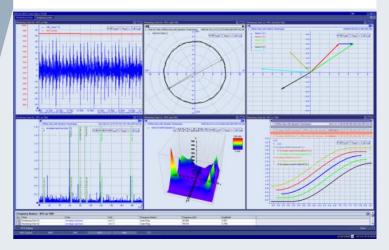
Page 21 10.2019

What can we do with all this?

Significance of the analysis

Parameter-based analysis

- Is damage imminent?
- Trend history of characteristic values


Frequency-selective analysis

- What damage is imminent?
- Every type of damage has its own frequency spectrum

Expert analysis

 Freely configurable analysis with diagnostics software CMS X-tools, e.g. orbit, histogram, vector/waterfall diagram

Unrestricted © Siemens 2019

Page 22 10.2019

SIPLUS CMS1200: Condition Monitoring with SIMATIC S7-1200 SM1281 - Overview

SM 1281 Condition Monitoring Model

BERO

Features

- Characteristic-based diagnostics
- Frequency-selective diagnostics
- Export of raw data
- SIMATIC and web-based

Connections

- Up to 4 vibration sensors (IEPE-sensors)
- 1 optional speed input (Bero)
- Ethernet (2 ports)
- Power supply 24VDC

Expansion option

Up to 7 modules can be connected; depending on the S7-1200 CPU used

IEPE-sensors

Operating principle

- Calculations are performed continuously
- The 4 IEPE channels and the speed sensor are read in and processed simultaneously

Diagnosis

- Characteristic values
 via SIMATIC S7-1200 and TIA Portal
- Frequency selective via integrated Web Server

Advantages and Costumer benefits

No additional software for diagnosis and visualizing needed

Unrestricted © Siemens 2019 Page 23 10.2019

SIPLUS CMS1200: Condition Monitoring with SIMATIC S7-1200 SM1281 – What is required?

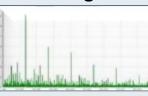
Hardware	requirements	Software requirements	Optional software		
S7-1200 CPU Max. connectable SM1281		SIMATIC STEP 7	SIMATIC WinCC		
CPU 1211C	None	Programming languages KOP, FUP, SCL, AWL*, S7-GRAPH*	Machine-level operating and monitoring		
CPU 1212C	2	STEP 7 Safety option package	SCADA applikations		
	7	WinAC (incl. Failsafe**)	SCADA		
CPU1214C / 1214FC	/	S7-300/400 (incl. Failsafe**)	PC (single user)		
CPU 1215C / 1215FC	7	S7-1500 0021-72	Comfort Panels + x77 (without Micro), Mobile		
CPU 1217C	7	S7-1200 S7-1200	(without Micro), Mobile Basic Panels Basic Panels		
Important: SM 1281 is supported as of FW version V4.1 for S7-1200 CPU		 TIA Portal is required to configure the module The lowest license, SIMATIC STEP 7 Basic, is sufficient for S7-1200 *) Not available for S7-1200 	 If panels are used, optional use of the corresponding WinCC version is possible → Browser functionality for panels is NOT supported by SM1281 		

SIPLUS CMS1200: Analysis methods SM1281 – Overview

Parameter-based analysis

Monitoring of machine vibration based on characteristic values

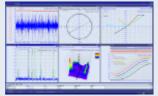
- Simple representation, e.g. via traffic light
- Trend analysis


Engineering in TIA Portal + analysis via integrated software

Frequency-selective analysis


Frequency-selective diagnostics of machine vibration and bearing

- Spectrum view via browser
- Integrated message system


Engineering in TIA Portal / SM 1281 web-interface + analysis via integrated software

Online Datastreaming / Raw Data Export

e.g. CMS X-Tools

Expert analysis

Freely configurable analysis models, e.g. for

- Detail analysis
- Gearbox diagnostics

• ...

Engineering via separated analysissoftware e. g. CMS X-Tools

Monitoring online in SM1281

Raw data analysis: on- or offline

Unrestricted © Siemens 2019

Page 25 10.2019

System setup, engineering, parameter for parameter-based analysis

Engineering with TIA Portal					
Module parameters	Channel parameters	Parameters for characteristic- value-based analysis			

Unrestricted © Siemens 2019

Page 26 10.2019

Evaluation of limits for characteristic values

Basic data for determining the limits						ibration veloc rms]	city
according to ISO10816-3					mm/s	inch/s	
Mater period power: 20kW	_				11	0,44	
Motor nominal power: 20kW					7,1	0,28	600rpm 120rpm)
Shaft height: 100mm					4,5	0,18	· ^ ^
Foundation: rigid					3,5	0,11	Hz, n Hz, n :
The fan was newly commissioned.					2,8	0,07	10-1000Hz, (2-1000Hz, r
					2,3	0,04	10- (2-1
					1,4	0,03	
					0,71	0,02	
Limit values							
	rigid	soft	rigid	soft		F	oundation
Alarm limit: 4,5 mm/s		zed machines P ≤ 300kW		nachines P < 50MW		Maa	achina tuna
		machines H < 315mm		machines nm ≤ H		INAS	schine type
	Gro	oup 2	Gro	oup 1			Group

Unrestricted © Siemens 2019

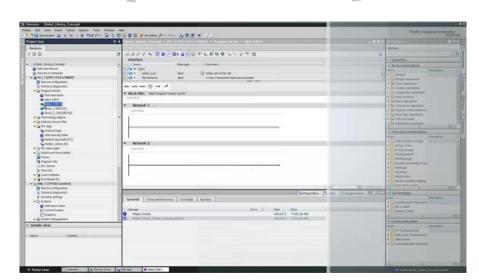
Page 27 10.2019

System setup, engineering, parameter for parameter-based analysis

VRMS

aRMS

ded


ded

ENO

QC_VRMS

QC_aRMS

FC SM1281_Channel "SM1281_Module" - EN "SM1281_Channel" HW_Submodule EN HW_Submodule_1 HW_Submodule_2 ChannelNR HW_Submodule_3 Enable — Init Sensitivity SpeedSource SpeedRatio Speed PulsesPerRevolution AlarmLevel_vRMS ReducedSamplingRate WarningLevel_vRMS IPAddress AlarmLevel_aRMS - SubnetMask WarningLevel_aRMS DefaultGateway Hysteresis_vRMS - DHCP OperatorControlS7 Hysteresis_aRMS SetAllParameters CutOffFregHPF_aRMS SetDynParameters ActualSpeed -CutOffFregHPF_vRMS - RestoreParameters QC_Speed SensorLowerLimitExcee CutOffFreqLPF_aRMS RawDataRecording ActualOpMode -- FingerprintRecording StateOpModeChange -CutOffFreqLPF_vRMS SensorUpperLimitExcee ActivateOPMode StateRawDataRec -DBStateModule OpMode StateFingerprintRec -DBBackupChannel DBStateModule SystemState - DBBackupModule ENO -Image 11-2 FC SM1281_Channel Image 11-1 FB SM1281_Module

FB SM1281_Module

Unrestricted © Siemens 2019

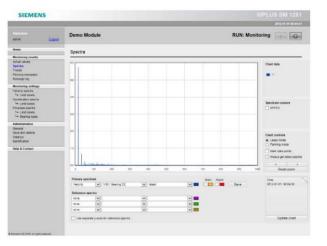
Page 28 10.2019

System setup, engineering, parameter for frequency-selective analysis

Engineering with TIA Por	tal		Engineering via Web-Interface SM 1281		
Module parameters	Channel parameters	Parameters for characteristic- value-based analysis	Parameter for frequency-selective analysis		
No additional software needed -> SM 1281 has everything on board					

Unrestricted © Siemens 2019

Page 29 10.2019


System setup, engineering, parameter for frequency-selective analysis

SIEMENS Ingenuity for life

Trends

Spectra

Alarm Logs

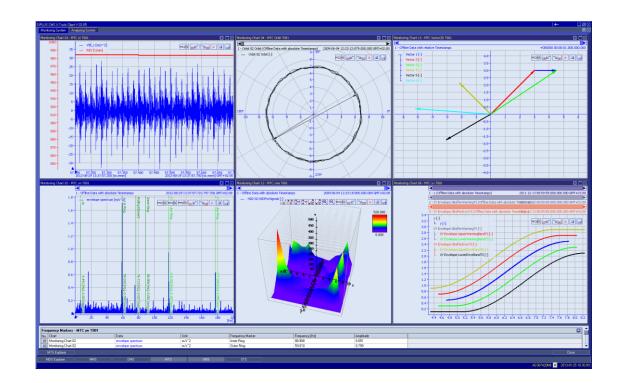
ana Lagout	Demo Mo	odule		RUN: Monitoring		
turar .	Message	iog				
Annoning results Ictual values Ipectus	Loss al -		v	(c c Page 1 of 16 p p) Gets datactime 10 errors	oer page	
Tends Tending messages	Oate	Time	Type	Test	Acton	
fananga log	2012-01-01	03:04:15	010	Recording of raw data initiated; trigger a event, duration a 10s, Ne a 20120101_040418_Dento Mackain: VMP1 was	-	
contoring settings			-	Module_ME1 was Hexandring of new data installed trigger in event, duration = 10k, fair = 201201011, U40402, Denni		
Viocity specifia 5+ Land transfe	2012-01-01	02.04.13	100	Module_VT81.wev	81	
acceleration spectra	2012-01-01	000406	10	Recording of raw data initiated: trigger + event, duration + 10s, file + 20120101_040408_Dents Module_V101 way		
Ne Lant bands Investige spectra Ne Lant bands	2012-01-01	60.04.05	Alarn	Mill Bearing DE. Asim "Unbalance" on vetocity spectrum. Linel incluted at 16.8 Hz (5.745 + 5.300 mm/s). Based: 100.3 (pm).		
1+ Geatry types	2012-01-01	00:04:00	Rateing	Mith Bearing DE' Warning "Localizance" on second spectrum. Limit schedul at 16 to 10 (5.74) = 4.100 remos). Romen: 1004.5 spm.	в.	
Idministration	2012-01-01	00.04.08	Warning	VET Searing DE Warning "Wask Imit" on envelope spectrum. Limit violated at 16.6 Hz (0.202 - 0.200 min"). Speed: 1001 5 (pm)		
lace and reating			in .			
Seatup	2212-01-01	09.04.02	Haming	VIET Bearing DE: vRME warning level violated (4.51 > 2.58 minute: Speed: 1001.9 rpm.		
	2012-01-01	05:04:02	viaming .	MD1 Dearing OC: aRMS warrang level violated (1.07 + 0.00 mmw); Speed: 1001.9 mm		
lelp & Contact	2012-01-01	00:02:40	into	Operating mode RUN Mentoring (user command).	in .	
	2212-01-01 2012-01-01	09-04-02 05:04:02	Alaming Marking	VIEI1 Bearing DE vRMB warring level volated (4.51 - 2.58 minut); Spece: 1001.0 rpm. VIEI1 Dearing DE: aRMS warring level volated (1.07 - 8.80 minut; Spece: 1001.9 rpm.	in Pi	

Unrestricted © Siemens 2019

Page 30 10.2019

Realizing the practical example with SM1281 SIEMENS Optional operation Ingenuity for life **Own SM1281 Ethernet network** 3rd Party Software Networks for maintenance and • production can be separated → Detailed diagnostics WITHOUT load on the production network PROFINET Ethernet Backplane bus 1111 1011 1111 1111 **CM-Modules** SM 1281-Condition Monitoring Modules **TIA Portal** SIMATIC S7-1200 **Standard SM-Modules**

Unrestricted © Siemens 2019


Page 31 10.2019

Planning, analysing, diagnosing with CMS X-Tools

Analysis software CMS X-Tools

- Huge library of graphically interconnectable analyis components
- Display of measurement and analysis data
- Fast and easy archiving
- Multi-user operation (client-server architecture)
- Open SW-interface for scada-systems and further programs via OPC UA
- Supporting Remote Service (e.g. cRSP)
- Process plattform on the standard PC with Windows operating system

SIPLUS CMS1200 SM1281 - Order Information

Pos.	Product	MLFB	Additional Information
1	SIPLUS CMS1200 SM 1281 Condition Monitoring	6AT8007-1AA10-0AA0	SM 1281
2	SIPLUS CMS1200 SM 1281 shield clamp set	6AT8007-1AA20-0AA0	For EMC-compliant connection of signal
4	SIPLUS CMS2000 VIB-SENSOR*		Sensor for SM 1281
5	SIPLUS CMS2000, CABLE-MIL-300*	6AT8002-4AC03	Cable length 3m
6	SIPLUS CMS2000, CABLE-MIL-1000*	6AT8002-4AC10	Cable length 10m

* VIB-Sensors and cable can be used for CMS1200, CMS2000 and CMS4000.

Unrestricted © Siemens 2019

Page 33 10.2019

SIPLUS CMS The three Condition Monitoring Systems

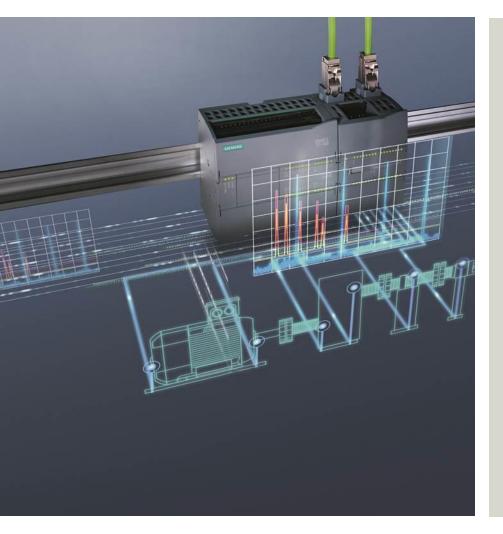
CMS1200 Integrated and flexibly expandable

- Monitoring with SIMATIC for 1-7 drive trains per station
- · Analysis software on board

CMS2000 Modular and autonomous

- SIMATIC-independent monitoring for 1-4 drive trains per station
- · Analysis software on board

CMS4000 Powerful and freely configurable


- Autonomous monitoring of the drive trains of complete plants
- Monitoring of slide bearings
- CMS X-Tools as analysis software

Unrestricted © Siemens 2019

Page 34 10.2019

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

All product designations, product names, etc. may contain trademarks or other rights of Siemens AG, its affiliated companies or third parties. Their unauthorized use may infringe the rights of the respective owner.

siemens.com/siplus-cms

Unrestricted © Siemens 2019 Page 35 10.2019