

# Four trends on our roads will boost "the next Mobility revolution" in and between cities



# Our vision – cities will manage the complete mobility ecosystem to achieve its throughput, pollution, safety and energy targets



### Cities will manage and inspire...

Centrally managed traffic towards city strategy and KPIs

Point-to-point connectivity seamless across all modes

Demand responsive with flexible routes and schedules

Fully automated SDVs only differentiated by user groups and capacity

Mainly shared fleets, as a service and open to various fleet operators

All electric with 100% renewable power



# For an intersection this vision could mean the intelligent integration of various systems into one "smart crossing"





#### The "smart crossing" brings together

- Traffic lights and controller
- Detection systems
- Variable message signs
- Dynamic prioritization for different vehicles such as public transport, bikes and emergency vehicles
- Dynamic green wave
- Adaptive street lighting
- In-vehicle information for drivers (e.g. Time-to-Green)
- → Providing full connectivity, proactive control and maximum IT security at the same time

### **Activities in APAC**



#### China

- Zhuhai: traffic management system incl. UTC, real-time data, traveler information system, LRT prioritization
- Suzhou: V2X test field

#### India

 Video-analytics-based vehicle counting

#### **Australia & New Zealand**

- SCATS certification for sX controller
- Rail2X trial for approaching rail crossing warning



#### Vietnam

 Hanoi: running PoC for videoanalytic based traffic management

### **Singapore**

- Development for tunnel management for North South Corridor
- Research collaboration agreement with LTA and A-STAR for CRUISE

# PoC: Hanoi's growing population requires investments in traffic infrastructure to avoid worsening of traffic congestion













## Population

Hanoi has ~8 mio.

Citizens, growing up to 9.2 million by 2030

### Traffic volume

5.8 mio.
vehicles, thereof
90% motorcycles,
increase of cars
due to restriction of
motorcycles from 2030

# Traffic Congestion

Annual cost of congestion are estimated to be 1.2 billion USD, loss of more than 1 million working hours per year<sup>1</sup>

## Air pollution

Hanoi's air pollution index is 4x higher than recommended by the World Health Organization<sup>2</sup>

### Infrastructure

Only 800 out of 3,300 intersections are equipped with traffic signals<sup>3</sup>



### **SIEMENS**

Ingenuity for life

# **Objectives of Project VAST**

(Video Analytics for Smart Traffic)

- Detecting vehicles in non-lane-based traffic by applying Al-based video analytics on video streams from existing CCTV
- Optimizing the traffic flow & increasing the intersections' throughput by simulation and feeding detection data into a cloud-based traffic management system, managing the on-site sX controller
- Reducing electricity consumption by installing state-of-the-art road infrastructure (1 Watt sX controller and traffic lights)

### PoC: Al-Enabled Vehicle Detection & Classification





## PoC: Technical architecture with CCTV via Scala





### **PoC: Traffic Statistics Dashboard**







# SIEMENS Ingenuity for life

### Results of the PoC – in brief

## >15% average increase

of traffic throughput at the intersection

## **Ease of traffic density**

towards the city centre

## 30-50% energy savings

through the deployment of 1 Watt technology

Roll-out of the solution throughout the city will multiply these benefits

