SIEMENS

SIRIUS

Industrial Controls

Product Catalogue

MSPs - 3RV10 Motor Starter Protectors

3RV17, 3RV27, 3RV28 Circuit Breakers
3RA19/29 \& 3RV19/29 Accessories
Contactors - 3RT, 3TF, 3TC Contactors
3RA13/23 Reversing Contactors
3RH Control Relays; 3RA19/29 \& 3RT19/29 Accessories
Overload Relays - 3RU Thermal Overload Relays 3RB Solid State Overload Relays
3UF SIMOCODE pro Intelligent Motor Protection
Starters - 3RA2 Combination Starters
3RA6 Compact Combination Starters

Power Distribution Systems -
8US Fast Bus Busbar Power Distribution Svstem

SIRIUS Hybrid

Solid State Control

Hybrid Motor Starters - 3RM1 Motor Starters
ET 200SP \& ET 200pro Motor Starters M200D Motor Starters
Soft Starters - 3RW30, 3RW40, 3RW50, 3RW52 \& 3RW55 Soft Starters Class 73 \& 74 Enclosed Soft Starters Drives - SINAMICS G120X Drives. 6SL32
Solid-State Relays \& Contactors -
3RF20 45mm Relays; 3RF21 22.5 mm Relays; 3RF22 3-Phase Relays; 3RF23 Contactors: 3RF24 \& 34 3-Phase Contactors: 3RF29 Modules

Manual Starters \& Switches; NEMA Contactors \& Starters;
Overload relays; Duplex Controllers; Pump Panels; Reduced Voltage Starters: DP Contactors: Liahtina Contactors: Transformers

SIRIUS HP Rated Magnetic Starters - Non-Reversing; Reversing; Two Speed: Constant or Variable Toraue: Combination

Pilot Devices - 3SB2, 3SU1, 52 Pushbuttons, Selector Switches, Pilot Liahts \& Stations: 8WD Sianal Columns

Function Relays - 3RN Thermistor Motor Protection; 3RP \& 7PV Timers; 3RS Temperature Monitoring Relays \& Converters; 3RQ Coupling Relays; 3UG Monitorina Relavs: 3TG Power Relavs: 3TX71 \& LZS Plua-in Relavs
Limit Switches - 3SE5 (IEC) \& 3SE03 (NEMA)
Safety - 3SE5 Hinge \& Interlock, 3SE6 Magnet, and 3SE7 Cable-operated Switches: 3SK \& 3TK28 Safetv Relavs: 3RK3 MSS
AS-Interface - 6GK7 Masters; 3RK Slaves, I/O Modules, \& Safety Modules; 3SF2 Cable Pull, 3SF1 Limit \& Interlock Switches
IO-Link - 6ES7 Masters: 3RK Inout Modules
UL and CSA File \& Guide Numbers; On-line References; General Information; Spring-Loaded Terminal Overview; ICE Quick Reference List

General Purpose Control

SIRIUS Command \& SIRIUS Monitor

Control Circuit Components

Appendix - General Information

Product ordering notes

SIRIUS in the World Wide Web
 The most important online services at a glance.

Industrial controls

Homepage
www.siemens.com/sirius

Industry Mall

Catalogue and Ordering System
www.siemens.com/industrymall

Interactive Catalog

Product Catalogue CA 01
www.siemens.com/automation/ca01
Siemens Industry Online Support - SIOS
Product Support
www.siemens.com/sirius/support

Configuring products and systems

 Configuratorswww.siemens.com/sirius/configurators

Siemens Industry Online Support App
More information on the Online Support App
www.siemens.com/industry/support-app

Device selection and configuration
TIA Selection Tool
www.siemens.com/tst

SIRIUS 3RW soft starters
 As diverse as your tasks

The strong, harmonized portfolio of soft starters is suited to a wide range of standard - and also fail-safe and ATEX applications thanks to comprehensive and specific functions. Benefit from intelligent functions such as condition monitoring, automatic parameterization, pump cleaning and integrated braking functions, regardless of the industry you are in.

Strong portfolio

Comprehensive, coordinated soft starter portfolio for simple to demanding starting: Basic, General, High Performance

Efficient switching

Energy-efficient switching and mechanical protection of the drive train thanks to soft starter with hybrid switching technology

Intelligent use

Concentrated, application-specific functionality thanks to intelligent features such as automatic parameterization, pump cleaning and condition monitoring

Ready for the digital future

Support for digital engineering processes with tools and data.
Data provision for local visualization or cloud-based analysis

SIRIUS 3RW
Strong, comprehensive portfolio with a wide range of possibilities thanks to a flexible design.

More information, see www.siemens.com/ softstarters

Digitalization
The 3RW soft starters help you to realize the full potential of digitalization. This is particularly beneficial when it comes to economic efficiency.

Your application in focus

Pump cleaning and pump stopping mode
The pump cleaning function prevents pumps from blocking and therefore increases your productivity and system availability. The pump stopping mode avoids mechanical loading in the piping system and extends the service life of the equipment.

Condition

monitoring

The condition monitoring function supports optimal planning of maintenance work on bearings or seals, thereby maximizing availability.

braking functions

Intelligent functions such as soft starter braking ensure a fast and reliable stop without engineering and configuration work.

SIRIUS modular system

 Efficiently combined.

Modular design

Optimally matched and dimensioned products expandable with uniform accessories

Order preassembled

Ready-made and tested combinations with short-circuit strength up to 150 kA/400 V

Quick
 wiring

Comprehensive portfolio for springloaded terminals, function blocks for contactor assemblies for reversing and star-delta
(wye-delta) starting as well as connectors

Efficient configuration

Configuration data and macros for integration into your CAE systems

Worldwide use

Fulfills all relevant standards and approvals worldwide, also for extreme conditions (e.g. safety, rail and shipping) and is IE3/IE4 ready

TIA Selection Tool

The right product in just a few clicks.

Prime reasons for the TIA Selection Tool

uick, easy and cure	Intelligent	Clear	Time-saving
mponents can be selected, nfigured and ordered quickly, sily and securely from the emens automation portfolio.	Intelligent selection wizards check the compatibility of the configured components and enable error-free ordering.	Required modules, devices and networks are automatically generated and clearly compared to one another.	Time savings of 80% in design thanks to ease of use and intelligent support.

The TIA Selection Tool is a completely paperless solution.
Download it now:
www.siemens.com/tst

For more information
scan the QR code

Integrated Control Panels

The easy way to build the optimum control panel.

We offer practical support in mastering the typical challenges of control panel engineering through a harmonized product portfolio, tools and data for digitalization in engineering, and expert know-how.

Working together for simple and stress-free control panel design
Comprehensive support for all control panel applications

Want to save time and costs? With Integrated Control Panels, it's easy to optimize all aspects of control panel building for your industrial machines and plants. From preparation and dimensioning, design and construction, through to service and support - for greater competitiveness and long-term success.

Expert know-how

The faster route to the ideal control panel with practice-oriented expertise

We support you with exactly the right know-how to give you a competitive edge - both now and in the future.
This includes applying standards and guidelines in day-today operations (e.g. UL 508A, IEC 60204-1) as well as efficient engineering and configuration.

- Workshops, web-based training courses and individual consulting on product and application topics
- Literature with practical tips and tricks, including: guidelines, product manuals, white papers

Tools \& data for digitalization in engineering

Maximum efficiency for control panel design

With a range of tools and data-based services, we support you with the digitalization of your business and enable the leverage of all the advantages this offers for control panel design: greater efficiency, flexibility and quality - in every process phase!

- Intelligent selection, dimensioning and design
www.siemens.com/simaris
www.siemens.com/tst
- Integrate data efficiently
www.siemens.com/cax

Harmonized product and system portfolio
Effective savings in control cabinet design

Harmonized product and system portfolio saves construction time. With our coordinated, integrated portfolio of products that includes automation technology, drive train components, industrial controls and matching control panel enclosures, we can reduce your engineering overhead and ensure the harmonious interaction of all devices. These are extensively tested, and are all certified and available for use worldwide - enabling you to remain flexible within the global business environment.

Technical Support

One click - and you have all the information you need.

Industry Online Support -
 get fast and up-to-date information online

https://support.industry.siemens.com
In Industry Online Support you will find FAQs,
manuals, certificates, applications \& tools, and much more

Support Request -

make our expertise your competitive advantage
https://support.industry.siemens.com/My/ww/en/requests
Call the Customer Interaction Centre at 1-888-303-3353 for 24/7
bilingual support, or email cic.ca@siemens.com.

Conversion tool -
the easy and efficient way to find successor products www.siemens.com/sirius/conversion-tool

Any more questions?

Our experts are there to help you with competent technical advice.

Support Request:

Competent and fast technical advice regarding:

- Product selection
- Conversion from old to new
- Competitor conversion
- Special versions
- Particular requirements
- Commissioning
- Maintenance

Energy-Efficient Controls

SIRIUS brings down energy costs

Overview

Energy management in industry

Overview of the energy management process

Energy-efficient production as a success factor

In order to harness energy potential, with our vast portfolio, we always maintain a clear view of the overall product development and production process. Because maximum energy efficiency in production can only be achieved through perfect interaction of all components.

That is why it is important to first create an awareness for existing energy-saving potential, recognize (identify) and assess (evaluate) opportunities for optimization through precise analysis. Finally, appropriate measures must be implemented (realized).
With our full-range portfolio of energy-efficient drive solutions, automation and services, you too will reach maximum energy efficiency, higher productivity and lasting competitiveness in your company.

Three columns of energy efficiency with products from the SIRIUS modular system

Energy-efficient products - SIRIUS reduces power loss

SIRIUS controls (3RM motor starter, 3RR2 monitoring relay, 3RB3 overload relay, 3RT2 contactor, 3RW soft starter and 3RV2 motor starter protector/circuit breaker) as well as the ET 200SP motor starters are characterized by extremely low intrinsic power loss. This not only lowers energy costs, but also reduces the amount of waste heat in the control cabinet. This then translates to a higher packing density and a reduction in the required cooling performance.

Energy-measuring products

Energy management can be instrumental in increasing plant
productivity to bring about a significant improvement to the competitive ability of a company - in all industries.

Energy data acquisition represents an important component of the overall energy data management process here. Through transparency right down to the loads, it is possible to identify and utilize potential energy savings.
With communication-capable SIRIUS switching devices you can acquire energy data from the drive train without any additional effort.
SIRIUS controls help you make energy flows visible.

Best drive solutions in terms of energy

In order to design processes for optimal energy efficiency, it is not enough to simply measure the energy flow and deploy energy-efficient products. The greatest lever for saving energy can be derived from closely examining the application.

SinaSave energy efficiency tool

Amortization calculator for energy-efficient drive systems
The SinaSave energy efficiency tool determines energy saving potential and amortization times based on your individual conditions of use and therefore offers practical assistance in making decisions about investments in energy-efficient technologies.

From SinaSave version 6 and higher, the drive systems to be compared and the relevant drive component parameters are displayed graphically. An additional expansion are the numerous comparison possibilities for different control types and comprehensive product combinations for drive solutions for pump and fan applications.
The product portfolio comprises not just SIRIUS controls, but also SIMOTICS motors and SINAMICS inverters and converters, thus offering a comprehensive range of comparison possibilities - according to your individual requirements.

SinaSave, the free amortization calculator for energy-efficient drives, see www.siemens.com/sinasave.

Energy Management with SIMATIC Energy Suite

Integrated energy management

Overview

SIMATIC Energy Suite

High energy consumption and automated production processes are typical for many industries.
If you want to keep your energy costs under control in the long term and you are already focusing on the digital future, it's a good idea to equip your plant with integrated energy measuring technology, thus anchoring energy management into the automation of your production processes - which is where most energy is consumed.
SIMATIC Energy Suite as an integrated option for the TIA Portal efficiently links energy management with automation, thus creating energy transparency in the production system. Considerably simplified configuration of energy-measuring components from the SIMATIC, SENTRON, SINAMICS, SIRIUS and SIMOCODE product families ${ }^{2}$) significantly reduces the configuration workload. Thanks to the integrated interface to SIMATIC Energy Manager PRO ${ }^{1)}$ or cloud-based Service Energy Analytics, you can seamlessly expand the recorded energy data to create a cross-site energy management system.

This also enables companies to fulfill all economic and energy management requirements - from purchasing of energy through planning to energy management.

The advantages at a glance:

- Automatic generation of energy management data
- Integration into TIA Portal and automation
- Simple configuration

1) SIMATIC Energy Manager PRO is the innovative successor to SIMATIC B.Data
2) Products from the SIMATIC, SENTRON, SINAMICS, SIRIUS and SIMOCODE product families. For details on the currently supported devices, see www.siemens.com/energysuite-hardware.

Highlights

- Simple and intuitive configuration instead of programming
- Automatic generation of the PLC energy program
- Convenient integration of measuring components from the Siemens portfolio and from the portfolios of other manufacturers
- Integrated in the TIA Portal and automation
- Archiving on WinCC Professional or PLC
- Seamless connection to Energy Manager PRO and Energy Analytics

For more information on
SIMATIC Energy Suite, see
www.siemens.com/energysuite

Systematic Industrial Safety Technology

SIRIUS Safety Integrated

Manufacturers and operators of machines must fulfill numerous requirements: reducing costs, improving productivity, and ensuring the safety of machines. The industrial safety technology from Siemens offers innovative, economical solutions for the functional safety of machinery.

Machine safety - compliance with directives

Before any machines or plants can be supplied or operated, they must meet the fundamental safety requirements of the EU Directives.

In order to ensure compliance with the European Machinery Directive, it is recommended that the suitably harmonized European standards EN 62061 or EN ISO 13849-1 should be applied. This gives manufacturers and operators legal certainty regarding compliance with both national regulations and the EC Directive and this is confirmed by the manufacturer of a machine with the CE marking.
The aim of safety technology is therefore to allow people, machines and the environment to be protected and statutory safety requirements to be satisfied.

The quick and easy way to safe machinery

In addition to the statutory regulations governing the protection of people there are also economic reasons for avoiding personal injury and the resulting down times, and for protecting both machinery and equipment from damage.
Safety Integrated benefits machine manufacturers and plant operators in many ways:

- Lower costs for hardware, assembly and engineering
- Higher availability thanks to faster diagnostics and fewer down times
At the same time, using modular safety concepts allows them to modernize their plants more easily and at lower cost.

Smart controls ensure the functional safety of machinery

Our SIRIUS Safety Integrated ${ }^{1)}$ controls are a central element of the Siemens Safety Integrated concept, based on Totally Integrated Automation. Whether for reliable detecting, evaluating and reacting, our SIRIUS Safety Integrated controls provide cost-effective solutions for the safety of your machine or plant. Take the SIRIUS 3SK safety relays for example: They are modularly expandable, and can integrate compact motor starters such as the fail-safe SIRIUS 3RM1 very simply via the device connector (parameterization is performed easily with a screwdriver on the DIP switches or by drag and drop in the engineering software).

Or the SIRIUS 3RK3 Modular Safety System: This provides a high degree of functionality as an autonomous safety control downstream of a standard control, and makes smart safety solutions possible via AS-Interface.

The SIMOCODE pro modular motor management system combines all required protection, monitoring, safety and control functions for motor feeders. It can be connected to fail-safe controllers via PROFIBUS or PROFINET and shut down motors in emergency situations.
SIRIUS Safety Integrated uses fail-safe communication via standard fieldbus systems, such as ASIsafe via AS-Interface and PROFIsafe via PROFIBUS and PROFINET, to solve even networked safety tasks of greater complexity. This opens the door to flexible safety solutions for compact machines or largescale plants - naturally compliant with current standards up to SIL 3/PL e.
The first integrated ASIsafe connection to the distributed I/O system ensures even more consistency. With the SIMATIC AS-i F-Links, AS-i networks can be connected quite simply to safety controls via PROFIsafe via the SIMATIC ET 200SP. Particular highlights are the new contactors of sizes S6 to S12 with fail-safe control input, the SIRIUS ACT 3SU1 EMERGENCY STOP with PROFINET or PROFIsafe interface, and the fail-safe motor starters for the ET 200SP (see Section 14) and the 3RW55 fail-safe soft starters (see Section 6). With these products, seamless integration into fail-safe control systems is possible.

Your partner for machine and plant safety

With Safety Integrated, Siemens has provided the smart answer to constantly increasing requirements for the functional safety of a machine and for its cost-effectiveness and flexibility. Our comprehensive portfolio of safe controls, control technology and drive technology provides scalable solutions for precisely tailored safety concepts for protecting people, machines and the environment. Our products meet the current safety standards in the industry, including IEC, ISO, NFPA and UL.

[^0]Systematic Industrial Safety Technology

Devices with safety functions

Systematic Industrial Safety Technology
SIRIUS Safety Integrated

Devices with safety functions for AS-Interface

Detecting Product	Section	Evaluating Product Section	Reacting Product	Section
Safety modules/EMERGENCY STOP mushroom pushbuttons - K40F and K20F compact safety modules for use in the field	14	CM AS-i Master ST, F-CM AS-i Safety ST for SIMATIC ET 200SP	3RT2 contactors (PLC/F-PLC output), 3RT1 contactors from 55 kW (F-PLC input)	
- SC17.5F SlimLine Compact safety modules for use in the control cabinet	14	Evaluation and processing of signals via a fail-safe SIMATIC or SINUMERIK control Simple combination of the CM AS-i Master ST and F-CM AS-i Safety ST modules in one ET 200SP station results in a powerful, safety-oriented network transition between PROFINET (or PROFIBUS) and AS-Interface.	Optimum connection to the fail-safe controller as actuator in the safety chain Considerable simplification of the application in large power ranges thanks to F-PLC input on the 3RT1 contactors	
- 3SU1 EMERGENCY STOP mushroom pushbuttons in the enclosure for AS-Interface	11		S45F SlimLine safety modules with safety outputs for the safe distributed disconnection of actuators	14
Detection of safety-related signals via safe input slaves on the AS-Interface bus (field modules in IP67, control cabinet modules in IP20, EMERGENCY STOP mushroom pushbuttons in the enclosure with integrated ASIsafe slave in IP69)			Reaction by safe output modules on the AS-Interface bus or other SIMATIC F-DQ modules	
3SF1 mechanical safetv switches	13			
Flexible thanks to modular design, degree of protection up to IP69K, suitable for offshore applications				

Overview

IE3/IE4 ready with SIRIUS controls

We are IE3/IE4 ready

IE3/IE4 motors have been mandatory for the power range from 0.75 to 375 kW for line operation in Europe since January 1, 2015.

From an electrical viewpoint, IE3/IE4 motors behave differently than less energy-efficient models - they are characterized by higher startup currents and modified dynamic behavior. This entails certain challenges for our controls.
The latest generation of SIRIUS controls has been fully optimized for IE3/IE4.
They avoid false tripping due to higher inrush currents of IE3/IE4 motors, offer optimized setting ranges for rated currents, and ensure reliable switching and protection in any situation - the best requirements for use of modern IE3/IE4 motors.

Highlights

- Comprehensive range of IE3/IE4 motors for every application
- Siemens offers expertise through extensive analysis of IE3/IE4 motors
- Optimized SIRIUS controls for use with IE3/IE4 motors

More information

- IE3/IE4 ready portal, see www.siemens.com/IE3ready
- Application Manual for controls with IE3/IE4 motors, see https://support.industry.siemens.com/cs/ww/en/view/94770820
All IE3/IE4 ready products are marked in the catalog with the symbol IIE3/IE4 ready

Innovative Technology for Saving Energy

Electronic starting with hybrid switching technology

Overview
SIRIUS 3RV29 infeed system with 3RA2 load feeder and 3RM1 motor starter

The hybrid switching technology uses low-wear semiconductor technology for switching the motor on and off, and in the operating phase it relies on energy-saving relay technology.
This ensures durability, especially with high frequency of operation, and thus significantly reduces maintenance costs and extends the life of the motor starters.
In addition, due to the hybrid switching technology, motor starters have lower electromagnetic interference emissions, enabling you to increase your plant availability.

Further energy savings are provided by the integrated electronic overload protection.

This causes a lower intrinsic power loss than comparable motor feeders with thermal overload protection.
In this way, you benefit from reduced heat generation and therefore lower cooling power. And that saves energy.

Innovative Technology for Saving Energy

Highlights

Use of hybrid switching technology for:

- SIRIUS 3RM1 motor starters
- ET 200SP motor starters
- SIRIUS soft starters

Fail-safe functionality for SIRIUS 3RW55 soft starters, SIRIUS 3RM1 motor starters and ET 200SP:

- Maximum safety:

Safety function up to SIL 3/PL e Cat. 4
Additional benefits for SIRIUS 3RM1 motor starters:

- Using device connectors safety-related group shutdown with reduced wiring is possible
- Direct connection to the 3SK safety relay, without additional wiring

Motor Starter Protectors

contents

Section Overview $1 / 2-1 / 3$
Motor Starter Protectors
3RV20 MSP, Class 10/20$1 / 4-1 / 5$
3RV21 MSP, Class 10 NEW
Circuit Breakers
3RV27, 3RV28 Circuit Breaker UL 489 1/8
Accessories
Auxiliary Switches 1/9
Auxiliary Releases 1/9
Busbars 1/10
Mounting Accessories 1/11-1/14
Rotary Operating Mechanisms 1/15
Enclosures \& Front Plates 1/15
3RV29 Infeed System 1/16-1/19
General Data for Motor Starter Protectors
Manual Motor Starter Ratings 1/20
Group Installation Ratings 1/21
Combination Motor Controller Ratings 1/22
3RV27 and 3RV28 Circuit Breaker Ratings 1/23
Export Application Ratings 1/24-1/25
Rules for Mounting 1/26
Technical Data 1/27-1/30
Overview of MSP Functions \& Applications 1/31
Application as a Combination Motor Controller 1/32
Application in DC Switching 1/33
Design 1/33
Characteristics 1/34
Circuit Diagrams 1/34
Dimensions $1 / 35-1 / 38$
General Data for Accessories
Mountable Accessories
Overview 1/39-1/40
Circuit Diagrams 1/41-1/39
Dimensions 1/42
Busbar Accessories 1/43
Dimensions 1/44-1/45
Operating Mechanisms
Overview 1/46
Circuit Diagrams 1/47
Dimensions 1/47-1/48
Enclosures \& Front Plates
Overview 1/49
Dimensions $1 / 50$
Spring Terminal Infeed System
Design 1/51
Technical Data 1/51
Dimensions 1/52

contents

SIRIUS 3RV motor starter protectors up to 100 A

For motor protection

 CLASS 10Selection and ordering data

Size	Rated Current	Page
S00	up to 16 A	$1 / 4$
S0	up to 40 A	$1 / 4$
S2	up to 65 A	$1 / 5$
S3	up to 100 A	$1 / 5$

Circuit Breakers
3RV27, 3RV28

For motor protection CLASS 20
Selection and ordering data

Size	Rated Current	Page
S2	up to 65 A	$1 / 5$
S3	up to 100 A	$1 / 5$

S2 up to $65 \mathrm{~A} \quad 1 / 5$
1/5

contents

Rotary operating mechanisms

	Page
Selection and ordering data	$1 / 15$
Technical data	$1 / 30$
Overview	$1 / 46$
Circuit diagrams	$1 / 47$
Dimension drawings	$1 / 47$

Accessories for motor starter
protectors with Spring-Type
terminals

	Page
Selection and ordering data	$1 / 9$
Technical data	$1 / 30$

Enclosures and front plates

Description

The 3RV20x MSPs are UL approved as Self Protected Combination Motor Controllers which are also called Type E. In this application, all the required functions for a motor branch are provided in one device: disconnect, short circuit protection, motor control and overload protection. A type E terminal adaptor is required. The 3RV20x MSPs are also approved for use as follows:

- Manual Motor Controller: Motor starter, motor disconnect, control and overloadprotection.
- Group Installation: Motor starter only, motor disconnect, control and overload protection.
- Tap conductor Protection in Group Installation acc. NEC: Motor starter only; motor disconnect, control and overload protection.
When the 3RV20x is used with one of the 3 above mentioned approvals, the 3RV20x can be installed downstream of one circuit breaker or fuse set.

For more detailed application information and rules how to apply, size and rate the 3RV20x in control panels in general, in group installations or in accordance to international IEC standards visit our website: www.usa.siemens.com/controlpaneldesign

Ordering Information

- ON/OFF rotary handle with lockout and visible trip indication.
- Adjustment dial for setting to motor FLA.
- Class 10 overload trip characteristics.
- Short circuit trip at 13 times the maximum setting of the FLA adjustment dial.
- Short circuit current rating:
- Ambient compensated up to $140^{\circ} \mathrm{F}$ (applies to side by side mounting).
- Phase loss sensitivity.
- Test trip function.
- Terminal versions: screw, spring, ring lug.
- Auxiliaries and Accessories see pages 1/9-1/19.
- General Information see pages 1/31-1/34.
- Technical Data see pages $1 / 20-1 / 30$.
- Dimensions see page 1/35.

Note: Select MSP by motor Full Load Amperes. Horsepower ratings are for reference only.

1) Select motor starter protector by motor full load amps. Horsepower ratings for reference only.
2) The motor starter protectors rated up to 32 A can be used as manual motor controllers or as Type E combination motor controllers. For use as a Type E combination motor controller, a Type E terminal is required. See accessories page 1/10.
3) These products are NOT certified as Type E combination motor controllers. They can only be used as mation motor controliers.
4) 3RV2 MSPs can only be used with Innovations contac tors and accessories
5) Available only with $\bullet \bullet=10$, or $\bullet \bullet=15$, or $\bullet \bullet=20$
6) Available only with $\bullet \bullet=10$, or $\bullet \bullet=15$
7) Available only with $\bullet \bullet=10$, or $\bullet \bullet=20$

For Motor Protection

3RV10 Class 10 \& 20 - up to 100A

Description	Ordering Information
The 3RV203/204 MSPs are UL approved as Self Protected Combination Motor Controllers	ON/OFF rotary handle with lockout and visible
which are also called Type E. In this application, all the required functions for a motor	trip indication.
branch are provided in one device: disconnect, short circuit protection, motor control and	Adjustment dial for setting to motor FLA.
overload protection. A type E terminal adaptor is required for all S2 frame 3RV2031 above	Class 10 overload trip characteristics.
45A and all S2 frame 3RV2032 as well as for all S3 frame motor starter protectors.	Short circuit trip at 13 times the maximum set-
The 3RV203/204 MSPs are also approved for use as follows:	ting of the FLA adjustment dial.
- Manual Motor Controller: Motor starter, motor disconnect, control and overload	Short circuit current rating:
protection.	Ambient compensated up to 140ㅇ F lapplies to
- Group Installation: Motor starter only, motor disconnect, control and overload protection.	side by side mounting).
- Tap conductor Protection in Group Installation acc. NEC: Motor starter only; motor	Phase loss sensitivity.
disconnect, control and overload protection.	Test trip function.
When the 3RV203/204 is used with one of the 3 above mentioned approvals, they can be	Auxiliaries and Accessories see pages
installed downstream of one circuit breaker or fuse set.	$1 / 9-1 / 19$.
For more detailed application information and rules how to apply, size and rate these	General Information see pages $1 / 31-1 / 34$.
MSPs in control panels in general, in group installations or in accordance to international	Technical Data see pages $1 / 20-1 / 30$.
IEC standards visit our website: www.usa.siemens.com/controlpaneldesign	Dimensions see page $1 / 35$.

Note: Select MSP by motor Full Load Amperes. Horsepower ratings are for reference only.

	FLA Adjustment Range [A]	Single Phase HP rating ${ }^{1)}$		$\begin{aligned} & 3 \text { Phase } \\ & \text { HP Rating }{ }^{1)} \end{aligned}$				Inst. Short- Circuit Release [A]	UL AIC (480V) $[\mathrm{kA}]^{6}$	Trip Class 10 Order Number ${ }^{4)}$	Trip Class 20 Order Number ${ }^{4)}$
Illustration		115 V	240 V	200 V	230 V	460 V	575V				
	3RV203 Frame Size S2										
	9.5-14	1.5	3	5	5	10	15	208	65	3RV2031-4SA10	3RV2031-4SB10
	12-17	1.5	3	5	7.5	15	15	260	65	3RV2031-4TA10	3RV2031-4TB10
	14-20	1.5	3	7.5	7.5	15	20	260	65	3RV2031-4BA10	3RV2031-4BB10
	18-25	2	5	7.5	10	20	25	325	65	3RV2031-4DA10	3RV2031-4DB10
	22-32	3	5	10	10	25	30	416	65	3RV2031-4EA10	3RV2031-4EB10
	28-36	3	7.5	15	15	30	40	520	65	3RV2031-4PA10	3RV2031-4PB10
	32-40	3	7.5	15	15	30	40	585	65	3RV2031-4UA10	3RV2031-4UB10
	35-45	3	10	15	15	40	50	650	65	3RV2031-4VA10	3RV2031-4VB10
	42-52	5	10	15	20	40	50	741	65	3RV2031-4WA10	3RV2031-4WB10
	49-59	5	15	20	25	50	60	845	30	3RV2031-4XA10	3RV2031-4XB10
	54-65	5	15	20	25	50	60	845	30	3RV2031-4JA10	3RV2031-4JB10
	62-73	7.5	15	25	30	60	75	949	20	3RV2031-4KA10	-
	70-80	7.5	15	25	30	60	75	1040	20	3RV2031-4RA10	-
	3RV204 Frame Size S3										
	28-40	3	7.5	15	15	30	40	520 A	65	3RV2041-4FA10	3RV2042-4FB10
	36-50	5	10	15	20	40	50	650A	65	3RV2041-4HA10	3RV2042-4HB10
	45-63	5	15	20	25	50	60	819A	65	3RV2041-4JA10	3RV2042-4JB10
	57-75	7.5	15	25	25	60	75	975A	65	3RV2041-4KA10	3RV2042-4KB10
	65-84	7.5	15	25	30	60	75	1170A	65	3RV2041-4RA10	3RV2042-4RB10
	75-93	7.5	20	30	40	75	$100^{3)}$	1300A	65	3RV2041-4YA10	-
	80-100	10	25	40	40	75	$100^{3)}$	1300A	65	3RV2041-4MA10	-

1) Select motor starter protector by motor full load amps. Horsepower ratings for reference only.
2) Size S2 and S3 are listed as type E combination motor controllers. For required Type E terminals see page 1/12. 3RV2031 MSPs with a current setting limit of 45A or less do not require a type E terminal and fulfill the spacing requirements of UL508.
3) Shaded ratings apply for group installation only. These ratings do not apply as UL listed manual combination starters.
4) Pre-assembled motor starter protector and transverse auxiliary switch with $1 \mathrm{NO}+1 \mathrm{NC}$ is available. Replace the last digit of the order no. with a " 5 ".
5) 3RV1 MSPs can only be used with 3RT1 contactors and accessories. 3RV2 MSPs can only be used with 3RT2 contactors and accessories.
6) For 100kA SCCR rated MSPs, change the part number from 3RV2031 to 3RV2032. (applies to S2 frame only through 65A).

Refer to pages $1 / 20$ to $1 / 22$ when using an MSP in a Manual Motor Starter or a Manual Self-Protected Combination Motor Controller.

Description

Ordering Information

3RV21 Motor starter protectors with relay function provide short-circuit protection and auto-RESET in the event of overload in one device.

3RV21 motor starter protectors with overload relay function have the same overload and short-circuit release characteristic as 3RV20 motor starter protectors. However, the overload releases have no effect on the motor starter protectors' latching mechanism. In the event of an overload, the motor starter protector remains on.

The overload release is linked to two auxiliary contacts (1 NO contact + 1 NC contact) mounted on the side; these are switched in the event of an overload. The auxiliary contacts can be evaluated or can be used to disconnect a downstream contactor. The auxiliary contacts are reset automatically once the motor starter protector has cooled down. 3RV21 are CSA/UL certified as manual motor controllers and conform to CLASS 10 according to IEC 60947-4-1.

The tripping characteristic of 3RV21 motor starter protectors is primarily designed for protecting three-phase motors. These motor starter protectors are also suitable for protecting systems.

- ON/OFF rotary handle with lockout and visible trip indication.
- Adjustment dial for setting to motor FLA.
- Class 10 overload trip characteristics.
- Short circuit trip at 13 times the maximum setting of the FLA adjustment dial.
- Short circuit current rating:
- Ambient compensated up to $140^{\circ} \mathrm{F}$ (applies to side by side mounting).
- Phase loss sensitivity.
- Test trip function.
- Terminal versions: screw only.
- Auxiliaries and Accessories see pages 1/9-1/19.
- General Information see pages $1 / 31-1 / 34$.
- Technical Data see pages $1 / 20-1 / 30$.
- Dimensions see page $1 / 37-1 / 38$.

Note: Select MSP by motor Full Load Amperes. Horsepower ratings are for reference only.

1) Select motor starter protector by motor full load amps Horsepower ratings are for reference only
2) Accessories for mounting on the right and 3RV2915 three-phase busbars cannot be used. Accessories can be ordered separately.
3) These products are NOT certified as Type E combination motor controllers. They can only be used as manual motor controllers.
4) Suitable for use with IE3/IE4 motors up to a starting current of 256 A . For higher starting currents we recommend using 3RV2 motor starter protectors size S2.
5) 3RV2 MSPs can only be used with Innovations
contactors and accessories.

Description	Ordering Information
3RV21 Motor starter protectors with relay function provide short-circuit protection and auto-RESET in the event of overload in one device. 3RV21 motor starter protectors with overload relay function have the same overload and short-circuit release characteristic as 3 RV20 motor starter protectors. However, the overload releases have no effect on the motor starter protectors' breaker latching mechanism. In the event of an overload, the motor starter protector remains on. The overload release is linked to two auxiliary contacts (1 NO contact + 1 NC contact) mounted on the side; these are switched in the event of an overload. The auxiliary contacts can be evaluated or can be used to disconnect a downstream contactor. The auxiliary contacts are reset automatically once the motor starter protector has cooled down. 3RV21 are CSA/UL certified as manual motor controllers and conform to CLASS 10 according to IEC 60947-4-1. The tripping characteristic of 3RV21 motor starter protectors is primarily designed for protecting three-phase motors. These motor starter protectors are also suitable for protecting systems.	ON/OFF rotary handle with lockout and visible trip indication. - Adjustment dial for setting to motor FLA. - Class 10 overload trip characteristics. - Short circuit trip at 13 times the maximum setting of the FLA adjustment dial. - Short circuit current rating: - Ambient compensated up to $140^{\circ} \mathrm{F}$ (applies to side by side mounting). - Phase loss sensitivity. - Test trip function. - Terminal versions: screw only. - Auxiliaries and Accessories see pages 1/9-1/19. - General Information see pages $1 / 31-1 / 34$. - Technical Data see pages $1 / 20-1 / 30$. - Dimensions see page $1 / 37-1 / 38$.

Note: Select MSP by motor Full Load Amperes. Horsepower ratings are for reference only.

1) Select motor starter protector by motor full load amps. Horsepower ratings are for reference only.
2) Accessories for mounting on the right and 3RV2915 three-phase busbars cannot be used. Accessories can be ordered separately.
3) Shaded ratings apply for group installation only. These ratings do not apply as UL listed manual combination starters.
4) These products are NOT certified as Type E combination motor controllers. They can only be used as manual motor controllers.
5) Suitable for use with IE3/IE4 motors up to a starting current of 720 A . For higher starting currents we recommend using 3RV2 motor starter protectors size S3.
6) Suitable for use with IE3/IE4 motors up to a starting current of 780 A . For higher starting currents we recommend using 3VA circuit breakers.
7) 3RV2 MSPs can only be used with 3RT2 contactors and accessories.

Selection and ordering data

Innovations Frame Size SO ${ }^{\text {4) }}$										
20	20	-	50	-	260	3RV2721-4BD10	0.514	325	3RV2821-4BD10	0.516
22	22	-	50	-	286	3RV2721-4CD10	0.516	364	3RV2821-4CD10	0.528
Innovations Frame Size S3 ${ }^{\text {5 }}$										
10	10	65	-	20	150	3RV2742-5AD10	0.460	-	-	-
15	15	65	-	20	225	3RV2742-5BD10	0.460	-	-	-
20	20	65	-	20	260	3RV2742-5CD10	0.460	-	-	-
25	25	65	-	20	325	3RV2742-5DD10	0.460	-	-	-
H/ 30	30	65	-	20	390	3RV2742-5ED10	0.460	-	-	-
35	35	-	65	20	455	3RV2742-5FD10	0.460	-	-	-
40	40	-	65	20	520	3RV2742-5GD10	0.460	-	-	-
45	45	-	65	20	585	3RV2742-5HD10	0.460	-	-	-
50	50	-	65	20	650	3RV2742-5JD10	0.460	-	-	-
60	60	-	65	20	780	3RV2742-5LD10	0.460	-	-	-
70	70	-	65	10	910	3RV2742-5QD10	0.460	-	-	-

1) 100% rated value acc. to UL 489 and IEC 60947-2 (100 \% rated breaker).
2) Circuit breakers for system protection of motor and non-motor loads. Requires use of separate overload protection for motor applications.
3) Circuit breakers for system and transformer protection according to UL/CSA. Specially designed for transformers with high inrush current.
4) Transverse and lateral auxiliary switches can be ordered separately (see "Mountable accessories")
5) Transverse auxiliary switches must not be mounted Lateral auxiliary switches can be ordered separately (see "Mountable accessories").
[^1]Selection and ordering data

1) This product is also available with spring terminals. The order no. must be changed in the 8th position to a " 2 ":e.g. 3RV1901-2E or 3RV2901-2E
2) This product is also available with ring lug terminals. The order no. must be changed in the 8th position to a " 4 ": e.g. 3RV2901-4E
3) Each motor starter protector can be fitted with one transverse and one lateral auxiliary switch. The lateral auxiliary switch $2 \mathrm{NO}+2 \mathrm{NC}$ is used without transverse auxiliary switch.
4) One signaling switch can be mounted at the left of the motor starter protector. This accessory cannot be used on the 3RV27 and 3RV28 circuit breakers.
5) One auxiliary release can be mounted at the right of each MSP. motor starter protector.
6) The response voltage at the lower limit of the voltage range at $0.85\left(\mathrm{Tu}=60^{\circ} \mathrm{C}\right)$ is valid for 100% (infinite)
7) The response voltage at the lower limit of the voltage range at $0.9\left(\mathrm{Tu}=60^{\circ} \mathrm{C}\right)$ applies for a duty cycle of 5 seconds at AC $50 / 60 \mathrm{~Hz}$ and $D C$.

3RV Motor Starter Protectors

Accessories

Mounting accessories

Selection and ordering data

	Modu- lar spac- ing	Number of motor starter protectors that can be connected			Rated current I_{n} at 690 V	For motor starter protectors Size	Order No.	Order quantity	Weight approx.	
		Without lateral accessories	Incl. lateral auxil- iary switch	With auxil- iary trip unit						
	mm				A				kg	
Three-phase busbar systems for Classic and Innovations ${ }^{1)}$										
\square $5-7=18$ Anत mat 3RV19 15-1AB	For feeding several motor starter protectors with screw terminals, mounted side-by-side on standard mounting rails, insulated, with touch protection.									
	453)	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	--	--	63	SOO, $\mathrm{SO}^{2)}$	3RV19 15-1AB 3RV19 15-1BB 3RV19 15-1CB 3RV19 15-1DB	1 unit	0.044	
						S00, S0 ${ }^{2)}$		1 unit	0.071	
						$\mathrm{SOO}, \mathrm{SO}^{2}$		1 unit	0.099	
						S00, S ${ }^{2}$)		1 unit	0.124	
3RV19 15-1BB	55 ${ }^{4)}$	--	2	--	63	S00, S0 ${ }^{2)}$	3RV19 15-2AB	1 unit	0.048	
		--	3			S00, $\mathrm{So}^{2)}$	3RV19 15-2BB	1 unit	0.079	
		--	4			S00, $\mathrm{SO}^{2)}$	3RV19 15-2CB	1 unit	0.111	
		--	5			S00, S0²)	3RV19 15-2DB	1 unit	0.140	
3RV19 15-1CB		3	--	--	108	S2	3RV19 35-1A	1 unit	0.150	
						S2	3RV19 35-1B	1 unit	0.214	
		4				S2	3RV19 35-1C	1 unit	0.295	
AMMMMMAMATMAM $63{ }^{5}$		--	--	2	63	S00, S0 ${ }^{2)}$	3RV19 15-3AB	1 unit	0.052	
		4		S00, S0 ${ }^{2}$		3RV19 15-3CB	1 unit	0.120		
3RV19 15-1DB	$\overline{755}$		--	2	2	108	S2	3RV19 35-3A	1 unit	0.161
		3		3	S2		3RV19 35-3B	1 unit	0.262	
		4		4	S2		3RV19 35-3C	1 unit	0.369	

1) Not suitable for 3 RV2 21 motor starter protectors with overload relay function.
2) Approved for motor starter protectors size S0 with In $\leq 32 \mathrm{~A}$.
${ }^{3)}$ For 3 RV2 motor starter protectors without accessories mounted on the side.
3) For 3RV2 motor starter protectors with auxiliary switches with $1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NO}$ and 2 NC mounted on the left (9 mm wide)
${ }^{5)}$ For 3RV2 motor starter protectors with mounted accessories (18 mm wide). Auxiliary switches with $2 \mathrm{NO}+2 \mathrm{NC}$ or signaling switch (mounted on the left) or with auxiliary release (mounted on the right).

	Version			For motor starter protectors Size	Order No.	Order quantity	Weight approx.
	mm						kg
Connecting pieces for three-phase busbars					For Innovations		
	For connecting three-phase 45 busbars for motor starter protectors of size SO (left) to size S00 (right)			s00, so	3RV19 15-5DB		0.042
	Conductor cross-section, AWG cables, solid or stranded		Tightening torque	For motor starter protector size	3RV2 Innovations ${ }^{2)}$ Order No.		
	For 3RV1 MSP	For 3RV2 MSP					
	AWG	AWG	Nm				
Three-phase feeder terminals							
	Connectio \square -	$\begin{gathered} \text { rom top } \\ 10 \ldots 4 \\ 10 \ldots 4 \end{gathered}$	$\begin{aligned} & 3 . . .4 \\ & 3 . . .4 \end{aligned}$	$\begin{aligned} & \text { S00 } \\ & \text { SO } \end{aligned}$	$3 R V 2925-5 A B$ $3 R V 2925-5 A B$		
2915-5B	Connectio	$\begin{aligned} & \text { rom below }{ }^{3)} \\ & 10 \ldots 4 \end{aligned}$	Input: 4, Output: 2 ... 2.5	s00, so	3RV2915-5B		
	Connection from top		4-6	S2	3RV2935-5A		
Three-phase feeder terminals for constructing "Type E Starters" 3RV2935-5E Connection from top					Innovations		
	Connectio - - 8... 0	$\begin{gathered} \text { rom top } \\ 10 \ldots 4 \\ 10 \ldots 4 \\ 10 \ldots 2 / 0 \end{gathered}$	$\begin{aligned} & 3-4 \\ & 3-4 \\ & 4.5-6 \end{aligned}$	$\begin{aligned} & \text { S00 } \\ & \text { S0 } \\ & \text { S2 } \end{aligned}$	3RV2925-5EB 3RV2925-5EB 3RV2935-5E		

1) Do not mix 3RV1 Classic Accessories with 3RV2 Innovations MSPs
2) Do not mix 3RV2 Innovations Accessories with 3RV1 Classic MSPs
3) This terminal is connected in place of a switch, please take the space requirement into account

Accessories

Mounting accessories

Overview

Accessories for "Self-Protected Combination Motor

 Controllers (Type E)" according to UL 508/UL 60947-4-1The 3RV20 motor starter protectors with screw terminals are approved according to UL 508/UL 60947-4-1 as "Self-Protected Combination Motor Controllers (Type E)".
This requires increased clearance and creepage distances (1 inch and 2 inches respectively) at the input side of the device, which are achieved by mounting a terminal block or a phase barrier.

SIRIUS 3RV2928-1H terminal block

SIRIUS 3RV2938-1K phase barrier

Motor starter protectors/ circuit breakers	Size	Essential accessories for "Self-Protected Combination Motor Controllers (Type E)" according to UL 508/UL 60947-4-1
3RV201., 3RV202. S00/S0	3RV2928-1H terminal block or 3RV2928-1K phase barrier	
3RV2031-4B1., 3RV2031-4D.1.,	S2	--
3RV2031-4E1., 3RV2031-4P.1., 3RV2031-4S.1.,		
3RV2031-4T.1., 3RV2031-4U.1.,		
3RV2031-4V.1.		
3RV2031-4J.1., 3RV2031-4K.1., 3RV2031-4R.1.,	S2	3RV2938-1K phase barrier
3RV2031-4W.1., 3RV2031-4X.1., 3RV2032		
3RV204	S3	3RT2946-4GA07 terminal block

-- No accessories needed
Special threephase infeed terminals are required for constructing
"Type E Starters" with an insulated threephase busbar system (see page 1/10).
The 3RV29 infeed system also enables the assembly of "Type E Starters", see page 1/16 onwards.

Note:

According to CSA, these terminal blocks and the phase barriers can be omitted when the device is used as a "Self-Protected Combination Motor Controller (Type E)".

Link modules

Feeders can be easily assembled from single devices with the help of the link modules. The following table shows the different combination options for devices with screw or spring-type terminals.

Combination devices	3RV2 motor starter protectors/ circuit breakers Size	3RT2 contactors; 3RW30, 3RW40 soft starters; 3RF34 solid-state contactors Size	Link modules Screw terminals	Spring-type terminals
Link modules for connecting switching devices to 3RV2 motor starter protectors/circuit breakers ${ }^{1)}$				
3RT2 contactors with AC or DC coil	S00	S00	$\begin{aligned} & \text { 3RA1921- } \\ & \text { 1DA00 } \end{aligned}$	$\begin{aligned} & \text { 3RA2911- } \\ & \text { 2AA00 } \end{aligned}$
	So	S00		--
	S2	S2	$\begin{aligned} & \text { 3RA2931- } \\ & \text { 1AA00 } \end{aligned}$	--
3RT2 contactors with AC coil	SO	SO	3RA2921-1AA00	$\begin{aligned} & \text { 3RA2921- } \\ & \text { 2AA00 } \end{aligned}$
	S00	SO		--
3RT2 contactors with DC coil	SO	SO	$\begin{aligned} & \text { 3RA2921- } \\ & \text { 1BA00 } \end{aligned}$	$\begin{aligned} & \text { 3RA2921- } \\ & \text { 2AA00 } \end{aligned}$
	S00	SO		--
3RW30 soft starters	S00	S00	$\begin{aligned} & \text { 3RA2921- } \\ & \text { 1BA00 } \end{aligned}$	$\begin{aligned} & \text { 3RA2911- } \\ & \text { 2GA00 } \end{aligned}$
	SO	S00		--
3RW30/3RW40soft starters	SO	SO	$\begin{aligned} & \text { 3RA2921- } \\ & \text { 1BA00 } \end{aligned}$	$\begin{aligned} & \text { 3RA2921- } \\ & \text { 2GA00 } \end{aligned}$
	S00	SO		--
	S2 ${ }^{2)}$	$\mathrm{S} 2^{2)}$	$\begin{aligned} & \text { 3RA2931- } \\ & \text { 1AA00 } \end{aligned}$	--
3RF34 solidstate contactors	S00/S0	S00	$\begin{aligned} & \text { 3RA2921- } \\ & \text { 1BA00 } \end{aligned}$	--
Hybrid link modules for connecting contactors with spring-type terminals to 3RV2 motor starter protectors/circuit breakers with screw terminals ${ }^{3}$)				
3RT2 contactors with AC or DC coil	S00	S00	$\begin{aligned} & \text { 3RA2911- } \\ & \text { 2FA00 } \end{aligned}$	--
	SO	SO	$\begin{aligned} & \text { 3RA2921- } \\ & \text { 2FA00 } \end{aligned}$	--

-- Version not possible

1) The link modules cannot be used for the 3RV2.21-4PA1., 3RV2.21-4FA1. 3RV2.31-4K.1., 3RV2.31-4R.1., 3RV2.32-4K.1., 3RV2.32-4R.1., 3RV27 and 3RV28 motor starter protectors/circuit breakers.
2) To assemble the feeder between a motor starter protector and a soft starter in size S2, the 3RA2932-1AC00 standard mounting rail adapter must be used.
3) The motor starter protector to contactor hybrid link modules cannot be used for the 3RV2.21-4PA1., 3RV2.21-4FA1., 3RV27 and 3RV28 motor starter protectors/circuit breakers. They are only suitable for constructing direct-on-line starters.

Note:

- Link modules can be used in
- Sizes S00 and S0: up to max. 32 A
- Size S2: up to max. 65 A
- Hybrid link modules can be used in - Sizes S00 and S0: up to max. 32 A

Accessories

Mounting accessories

Selection and ordering data

	Version	For motor starter protector size	Innovations 3RV2/3RT2 Order No.	Order Quantity
Terminal blocks and phase barriers for "Self-Protected Combination Motor Controllers (Type E)" according to UL 508 / UL 60947-4-1				
	Note: UL 508 / UL 60947-4-1 demands 1-inch clearance and 2-inch creepage distance at line side for "Combination Motor Controller Type E". The following terminal blocks or phase barriers must be used on 3RV motor starter protectors. The terminal blocks or phase barriers cannot be used in combination with the 3RV19.5 three-phase busbars. For construction with three-phase busbars, see "Accessories for busbar"			
	Terminal blocks type E			
3RV29 28-1K	For extended clearance and creepage distances (1 and 2 inch)	s00, so	3RV29 28-1H	1 unit
		so	-	1 unit
		S2	3RV29 35-5E	1 unit
		S3	3RT2946-4GA07 ${ }^{1)}$	1 unit
	Phase barriers			
	For extended clearance and creepage distances (1 and 2 inch)	S00, S0	3RV29 28-1K	1 unit
		S2	3RV29 38-1K	

Terminal covers for box terminals on 3RV2742 and Type E terminal block 3RT2946-4GA07

Additional touch protection to be fitted at the
box terminals 3RV2742
(2 units required per device) and at
Type E terminal block 3RT2946-4GA07

- Main current level

S3

NEW

3RV2948-1LA00
1 unit

Actuating voltage of contactor	Size 3RT contactor	3RV motor starter protector	Innovations 3RV2/3RT2 Order No.	Order Quantity

Link modules for motor starter protector to contactor ${ }^{2)}$

1) Transverse auxiliary switches cannot be installed when using this terminal block
2) The link modules for motor starter protector to contactor cannot be used for the 3RV2. 21-4PA1., 3RV2. 21-4FA1., 3RV27 and 3RV28 motor starter protectors
3) A spacer for height compensation on AC contactors size SO is optionally available

Note
Size SO link modules can be used up to max. 32 A. Size S2 link modules can be used up to 65A max.

Accessories

Mounting accessories

Selection and ordering data

1) The link modules for motor starter protector to soft starter and for motor starter protector to solid-state contactor cannot be used for the 3RV2. 21-4PA1., 3RV2. 21-4FA1., 3RV27 and 3RV28 motor starter

Note:
So link modules can be used up to max. 32 A.
S2 link modules can be used up to max. 65 A.

Actuating voltage of contactor	Size		Order No.	PU	PS*	Weight
	3RT2 contactors	3RV2 motor starter protectors		$\begin{aligned} & \text { (UNIT, } \\ & \text { SET, M) } \end{aligned}$		approx.

Hybrid link modules for motor starter protector to contactor ${ }^{1)}$

For mechanical and electrical connection
between motor starter protector with screw terminals
and contactor with spring-type terminals
Single-unit packaging

$A C / D C$	$S O O$	SOO	3RA29 11-2FA00	1	1 unit	0.029
$\left.A^{2}\right)^{2} / D C$	$S O$	SO	3RA29	21-2FA00	1	1 unit

3RA29 11-2FA00

Multi-unit packaging

$\begin{aligned} & \mathrm{AC} / \mathrm{DC} \\ & \mathrm{AC}^{2} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & \text { Soo } \\ & \text { S0 } \end{aligned}$	$\begin{aligned} & \text { SOO } \\ & \text { SO } \end{aligned}$	$\begin{aligned} & \text { 3RA29 11-2F } \\ & \text { 3RA29 21-2F } \end{aligned}$	1 1	10 units 10 units	$\begin{aligned} & 0.290 \\ & 0.560 \end{aligned}$
Spacers ${ }^{2}$ for compensating the height on AC contactors						
Single-unit packaging Multi-unit packaging	$\begin{aligned} & \text { SO } \\ & \text { SO } \end{aligned}$	$\begin{aligned} & \text { SO } \\ & \text { SO } \end{aligned}$	$\begin{aligned} & \text { 3RA29 11-1CA00 } \\ & \text { 3RA29 11-1C } \end{aligned}$	1 1	1 unit 5 units	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$

3RA29 21-2FA00

1) The hybrid link modules for motor starter protector to contactor cannot be used for the 3RV2. 21-4PA1., 3RV2. 21-4FA1., 3RV27 and 3RV28 motor starter protectors or reversing starters.
2) A spacer for height compensation on AC contactors size SO is optionally available See 3RA2911-1CA00
3) To assemble the starter between a motor starter protector and a soft starter in size S2, the 3RA2932-1AC00 standard mounting rail adapter must be used.
4) It is only permissible to assemble the feeder between the motor starter protector and the soft starter in Size S3 on a mounting plate.

3RV Motor Starter Protectors

Accessories

Mounting accessories

Selection and ordering data

Type	Design	For SIRIUS MSP size	Order No.	Order Quantity	Weight approx. (kg)
Isolator module ${ }^{1)}$					
3RV2938-1A 3RV29 28-1A without padlock	Visible isolating distance for isolating individual motor starter protectors from the network, lockable in isolating position.	$\begin{aligned} & \text { S00, S0 } \\ & \text { S2 }^{1)} \end{aligned}$	3RV29 28-1A 3RV29 38-1A	1 unit 1 unit	0.132 0.368
Auxiliary terminal, 3 pole					
3RT19 46-4F	For connection of auxiliary and control cables to the main conductor connections	S3	3RT29 46-4F	1 unit	0.10

Covers

3RV1 (size S3) with 3RT19 46-4EA1

Terminal cover
Additional touch guard
for box terminals

to be fitted at the box terminals	S2	3RT29 36-4EA2	1 unit	0.014
(2 units can be mounted per MSP)	S3	3RT29 46-4EA2	1 unit	0.019

3RV29 28-4AA00

3RV29 08-4AA10
Terminal cover
for cable lug and For maintaining the required
voltage clearance and as protection
against the equipment being touched
if distant box terminals are used
for cable lug and bar connection S3

3RT19 46-4EA1
1 unit
0.03

Terminal cover

for devices with ring lug

- Main current level

SOO, SO ${ }^{2}$
3RV29 28-4AA00
1 unit
0.01
terminal connection

- For transverse auxiliary switches

SOO, SO ${ }^{2}$
3RV29 08-4AA10
1 unit
0.01

Scale cover
For covering the current setting
scale. Packing unit: Bag with 10

SOO, SO, S2 ${ }^{3)}$ 3RV29 08-OP
10 units
scale covers. S3
3RV19 08-0P
10 units

Fixing Material					10 units	0.10
3RB1900-0B	Push-in lugs For screwing the motor starter protector onto mounting plates.	Two units are required for each motor starter protector.	S00	3RB19 00-0B		
Tools for opening spring-type terminals by hand						
3RA29 08-1A	Screwdriver For all SIRIUS devices with spring terminals	Length approx. 200 mm , $3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, titanium gray/black partially insulated	$\begin{aligned} & \text { S00, S0, } \\ & \text { S2 } \end{aligned}$	3RA29 08-1A	1 unit	0.045

1) The isolator module for size S 2 can be used only with 3 RV 2 motor starter protectors/circuit breakers up to max. 65 A . Similarly, it cannot be used with the transverse auxiliary switch or three-phase busbars.
2) Compatible with 3 RV20 motor starter protectors.
3) Compatible with 3RV20, 3RV21, and 3RV24 motor starter protectors.

Accessories

Rotary operating mechanisms

Selection and ordering data

	Type	Details	For SIRIUS MSP size	Order No.	Approx. Wt. (kg)
Door-coupling rotary operating mechanisms for Classic and Innovations					
3RV29 26-0B	The door-coupling rotary operating mechanisms consist of a knob, a coupling driver and a 130/330 mm long extension shaft ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$). The door-coupling rotary operating mechanisms are designed to degree of protection IP64. The door locking device prevents accidental opening of the control cabinet door in the ON postion of the motor starter protector. The OFF position can be locked with up to 3 padlocks.				0.111
	Door-coupling rotary operating mechanisms (black)	Extension shaft 130 mm	S00, S0	3RV29 26-0B	
			S2, S3	3RV29 26-0B	0.1
		Extension shaft 330 mm	S00, S0	3RV29 26-0K	0.324
			S2, S3	3RV29 26-0K	0.3
	EMERGENCY STOP door-coupling rotary operating mechanisms (red/yellow)	Extension shaft 130 mm	S00, S0	3RV29 26-0C	0.110
			S2, S3	3RV29 26-0C	0.1
		Extension shaft 330 mm	S00, S0	3RV29 26-0L	0.316
			S2, S3	3RV29 26-0L	0.3
Door-coupling rotary operating mechanisms for arduous conditions					
3RV29 26-2C	The door-coupling rotary operating mechanisms consist of a knob, a coupling driver, an extension shaft of 300 mm length ($8 \mathrm{~mm} \times 8 \mathrm{~mm}$), a spacer and two metal brackets, into which the MSP is inserted. The door-coupling rotary operating mechanisms are designed for degree of protection IP65. The door locking device reliably prevents accidental opening of the control cabinet door in the ON position of the MSP. The OFF postion can be locked with up to 3 padlocks. Laterally mountable auxiliary releases and two-pole auxiliary switches can be used. The door-coupling rotary operating mechanisms thus meet the requirements for isolating functions according to IEC 60 947-2.				
	Door-coupling rotary operating mechanisms (gray)		S00, S0	3RV29 26-2B	1.2
			S2	3RV29 36-2B	1.6
			S3	3RV29 46-2B	1.7
	EMERGNCY STOP door-coupling rotary operating mechanisms (red/yellow)		S00, S0	3RV29 26-2C	1.2
			S2	3RV29 36-2C	1.5
			S3	3RV29 46-2C	1.7

Enclosures and front plates
No UL/CSA certification

	Type	Details	For SIRIUS MSP size	Order No.	Approx. Wt. (kg)
Front Plates					0.08
3RV19 23-4B $+3 R V 19$ 23-4G	Molded-plastic front plate with rotary operating mechanism, lockable. For actuation of 3RV motor starter protectors in any enclosure	For actuation of 3RV MSPs in any enclosure, degree of protection IP55 (front plate)	$\begin{aligned} & \text { S00, S0 } \\ & \text { S2, S3 } \end{aligned}$	3RV19 23-4B	
	Molded-plastic front plate with EMERGENCY STOP door-coupling rotary operating mechanisms (red/yellow)	EMERGENCY-STOP operation of 3RV MSPs in any enclosure, degree of protection IP55	$\begin{aligned} & \hline \text { S00, S0 } \\ & \text { S2, S3 } \end{aligned}$	3RV19 23-4E	0.08
	Holders for front plates	Holder is mounted on front plate, MSP size SOO or SO with or without accessories is snapped in	S00, SO	3RV19 23-4G	0.19
Enclosures for wall mounting ${ }^{2)}$					
3RV19 23-1CA00	Molded-plastic enclosure for wall mounting with rotary operating mechanism, lockable, with metric cable gland	Degree of protection IP55, with N and PE terminals, lockable in 0 position overall width: $\mathbf{5 4} \mathbf{~ m m}$ (for switch + lateral auxiliary switch)	S00, S0	3RV19 23-1CA00	0.26
		$\begin{aligned} & \hline \mathbf{7 2 ~ m m ~ (f o r ~ s w i t c h ~ + ~ l a t e r a l ~ a u x i l i a r y ~ s w i t c h ~} \\ & \text { + auxiliary release) } \end{aligned}$	S00, SO	3RV19 23-1DA00	0.30
3RV19 23-1DA01	Cast aluminum surface-mount enclosure with rotary operating mechanism, lockable, with metric cable gland	```Degree of protection IP65, with PE terminals, \({ }^{\text {, }}\) lockable in 0 position overall width: \(72 \mathbf{~ m m}\) (for MSP + lateral auxiliary switch + auxiliary release)```	S00, SO	3RV19 23-1DA01	1.02
	Cast aluminum surface-mount enclosure with EMERGENCY-OFF rotary operating mechanism, red/yellow, lockable, with metric cable gland	```Degree of protection IP65, with PE terminals, \({ }^{\text {¹ }}\) lockable in 0 position overall width: 72 mm (for MSP + lateral auxiliary switch + auxiliary release)```	S00, S0	3RV19 23-1GA01	1.01

Overview

The 3RV29 infeed system is a convenient means of energy supply and distribution for a group of several motor starter protectors or complete motor starters with a screw or springtype connection in sizes S00 and SO (exception: this system cannot be used for the 3RV21).
Siemens now has UL/CSA approvals for using the 3RV27 and 3RV28 UL489 Circuit Breakers with the 3RV2917 Infeed System and with the 3RV1915 comb-busbars. Up until now it was limited to standard 3RV20 MSPs. These new approvals will greatly enhance application flexibility for customers. Not only can they use the bus systems to feed motor loads, they can now feed non-motor loads which should allow the bus systems to feed complete control panel applications. Customers will need to remove the line side terminals on any 3RV27 or 28s that will be fed by the bus system.
The 3RV29 infeed system is approved in accordance with IEC to 500 V . It is also UL approved and authorized for "SelfProtected Combination Motor Controller" (Type E starter) as well as for Type F starter (Type E starter + contactor). The system is based on a basic module complete with a lateral incoming unit (three-phase busbar with infeed). This infeed with springtype terminals is mounted on the right or left depending on the version and can be supplied with a maximum conductor cross section of 4 AWG (with end sleeve).

A basic module has two sockets onto each of which a motor starter protector can be snapped.

Expansion modules are available for extending the system (three-phase busbars for system expansion). The individual modules are connected through an expansion plug.
The electrical connection between the three-phase busbars and the motor starter protectors is implemented through plug-in connectors. The complete system can be mounted on a TH 35 standard mounting rail to EN 60715 and can be expanded as required up to a maximum current carrying capacity of 63 A . The system is mounted extremely quickly and easily thanks to the simple plug-in technique. Thanks to the lateral infeed, the system also saves space in the control cabinet. The additional overall height required for the infeed unit is only 30 mm . The alternative infeed possibilities on each side offer a high degree of flexibility for configuring the control cabinet: Infeed on left-hand or right-hand side as well as infeed on one side and outfeed on the other side to supply further loads are all possible.
A terminal block with spring-type connections in combination with a standard mounting rail enables the integration of not only SIRIUS motor starter protectors but also single-phase, 2-phase and 3-phase components such as 5SY miniature circuit breakers or SIRIUS relay components.

3RV29 infeed system

(1) Three-phase busbars with infeed

A three-phase busbar with infeed unit is required for connecting the energy supply. This module comprises one infeed module and 2 sockets which each accept one motor starter protector. A choice of two versions with infeed on the left or right is available. The infeed is connected using spring-type terminals. The spring-type terminals permit conductor cross-sections of up to $25 \mathrm{~mm}^{2}$ with end sleeves. An end cover is supplied with each module.

2) Three-phase busbars for system expansion

The three-phase busbars for system expansion allow the system to be expanded. There is a choice of modules with 2 or 3 sockets. The system can be expanded as required up to a maximum current carrying capacity of 63 A . An expansion plug is supplied with each module.

(3)a Expansion plug

The expansion plug is used for electrical connection of adjacent three-phase busbars. The current carrying capacity of this plug equals 63 A. One expansion plug is supplied with each threephase busbar for system expansion. Additional expansion plugs are therefore only required as spare parts.

(3)b Extra-wide expansion plug

The wide expansion plug makes the electrical connection between two three-phase busbars, thus performing the same function as the 3RV29 17-5BA00 expansion plug; the electrical characteristics (e.g. a current carrying capacity of 63 A) are identical.
The 3RV29 17-5E expansion plug is 10 mm wider than the 3RV29 17-5BA00 expansion plug, hence in the plugged state there is a distance of 10 mm between the connected threephase busbars. This distance can be used to lay the auxiliary current and control current wiring ("wiring duct"). The motor starter protector and contactor can be wired from underneath, which means that the complete cable duct above the system can be omitted.

(4) End cover

The end cover is used to cover the three-phase busbar at the open end of the system. This cover is therefore only required once for each system. An end cover is supplied with each threephase busbar system with infeed. Further end covers are therefore only required as spare parts.

Terminal block for device infeed

A new addition to the system is a connector for outfeeding to a device slot within a module. This offers the option not only of connecting three-phase loads to the system, but also of integrating single-phase loads into the infeed system.

(6) Plug-in connector

The plug-in connector is used for the electrical connection between the three-phase busbar and the 3RV2 motor starter protector. These plug-in connectors are available in versions for screw or spring-type terminals.

(7) Contactor base

Motor starters can be assembled in the system using the contactor base. The contactor bases are suitable for contactors sizes SOO and SO with spring-type and screw terminals and are simply snapped onto the three-phase busbars. Direct-on-line starters and reversing starters are possible. One contactor base is required for direct-on-line starters and two are required for reversing starters.
To assemble motor starters for reversing starters, the contactor bases can be arranged alongside each other (90 mm overall width). In this case the mechanical interlocking of the contactors is possible. The contactor bases are also suitable for soft starters size SOO and SO with screw connection.

The infeed system is designed for mounting on a 35 mm standard mounting rail with 7.5 mm overall depth. This standard mounting rail gives the contactor base a stable mounting surface to sit on. If standard mounting rails with a depth of 15 mm are used, the spacer connected to the bottom of the contactor base must be knocked out and plugged into the mating piece that is also on the underside. Then the contactor base also has a stable mounting surface. When standard mounting rails with a depth of 7.5 mm are used, the spacer has no function and can be removed.

The link modules are used for direct start motor starters, in which case the use of a contactor base is not absolutely necessary. Motor starter protector and contactor assemblies can then be directly snapped onto the sockets of the three-phase busbars. For starters of size SOO and SO, the corresponding 3RA19 21-1...., 3RA29 11-2...., 3RA29 21-1.... or 3RA29 21-2.... link modules should generally be used.

(8) Terminal block

The 3RV29 17-5D terminal block enables the integration of not only SIRIUS motor starter protectors but also single-phase, 2 -phase and 3-phase components. Using the terminal block the 3 phases can be fed out of the system; which means that singlephase loads can also be integrated in the system. The terminal block is plugged into the slot of the expansion plug and thus enables outfeeding from the middle or end of the infeed system. The terminal block can be rotated through 180° and be locked to the support modules of the infeed system. The 3RV19 17-7B 45 mm standard mounting rail for screwing onto the support plate is available in addition in order to be able to plug the sin-gle-phase, 2-phase and 3-phase components onto the infeed system.

Accessories
3RV29 infeed system

Selection and ordering data

[^2]
Accessories

3RV29 infeed system

3RV19 17-7B

1) The expansion plug is included in the scope of supply of the 3RV29 17-4 three-phase busbars for system expansion.
2) The end cover is included in the scope of supply of the 3RV29 17-1 threephase busbars with infeed system.

General Data

Permissible rated data of devices approved for North America (UL/CSA)

Motor starter protectors of the 3RV2 series are approved for UL/CSA, and according to UL508/UL 60947-4-1 and CSA C22.2 No. 14/CSA C22.2 No. 60947-4-1 they can be used on their own or as load feeders in combination with a contactor.

These motor starter protectors can be used as "Manual Motor Controllers" for "Group Installations", as "Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations" and as "Self-Protected Combination Motor Controllers" (Type E).

3RV motor starter protectors as "Manual Motor Controllers"

If used as a "Manual Motor Controller", the motor starter protector is always operated in combination with an upstream short-circuit protection device. Approved fuses or a circuit breaker according to UL 489/CSA C22.2 No. 5 can be used. These devices must be dimensioned according to the National Electrical Code (UL) or Canadian Electrical Code (CSA).

Motor starter protectors	V	hp rating ${ }^{1)}$ for FLA ${ }^{\text {2 }}$ max.		Rated current I_{n} A	$\begin{aligned} & 240 \mathrm{~V} \text { AC } \\ & \text { UL/CSA } \\ & I_{\mathrm{bc}}{ }^{3)} \\ & \mathrm{kA} \end{aligned}$		$\begin{aligned} & 480 \mathrm{~V} \mathrm{AC} \\ & \text { UL/CSA } \\ & I_{\mathrm{bc}}{ }^{3)} \\ & \mathrm{kA} \end{aligned}$		$\begin{aligned} & \mathbf{6 0 0} \text { V AC } \\ & \text { UL/CSA } \\ & I_{\mathrm{bc}}{ }^{3)} \\ & \text { kA } \\ & \hline \end{aligned}$		
Type		1-phase	3-phase								
Size S00											
3RV2011, 3RV2111, 3RV2311, 3RV2411				$\begin{aligned} & 0.16 \ldots 2 \\ & 2.5 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$		
$\begin{aligned} & 16 \mathrm{~A}, 480 \mathrm{~V} \\ & 12.5 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \\ & 230 \\ & 460 \end{aligned}$	2 2 --	3 5 10	$\begin{aligned} & \hline 4 \\ & 5 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$		
	575/600		10	$\begin{aligned} & \hline 8 \\ & 10 \\ & 12.5 \\ & 16 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & - \end{aligned}$		
Size S0											
3RV2021, 3RV21 FLA ${ }^{2}$ max. $40 \mathrm{~A}, 480 \mathrm{~V}$	RV2321, 3R $\begin{aligned} & 115 \\ & 200 \\ & 230 \\ & 460 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & \mathbf{2 4 2 1} \\ & \hline 3 \\ & 5 \\ & 71 / 2 \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & 5 \\ & 10 \\ & 10 \\ & 30 \\ & -- \end{aligned}$	$\begin{aligned} & 0.16 \ldots 12.5 \\ & 16 \ldots 25 \\ & 28,32 \\ & 36,40 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 50 \\ & 12 \end{aligned}$		$\begin{aligned} & 30 \\ & --/(30)^{4)} \end{aligned}$		
Size S2					3RV2031 3RV2032		3RV2031	3RV2032	3RV2031	3RV2032	
				14	65	100	65	100	2525	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	
3RV2031, 3RV2131, 3RV2331, 3RV2032, 3RV2332				1720	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	100	65	100			
				100		$\begin{aligned} & 65 \\ & 65 \end{aligned}$	100	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$		
$\begin{aligned} & \text { FLA }{ }^{2)} \text { MAX. 65A } \\ & 600 \mathrm{~V} \\ & \text { NEMA size } 2 \end{aligned}$	115/120	5	10		20 25		65			100	100
	200/208	10	20	32	65	100	65	100	25	25	
	230/240	15	25	36	65	100	65	100	25	25	
	460/480	-	50	40	65	100	65	100	22	22	
	575/600	-	60	45	65	100	65	100	22	22	
	a) with max 225 A Class J fuse b) with max 250A Class J fuse			52 59 65	65	100	65	100	22	22	
				$\begin{aligned} & 65^{\text {a) }} \\ & 65^{\text {b) }} \end{aligned}$	$100{ }^{\text {a) }}$	$65^{\text {a) }}$	$100{ }^{\text {a) }}$	$20^{\text {a) }}$	$25^{\text {a) }}$		
				$100{ }^{\text {b }}$	$65^{\text {b) }}$	$100{ }^{\text {b }}$	$20^{\text {b) }}$	$25^{\text {b) }}$			

3RV20 41/3RV20 42, 3RV21 42, 3RV23 41/3RV23 42
FLA ${ }^{2)}$ max. 99 A ,
600 V
NEMA size 3

115	$71 / 2$	--
200	20	30
230	20	40
460	--	75
$575 / 600$	--	100

			30
16	65	65	30
20	65	65	30
25	65	65	30
32	65	65	30
40	65	65	30
50	65	65	30
63	65	65	30
75	65	65	10
90	65	65	10
100			

[^3]
General Data

3RV - up to 100 A (Domestic applications)

3RV motor starter protectors as "Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations"

The application as "Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations" is only available from UL.
CSA does not recognize this approval! When the motor starter protector is used as a "Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations", it must always be combined with upstream short-circuit protection. As short-cir-cuit-protection device, approved fuses or a motor starter
protector according to UL 489 can be used.
These devices must be dimensioned according to the National Electrical Code.

The 3RV motor starter protectors are approved as "Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations" under the following file number:

- UL File No. 47705, CCN: NLRV.

Motor starter protectors Type	V	hp rating ${ }^{1)}$ for FLA ${ }^{\text {2 }}$ max.		Rated current I_{n} A	$\begin{aligned} & 240 \mathrm{~V} \text { AC } \\ & \text { UL } \\ & I_{\mathrm{bc}}{ }^{3)} \\ & \mathrm{kA} \end{aligned}$		Up to 480Y/277V AC UL $I_{\mathrm{bc}}{ }^{3)}$ kA		Up to 600Y/347V AC UL $I_{\mathrm{bc}}{ }^{3)}$ kA	
		1-phase	3-phase							
Size S00										
3RV20 11				$\begin{array}{lll} 0.16 \ldots 0.8 \\ 1 \\ 1.25 & \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	
$480 \mathrm{Y} / 277 \mathrm{~V}$ NEMA size 0	$\begin{aligned} & 115 / 120 \\ & 200 / 208 \\ & 230 / 240 \\ & 460 / 480 \\ & 575 / 600 \end{aligned}$	122	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2.5 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	
				$\begin{aligned} & \hline 4 \\ & 5 \\ & 6.3 \\ & 8 \\ & 16 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	
Size S0										
3RV20 21				$\begin{array}{ll} 0.63 \ldots 1.6 \\ 2 & \\ 2.5 & \end{array}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & \hline \end{aligned}$	
$\begin{aligned} & 25 \mathrm{~A}, 480 \mathrm{Y} / 277 \mathrm{~V} \\ & 12.5 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 115 / 120 \\ & 200 / 208 \\ & 230 / 240 \\ & 460 / 480 \\ & 575 / 600 \end{aligned}$	2333	$\begin{aligned} & 5 \\ & 7.5 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.2 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	
NEMA size 1				6.3 8 10 12.5 25 32	$\begin{aligned} & \hline 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 50 \end{aligned}$		$\begin{aligned} & \hline 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 30 \\ & - \\ & - \end{aligned}$	
Size S2					3RV2031	3RV2032	3RV2031	3RV2032	3RV2031	3RV2032
3RV2031, 3RV2032, 3RV2431				$\begin{aligned} & 14 \\ & 17 \\ & 20 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$
FLA 2) MAX. 65A	115/120	5	10	25		100		100	25	
600 V	200/208	10	20	32	65	100	65	100100	25	25
NEMA size 2	230/240	15	25	36	65	100	65		$25 \quad 25$	
	460/480		50	40	65	100	65	100	$22 \quad 22$	
	575/600	-	60	45	65	100	65	100	22	22
				52	65	100	65	100	22	22
				59	65	100	30	42	--	--
				65	65	100	30	42	--	--
Size S3										
3RV20 4.				$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	
$\begin{aligned} & 100 \mathrm{~A}, 480 \mathrm{~V} \\ & 75 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 / 208 \\ & 230 / 240 \\ & 460 / 480 \end{aligned}$	20 20 --	30 40 75	$\begin{aligned} & 32 \\ & 40 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	
NEMA size 3	575/600	--	75	$\begin{aligned} & 63 \\ & 75 \\ & 90 \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \hline 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & \hline 30 \\ & 30 \\ & -- \\ & \hline-- \end{aligned}$	

[^4]
General Data

3RV motor starter protectors as "Self-Protected Combination Motor Controllers (Type E)"

UL 508/UL 60947-4-1 approval demands 1-inch clearance and 2-inch creepage distance at line side for "Self-Protected Combination Motor Controller Type E".
Therefore, 3RV20 motor starter protectors of sizes S00 to S2 are approved according to UL 508/UL 60947-4-1 in combination with the terminal blocks listed below.

CSA does not require these extended clearances and creepage distances. According to CSA, these terminal blocks can be omitted
when the device is used as a "Self-Protected Combination Motor Controller".
The 3RV20 motor starter protectors are approved as "Self-Protected Combination Motor Controllers" under the following file numbers:

- UL File No. E156943, CCN: NKJH
- CSA Master Contract 165071, Product Class: 321108

Motor starter protectors Type	V	hp rating ${ }^{1)}$ for FLA ${ }^{2)}$ max.		Rated current I_{n} A	Up to $\mathbf{2 4 0}$ V AC UL/CSA $I_{\mathrm{bc}}{ }^{3)}$		Up to 480 UL/CSA kA	$\begin{aligned} & \mathrm{Y} / 277 \mathrm{~V} \text { AC } \\ & I_{\mathrm{bc}}{ }^{3)} \end{aligned}$	Up to 600 UL/CSA kA	$\begin{aligned} & \text { Y/347 V AC } \\ & I_{\mathrm{bc}}{ }^{3)} \end{aligned}$
Size S00										
$\begin{aligned} & \text { 3RV2011 + 3RV2 } \\ & \text { FLA }^{2)} \text { max. } 16 \mathrm{~A} \\ & 480 \mathrm{~V} \\ & \text { NEMA size } 0 \end{aligned}$	$\begin{aligned} & \mathbf{- 1 \mathbf { H } ^ { 4 }) ^ { 5 })} \\ & 115 \\ & 200 \\ & 230 \\ & 230 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 3 \\ 5 \\ 10 \\ 10 \end{gathered}$	$\begin{aligned} & 0.16 \ldots 12.5 \\ & 16 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \end{aligned}$		30	
Size S0										
3RV2021 + 3RV29 28-1H ${ }^{\text {4) 5) }}$				$\begin{aligned} & 0.63 \text {... } 1.6 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	
$\begin{aligned} & 25 \mathrm{~A}, 480 \mathrm{~V} \\ & 12.5 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \\ & 230 \\ & 460 \end{aligned}$	3 3	$\begin{aligned} & 7.5 \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 4 \\ & 5 \end{aligned}$		65	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	
NEMA size 1	575/600	-	-	$\begin{aligned} & \hline 6.3 \\ & 8 \\ & 10 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	
				$\begin{aligned} & \hline 12.5 \\ & 16 \\ & 20 \\ & 22 \\ & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 50 \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 65 \\ & 50 \end{aligned}$		$\begin{aligned} & 30 \\ & \text { — } \\ & \hline \end{aligned}$	
Size S2					3RV2031 3RV2032		3RV2031	3RV2032	3RV2031	3RV2032
3RV2031/3RV2032 + 3RV2938-1K ${ }^{\text {4 }}$				$\begin{aligned} & 14 \\ & 17 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$
FLA 2) MAX. 65A	115/120	5	10	25		100	65	100	25	
600 V	200/208	10	20	32	65	100	65	100	25	25
NEMA size 2	$\begin{aligned} & 230 / 240 \\ & 460 / 480 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & 15 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 36 \\ & 40 \\ & 45 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & \hline \end{aligned}$
				52	65	100	65	100	22	22
				59	65	100	20	30	-	22
				65	65	100	20	30	-	-

Size S3
3RV2041 + 3RT2946-4GA07 ${ }^{\text {4) }}$

FLA $^{2)}$ max.	115	10	--
100 A, 480 V	200	20	30
75 A, 600 V	230	20	40
	460	--	75
NEMA size 3	$575 / 600$	--	75

1) HP rating = Power rating in horse power (maximum motor rating).
2) $\mathrm{FLA}=$ Full Load Amps/Motor full load current.
3) Corresponds to "short-circuit breaking capacity" according to UL/CSA.
4) Not required for CSA.
5) Alternatively, the 3RV2928-1K phase barrier can also be used.

General Data

3RV27/28 circuit breakers

3RV27/28 circuit breakers

These circuit breakers are approved according to UL 489 and CSA C22.2 No. 5-02 for 100% rated current (100 \% rated breaker). They can be used therefore as upstream short-circuit protective devices for "Manual Motor Controllers" and "Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations".

Circuit breakers Type	Rated current I_{n} A	$\begin{aligned} & 240 \text { V AC } \\ & \text { UL/CSA } \\ & I_{\mathrm{bc}}{ }^{11} \quad \mathrm{kA} \end{aligned}$	480 Y/277 V AC UL/CSA $I_{\mathrm{bc}}{ }^{1)} \mathrm{kA}$	480 V AC UL/CSA $I_{\mathrm{bc}}{ }^{1)} \mathrm{kA}$	600 Y/347 V AC UL/CSA $I_{\mathrm{bc}}{ }^{1)} \mathrm{kA}$
Size S00/S0					
3RV27 11 / 3RV28 11 3RV27 21 / 3RV28 21	$\begin{array}{lll} 0.16 & \ldots . & 1.25 \\ 1.6 & \\ 2 & \\ 2.5 & \\ 3.2 & \\ 4 & \\ 5 & \\ 6.3 & \\ 8 & \\ 10 & \\ 12.5 & \\ 15 & \\ 20 & \\ 22 & & \end{array}$	65 65 65 65 65 65 65 65 65 65 65 65 50 50	65 65 50 50	65 65 65 65 65 65 65 65 65 65 65 65 50 50	10 10 10 10 10 10 10 10 10 10 10 -- -- -
Size S3					
3RV27 42	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 35 \\ & 40 \\ & 45 \\ & 50 \\ & 60 \\ & 70 \end{aligned}$	65 65	65 65 65	65 65 65 65 65 -- -- -- -- --	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 10 \end{aligned}$

[^5]
General Data

Technical specifications

Short-circuit breaking capacity $I_{\text {cu }}, I_{\text {cs }}$ acc. to IEC 60947-2
This table shows the rated ultimate short-circuit breaking capacity I_{cu} and the rated service short-circuit breaking capacity $I_{\text {cs }}$ of the 3RV2 motor starter protectors/circuit breakers with different inception voltages dependent of the rated current I_{n} of the motor starter protectors/circuit breakers.
Power can be supplied to the motor starter protectors/circuit breakers via the terminals at the top or at the bottom without restricting the rated data. If the short-circuit current at the place of installation exceeds the rated short-circuit breaking capacity of the motor starter protector/circuit breaker as specified in the
table, a back-up fuse is required. It is also possible to install an upstream motor starter protector/circuit breaker with a limiter function.

The maximum rated current for the back-up fuse is specified in the tables. The rated ultimate short-circuit breaking capacity then applies as specified on the fuse.

Fuseless construction

Motor starter protector contactor combinations for short-circuit currents up to 150 kA can be ordered in the form of fuseless load feeders according to Chapter 6.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Motor starter protectors/circuit breakers} \& \multirow[t]{2}{*}{Rated current I_{n}} \& \multicolumn{3}{|l|}{Up to $\mathbf{2 4 0} \mathrm{V} \mathrm{AC}^{1)}$} \& \multicolumn{3}{|l|}{$$
\begin{aligned}
& \text { Up to } \\
& 400 \text { V }^{1 /} / 415 \mathrm{~V} \mathrm{AC}^{2)}
\end{aligned}
$$} \& \multicolumn{3}{|l|}{Up to
$$
440 \mathrm{~V}^{1} / 460 \mathrm{~V} \mathrm{AC}^{2)}
$$} \& \multicolumn{3}{|l|}{$$
\begin{aligned}
& \text { Up to } \\
& 500 \mathrm{~V}^{1} / 525 \mathrm{~V} \mathrm{AC}^{2)}
\end{aligned}
$$} \& \multicolumn{3}{|l|}{Up to $690 \mathrm{~V} \mathrm{AC}{ }^{1)}$
breakers)}

\hline \& \& $I_{\text {cu }}$

kA \& I CS

kA \& Max. fuse (gL/gG) A \& $I_{\text {cu }}$
kA \& I CS

kA \& Max. fuse $\left.(\mathrm{gL} / \mathrm{gG})^{3}\right)$
\qquad A \& $I_{\text {cu }}$
kA \& I CS

kA \& Max. fuse $(\mathrm{gL} / \mathrm{gG})^{3)}$
\qquad A \& I cu

kA \& I CS

kA \& | Max. fuse $\left.(\mathrm{gL} / \mathrm{gG})^{3}\right)$ |
| :--- |
| A | \& $I_{\text {cu }}$

kA \& $I_{\text {cs }}$

kA \& | Max. fuse $(\mathrm{gL} / \mathrm{gG})^{3) 4}$ |
| :--- |
| A |

\hline \multicolumn{17}{|l|}{Size S00}

\hline \multirow[t]{9}{*}{3RV2.11} \& 0.16 ... 1 \& 100 \& 100 \& - \& 100 \& 100 \& - \& 100 \& 100 \& - \& 100 \& 100 \& - \& 100 \& 100 \& -

\hline \& 1.25; 1.6 \& 100 \& 100 \& \bigcirc \& 100 \& 100 \& - \& 100 \& 100 \& - \& 100 \& 100 \& - \& 100 \& 100 \&

\hline \& 2; 2.5 \& 100 \& 100 \& - \& 100 \& 100 \& - \& 100 \& 100 \& - \& 100 \& 100 \& - \& 10 \& 10 \& 25

\hline \& 3.2; 4 \& 100 \& 100 \& - \& 100 \& 100 \& - \& 50 \& 10 \& - \& 100 \& 100 \& - \& 10; 6 \& 10; 4 \& 32

\hline \& 5; 6.3 \& 100 \& 100 \& - \& 100 \& 100 \& - \& 50 \& 10 \& - \& 100 \& 100 \& - \& 6 \& 4 \& 32

\hline \& 8 \& 100 \& 100 \& - \& 50 \& 12.5 \& - \& 50 \& 50 \& 63 \& 42 \& 42 \& 63 \& 6 \& 4 \& 50

\hline \& 10 \& 100 \& 100 \& - \& 50 \& 12.5 \& - \& 50 \& 50 \& 80 \& 42 \& 42 \& 63 \& 6 \& 4 \& 50

\hline \& 12 \& 100 \& 100 \& - \& 50 \& 12.5 \& - \& 50 \& 50 \& 80 \& 42 \& 42 \& 80 \& 4 \& 4 \& 63

\hline \& 16 \& 100 \& 100 \& - \& 55 \& 30 \& 100 \& 50 \& 10 \& 80 \& 10 \& 5 \& 80 \& 4 \& 4 \& 63

\hline \multicolumn{17}{|l|}{Size S0}

\hline \multirow[t]{8}{*}{3RV2.21} \& 16 \& 100 \& 100 \& - \& 55 \& 25 \& 100 \& 50 \& 10 \& 80 \& 10 \& 5 \& 80 \& 4 \& 2 \& 63

\hline \& 20 \& 100 \& 100 \& - \& 55 \& 25 \& 125 \& 50 \& 10 \& 80 \& 10 \& 5 \& 80 \& 4 \& 2 \& 63

\hline \& 22 \& 100 \& 100 \& - \& 55 \& 25 \& 125 \& 50 \& 10 \& 100 \& 10 \& 5 \& 80 \& 4 \& 2 \& 63

\hline \& 25 \& 100 \& 100 \& - \& 55 \& 25 \& 125 \& 50 \& 10 \& 100 \& 10 \& 5 \& 80 \& 4 \& 2 \& 63

\hline \& 28 \& 100 \& 100 \& - \& 55 \& 25 \& 125 \& 30 \& 10 \& 125 \& 10 \& 5 \& 100 \& 4 \& 2 \& 100

\hline \& 32 \& 100 \& 100 \& - \& 55 \& 25 \& 125 \& 30 \& 10 \& 125 \& 10 \& 5 \& 100 \& 4 \& 2 \& 100

\hline \& 36 \& 100 \& 100 \& \bigcirc \& 20 \& 10 \& 125 \& 12 \& 8 \& 125 \& 6 \& 3 \& 100 \& 3 \& 2 \& 100

\hline \& 40 \& 100 \& 100 \& - \& 20 \& 10 \& 125 \& 12 \& 8 \& 125 \& 6 \& 3 \& 100 \& 3 \& 2 \& 100

\hline \multicolumn{17}{|l|}{Size S2}

\hline \multirow[t]{7}{*}{3RV2.31} \& 14; 17 \& 100 \& 100 \& - \& 65 \& 30 \& 100 \& 50 \& 25 \& 100 \& 12 \& 6 \& 63 \& 5 \& 3 \& 63

\hline \& \& 100 \& 100 \& \bigcirc \& 65 \& 30 \& 100 \& 50 \& 25 \& 100 \& 12 \& 6 \& 80 \& 5 \& 3 \& 80

\hline \& 25 \& 100 \& 100 \& \bigcirc \& 65 \& 30 \& 100 \& 50 \& 15 \& 100 \& 12 \& 6 \& 80 \& 5 \& 3 \& 80

\hline \& 32; 36 \& 100 \& 100 \& - \& 65 \& 30 \& 125 \& 50 \& 15 \& 125 \& 10 \& 5 \& 100 \& 4 \& 2 \& 100

\hline \& 40; 45 \& 100 \& 100 \& - \& 65 \& 30 \& 160 \& 50 \& 15 \& 125 \& 10 \& 5 \& 100 \& 4 \& 2 \& 100

\hline \& 52 \& \& 100 \& \& 65 \& 30 \& 160 \& 50 \& 15 \& 125 \& 10 \& 5 \& 125 \& 4 \& 2 \& 125

\hline \& 59 ... 80 \& Valu \& s on r \& equest \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multicolumn{17}{|l|}{Size S2, with increased switching capacity}

\hline \multirow[t]{5}{*}{3RV2.32} \& 14; 17 \& 100 \& 100 \& - \& 100 \& 50 \& - \& 65 \& 30 \& 100 \& 18 \& 10 \& \& \& \&

\hline \& 20; 25 \& 100 \& 100 \& - \& 100 \& 50 \& - \& 65 \& 30 \& 100 \& 18 \& 10 \& 80 \& 8 \& 5 \& 80

\hline \& $32 . . .45$ \& 100 \& 100 \& - \& 100 \& 50 \& - \& 65 \& 30 \& 125 \& 15 \& 8 \& 100 \& 6 \& 4 \& 100

\hline \& \& 100 \& 100 \& \& 100 \& 50 \& - \& 65 \& 30 \& 125 \& 15 \& 8 \& 125 \& 6 \& 4 \& 125

\hline \& 59 ... 80 \& Value \& s on r \& quest \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multicolumn{17}{|l|}{Size S3}

\hline \multirow[t]{5}{*}{3RV2. 41} \& 40 \& 100 \& 100 \& \bigcirc \& 50 \& 25 \& 125 \& 50 \& 20 \& 125 \& 12 \& 6 \& 100 \& 6 \& 3 \& 63

\hline \& 50 \& 100 \& 100 \& - \& 50 \& 25 \& 125 \& 50 \& 20 \& 125 \& 12 \& 6 \& 100 \& 6 \& 3 \& 80

\hline \& 63 \& 100 \& 100 \& - \& 50 \& 25 \& 160 \& 50 \& 20 \& 160 \& 12 \& 6 \& 100 \& 6 \& 3 \& 80

\hline \& 75 \& 100 \& 100 \& - \& 50 \& 25 \& 160 \& 50 \& 20 \& 160 \& 8 \& 4 \& 125 \& 5 \& 3 \& 100

\hline \& 90; 100 \& 100 \& 100 \& - \& 50 \& 25 \& 160 \& 50 \& 20 \& 160 \& 8 \& 4 \& 125 \& 5 \& 3 \& 125

\hline \multicolumn{17}{|c|}{Short-circuit resistant up to at least 50 kA}

\hline \multicolumn{17}{|l|}{- No back-up fuse required, since short-circuit resistant up to 100 kA}

\hline \multicolumn{17}{|l|}{${ }^{\text {1) }}$ 2) 10% overvoltage. 5 (${ }^{\text {4) }}$ Alternatively, fuseless limiter combinations for 690 V AC can also be used.}

\hline \multicolumn{17}{|l|}{${ }^{3)}$ Back-up fuse only required if the short-circuit current at the place of installation $>I_{\mathrm{cu}}$.}

\hline
\end{tabular}

General Data

3RV - up to 100 A (Export applications)

Short-circuit breaking capacity $I_{\text {cuIT }}$ in the IT system (IT network) according to IEC 60947-2
3RV motor starter protectors are suitable for operation in IT systems. Values valid for triple-pole short-circuit are $I_{\text {cu }}$ up to I_{cs}. In case of double ground fault on different phases at the input and output side of a motor starter protector, the special short-circuit breaking capacity $I_{\text {cult }}$ applies. The specifications in the table below apply to 3RV motor starter protectors.

In the colored areas, $I_{\text {cult }}$ is 100 kA , or in some ranges it is 50 kA . Therefore the motor starter protectors are short-circuit resistant in these ranges.

If the short-circuit current at the place of installation exceeds the rated short-circuit breaking capacity of the motor starter protector as specified in the table, a back-up fuse is required. The maximum rated current for the back-up fuse is specified in the tables. The rated short-circuit breaking capacity then applies as specified on the fuse.

Motor starter protectors	Rated current I_{n}	Up to $\mathbf{2 4 0} \mathrm{V}$ AC ${ }^{1)}$		Up to $400 \mathrm{~V}^{1} / \mathbf{/ 4 1 5} \mathbf{V ~ A C}{ }^{2}$)		Up to $500 \mathrm{~V}^{1 /} / 525 \mathrm{~V} \mathrm{AC}^{2)}$		Up to $690 \mathrm{~V} \mathbf{A C}{ }^{\text {1) 5) }}$	
		$I_{\text {CulT }}$ kA	Max. fuse $\left.(\mathrm{gL} / \mathrm{gG})^{3}\right)$ A	$I_{\text {cult }}$ kA	Max. fuse $(\mathrm{gL} / \mathrm{gG})^{3 / 4)}$ A	$I_{\text {CuIT }}$ kA	Max. fuse $\left.(\mathrm{gL} / \mathrm{gG})^{3}\right)$ A	$I_{\text {culT }}$ kA	Max. fuse $\left.(\mathrm{gL} / \mathrm{gG})^{3}\right)$ A
Size S00									
3RV20, 3RV26 11-0BD10	$\begin{aligned} & 0.16 \ldots 0.63 \\ & 0.8 ; 1 \\ & 1.25 ; 1.6 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \circ \\ & \circ \\ & \circ \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$		On request	On request	On request	On request
	$\begin{aligned} & 2 ; 2.5 \\ & 3.2 ; 4 \\ & 5 ; 6.3 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \circ \\ & \circ \\ & \circ \end{aligned}$	$\begin{aligned} & 8 \\ & 8 ; 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 25 \\ & 32 \\ & 32: 50 \end{aligned}$				
	$\begin{aligned} & 8 ; 10 \\ & 12.5 \\ & 16 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 55 \end{aligned}$	$\begin{aligned} & \circ \\ & \text { 。 } \\ & 80 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 50 \\ & 63 \\ & 63 \end{aligned}$				
Size S0									
3RV2.21	$\begin{aligned} & 16 \\ & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 50 \end{aligned}$
	$\begin{aligned} & 25 \\ & 28 \\ & 32 \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 50 \\ & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 50 \\ & 63 \\ & 63 \end{aligned}$
	$\begin{aligned} & 36 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \end{aligned}$
Size S2									
3RV2.31	$\begin{aligned} & 14 \ldots 25 \\ & 32 \ldots 45 \\ & 52 \\ & 59 \ldots 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & \text { Value } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \circ \\ & \text { uest } \\ & \text { ues } \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 160 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 80 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \end{aligned}$
Size S2, with increased switching capacity									
3RV2.32	$\begin{array}{lll} 14 \ldots & 25 \\ 32 \ldots & 45 \\ 52 & & \\ 59 \ldots & & \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & \text { Value } \end{aligned}$	$\begin{aligned} & \circ \\ & \text { ¿ } \\ & \text { uest } \\ & \text { un } \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 160 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 80 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \end{aligned}$
Size S3									
3RV2. 41	$\begin{aligned} & 40 \\ & 50 \\ & 63 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 160 \end{aligned}$	$\begin{aligned} & 10 \\ & 8 \\ & 6 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 50 \\ & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 50 \\ & 63 \\ & 63 \end{aligned}$
	$\begin{aligned} & 75 \\ & 90 ; 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{r} 100 \\ 125 \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 80 \\ & 100 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 100 \end{aligned}$

Short-circuit resistant up to at least 50 kA
No back-up fuse required, since short-circuit resistant up to 100 kA

1) 10% overvoltage.
2) 5% overvoltage.
${ }^{3)}$ Back-up fuse only required, if short-circuit current at the place of installation $>I_{\text {cult }}$
3) Alternatively, fuseless limiter combinations for 690 V AC can also be used.
4) Over-voltage category II applies for applications on IT systems $>600 \mathrm{~V}$

3RV - up to 100 A

Technical data

Rules for mounting motor starter protectors/circuit breakers
When mounting MSPs, the following clearance must be maintained to grounded or live parts.

1) Up to and including the setting range of 32 A . For the $36 / 40 \mathrm{~A}$ setting range the clearance is 70 mm .
2) In conjunction with the type E terminal block $3 R V 2928-1 \mathrm{H}$ the applicable lateral clearance is 30 mm for all voltages.

Standard mounting for S0, S2 and S3

Wiring module
Size SO: 3RV19 15-1AB
Size S2: 3RV19 35-1A
Size S3: 3RA19 43-3D
(Caution: The wiring module demands
10 mm spacing between the MSPs)

General Data

3RV - up to 80 A

General data						
Type Size Dimensions (W $\times \mathrm{H} \times \mathrm{D}$) - Screw terminals - Spring-type terminals		mm mm	3RV2.1. SOO $\begin{aligned} & 45 \times 97 \times 91 \\ & 45 \times 106 \times 91 \end{aligned}$	3RV2.2. SO $\begin{aligned} & 45 \times 97 \times 91 \\ & 45 \times 119 \times 91 \end{aligned}$	3RV2.3. S2 $55 \times 140 \times 149$	3RV27, 3RV28 S00, S0 $45 \times 144 \times 92$
Standards - IEC 60947-1, EN 60947-1 (VDE 0660 Part 100) - IEC 60947-2, EN 60947-2 (VDE 0660 Part 101) - IEC 60947-4-1, EN 60947-4-1 (VDE 0660 Part 102) - UL 508/UL 60947-4-1, CSA C22.2 No. 14/CSA C22.2 No. 60947-4-1 - UL 489, CSA C22.2 No. 5			Yes Yes Yes Yes --	Yes Yes --	Yes Yes --	$\begin{aligned} & \text {-- } \\ & \text { Yes } \end{aligned}$
Number of poles			3			
Max. rated current $I_{\text {max }}$ (= max. rated operational current l_{e})		A	16	40	80	22
Permissible ambient temperature - Storage/transport - Operation	$\begin{aligned} & I_{\mathrm{n}}: 0.16 \ldots 32 \mathrm{~A} \\ & I_{\mathrm{n}}: 36 \ldots 40 \mathrm{~A} \end{aligned}$ $I_{\mathrm{n}}: 14 \ldots 80 \mathrm{~A}$	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$	$\begin{array}{ll} -50 \ldots+80 \\ -20 \ldots+70 & \\ \text { (current reduction above }+60{ }^{\circ} \mathrm{C} \text {) } \\ -- & -20 \ldots+40 \\ & \text { (the devices must } \\ \text { not be mounted } \\ \text { side-by-side and } \\ \text { they must not be } \\ \text { assembled with } \\ \text { link modules with } \\ \text { contactors. } \\ & \text { A lateral clear- } \\ \text { ance of } 9 \text { mm is } \\ \text { required.) } \end{array}$		$-20 \ldots+70$ (current reduction above $+60^{\circ} \mathrm{C}$)	--
Permissible rated current at inside temperature of control cabinet - $+60^{\circ} \mathrm{C}$ - $+70^{\circ} \mathrm{C}$		$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 100 \\ & 87 \end{aligned}$			
Permissible rated current at ambient temperature of enclosure (applies for motor starter protector/circuit breaker inside enclosure ≤ 32 A)						$\begin{aligned} & 100 \\ & 87 \end{aligned}$
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ - Acc. to IEC - Acc. to UL/CSA		$\begin{aligned} & \text { VAC } \\ & \text { V AC } \end{aligned}$	690 (when a molded-plastic enclosure is used only 500 V)600			
Rated frequency		Hz	50/60			
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$		V	690			
Rated impulse withstand voltage $U_{\text {imp }}$		kV	6			
Utilization category - IEC 60947-2 (motor starter protector/circuit breaker) - IEC 60947-4-1 (motor starter)			AAC-3			
Trip class CLASS	Acc. to IEC 6094		10		10/20	--
DC short-circuit breaking capacity (time constant $t=5 \mathrm{~ms}$) - 1 conducting path 150 V DC - 2 conducting paths in series 300 V DC - 3 conducting paths in series 450 V DC		kA kA kA	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		On request	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$
Power loss P_{v} for each motor starter protector/circuit breaker Dependent on the rated current I_{n} (upper setting range)	$\begin{aligned} & I_{\mathrm{n}}: 0.16 \ldots 0.63 \mathrm{~A} \\ & I_{\mathrm{n}}: 0.8 \ldots 6.3 \mathrm{~A} \\ & I_{\mathrm{n}}: 8 \ldots 16 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$		--	$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$
	$I_{\mathrm{n}}: 16 \mathrm{~A}$	W	--	7	10	7
$R_{\text {per conducting path }}=\frac{P}{I^{2} \times 3}$	$\begin{aligned} & I_{\mathrm{n}}: 17 \ldots 25 \mathrm{~A} \\ & I_{\mathrm{n}}: 28 \ldots 32 \mathrm{~A} \\ & I_{\mathrm{n}}: 36 \ldots 40 \mathrm{~A} \\ & I_{\mathrm{n}}: 45 \ldots 52 \mathrm{~A} \\ & I_{\mathrm{n}}: \ldots 80 \mathrm{~A} \\ & \hline \end{aligned}$	W W W W W		$\begin{aligned} & 8 \\ & 11 \\ & 14 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \\ & 15 \\ & 17 \\ & \text { On request } \\ & \hline \end{aligned}$	8
Shock resistance	Acc. to IEC 60068	g / ms	25/11 (square and sine pulse)			
Degree of protection	Acc. to IEC 60529		IP20			
Touch protection	Acc. to EN 50274		Finger-safe for vertical contact from the front			
Temperature compensation	Acc. to IEC 60947	${ }^{\circ} \mathrm{C}$	-20 ... +60			
Phase failure sensitivity	Acc. to IEC 60947		Yes (only for 3RV23 motor starter protectors)			No
Explosion protection - Safe operation of motors with "increased safety" type of protection			Yes (only for 3RV20 motor starter protectors)			
EC type test certificate number according to directive 94/9/EC (ATEX)			DMT 02 ATEX F 001 \&x II (2) GD		On request	No

3RV Motor Starter Protectors

General Data

3RV - up to 80 A

Conductor cross-sections of main circuit

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Type

Size \& \& 3RV2.11

S00 \& 3RV2.21

SO \& 3RV2.31-4B1., 3RV2.31-4D.1., 3RV2.31-4E.1., 3RV2.31-4P.1., 3RV2.31-4S.1., 3RV2.31-4T.1., 3RV2.31-4U.1., 3RV2.31-4V.1. \& 3RV2.31-4J.1., 3RV2.31-4K.1., 3RV2.31-4R.1., 3RV2.31-4W.1., 3RV2.31-4X.1., 3RV2431-4VA1., 3RV2.32 \& 3RV27, 3RV28

SOO, SO

\hline \& \& \multicolumn{5}{|l|}{\multirow[t]{2}{*}{(1) Screw terminals}}

\hline Connection type \& \& \& \& \& \&

\hline Terminal screw \& \& M3, Pozidriv size 2 \& M4, Pozidriv size 2 \& M6, Pozidriv size 2 \& \& M4, Pozidriv size 2

\hline Operating devices \& mm \& ه 5 ... 6 \& $\varnothing 5 \ldots 6$ \& ه $5 . . .6$ \& \& $\varnothing 5 \ldots 6$

\hline Prescribed tightening torque \& Nm \& $0.8 \ldots 1.2$ \& $2 . .2 .5$ \& 3.0... 4.5 \& \& 2.5 ... 3

\hline \multicolumn{7}{|l|}{Conductor cross-sections (min./max.), 1 or 2 conductors can be connected}

\hline - Solid or stranded \& mm^{2} \& \[
$$
\begin{aligned}
& \left.2 \times(0.75 \ldots 2.5)^{1}\right) \\
& 2 \times 4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \left.2 \times(1 \ldots 2.5)^{1}\right) \\
& \left.2 \times(2.5 \ldots .10)^{1}\right)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \times(1 \ldots 25)^{11} \\
& 1 \times(1 \ldots 35)^{1)^{\prime}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \times(1 \ldots 35)^{1)} \\
& 1 \times(1 \ldots 50)^{1)^{\prime}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \times(1 \ldots 10)^{1}, \\
& \operatorname{max.} 1 \times 25
\end{aligned}
$$
\]

\hline - Finely stranded with end sleeve (DIN 46228-1) \& mm^{2} \& \[
$$
\begin{aligned}
& 2 \times(0.5 \ldots 1.5)^{1)} \\
& 2 \times(0.75 \ldots 2.5)^{1)}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \left.2 \times(1 \ldots 2.5)^{1}\right)^{\prime} \\
& 2 \times(2.5 \ldots 6)^{1)^{\prime}} \\
& 1 \times 10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \times(1 \ldots 16)^{1}{ }^{1}, \\
& 1 \times(1 \ldots 25)^{1)^{\prime}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \times(1 \ldots 25)^{1}{ }^{1}, \\
& 1 \times(1 \ldots 35)^{1)^{\prime}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \times(1 \ldots 16), \\
& \operatorname{max.} 6+16
\end{aligned}
$$
\]

\hline - AWG cables, solid or stranded \& AWG \& $$
\begin{aligned}
& \left.2 \times(20 \ldots 16)^{1}\right) \\
& \left.2 \times(18 \ldots 12)^{1}\right)^{\prime} \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 2 \times(16 \ldots 12)^{1)} \\
& \left.2 \times(14 \ldots 8)^{1}\right) \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \times(18 \ldots 3)^{11}{ }^{1} \\
& 1 \times(18 \ldots 2)^{1} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \times(18 \ldots 2)^{11}, \\
& 1 \times(18 \ldots .)^{1)^{\prime}} \\
& 1
\end{aligned}
$$
\] \& $2 \times(14 \ldots 10)$

\hline Connection type \& \& \square \& terminals \& \& \&

\hline Operating devices \& mm \& 3.0×0.5 and $3.5 \times$ \& \& \& \&

\hline \multicolumn{7}{|l|}{Conductor cross-sections (min./max.), 1 or 2 conductors can be connected}

\hline - Solid or stranded \& mm^{2} \& $2 \times(0.5 \ldots 4)$ \& $2 \times(1 . . .10)$ \& -- \& \&

\hline - Finely stranded without end sleeve \& mm^{2} \& $2 \times(0.5 \ldots 2.5)$ \& $2 \times(1 \ldots 6)$ \& -- \& \&

\hline - Finely stranded with end sleeve (DIN 46228-11) \& mm^{2} \& $2 \times(0.5 \ldots 2.5)$ \& $2 \times(1 \ldots 6)$ \& -- \& \&

\hline - AWG cables, solid or stranded \& AWG \& $2 \times(20 \ldots 12)$ \& \& -- \& \&

\hline Max. external diameter of the conductor insulation \& mm \& 3.6 \& 3.6 \& -- \& \&

\hline
\end{tabular}

Connection type
Ring terminal lug connections

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.

General Data

3RV - up to 80 A

Lateral auxiliary switches with signaling switch

		Switching capacity for different voltages: Lateral auxiliary switch with 1 NO + 1 NC, 2 NO, 2 NC, 2 NO + 2 NC Signaling switch	
Rated operational current I_{e} - At AC-15, alternating voltage - 24 V - 230 V - 400 V - 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 3 \\ & 1 \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline \text { - At AC-12 }=I_{\text {th }}, \text { alternating voltage } \\ &-24 \mathrm{~V} \\ &-230 \mathrm{~V} \\ &-400 \mathrm{~V} \\ &-690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	
$\begin{aligned} & \text { - At DC-13, direct voltage L/R } 200 \mathrm{~ms} \\ & -24 \mathrm{~V} \\ & -110 \mathrm{~V} \\ & -220 \mathrm{~V} \\ & -440 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	2 0.5 0.25 0.1	
Minimum load capacity	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \\ & 1 \end{aligned}$	
Auxiliary releases			
		Undervoltage releases	Shunt releases
Power consumption - During pick-up - AC voltages - DC voltages - During uninterrupted duty - AC voltages - DC voltages	VA/W W VA/W W	$\begin{aligned} & 20.2 / 13 \\ & 20 \\ & \\ & 7.2 / 2.4 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 20.2/13 } \\ & 13 . . .80 \\ & -- \\ & -- \end{aligned}$
Response voltage - Tripping - Pick-up	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.35 \ldots 0.7 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{S}} \end{aligned}$	$0.7 \ldots 1.1 \times U_{s}$
Opening time maximum	ms	20	
Short-circuit protection for auxiliary and control circuits			
Melting fuses operational class gG Miniature circuit breakers C characteristic	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	10 6 (prospective short-cir	$.4 \mathrm{kA})$

General Data

3RV - up to 80 A

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.

Terminals for "Self-Protected Combination Motor Controllers (Type E) according to UL 508/UL 60947-4-1"

Type	3RV2928-1H	
Prescribed tightening torque	Nm	2.5 ... 3
Conductor cross-sections		
- Front clamping point connected - Solid - Finely stranded with end sleeve - Stranded - AWG cables, solid or stranded - Terminal screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots .16 \\ & 2.5 \ldots 25 \\ & 14 \ldots 3 \\ & \text { M4 } \end{aligned}$
- Rear clamping point connected - Solid - Finely stranded with end sleeve - Stranded - AWG cables, solid or stranded - Terminal screw	mm^{2} mm^{2} mm^{2} AWG	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots 16 \\ & 1.5 \ldots 25 \\ & 14 \ldots 6 \\ & \text { M4 } \end{aligned}$
- Both clamping points connected - Front clamping point: Solid Finely stranded with end sleeve Stranded AWG cables, solid or stranded Terminal screw - Rear clamping point: Solid Finely stranded with end sleeve Stranded AWG cables, solid or stranded Terminal screw	mm^{2} mm^{2} mm^{2} AWG mm^{2} mm^{2} mm^{2} AWG	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots 10^{1)}, 1 \ldots 6^{1)} \\ & 2.5 \ldots 10^{\prime} \\ & 14 \ldots 6 \\ & \text { M4 } \\ & 1 \ldots 10 \\ & 1 \ldots 10^{1)}, 1 \ldots 16^{1)} \\ & 1 \ldots . .10^{1} \\ & 2.5 \ldots 3 \\ & 16 \ldots 3 \\ & M 4 \end{aligned}$

1) The following can be connected when both clamping points are connected:

- Front 1 ... $10 \mathrm{~mm}^{2}$ and rear 1 ... $10 \mathrm{~mm}^{2}$
- Front 1 ... $6 \mathrm{~mm}^{2}$ and rear 1 ... $16 \mathrm{~mm}^{2}$

Overview

3RV Motor Starter Protectors (MSPs) are built for a world of applications while meeting the requirements of control users worldwide. Each MSP features a manual ON/OFF switch, a Class 10 adjustable bimetallic overload relay (Class 20 available in the two largest frame sizes), and magnetic trip elements for short circuit protection.

Construction

The motor starter protectors are available in four sizes:

- Size S00-3RV201 Maximum rated current is 16 Amps. Suitable for motors up to 10 HP at 600 V . Available in both screw terminal and springtype terminal versions.
- Size SO - 3RV202 Maximum rated current is 40 Amps. Suitable for motors up to 20 HP at 600V. Available in both screw terminal and springtype terminal verisons.
- Size S2 - 3RV203

Maximum rated current is 50
Amps. Suitable for motors up to 50 HP at 600 V .

- Size S3 - 3RV204

Maximum rated current is
100 Amps. Suitable for motors up to 100 HP at 600V.

Functions

Releases
3RV motor starter protectors are equipped with bimetallicbased, inverse-time delayed overload releases - electromagnetic short-circuit releases.
The overload releases can be set in accordance with the load current. The overcurrent releases are permanently set to a value 13 times the rated current and thus enable trouble-free start-up of motors.

The scale cover can be sealed to prevent unauthorized adjustments to the set current.

Release classes
The release classes of thermally delayed releases are based on the tripping time $\left(\mathrm{t}_{\mathrm{A}}\right)$ at 7.2 times the operational current in cold state (excerpt from IEC 60 9474):

- CLASS 10 A $2 \mathrm{~s}<\mathrm{t}_{\mathrm{A}}<10 \mathrm{~s}$
- CLASS $10 \quad 4 \mathrm{~s}<\mathrm{t}_{\mathrm{A}}<10 \mathrm{~s}$
-CLASS $206 \mathrm{~s}<\mathrm{t}_{\mathrm{A}}<20 \mathrm{~s}$
-CLASS $309 \mathrm{~s}<\mathrm{t}_{\mathrm{A}}<30 \mathrm{~s}$
The release must trip within this time!

Operating mechanisms

 S00, S0, S2 and S3 MSPs are actuated via a rotary operating mechanism. If the MSP trips, the rotary operating mechanism switches to the tripped position to indicate this. Before the MSP is reclosed, the rotary operating mechanism must be reset manually to 0 position, in order to prevent the former from closing by mistake before the fault has been cleared.In the case of MSPs with rotary operating mechanisms, an electrical signal can be output via a signalling switch to indicate that the MSP has tripped.
All operating mechanisms can be locked in 0 position with a padlock (shackle diameter 3.5 to 4.5 mm).

Application

Operating conditions 3RV MSPs are suitable for use in any climate. They are designed for operation in closed rooms under normal conditions (e.g. no dust, corrosive vapours or harmful gases) Suitable enclosures must be provided for installation in dusty or damp rooms.

Motor Protection

3RV MSPs use bimetallic heater elements to provide class 10 or 20 overcurrent protection for both AC and DC motors. The bimetallic heaters sense the motor current directly, so the overloads are insensitive to high frequencies, harmonic waves and sinusoidal currents and voltages.

Each MSP has a fourth bimetal lic strip that reacts only to the ambient temperature inside the control panel. This ambient compensation prevents the MSP from nuisance tripping when the panel temperature is higher than the ambient temperature of the motor.

A built-in differential trip bar causes the MSP to trip faster on a phase loss condition, to help reduce motor damage from phase loss.
Magnetic trip elements in each MSP take the device off line when it senses currents of 13 times the maximum FLA dial setting.

3RT2	0	1	1	-	0	A	A	1	0
SIRIUS MSP or Circuit Breaker	$\begin{aligned} & \text { Application } \\ & 0=\text { Motor Protection } \\ & 7=U L 489 \end{aligned}$	$\begin{aligned} & \text { Frame Size } \\ & \begin{array}{l} 3=S 2 \\ 4=\$ 3 \end{array} \end{aligned}$	Standard		Amperage Range Possible choices listed below see page $1 / 4-1 / 7$ for an entire listing		$\begin{aligned} & \text { Class } \\ & A=10 \end{aligned}$	$\begin{aligned} & \text { Terminal Type } \\ & 1=\text { Screw } \\ & 2=\text { Spring Loaded } \\ & 4=\text { Ring Lug } \end{aligned}$	Auxiliary Switch
					0, 1, 4	B through K			
3RV2	0	1	1	-	0	A	A	1	0
SIRIUS Innovations MSP or Circuit Breaker	$\begin{aligned} & \text { Application } \\ & 0=\text { Motor Protection } \\ & 7=\text { UL } 489 \end{aligned}$	$\begin{aligned} & \text { Frame Size } \\ & 1=\text { SOO } \\ & 2=S 0 \\ & 3=S 2 \\ & 4=S 3 \end{aligned}$	Standard		Amperage Range Possible choices listed below see page $1 / 4-1 / 7$ for an entire listing		$\begin{aligned} & \text { Class } \\ & A=10 \\ & B=20 \end{aligned}$	$\begin{aligned} & \text { Terminal Type } \\ & 1 \text { = Screw } \\ & 2=\text { Spring Loaded } \\ & 4 \text { = Ring Lug } \end{aligned}$	Auxiliary Switch
					0, 1, 4	B through K			

Note: MPSs and Contactors of the same frame size are made to easily fit together with the use of a link module.

Applications:

The 3RV MSPs can be used in a variety of applications:

As a manual starter

All 3RV MSPs are UL listed as Manual Motor Controllers per UL508. This makes them ideal for applications requiring simple manual starting and stopping of motors. A separate short circuit protective device, such as a circuit breaker or fuses, is still required ahead of the MSP. This up-stream protective device should be sized per NEC code, not to exceed 400% of the maximum FLA adjustment dial setting.

As a component in a group installation
A group motor installation indicates multiple motor controllers under one short circuit protective device, such as a circuit breaker. 3RV MSPs have a group installation short-circuit current rating of 65 kA at 480 V and up to 30 kA at 600 V . By using a link module, a 3RT contactor can be directly mounted to the load side of the MSP.
3RV MSPs have been UL tested with and without 3RT contactors for group installation.

As a Self-protected manual combination starter, Type E.

Most 3RV MSPs have also been UL listed as UL508 Type E, Selfprotected Manual Combination Starters. This UL listing allows the MSP to be mounted in a manually operated machine without having to add separate short circuit protection upstream.

These devices have a short circuit current rating of 65 kA @ $240 \mathrm{~V}, 480 \mathrm{Y} / 277 \mathrm{~V}$ and up to 30kA @ 600Y/347V.

As part of a Combination
Motor Contoller, Type F Motor Contoller, Type F

When a 3RT contactor is connected to the load side of a 3RV device that is rated as a "Manual Self-protected Combination Motor Controller, Type E", the assembly can be applied as a "Combination Motor Controller, Type F". This versions allows for remote starting and stopping of the motor load.

These assemblies have a short circuit current rating of 65 kA @ $240 \mathrm{~V}, 480 \mathrm{Y} / 277 \mathrm{~V}$ and up to 30 kA @ 600Y/347V.

Terminals for "Combination Motor Controller Type E" to UL 508

The 3RV MSP for motor protection is approved according to UL 508 as "Combination Motor Controller Type E".
As of July, 2001, UL 508 demands at line-side of the device used for this purpose an increased clearance and creepage distance (1" or 2").

Here, the terminal block 3RV29 28-1H must be used for size S0. The block is simply screwed to the basic unit.

Basic units of size S2 are already compliant with new clearance and creepage distance requirements.

The terminal block 3RT29 464GA07 must be used for size S3. The standard box terminal is to be replaced by this terminal block.

According to CSA, these terminal blocks can be omitted when the device is used as "Combination Motor Controller Type E".

By using a link module, a 3RT contactor can be directly mounted to the load side of a 3RV MSP. This assembly of a 3RV and a 3RT provides a complete, remotely operated, combination starter, Type F.

As a circuit breaker for export When exporting to many countries outside of the U.S. and North America, the 3RV can be applied as a thermal magnetic circuit breaker for use in motor branch circuits.

3RV29 28-1K 3RV29 38-1K

3RV29 28-1H

3RT29 46-4GA07

Terminals for "Combination Motor Controller Type E" to UL 508 3RV29 28-1H

General Data

3RV - up to 100 A

Switching of direct current

3RV motor starter protectors fo r alternating currents are also suitable for DC switching.
The maximum permissible DC voltage per conducting path must, however, be adhered to. Higher voltages require a series connection with 2 or 3 conducting paths.

The response values of the overload release remain unchanged; the response values of a short-circuit release increase by approximately 30% for DC. The example circuits for DC switching can be seen in the table below.

Example circuit for size S00 to S3 3RV motor starter protectors

Example circuit for size S00 to S3 3RV motor starter protectors	Maximum permitted DC voltage U_{e}	Notes

${ }^{1)}$ It is assumed that this circuit always provides safe disconnection even in the event of a double ground fault that bridges two contacts.

Design

Mounting

The motor starter protectors are secured in position by snapping them onto 35 mm standard mounting rails according to DIN EN 50 022. A mounting rail with a height of 15 mm is required for S3 MSPs. A 75-mm mounting rail can be used as an alternative here.

S2 and S3 MSPs can also be screwed directly onto a baseplate.

The push-in lugs 3RV29 28-OB are available for screw mounting of SOO and SO MSPs.

Screw connection

3RV MSPs of sizes SOO and SO are fitted with terminals with captive screws and clamping pieces, allowing the connection of 2 conductors with different cross-sections.

The box terminals of the S2 and S3 MSPs also enable 2 conductors with different crosssections to be connected. With the exception of S3 MSPs which are equipped with 4 mm hexagon socket terminal screws, all terminal screws are tightened with a Pozidriv screwdriver size 2.

The box terminals of the S3 MSPs can be removed in order to connect conductors with cable lugs or connecting bars. A terminal cover is available to help prevent contact with shock protection and to ensure that the required clearances and creepage distances are maintained if the box terminals are removed.

Spring-type connection ${ }^{2}$)

As an alternative to screw terminals, SOO and SO devices are also available with Spring-type terminal connection.
This screwless Spring-type terminal technique, as known for modular terminal blocks, offers shock-proof and vibration proof connection of conductors.
Devices with Spring-type connection allow independent connection of two conductors per terminal.

MSP with Spring-type terminal connection

1) It is assumed that this circuit always provides safe cut-out, even in the event of a double earth fault that bridges two contacts.
2) For notes on Spring-type terminal connection, see section 19.

Characteristics

The time/current characteristic, the current limiting characteristics and the $I^{2 t}$ characteristics were determined in accordance with DIN VDE 0660 or IEC 60947.
The tripping characteristic of the inverse-time delayed overload releases (thermal overload releases or ' A ' releases) for DC and AC with a frequency of 0 to 400 Hz also apply to the time/current characteristic.
The characteristics apply to the cold state. At operating temperature, the tripping times of the thermal releases are reduced to approximately 25 \%.
Under normal operating conditions, all three poles of the device must be loaded. The three main conducting paths must be connected in series in order to protect single-phase or DC loads.
With 2-pole and 3-pole loading, the maximum deviation in the tripping time for 3 times the setting current and upwards is $\pm 20 \%$ and thus in accordance with DIN VDE 0165.
The tripping characteristics for the instantaneous, electromagnetic overcurrent releases
(short-circuit releases, 'N' releases) are based on the rated current I_{n} that represents the maximum value of the setting range for MSPs with adjustable overload releases. If the current is set to a lower value, the tripping current of the ' N ' release is increased by a corresponding factor.
The characteristics of the electromagnetic overcurrent releases apply to frequencies of $50 / 60 \mathrm{~Hz}$. Appropriate correction factors must be used for lower frequencies up to
$162 / 3 \mathrm{~Hz}$, for higher frequencies up to 400 Hz and for DC.
The printed characteristic curve determined for the MSP relates to a specific setting range. It is, however, also valid as a schematic representation of MSPs with other current ranges.

Circuit diagrams

Internal connections
Motor starter protectors
3RV.

General Data

3RV - up to 100 A

Dimension drawings

3RV2 MSP, size S00
3RV20 11

3RV2 MSP, size So

3RV20 21

3RV2 MSP, size S2

3RV2.31 motor starter protector ($<=45 \mathrm{~A}$)

3RV2.32 MSP, size S2

3RV2.4 size S3

3RV2 MSP, size S00, 3RV2111

3RV - up to 100 A
3RV2 MSP, size SO , 3RV2121

3RV2 MSP, size S2, 3RV2131

3RV2 MSP, size S3, 3RV2142

General Data

3RV - up to 100 A

3RV27 and 3RV28 circuit breakers, size S00, S0 and S3
3RV27 21, 3RV28 21

1) Mounting according to EN 60715 to standard mounting rail TH 35.
2) Drilling pattern.

3RV27 circuit breakers, size S3
3RV27 42

1) Mounting according to EN 60715 on TH 35 standard mounting rail, 15 mm deep, or TH 75 standard mounting rail. 2) Drilling pattern.

Mountable accessories

Overview

Mounting location and function

The 3RV2 motor starter protectors/circuit breakers have three main contact elements. In order to achieve maximum flexibility, auxiliary switches, signaling switches, auxiliary releases and isolator modules can be supplied separately.

Front side

Note:

- A maximum of four auxiliary contacts with auxiliary switches can be mounted on each motor starter protector/circuit breaker.

Transverse auxiliary switches, solid-state compatible transverse auxiliary switches

$1 \mathrm{NO}+1 \mathrm{NC}$
or

2 NO
or
1 CO

Left-hand side

Notes:

- A maximum of four auxiliary contacts with auxiliary switches can be mounted on each motor starter protector/circuit breaker.
- Lateral auxiliary switches (two contacts) and signaling switches can be mounted separately or together.
- The signaling switch cannot be used for the 3RV27 and 3RV28 circuit breakers.

These components are easily fitted to the switches without the use of any tools according to requirements.
Overview graphic, see page 1/16.

An auxiliary switch block can be inserted transversely on the front. The overall width of the motor starter protectors/circuit breakers remains unchanged.

Lateral auxiliary switches

(2 contacts)

$1 \mathrm{NO}+1 \mathrm{NC}$
or
2 NO
or
2 NC
Lateral auxiliary switches (4 contacts)
$2 \mathrm{NO}+2 \mathrm{NC}$

Signaling switches

Tripping 1 NO + 1 NC Short circuit $1 \mathrm{NO}+1 \mathrm{NC}$

One of the three lateral auxiliary switches can be mounted on the left side per motor starter protector/circuit breaker. The contacts of the auxiliary switch close and open together with the main contacts of the motor starter protector/circuit breaker.
The width of the lateral auxiliary switch with two contacts is 9 mm .

One lateral auxiliary switch with four contacts can be mounted on the left side per motor starter protector/circuit breaker. The contacts of the auxiliary switch close and open together with the main contacts of the motor starter protector/circuit breaker.
The width of the lateral auxiliary switch with four contacts is 18 mm .
One signaling switch can be mounted on the left side of each motor starter protector.
The signaling switch has two contact systems.
One contact system always signals tripping irrespective of whether this was caused by a short circuit, an overload or an auxiliary release. The other contact system only switches in the event of a short circuit. There is no signaling as a result of switching off with the actuator.
In order to be able to switch on the motor starter protector again after a short circuit, the signaling switch must be reset manually after the error cause has been eliminated.
The overall width of the signaling switch is 18 mm .

Right-hand side

Notes:

- One auxiliary release can be mounted per motor starter protector/circuit breaker.
- Accessories cannot be mounted at the right-hand side of the 3RV21 motor starter protectors for motor protection with overload relay function.

Top

Notes:

- The isolator module cannot be used for the 3RV27 and 3RV28 circuit breakers.
- The isolator module for size S2 can only be used with 3RV2 motor starter protectors/circuit breakers up to max. 65 A - cannot be used with the transverse auxiliary switch
- The isolator module covers the terminal screws of the transverse auxiliary switch. If the isolator module is used, we therefore recommend that either the lateral auxiliary switches be fitted or that the isolator module not be mounted until the auxiliary switch has been wired.

Auxiliary releases	For remote-controlled tripping of the motor starter protector/circuit breaker. The release coil should only be energized for short periods (see circuit diagrams).
or	
Undervoltage releases	Trips the motor starter protector/circuit breaker when the voltage is inter- rupted and prevents the motor from being restarted accidentally when the voltage is restored. Used for remote-controlled tripping of the motor starter protector/circuit breaker. Particularly suitable for EMERGENCY-STOP disconnection by way of corre- sponding EMERGENCY-STOP pushbuttons according to DIN EN 60204-1.
	Function and use as for the undervoltage release without leading auxiliary contacts, but with the following additional function: the auxiliary contacts will open in switch position OFF to deenergize the coil of the undervoltage release, thus interrupting energy consumption. In the "tripped" position, these auxiliary contacts are not guaranteed to open. The leading contacts permit the motor starter protector/circuit breaker to reclose. The overall width of the auxiliary release is 18 mm.
Undervoltage releases with	
leading auxiliary contacts	
2 NO	Isolator modules can be mounted to the upper connection side of the motor starter protectors.
Ise supply cable is connected to the motor starter protector through the modules	The isolator module. The plug can only be unplugged when the motor starter protector is open and isolates all 3 poles of the motor starter protector from the network. The shock-protected isolation point is clearly visible and secured with a padlock to prevent reinsertion of the plug.

For a complete overview of which accessories can be used for the various motor starter protectors/circuit breakers, see page 7/2

Overview

S00 and S0 motor starter protectors with mountable accessories

Motor starter protectors, sizes S2 or S3, with mountable accessories

Mountable accessories for all sizes S00 ... S3
(1) Transverse auxiliary switch
(2) Lateral auxiliary switch with 2 contacts
(3) Lateral auxiliary switch with 4 contacts
(4) Shunt release
(5) Undervoltage release

Mountable accessories
(6.1) Undervoltage release with leading auxiliary contacts (can not be used with 3RV21 circuit breakers)Undervoltage release with leading auxiliary contacts

for sizes
 Mountable accessories

SOO, SO
S2, S3
(7) Signaling switch (can not be used with 3RV27 and 3RV28 circuit breakers)
(8) Isolator module (can not be used with 3RV27 and 3RV28 circuit breakers)
(9) Terminal block E

General Data

Mountable accessories

Circuit diagrams

Internal connections

Shunt release

3RV19 02-1D / 3RV29 02-1D

Transverse auxiliary switch
3RV19 01-1D
3RV29 01-1D 3RV19 01-1G 3RV19 01-1G
3RV29 01-1G

Undervoltage
release
3RV19 02-1A / 3RV29 02-1A

Undervoltage release

 with leading auxiliary contacts 3RV19 12-1C / 3RV29 12-1C 3RV19 22-1C / 3RV29 22-1C

Lateral auxiliary switch with 2 contacts
3RV19 01-1A 3RV29 01-1A 3RV19 01-2A 3RV19 01-2A
3RV29 01-2A

3RV19 01-1B
3RV29 01-1B
3RV19 01-2B
3RV29 01-2B

Lateral auxiliary switch with 4 contacts 3RV19 01-1J / 3RV29 01-1J

Signallng switch

3RV19 01-1C
3RV29 01-1C 3RV19 01-2C 3RV29 01-2C

3RV19 21-1M / 3RV29 21-1M

External connections

Shunt release

Undervoltage release

Circuit diagrams

Typical circuits
3RV2 MSPs with 3RV29 21-1M signalling switch

H1: "Short circuit" signal	H1; H2	Indicator lights
H2: "Overload" or "Tripped by		
auxiliary release" signal	F1	Fuses (gL/gG) max. 10 A
	Q1	MSP
	S1	Signalling switch

Separate "Tripped" and "Short circuit" signals

Dimension drawings

Isolator modules
3RV29 28-1A
for MSPs size S00, SO

3RV29 38-1A
for MSPs size S2

For dimension drawings of auxiliary switches, signalling switches and auxiliary releases, see page $1 / 35$ and $1 / 38$.

Overview

Busbar adapters

The MSPs are mounted directly with the aid of busbar adapters on FastBus-busbar systems with 40 mm and 60 mm centerline spacing, in order to save space and to reduce wiring times and costs.
FastBus-busbar adapters for busbar systems with 40 mm centerline spacing are suitable for copper busbars with a width of 12 mm to 15 mm , while those with 60 mm centerline spacing are suitable for widths of 12 mm to 30 mm . The busbars can be 4 to 5 mm or 10 mm thick.

The MSPs are snapped onto the adapter and connected on the line side. This prepared unit is then plugged directly onto the busbar system, and is thus connected both mechanically and electrically at the same time.
Refer to page 1/10 for busbar adapters for specilic MSPs and accessories.
Further busbar adapters for snap-mounting direct-on-line starters and reversing starters, as well as additional accessories such as line terminals and outgoing terminals, busbar copper, etc., can be found in Section 5.

Insulated three-phase busbar system

Three-phase busbar systems provide an easy, time-saving and clearly arranged means of feeding 3RV2 motor starter protectors with screw terminals. They can be used for the different types of motor starter protector up to 32 A. The 3RV19 15 three-phase busbar systems are generally unsuitable for the 3RV21 motor starter protectors for motor protection with overload relay function.

The busbars are suitable for between 2 and 5 circuit breakers/motor starter protectors. However, any kind of extension is possible by clamping the tags of an additional busbar (rotated by 180°) underneath the terminals of the respective last motor starter protector.

A combination of motor starter protectors of different sizes is possible. The motor starter protectors are supplied by appropriate feeder terminals.

SIRIUS three-phase busbar system size S00/S0

The three-phase busbar systems are finger-safe. They are designed for any short-circuit stress which can occur at the output side of connected motor starter protectors.

SIRIUS MSPs and combination starters with FastBus-busbar adapters snapped onto busbars

8US busbar adapters for $\mathbf{6 0 ~ m m}$ systems

The motor starter protectors are mounted directly with the aid of busbar adapters on busbar systems with 60 mm center-to-center clearance in order to save space and to reduce infeed times and costs.

The busbar adapters for busbar systems with 60 mm center-tocenter clearance are suitable for copper busbars with a width of 12 mm to 30 mm . The busbars can be 5 mm or 10 mm thick.

The motor starter protectors are snapped onto the adapter and connected on the line side. This prepared unit is then plugged directly onto the busbar system, and is thus connected both mechanically and electrically at the same time.
For further busbar adapters for snap-mounting direct-on-line starters and reversing starters as well as additional accessories such as line terminals and outgoing terminals, flat copper profile, etc., can be found in Section 5.

SIRIUS load feeders with busbar adapters snapped onto busbars
The three-phase busbar systems can also be used to construct "Type E Starters" according to UL/CSA. Special feeder terminals must be used for this purpose however (see "Selection and Ordering Data" on page $1 / 10$).

General Data

Busbar accessories

Dimension drawings

3RV19 15-1.. 3-phase busbar
for S00 and SO MSPs, modular spacing 45 mm
for 2 MSPs 3RV19 15-1AB
for 3 MSPs 3RV19 15-1BB
for 4 MSPs 3RV19 15-1CB
for 5 MSPs 3RV19 15-1DB

3RV19 15-2.. 3-phase busbar
for SOO and SO circuit-breakers, modular spacing 55 mm
for 2 MSPs with accessories 3RV19 15-2AB
for 3 MSPs with accessories 3RV19 15-2BB
for 4 MSPs with accessories 3RV19 15-2CB
for 5 MSPs with accessories 3RV19 15-2DB

3RV19 15-3. . 3-phase busbar
or S00 and S0 MSPs, modular spacing 63 mm
for 2 MSPs with accessories 3RV19 15-3A
for 3 MSPs with accessories 3RV19 15-3B
for 4 MSPs with accessories 3RV19 15-3C

3RV19 35-1.. 3-phase busbar
for S2 MSP, modular spacing 55 mm
for 2 MSPs 3RV19 35-1A
for 3 MSPs 3RV19 35-1B
for 4 MSPs 3RV19 35-1C

General Data

Busbar accessories

Dimension drawings

3RV19 35-3.. 3-phase busbar
for S2 MSP, modular spacing 75 mm
for 2 MSPs with accessories 3RV19 35-3A
for 3 MSPs with accessories 3RV19 35-3B
for 4 MSPs with accessories 3RV19 35-3C

3RV29 25-5EB 3-phase line-side terminal connection from above, size S0

3RV19 35-5A 3-phase line-side terminal for MSP size S2

3RV29 35-5B connection from above, size SOO and S0

3RV1. $1 \quad 19 \mathrm{~mm}$ 3RV1. $2 \quad 23 \mathrm{~mm}$
connection from above,
size SOO and SO

3RV19 15-5DB Connector For connecting a 3-phase busbar for MSPs of the size S0 (left) to size SOO (right)

3RV19 25-5EB to construct "Type E Starters"
3RV29 35-5E
Connected from top, for motor starter protector size S2

Overview

Door-coupling rotary operating mechanisms

Motor starter protectors with a rotary operating mechanism can be mounted in a control cabinet and operated externally by means of a door-coupling rotary operating mechanism. When the cabinet door with motor starter protector is closed, the operating mechanism is coupled. When the motor starter protector closes, the coupling is locked which prevents the door from being opened unintentionally. This interlock can be defeated by the maintenance personnel. In the OPEN position, the rotary operating mechanism can be secured against reclosing with up to 3 padlocks. Inadvertent opening of the door is not possible in this case either.

SIRIUS 3RV29 26-OK door-coupling rotary operating mechanism

SIRIUS 3RV29 26-2B door-coupling rotary operating mechanism for arduous conditions

General Data

Rotary operating mechanisms

Circuit diagrams

Typical circuits
3RV MSP with 3RV19 36/3RV19 46 remote-controlled motorized
operating mechanism

Dimensional drawings

Door coupling rotary mechanism
3RV29 26-0B/3RV29 26-0C short shaft ${ }^{4}$), for MSP sizes S00, S0, S2 and S3

3RV29 26-0K/3RV29 26-0L long shaft (with bracket) ${ }^{3}$), for MSP sizes S00, S0, S2 and S3

General Data

Rotary operating mechanisms

Dimension drawings

3RV29.6-2. Door coupling rotary mechanism for heavy duty 3RV29 26-2., 3RV29 36-2., 3R29 46-2.
for sizes S00, S0, S2 and S3

Type	Size	Dimensions								
		A	B	C	D	E	F	G	H	1
3RV29 26-2.	S00, SO	125	111	50	77	112	50	27	9	42
3RV29 36-2.	S2	170	144	60	87	162	50	27	10	47
3RV29 46-2.	S3	194	180	60	100	187	48	25	10	53

General Data

Accessories - Enclosures and front plates

Overview

Enclosure

For stand-alone installation of motor starter protector size S2 ($I_{\mathrm{n}}^{\max }=65 \mathrm{~A}$), molded-plastic enclosures for surface mounting are available.

When installed in a molded-plastic enclosures the motor starter protectors have a rated operational voltage U_{e} of 500 V .
The molded-plastic enclosures are designed to degree of protection IP55.

Enclosures for surface mounting

All enclosures are equipped with N and PE terminals. There are two knock-out cable entries for cable glands at the top and two at the bottom; also on the rear corresponding cable entries are scored. There is a knockout on the top of the enclosure for indicator lights that are available as accessories.

In the enclosure for motor starter protector size S2 there is also room for the laterally mounted auxiliary release. There is no provision for installing a motor starter protector with a signaling switch.
The molded-plastic enclosures of the size S2 motor starter protectors are fitted with a rotary operating mechanism.

The enclosures can be supplied with either a black rotary operating mechanism or with an EMERGENCY-STOP rotary operating mechanism with a red/yellow knob.
The rotary operating mechanisms can be locked in the Open position with up to 3 padlocks.

Front plates

Motor starter protectors are frequently required to be actuated in any enclosure. Front plates equipped with a rotary operating mechanism for motor starter protector sizes S2 and S3 are available for this purpose.

Front plate for size S2

No UL/CSA certification

Dimension drawings

3RV19. 3-1.... Cast aluminum enclosure for wall mounting

1) Knock-outs for M32 (left) and M40 (right).
2) M32 knock-outs for rear-side cable entry.
3) Opening for padlock with shackle diameter max. 8 mm .
4) Indicator light 3RV19 03-5.

Molded-plastic front plate 3RV19 23-4.
for MSP sizes S0, S2, S3
3RV29 23-4B
3RV29 23-4E
3RV19 23-4G (only for size SO)

General Data

3RV Spring-type terminal infeed system

Design

Installation guidelines

Distance in Y direction from live, earthed or insulated parts according to IEC 60947-4: 10 mm .
In addition, the installation guidelines for motor starter protectors or fuseless load feeders including the clearances must be complied with.

Technical specifications				
Type				3RV29.7
Size				S00, SO
Rated operational voltage Ue				
Acc. To IEC	10\% overvoltage	\checkmark AC	V AC	500
	5\% overvoltage	\checkmark AC	V	525
Acc. To UL/CSA				600
Rated frequency			Hz	50/60
Rated current In			A	63

Permissible rated current at inside temperature of control cabinet

Motor starter protectors	Size	Rated current	Inside temperature of control cabinet		
3RV2.11	SOO	$\ldots 14 \mathrm{~A}$	$60^{\circ} \mathrm{C}$	$\%$	100
		$>14 \ldots 16 \mathrm{~A}$	$40^{\circ} \mathrm{C}$	$\%$	100
			$60^{\circ} \mathrm{C}$	$\%$	87
3RV2.21	SO	$\ldots 16 \mathrm{~A}$	$60^{\circ} \mathrm{C}$	$\%$	100
		$>16 \ldots 25 \mathrm{~A}$	$40^{\circ} \mathrm{C}$	$\%$	100
			$60^{\circ} \mathrm{C}$	$\%$	87
			$40^{\circ} \mathrm{C}$	$\%$	87

Permissible ambient temperature

Storage/transport	${ }^{\circ} \mathrm{C}$
Operation	$-50 \ldots+80$
${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$
Rated impulse withstand voltage Uimp	kV
Short-circuit strength	corresponds to the mounted motor starter protector or load feeder
Degree of protection acc. To IEC 60529	IP20 (In the terminal compartment of the infeed without con- nected IP00 conductor)
	Finger Safe

Conductor cross-sections			Terminal block 3RV2917-5D	Terminal block for device infeed 3RV2917-5FA00
Type		Three-phase busbar with infeed 3RV2917-1A,3RV2917-1E		
Conductor cross-sections (min./max.)				
- Solid or stranded	mm^{2}	4... 25	1.5 ... 6	1... 10
- Finely stranded with end sleeve	mm^{2}	4... 25	1.5 ... 4	1... 6
- Finely stranded without end sleeve	mm^{2}	6... 25	$1.5 \ldots 6$	--
- AWG cables	AWG	10... 3	15... 10	$18 \ldots 8$

General Data

Cage Clamp infeed system
3-phase busbars with line-side terminals
for 2 circuit-breakers of sizes SOO and S0
3RV29 17-1.

3-phase busbars for system expansion
for 2 and 3 circuit-breakers of sizes SOO and SO
3RV29 17-4.

Contactors and Contactor Assemblies

contents

Section Overview	$2 / 2-2 / 5$
Product Overview	$2 / 6-2 / 7$
SIRIUS Contactors	
3RT20, 3-pole to 95A	$2 / 8$
3RT10, 3-pole to 500A	$2 / 9$
3RT10, 3-pole to 500A with Integrated Safety	NEW
3RT12, 3-pole Vacuum to 500A	$2 / 10$
3RT23, 4-pole with 4 NO	$2 / 13$
3RT24, 3-pole for Resistive Loads	$2 / 14$
3RT25, 4-pole with 2 NO + 2 NC	$2 / 15$
3RT26, for Capacitor Switching	$2 / 21$
3RT20, Interface Coupling Contactors	$2 / 22-2 / 23$
3RT20 Motor Contactors for DC Operation	$2 / 18-2 / 20$
3RH21 Contactor Relays	$2 / 16-2 / 17$
3RA13 / 3RA23 Reversing Contactors	$2 / 39-2 / 46$
3RT, 3TF Safety Contactors and	
3RH2, 3TH2 Safety Control Relays	$2 / 24-2 / 25$
Function Modules for Communications	$2 / 26-2 / 38$
3RA24, Wye-Delta Starting	$2 / 47-2 / 50$
Contactor Coil Codes	$2 / 51$

SIRIUS Control Relays \& Coupling Relays

3RH2 Control Relays 2/52
3RH24 Latched Control Relays 2/53
Auxiliary Switches 2/53
3RH21 Coupling Relays 2/54

Special Application Contactors (3TF6 / 3TB5 / 3TC)
3TF6 Vacuum Contactors up to 820A 2/55-2/56
3TC DC Switching Contactors 2/57-2/58
3TB5 Contactor Coils 2/102-2/103

SIRIUS Contactor \& Relay Accessories

Overview	$2 / 59-2 / 67$
Auxiliary Switches	$2 / 68-2 / 71$
AuxiliaryTime Delay and Latching Blocks	$2 / 72-2 / 73$
Surge and EMC Suppressors	$2 / 75-2 / 76$
Contactor Accessories	$2 / 78-2 / 81$
Reversing Accessories	$2 / 82-2 / 84$
Wye-delta Accessories	$2 / 85$
NEMA 1 Enclosures	$2 / 95$

SIRIUS Current Monitoring Relays

3RR21 Basic Versions	$2 / 86-2 / 89$
3RR22 Standard Versions	$2 / 86-2 / 89$
3RR24 with IO-Link	$2 / 90-2 / 93$
Accessories	$2 / 94$

Special Application Contactor Accessories

Auxiliary Contacts 2/55
Box Terminals and Covers 2/56
Surge Suppressors for 3TB, 3TC, 3TF 2/56

SIRIUS Contactor Spare Parts

Coils	$2 / 96-2 / 100$
Arc Chutes	$2 / 101$
Contact Kits	$2 / 101$
Obsolete Contactor / Relay Spare Parts....	$2 / 104-2 / 105$
Design / Function Overview	
3RT20 Contactors, S00 to S3	$2 / 106-2 / 107$
3RT10 Contactors, S6 to S12	$2 / 108-2 / 109$
WYE-Delta Starters	$2 / 112-2 / 117$
3RH2 Control Relays	$2 / 118$
3TF6 Vacuum Contactors up to 820A	$2 / 119$
3RT / 3RH Accessories	$2 / 120-2 / 122$

Technical Data

3RT10 / 3RT20 Contactors	$2 / 121-2 / 156$
3RT12 Vacuum Contactors	$2 / 157-2 / 162$
3RT24 Resistive Load Contactors	$2 / 163-2 / 170$
3RT23 4-pole Contactors 4 NO	$2 / 171-2 / 172$
3RT25 4-pole Contactors 2 NO \& 2 NC	$2 / 173-2 / 174$
3RT26 Capacitor Switching Contactors	$2 / 175$
3RT20 Interface Relays	$2 / 176$
3TF6 Vacuum Contactors up to 820A	$2 / 177-2 / 182$
3TC DC Switching Contactors	$2 / 183-2 / 186$
Accessories	$2 / 187-2 / 189$
3RH2 Control and Latching Relays	$2 / 190-2 / 193$
3RH21 Coupling Relays	$2 / 194$

Circuit Diagrams

3RT Contactors \& Accessories 2/195-2/203
3RA23 Reversing Contactors 2/204
WYE-Delta Starters 2/205
3TF6 Vacuum Contactors up to 820A 2/206
3RH2 Control \& Latching Relays 2/208
3RH21 Coupling Relays 2/207

Position of Terminals
3RT Contactors and Accessories 2/208-2/212
3RT Capacitor Contactors 2/211
3TF6 Vacuum Contactors up to 820A 2/213
3RH2 Control Relays 2/208

Dimensions

3RT, 3-pole Contactors S00 to S3 2/214-2/217
3RT10, 3-pole Contactors S6 to S12 2/218-2/219
3RT24, 3-pole Contactors for Resistive Loads 2/218-2/219
3RT10, Contactors S6 to S12, integrated safety NEW
3RT12, 3-pole Vacuum Contactors 2/221
3RT23, 3RT25 4-pole Contactors 2/222
3RT26, Contactors for Capacitor Switching 2/223
3RA13 / 23 Reversing Contactors 2/224-2/226

3TF6 Vacuum Contactors up to 820A 2/227
Contactor Accessories 2/228-2/229
3RH2 Control and Coupling Relays 2/230

contents

Contactors for switching three-phase motors

3RT20 contactors, 3-pole 3 to 75 HP, Sizes S00 to S3 with screw, spring or ring lug connections

Page
Selection and ordering data

- AC/DC operation

2/8

- Accessories 2/68
- Spare parts 2/96

Description 2/106
Technical data 2/121
Internal circuit diagrams 2/195
Position of terminals 2/208
Dimension drawings 2/214

3RT10 contactors, 3-pole, 100 to 400 HP , sizes S6, S10 and S12

- AC/DC operation 2/9
- Accessories 2/68
- Spare parts 2/100

Description 2/108
Technical data 2/123
Internal circuit diagrams 2/201
Position of terminals 2/209
Dimension drawings 2/218

3RT20 NEMA labeled contactors, NEMA size 0 to 6

Page
Selection and ordering data

- AC/DC operation 2/8, 2/9
- Accessories 2/68
- Spare parts 2/96

Description 2/106
Technical data 2/121
Internal circuit diagrams 2/195
Position of terminals 2/208
Dimension drawings 2/214

3RT12 vacuum contactors, 3-pole, 150 to 400 HP,
sizes S10 and S12
Page
Selection and ordering data

- AC/DC operation $\quad 2 / 12$
- Accessories 2/68
- Spare parts 2/100

Description 2/108
Technical data 2/157
Internal circuit diagrams 2/201
Position of terminals 2/209
Dimension drawings 2/221

3RA13 / 23 contactor assemblies for reversing, 3 to 75 HP , sizes S00 to S3 with screw or spring loaded connections Page
Selection and ordering data

- AC/DC operation	$2 / 42$
- Accessories	$2 / 82$
- Spare parts	$2 / 96$
Overview	$2 / 40$
Description	$2 / 39$
Circuit diagrams	$2 / 204$
Position of terminals	$2 / 209$
Dimension drawings	$2 / 224$

Wye Delta for customer assembly of sizes S00 to S12

Page
Selection and ordering data

- For wye-delta starting 2/49
- Accessories 2/85
- Spare parts 2/96

Overview 2/110
Description 2/112
Circuit diagrams 2/205

contents

Contactors for special applications

3RT14 / 24 contactors, $I_{\mathrm{e}} / \mathrm{AC}-1: 140$ to 690 A, 3-pole, sizes S3 to S12, with screw connections

Selection and ordering data

- AC/DC operation 2/14
- Accessories 2/68
- Spare parts 2/99

Descriptions 2/14
Technical Data 2/163
Internal circuit diagrams 2/201
Position of terminals 2/209
Dimension drawings 2/216

3RT23 contactors,
AC-1: 18 to 140 A with 4 NO main contacts, sizes S00 to S3
with screw or spring connections
Page
Selection and ordering data

- AC/DC operation 2/13
- Accessories 2/68
- Spare parts 2/96

Description 2/13
Technical Data 2/171
Internal circuit diagrams 2/196
Position of terminals 2/212
Dimension drawings 2/222

3RT20 coupling relays up to 20 HP (interface,) 3-pole, for switching motors, sizes S00 and S0
with screw or spring connections
Page
Selection and ordering data

- DC operation 2/22
- Accessories 2/68
- Spare parts 2/96

Description 2/22
Technical Data 2/176
Internal circuit diagrams 2/195
Position of terminals 2/208
Dimension drawings $\quad 2 / 214$

3RT25 contactors,
AC-3: 7.5-25 HP with 2 NO + 2 NC main contacts, sizes $\mathbf{S 0 0}$ to $\mathbf{S} 2$
with screw or spring connections
Page
Selection and ordering data

- AC/DC operation 2/15
- Accessories 2/68
- Spare parts 2/96

Description 2/15
Technical Data 2/173
Internal circuit diagrams 2/195
Position of terminals 2/208
Dimension drawings 2/222

Contactors and Contactor Assemblies

Contactors for special application

contents

Contactors for special applications

3TF68 and 3TF69 vacuum contactors, 500 to 700 HP ; contactor assemblies

- AC/DC operation 2/55
- Accessories 2/55
- Spare parts 2/55
Descriptions 2/119
Technical Data 2/177
Internal circuit diagrams 2/206
Position of terminals 2/213
Dimension drawings

3TB50 to 3TB56 contactors with DC solenoid system, 100 to 300 HP

Selection and ordering data

- Spare parts

2/103

SIRIUS control relays

Contents

SIRIUS contactor relays

SIRIUS coupling relays (interface)

3RH21 coupling relays for switching auxiliary circuits, 4-pole, size S00, DC operation

Page
Selection and ordering data

- With screw connections 2/54
- with Cage Clamp connections 2/54

Application
2/54
Technical data 2/194
Terminal diagrams 2/207
Position of terminals
Dimension drawings2/230

3RH24 latched control relays, 4-pole, size $\mathbf{S O O}, \mathrm{AC} / \mathrm{DC}$ operation

Page
Selection and ordering data

- With screw connections 2/53
- Accessories for 3RH2 2/53

Application	$2 / 118$

Technical data 2/190
Terminal diagrams 2/207
Position of terminals 2/208
Dimension drawings 2/230

SIRIUS current monitoring relays

3RR current monitoring relays for direct mounting to SIRIUS contactors
 Page

Selection and ordering data

- Basic versions 2/89
- Standard versions 2/89
- Versions with IO-Link 2/93
- Accessories for 3RR 2/94

Overview 2/86
Application 2/86
Technical data 2/87

| S00 3RT20 1

Type AC/DC operation	$\begin{aligned} & \text { 3RT2015 } \\ & \text { (p. 2/8) } \end{aligned}$	3RT2016	3RT2017	3RT2018	$\begin{aligned} & \text { 3RT2023 } \\ & \text { (p. 2/8) } \end{aligned}$	3RT2024	3RT2025	3RT2026	3RT2027	3RT2028	$\begin{aligned} & \text { 3RT2035 } \\ & \text { (p. 2/8) } \end{aligned}$	3RT2036	3RT2037	3RT2038
Type AC/DC operation														

S2 3RT20 3

Type
 3RT20 contactors

 AC/DC operationMaximum 3-phase horsepower ratings at 460 V (UL and CSA listed values)

200 V	HP	1.5	2	3	3	2	3	5	7.5	10	10	10	15	20	20
230 V	HP	2	3	3	5	3	3	5	7.5	10	10	15	15	20	25
460 V	HP	3	5	7.5	10	5	7.5	10	15	20	25	30	40	50	50
575 V	HP	5	7.5	10	10	7.5	10	15	20	25	25	40	50	50	60
AC-3															
Ie/AC-3/400V	A	6	9	12	16	9	12	17	25	32	38	40	50	65	80
230 V	kW	1.5	2.2	3	4	2.2	3	4	5.5	7.5	11	11	15	18.5	22
400 V	kW	3	4	5.5	7.5	4	5.5	7.5	11	15	18.5	18.5	22	30	37
500 V	kW	3.5	4.5	5.5	7.5	4.5	7.5	10	11	18.5	18.5	22	30	37	37
690 V	kW	4	5.5	5.5	7.5	7.5	7.5	11	11	18.5	18.5	22	22	37	45
1000 V	kW	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AC-4 (at $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)															
400 V	kW	3	4	4	5.5	4	5.5	7.5	7.5	11	11	18.5	22	30	37
$\begin{aligned} & 400 \mathrm{~V}(200,000 \\ & \text { operating cycles) } \end{aligned}$	kW	1.15	2	2	2.5	2	2.6	3.5	4.4	6	6	11.6	12.6	14.7	15.8
AC-1 ($40^{\circ} \mathrm{C}, \leq 690 \mathrm{~V}$)															
$I_{\text {e }}$	A	18	22	22	22	40	40	40	40	50	50	60	70	80	90

Accessories for contactors

Auxiliary switch blocks $\begin{array}{r}\text { front } \\ \text { lateral }\end{array}$	3RH29 11 (p. 2/68) 3RH29 11 (p. 2/70)	3RH29 11 (p. 2/68) 3RH2921 (p. 2/70)	
Terminal covers	-	-	3RT29 36 (p. 2/79)
Box terminals	-	-	-
Surge suppressor	3RT29 16 (p. 2/75)	$3 \mathrm{BT2926}$ (p. 2/75)	3RT29 36 (p. 2/75)
3RU21 and 3RB3 overload	relays (Section 3)		
3RU21, thermal, CLASS 10	3RU21 16 0.1-16A (p. 3/10)	$3 \mathrm{RU21} 26$ 0.18-40A (p. 3/10)	3RU21 36 11-80A (p. 3/10)
3RB30/31, solid-state, CLASS 5, 10, 20 and 30	 3RB30 16 $0.1-16 \mathrm{~A}$ (p. 3/22) 3RB31 13 (p. 3/23)	3 RB30 26 $0.1-40 \mathrm{~A}$ 3RB31 23 (p. 3/22) (p. 3/23)	3 RB30 36 12-80A 3RB31 33 (p. 3/22) (p. 3/23)
3RB22/23, solid-state, CLASS 5, 10, 20 and 30	$3 \mathrm{RBR2.83+}$ $0.3-25 \mathrm{~A}$ (p. 3/34) 3 RB29 06		$\begin{aligned} & \text { 3RB22, } \quad 10-100 \mathrm{~A} \quad \text { (p. } 3 / 34 \text {) } \\ & \text { 3RB22, } 3 \text { BB23 and } 3 \text { 3RB24 with } \\ & \text { current measuring module } \end{aligned}$
3RV20 circuit-breakers (Section 1)			
Type	3RV20 11 0.18-16A (p. 1/4)	3RV20 21 11-40A (p. 1/4)	3RV20 31 9.5-80A (p. 1/5)
Link modules	3RA29 11 (p.1/10)	3RA29 21 (p. 1/10)	3RA29 31 (p. 1/10)

3RA23 Reversing contractor assemblies

Complete units	Type	3RA2315	3RA2316 3RA2317 (page 2/42)	3RA2318	(page 2/44)					(page 2/45)			
460 V	HP	3	$5 \quad 7.5$	10	7.5	10	15	20	25	30	40	50	50
Installation kits / wiring connectors		3RA2913-2AA1 (p. 2/83)			3RA2923-2AA1 (p. 2/83)					3RA2933-2AA1 (p. 2/83)			
Mechanical interlocks		3RA2912-2H (p. 2/84)			3RA2922-2H (p. 2/84)					3RA2934-2B (p. 2/82)			

Overview

Accessories for contactors

Auxiliary switch blocks	front lateral	$\begin{aligned} & \text { 3RH29 } 11 \\ & \text { 3RH29 } 21 \end{aligned}$	$\begin{aligned} & \text { (p. 2/68) } \\ & \text { (p. 2/70) } \end{aligned}$	3RH19 21 3RH19 21	$\begin{aligned} & \text { (p. 2/68) } \\ & \text { (p. 2/70) } \\ & \hline \end{aligned}$			3TY7 561	(p. 2/55)
Terminal covers		3RT2946-4EA2	(p. 2/81)	3RT19 56-4EA1/2/3	(p. 2/81)	3RT19 66-4EA1/2/3	(p. 2/81)	3TX7 686/696	(p. 2/56)
Box terminals		-		3RT19 55/56-4G	(p. 2/81)	3RT19 66-4G	(p. 2/81)	-	
Surge suppressor		3RT29 36	(p. 2/75)	3RT19 56-1C (RC element) (p. 2/75)				3TX7 572	(p. 2/56)

3RU21 and 3RB3 overload relays (Section 3)
3RU21, thermal, \quad 3RU21 46 18-100A (p. 3/10) CLASS 10
3RB30/31, solid-state,
CLASS 5, 10, 20 and 30
3RB22/23, solid-state,
CLASS 5, 10, 20 and 30

3RB30 46	12.5-100A (p. 3/22)
3RB31 43	(p. 3/23)

3RV20 circuit-breakers (Section 1)

Type	3RV20 41 45-100A	(p. 1/5)	-	-	-	-
Link modules	3RA19 41	(p. 1/10)	-	-	-	-

3RA23 Reversing contractor assemblies

Complete units Type	$\begin{array}{ll} \begin{array}{ll} \text { 3RA23 45 } \\ \text { (p. 2/46) } & \text { 3RA23 } \end{array} \end{array}$	3RA23 47	-			-			-		-	
460 V HP	$60 \quad 75$	75	100	125	150	150	200	250	300	400	500	700
Installation kits / wiring connectors	3RA2943-2AA1	(p. 2/83)	3RA1953-2A		(p. 2/83)	3RA1963-2A		(p. 2/83)	3RA1973-2A (p. 2/83)		3TX7680-1A	
Mechanical interlocks	3RA2934-2B		3RA1954-2A		(p. 2/82)						3TX7686-1A	

Contactors for Switching Motors

3RT contactors，3－pole－Size S00 to S3

Selection and ordering data

3RT201．－2A．

3RT2025－2B．．．

3RT2035－1A．

3RT2045－1A．．．

Frame Size	Amp Ratings		Single－phase HP ratings			Three－phase HP ratings				Auxiliary contacts		Screw Terminals Order No．	Spring－Loaded Terminals Order No．	Weight approx． kg
	AC3	AC1	115 V	208V	230 V	208V	230V	460 V	575V	NO	NC			
3RT 3－pole contactors														0．24／0．29
S00	6	18	0.25	0.5	0.75	1.5	2	3	5	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	3RT2015－1 \square－01 3RT2015－1ロ－02	3RT2015－2 \square－01 3RT2015－2■－02	
	9	22	0.33	1	1	2	3	5	7.5	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	3RT2016－1 1ᄆ001 3RT2016－1ロ－02	$\begin{aligned} & \text { 3RT2016-2 } \square \bullet \bullet 1 \\ & \text { 3RT2016-2 } \square \bullet \bullet 2 \end{aligned}$	
	12	22	0.5	1.5	2	3	3		10	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3RT2017-1 } \square \odot \bullet 1 \\ & \text { 3RT2017-1 } \end{aligned}$	$\begin{aligned} & \text { 3RT2017-2 } \square \bigcirc \bigcirc 1 \\ & \text { 3RT2017-2 } \square \bigcirc \bigcirc 2 \end{aligned}$	
	16	22	1	2	2	3	5	10	10	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	3RT2018－1 \square 3RT2018－1ロ－02	$\begin{aligned} & \hline \text { 3RT2018-2 } \square \bullet \bullet 1 \\ & \text { 3RT2018-2 } \square \bullet \bullet 2 \end{aligned}$	
S0	9	40	1	1	1	2	3	5	7.5	1	1		3RT2023－2口00	0．42／0．60
	12	40	1	2	2	3	3	7.5	10	1	1	3RT2024－1 \square O0	3RT2024－2口○0	
	17	40	1	2	3	5	5	10	15	1	1	3RT2025－1 \square－0	3RT2025－2口○0	
	25	40	2	3	3	7.5	7.5	15	20	1	1	3RT2026－1 $\square \bigcirc 0$	3RT2026－2口•0	
	32	50	2	5	5	10	10	20	25	1	1		3RT2027－2口－0	
	38	50	3	5	5	10	10	25	25	1	1	3RT2028－1 $\square \bigcirc 0$	3RT2028－2口○○	
S2	40	60	3	5	7.5	10	15	30	40	1	1	3RT2035－1 \square－0	3RT2035－3口○0	0．99／1．121
	50	70	3	7.5	10	15	15	40	50	1	1	3RT2036－1 \square－00	3RT2036－3口－00	
	65	80	5	10	10	20	20	50	50	1	1	3RT2037－1 ${ }^{\text {a }}$	3RT2037－3口○0	
	80 ${ }^{\text {）}}$	90	5	10	15	20	25	50	60	1	1	3RT2038－1 $\square \bigcirc 0$	3RT2038－3口00	
S3	80	125	7.5	10	15	25	30	60	60	1	1	3RT2045－1 \square－00	3RT2045－3口○0	1．8／2．8
	95	130	10	10	20	30	30	75	75	1	1	3RT2046－1 $\square \bigcirc 0$	3RT2046－3口•0	
	110	130	10	10	20	30	40	75	100	1	1	3RT2047－1 $\square \bigcirc 0$	3RT2047－3口000	
Size S2 \＆S3 only：Replace＂B＂with＂K＂for 24VDC coil only Size S0－S3 only：UC Electronic with integrated varistor												AC Coil $=\mathbf{A}$ DC Coil $=\mathbf{B}$ UC Coil $=\mathbf{N}$	A B N	

NEMA Slze	Amp Ratings	Single－phase HP ratings		Three－phase HP ratings				Auxiliary contacts		Screw Terminals with AC coil Order No．	Screw Terminals with 24 VDC coil Order No．	Weight approx． kg
		115V	230 V	208V	230 V	460 V	575V	NO	NC			
NEMA Labeled Contactors												
0	18	1	2	3	3	5	5	1	0	3RT2018－1A－01－0UAO	3RT2018－1BB41－0UAO	0.28
1	27	2	3	7.5	7.5	10	10	1	1	3RT2027－1A－ $00-0 \mathrm{UAO}$	3RT2027－1BB40－0UA0	0.42
2	45	3	7.5	10	15	25	25	1	1	3RT2036－1A $\bullet 00-0 \mathrm{CAO}$	3RT2036－1NB30－OUAO	0．986／1．121
3	90	7.5	15	25	30	50	50	1	1	3RT2046－1A ${ }^{\text {ce0－0UA0 }}$	3RT2046－1NB40－OUAO	1．8／2．8

1）All terminals are spring loaded on frame sizes $S 00$ \＆$S 0$ ．
Only the coil terminals are spring loaded on frame sizes S2 \＆S3．
2） Max UL FLA $=65 \mathrm{~A}$ at 460 V

Note：Ring lug terminals are also available in size SOO \＆SO contactors，except contactors with communication interface or UC coil．Change the 8 th digit of the order number to a＂ 4 ＂ e．g．3RT2015－4AK61．
For further coil voltages，see page 2／51．
For auxiliaries and accessories，see page 2／68－2／85．
For spare parts，see page 2／96－2／101．
For technical data，see page 2／121－2／142．
For description，see page 2／106－2／107．
For int．circuit diagrams，see page $2 / 195-2 / 202$ ．
For dimension drawings，see page 2／214－2／217．

AC Coil Selection for 3RT201 through 3RT204

$\boldsymbol{\bullet}$ Coil Code	$\mathbf{C 2}^{2)}$	$\mathbf{H 2}^{3)}$	K6	P6	U6	V6	T6
$\mathbf{6 0 ~ H z}$	24 V	48 V	120 V	240 V	277 V	480 V	600 V
$\mathbf{5 0 ~ H z}$	24 V	48 V	110 V	220 V	-	-	-

2）Use Code B0 for 3RT201，S00
3）Use Code H0 for 3RT201，S00

DC Coil Selection for 3RT201 \＆3RT202（for 3RT203 \＆3RT204 see UC）							
－0Coil Code	A4 ${ }^{\text {）}}$	B4	W4	E4	F4	G4	M4
DC	12 V	24 V	48 V	60 V	110 V	125 V	220 V

4）3RT201 and 3RT202 only

UC Coil Selection for 3RT202				UC Coil Selection for 3RT203 \＆3RT204			
－0Coil Code	B3	F3	P3 ${ }^{\text {4）}}$	$\bullet \bullet$	B3	F3	P3 ${ }^{5}$
UC	21－28V	95－130V	200－280V		20－33V	83－155V	175－280V

${ }^{5)}$ at upper limit $=1.1 \times U_{S}$

Contactors for Switching Motors

Selection and ordering data

＊AC／DC Coils with built in surge suppressor
＊Coil Types（ 40 Hz to $60 \mathrm{~Hz}, \mathrm{DC}$ ）：
＊Conventional Coil
＊Solid－state operated coil with wider range and 24 V DC PLC input
＊Solid－state operated coil with Remaining Lifetime Indication（RLT）
＊Box terminals ordered separately

3RT1056－6PF35

3RT1054－6SF36

Frame Size	Amp Ratings		Single－phase HP ratings		Three－phase HP ratings				Auxiliary contacts		Screw Terminals on coil and aux． Order No．	Spring－type terminals on coil and aux．contacts Order No．	Weight approx． kg
	AC3	AC1	115 V	230 V	200V	230 V	460V	575V	NO	NC			
3RT 3－pole Contactors													3.5
S6	115	160	－	25	40	50	100	125	2	2	3RT1054－6口－06	3RT1054－2口－06	
	150	185	－	30	50	60	125	150	2	2	3RT1055－6口－06	3RT1055－2口006	
	185	215	－	30	60	75	150	200	2	2	3RT1056－6口－06	3RT1056－2口006	
S10	225	275	－	－	60	75	150	200	2	2	3RT1064－6口－96	3RT1064－2口006	6.7
	265	330	－	－	75	100	200	250	2	2	3RT1065－6ロ006	3RT1065－2口006	
	300	330	－	－	100	125	250	300	2	2	3RT1066－6口096	3RT1066－2口006	
S12	400	430	－	－	125	150	300	400	2	2	3RT1075－6口006	3RT1075－2口006	10.5
	500	610	－	－	150	200	400	500	2	2	3RT1076－6口－96	3RT1076－2■006	
UC Conventional Coil Solid State Operated Coil＝ Solid State Operated Coil with RLT＝ Solid State Fail－safe Coil＝											\square A N Peos S	$\begin{aligned} & \square \\ & \mathbf{A} \\ & \mathbf{N} \\ & \mathbf{S} \end{aligned}$	

NEMASIze	Amp Ratings	Single－phase HP ratings		Three－phase HP ratings				Auxiliary contacts		Screw Terminals on coil and aux． Order No．	Spring－type terminals on coil and aux．contacts Order No．	Weight approx． kg
		115 V	230 V	200 V	230 V	460 V	575V	NO	NC			
NEMA Labeled Contactors												
4	135	－	－	40	50	100	100	2	2	3RT1056－6A・セ6－0UAO	－	3.5
5	270	－	－	75	100	200	200	2	2	3RT1066－6A•年6－OUA0	－	6.7
6	540	－	－	150	200	400	400	2	2	3RT1076－6A006－0UA0	－	10.5

All coil voltages are in the
adjacent table．
For auxiliaries and accessories，
see page 2／68－2／85．
For spare parts，see page 2／96－2／101．
For technical data，see page
2／148－2／156
For description，see page 2／108－2／109．
For int．circuit diagrams，see page 2／201－2／203． For dimension drawings，see page 2／218－2／219．

Sizes S6 to S12 Coil Codes－UC operation（AC 50 to 60 Hz and DC）

UC Conventional Coil		Solid－State Coil			
Rated control supply voltage Us Us \min ．．．Us max ${ }^{1)}$	3RT1．5．－．A	Rated control supply voltage Us Us \min ．．．Us max ${ }^{1)}$	3RT1．5．－．S	3RT1．5．－．N	3RT1．5．－．P
	3RT1．6．－． A		3RT1．6．－．S	3RT1．6．－．N	3RT1．6．－．P
	3RT1．7．－．A		3RT1．7．－．S	3RT1．7．－．N	3RT1．7．－．P
Coil Codes	$\bullet \bullet$	Coil Codes	－	－	$\bullet \bullet$
$23 . .26 \mathrm{~V} \mathrm{AC/DC}$	B3	$21 . .27 .3 \mathrm{~V}$ AC／DC	－	B3	－
$42 \ldots 48 \mathrm{~V} \mathrm{AC/DC}$	D3	96 ．．． 127 V AC／DC	F3	F3	F3
110 ．．． $127 \mathrm{~V} \mathrm{AC/DC}$	F3	200 ．．． 277 V AC／DC	P3	P3	P3

1）Operating range： $0.8 \times$ Us \min to $1.1 \times$ Us max．

Contactor with integrated failsafe connection

Features

New Contactors from 125 to 500 HP @ 575 V for direct control by fail-safe controllers

- First contactor with fail-safe input
- Certified for use up to the highest safety level
- SIL CL 2 with one / SIL CL 3 with two contactors

Benefits

- Savings on standard outputs in the controller
- Space savings due to elimination of the coupling level
- Less wiring
- Simplified safety assessment

Overview

The size S6 to S12 range of tried and tested contactors from 125 to $500 \mathrm{HP} @ 575 \mathrm{~V}$ has been expanded to include versions suitable for direct control from fail-safe controllers, rendering the coupling level superfluous. The new contactors are also available with nonremovable, lateral auxiliary switches, enabling fulfilment of Swiss Accident Insurance Institute (SUVA) requirements.

The new contactors constitute the logical extension and further development of the SIRIUS Modular System, serving to promote safe switching. They are the first contactors on the market to be equipped with an input for fail-safe signals. This makes it possible to attain SIL 2 and/or PLc with just one contactor and SIL 3 and/ or PLe with two contactors in series according to IEC 62061 and ISO 13849-1.

The big advantage of this solution is that it saves on additional, possibly positively-driven coupling relays and makes evaluation of safety information considerably easier.
This reduction in coupling relays is also a huge plus point for non-safety applications. Whereas previously space, money and wiring expertise were required in order to operate contactors from 100 HP and higher using controllers, both functional and safety switching can now take place by direct activation.
Using the Safety Evaluation Tool you can quickly find the right contactor and safely configure your application.

Save space and costs with a direct connection to the controller - no need for coupling relays!

3RT1 size S6 for high motor outputs with standard PLC-IN

- Normal switching duty via standard IO and PLC-IN
- Safety-related tripping initated by monitoring coupled links
- Feedback of the two S6 size 3RT1 contacts and the coupling relays via standard IO

NEW configuration:
3RT1 size S 6 for high motor outputs with new contactor with fail-safe F-PLC-IN

- A1-A2 supplied via standard power supply (unit)
- Normal switching duty via F-DQ and F-PLC-IN
- Safety-related tripping via the same signal
- Feedback of the two S6 size 3RT1 via standard IO

Contactors for Switching Motors with Integrated Safety

3RT contactors, 3-pole up to 500 HP IE3/IE4 ready

AC/DC Operation

- Solid-state operating mechanism (with integrated varistor) with fail-safe control input for safety-related applications to SIL CL 3
- 24 V DC control signal input, e.g. for control via the fail-safe output module of a controller (F-PLC) or safety relay
- Attainable Safety Integrity Level (SIL):
- With one contactor: SIL CL 2 acc. to IEC 62061 or PL c acc. to ISO 13849-1
- With two contactors in series: SIL CL 3 acc. to IEC 62061 or PL e acc. to ISO 13849-1according to IEC 60947-4-1, test conditions for utilization category AC-1
- Version with removable lateral auxiliary switches or permanently mounted auxiliary switches and additional approval according to SUVA (on request)
- For screw fixing
- Auxiliary and control conductors: Screw or spring-type terminals
- Main conductors: Busbar connections; a connection kit with screws, spring washer and nut is enclosed.

For more information on safety systems, see Section 13 Limit Switches and Safety.

3RT107.-6S.36-3PA0

3RT105.-6S.36-3PA0

3RT105.-6S. 36

3RT106.-6S. 36

3RT107.-6S.36

Selection and ordering data

See pages $2 / 9$ (contactors with removable auxiliary switches) and 2/25 (contactors with removable auxiliary switches-SUVA).

Contactors for Switching Motors

3RT12 vacuum contactors, 3-pole

Selection and ordering data

- AC/DC operation ($40 \mathrm{~Hz} \ldots 60 \mathrm{~Hz}, \mathrm{DC}$)
- Withdrawable coils
- Integrated coil circuit (varistor)
- Auxiliary and control conductors: screw connections
- Main conductor: bar connections

Size	Horsepower ratings and utilization categories								Rated control supply voltage U_{s}	Order No.	Weight approx.
	AC-3 Maximum inductive current Amps	Rating motors 200 V HP	s of thre 230 V HP	$\begin{aligned} & \text { ee-phas } \\ & \left\lvert\, \begin{array}{l} 460 \mathrm{~V} \\ \mathrm{HP} \end{array}\right. \end{aligned}$	$575 \text { V }$ HP	AC-1 Maximum resistive current Amps	NO	NC	AC/DC V		kg
Conventional operating mechanism											
S10	225	60	75	150	200	330	2	2	$\begin{aligned} & 110 \text {... } 127 \\ & 220 \text {.. } 240 \end{aligned}$	3RT12 64-6AF36 3RT12 64-6AP36	6.4
	265	75	100	200	250	330	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	3RT12 65-6AF36 3RT12 65-6AP36	
	300	100	125	250	300	330	2	2	$\begin{aligned} & 110 \text {... } 127 \\ & 220 \text {... } 240 \end{aligned}$	3RT12 66-6AF36 3RT12 66-6AP36	
S12	400	125	150	300	400	610	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	$\begin{aligned} & \text { 3RT12 75-6AF36 } \\ & \text { 3RT12 75-6AP36 } \end{aligned}$	9.6
	500	150	200	400	500	610	2	2	$\begin{aligned} & 110 \ldots 127 \\ & 220 \ldots 240 \end{aligned}$	$\begin{aligned} & \text { 3RT12 76-6AF36 } \\ & \text { 3RT12 76-6AP36 } \end{aligned}$	
Solid-state operating mechanism - for DC 24 V PLC output											
S10	225	60	75	150	200	330	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT12 64-6NF36 3RT12 64-6NP36	6.4
	265	75	100	200	250	330	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT12 65-6NF36 3RT12 65-6NP36	
	300	100	125	250	300	330	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots .277 \end{array}$	3RT12 66-6NF36 3RT12 66-6NP36	
S12	400	125	150	300	400	610	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT12 75-6NF36 3RT12 75-6NP36	9.6
	500	150	200	400	500	610	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots .277 \end{array}$	3RT12 76-6NF36 3RT12 76-6NP36	

Universal Coil Selection for 3RT126 through 3RT127: Conventional Operation										
Coil Code	B3	D3	F3	M3	P3	U3	V3	R3	S3	T3
Volts AC/DC $40-60 \mathrm{~Hz}$, DC	$23 . .26 \mathrm{~V}$	$42 . .48 \mathrm{~V}$	$110 . .127 \mathrm{~V}$	$200 . .220 \mathrm{~V}$	$220 . .240 \mathrm{~V}$	240 .. 277 V	380 .. 420 V	440 .. 480 V	$500 . .550 \mathrm{~V}$	$575 . .600 \mathrm{~V}$

Solid State Selection for 3RT126 through 3RT127: Solid-State			
Coil Code	B3	F3	P3
Volts AC/DC $40-60 ~ H z, ~ D C ~$	$21 . .27 .3 \mathrm{~V}$	$96 . .127 \mathrm{~V}$	$200 . .277 \mathrm{~V}$

[^6]
Standards

IEC 60947-1, EN 60947-1
IEC 60947-4-1, EN 60947-4-1
IEC 60947-5-1, EN 60947-5-1 (auxiliary switches)

Design

The contactors are suitable for use in any climate. They are safe from touch to DIN VDE 0106, Part 100. The accessories for the 3 -pole SIRIUS contactors can also be used for the 4 -pole designs.
Mountable auxiliary contacts
Size SOO: 4 auxiliary contacts of which up to 3 can be NC. Size SO \& S2: 4 additional auxiliary contacts up to 3 can be NC. Sizes S2 and S3: Up to 4 auxiliary contacts (either laterally mounted or snappped onto the top).
Contactor assemblies with mechanical interlock
The 4-pole 3RT23 contactors with 4 NO contacts as the main contacts are suitable for making contactor assemblies with a mechanical interlock, e.g. for system transfers.
Size S00: Contactor assemblies can be made using two 3RT231. contactors in conjunction with the mechanical interlock and two connecting clips (Order No. 3RA2912-2H, pack comprising 10 interlocking elements and 20 clips for 10 contactor assemblies, see accessories on page 2/72).

Size SO: In order to make 4-pole contactor assemblies using two 3RT232. contactors, the fourth pole of the left-hand contactor must always be moved to the left-hand side. The contactor assembly can then be made easily with the aid of the 3RA2922-2H mechanical interlock and connecting clip set fitted between the two contactors.
Sizes S2 and S3: Contactor assemblies can be made using two 3RT23 3 or 3RT23 4. contactors in conjunction with the laterally mountable mechanical interlock and the mechanical connectors. The mechanical interlock for fitting onto the front cannot be used for size S2 and S3 contactors.

Application

- Switching resistive loads
- Isolating systems with unearthed or poorly earthed neutral conductors
- System transfers when alternative AC power supplies are used
- As contactors which only carry current and do not have to switch in case of inductive loads - e.g. variable-speed operating mechanisms
- Switching mixed loads in distribution systems (e.g. for supplying heaters, lamps, motors, PC power supply units) with p.f. > 0.8 according to IEC 60947-4-1, test conditions for utilization category AC-1

Selection and ordering data

Rating data		Auxiliary contacts			Rated control supply voltage U_{s} $50 / 60 \mathrm{~Hz}$	AC Operation Screw Terminals ${ }^{1)}$ Order No.	Rated control supply voltage Us	DC Operation Screw Terminals ${ }^{1)}$ Order No.
AC-1 Max resist. current $/ \mathrm{e}$	UL ratings AC loads at $\mathbf{6 0 0} \mathrm{V}$, 60 Hz	Identification No.	Version					
Amps	Amps		NO	NC	$V A C$		V DC	

For screwing and stapping onto 35 mm mounting rail

3RT23 27-1AP60

Size SOO - Auxiliary switches can be retrofitted

18	16	18	-	-	-	24 110/120 220/240	3RT23 16-1AB00 3RT23 16-1AK60 3RT23 16-1AP60	$\begin{aligned} & 24 \\ & 125 \\ & 220 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT23 16-1BB40 } \\ & \text { 3RT23 16-1BG40 } \\ & \text { 3RT23 16-1BM40 } \end{aligned}$
22	20	20	-	-	-	24 110/120 220/240	$\begin{aligned} & \hline \text { 3RT23 17-1AB00 } \\ & \text { 3RT23 17-1AK60 } \\ & \text { 3RT23 17-1AP60 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 125 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { 3RT23 17-1BB40 } \\ & \text { 3RT23 17-1BG40 } \\ & \text { 3RT23 17-1BM40 } \end{aligned}$

Size SO - Terminal designations according to EN $50012-1$ NO + 1 NC, identification number 11E

$35^{2)} 30^{2)}$	30	11E	1	1	24 110/120 220/240	3RT23 25-1AC20 3RT23 25-1AK60 3RT23 25-1AP60	$\begin{aligned} & 24 \\ & 125 \\ & 220 \\ & \hline \end{aligned}$	3RT23 25-1BB40 3RT23 25-1BG40 3RT23 25-1BM40
$40^{2)} 35^{2)}$	35	11E	1	1	$\begin{array}{\|l\|} \hline 24 \\ 110 / 120 \\ 220 / 240 \\ \hline \end{array}$	3RT23 26-1AC20 3RT23 26-1AK60 3RT23 26-1AP60	$\begin{aligned} & \hline 24 \\ & 125 \\ & 220 \end{aligned}$	3RT23 26-1BB40 3RT23 26-1BG40 3RT23 26-1BM40
$50^{2)} 42^{2)}$	38	11E	1	1	$\begin{array}{\|l\|} \hline 24 \\ 110 / 120 \\ 220 / 240 \end{array}$	$\begin{aligned} & \text { 3RT23 27-1AC20 } \\ & \text { 3RT23 27-1AK60 } \\ & \text { 3RT23 27-1AP60 } \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 125 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { 3RT23 27-1BB40 } \\ & \text { 3RT23 27-1BG40 } \\ & \text { 3RT23 27-1BM40 } \end{aligned}$

Size S2								V UC	
60	55	60	11E	1	1	24	3RT23 36-1AC20	20-33	3RT23 36-1NB30
						110/120	3RT23 36-1AK60	83-155	3RT23 36-1NF30
						220/240	3RT23 36-1AP60	175-280	3RT23 36-1NP30
110	95	105	11E	1	1	24	3RT23 37-1AC20	20-33	3RT23 37-1NB30
						110/120	3RT23 37-1AK60	83-155	3RT23 37-1NF30
						220/240	3RT23 37-1AP60	175-280	3RT23 37-1NP30
Size S3								V UC	
140	130	120	-	-	-	24	3RT23 46-1AC20	20-33	3RT23 46-1NB30
						110/120	3RT23 46-1AK60	83-155	3RT23 46-1NF30
						220/240	3RT23 46-1AP60	175-280	3RT23 46-1NP30

1) Size SOO and SO contactors are also available with spring-type terminals. Replace the 8th digit of the order no. with a "2" e.g. "3RT23 16-2AK60"
2) Minimum conductor cross-section 8 AWG.

For further voltages, see page 2/51. For coil voltage tolerance, p. 2/51 For auxiliaries and accessories, see page 2/68-2/85. For spare parts, see page 2/96-2/101

> For technical data, see page 2/171-2/172.
> For in. circuit diagrams, see page 2/196-2/201. For dimension drawings, see page $2 / 222$.

Application

$A C$ and $D C$ operation (size S3)
UC operation (AC/DC)
(sizes S6 to S12)
IEC 60 947, EN 60947
(VDE 0660)

The contactors are suitable for use in any climate. They are safe from touch to DIN VDE 0106 Part 100.
3RT14/3RT24 contactors are used for switching resistive loads.
(AC-1) or as contactors, for example in variable-speed drives which normally only have to carry the current.

The accessories for the SIRIUS 3RT10/3RT20 contactors can also be used here.

Selection and ordering data

3RT24 46-1A. . 0

Ratings AC-1 utilization category,					UL Ratings				Rated control supply voltage U_{s}	Order No.	Weight approx.
	IEC Ratings Rated power of three phase loads $\cos \varnothing=0.95$ (@ 60 C)										
Maximum current					Max Current	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\left.\begin{array}{\|l\|} 460 / \\ 480 \mathrm{~V} \end{array} \right\rvert\,$	$\begin{aligned} & 575 / \\ & 600 \mathrm{~V} \end{aligned}$			
Amps	$\begin{aligned} & 230 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \text { 400V } \\ & \mathrm{kW} \end{aligned}$	$\begin{aligned} & 500 \mathrm{~V} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \text { 690V } \\ & \mathrm{kW} \end{aligned}$	Amps	Hp		Hp			kg

With screw connections • for screwing and snapping onto
35 mm and 75 mm standard mounting rails
Size S3 • (without auxiliary contacts)

- AC operation

$\mathbf{1 4 0}$	50	86	107	148	140	15	30	40	$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ $120 \mathrm{~V}, 60 \mathrm{~Hz}$ $240 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT24 46-1AC2 0 3RT24 46-1AK6 0 3RT24 46-1AP6 0	1.8

- DC operation - DC solenoid system

- AC/DC operation ($40 \mathrm{~Hz} \ldots 60 \mathrm{~Hz}, \mathrm{DC}$) . Integrated coil circuit (varistor) - Main conductor: bar connections
- Withdrawable coils
- Auxiliary and control conductors: screw connections

Size	Ratings AC-1 utilization category,					UL Rating	Auxiliary contacts, lateral		Rated control supply voltage U_{s}	Order No.	Weight approx.	
		IEC Ratings Rated power of three phase loads $\cos \varnothing=0.95$ (@ 60ㅇ)										
	AC-1 Maximum resistive current Amps					Max						
		230 V	400V	500 V	690V							
		kW	kW	kW	kW	Amps	NO	NC	AC/DC V		kg	

Conventional operating mechanism

| $\mathbf{S 6} \mathbf{2 7 5}$ | 95 | 165 | 205 | 285 | 210 | 2 | 2 | $110 \ldots 127$
 $220 \ldots 240$ | 3RT14 56-6AF36
 3RT14 56-6AP36 | 3.1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{S 1 0}$ | $\mathbf{4 0 0}$ | 145 | 250 | 315 | 430 | 360 | 2 | 2 | $110 \ldots 127$
 $220 \ldots 240$ | 3RT14 66-6AF36
 3RT14 66-6AP36 | 5.7 |
| $\mathbf{S 1 2}$ | $\mathbf{6 9 0}$ | 245 | 430 | 535 | 740 | 580 | 2 | 2 | $110 \ldots 127$
 $220 \ldots 240$ | 3RT14 76-6AF36
 3RT14 76-6AP36 | 9.1 |

3RT14 7.
Solid-state operating mechanism - for DC 24 V PLC output

S6	275	95	165	205	285	210	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots . .277 \end{array}$	3RT14 56-6NF36 3RT14 56-6NP36	3.1
S10	400	145	250	315	430	360	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots .277 \end{array}$	3RT14 66-6NF36 3RT14 66-6NP36	5.7
S12	690	245	430	535	740	580	2	2	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots .277 \end{array}$	3RT14 76-6NF36 3RT14 76-6NP36	9.1
Solid-state operating mechanism • for DC 24 V PLC with remaining lifetime indication											
S6	275	95	165	205	285	210	1	1	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots .277 \\ \hline \end{array}$	3RT14 56-6PF35 3RT14 56-6PP35	3.1
S10	400	145	250	315	430	360	1	1	200 ... 277	3RT14 66-6PP35	5.7
S12	690	245	430	535	740	580	1	1	200 ... 277	3RT14 76-6PP35	9.1

Universal Coil Selection for 3RT145 through 3RT147: Conventional Operation										
Coil Code	B3	D3	F3	M3	P3	U3	V3	R3	S3	T3
$\begin{array}{\|c\|} \hline \text { Volts AC/DC } \\ 40-60 \mathrm{~Hz}, \mathrm{DC} \end{array}$	$23 . .26 \mathrm{~V}$	42 .. 48 V	110 .. 127 V	200 .. 220 V	220 .. 240 V	240 .. 277 V	380 .. 420 V	440 .. 480 V 5	500 .. 550 V	575 .. 600 V

Universal Coil Selection for 3RT145 through 3RT147: Solid-State			
Coil Code	B3	F3	P3
Volts AC/DC	$21 . .27 .3 \mathrm{~V}$	$96 . .127 \mathrm{~V}$	$200 . .277 \mathrm{~V}$
$\mathbf{4 0 - 6 0 ~ H z}, \mathbf{D C}$			

Note: B3 code not available for
Remaining Lifetime Contactors.

For further coil voltages, see page $2 / 51$. For auxiliaries and accessories,
see page 2/68-2/85.
For spare parts, see page 2/96-2/101. For technical data, see page 2/163-2/170. For int. circuit diagrams, see page $2 / 201$. For dimension drawings, see page 2/216, 2/218-2/219.

AC and DC operation

IEC 60 947-4-1/EN 60 947-4-1
(VDE 0660, Part 102)

Design

The contactors are suitable for use in any climate. They are safe to touch according to EN 50274. The accessories for the 3 -pole SIRIUS contactors can also be used for the 4-pole designs.

Mountable auxiliary contacts

Size S00 and SO:

4 auxiliary contacts, of which up to 4 can be NC contacts.

Size S2

Up to 4 auxiliary contacts (either laterally mounted or snapped onto the top; auxiliary switch blocks to EN 50012 and EN 50 005)

Application

- Changing the polarity of hoisting gear motors
- Switching two separate loads from the same source

Selection and ordering data

Rating data							Rated control supply voltage U_{s}			
AC-2/AC-3 $T u$: up to $60^{\circ} \mathrm{C}$			AC-1 Max resistive current		Auxiliary contacts Version			AC Operation ${ }^{2)}$ Screw terminals Order No.	Rated control supply voltage U_{s}	DC Operation ${ }^{2)}$ Screw terminals Order No.
Max	Max motor HP at $460 \mathrm{~V}, 60 \mathrm{~Hz}$									
at 400 V			$40^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$						
Amps	NO	NC	Amps		NO	NC	V AC, $50 / 60 \mathrm{~Hz}$		V DC	

For screwing and snapping onto 35 mm standard mounting rail

For further voltages, see page 2/51. For auxiliaries and accessories, see page 2/68-2/85.
For spare parts, see page 2/96-2/101. For technical data, see page 2/173-2/174
For int. circuit diagrams, see page 2/196-2/201. For dimension drawings, see page 2/222.

1) For changing polarity; not suitable for reversing.
2) Size SOO and SO contactors are also available with spring-type terminals. Replace the 8th digit of the order no. with a "2" e.g. "3RT25 16-2AK60"
3) Size Soo:

Coil voltage tolerance
at $50 \mathrm{~Hz}: 0.8 \ldots 1.1 \times U_{s}$
at $60 \mathrm{~Hz}: 0.85 \ldots 1.1 \times U_{s}$
4) The NC contact can switch up to 5 HP.

3RT, 3RH Contactors for Special Applications

3RH21 contactor relays

Overview

DC operation
IEC 60947-4-1, EN 60947-4-1, for requirements according to IEC 60077-1 and IEC 60077-2.
The contactor relays are finger-safe according to EN 50274. The size SOO contactor relays have spring-type connections for all terminals.

Ambient temperature

The permissible ambient temperature for operation of the contactor relays (across the full coil operating range) is -40 to $+70^{\circ} \mathrm{C}$.

Uninterrupted duty at temperatures $>+60^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current carrying capacity of the conducting paths and the switching frequency.

Control and auxiliary circuits

The solenoid coils of the contactor relays have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{S}}$ and are fitted as standard with suppressor diodes to provide protection against overvoltage. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

Application

For operation in installations which are subject both to considerable variations in the control voltage and to high ambient temperatures, e. g. railway applications under extreme climatic conditions, rolling mills, etc.

Also for control supply voltages with battery buffer for longer operating times should the battery charging fail.

Contactor relays without series resistor

Control and auxiliary circuits
These contactor relays have an extended operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$; the solenoid coils are fitted with a suppressor diode. An additional series resistor is not required.
Note:
An additional auxiliary switch block cannot be mounted.
Side-by-side mounting
A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C} \leq 70^{\circ} \mathrm{C}$.

Contactor relays with series resistor
Control and auxiliary circuits
The DC solenoid systems of the contactor relays are modified (to hold-in coil) by means of a series resistor.

The size SOO contactor relays are supplied prewired with a plugon module containing the series resistor. The suppressor diode is integrated.

A 4-pole auxiliary switch block (according to EN 50005) can be fitted additionally.
Side-by-side mounting
Side-by-side mounting is permitted at ambient temperatures up to $70^{\circ} \mathrm{C}$.

3RH21 contactor relays

Selection and ordering data

DC operation • DC solenoid system
Spring-type terminals
For screw and snap-on mounting onto standard mounting rail
Solenoid coil fitted with suppressor diode

More information

Contactors Type		3RH21 ..
Upright mounting position		
- Contactors with series resistor		Special version (on request)
- Contactors without series resistor		Special version (on request)
Ambient temperature		
- During operation	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$
- During storage	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$
Solenoid coil operating range DC		$0.7 \ldots 1.25 \times U_{\text {S }}$
Power consumption of the solenoid coils		For cold coil and $1.0 \times U_{\text {s }}$
- Contactors with series resistor - Closing	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$
- Contactors without series resistor $\begin{array}{ll}\text { - Closing } \\ & \text { - Closed }\end{array}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$

All specifications and technical specifications not mentioned
here are identical to those of the standard contactor relays.

3RT20 motor contactors, $7.5 \ldots 25 \mathrm{HP}$

Overview

DC operation

IEC 60947-4-1, EN 60947-4-1,
for requirements according to IEC 60077-1 and IEC 60077-2.
The contactors are finger-safe according to EN 50274. The contactors have spring-type connections as well as screw connections. The size SOO and SO contactors have spring-type connections for all terminals.

Ambient temperature

The permissible ambient temperature for operation of the contactors (across the full coil operating range) is -40 to $+70^{\circ} \mathrm{C}$.
Uninterrupted duty at temperatures $>+60^{\circ} \mathrm{C}$ reduces the mechanical endurance, the current carrying capacity of the conducting paths and the switching frequency.

Control and auxiliary circuits

The solenoid coils of the contactor relays have an extended coil operating range from 0.7 to 1.25 or $1.3 \times U_{\mathrm{s}}$ and are fitted as standard with suppressor diodes. The opening delay is consequently 2 to 5 ms longer than for standard contactors.

Application

For operation in installations which are subject both to considerable variations in the control voltage and to high ambient temperatures, e. g. railway applications under extreme climatic conditions, rolling mills, etc.
Also for control supply voltages with battery buffer for longer operating times should the battery charging fail.

Contactors without series resistor

Control and auxiliary circuits

These contactors have an extended operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$; on size S 00 the coils are fitted with suppressor diodes, on size SO with varistors. An additional series resistor is not required.

Note:
An additional auxiliary switch block cannot be mounted.
Side-by-side mounting
A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C} \leq 70^{\circ} \mathrm{C}$.

3RT20 1. contactors with series resistor
Control and auxiliary circuits
The solenoid coils of the contactors have an extended coil operating range from 0.7 to $1.25 \times U_{\mathrm{s}}$ and are fitted as standard with suppressor diodes to provide protection against overvoltage.

The DC solenoid systems of the contactors are modified (to holding excitation) by means of a series resistor.

The size SOO contactors are supplied prewired with a plug-on module containing the series resistor. The suppressor diode is integrated. A 4-pole auxiliary switch block (according to EN 50005) can be fitted additionally.
A circuit diagram showing the terminals is labeled on each contactor. One NC of the auxiliary contacts is required for the series resistor function. The selection and ordering data shows the number of additional, unassigned auxiliary contacts. With size SOO it is possible to extend the number of auxiliary contacts.

Side-by-side mounting

At ambient temperatures up to $70^{\circ} \mathrm{C}$, the size SOO contactors and contactor relays are allowed to be mounted side by side.

3RT20 2. contactors with solid-state operating mechanism, extended operating range
Control and auxiliary circuits
The solenoid coils of the contactors have an extended coil operating range from 0.7 to $1.3 \times U_{\mathrm{s}}$ and are fitted as standard with varistors to provide protection against overvoltage.

The contactors are energized via upstream control electronics which ensure the coil operating range of 0.7 to $1.3 \times U_{\mathrm{s}}$ at an ambient temperature of $70^{\circ} \mathrm{C}$. They are supplied as complete units with integrated coil electronics. A varistor is integrated for damping opening surges in the coil.

The mounting possibilities for auxiliary switches correspond to those of the standard contactors for switching motors in the matching size (see page 2/60).

Side-by-side mounting
Side-by-side mounting is permitted at ambient temperatures up to $70^{\circ} \mathrm{C}$ for these contactor versions in size SO .

Selection and ordering data

DC operation • DC solenoid system
Spring-type terminals
For screw and snap-on mounting onto standard mounting rail
Solenoid coil fitted with suppressor diode (SOO)

For accessories and spare parts, see page 2/68-2/71.
${ }^{1)}$ It is not possible to mount an auxiliary switch block. A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C}$.
${ }^{2)}$ One 4-pole auxiliary switch block according to EN 50005 can be mounted; no distance required up to $70^{\circ} \mathrm{C}$.
${ }^{3)} \mathrm{NC}$ contact cannot be used because it is required for switching the series resistor.
${ }^{4)}$ Versions available with screw terminals.

3RT, 3RH Contactors for Special Applications

3RT20 motor contactors, $7.5 \ldots 25 \mathrm{HP}$

DC operation • DC solenoid system
Spring-type terminals
For screw and snap-on mounting onto standard mounting rail Solenoid coil fitted with varistor (SO)

Size SO
Terminal designations according to EN 50012
1 NO + 1 NC, identification number 11E

Without series resistor ${ }^{1)}$

16	--	5	10	15	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 25-2KB40 } \\ & \text { 3RT20 25-2KG40 } \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.600 \end{aligned}$
25	--	7.5	15	20	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 26-2KB40 } \\ & \text { 3RT20 26-2KG40 } \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.600 \end{aligned}$
32	--	10	20	25	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 27-2KB40 } \\ & \text { 3RT20 27-2KG40 } \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.600 \end{aligned}$
With solid-state operating mechanism										
16	--	5	10	15	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	3RT20 25-2XB40-0LA2 3RT20 25-2XG40-0LA2	$\begin{aligned} & 0.580 \\ & 0.580 \end{aligned}$
25	--	7.5	15	20	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	3RT20 26-2XB40-0LA2 3RT20 26-2XG40-0LA2	$\begin{aligned} & 0.580 \\ & 0.580 \end{aligned}$
32	--	10	20	25	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	3RT20 27-2XB40-0LA2 3RT20 27-2XG40-0LA2	$\begin{aligned} & 0.580 \\ & 0.580 \end{aligned}$
38	--	10	25	25	11E	1	1	$\begin{array}{r} 24 \\ 125 \end{array}$	$\begin{aligned} & \text { 3RT20 28-2XB40-0LA2 } \\ & \text { 3RT20 28-2XG40-0LA2 } \end{aligned}$	$\begin{aligned} & 0.580 \\ & 0.580 \end{aligned}$

For accessories and spare parts, see page 2/68-2/71.
${ }^{1)}$ It is not possible to mount an auxiliary switch block. A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C}$

More information

Contactors	Type		3RT20 17	3RT20 2.	3RT20 2.-2XB40- OLA2
3RT20 2.-2XF40-					
OLA2					

[^7]
3RT26 capacitor contactors

AC operation

IEC 60947-5, DIN EN 60947-5-1, (VDE 0660 Part 200)
The contactors are suitable for use in any climate and are finger safe per DIN EN 50274.
The 3RT26 capacitor contactors are application specific variants of the size S00 to S2 SIRIUS Innovations contactors. The capacitors are precharged by means of the mounted leading NO contacts and resistors; only then do the main contacts close

This prevents disturbances in the power system and welding of the contactors.

Only discharged capacitors are permitted to be switched on with capacitor contactors. Recommendation: use discharge chokes for parallel connection with the capacitors.

The capacitor contactors of size SOO contain either 1NO or 1 NC in the basic unit and another unassigned NC contact in the auxiliary switch block fitted to the basic unit.

The auxiliary switch block which is snapped onto the capacitor contactor of sizes SO contains the three leading NO contacts and one standard NO contact, which is unassigned.

The capacitor contactors of size S2 can be fitted additionally with a 2-pole auxiliary switch on the right side (2 NO , 2 NC or $1 \mathrm{NO}+1 \mathrm{NC}$), type 3RH19 21-1EA.. for lateral mounting.
For the capacitor making and breaking capacity of the basic 3RT20 contactor variant, see the technical data.

Selection and ordering data AC operation

2) A clearance of 10 mm is required for side-by-side mounting at ambient temperatures $>60^{\circ} \mathrm{C}$

For further voltages, see page 2/51.

For auxiliaries and accessories,
see page 2/68-2/85.
For technical data, see page 2/175.
For wiring diagram, see page 2/203
For dimension drawings, see page $2 / 223$

DC Coil Selection for 3RT261 only

[^8]
AC and DC operation

IEC 60947, EN 60947.
The 3RT20 coupling contactors for switching motors are tailored to the special requirements of working with electronic controls.

The 3RT20 1 coupling contactors cannot be expanded with auxiliary switch blocks.
Coupling contactors have a low power consumption and an extended solenoid coil operating range.

Depending on the version, the solenoid coils are supplied either without overvoltage damping or with a diode, suppressor diode or varistor connected as standard.

Selection and ordering data DC operation

For screwing and snapping onto 35 mm standard mounting rail

- Size S00

Terminal designations according to EN 50012
Rated control supply voltage $U_{s}=$ DC 24 V , coil voltage tolerance $\mathbf{0 . 7}$ to $\mathbf{1 . 2 5} \times \boldsymbol{U}_{\mathbf{s}}$
Power consumption of the coils $\mathbf{2 . 8} \mathbf{~ W}$ at 24 V (no auxiliary switch blocks can be mounted)

Diode, varistor or RC element can be mounted	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	$\begin{aligned} & 1 \\ & - \end{aligned}$	$\overline{1}$	3RT20 15-1HB41 3RT20 15-1HB42	$\begin{aligned} & \text { 3RT20 15-2HB41 } \\ & \text { 3RT20 15-2HB42 } \end{aligned}$	0.28/0.30
Diode integrated	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	$\begin{aligned} & 1 \\ & - \end{aligned}$	$\overline{1}$	3RT20 15-1J B41 3RT20 15-1J B42	$\begin{aligned} & \text { 3RT20 15-2J B41 } \\ & \text { 3RT20 15-2J B42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	$\begin{aligned} & 1 \\ & - \end{aligned}$	$\overline{1}$	$\begin{aligned} & \text { 3RT20 15-1KB41 } \\ & \text { 3RT20 15-1KB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 15-2KB41 } \\ & \text { 3RT20 15-2KB442 } \end{aligned}$	0.28/0.30
Diode, varistor or RC element can be mounted	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	$\begin{aligned} & 1 \\ & - \end{aligned}$	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1HB41 } \\ & \text { 3RT20 16-1HB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2HB41 } \\ & \text { 3RT20 16-2HB42 } \end{aligned}$	0.28/0.30
Diode integrated	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1J B41 } \\ & \text { 3RT20 16-1J B42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2J B41 } \\ & \text { 3RT20 16-2J B42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1KB41 } \\ & \text { 3RT20 16-1KB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2KB41 } \\ & \text { 3RT20 16-2KB42 } \end{aligned}$	0.28/0.30
Diode, varistor or RC element can be mounted	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 17-1HB41 } \\ & \text { 3RT20 17-1HB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2HB41 } \\ & \text { 3RT20 17-2HB42 } \end{aligned}$	0.28/0.30
Diode integrated	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	3RT20 17-1J B41 3RT20 17-1J B42	$\begin{aligned} & \text { 3RT20 17-2J B41 } \\ & \text { 3RT20 17-2J B42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	12	7.5	$\begin{gathered} 10 E \\ 01 \end{gathered}$	$\begin{aligned} & 1 \\ & - \end{aligned}$	$\overline{1}$	$\begin{aligned} & \text { 3RT20 17-1KB41 } \\ & \text { 3RT20 17-1KB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2KB41 } \\ & \text { 3RT20 17-2KB42 } \end{aligned}$	0.28/0.30

[^9]1) Complete HP ratings on page 2/124

Contactors for Special Applications

3RT20 coupling contactors (interface) for switching motors

Selection and ordering data
DC operation

3RT2015-1VB41

3RT2015-2VB41

3RT2024-1KB40

For screwing and snapping onto
35 mm standard mounting rail

- Size S00

Terminal designations according to EN 50012
Rated control supply voltage $U_{\mathrm{s}}=$ DC 24 V , coil voltage tolerance $\mathbf{0 . 8 5}$ to $\mathbf{1 . 8 5} \times \boldsymbol{U}_{\mathbf{s}}$
Power consumption of the coils 1.6 W at 24 V (no auxiliary switch blocks can be mounted)

Diode, varistor or RC element can be mounted	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	_	$\begin{aligned} & \text { 3RT20 15-1MB41-0KTO } \\ & \text { 3RT20 15-1MB42-0KTO } \end{aligned}$	$\begin{aligned} & \text { 3RT20 15-2M B41-0KT0 } \\ & \text { 3RT20 15-2M B42-0KT0 } \end{aligned}$	0.28/0.30
Diode integrated	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	1	$\begin{aligned} & \text { 3RT20 15-1VB41 } \\ & \text { 3RT20 15-1VB42 } \end{aligned}$	$\begin{array}{ll} \text { 3RT20 15-2VB41 } \\ \text { 3RT20 15-2VB42 } \end{array}$	0.28/0.30
Suppressor diode integrated	7	3	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 15-1SB41 } \\ & \text { 3RT20 15-1SB42 } \end{aligned}$	$\begin{array}{ll} \text { 3RT20 15-2SB41 } \\ \text { 3RT20 15-2SB42 } \end{array}$	0.28/0.30
Diode, varistor or RC element can be mounted	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	$\overline{1}$	$\begin{aligned} & \text { 3RT20 16-1M B41-0KTO } \\ & \text { 3RT20 16-1M B42-0KTO } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2M B41-0KTO } \\ & \text { 3RT20 16-2M B42-0KTO } \end{aligned}$	0.28/0.30
Diode integrated	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	1	$\begin{aligned} & \text { 3RT20 16-1VB41 } \\ & \text { 3RT20 16-1VB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2VB41 } \\ & \text { 3RT20 16-2VB42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	9	5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	1	$\begin{aligned} & \text { 3RT20 16-1SB41 } \\ & \text { 3RT20 16-1SB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 16-2SB41 } \\ & \text { 3RT20 16-2SB42 } \end{aligned}$	0.28/0.30
Diode, varistor or RC element can be mounted	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	1	$\begin{aligned} & \text { 3RT20 17-1M B41-0KTO } \\ & \text { 3RT20 17-1M B42-0KTO } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2M B41-0KTO } \\ & \text { 3RT20 17-2M B42-0KTO } \end{aligned}$	0.28/0.30
Diode integrated	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	1	$\begin{aligned} & \text { 3RT20 17-1VB41 } \\ & \text { 3RT20 17-1VB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2VB41 } \\ & \text { 3RT20 17-2VB42 } \end{aligned}$	0.28/0.30
Suppressor diode integrated	12	7.5	$\begin{aligned} & 10 \mathrm{E} \\ & 01 \end{aligned}$	1	1	$\begin{aligned} & \text { 3RT20 17-1SB41 } \\ & \text { 3RT20 17-1SB42 } \end{aligned}$	$\begin{aligned} & \text { 3RT20 17-2SB41 } \\ & \text { 3RT20 17-2SB42 } \end{aligned}$	0.28/0.30

- Size S0

Rated control supply voltage $U_{s}=D C 24 \mathrm{~V}$, coil voltage tolerance $\mathbf{0 . 7}$ to $\mathbf{1 . 2 5} \times \boldsymbol{U}_{\mathbf{s}}$
Power consumption of the coils 4.5 W at 24 V no auxiliary switch blocks can be mounted.

Varistor integrated	12	7.5	11E	1	1	3RT20 24-1KB40	3RT20 24-2KB40	0.58/0.60
	16	10	11E	1	1	3RT20 25-1KB40	3RT20 25-2KB40	0.58/0.60
	25	15	11E	1	1	3RT20 26-1KB40	3RT20 26-2KB40	0.58/0.60
	32	20	11E	1	1	3RT20 27-1KB40	3RT20 27-2KB40	0.58/0.60

[^10]
Applications

"Safety" Contactors

Safety rated contactors are required to have mirrored contact construction according to IEC 60947-4-1 Annex F. A mirror contact is a Normally Closed (NC) auxiliary contact which can not be closed simultaneously with a Normally Open (NO) main contact.

In some industries, such as automotive, requirements have been established that a safety rated contactor must also have permanently mounted auxiliary contact blocks. See page $2 / 25$ for Contactors with permanently mounted auxiliary contacts.

Siemens Contactors for "Safety" applications:

All Siemens standard 3RT, 3TF6, 40 HN \& 40PH Contactors are provided with positively driven (mirror) contacts which meet or exceed the criteria for "Safety Contactors" according to IEC 60947-4 Annex F which describes the requirements for mirror contact performance. When applying Safety Contactors in safety circuits, the NC auxiliary contacts must be wired in series or parallel and must be used as monitoring contacts with feedback to the safety evaluation device (i.e. safety relay or failsafe logic controller).

"Safety" Control Relays

Safety rated control relays are required to have positively driven contact elements according to IEC 60947-5-1 Annex L. Positively driven contact elements are a combination of NO auxiliary contacts and NC auxiliary contacts whose construction prevents them from being closed simultaneously.

In some industries, such as automotive, requirements have been established that a safety rated control relays must also have permanently mounted auxiliary contact blocks. See page 2/20 for Control Relays with permanently mounted auxiliary contacts.

Siemens Control Relays for "Safety" applications:

All SIRIUS 3RH control relays (with at least 1 NC contact) meet or exceed the criteria for "Safety Control Relays" according to IEC 60947-5-1 Annex L. This is true for the basic 3RH relay with or without an additional auxiliary contact block.

Application

"Safety" Contactors

Safety rated contactors are required to have mirrored contact construction according to IEC 60947-4 Annex F. A mirror contact is a Normally Closed (NC) auxiliary contact which can not be closed simultaneously with a Normally Open (NO) main contact. In some industries, such as Automotive, the auxiliary contact blocks are required to be permanently attached to meet the requirements of "unitentional misuse" as specified in IEC 60292, paragraph 3.12. Tested by SUVA.

3RT202* -1AK64-3MAO

"Safety" Control Relays

Safety rated control relays are required to have positively driven contact elements according to IEC 60947-5-1 Annex L. Positively driven contact elements are a combination of NO auxiliary contacts and NC auxiliary contacts whose construction prevents them from being closed simultaneously. In some industries, such as automotive, the auxiliary contact blocks are required to be permanently attached to meet the requirements of "unitentional misuse" as specified in IEC 60292, paragraph 3.12. Tested by SUVA.

Application

Frame Size	Max. current		Single-phase HP ratings		Three-phase HP ratings		460 V	575V	Auxiliary contacts			Screw Terminals	Spring-Type Terminals ${ }^{1)}$
	AC3	AC1	115 V	220/240V	200V	230 V							
	A	A	HP	HP	HP	HP	HP	HP	Ident. No.	NO	NC	Order No.	Order No.

Contactors with permanently mounted auxiliary contact blocks

S00	6	18	1/4	$3 / 4$	$11 / 2$	2	3	5	22E	2	2	3RT2015-10004-3MA0
	9	22	1/3	1	2	3	5	$71 / 2$	22E	2	2	3RT2016-10004-3MA0
	12	22	1/2	2	3	3	$71 / 2$	10	22E	2	2	3RT2017-10004-3MA0
	16	22	1	2	3	5	10	10	22E	2	2	3RT2018-10004-3MAO
SO	9	40	1	1	2	3	5	$71 / 2$	22E	2	2	3RT2023-10004-3MA0
	12	40	1	2	3	3	$71 / 2$	10	22E	2	2	3RT2024-10004-3MA0
	17	40	1	3	5	5	10	15	22E	2	2	3RT2025-10004-3MA0
	25	40	2	3	$71 / 2$	$71 / 2$	15	20	22E	2	2	3RT2026-10004-3MA0
	32	50	2	5	10	10	20	25	22E	2	2	3RT2027-10004-3MA0
	38	50	3	5	10	10	25	25	22E	2	2	3RT2028-10004-3MA0
S2	40	60	3	$71 / 2$	10	15	30	40	22E	2	2	3RT2035-10004-3MA0
	50	70	3	10	15	15	40	50	22E	2	2	3RT2036-10004-3MA0
	65	80	5	10	20	20	50	50	22E	2	2	3RT2037-10004-3MA0
	$80^{4)}$	90	5	15	20	25	50	60	22E	2	2	3RT2038-100.4-3MA0
S3	80	120	$71 / 2$	15	25	30	60	75	22E	2	2	3RT2045-10004-3MA0
	95	120	10	20	30	30	75	100	22E	2	2	3RT2046-10004-3MA0
S6	150	185	--	30	50	60	125	150	22E	2	2	3RT1055-60006-3PA0
	185	215	--	30	60	75	150	200	22E	2	2	3RT1056-60006-3PA0
S10	225	275	--	--	60	75	150	200	22E	2	2	3RT1064-60006-3PA0
	265	330	--	--	75	100	200	250	22E	2	2	3RT1065-60006-3PA0
	300	330	--	--	100	125	250	300	22E	2	2	3RT1066-60006-3PA0
S12	400	430	--	--	125	150	300	400	22E	2	2	3RT1075-60006-3PA0
	500	610	--	--	150	200	400	500	22E	2	2	3RT1076-60006-3PA0

3RT2015-20004-3MAO 3RT2016-20004-3MA0 3RT2017-20004-3MAO 3RT2018-20004-3MAO 3RT2023-20004-3MAO 3RT2024-20e७4-3MAO 3RT2025-20004-3MAO 3RT2026-20004-3MAO 3RT2027-2•e७4-3MAO 3RT2028-20004-3MAO 3RT2035-30004-3MAO 3RT2036-300७4-3MAO 3RT2037-30004-3MAO 3RT2038-30e७4-3MAO 3RT2045-30004-3MAO 3RT2046-3•0.4-3MA0 -
-
-
-
-
-
-

Control circuit coil options: Replace 000 with the desired code

For other voltages see page $2 / 51$. For accessories, see pages 2/75-2/80. For spare parts, see pages 2/96-2/99. For technical data, see pages 2/121-2/142.
For description, see pages 2/106-2/107

For int. circuit diagrams, see page 2/195-2/201. For dimension drawings, see pages 2/214-2/221

1) All terminals are spring loaded on frame size $S 00$ and $S 0$. Only the coil and auxiliary contact terminals are spring loaded on frame sizes S2 \& S3.
2) For AC-15/AC-14, max current for front mounted auxiliary contacts $=6 \mathrm{~A}$
3) The 3RH22 control relays are also available with ring lug terminals. Replace the 8th digit of the order number with a " 4 ", e. g. 3RH2244-4AK60
4) Max UL FLA $=65 \mathrm{~A}$ at 460 V

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

Introduction

Overview

The function modules for mounting onto contactors enable the assembly of starters and contactor assemblies for direct-on-line, reversing and wye-delta starting without any additional, complicated wiring of the individual components. They include the key control functions required for the particular starter, e. g. timing and interlocking, and can be connected to the control system by either parallel wiring or through IO-Link or AS-Interface.

Fersion \begin{tabular}{ll}

For direct-on-line starting \& | SIRIUS function modules |
| :--- |
| for parallel wiring |

Timing relays: ON or OFF-delay with

semiconductor output

With screw or spring-type terminals
\end{tabular}

SIRIUS function modules
for IO-Link
With screw or spring-type terminals

1 function module for size S00, S0 \& S2, screw and spring-type connection, plus the respective wiring modules

For wye-delta starting: 1 function module for size S00, SO \& S2, plus screw and spring-type connection, plus the respective wiring modules ${ }^{2}$

Operator panel for autonomous controlling of up to 4 starters
Module connector for the grouping of starters
Connection cable between the operator panel and the starter group
Sealable covers

SIRIUS function modules for AS-Interface ${ }^{1}$
With screw or spring-type terminals

1 function module for size S00, S0 \& S2, screw and spring-type connection, plus the respective wiring modules

For wye-delta starting: 1 function module for size S00, S0 \& S2, plus screw and spring-type connection, plus the respective wiring modules ${ }^{2}$)

AS-Interface addressing units
Sealable covers

1) Use of the communication-capable function modules for IO-Link or AS-Interface requires contactors with communication interface
(see pages 2/28).
2) The modules for the control current wiring, which are included in the wiring kit, are not required.
[^11]
SIRIUS function modules

Overview

Simply by being plugged in place, the SIRIUS function modules enable different functionalities required for the assembly of starters to be realized in the starter. The function modules and wiring kits help to reduce the wiring work within the starter practically to zero.

SIRIUS function modules for direct-on-line starting

The electronic timing relays which can be mounted onto the contactor are available in these versions:

- Sizes SOO and SO for applications in the range from 24 to 240 V AC/DC (wide voltage range)
- Size S2 for applications in either the range from 24 to 90 V AC/DC or 90 to 240 V AC/DC

Both the electrical and mechanical connection are made by simple snapping on and locking.
A protection circuit (varistor) is integrated in each module.
The electronic timing relay with semiconductor output uses two contact legs to actuate the contactor underneath by means of a semiconductor after the set time t has elapsed.

The switching state feedback is performed by a mechanical switching state indicator (plunger). In addition, the auxiliary switches in the contactors are freely accessible and can be used for feedbacks to the control system or for signal lamps.
A sealable cover is available to protect against careless adjustment of the set times.

SIRIUS function modules for reversing starting

The wiring kits for reversing starters enable the cost-effective assembly of contactor assemblies. They can be used for all applications with reversing duty up to 50 HP .
For a detailed description see page 2/39.

SIRIUS function modules for wye-delta starting

Both interlocking and timing functions are required for the assembly of wye-delta starters. With the function modules for wye-delta starting and the matching link modules for the main circuit, these starters can be assembled easily and with absolutely no errors.
The entire sequence in the control circuit is integrated in the snap-on modules. This covers:

- An adjustable wye time t from 0.5 to 60 s
- A non-adjustable dead interval of 50 ms
- Electrical contacting to the contactors by means of coil pick-off (contact legs)
- Feedback of the switching state at the contactor using a mechanical switch position indicator (plunger)
- Electrical interlocking between the contactors

These modules do not require their own terminals and can therefore be used for contactors with both screw and spring-type terminals in the S00, SO and S2. To start the wye-delta starter, only the first of the three contactors (line contactor) is actuated. All other functions then take place inside the individual modules.

This also offers advantages if the timing function was previously implemented in a controller, as it again results in a significant reduction in the number of PLC outputs, the programming work and the wiring outlay.
The kits for the main circuit include the mechanical interlock, the star jumper, the wiring modules at the top and at the bottom, and the required connecting clips.
A protection circuit (varistor) is integrated in the basic module.

Application

The snap-on function modules for direct-on-line starting are used above all for realizing timing functions independently of the control system.
With the OFF-delay variant of the timing relay it is possible for example for the fan motor for cooling a main drive to be switched off with a delay so that sufficient cooling after operation is guaranteed even if the plant and its control system have already been switched off.
The ON-delay timing relays enable for example the time-delayed starting of several drives so that the summation starting current does not rise too high, which could result in voltage failure.
The function modules for wye-delta starting are mostly used where current-limiting measures for starting a drive are required, e.g. for large fans and ventilators, and a high level of availability is essential at the same time. This technology has been used with success for several decades and has the additional advantage of requiring relatively little know-how. Through the use of function modules, the assembly work with simple standard components is even easier and error-free.

Benefits

The use of snap-on function modules for direct-on-line starting (timing relays) results in the following advantages:

- Reduction of control current wiring
- Prevention of wiring errors
- Reduction of testing costs
- Implementation of timing functions independently of the control system
- Less space required in the control cabinet compared to a separate timing relay
- No additive protection circuit required (varistor integrated)

The use of function modules for wye-delta starting results in the following advantages:

- Operation solely through the line contactor A1/A2 - no further wiring needed
- Reduction of the control current wiring inside the contactor assembly and to the higher-level control system where applicable
- Prevention of wiring errors
- Reduction of testing costs
- Integrated electrical interlocking saves costs and prevents errors
- Less space needed in the control cabinet compared to using a separate timing relay
- Adjustable starting in star mode from 0.5 to 60 s
- Independent of the contactor's control supply voltage (24 to 240 V AC/DC)
- Varistor integrated - no additive protection circuit required
- No control current wiring thanks to plug-in technology and connecting cables
- Mechanically coded assembly enables easy configuration and reliable wiring
- Fewer versions - one module kit for screw and spring-type connection and for the two sizes S00 to S2
- Mechanical interlocking (with wiring kit for the main circuit)

Contactors for Switching Motors

Selection and ordering data

- Ideal for diagnostics to the automation controller
- Reduces control wiring in the panel
- Quickly locate and rectify faults
- Available for 24VDC control systems
- Configuration available in Step 7 and TIA Portal
- Easily snap on IO-Link or AS-Interface modules onto contactors
- Easy engineering of parameters
- For DOL, reversing and wye delta starters up to 50 HP
- Manual starter operation with optional operator panel

3RT 3-pole Contactors

\cdots	S00									1	0	3RT2015-1BB41-0CC0	3RT2015-2BB41-0CC0	0.28
		7	18	0.25	0.75	1.5	2	3	5	0	1	3RT2015-1BB42-0CC0	3RT2015-2BB42-0CC0	
										1	0	3RT2016-1BB41-0CC0	3RT2016-2BB41-0CC0	
d		9	22	0.33	1	2	3	5	7.5	0	1	3RT2016-1BB42-0CC0	3RT2016-2BB42-0CC0	
										1	0	3RT2017-1BB41-0CC0	3RT2017-2BB41-0CC0	
3RT2018-1BB41-0CC0		12	22	0.5	2	3	3	7.5	10	0	1	3RT2017-1BB42-0CC0	3RT2017-2BB42-0CC0	
										1	0	3RT2018-1BB41-0CC0	3RT2018-2BB41-0CC0	
		16	22	1	2	3	5	10	10	0	1	3RT2018-1BB42-0CC0	3RT2018-2BB42-0CC0	
3RT2028-1BB40-OCC0	S0	9	40	1	1	2	3	5	7.5	1	1	3RT2023-1BB40-0CC0	3RT2024-2BB40-0CC0	0.58
		12	40	1	2	3	3	7.5	10	1	1	3RT2024-1BB40-0CC0	3RT2024-2BB40-0CC0	
		16	40	1	3	5	5	10	15	1	1	3RT2025-1BB40-0CC0	3RT2025-2BB40-0CC0	
		25	40	2	3	7.5	7.5	15	20	1	1	3RT2026-1BB40-0CC0	3RT2026-2BB40-0CC0	
		32	50	2	5	10	10	20	25	1	1	3RT2027-1BB40-0CC0	3RT2027-2BB40-0CC0	
		38	50	3	5	10	10	25	25	1	1	3RT2028-1BB40-0CC0	3RT2028-2BB40-0CC0	
	S2	40	60	3	7.5	10	15	30	40	1	1	3RT2035-1NB30-0CCO	3RT2035-3NB30-0CC0	1.122
70		50	70	3	10	15	15	40	50	1	1	3RT2036-1NB30-0CC0	3RT2036-3NB30-0CC0	
3RT2038-1NB30-0CC0		65	80	5	10	20	20	50	50	1	1	3RT2037-1NB30-0CC0	3RT2037-3NB30-0CC0	
		80	90	5	15	20	25	50	60	1	1	3RT2038-1NB30-0CC0	3RT2038-3NB30-0CC0	

1) All terminals are spring loaded in sizes $S O 0$ and $S O$.

For size S 2 , only the coil and aux contacts are spring loaded.
Communication capable contactors are ideal for starter feedback to the automation level. IO-Link starters in the cabinet save considerable wiring effort. AS-Interface is best suited for distributed systems.

For reversing contactors with communication capability, see pages 2/41-2/45
For accessories, see page $2 / 29,2 / 32,2 / 36$.
For technical data, see page 2/33, 2/37, 2/38
For description, see page $2 / 26$.
For further information on IO-Link and AS-Interface, see page 2/30-2/31 and 2/34-2/35.

SIRIUS function modules for reversing starting / wye-delta starting

Selection and ordering data

Assembly kits for wye-delta starting
Assembly kits for making 3-pole contactor
assemblies
The assembly kit contains:
Mechanical interlock,
4 connecting clips for 3 contactors;
star jumper,
wiring modules on the top and bottom

3RT20 1.	- For size S00	3RA29 13-2BB1	0.051	3RA29 13-2BB2	0.080
3RT20 2.	- For size SO (only main circuit for version with spring-type terminals)	3RA29 23-2BB1	0.099	3RA29 23-2BB2	0.133
3RT20 3.	- For size S2 (only main circuit for version with spring-type terminals)	3RA29 33-2BB1	0.242	3RA29 33-2BB2	0.182

Function modules for wye-delta starting

The electrical connection between the function
module and the contactor assembly is estab-
lished automatically by snapping on and plug-
ging in the connecting cables.
Wye-delta function (varistor integrated)

| 3RT20 1.
 3RT20 2. | $24 \ldots 240$ AC/DC | $0.5 \ldots 60$
 $(10,30,60$
 selectable) | 3RA28 16-0EW20 | 0.170 | 3RA28 16-0EW20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3RT20 3. | | | | | |

1) $A C$ voltage values apply for 50 Hz and 60 Hz .
2) Assembly kits in sizes $S 0$ and $S 2$ are supplied with wiring modules for the main circuit only.

Function	Function charts
	$\square \square$ Timing relay energized Contact closed Contact open
2 NO contacts (internally connected)	
Wye-delta function (varistor integrated) - 1 NO contact, delayed - 1 NO contact, instantaneous	

Note:
When the function modules are used, no other auxiliary switches are allowed to be mounted on the basic units.

Overview

The SIRIUS function modules for IO-Link enable the assembly of starters and contactor assemblies for direct-on-line, reversing and wye-delta starting without any additional, complicated wiring of the individual components. They include the key control functions required for the particular starter, e. g. timing and interlocking. The electrical and mechanical connection to the contactor is established by snapping on and locking. An additive protection circuit for the individual contactors can be dispensed with completely, and feedback from the contactor contacts is performed with Hall sensors which provide reliable feedback concerning the switching state even under extremely dusty conditions. The starters are connected to the higher-level
control system through IO-Link, with the possibility of connecting up to four starters as a group to one port of the IO-Link master.
Through this type of connection to the control system, a maximum of wiring is saved. The following essential signals are transmitted:

- Availability of the starter in response to an indirect inquiry from the motor starter protector
- Starter operation
- Feedback concerning the switching state of the starter

Signal transmission through IO-Link
The inquiry from the motor starter protector does not take place through additional wiring between the auxiliary switch and the module but by means of a voltage inquiry at the contactor input.

This requires the use of communication versions of the contactors with communication interface \qquad

[^12]
Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for IO-Link

By grouping up to four starters it is possible to connect up to 16 starters to one master of the ET200S. All the signals of the individual controls are made available through only 3 individual wires per starter group directly in the process image. If the
potential at the master of the ET200S is the same as that of the controls, a further reduction in wiring is possible by providing the control supply voltage to the contactors by jumpering the corresponding communication wires.

Group formation with IO-Link

In case of a malfunction, the corresponding error signals are also sent directly to the PLC in acyclic mode. This is in addition to transmission of the switching signals and status signals.
Possible error signals:

- Device defect
- No main voltage (motor starter protector tripped)
- No control supply voltage
- Limit position on the right / on the left
- Manual mode
- Process image fault

Application

The use of SIRIUS function modules with IO-Link is recommended above all in machines and plants in which there are several motor starters in one control cabinet. Using IO-Link, the connection of these starters to the automation level is easy, quick and error-free. And with IO modules no longer needed, the width of the ET200S becomes far smaller.

This easy integration of the starters in the TIA world does not limit the flexibility in the field in the least. For example, all function modules have special terminals in order to enable direct local disconnection. These terminals can be connected for example to a position switch. The input interrupts the voltage supply to the contactor coil directly, i. e. without going through the PLC. These terminals are jumpered in the as-delivered state.
Local manual operation of the complete starter group is also straight-forward using a operator panel. The latter is easily connected to the last starter and can be built into the front panel of the control cabinet if required. This offers significant advantages particularly for commissioning.

Benefits

- Reduction of the control current wiring to no more than one cable having three conductors for four starters
- Elimination of testing costs and wiring errors
- Reduction of configuration work
- Integration in TIA for clear diagnostics if a fault occurs
- Fewer IO modules saves space in the control cabinet
- All essential timing and interlocking functions for reversing duty and wye-delta starting are integrated
- No additional control circuit required

Further information on the application and benefits of the SIRIUS
function modules for connection to the control system through
IOLink can be found in Chapter 14 "Industrial Communication".

Selection and ordering data

1) For prewired contactor assemblies for reversing starting with voltage tap-off, see pages $2 / 42$ and 2/45. When these contactor assemblies are used, the assembly kit for the wiring is already integrated.
2) Version in sizes SO and S2 with spring-type terminals:

Only the wiring modules for the main circuit are included.
No connectors are included for the auxiliary and control circuit.

Matching contactors with communications interface required;
see pages 2/26.

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for IO-Link

2) When using the function modules for wye-delta starting, the wiring modules for the auxiliary current are not required.
3) Version in sizes SO and S2 with spring-type terminals:

Only the wiring modules for the main circuit are included.
No connectors are included for the auxiliary and control circuit.

	Version	Order No.	Weight kg
Accessories			
	Module connector set, comprising: - 2 module connectors, 14-pole, short - 2 interface covers	3RA2711-0EE10	
	Module connectors		
3RA2711-OEE10	-14-pole, 9 cm For size jump + 1 space	3RA2711-0EE06	
	-14-pole, 26 cm For various space combinations	3RA2711-0EE07	
3RA2711-0EE06	- 14-pole, 33.5 cm For various space combinations	3RA2711-0EE08	
	-10-pole, 9 cm For separate control signal infeed within an IO-Link group	3RA2711-0EE16	
3RA2711-0EE15	Interface covers (Set of 5)	3RA2711-0EE15	
	Sealable covers For 3RA27, 3RA28, 3RA29	3RA2910-0	
3RA2910-0			
Operator panels ${ }^{1)}$			
	Operator panel (set), comprising: - $1 \times$ operator panel - $1 \times$ enabling module - 1 x interface cover - $1 \times$ fixing terminal	3RA6935-0A	
3RA6935-0A			
3	Connection cable, length $2 \mathrm{~m}, 10$ - to 14 -pole	3RA2711-0EE11	
3RA2711-0EE11	For connecting the operator panel to the communication module		
	Enabling modules (replacement)	3RA6936-0A	
	Interface covers (replacement)	3RA6936-0B	

[^13]For manuals, see
http://support.automation.siemens.com/WW/view/en/39319600.

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for AS-Interface

Overview

The SIRIUS function modules for AS-Interface enable the assembly of starters and contactor assemblies for direct-on-line, reversing and wye-delta starting without any additional, complicated wiring of the individual components. They include the key control functions required for the particular starter, e. g. timing and interlocking. The electrical and mechanical connection to the contactor is established by snapping on and locking. An additional control circuit for the individual contactors can be eliminated with completely because a varistor is integrated in the modules. Feedback from the contactor contacts is performed with Hall sensors which provide reliable feedback concerning the switching state even under extremely dusty conditions. Connection of the starters to the higher-level control system takes place through AS-Interface with the Specification V2.1 in A/B technology. As the result, up to 62 starters can be con-
nected to one master and the address is entered in normal manner with an addressing unit.
Through the AS-Interface connection to the control system, a maximum of wiring is saved. The wiring outlay is reduced to the control supply voltage and the two individual wires for AS-Interface.
The following essential signals are transmitted:

- Availability of the starter in response to an indirect inquiry from the motor starter protector
- Starter operation
- Feedback concerning the switching state of the starter

Signal transmission through AS-Interface

The inquiry from the motor starter protector does not take place through additional wiring between the auxiliary switch and the module but by means of a voltage inquiry at the contactor input.

This requires use of communication versions of the contactors with communication interface (see page 2/28).

[^14]
Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for AS-Interface

\square AS-Interface

Topology with AS-Interface

This easy integration of the starters in the TIA world does not limit the flexibility in the field in the least. For example, all function modules have special terminals in order to enable direct local disconnection. These terminals can be connected for example,

Application

The use of SIRIUS function modules with AS-Interface is recommended above all in machines and plants requiring easy connection of several different sensors and actuators both inside and outside the control cabinet to the higher-level control system. And with IO modules no longer needed, the width of the PLC is far smaller.
to a position switch. The input interrupts the voltage supply to the contactor coil directly, i. e. without going through the PLC. These terminals are jumpered in the as-delivered state.

Benefits

- Reduction of control current wiring
- Elimination of testing costs and wiring errors
- Reduction of configuration work
- Elimination of IO modules saves space in the control cabinet
- All essential timing and interlocking functions for reversing duty and wye-delta starting are integrated
- No additional control circuit required

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for AS-Interface

Selection and ordering data

Matching contactors with communications interface required; see page 2/28.
For matching AS-Interface masters, routers and power supply units, see Chapter 14 "Industrial Communication".

1) For prewired contactor assemblies for reversing starting with communication interface, see pages $2 / 42$ and $2 / 45$. When these contactor assemblies are used, the assembly kit for the wiring is already integrated.

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules for AS-Interface

For manuals, see
http://support.automation.siemens.com/WW/view/en/39318922.

Function Modules for Mounting onto SIRIUS 3RT2 Contactors

SIRIUS function modules

Technical specifications

Type Can be used for size Function	3RA2811 S00, S0 ON-delay	3RA2831 S2	3RA2812 S00, S0 OFF-delay with contro	3RA2832 S2 signal	3RA2816 S00, S0, S2 Wye-delta function
General data					
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ Pollution degree 3 Overvoltage category III	300				
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	4				
Operating range of excitation	$\begin{aligned} & 0.85 \ldots 1.1 \times U_{s}, \\ & 0.95 \ldots 1.05 \text { times the rated frequency } \\ & \hline \end{aligned}$				
Overvoltage protection	Varistor integrated				
Rated power	1				1
- Power consumption at 230 V AC, 50 Hz	1				2
DIAZED protection Operational class gG	--				4
Switching frequency for load - With I_{e} at 230 V AC - With 3RT2 contactor at 230 V AC	2500 2500				--
Recovery time	50				150
Minimum ON period	--		35		--
Residual current Max.	5	--			--
Voltage drop With conducting output	3.5	--			--
Setting accuracy Typ. With reference to upper limit of scale	± 15 \%				
Repeat accuracy Max.	± 1 \%				
Electrical endurance - With 3RT2028 contactor - At AC-15, 250 V, 3 A	100000				100000
Mechanical endurance Ope	100×10^{6}				10×10^{6}
Permissible ambient temperature - During operation - During storage	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+80 \end{aligned}$				
Degree of protection acc. to IEC 60947-1, Appendix C	IP20				
Shock resistance Half-sine acc. to IEC 60068-2-27	15/11				
Vibration resistance According to IEC 60068-2-6	$10 . .55 / 0.35$				
Electromagnetic compatibility (EMC)	IEC 61000-6-2, IEC 61000-6-4, IEC 61812-1, IEC 60947-4-1				
Overvoltage protection	Varistor integrated				
Permissible mounting position	Any (see contactor)				
Conductor cross-sections					
Connection type (1 or 2 conductors can be connected)	(1) Screw terminals				
- Solid - Finely stranded with end sleeve - AWG cables, solid or stranded - Terminal screws - Tightening torque	$\begin{aligned} & 1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.5) \\ & 2 \times(20 \ldots 14) \end{aligned}$ M3 (for standard screw driver size 2 or Pozidriv 2) $0.8 \text {... } 1.2$				--
Connection type (1 or 2 conductors can be connected)	Spring-type terminals				
- Operating devices - Solid - Finely stranded with end sleeve - Finely stranded - AWG cables, solid or stranded	3.0×0.5 $2 \times(0.25 \ldots$ $2 \times(0.25 \ldots$ $2 \times(0.25 \ldots$ $2 \times(24 \ldots$				

Design

Complete equipment assemblies
The fully wired reversing contactor assemblies are suitable for use in any climate. They are safe from touch to EN 50274.
The contactor assemblies each consist of two contactors with identical ratings. The contactors are mechanically and electrically interlocked (NC contact interlock). The main and control circuits are wired according to the circuit diagrams on page 2/204.

For motor protection, either 3RU2 or 3RB3 overload relays for direct mounting or individual mounting or thermistor motor protection tripping units must be ordered separately.

Components for customer assembly
Installation kits for all sizes are available for customer assembly of reversing contactor assemblies.

Contactors, overload relays, the mechanical interlock and - for momentary-contact operation auxiliary switch blocks for latching must be ordered separately

The following points should be noted:
Size S00

- For maintained-contact operation: use contactors with an NC contact in the basic unit for the electrical interlock.
- For momentary-contact operation: use contactors with an NC contact in the basic unit for the electrical interlock; in addition, an auxiliary switch block with at least one NO contact for latching is required per contactor.

Size S0 and S2

Contactors come equipped with integrated 1 NO and 1NC aux contacts in each contactor. Both electrical interlocking and latching are satisfied with the integrated auxiliaries. Mechanical interlocking is required in either size and comes in the assembly kits except for size S2 where you need to order 3RA2934-2B interlock separately.
Sizes S3

- For maintained-contact operation:
the contactors have no auxiliary contact in the basic unit; NC contacts for the electrical interlock are therefore integrated in the mechanical interlock that can be mounted on the side of each contactor (one contact each for the left and right-hand contactors).
- For momentary-contact operation: the electrical interlock is the same as for maintained-contact operation; in addition, an auxiliary switch with one NO contact for latching is required per contactor. This contact can be snapped onto the top of the contactors. Alternatively, auxiliary switch blocks mounted on the side can be used; they must be fitted onto the outside of each contactor.

If the front-mounted mechanical interlock is used for size S2 to S3 contactors, two location holes for single-pole auxiliary switch blocks are provided on the front of each S2 contactor while three additional, singlepole auxiliary switch blocks can be snapped onto S3 contactors. The maximum auxiliary switch complements per contactor stated on page 2/14 must not be exceeded.

When size S3 contactors are combined with a frontmounted mechanical interlock, the 3RA19 33-2B and 3RA19 43-2B installation kits cannot be used.

Sizes S6 to S12
To insert the mechanical interlock, the prestamped location holes positioned opposite on the contactor must be knocked out. The internal auxiliary contacts (up to $1 \mathrm{NO}+1 \mathrm{NC}$ per contactor) can be used for the electrical interlock and latching. The mechanical interlock itself does not contain any auxiliary contacts. Additional auxiliary contacts can be used on the outside and front (on the front in the case of 3RT10) of the reversing contactor assembly.

Principle of operation

The operating times of the individual 3RT10/20 contactors are rated in such a way that no overlapping of the contact making and the arcing time between two contactors can occur on reversing, providing they are interlocked via their auxiliary switches (NC contact interlock) and the operating mechanisms. An additional dead interval of 50 ms is necessary on reversing if the individual contactors are used at voltages > 500 V . The operating times of the individual contactors are not affected by the mechanical interlock.

Surge suppression

Sizes S00 to S3
All contactor assemblies can be fitted with RC elements or varistors for damping opening surges in the coil.
As with the individual contactors, the surge suppressors can either be plugged onto the front of the contactors (SOO) or fitted onto the coil terminals on the top or bottom (S3). For sizes S0 and S2, the surge protection fits behind the hinged door on the front of the contactor and does not take up any additional space.
Sizes S6 to S12
The contactors are fitted with varistors as standard.

Contactor Assemblies for Switching Motors

3RA13 and 3RA23 reversing contactor assemblies

Overview

The 3RA13 and 3RA23 reversing contactor assemblies can be ordered as follows:
Sizes S00 to S3

- Fully wired and tested, open type, with mechanical and electrical interlock. 1)

$$
\underline{s i}
$$

- As components for customer assembly.
There is also a range of accessories (auxiliary switch blocks, surge suppressors, etc.) that must be ordered separately.

For overload relays for motor protection, see section 3.

The 3RA23 and 3RA13 contactor assemblies have screw connections and are available for screwing or snapping onto 35 mm standard mounting rails. The 3RA23 contactor assemblies are also available with spring-type terminals.

The © and (1) approvals only apply to the complete contactor assemblies and not to the components for customer assembly.

$A C$ and $D C$ operation

See pages 2/42 through 2/46 for complete part numbers.

Maximum horsepower rating at 460 V AC	AC-3 maximum inductive current	Size	Order No.					
HP	A		Contactor	Mechanical interlock ${ }^{2}$)	Mechanical interlock ${ }^{3}$)	Mechanical interlock ${ }^{4}$)	Installation kit	Fully wired and tested contactor assembly
$\begin{gathered} 3 \\ 5 \\ 7.5 \\ 10 \end{gathered}$	$\begin{array}{r} 7 \\ 9 \\ 12 \\ 16 \end{array}$	S00	$\begin{aligned} & \text { 3RT20 } 15 \\ & \text { 3RT20 } 16 \\ & \text { 3RT20 } 17 \\ & \text { 3RT20 } 18 \end{aligned}$	3RA29 13-2AA1 ${ }^{6}$)		-	3RA29 13-2AA1 ${ }^{6}$)	$\begin{aligned} & \text { 3RA23 15-8XB30- ... } \\ & \text { 3RA23 16-8XB30- ... } \\ & \text { 3RA23 17-8XB30- ... } \\ & \text { 3RA23 18-8XB30- ... } \end{aligned}$
$\begin{aligned} & 7.5 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 25 \\ & 32 \\ & 38 \end{aligned}$	So	3RT20 24 3RT20 25 3RT20 26 3RT20 27 3RT20 28	3RA29 23-2AA1 ${ }^{6}$)		-	3RA29 23-2AA1 ${ }^{6}$)	$\begin{aligned} & \text { 3RA23 } 24-8 \text { XB30- ... } \\ & \text { 3RA23 25-8XB30- ... } \\ & \text { 3RA23 26-8XB30- .. } \\ & \text { 3RA23 27-8XB30- ... } \\ & \text { 3RA23 28-8XB30- ... } \end{aligned}$
$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 65 \\ & 80 \end{aligned}$	S2	$\begin{aligned} & \text { 3RT20 } 35 \\ & \text { 3RT20 } 36 \\ & \text { 3RT20 } 37 \\ & \text { 3RT20 } 38 \end{aligned}$	3RA29 34-2B	-	-	3RA29 33-2AA1 ${ }^{7}$)	$\begin{aligned} & \text { 3RA23 } 35-8 \text { XB30-1.. } \\ & \text { 3RA23 } 36-8 X B 30-1 . . \\ & \text { 3RA23 } 37-8 X B 30-1 . . \\ & \text { 3RA23 } 38-8 X B 30-1 . . \end{aligned}$
$\begin{aligned} & 50 \\ & 60 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 80 \\ & 95 \\ & \hline \end{aligned}$	S3	$\begin{aligned} & \text { 3RT20 } 44 \\ & \text { 3RT20 } 45 \\ & \text { 3RT20 } 46 \end{aligned}$	3RA29 34-2B	-	-	3RA29 43-2AA1 ${ }^{8}$)	3RA13 44-8XB30-1 . 3RA13 45-8XB30-1. . 3RA13 46-8XB30-1.
$\begin{aligned} & 100 \\ & 125 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 115 \\ & 150 \\ & 185 \end{aligned}$	S6	3RT10 54 3RT10 55 3RT10 56	-	-	3RA19 54-2A	3RA19 53-2A ${ }^{\text {9 }}$)	-
$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 225 \\ & 265 \\ & 300 \end{aligned}$	S10	$\begin{aligned} & \text { 3RT10 } 64 \\ & \text { 3RT10 } 65 \\ & \text { 3RT10 } 66 \end{aligned}$	-	-	3RA19 54-2A	3RA19 63-2A 9)	-
$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	S12	3RT10 75 3RT10 76	-	-	3RA19 54-2A	3RA19 73-2A ${ }^{\text {9 }}$)	-

For accessories, see page 2/82-2/85. For circuit diagrams, see page 2/204. For dimension drawings, see page 2/224-2/226.

1) An additional dead interval of 50 ms is necessary on reversing at voltages $>500 \mathrm{~V}$.
2) Laterally mountable with one auxiliary contact (except no auxiliary contact in S2 \& S3)
3) For front mounting with one auxiliary contact.
4) Laterally mountable without auxiliary contact.
5) Interlock must be ordered with installation kit.
6) Installation kit contains: mechanical interlock; 2 connecting clips for 2 contactors; wiring connectors on the top and bottom.
7) Installation kit contains: 2 connecting clips for 2 contactors; wiring connectors on the top and bottom and the mechanical interlock.
8) Installation kit contains: 2 connecting clips for 2 contactors; wiring connectors on the top and bottom.
9) Installation kit contains: wiring connector on the top and bottom.

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Fully wired and tested reversing contactor assemblies • Size SOO - Up to 10 HP
The figure shows the version with screw terminals

Mountable accessories (optional)

To be ordered separately Type
(6) Auxiliary switch block, front ${ }^{11}$

3RH2911
(7) Auxiliary switch block, lateral
(8) Surge suppressors 3RH2921
(9) Solder pin adapters 3RT2916
(9) Function module for connection to 3RA271.-1BA00

Complete reversing contactor assembly			
Individual parts		Type	
		Q11	Q12
(1)(2)	Contactors, 3 kW	3RT2015	3RT2015
(1)(2)	Contactors, 4 kW	3RT2016	3RT2016
(1)2)	Contactors, 5.5 kW	3RT2017	3RT2017
(1)2)	Contactors, 7.5 kW	3RT2018	3RT2018
(3) \ldots. (5)	Assembly kit comprising:	3RA2913-2AA1	
(3) Mechanical interlock ${ }^{2}$)			
(4) Two connecting clips for two contactors ${ }^{2)}$			
(5) Wiring modules on the top and bottom for connecting the main current circuits, electrical interlock included ${ }^{3}$, interruptible ($\mathrm{NC}^{\text {C contact }}$ interlock)			

1) Auxiliary switch block according to EN 50005 must be used.
2) The parts (3) and (4) can only be ordered together as 3RA2912-2H mechanical connectors.
3) 3RT201. contactors with one NC contact in the basic unit are required for the electrical interlock. An additional NO contact is required for momen-tary-contact operation.

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Fully wired and tested contactor assemblies²) Size S00. Up to 10 HP

3RA23 1.-8XB30-2A

	Screw terminals	\ddots	Weight approx.
Auxiliary contacts	Spring-type terminals	0	
NO NC	Order No.	\square	
			kg

kg
AC operation, $50 / 60 \mathrm{~Hz}$ Size S00 ${ }^{1)}$

7	1/4	3/4	$11 / 2$	2	3	5	24 AC	0	2	3RA23 15-8XB30-पAB0	0.46/0.50
7	1/4	3/4	$11 / 2$	2	3	5	110/120 AC	0	2	3RA23 15-8XB30-पAK6	0.46/0.50
7	1/4	3/4	$11 / 2$	2	3	5	220/240 AC	0	2	3RA23 15-8XB30-■AP6	0.46/0.50
9	1/3	1	2	3	5	$71 / 2$	24 AC	0	2	3RA23 16-8XB30-■AB0	0.46/0.50
9	1/3	1	2	3	5	$71 / 2$	110/120 AC	0	2	3RA23 16-8XB30-पAK6	0.46/0.50
9	1/3	1	2	3	5	$71 / 2$	220/240 AC	0	2	3RA23 16-8XB30-■AP6	0.46/0.50
12	1/2	2	3	3	$71 / 2$	10	24 AC	0	2	3RA23 17-8XB30-■AB0	0.46/0.50
12	1/2	2	3	3	$71 / 2$	10	110/120 AC	0	2	3RA23 17-8XB30-■AK6	0.46/0.50
12	1/2	2	3	3	$71 / 2$	10	220/240 AC	0	2	3RA23 17-8XB30-■AP6	0.46/0.50
16	1	2	3	5	10	10	24 AC	0	2	3RA23 18-8XB30-■AB0	0.46/0.50
16	1	2	3	5	10	10	110/120 AC	0	2	3RA23 18-8XB30-पAK6	0.46/0.50
16	1	2	3	5	10	10	220/240 AC	0	2	3RA23 18-8XB30-■AP6	0.46/0.50
DC operation											
7	1/4	3/4	$11 / 2$	2	3	5	24 DC	0	2	3RA23 15-8XB30-पBB4	0.58/0.62
9	1/3	1	2	3	5	$71 / 2$	24 DC	0	2	3RA23 16-8XB30-■BB4	0.58/0.62
12	1/2	2	3	3	$71 / 2$	10	24 DC	0	2	3RA23 17-8XB30-■BB4	0.58/0.62
16	1	2	3	5	10	10	24 DC	0	2	3RA23 18-8XB30-■BB4	0.58/0.62
With communication interface ${ }^{3)}$											
7	1/4	3/4	$11 / 2$	2	3	5	24 DC	0	2	3RA23 15-8XE30-पВB4	0.58/0.62
9	1/3	1	2	3	5	$71 / 2$	24 DC	0	2	3RA23 16-8XE30-पBB4	0.58/0.62
12	1/2	2	3	3	$71 / 2$	10	24 DC	0	2	3RA23 17-8XE30-पBB4	0.58/0.62
16	1	2	3	5	10	10	24 DC	0	2	3RA23 18-8XE30-पBB4	0.58/0.62

For other voltages see page 2/51
For accessories and spare parts, see page 2/68-2/85.

Spring-loaded terminals

1) For coil operating range, see page $2 / 51$
2) The contactors integrated in the contactor assemblies have no unassigned auxiliary contacts.
3) For use with 3RA27 and 3RA28 communication modules.

See pages 2/26 to 2/33.

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Fully wired and tested reversing contactor assemblies • Size SO - Up to 25 HP
The figure shows the version with screw terminals

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Fully wired and tested contactor assemblies . Size SO • up to 25 HP

3RA23 24-8XE30-1BB4
AC data
Amp
ratings
AC2/AC3

3RA23 2.-8XB30-1A

3RA23 2.-8XB30-2A

kg AC operation, $50 / 60 \mathrm{~Hz}$ Size So ${ }^{1}$)

12	1	2	3	3	$71 / 2$	10	24 AC	2	2	3RA23 24-8XB30-पAC2	0.84/0.94
12	1	2	3	3	$71 / 2$	10	110/120 AC	2	2	3RA23 24-8XB30-पAK6	0.84/0.94
12	1	2	3	3	$71 / 2$	10	220/240 AC	2	2	3RA23 24-8XB30-■AP6	0.84/0.94
16	1	3	5	5	10	15	24 AC	2	2	3RA23 25-8XB30-पAC2	0.84/0.94
16	1	3	5	5	10	15	110/120 AC	2	2	3RA23 25-8XB30-■AK6	0.84/0.94
16	1	3	5	5	10	15	220/240 AC	2	2	3RA23 25-8XB30-■AP6	0.84/0.94
25	2	3	$71 / 2$	$71 / 2$	15	20	24 AC	2	2	3RA23 26-8XB30-पAC2	0.84/0.94
25	2	3	$71 / 2$	$71 / 2$	15	20	110/120 AC	2	2	3RA23 26-8XB30-पAK6	0.84/0.94
25	2	3	$71 / 2$	$71 / 2$	15	20	220/240 AC	2	2	3RA23 26-8XB30-■AP6	0.84/0.94
32	2	5	10	10	20	25	24 AC	2	2	3RA23 27-8XB30-पAC2	0.84/0.94
32	2	5	10	10	20	25	110/120 AC	2	2	3RA23 27-8XB30-पAK6	0.84/0.94
32	2	5	10	10	20	25	220/240 AC	2	2	3RA23 27-8XB30-■AP6	0.84/0.94
38	3	5	10	10	25	25	24 AC	2	2	3RA23 28-8XB30-पAC2	0.84/0.94
38	3	5	10	10	25	25	110/120 AC	2	2	3RA23 28-8XB30-पAK6	0.84/0.94
38	3	5	10	10	25	25	220/240 AC	2	2	3RA23 28-8XB30-■AP6	0.84/0.94
DC operation											
12	1	2	3	3	$71 / 2$	10	24 DC	2	2	3RA23 24-8XB30-■BB4	1.22/1.32
16	1	3	5	5	10	15	24 DC	2	2	3RA23 25-8XB30-■BB4	1.22/1.32
25	2	3	$71 / 2$	7 1/2	15	20	24 DC	2	2	3RA23 26-8XB30-पВB4	1.22/1.32
32	2	5	10	10	20	25	24 DC	2	2	3RA23 27-8XB30-■BB4	1.22/1.32
38	3	5	10	10	25	25	24 DC	2	2	3RA23 28-8XB30-पBB4	1.22/1.32
With communication interface ${ }^{2)}$											
12	1	2	3	3	$71 / 2$	10	24 DC	2	2	3RA23 24-8XE30-■BB4	1.22/1.32
16	1	3	5	5	10	15	24 DC	2	2	3RA23 25-8XE30-■BB4	1.22/1.32
25	2	3	$71 / 2$	$71 / 2$	15	20	24 DC	2	2	3RA23 26-8XE30-पBB4	1.22/1.32
32	2	5	10	10	20	25	24 DC	2	2	3RA23 27-8XE30-■BB4	1.22/1.32
38	3	5	10	10	25	25	24 DC	2	2	3RA23 28-8XE30-■BB4	1.22/1.32

Screw terminals
Spring-loaded terminals

1) For coil operating range, see page $2 / 51$
2) For use with 3RA27 and 3RA28 communication modules.

See pages 2/26 to 2/33.

Contactor Assemblies for Switching Motors

3RA23 reversing contactor assemblies

Selection and ordering data

	Size S2 - up to 50 HP											
	AC data Amp ratings AC2/AC	UL data Single-phase HP ratings		Three-phase HP ratings				Rated control supply voltage ${ }^{1)}$	Auxiliary contacts		Screw Terminals Order No.	Weight approx. kg
		115 V	230 V	200 V	230 V	460 V	575 V					
	A	HP	HP	HP	HP	HP	HP		NO	NC		
	AC operation											
	40	3	7.5	10	15	30	40	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	3RA2335-8XB30-1AC2 3RA2335-8XB30-1AK6 3RA2335-8XB30-1AP6	1.72
	50	3	10	15	15	40	50	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & \hline 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & \hline 2 \\ & 2 \\ & 2 \end{aligned}$	3RA2336-8XB30-1AC2 3RA2336-8XB30-1AK6 3RA2336-8XB30-1AP6	1.72
	65	5	10	20	20	50	50	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3RA2337-8XB30-1AC2 3RA2337-8XB30-1AK6 3RA2337-8XB30-1AP6	2.548
	80^{11}	5	15	20	25	50	60	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3RA2338-8XB30-1AC2 3RA2338-8XB30-1AK6 3RA2338-8XB30-1AP6	2.548
For Reversing Contactors with	AC/DC operation											
communication	40	3	7.5	10	15	30	40	20-33 AC/DC	2	2	3RA2335-8XB30-1NB3	2.5
interface: replace	50	3	10	15	15	40	50	20-33 AC/DC	2	2	3RA2336-8XB30-1NB3	
the $8 \mathrm{XB} 30-1 \mathrm{NB} 3$	65	5	10	20	20	50	50	20-33 AC/DC	2	2	3RA2337-8XB30-1NB3	
with 8XE30-1NB3.	$80^{1)}$	5	15	20	25	50	60	20-33 AC/DC	2	2	3RA2338-8XB30-1NB3	

1) Max UL FLA $=65 \mathrm{~A}$ at 460 V

Fully wired and tested reversing contactor assemblies.

Size S2 • Up to 50 HP

The figure shows the version with screw terminals

Mountable accessories (optional)

| To be ordered separately | Type |
| :--- | :--- | :--- |
| | |
| (6) Auxiliary switch block, front | $3 R H 2911$ |
| (7) Auxiliary switch block, lateral | 3RH2921 |
| (8) Surge suppressors | 3RT2936 |
| (9) Function module for connection to | 3RA271.-1BA00 |
| the control system | |

For further voltages, see page 2/51. For overview, see page 2/39-2/40. For accessories, see page 2/68-2/85. For circuit diagrams, see page 2/205. For dimension drawings, see page $2 / 224$.

Coil voltage tolerance: at 50 Hz : 0.8 to $1.1 \times \mathrm{Us}$ at $60 \mathrm{~Hz}: 0.85$ to 1.1 x Us at AC/DC: 0.8 to $1.1 \times$ Us

Complete reversing contactor assembly
Individual
(1)(2)
(1)(2)
(1)(2)
(3)(4)

Type Q11
Contactors, 18.5 kW
Contactors, 22 kW
Contactors, 30 kW
Contactors, 37 kW
Assembly kit
comprising:
(3) Two connectors for two contactors
(4) Wiring modules on the top and bottom for connecting the main and auxiliary current circuits, electrical interlock included (NC contact interlock)
5) Mechanical interlock (must be ordered separately)

Selection and ordering data

AC data Amp ratings AC2/AC3	UL data Single-phase HP ratings		Three-phase HP ratings				Rated control supply voltage ${ }^{1)}$	Auxiliary contacts		Fully wired and tested contactor assembly Order No.	Weight approx. kg
	115 V	230 V	200 V	230 V	460 V	575 V					
A	HP	HP	HP	HP	HP	HP		NO	NC		
AC operation											
80	5	15	20	25	50	60	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	3RA2345-8XB30-1AC2 3RA2345-8XB30-1AK6 3RA2345-8XB30-1AP6	3.9
95	7.5	15	25	30	60	75	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	3RA2346-8XB30-1AC2 3RA2346-8XB30-1AK6 3RA2346-8XB30-1AP6	3.9
110	10	20	30	30	75	100	$\begin{aligned} & 24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \\ & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	3RA2347-8XB30-1AC2 3RA2347-8XB30-1AK6 3RA2347-8XB30-1AP6	3.9
AC/DC operation											
80	5	15	20	25	50	60	$20-33 \mathrm{~V}$ AC/DC	0	2	3RA2345-8XB30-1NB3	5.7
95	7.5	15	25	30	60	75	$20-33 \mathrm{VAC/DC}$	0	2	3RA2346-8XB30-1NB3	
110	10	20	30	30	75	100	$20-33$ V AC/DC	0	2	3RA2347-8XB30-1NB3	

Fully wired and tested reversing contactor assemblies . Size S3 - Up to 75 HP

Mountable accessories (optional)
To be ordered separately
(17) Auxiliary switch block, front
(12) Auxiliary switch block, lateral
(13) Surge suppressors
(14) Function module for connection
to the control system (the associated
connectors 3RA2711-0EE17 must be
For further voltages, see page $2 / 51$.
For overview, see page 2/39-2/40.
For accessories, see page 2/68-2/85.
For circuit diagrams, see page $2 / 205$.
For dimension drawings, see page 2/224.

Complete reversing contactor assembly			
Individual parts		Type	
		Q11	Q12
(1)(2)	Contactors, 37 kW	3RT2045	3RT2045
(1)(2)	Contactors, 45 kW	3 RT2046	3RT2046
(1)(2)	Contactors, 55 kW	3 RT2047	3RT2047
(3)(4)	Assembly kit comprising:	3RA2943-2AA1	
	(3) Two connectors for two contactors		
	(4) Wiring modules on the top and bottom for connecting the main and auxiliary current circuits, electrical interlock included (NC contact interlock)		
(5)	Mechanical interlock (must be ordered s	3RA2934	

3RA24 Contactor Assemblies for Wye-Delta Starting

3RA24 complete units, $5.5 \ldots 22 \mathrm{~kW}$

Overview

These 3RA24 contactor assemblies for wye-delta starting are designed for standard applications.
Note:
Contactor assemblies for wye-delta starting in special applications such as very heavy starting or wye-delta starting of special motors must be customized. Help with designing such special applications is available from Technical Assistance.

The 3RA24 contactor assemblies for wye-delta starting can be ordered as follows:
Sizes SOO and SO

- Fully wired and tested, with electrical and mechanical interlock.
- As individual parts for customer assembly.

A dead interval of 50 ms on reversing is already integrated in the function module for wye-delta starting.
There is also a range of accessories (lateral auxiliary switch blocks, etc.) that must be ordered separately.
For overload relays for motor protection see Chapter 3 "Overload Relays" --> "3RB3 Solid-State Overload Relays"
The 3RA24 contactor assemblies have screw or spring-type terminals and are suitable for screwing or snapping onto TH 35 standard mounting rails.

With the fully wired and tested 3RA24 contactor assemblies, the auxiliary contacts included in the basic devices are unassigned.

Motor protection

Overload relays or thermistor motor protection releases can be used for overload protection.
The overload relay can be either mounted onto the line contactor or separately fitted. It must be set to 0.58 times the rated motor current.

Surge suppression

Sizes SOO and S0
Surge suppression (varistor) is included in the function modules for wye-delta starting.

Function modules for wye-delta starting

The 3RA28 16-0EW20 wye-delta function module (see page 2/29 replaces the complete wiring in the control circuit and can be used in the voltage range from 24 to 240 V AC/DC. It is snapped onto the front of the contactor assembly size S00 or SO.
One function module comprises a complete module kit:

- One 3RA29 12-0 basic module with integrated control logic and time setting,
- And two 3RA29 11-0 coupling modules with related connecting cables.

The scope of supply comprises a complete module kit for one contactor assembly for wye-delta starting size SOO or SO, regardless of the connection method.

Screw terminals

Rated data at AC 50 Hz 400 V			Size			
Power kW	Operational current I_{e} A	Motor current A		Line/delta contactor	Star contactor	Order No. complete
5.5	12	9.5 ... 13.8	S00-S00-S00	3RT2015-1....	3RT2015-1....	3RA2415-8XF32-1...
7.5	16	12.1... 17		3RT2017-1....	3RT2015-1....	3RA2416-8XF32-1...
11	25	19 ... 25		3RT2018-1....	3RT2016-1..	3RA2417-8XF32-1...
11	25	19 ... 25	S0-S0-S0	3RT2024-1... 0	3RT2024-1... 0	3RA2423-8XF32-1...
15	32	24.1... 34		3RT2026-1... 0	3RT2024-1... 0	3RA2425-8XF32-1...
18.5	40	34.5 ... 40		3RT2026-1... 0	3RT2024-1... 0	3RA2425-8XF32-1...
22	50	$31 \ldots 43$		3RT2027-1... 0	3RT2026-1... 0	3RA2426-8XF32-1...
22/30	50	$31 . . .43$	S2-S2-S0	3RT2035-1... 0	3RT2026-1... 0	3RA2434-8XF32-1...
37	80	62.1 ...77.8		3RT2035-1... 0	3RT2027-1... 0	3RA2435-8XF32-1...
45	86	$69 . . .86$		3RT2036-1... 0	3RT2028-1... 0	3RA2436-8XF32-1...
55	115	77.6 ... 108.6	S2-S2-S2	3RT2037-1... 0	3RT2035-1... 0	3RA2444-8XF32-1...
75	150	120.7 ... 150		3RT2045-1... 0	3RT2036-1... 0	3RA2445-8XF32-1...
90	160	$86 . . .160$		3RT2046-1... 0	3RT2037-1... 0	3RA2446-8XF32-1...

Spring-type terminals

Rated data at AC 50 Hz 400 V			Size			
Power kW	Operational current I_{e} A	Motor current A		Line/delta contactor	Star contactor	Order No. complete
5.5	12	9.5 ... 13.8	S00-S00-S00	3RT2015-2....	3RT2015-2....	3RA24 15-8XF31-2...
7.5	16	12.1... 17		3RT2017-2....	3RT2015-2....	3RA24 16-8XF31-2...
11	25	19 ... 25		3RT2018-2..	3RT2016-2.	3RA24 17-8XF31-2...
11	25	19 ... 25	S0-S0-S0	3RT2024-2... 0	3RT2024-2.... 0	3RA24 23-8XF32-2...
15	32	24.1... 34		3RT2026-2.... 0	3RT2024-2.... 0	3RA24 25-8XF32-2...
18.5	40	34.5 ... 40		3RT2026-2... 0	3RT2024-2... 0	3RA24 25-8XF32-2...
25	50	$31 . . .43$		3RT2027-2.... 0	3RT2026-2.... 0	3RA24 26-8XF32-2...

Note:
The selection of contactor types refers to fused configurations.

3RA24 Contactor Assemblies for Wye-Delta Starting

3RA24 complete units, 5.5 ... 22 kW

Components for customer assembly

Assembly kits with wiring modules and mechanical connectors are available for contactor assemblies for wye-delta starting. Contactors, overload relays, function modules for wye-delta starting or wye-delta timing relays, auxiliary switches for electrical interlock - if required also feeder terminals and base plates - must be ordered separately.
The wiring kits for sizes SOO and SO contain the top and bottom main conducting path connections between the line and delta
contactors (top) and between the delta and star contactors (bottom).

Control circuit

Features:

- Time setting range 0.5 to 60 s (3 selectable settings)
- Wide voltage range 24 to 240 V AC/DC
- Dead interval of 50 ms , non-adjustable.

Screw terminals

Power	Accessories for customer assembly			Overload relay, thermal (trip class CLASS 10)		Overload relay, solid-state (trip class CLASS 10)	
	Function modules for wye-delta starting	Assembly kit B, for single infeed	Star jumper	Setting range	Order No.	Setting range	Order No.
kW				A		A	
5.5	3RA28 16-0EW20	3RA29 13-2BB1 ${ }^{1)}$	3RT29 16-4BA31	$5.5 \ldots 8$	3RU21 16-1HB0	$4 \ldots 16$	3RB30 16-1TB0
7.5				7 ... 10	3RU21 16-1JB0		
11				11 ... 16	3RU21 16-4AB0		
11	3RA28 16-0EW20	3RA29 23-2BB1 ${ }^{2)}$	3RT29 26-4BA31	11 ... 16	3RU21 26-4AB0	$6 \ldots 25$	3RB30 26-1QB0
15				14 ... 20	3RU21 26-4BB0		
18.5				20 ... 25	3RU21 26-4DB0		
22				20 ... 25	3RU21 26-4DB0		

Spring-type terminals

Power	Accessories for customer assembly			Overload relay, thermal (trip class CLASS 10)		Overload relay, solid-state (trip class CLASS 10)	
	Function modules for wye-delta starting	Assembly kit B, for single infeed	Star jumper	Setting range	Order No.	Setting range	Order No.
kW				A		A	
5.5	3RA28 16-0EW20	3RA29 13-2BB2 ${ }^{1)}$	3RT29 16-4BA32	5.5 ... 8	3RU21 16-1HC0	$4 \ldots 16$	3RB30 16-1TE0
7.5				7 ... 10	3RU21 16-1JC0		
11				11 ... 16	3RU21 16-4AC0		
11	3RA28 16-0EW20	3RA29 23-2BB2 ${ }^{\text {2 }}$	3RT29 26-4BA32	11 ... 16	3RU21 26-4AC0	$6 \ldots 25$	3RB30 26-1QE0
15				14 ... 20	3RU21 26-4BC0		
18.5				20 ... 25	3RU21 26-4DC0		
22				20 ... 25	3RU21 26-4DC0		

1) The assembly kit contains: mechanical interlock, 4 connecting clips; wiring modules on the top (connection between line and delta contactor) and on the bottom (connection between delta and star contactor); star jumper and auxiliary circuit wiring.
2) The assembly kit contains: mechanical interlock, 4 connecting clips; wiring modules on the top (connection between line and delta contactor) and on the bottom (connection between delta and star contactor); star jumper.

Order No. scheme

Digit of the Order No.	$\begin{aligned} & \text { 1. - } 3 . \\ & \text { ㅁㅁㅁ } \end{aligned}$	4.	$5 .$	$6 .$	$\begin{aligned} & 7 . \\ & \square \end{aligned}$	-		$9 .$	$10 .$	$11 .$	$12 .$	-	$13 .$	ㅁ	$15 .$	$16 .$
SIRIUS contactor assemblies	3 R A															
2nd generation		2														
Device type (e. g. 4 = contactor assembly for wye-delta starting)			4													
Contactor size (1 = S00, 2 = S0)				\square												
Power dependent on size (e. g. $25=15 \mathrm{~kW}$)					\square											
Type of overload relay (8X = without)								\square								
Assembly ($\mathrm{F}=$ ready-assembled, $\mathrm{E}, \mathrm{H}=$ ready-assembled with communication)									\square							
Interlock (3 = mechanical and electrical)										\square						
Free auxiliary switches (e. g. S00: $1=3$ NO total, SO: $2=3$ NO + 3 NC total)											\square					
Connection type ($1=$ screw, 2 = spring)													\square			
Operating range / solenoid coil circuit (e. g. A = AC standard / without)													\square			
Rated control supply voltage (e. g. $\mathrm{K} 6=110 / 120 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$)													$\square \square$			
Example	3 RA	2	4	2	5	-	8	X	F	3	2	-	1	A	K	6

3RA24 Contactor Assemblies for Wye-Delta Starting

Fully wired and tested contactor assemblies • Size S00-S00-S00 • Up to 11 kW

[^15] Number is not UL Listed.

For other voltages see page 2/51.

3RA24 Contactor Assemblies for Wye-Delta Starting

3RA24 complete units, 5.5 ... 22 kW

Fully wired and tested contactor assemblies • Size SO-SO-SO • Up to 22 kW

3RA24 2.-8XE32-1BB4						3RA24 2.-8XF32-1A. 2			3RA24 2.-8XF32-2A . 2		
Rated data AC-3					Rated control supply voltage $U_{s}{ }^{1)}$ at $50 / 60 \mathrm{~Hz}$	Screw terminals	(i)	Weight approx.	Spring-type terminals	00	Weight approx.
Operational current I_{e} up to 400 V	Rating induc at 50 $230 \mathrm{~V}$	gs of ion mo Hz and 400 V	ors $500 \mathrm{~V}$	690		Order No.		approx.	Order No.		approx.
A	kW	kW	kW	kW	V			kg			kg
AC operation, 50/60 Hz											
25	7.1	11	15.6	19	$\begin{aligned} & 24 \mathrm{AC} \\ & 110 / 220 \mathrm{AC} \\ & 220 / 240 \mathrm{AC} \end{aligned}$	3RA24 23-8XF32-1AC2 3RA24 23-8XF32-1AK6 3RA24 23-8XF32-1AP6		$\begin{aligned} & 1.370 \\ & 1.370 \\ & 1.370 \end{aligned}$	3RA24 23-8XF32-2AC2 3RA24 23-8XF32-2AK6 3RA24 23-8XF32-2AP6		$\begin{aligned} & 1.530 \\ & 1.530 \\ & 1.530 \end{aligned}$
$32 / 40$	11.4	$\begin{aligned} & 15 / \\ & 18.5 \end{aligned}$	19	19	$\begin{aligned} & 24 \mathrm{AC} \\ & 110 / 220 \mathrm{AC} \\ & 220 / 240 \mathrm{AC} \end{aligned}$	3RA24 25-8XF32-1 AC2 3RA24 25-8XF32-1AK6 3RA24 25-8XF32-1AP6		$\begin{aligned} & 1.370 \\ & 1.370 \\ & 1.370 \end{aligned}$	3RA24 25-8XF32-2AC2 3RA24 25-8XF32-2AK6 3RA24 25-8XF32-2AP6		$\begin{aligned} & 1.530 \\ & 1.530 \\ & 1.530 \\ & \hline \end{aligned}$
50	--	22	19	19	$\begin{aligned} & 24 \mathrm{AC} \\ & 110 / 220 \mathrm{AC} \\ & 220 / 240 \mathrm{AC} \end{aligned}$	3RA24 26-8XF32-1AC2 3RA24 26-8XF32-1AK6 3RA24 26-8XF32-1AP6		$\begin{aligned} & 1.390 \\ & 1.390 \\ & 1.390 \end{aligned}$	3RA24 26-8XF32-2AC2 3RA24 26-8XF32-2AK6 3RA24 26-8XF32-2AP6		$\begin{aligned} & 1.550 \\ & 1.550 \\ & 1.550 \end{aligned}$
DC operation											
25	7.1	11	15.6	19	24 DC	3RA24 23-8XF32-1BB4		1.940	3RA24 23-8XF32-2BB4		2.100
$32 / 40$	11.4	$\begin{aligned} & 15 / \\ & 18.5 \end{aligned}$	19	19	24 DC	3RA24 25-8XF32-1BB4		1.940	3RA24 25-8XF32-2BB4		2.100
50	--	22	19	19	24 DC	3RA24 26-8XF32-1BB4		1.960	3RA24 26-8XF32-2BB4		2.120
For IO-Link connection											
25	7.1	11	15.6	19	24 DC	3RA24 23-8XE32-1BB4		1.940	3RA24 23-8XE32-2BB4		2.100
$32 / 40$	11.4	$\begin{aligned} & 15 / \\ & 18.5 \end{aligned}$	19	19	24 DC	3RA24 25-8XE32-1BB4		1.940	3RA24 25-8XE32-2BB4		2.100
50	--	22	19	19	24 DC	3RA24 26-8XE32-1BB4		1.960	3RA24 26-8XE32-2BB4		2.120
For AS-Interface connection											
25	7.1	11	15.6	19	24 DC	3RA24 23-8XH32-1BB4		1.960	3RA24 23-8XH32-2BB4		2.120
$32 / 40$	11.4	$\begin{aligned} & 15 / \\ & 18.5 \end{aligned}$	19	19	24 DC	3RA24 25-8XH32-1BB4		1.960	3RA24 25-8XH32-2BB4		2.120
50	--	22	19	19	24 DC	3RA24 26-8XH32-1BB4		1.980	3RA24 26-8XH32-2BB4		2.140

[^16] Number is not UL Listed.

For other voltages see page 2/51

Selection and ordering data

Contactor type	3RT201	3RT231	3RT202	3RT232	$3 \mathrm{RT2617}$	3RT203	3RT233	3RT104
Rated control supply voltage $\boldsymbol{U}_{\boldsymbol{s}}$	3RA211	3RT251	3RA212	3RT252	$3 \mathrm{3RT2627}$	3RA213	3RT253	3RT134
					3RT2637			3RT144 3RA114
	S00	S00	So	So	S00-S2	S2	S2	S3

Rated control supply voltages (changes to 10th and 11th positions of the Order No.)
AC Operation ${ }^{1)}$

Coils for 50 Hz (exception: size S00: 50 and $60 \mathrm{~Hz}{ }^{2)}$	24 V AC		B0							
	42 V AC		D0	D0	D0	--	--	D0	--	D0
	48 V AC		H0	H0	H0	--	--	H0	--	H0
	110 V AC		FO	F0	F0	F0	FO	F0	F0	FO
	230 V AC		PO	PO	PO	PO	P0	PO	PO	PO
	400 V AC		V0	Vo	V0	V0	Vo	V0	Vo	V0
Coils for 50 and $60 \mathrm{~Hz}^{2)}$	24 V AC		B0	B0	C2	C2	C2	C2	C2	C2
	42 V AC		D0	D0	D2	D2	--	D2	D2	D2
	48 V AC		H0	H0	H2	H2	--	H2	H2	H2
	110 V AC		F0	F0	G2	G2	G2	G2	G2	G2
	208 V AC		M2							
	220 V AC		N2							
	230 V AC		PO	PO	L2	L2	L2	L2	L2	L2
	240 V AC		P2							
For USA and Canada ${ }^{3}$	50 Hz :	60 Hz :								
	110 V AC	120 V AC	K6							
	220 V AC	240 V AC	P6							
		277 V AC	-	-	-	U6	-	U6	U6	U6
		480 V AC	V6	-	V6	-	-	V6	V6	V6
		600 V AC	-	-	-	T6	-	T6	T6	T6
For Japan	50/60 Hz ${ }^{4}$:	60 Hz 5 :								
	100 V AC	110 V AC	G6							
	200 V AC	220 V AC	N6							
	400 V AC	440 V AC	R6							
DC Operation ${ }^{1)}$										
	12 V DC		A4	A4	-	-	-	-	-	-
	24 V DC		B4	B4	B4	B4	-	-	-	-
	42 V DC		D4	D4	D4	D4	-	-	-	-
	48 V DC		W4	W4	W4	W4	-	-	-	-
	60 V DC		E4	E4	E4	E4	-	-	-	-
	72 V DC		J8	J8	J8	J8	-	-	-	-
	80 V DC		-	-	-	-	-	-	-	-
	110 V DC		F4	F4	F4	F4	-	-	-	-
	125 V DC		G4	G4	G4	G4	-	-	-	-
	220 V DC		M4	M4	M4	M4	-	-	-	-
	230 V DC		P4	P4	P4	-	-	-	-	-

Coil codes for frame sizes S6-S12 can be found on page 2/9. Further voltages on request

Rated control supply voltage	Contactor type	--	3RT2. 2.-.N	Rated control supply voltage	Contactor type	3RT2. 3.-.N	3RT2. 2.-.N
$U_{\text {S min }} \ldots U_{\text {S max }}{ }^{6)}$	Size	S00	S0	U_{S} min $\ldots U_{S} \max ^{6}{ }^{6}$	Size	S2	S3

Sizes S 00 to $\mathrm{S3}$

AC/DC operation (50/60 Hz AC, DC)

Control Relays, Coupling Relays

Selection and ordering data
AC and DC operation

3RH11 . . -1 . . .

Rated current	Auxiliary contacts			Rated control supply voltage U_{S}	AC Operation Screw Terminals ${ }^{1 \text { 1 }}{ }^{2)}$	Rated control supply voltage U_{S}	DC Operation Screw Terminals ${ }^{1)^{2}}$
at 240 V NEMA A600/Q600	Identification No.	Vers I^{I}	4				
Amps		NO	NC	V AC 50/60 Hz ${ }^{3)}$	Order No.	V DC	Order No.

For screw and snap-on mounting onto TH 35 standard mounting rail

| | 3RH2140-1BB40
 3RH2140-1BF40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3RH2140-1BM40 | |

Notes:

For further voltages, see page 2/51
For accessories, see pages 2/68-2/79.
For technical data, see pages 2/190-2/193.
For overview, see page 2/118.
For position terminals, see page 2/207-2/208
For dimension drawings, see page 2/124.

1) The 3RH21 contactor relays are also available with spring-type terminals. Replace the 8th digit of the order number with a " 2 " e.g. "3RH2140-2AB00"
2)The 3 RH21 contactor relays are also available with ring lug terminals. Replace the 8th digit of the order number with a " 4 " e.g. "3RH2140-4AB00"
3)AC coil operating range at $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{S}$ at $60 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{S}$
4)For AC-15/AC-14 the following applies: $\mathrm{I}_{\mathrm{e}}=6 \mathrm{~A}$ for mounted auxiliary contacts.

Control Relays, Coupling Relays

3RH24 latched control relays, 4-pole

Overview

The contactor coil and the coil of the release solenoid are both designed for uninterrupted duty.
The number of auxiliary contacts can be extended by means of front auxiliary switch blocks (up to 4 poles).

RC elements, varistors diodes or diode assemblies can be fitted to both coils from the front for damping opening surges in the coil.

Selection and ordering data

Size SOO - Terminal designations according to EN 5001

		Rated current at 240 V AC-14, AC-15 NEMA A600/Q600 Amps	Aux. contacts			Rated control supply voltage U_{S} V AC	AC Operation Screw Terminals ${ }^{1)}$ Order No.	Rated control supply voltage U_{S} V DC	DC Operation Screw Terminals Order No.	
		Ident. No.								
			NO	NC						
For screw and snap-on mounting onto TH 35 standard mounting rail										
3RH2422-1BB40			10	40E	4	-	$\begin{aligned} & 24,50 / 60 \mathrm{~Hz} \\ & 110,50 \mathrm{~Hz} / 120,60 \mathrm{~Hz} \\ & 220,50 \mathrm{~Hz} / 240,60 \mathrm{~Hz} \\ & 230,50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 3RH2440-1AB00 } \\ & \text { 3RH2440-1AK60 } \\ & \text { 3RH2440-1AP60 } \\ & \text { 3RH2440-1AP00 } \end{aligned}$	$\begin{aligned} & 24 \\ & 110 \\ & 125 \\ & 220 \end{aligned}$	3RH2440-1BB40 3RH2440-1BF40 3RH2440-1BG40 3RH2440-1BM40
			10	31E	3	1	$\begin{aligned} & 24,50 / 60 \mathrm{~Hz} \\ & 110,50 \mathrm{~Hz} / 120,60 \mathrm{~Hz} \\ & 220,50 \mathrm{~Hz} / 240,60 \mathrm{~Hz} \\ & 230,50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 3RH2431-1AB00 } \\ & \text { 3RH2431-1AK60 } \\ & \text { 3RH2431-1AP60 } \\ & \text { 3RH2431-1AP00 } \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 110 \\ & 125 \\ & 220 \end{aligned}$	3RH2431-1BB40 3RH2431-1BF40 3RH2431-1BG40 3RH2431-1BM40
		10	22E	2	2	$\begin{aligned} & 24,50 / 60 \mathrm{~Hz} \\ & 110,50 \mathrm{~Hz} / 120,60 \mathrm{~Hz} \\ & 220,50 \mathrm{~Hz} / 240,60 \mathrm{~Hz} \\ & 230,50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 3RH2422-1AB00 } \\ & \text { 3RH2422-1AK60 } \\ & \text { 3RH2422-1AP60 } \\ & \text { 3RH2422-1AP00 } \end{aligned}$	$\begin{aligned} & 24 \\ & 110 \\ & 125 \\ & 220 \end{aligned}$	$\begin{aligned} & \text { 3RH2422-1BB40 } \\ & \text { 3RH2422-1BF40 } \\ & \text { 3RH2422-1BG40 } \\ & \text { 3RH2422-1BM40 } \end{aligned}$	

For accessories for 3RH24, see below and page 2/68-2/79
For technical data, see page 2/190-2/193.
For position of terminals, see page 2/207-2/208.
For dimension drawings, see page 2/230.
For overview, see page 2/118.
Auxiliary switch blocks for 3RH21, 3RH24 control relays

Size SOO - For assembling to control relays to have 8 contacts	For contactor		Contacts Version		Weight approx.	Screw Terminals Order No.	Spring Terminals Order No.
	type	HS Block Ident. No.					
			NO	NC	kg.		
Auxiliary switch blocks for snapping onto the front according to EN 50011							
	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \text { E } \end{aligned}$	80E	4	-	0.050	3RH2911-1GA40	3RH2911-2GA40
	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \mathrm{E} \end{aligned}$	71E	3	1	0.050	3RH2911-1GA31	3RH2911-2GA31
	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \text { E } \end{aligned}$	62E	2	2	0.050	3RH2911-1GA22	3RH2911-2GA22
	3RH2140, 3RH2440, Ident. No. 40 E	53E	1	3	0.050	3RH2911-1GA13	3RH2911-2GA13
3RH2911-2GA40	$\begin{aligned} & \text { 3RH2140, } \\ & \text { 3RH2440, } \\ & \text { Ident. No. } \\ & 40 \mathrm{E} \end{aligned}$	44E	-	4	0.050	3RH2911-1GA04	3RH2911-2GA04

[^17]For further accessories see pages 2/68-2/79

Application

DC operation
IEC 60947 and EN 60947

The 3RH21 coupling relays for switching auxiliary circuits are tailored to the special requirements of working with electronic controls.

The 3RH21 coupling relays cannot be extended with auxiliary switch blocks.

Coupling relays have a low power consumption, an extended coil voltage tolerance and an integrated surge suppressor for damping opening surges on select versions

Selection and ordering data DC operation

Size SOO - Terminal designations according to EN 50011

Surge suppressor	Rated current	Auxiliary	contacts	Screw Terminals ${ }^{\text {1 }}$ Order No.	Spring Terminals ${ }^{\text {1 }}$ Order No.	Weight approx. kg.
	at $\mathbf{2 4 0} \mathbf{V}$ NEMA A600/Q600	Identification No.	$\begin{array}{\|l\|} \hline \text { Version } \\ 1 \\ 1 \end{array}$			
	Amps		NO ${ }^{\text {NC }}$			

For screw and snap-on mounting onto TH 35 standard mounting rail

Rated control supply voltage $U_{s}=$ 24 V DC, coil voltage tolerance 0.7 to $1.25 \times U_{s}$	Diode, varistor, or RC element can be mounted	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 E \\ & 31 E \\ & 22 E \end{aligned}$	3 2	2	3RH2140-1HB40 3RH2131-1HB40 3RH2122-1HB40	3RH2140-2HB40 3RH2131-2HB40 3RH2122-2HB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
2.8 W at 24 V (no auxiliary switch blocks can be mounted)	Diode integrated	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 E \\ & 31 E \\ & 22 E \end{aligned}$	4 3 2	1	3RH2140-1JB40 3RH2131-1JB40 3RH2122-1JB40	3RH2140-2JB40 3RH2131-2JB40 3RH2122-2JB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
	Suppressor diode integrated	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		$\begin{aligned} & 4 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3RH2140-1KB40 3RH2131-1KB40 3RH2122-1KB40	3RH2140-2KB40 3RH2131-2KB40 3RH2122-2KB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
Rated control supply voltage U_{s} $=24 \mathrm{~V}$ DC, coil voltage tolerance 0.85 to $1.85 \times U_{s}$	Diode, varistor, or RC element can be mounted	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 E \\ & 31 E \\ & 22 E \end{aligned}$	4 3 2	1	3RH2140-1MB40-0KT0 3RH2131-1MB40-0KTO 3RH2122-1MB40-0KT0	3RH2140-2MB40-0KTO 3RH2131-2MB40-0KTO 3RH2122-2MB40-0KTO	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
1.6 W at 24 V (no auxiliary switch blocks can be mounted)	Diode integrated	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { 40E } \\ & 31 E \\ & 22 E \end{aligned}$	4 3 2	1	3RH2140-1VB40 3RH2131-1VB40 3RH2122-1VB40	3RH2140-2VB40 3RH2131-2VB40 3RH2122-2VB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$
$\frac{1}{2} 48$	Suppressor diode integrated	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 40 E \\ & 31 E \\ & 22 E \end{aligned}$	4 3 2	- 1 2	$\begin{aligned} & \text { 3RH2140-1SB40 } \\ & \text { 3RH2131-1SB40 } \\ & \text { 3RH2122-1SB40 } \end{aligned}$	3RH2140-2SB40 3RH2131-2SB40 3RH2122-2SB40	$\begin{aligned} & 0.300 \\ & 0.300 \\ & 0.300 \end{aligned}$

For technical data, see 2/194.
For position of terminals, see 2/207-2/208.
For dimension drawings, see 2/230
1)Ring lug terminals are also available. Replace the 8th digit of the order number with a " 4 ", e.g. 3RH2140-4HB40

Contactors for Switching Motors

3TF68 and 3TF69 vacuum contactors, 3-pole

Selection and ordering data

	Maximum inductive current AC-3	Maxim UL Ra 200 V	um pow tings 230 V	wer rati $460 \text { V }$	ings $575 \text { V }$	IEC ratings 1000 V	Max. resistive current AC-1	Auxiliary contacts		Rated control supply voltage ${ }^{1)}$	Order No.	Weight approx.
	A	HP	HP	HP	HP	kW	A		NC	V		kg
AC operation ${ }^{2 / 3)}$												
${ }^{3 T F 68}$	Size 14 Auxiliary and control conductors: screw terminals Main conductor: bar connections - AC Operation											
	630	200	250	500	600	600	700	4	4	110-132, $50 / 60 \mathrm{~Hz}$	3TF6844--CF7	15
nin	630	200	250	500	600	600	700	4	4	200-240, $50 / 60 \mathrm{~Hz}$	3TF6844-пCM7	15
	820	290	350	700	860	800	910	4	4	110-132, $50 / 60 \mathrm{~Hz}$	3TF6944-пCF7	19
	820	290	350	700	860	800	910	4	4	200-240, $50 / 60 \mathrm{~Hz}$	3TF6944-пCM7	19
(C)							UL ratings shown in above table: For IEC use only up to 1000 V:				$\begin{aligned} & \text { }=0 \\ & \\ & =8 \end{aligned}$	
	- DC Operation											
	630	200	250	500	600	600	700	3	3	24 V DC	3TF6833--DB4	16.9
	820	290	350	700	860	800	910	3	3	24 V DC	3TF6933--DB4	20.9
							UL ratings shown in above table: For IEC use only up to 1000 V:				$\begin{aligned} & \square=1 \\ & \square=8 \end{aligned}$	

Accessories and Spare parts for 3TF68 and 3TF69 vacuum contactors

Selection and ordering data

For accessories, see page 2/55-2/56.
For technical data, see page 2/177-2/182.
For description, see page 2/119.
For internal circuit diagrams, see page 2/216.
For position of terminals, see page $2 / 213$
For dimension drawings, see page $2 / 227$.

1) For further voltages, see page 2/104.
2) Surge suppression integrated: fitted with varistor.
3) For EMC, see description on page $2 / 119$.

3TF68/69 vacuum contactors are supplied with integrated surge suppression for the main conducting paths (for description, see pace 2/119). In operation in circuits with DC choppers, frequency converters, variable-speed drives, for example, this protective circuitry is not required. It might be damaged by voltage peaks and harmonics generated, possibly followed by phase-to-phase shortcircuits. For this reason. the contactors can be supplied without overvoltage damping. To order these versions add a " Z " and the order code " AO 2 ".

Contactors for Switching Motors

Accessories and Spare parts for 3TF68 and 3TF69 vacuum contactors

Selection and ordering data

	For contactor		Design	Order No.	Weight approx. kg	Std. Pack Qty
	Size	Type				
Interface for control by PLC						
3TX7 090-0D			Coil voltage tolerance: DC 17 V to 30 V Power consumption: 0.5 W at DC 24 V Fitted with varistor For technical data, see Part 7.			
	14	$\begin{aligned} & \text { 3TF68 and } \\ & \text { 3TF69 } \end{aligned}$	For snapping onto the side of auxiliary switch blocks, with surge suppression	3TX7 090-0D	0.1	1
Terminal covers						
3TX7 686-0A	14	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF69 } \end{aligned}$	for protection against inadvertent contact with the exposed busbar connections (DIN VDE 0106 Part 100)"	(Order No. and price per set) 3TX7 686-0A 3TX7 696-0A	0.17	1 set = 2 units

- Without auxiliary conductor terminal

[^18]
Contactors and Replacement Parts

General Purpose - Type 3TC

Ordering information

- Select Contactor from table below.
- Complete catalog number replace the two daggers ($\dagger \dagger$) with appropriate coil voltage suffix. See corresponding coil voltage suffix table below.
- Technical Data see page 2/183-2/186.
- Dimensions see page 2/227.

	Frame Size	Ampere Rating		$\begin{aligned} & 2 \text { Pole DC HP Ratings } \\ & \text { (DC-3, DC-5) } \end{aligned}$				Auxiliary contacts		AC-Operated Order No.	DC-Operated Order No.
		Open	Enclosed	115 V	230 V	500 V	575 V	NO	NC		
3TC DC Contactors											
	2	40	40	5	10	15	15	2	2	3TC4417-0Btt	3TC4417-0Att
	4	75	68	8	18	40	45	2	2	3TC4817-0B $\dagger \dagger$	3TC4817-0At†
	8	220	200	25	50	100	100	2	2	3TC5217-0Btt	3TC5217-0A $\dagger \dagger$
	12	330	300	40	75	150	150	2	2	3TC5617-0Bt†	3TC5617-0A $\dagger \dagger$

Coil Suffix Table $\dagger \dagger$

Replace $\dagger \dagger$ in the contactor Order No. with a coil code from the table below.

V AC 50/60 Hz	Code	V DC	Code
24	C1	24	B4
120	K1*	36	V4
240	P1	48	W4
460	Vo	60	E4
600	SO	72	J8
*Use suffix K2 for 3TC44.		110	F4
		125	G4
		220	M4
		230	P4

[^19]

[^20]

Overview

The SIRIUS family of controls

The SIRIUS modular system with its components for the switching, starting, protection and monitoring of motors and industrial systems stands for the fast, flexible and space-saving construction of control cabinets.

3RT2 contactors

Size S00 with mountable accessories

3RT2 contactors

Size SO with mountable accessories

(1) Contactor size S0
(2) 2-pole auxiliary switch block, laterally mountable
(3) 1-pole auxiliary switch block, for snapping onto the front cable entry from the top
(4) 4-pole auxiliary switch block, for snapping onto the front
(5) 2-pole auxiliary switch block, for snapping onto the front cable entry from the bottom
(6) Surge suppressor with/without LED
(7) 3RA27 function module for AS-Interface, direct starting
(8) 3RA28 function module
(9) 3RA27 function module for IO-Link, direct starting
(10) Pneumatically delayed auxiliary switch block
(11) Mechanical latching block
(12) Link for paralleling, 3-pole, with connecting terminal
(13) Connection module (adapter and plug) for contactors with screw-type connection
(14) Coil terminal module, on the top and bottom
(15) Three-phase feeder terminal
(16) Link for paralleling (star jumper), 3-pole, without connecting terminal
(17) Safety main current connector for two contactors

Assembly kit 3RA2923-2AA1 comprising:
(18) Wiring modules on the top and bottom for connecting the main current paths, electrical interlock included (NC contact interlock)
(19) Mechanical interlocks ${ }^{1}$)
(20) Two connecting clips for two contactors ${ }^{1)}$For contactorsFor contactors and coupling contactors

1) The parts (19) and (20) can only be ordered together as 3RA2912-2H mechanical connectors.

Accessories see pages 2/68 to 2/83.

Motor Starters see Chapter 4 Combination
Starters \& Starters for group installation

3RT1 contactors - Sizes S6 to S12 with mountable accessories

(illustration for basic unit)

(1) 3RT10 and 3RT14 air-break contactor, sizes S6, S10 and S12Auxiliary switch block, solid-state time-delay (ON or OFF-delay or star-delta (wye-delta) starting)
(3) 4-pole auxiliary switch block
(4) 1-pole auxiliary switch block (up to 4 can be snapped on)
(5) 2-pole auxiliary switch block, laterally mountable left or right
(6) Surge suppressor (RC element) for plugging into top of withdrawable coil
(7) Terminal cover for cable lug and busbar connection
(8) Terminal cover for box terminal
(9) Box terminal blockAccessories identical for sizes S 6 to S 12Different accessories for sizes S6 and S10/S12

For accessories see pages 2/68 to 2/85.
For mountable overload relays see Chapter 3,
"Overload Relays".

For accessories see pages 2/68-2/85.
Mountable overload relays see Chapter 3,
"Overload Relays".

3RT1 contactors - Sizes S6, S10 and S12 reversing contactors

For accessories see pages 2/68-2/85.
For mountable overload relays see Chapter 3,
"Overload Relays".

3RT1 contactors - Sizes S6 to S12 with accessories

For surge suppressors see page 2/75,
withdrawable coils see page 2/100.
For mountable overload relays see Chapter 3,
"Overload Relays".

Accessories for 3RT contactors / 3RH control relays

Auxiliary switch blocks

Selection and ordering data

For contactors/ Rated control relays operational
Contactor Connectio

$$
\begin{array}{ll}
\text { operational } & \text { with } \\
\text { Current }{ }^{3)} & \text { HS block }
\end{array}
$$

6A
NEMA
A600/Q600 Ident. No NEMA A600/Q600

Spring Terminals ${ }^{1)}$

Order No.

Auxiliary switch blocks for snapping onto the front according to EN 50012
(also compliant with the requirements according to EN 50005)
Size SOO ${ }^{2)}$
For assembling contactors with $2,3,4$, or 5 auxiliary contacts

[^21]
Auxiliary switch blocks

Selection and ordering data

Spring Terminals ${ }^{1)}$

Auxiliary switch blocks for snapping onto the front according to EN 50005

Sizes S00 to S3
2- or 4-pole auxiliary switch blocks for assembling contactors with 3 and 5 or 4 and 6 auxiliary contacts

3RT2.1,	40		4	-	-	-	3RH2911-1FA40	3RH2911-2FA40
3RT2.2,	22		2	2	-	-	3RH2911-1FA22	3RH2911-2FA22
3RT2.3,	$04{ }^{1)}$		-	4	-	-	3RH2911-1FA04	3RH2911-2FA04
3RT2.4	$11^{2)}$		-	-	1	1	3RH2911-1FB11	3RH2911-2FB11
3RH21,	$22{ }^{2)}$		1	1	1	1	3RH2911-1FB22	3RH2911-2FB22
3RH24	$22{ }^{2)}$		-	-	2	2	3RH2911-1FC22	3RH2911-2FC22
1- and 2-pole auxiliary switch blocks, cable entry from above or below								
	10	Top	1	-	-	-	3RH2911-1AA10	-
3RT2.2,		Bottom	1	-	-	-	3RH2911-1BA10	-
3RT2.3,	01	Top	-	1	-	-	3RH2911-1AA01	-
3RT2.4		Bottom	-	1	_	-	3RH2911-1BA01	-
3 RH 21,	11	Top	1	1	-	-	3RH2911-1LA11	-
3RH24		Bottom	1	1	-	-	3RH2911-1MA11	-
	20	Top	2	-	-	-	3RH2911-1LA20	-
		Bottom	2	-	-	-	3RH2911-1MA20	-

Sizes S6 to S12
Single-pole auxiliary switch blocks (also compliant with EN 5001 ${ }^{\text {2 }}$

3RT1.5 \ldots	-	-	-	-	-	3RH1921-1CA10	3RH1921-2CA10
3RT1.7	-	-	-	-	-	3RH1921-1CA01	3RH1921-2CA01
	-	-	-	1	-	3RH1921-1CD10	-
	-	-	-	-	1	3RH1921-1CD01	-

[^22]1) Mounting is permitted only on basic units which have no integrated NC contact.
2) Version with early make and delayed break contacts

Selection and ordering data

Laterally mountable auxiliary switch blocks according to EN 50012

Laterally mountable auxiliary switch block, 2-pole

Size SOO ${ }^{1)}{ }^{\text {2) }}$					
3RT2.1,	A600/Q600	12E	right or left	-	2
Ident. No. 10E	A600/Q600	21E	right or left	1	1
Size S00 to S3					
3RT2.1	A600/Q600	13E	right or left	-	2
3RT2.23), Ident. No. 11E	A600/Q600	22E	right or left	1	1
3RT2.34),	A600/Q600	31E	right or left	2	-
3RT2.4 ${ }^{4)}$.					

First laterally mountable auxiliary switch block, 2-pole
Sizes S6 to S12
3RT1.5 ... 3RT1.7
Second laterally mountable auxiliary switch block, 2-pole
Sizes S6 to S12

3RT1.5 ... 3RT1.7 A300/Q300 right or left 1
Laterally mountable auxiliary switch blocks according to EN 50005

First laterally mountable auxiliary switch block, 2-pole

Selection and ordering data

- Operation in dusty atmospheres

■ Solid-state circuits with rated operational currents $I_{e} / A C-14$ and DC-13 from $1 \ldots 300 \mathrm{~mA}$ at $3 \ldots 60 \mathrm{~V}$
■ Hard gold-plated contacts
■ Mirror contacts according to EN 60947-4-1, Appendix F, for laterally mountable auxiliary switches

Selection and ordering data

3RH2911-2NF02

3RH2911-2DE11

3RH29 21-2DE11

Solid-state compatible auxiliary switch blocks for snapping onto the front according to EN 50005

Sizes S00 to S3							
3RT2.1,	02	-	-	-	2	3RH2911-1NF02	3RH2911-2NF02
3RT2.2...3RT2.4	11	1	-	-	1	3RH2911-1NF11	3RH2911-2NF11

3RH21, 20 3RH24

Solid-state compatible auxiliary switch blocks, laterally mountable,

according to EN 50012
First laterally mountable auxiliary switch block, 2-pole
Size SOO ${ }^{2)}$

3RT2. 1.,	21E	right	-	-	3RH2911-2DE11

Size S0 to S3
3RT2.2....3RT2.4 Ident. No. 10E Sizes S6 to S12 3RT1.5 ... 3RT1.7 22E

| right | 1 | - | - | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Second laterally mountable auxiliary switch block, 2-pole

Sizes S6 to S12
3RT1.5 ... 3RT1.7
right or left
3RH1921-2JE11

Solid-state compatible auxiliary switch blocks, laterally mountable,

 according to EN 50005Size S00
3RT2. 1.,
right or left

1	-	-	1	-
1	-	-	1	-

3RH2911-2DE11
dent. No. 10E
Size S0 to S2
3RT2. 2.,
11
right or left
3RH2921-2DE11

EN50005 and EN50012 designate the markings of the auxiliary terminal numbers.
For position of the terminals see pages 2/207-2/211
For int. circuit diagrams see pages 2/195-2/200.

1) The 3RH29 11-.NF.. auxiliary switches are also available with ring lug terminal connection. The 8th digit of the order number must be replaced with " 4 ", e. g.: 3RH2911-1NF11 -> 3RH2911-4NF11
2) Size SOO can be mounted according to EN 50012 only on basic units which have no integrated NC contact.

Accessories for 3RT contactors / 3RH control relays

Auxiliary switch blocks, delayed

Selection and ordering data

For contactors	Rated control supply voltage $U_{s}{ }^{1)}$	Time setting range t	Output / auxiliary contacts	Screw Terminals	Spring Terminals
Type	V	Sec		Order No.	Order No.

Time-delay, solid-state auxiliary switch blocks for snapping onto the front according to DIN 46199-5

The electrical connection between the solid-state time-delay auxiliary switch and the contactor underneath is established automatically when it is snapped on and locked into place.

Sizes S00 to S3						
3RA2813-1AW10		ON-delay (varistor integrated)				
	$\begin{aligned} & \text { 3RT2., } \\ & \text { 3RH21 } \\ & \text { 3RH24 } \end{aligned}$	$24 . .240$ AC/DC	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100, \\ & \text { selectable) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	3RA2813-1AW10 3RA2813-1FW10	3RA2813-2AW10 3RA2813-2FW10
(3) -		OFF-delay with auxiliary voltage (varistor integrated)				
crere		$24 . .240$ AC/DC	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100, \\ & \text { selectable) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { 3RA28 14-1AW10 } \\ & \text { 3RA28 14-1FW10 } \end{aligned}$	3RA28 14-2AW10 3RA28 14-2FW10
		OFF-delay without auxiliary voltage ${ }^{3 \text { (}}$ (varistor integrated)				
		24... 240 AC/DC	$\begin{aligned} & 0.05 \ldots 100 \\ & (1,10,100, \\ & \text { selectable) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	3RA2815-1AW10 3RA2815-1FW10	3RA2815-2AW10 3RA2815-2FW10
	Sizes S6 to S12					
3RT1926-2FJ11		ON-delay (varistor integrated)				
	3RT10, 3RT13, 3RT14, 3RT15	24 AC/DC ${ }^{4}$	0.05... 1	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2EJ11	-
			0.5 ... 10	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2EJ21	-
			5... 100	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2EJ31	-
		100... $127 \mathrm{AC}^{4)}$	$0.05 \ldots 1$	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2EC11	-
			0.5 ... 10	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2EC21	-
			5... 100	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2EC31	-
		$200 \ldots 240 \mathrm{AC}^{4)}$	0.05 ... 1	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2ED11	-
			0.5 ... 10	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2ED21	-
			5... 100	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2ED31	-
		OFF-delay without auxiliary voltage ${ }^{5}$				
		$24 \mathrm{AC} / \mathrm{DC}^{4}$	0.05 ... 100	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FJ11	-
			(1, 10, 100,	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FJ21	-
			selectable)	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FJ31	-
		100 ... $127 \mathrm{AC}{ }^{4)}$	$0.05 \ldots 100$	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FK11	-
			(1, 10, 100,	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FK21	-
			selectable)	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FK31	-
		$200 \ldots 240 \mathrm{AC}^{4)}$	$0.05 \ldots 100$	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FL11	-
			(1, 10, 100,	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FL21	-
			selectable)	$1 \mathrm{NO}+1 \mathrm{NC}$	3RT19 26-2FL31	-
		WYE-delta function				
		24 AC/DC ${ }^{4}$	1.5 .. 30	each have:	3RT19 26-2GJ51	-
		100 ... $127 \mathrm{AC}^{4)}$	$1.5 \ldots 30$	1 NO delayed	3RT19 26-2GC51	-
		200 ... 240 AC ${ }^{4)}$	$1.5 \ldots 30$	1 NO instant	3RT19 26-2GD51	-

For technical data, see pages 2/187-2/188. For int. circuit diagrams, see page $2 / 203$.
For position of terminals, see page 2/211.
When the solid-state time-delay auxiliary switches are used, no other auxiliary switches are allowed to be mounted on the basic units.

1) $A C$ voltage values apply for 50 Hz and 60 Hz .
2) Cannot be fitted onto coupling relays.
3) Setting of output contacts in as-supplied state not defined (bistable relay). Application of the control supply voltage once results in contact change-over to the correct setting.
4) Terminals A1 and A2 for the rated control supply voltage of the solid-state time-delay auxiliary switch must be connected to the associated contactor by means of connecting leads.
5) Position of the output contacts not defined in the as-delivered state (bistable relay). Applying the control voltage once results in the contacts switching to the correct position.

Accessories for 3RT contactors / 3RH control relays

Function modules, delay blocks

Selection and ordering data

AC voltage values apply for 50 Hz and 60 Hz .
${ }^{2)}$ Cannot be fitted onto coupling relays.

For description, see page 2/121.
For technical data, see page 2/187.
For circuit diagrams, see page 2/203

1) $A C$ voltage ratings apply for 50 and 60 Hz .
2) The 3RA28 time-delay blocks are available with spring-type terminals. Replace the 8th digit of the order number with a " 2 ".
3) Cannot be fitted onto coupling relays

Accessories for 3RT contactors / 3RH control relays

Function modules, delay blocks, and mechanical latching blocks

Selection and ordering data

	For contactors	Rated control supply voltage $U_{s}{ }^{1)}$	Time setting range t	Screw Terminals ${ }^{2}$	Weight approx.
	Type	V	sec	Order No.	kg
Off-delay device					
3RT2916-2B. 01	Sizes S00 to S2				
	For contactors 3RT2., 3RH2. . .-1BF40	operation. Non-adju $110 \mathrm{AC} / \mathrm{DC}$	delay time $\begin{aligned} & \text { S00: >0.1 } \\ & \text { S0: >0.08; S2: >0.25 } \end{aligned}$	3RT2916-2BK01	0.150
	$\begin{aligned} & \text { 3RT2., } \\ & \text { 3RH2. . .-1BM40 } \end{aligned}$	220 ... 230 AC/DC	$\begin{aligned} & \text { S00: >0.5 } \\ & \text { SO: >0.3; S2: >0.8 } \end{aligned}$	3RT2916-2BL01	0.150
3RT2916-2BE01	$\begin{aligned} & \hline \text { 3RT2., } \\ & \text { 3RH2. . .-1BB40 } \end{aligned}$	24 DC	$\begin{aligned} & \text { S00: >0.2 } \\ & \text { S0: >0.1; S2: >0.1 } \end{aligned}$	3RT2916-2BE01	0.150
	Sizes S3 3RT2. 4	24 DC	S3: 70 fixed	3RT2916-2BE01	0.093

Pneumatic delay blocks, terminal designation according to EN $50005^{4)}$

Size SO
For snapping onto the front of contactors ${ }^{5)}$ Auxiliary contacts 1 NO and 1 NC

With ON-delay	-	$0.1 \ldots 30$	3RT2926-2PA01	0.080
3RT2. 2	$1 \ldots 60$	3RT2926-2PA11	0.080	
With OFF-delay	-	$0.1 \ldots 30$	3RT2926-2PR01	0.080
3RT2.2	$1 \ldots 60$	3RT2926-2PR11	0.080	

Mechanical latching blocks

For mounting onto the front of contactors	
The contactor remains in the energized state even after voltage failure	
Size $S 0$	

For description, see page 2/121
For technical data, see page 2/187.
For circuit diagrams, see page 2/203
4) Versions according to DIN VDE 0116 on request.
5) In addition to these, no other auxiliary contacts are permitted.

Accessories for 3RT contactors / 3RH control relays

Surge suppressors

Selection and ordering data

3RT2936-1B. 00

3RT2.3.	Varistors	$24 \ldots 48$ $48 \ldots 127$ $127 \ldots 240$ $240 \ldots 400$ $400 \ldots 600$	$\begin{array}{rrr} 24 \ldots & 70 \\ 70 \ldots & 150 \\ 150 \ldots . & 250 \end{array}$	3RT2936-1BB00 3RT2936-1BC00 3RT2936-1BD00 3RT2936-1BE00 3RT2936-1BF00
3RT2.3.	RC elements	$24 \ldots 48$	24 ... 70	3RT2936-1CB00
		48 ... 127	70 ... 150	3RT2936-1CC00
		127 ... 240	150 ... 250	3RT2936-1CD00
		240 ... 400	--	3RT2936-1CE00
		400 ... 600	--	3RT2936-1CF00
3RT2.3.	Diode assembly for DC operation	--	$\begin{array}{ll} 24 & \\ 30 \ldots 250 \end{array}$	$\begin{aligned} & \text { 3RT2936-1ER00 } \\ & \text { 3RT2936-1ES00 } \end{aligned}$

Size S2 and S3

For plugging onto the front side of the contactors (prior to mounting of the auxiliary switch block)

for DC operation

3RT2936-1E. 00

1) Can be used for AC operation for $50 / 60 \mathrm{~Hz}$.

Please inquire about further voltages.

Accessories for 3RT contactors / 3RH control relays

Surge suppressors

Selection and ordering data

	For contactors	Version	Rated control voltage $U_{s}{ }^{1)}$ AC operation	supply DC operation		Order No.	Weight approx.
	Type		V AC	V DC	mW		kg
Surge suppressors without LED (also for spring-type terminals)							
3RT1936-1C. 00	Sizes S6, S10, S12 3RT1. 5, 3RT1. 6 3RT1. 7	For plugging RC element	al or solid-stat 24 ... 48 48 ... 127 127... 240 240... 400 400 ... 600	coil $24 \ldots 70$ $70 \ldots 150$ 150... 250 - -		3RT1956-1CB00 3RT1956-1CC00 3RT1956-1CD00 3RT1956-1CE00 3RT1956-1CF00	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$

Surge suppressors with LED (also for spring-type terminals)

3RT2916-1J.00	Size S00 3RT2.1, 3RH2.	For plugging (with and wit Varistor	f the contac block) $24 \ldots 48$ $48 \ldots 127$ $127 \ldots 240$	$\begin{aligned} & 12 \ldots 24 \\ & 24 \ldots 70 \\ & 70 \ldots 150 \\ & 150 \ldots 250 \end{aligned}$	$\begin{aligned} & 10 \ldots 120 \\ & 20 \ldots 470 \\ & 50 \ldots 700 \\ & 160 \ldots 950 \end{aligned}$	$\begin{aligned} & \text { 3RT2916-1JJOO } \\ & \text { 3RT2916-1JK00 } \\ & \text { 3RT2916-1JL00 } \\ & \text { 3RT2916-1JP00 } \end{aligned}$	$\begin{aligned} & 0.010 \\ & 0.010 \\ & 0.010 \\ & 0.010 \end{aligned}$
	$\begin{aligned} & \hline \text { 3RT2.1, } \\ & \text { 3RH2. } \end{aligned}$	Noise suppression diode	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 24 \ldots 70 \\ & 50 \ldots 150 \\ & 150 \ldots 250 \end{aligned}$	$\begin{aligned} & 20 \ldots 470 \\ & 50 \ldots 700 \\ & 160 \ldots 950 \end{aligned}$	$\begin{aligned} & \hline \text { 3RT2916-1LM00 } \\ & \text { 3RT2916-1LN00 } \\ & \text { 3RT2916-1LP00 } \end{aligned}$	$\begin{aligned} & \hline 0.010 \\ & 0.010 \\ & 0.010 \end{aligned}$
3RT2926-1MR00	Size S0 3RT2. 2	For plugging (prior to mou Varistor	f the contac switch block 24 ... 48 48 ... 127 127... 240	$\begin{aligned} & 12 \ldots 24 \\ & 24 \ldots 70 \\ & 70 \ldots 150 \end{aligned}$	$\begin{aligned} & 10 \ldots 120 \\ & 20 \ldots 470 \\ & 50 \ldots 700 \end{aligned}$	3RT2926-1JJ00 3RT2926-1JK00 3RT2926-1JL00	$\begin{aligned} & 0.010 \\ & 0.010 \\ & 0.010 \end{aligned}$
	3RT2. 2	Diode assembly	-	24	$20 . .470$	3RT2926-1MR00	0.010
3RT2936-1J.00	Size S2 and S3	For plugging onto the front side of the contactors (prior to mounting of the auxiliary switch block)					
	3RT2.3.	Varistor	$\begin{aligned} & 24 \ldots 48 \\ & 48 \ldots 127 \\ & 127 \ldots 240 \end{aligned}$	$\begin{aligned} & 12 \ldots 24 \\ & 24 \ldots 70 \\ & 70 \ldots 150 \end{aligned}$	$\begin{aligned} & 10 \ldots 120 \\ & 20 \ldots 470 \\ & 50 \ldots 700 \end{aligned}$	3RT2936-1JJ00 3RT2936-1JK00 3RT2936-1JL00	$\begin{aligned} & 0.010 \\ & 0.010 \\ & 0.010 \end{aligned}$

Selection and ordering data

Blank Labels

3RT29 00-1SB20

Unit labeling plates $20 \mathrm{~mm} \times 7 \mathrm{~mm}$, pastel PC labeling system for individual inscription of unitlabeling plates available from: murrplastik Systems, Inc.
$10 \mathrm{~mm} \times 7 \mathrm{~mm} \quad 816$ units 3RT2900-1SB10

Links for paralleling				3RT1956-4BA31		
			3RT1936-4BB31			
Size	For contactors	Maximum resistive current le/AC-1 (at $60^{\circ} \mathrm{C}$) of contactors	Max. conductor cross sections	Screw Terminals Order No.	Standard package quantity	Weight approx.
	Type	A				kg
S00	3RT201.	3-pole, with terminal 1), 2)	4 AWG, stranded	3RT1916-4BB31		0.015
SO	3RT202.		0 AWG, stranded	3RT2926-4BB31		0.042
S2	3RT203.		95 mm 2	3RT1936-4BB31		0.139
S3	3RT204.	3-pole, with through hole (WYE jumpers) 1), 2)	185 mm 2	3RT1946-4BB31		0.205
S6	3RT1. 5		-	3RT1956-4BA31		0.159
S10/S12	3RT1. 6 3RT1. 7		-	3RT1966-4BA31		0.541
S00	$\begin{aligned} & \hline \text { 3RT231. } \\ & \text { 3RT251. } \end{aligned}$	4-pole, with terminal 1), 2)	4 AWG, stranded	3RT1916-4BB41		0.016

[^23]
Other function blocks, PLC control, load modules, control kit

Selection and ordering data

Sizes S00 to S3

Additional load modules
Size SOO

3RT2916-1GA00

LED module for indicating contactor operation

Sizes S00 to S3

	3RT2..	For snapping into the location hole of an inscription label on the front of a contactor either directly on the contactor or on the front auxiliary switch. The LED module is connected to coil terminals A1 and A2 of the contactor and indicates its energized state. Yellow LED. Rated voltage: $24 \ldots 240 \mathrm{~V}$ AC/DC, with reverse polarity protection.	3RT2926-1QT00
Control kit			
Sizes S00 to S3			
	For manual operation of the contactor contacts for start-up and service		
	$\begin{aligned} & \text { 3RT2.1, } \\ & \text { 3RH2. } \end{aligned}$		3RT2916-4MC00
-	3RT2.2		3RT2926-4MC00
3RT2916-4MC00	3RT2. 3		3RT2936-4MC00

Terminals, covers, adapters, connectors

Selection and ordering data

Accessories for 3RT contactors / 3RH control relays

Terminals, covers, adapters, connectors

Solder pin adapters for contactors up to 7.5 HP / 12 A with mounted 4 -pole auxiliary switch block

Size S00, up to 7.5 HP

Assembly kit for soldering contactors with an auxiliary switch block onto a printed circuit board
For 1 contactor, 1 set is required.

3RT1916-4KA2

3RH21

3RT1916-4KA2
Safety main current connectors for 2 contactors
Sizes S00 to S2
For series connection of 2 contactors
3RT2.1
3RT2. 2
3RT2.3

3RA2916-1A
3RA2926-1A
3RA2936-1A

[^24]Terminals, covers, accessories

[^25]
Contactor Assemblies for Switching Motors

3RA13, 3RA23 reversing contactor assemblies

| Accessories | Size | Design | |
| :--- | :--- | :--- | :--- | :--- |

[^26]
Contactor Assemblies for Switching Motors

3RA13, 3RA23 reversing contactor assemblies

Accessories

Sers 3RT202.-.....-3MA0 contactors is limited because the auxiliary switches in the basic unit are not allowed to be used on account of the permanently mounted auxiliary switch block.
2) Version in size S0 with spring-type terminals: Only the wiring modules for the main circuit are included. No con nectors are included for the auxiliary and control circuit.
3) Version in size S2 with spring-type terminals in the auxiliary and control circuits: Only the wiring modules for the main circuit are included. A cable set is included for the auxiliary circuit.

Contactor Assemblies for Switching Motors

3RA13, 3RA23 reversing contactor assemblies

Accessories

	For contactors	Size	Contactor gap for interlock	Version	Screw Terminals	Spring Terminals	Pkg. qty.
	Type				Order No.	Order No.	
Wiring modules							
3RA2913-3DA1	3RT201	$\begin{aligned} & \text { SOO- } \\ & \text { S00 } \end{aligned}$	0 mm	Top (in-phase) Bottom (phase reversal)	$\begin{aligned} & \text { 3RA2913-3DA1 } \\ & \text { 3RA2913-3EA1 } \end{aligned}$	$\begin{aligned} & \text { 3RA2913-3DA2 } \\ & \text { 3RA2913-3EA2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	3RT202	$\begin{aligned} & \text { So- } \\ & \text { SO } \end{aligned}$	0 mm	Top (in-phase) Bottom (phase reversal)	$\begin{aligned} & \text { 3RA2923-3DA1 } \\ & \text { 3RA2923-3EA1 } \end{aligned}$	$\begin{aligned} & \text { 3RA2923-3DA2 } \\ & \text { 3RA2923-3EA2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	3RT203	$\begin{aligned} & \text { S2- } \\ & \text { S2 } \end{aligned}$	10 mm	Top (in-phase) Bottom (phase reversal)	3RA1933-3D 3RA1933-3E	$\begin{aligned} & \hline \text { 3RA1933-3D } \\ & \text { 3RA1933-3E } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	3RT204	$\begin{aligned} & \text { S3- } \\ & \text { S3 } \end{aligned}$	10 mm	Top (in-phase) Bottom (phase reversal)	3RA1943-3D 3RA1943-3E	3RA1943-3D 3RA1943-3E	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
3RA1953-3D	3RT105	$\begin{aligned} & \text { S6- } \\ & \text { S6 } \end{aligned}$	10 mm	Top (in-phase, for connection with box terminal)	3RA1953-3D	3RA1953-3D	1
3RA1953-3P				Top (with phase reversal, for connection without box terminal)	3RA1953-3P	3RA1953-3P	1

| | Contactor
 gap for
 interlock | | | For
 contactors
 Type | Size |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: Standard package quantities may change. Check Industry Mall for current package quantities.

1) 1 set for 1 contactor. Size SOO \& S0: 1 set includes 2 connectors and 1 interlock. Size S2: The mechanical interlock must be ordered separately. S3-S6: 1 set includes 2 connectors; one connector for top and one connector for bottom.

Contactor Assemblies for Switching Motors

WYE-delta accessories

Accessories

1) Size $S 00, S 0$ and $S 2$ installation kits for paralleling are available in spring-type terminals. Change the last digit of the order number to a " 2 ".
2) When using the function modules for wye-delta starting, the wiring modules for the auxiliary current are not required. See page $2 / 47$ for more information.
[^27]
Overview

SIRIUS 3RR2242, 3RR2142 and 3RR2243 current monitoring relays
The SIRIUS 3RR2 current monitoring relays are suitable for the load monitoring of motors or other loads. In two or three phases they monitor the rms value of AC currents for overshooting or undershooting of set threshold values.

Whereas apparent current monitoring is used above all in connection with the rated torque or in case of overload, the active current monitoring option can be used to observe and evaluate the load factor over a motor's entire torque range.
The 3RR2 current monitoring relays can be integrated directly in the feeder by mounting onto the 3RT2 contactor; separate wiring of the main circuit is therefore superfluous. No separate transformers are required.
For a line-oriented configuration or simultaneous use of an overload relay, terminal supports for stand-alone installation are available for separate standard rail mounting

Versions

Basic versions

The basic versions with two-phase apparent current monitoring, a CO contact output and analog adjustability provide a high level of monitoring reliability especially in the rated and overload range.

Standard versions

The standard versions monitor the current in three phases with selectable active current monitoring. They have additional diagnostics options such as residual current monitoring and phase sequence monitoring, and they are also suitable for monitoring motors below the rated torque. These devices have an additional independent semiconductor output, an actual value indicator, and are digitally adjustable.
Both versions are available optionally with screw or spring-type terminals, in each case for sizes SOO and SO . With variants of size S2 the main current paths always have screw terminals; the control current side can have screw or spring-type terminals.

Note:

In addition to the features of the standard versions, 3RR24 monitoring relays for mounting onto 3RT2 contactors for IO-Link also offer the possibility of transmitting the measured values and diagnostics data to a controller via an IO-Link. Furthermore, the devices can be parameterized on the devices themselves or via IO-Link.

Benefits

- Can be mounted directly on 3RT2 contactors and 3RA23 reversing contactor assemblies, in other words, there is no need for additional wiring in the main circuit
- Optimally coordinated with the technical characteristics of the 3RT2 contactors
- No separate current transformer required
- Versions with wide voltage supply range
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Display of ACTUAL value and status messages
- All versions with removable control current terminals
- All versions with screw terminals or spring-type terminals
- Simple determination of the threshold values through direct reference to actually measured values for setpoint loading
- Range monitoring and selectable active current measurement mean that only one device for monitoring a motor is required along the entire torque curve
- In addition to current monitoring it is also possible to monitor for broken cables, phase failure, phase sequence, residual current and motor blocking

Application

- Monitoring of current overshoot and undershoot
- Monitoring of broken conductors
- Monitoring of no-load operation and load shedding, e.g. in the event of a torn V-belt or no-load operation of a pump
- Monitoring of overload, e.g. on conveyor belts or cranes due to an excessive load
- Monitoring the functionality of electrical loads such as heaters
- Monitoring of wrong phase sequence on mobile equipment such as compressors or cranes
- Monitoring of high-impedance faults to ground, e.g. caused by damaged insulation or moisture

Technical specifications
Function charts of 3RR214.-.A. 30 basic variants, analog dial adjustable
Closed-circuit principle upon application of the control supply voltage

Current overshoot

Current undershoot

Circuit diagrams

3RR2141-1A. 30

Note:
It is not necessary to protect the measuring circuit for device protection. The protective device for line protection depends on the cross-section used

Range monitoring

3RR2141-2A.30, 3RR2142-.A.30, 3RR2143-.A. 30

Contactor Assemblies for Switching Motors

Current Monitoring Relays

Function charts of 3RR224.-.-F. 30 standard versions, digitally adjustable
With the closed-circuit principle selected upon application of the control supply voltage

Current overshoot

Current undershoot with residual current monitoring

Circuit diagrams

3RR2241-1F. 30

Note:

It is not necessary to protect the measuring circuit for device protection. The protective device for line protection depends on the cross-section used.

Range monitoring

Phase sequence monitoring

Contactor Assemblies for Switching Motors

Current Monitoring Relays

Selection and ordering data

SIRIUS 3RR21/3RR22 current monitoring relays

- For load monitoring of motors or other loads
- Multi-phase monitoring of undercurrent and overcurrent
- Starting and tripping delay can be adjusted separately
- Tripping delay 0 to 30 s
- Auto or Manual RESET

3RR2141-1AW30

3RR2142-1AW30

3RR2241-1FW30

3RR2242-1FW30

3RR2141-2AA30

3RR2243-3FW30

Size	Measuring range	Hysteresis	Control supply voltage $U_{\text {s }}$	Screw terminals	(1)	Spring-type terminals	00
	A	A	V	Order No.		Order No.	
Basic versions							
- Analogically adjustable - Closed-circuit principle - 1 CO contact - 2-phase current monitoring - Apparent current monitoring - Start-up delay $0 \ldots 60 \mathrm{~s}$							
S00	1.6 ... 16	6.25% of threshold value	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2141-1AA30 } \\ & \text { 3RR2141-1AW30 } \end{aligned}$		$\begin{aligned} & \text { 3RR2141-2AA30 } \\ & \text { 3RR2141-2AW30 } \end{aligned}$	
S0	$4 \ldots 40$	$\begin{aligned} & 6.25 \% \text { of } \\ & \text { threshold value } \end{aligned}$	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \mathrm{AC} / \mathrm{DC} \end{aligned}$	3RR2142-1AA30 3RR2142-1AW30		3RR2142-2AA30 3RR2142-2AW30	
	$8 \ldots 80$	6.25 \% of threshold value	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2143-1 AA30 } \\ & \text { 3RR2143-1 AW30 } \end{aligned}$		3RR2143-3AA30 3RR2143-3AW30	
Standard versions							
- Digitally adjustable - LC display - Open or closed-circuit principle - 1 CO contact - 1 semiconductor output - 3-phase current monitoring - Active current or apparent current monitoring - Phase sequence monitoring - Residual current monitoring - Blocking current monitoring - Reclosing delay time 0 ... 300 min - Start-up delay 0 ... 99 s - Separate settings for warning and alarm thresholds							
S00	1.6 ... 16	$0.1 \ldots 3$	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2241-1FA30 } \\ & \text { 3RR2241-1FW30 } \end{aligned}$		$\begin{aligned} & \text { 3RR2241-2FA30 } \\ & \text { 3RR2241-2FW30 } \end{aligned}$	
S0	$4 \ldots 40$	$0.1 \ldots 8$	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2242-1FA30 } \\ & \text { 3RR2242-1FW30 } \end{aligned}$		$\begin{aligned} & \text { 3RR2242-2FA30 } \\ & \text { 3RR2242-2FW30 } \end{aligned}$	
S2	8 ... 80	$0.2 \ldots 16$	$\begin{aligned} & 24 \text { AC/DC } \\ & 24 \ldots 240 \text { AC/DC } \end{aligned}$	$\begin{aligned} & \text { 3RR2243-1FA30 } \\ & \text { 3RR2243-1FW30 } \end{aligned}$		$\begin{aligned} & \text { 3RR2243-3FA30 } \\ & \text { 3RR2243-3FW30 } \end{aligned}$	

Current Monitoring Relays with IO-Link

Overview

- Rapid parameterization of the same devices by duplication of the parameterization in the controller
- Parameter transmission by upload to a controller by IO-Link call or by parameter server (if IO-Link master from IO-Link Specification V 1.1 and higher is used)
- Consistent central data storage in the event of parameter change locally or via a controller
- Automatic reparameterizing when devices are exchanged
- Blocking of local parameterization via IO-Link possible
- Faults are saved in parameterizable and non-volatile fashion to prevent an automatic start up after voltage failure and to make sure diagnostics data is not lost
- By integration into the automation level the option exists of parameterizing the monitoring relay at any time via a display unit or displaying the measured values in a control room or locally at the machine/control cabinet

Even without communication via IO-Link the devices continue to function fully autonomously:

- Parameterization can take place locally at the device, independently of a controller
- In the event of failure or before the controller becomes available the monitoring relays work as long as the control supply voltage (24 V DC) is present
- If the monitoring relays are operated without the controller, the 3RR24 monitoring relays for IO-Link have, thanks to the integrated SIO mode, an additional semiconductor output, which switches when the adjustable warning threshold is exceeded

Thanks to the combination of autonomous monitoring relay function and integrated IO-Link communication, redundant sensors and/or analog signal converters - which previously took over the transmission of measured values to a controller, leading to considerable extra cost and wiring outlay - are no longer needed.
Because the output relays are still present, the monitoring relays increase the functional reliability of the system, since only the controller can fulfill the control tasks if the current measured values are available, whereas the output relays can also be used for the disconnection of the system if limit values that cannot be reached during operation are exceeded.
For further information on the IO-Link communication system, see Chapter 14.

Current Monitoring Relays with IO-Link

Benefits

- Can be mounted directly on 3RT2 contactors and 3RA23 reversing contactor assemblies, in other words, there is no need for additional wiring in the main circuit
- Optimally coordinated with the technical characteristics of the 3RT2 contactors
- No separate current transformer required
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Display of ACTUAL value and status messages
- All versions with removable control current terminals
- All versions with screw or spring-type terminals
- Simple determination of the threshold values through direct reference to actually measured values for setpoint loading
- Range monitoring and selectable active current measurement mean that only one device for monitoring a motor is required along the entire torque curve
- In addition to current monitoring it is also possible to monitor for current unbalance, broken cables, phase failure, phase sequence, residual current and motor blocking
- Integrated counter for operating cycles and operating hours to support requirements-based maintenance of the monitored machine or application
- Simple cyclical transmission of the current measured values, relay switching states and events to a controller
- Remote parameterization
- Automatic reparameterizing when devices are exchanged
- Simple duplication of identical or similar parameterizations
- Reduction of control current wiring
- Elimination of testing costs and wiring errors
- Reduction of configuration work
- Integration in TIA means clear diagnostics if a fault occurs
- Cost saving and space saving in control cabinet due to the elimination of AI and IO modules as well as analog signal converters and duplicated sensors

Application

- Monitoring of current overshoot and undershoot
- Monitoring of broken conductors
- Monitoring of no-load operation and load shedding, e.g. in the event of a torn V-belt or no-load operation of a pump
- Monitoring of overload, e.g. on pumps due to a dirty filter system
- Monitoring the functionality of electrical loads such as heaters
- Monitoring of wrong phase sequence on mobile equipment such as compressors or cranes
- Monitoring of high-impedance faults to ground, e.g. caused by damaged insulation or moisture
The use of SIRIUS monitoring relays for IO-Link is particularly recommended for machines and plant in which these relays, in addition to their monitoring function, are to be connected to the automation level for the rapid, simple and fault-free provision of the current measured values and/or for remote parameterization.
The monitoring relays can either relieve the controller of monitoring tasks or, as a second monitoring entity in parallel to and independent of the controller, increase the reliability in the process or in the system. In addition, the elimination of Al and IO modules allows the width of the controller to be reduced despite significantly expanded functionality.

Contactor Assemblies for Switching Motors

Current Monitoring Relays with IO-Link

Technical specifications

Function charts of 3RR24 for IO-Link, digitally adjustable

With the closed-circuit principle selected upon application of the control supply voltage

Current undershoot with residual current monitoring

Circuit diagrams

3RR2441-1AA40

Note:
It is not necessary to protect the measuring circuit for device protection. The protective device for line protection depends on the cross-section used

Range monitoring

Phase sequence monitoring

3RR2441-2AA40, 3RR2442-.AA40, 3RR2443-.AA40

Contactor Assemblies for Switching Motors

Current Monitoring Relays

Selection and ordering data

SIRIUS 3RR24 current monitoring relays for IO-Link

- For load monitoring of motors or other loads
- Multi-phase monitoring of undercurrent and overcurrent
- Starting and tripping delay can be adjusted separately
- Tripping delay 0 to 999.9 s
- Auto or Manual RESET

3RR2442-1AA40

3RR2441-2AA40

3RR2442-2AA40

3RR2443-1AA40

3RR2443-3AA40

Size	Measuring range	Hysteresis	Control supply voltage U_{s}	Screw terminals	(1)	Spring-type terminals	00
	A	A	V	Order No.		Order No.	

- Digitally adjustable
- LC display
- Open or closed-circuit principle
- 1 CO contact
- 1 semiconductor output (in SIO mode)
- 3-phase current monitoring
- Active current or apparent current monitoring
- Current unbalance monitoring
- Phase sequence monitoring
- Residual current monitoring
- Blocking current monitoring
- Operating hours counter
- Operating cycles counter
- Reclosing delay time 0 ... 300 min
- Start-up delay 0 ... 999.9 s
- Separate settings for warning and alarm thresholds

| S00 | $1.6 \ldots 16$ | $0.1 \ldots 3$ | 24 DC | 3RR2441-1AA40 | 3RR2441-2AA40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SO | $4 \ldots 40$ | $0.1 \ldots 8$ | 24 DC | 3RR2442-1AA40 | 3RR2442-2AA40 |
| $\mathbf{S 2 ~}$ | $8 \ldots 80$ | $0.2 \ldots 16$ | 24 DC | | |

Contactor Assemblies for Switching Motors

Accessories

	Use	Sersion	Srder No.

1) The accessories are identical to those of the $3 R U 21$ thermal overload relays and the 3RB3 electronic overload relays, see Chapter 3 "Overload Relays".

Selection and ordering data

* NEMA Type 1 Enclosures
* Lift off cover
* Accepts SIRIUS power control components
* Non-reversing contactors
* Reversing contactors
* Starters with thermal overload relays
* Starters with solid-state overload relays

Application

The 49EC $14 * B$ separate enclosures are designed for field assembly of a wide range of Siemens

SIRIUS open style control components and field modification kits as listed in the charts below.
Note that certain components require the addition of a DIN Rail kit for proper mounting in the enclosure.
NEMA 1 Enclosures

Max. current	Contactor		Max. current	Overload relay		Required DIN rail kit	NEMA 1 Enclosure
A	Non-reversing	Reversing	A	Thermal	Solid-state	Order No.	Order No.
16	3RT201	3RA231	16	3RU2116	3RB3016	MTR5	49EC14EB110705R
38	3RT202	3RA232	40	3RU2126	3RB3026	MTR5	
50	3RT203		50	3RU2136	3RB3036	-	49EC14GB140807R
12		3RA231	12	3RU2116	3RB3016	MTR5	
25		3RA232	25	3RU2126	3RB3036	MTR5	
50		3RA233	50	3RU2136	3RB3036	-	
95	3RT204		100	3RU2146	3RB3046	-	49EC14IB201208R
95		3RA234	100	3RU2146	3RB3046	-	

Accessories for NEMA 1 Enclosures

Accessory type	Description	Legends	Voltage	Order No.
Push buttons	Momentary	Start - Stop	none	49SDPB5
	Monentary	Reset (blue)	49MBRS	
Selector Switch	2 position	Off - On	none	49SDSB4
	3 position	Hand - Off - Auto	none	49SDSB1
		For - Off - Rev		49SDSB2
		High - Off - Low		49SDSB3
Pilot light	Light module and lens color:	ON, RUN, OFF,	24 to 240 AC DC	49SDLBU
	RED, GREEN, and AMBER"	OL TRIPPED	277V AC	49SDLBL
	Light module and lens color:	REV - FOR or	24 to 240 AC DC	49SDLB7RU
	RED, RED	HIGH - LOW	277 AC	49SDLB7RL
	Light module and lens color:	REV - FOR or	24 to 240 AC DC	49SDLB7GU
	GREEN, GREEN	HIGH - LOW	$277 V$ AC	49SDLB7GL

[^28]
Selection and ordering data

For screw，spring－type and ring lug terminal connection

Note：
Contactors with AC and AC／DC coils have different depths． It is only possible to replace the coils on AC contactors with AC coils，and on AC／DC contactors with AC／DC coils．It is not possible to replace the coils on DC contactors in the SO frame．

Spare parts for 3RT2 contactors

Screw terminals and spring-type terminals

3RT2934-5A. 01 \qquad

For contactors	Rated control supply voltage $U_{\text {S }}$				SD	Article No.	Price per PU		PS*	PG
	50 Hz	$50 / 60 \mathrm{~Hz}$	60 Hz	DC						
Type	V	V	V		d					

Solenoid coils • AC operation

Size S2

$\begin{aligned} & \text { 3RT203.-.A, } \\ & \text { 3RT233.-.A, } \\ & \text { 3RT253.-.A } \end{aligned}$	24	--	--		5	3RT2934-5AB01	1	1 unit	41B
	42	--	--	--	5	3RT2934-5AD01	1	1 unit	41B
	48	--	--	--	5	3RT2934-5AH01	1	1 unit	41B
	110	--	--	--	5	3RT2934-5AF01	1	1 unit	41B
	230	--	--	--	5	3RT2934-5AP01	1	1 unit	41B
	400	--	--	--	5	3RT2934-5AV01	1	1 unit	41B
	--	24	--	--	5	3RT2934-5AC21	1	1 unit	41B
	--	42	--	--	5	3RT2934-5AD21	1	1 unit	41B
	--	48	--	--	5	3RT2934-5AH21	1	1 unit	41B
	--	110	--	--	5	3RT2934-5AG21	1	1 unit	41B
	--	220	--	--	5	3RT2934-5AN21	1	1 unit	41B
	--	230	--	--	5	3RT2934-5AL21	1	1 unit	41B
	110	--	120	--	5	3RT2934-5AK61	1	1 unit	41B
	220	--	240	--	5	3RT2934-5AP61	1	1 unit	41B
	--	--	480	--	5	3RT2934-5AV61	1	1 unit	41B
	--	--	600	--	5	3RT2934-5AT61	1	1 unit	41B
	--	100	110	--	5	3RT2934-5AG61	1	1 unit	41B
	--	200	220	--	5	3RT2934-5AN61	1	1 unit	41B
	--	400	440	--	5	3RT2934-5AR61	1	1 unit	41B

Size S3 [NVWV

3RT2.4.-. A	24	--	--	--	X	3RT2944-5AB01	1	1 unit	41B
	42	--	--	--	X	3RT2944-5AD01	1	1 unit	41B
	48	--	--	--	X	3RT2944-5AH01	1	1 unit	41B
	110	--	--	--	X	3RT2944-5AF01	1	1 unit	41B
	230	--	--	--	X	3RT2944-5AP01	1	1 unit	41B
	400	--	--	--	X	3RT2944-5AV01	1	1 unit	41B
	--	24	--	--	X	3RT2944-5AC21	1	1 unit	41B
	--	42	--	--	X	3RT2944-5AD21	1	1 unit	41B
	--	48	--	--	X	3RT2944-5AH21	1	1 unit	41B
	--	110	--	--	X	3RT2944-5AG21	1	1 unit	41B
	--	220	--	--	X	3RT2944-5AN21	1	1 unit	41B
	--	230	--	--	X	3RT2944-5AL21	1	1 unit	41B
	110	--	120	--	X	3RT2944-5AK61	1	1 unit	41B
	220	--	240	--	X	3RT2944-5AP61	1	1 unit	41B
	--	--	480	--	X	3RT2944-5AV61	1	1 unit	41B
	--	--	600	--	X	3RT2944-5AT61	1	1 unit	41B
	--	100	110	--	X	3RT2944-5AG61	1	1 unit	41B
	--	200	220	--	X	3RT2944-5AN61	1	1 unit	41B
	--	400	440	--	X	3RT2944-5AR61	1	1 unit	41B

Solenoid coils • AC/DC operation, with varistor
Size S2

$\begin{aligned} & \text { 3RT203.-.A, } \\ & \text { 3RT233.-A, } \\ & \text { 3RT253.-.A } \end{aligned}$	--	20... 33	--	$20 . .33$	5	3RT2934-5NB31	1	1 unit	41B
	--	$30 . . .42$	--	$30 . . .42$	5	3RT2934-5ND31	1	1 unit	41B
	--	48 ... 80	--	48 ... 80	5	3RT2934-5NE31	1	1 unit	41B
	--	$83 . .155$	--	$83 . .155$	5	3RT2934-5NF31	1	1 unit	41B
	--	175 ... 280	--	175 ... 280	5	3RT2934-5NP31	1	1 unit	41B
Size S3 NEW									
3RT2.4.-. A	--	$20 . .33$	--	$20 . .33$	X	3RT2944-5NB31	1	1 unit	41B
	--	$30 . . .42$	--	$30 . . .42$	X	3RT2944-5ND31	1	1 unit	41B
	--	$48 . . .80$	--	48 ... 80	X	3RT2944-5NE31	1	1 unit	41B
	--	83 ... 155	--	83 ... 155	X	3RT2944-5NF31	1	1 unit	41B
	--	$175 . .280$	--	175 ... 280	X	3RT2944-5NP31	1	1 unit	41B

It is only possible to replace the coils on AC contactors with AC coils, and on AC/DC contactors with AC/DC coils.

3RT Contactors

Spare parts for 3RT1 contactors

Selection and ordering data

For contactor	Rated control supply voltage U_{s}	Screw connection	Spring－type connection	Weight approx．
		Order No．	Order No．	
Size				
Type				kg

Coils • AC operation

3RT19 34－5A． 01	S2	3RT10 33	$24 \mathrm{~V}, 50 \mathrm{~Hz}$	3RT19 34－5AB01	3RT19 34－5AB02	0.088
		3RT10 34	$42 \mathrm{~V}, 50 \mathrm{~Hz}$	3RT19 34－5AD01	3RT19 34－5AD02	
			$48 \mathrm{~V}, 50 \mathrm{~Hz}$	3RT19 34－5AH01	3RT19 34－5AH02	
			$110 \mathrm{~V}, 50 \mathrm{~Hz}$	3RT19 34－5AF01	3RT19 34－5AF02	
			230 V， 50 Hz	3RT19 34－5AP01	3RT19 34－5AP02	
			$400 \mathrm{~V}, 50 \mathrm{~Hz}$	3RT19 34－5AV01	3RT19 34－5AV02	
			$42 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 34－5AD21	3RT19 34－5AD22	
			$48 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 34－5AH21	3RT19 34－5AH22	
			$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 34－5AC21	3RT19 34－5AC22	
			110 V，50／60 Hz	3RT19 34－5AG21	3RT19 34－5AG22	
			208 V，50／60 Hz	3RT19 34－5AM21	3RT19 34－5AM22	
			220 V，50／60 Hz	3RT19 34－5AN21	3RT19 34－5AN22	
			$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 34－5AL21	3RT19 34－5AL22	
6．0］ 5			$\begin{aligned} & 110 \mathrm{~V}, 50 \mathrm{~Hz} / 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 220 \mathrm{~V}, 50 \mathrm{~Hz} / 240 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	3RT19 34－5AK61 3RT19 34－5AP61	3RT19 34－5AK62 3RT19 34－5AP62	
			$\begin{aligned} & 277 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 480 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 600 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	3RT19 34－5AU61 3RT19 34－5AV61 3RT19 34－5AT61	3RT19 34－5AU62 3RT19 34－5AV62 3RT19 34－5AT62	
			$100 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 110 \mathrm{~V}, 60 \mathrm{~Hz}$ $200 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 220 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT19 34－5AG61 3RT19 34－5AN61	3RT19 34－5AG62 3RT19 34－5AN62	
			$400 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 440 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT19 34－5AR61	3RT19 34－5AR62	
		3RT10 35， 3RT10 36， 3RT13 $3 .$, 3RT15 3.	$24 \mathrm{~V}, 50 \mathrm{~Hz}$	3RT19 35－5AB01	3RT19 35－5AB02	0.088
			$42 \mathrm{~V}, 50 \mathrm{~Hz}$	3RT19 35－5AD01	3RT19 35－5AD02	
			$48 \mathrm{~V}, 50 \mathrm{~Hz}$	3RT19 35－5AH01	3RT19 35－5AH02	
			$110 \mathrm{~V}, 50 \mathrm{~Hz}$ 230 V 50 Hz	3RT19 35－5AF01 3RT19 35－5AP01	3RT19 35－5AF02	
			$\begin{aligned} & 230 \mathrm{~V}, 50 \mathrm{~Hz} \\ & 400 \mathrm{~V}, 50 \mathrm{~Hz} \end{aligned}$	3RT19 35－5AV01	3RT19 35－5AV02	
			$24 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 35－5AC21	3RT19 35－5AC22	
			$42 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 35－5AD21	3RT19 35－5AD22	
			$48 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 35－5AH21	3RT19 35－5AH22	
			$110 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 35－5AG21	3RT19 35－5AG22	
			208 V，50／60 Hz	3RT19 35－5AM21	3RT19 35－5AM22	
			220 V，50／60 Hz	3RT19 35－5AN21	3RT19 35－5AN22	
			$230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$	3RT19 35－5AL21	3RT19 35－5AL22	
			$\begin{aligned} & 110 \mathrm{~V}, 50 \mathrm{~Hz} / 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 220 \mathrm{~V}, 50 \mathrm{~Hz} / 240 \mathrm{~V}, 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 3RT19 35-5AK61 } \\ & \text { 3RT19 35-5AP61 } \end{aligned}$	$\begin{aligned} & \text { 3RT19 35-5AK62 } \\ & \text { 3RT19 35-5AP62 } \end{aligned}$	
			277 V， 60 Hz	3RT19 35－5AU61	3RT19 35－5AU62	
			$480 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT19 35－5AV61	3RT19 35－5AV62	
			600 V， 60 Hz	3RT19 35－5AT61	3RT19 35－5AT62	
			$100 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 110 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT19 35－5AG61	3RT19 35－5AG62	
			$200 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 220 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT19 35－5AN61	3RT19 35－5AN62	
			$400 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / 440 \mathrm{~V}, 60 \mathrm{~Hz}$	3RT19 35－5AR61	3RT19 35－5AR62	

3RT Contactors

Selection and ordering data

3RT Contactors

Spare parts for 3RT1 contactors

Selection and ordering data

	For contactor		Rated control supply voltage $U_{\mathrm{s} \text { min }} \text { to } U_{\mathrm{s} \text { max }}$	Order No.	Weight approx. kg
	Size	Type	AC/DC V		
Withdrawable coils					
	Conventional operating mechanism				
3RT19 55-5A...	S6	3RT10 5, 3RT14 5	$\begin{array}{rrr} 23 \ldots & 26 \\ 42 \ldots & 48 \\ 110 \ldots & 127 \\ 200 & \ldots 20 \\ 220 & \ldots & 240 \\ 240 & \ldots & 277 \\ 380 & \ldots & 420 \\ 440 \ldots & 480 \\ 500 & \ldots 50 \\ 575 \ldots & \ldots 00 \end{array}$	3RT19 55-5AB31 3RT19 55-5AD31 3RT19 55-5AF31 3RT19 55-5AM31 3RT19 55-5AP31 3RT19 55-5AU31 3RT19 55-5AV31 3RT19 55-5AR31 3RT19 55-5AS31 3RT19 55-5AT31	0.49
	S10	3RT10 6, 3RT14 6	$\begin{array}{rrr} 23 \ldots & 26 \\ 42 \ldots & 48 \\ 110 \ldots & 127 \\ 200 \ldots & 220 \\ 220 \ldots & 240 \\ 240 \ldots & 277 \\ 380 \ldots & 420 \\ 440 \ldots & 480 \\ 500 \ldots & 550 \\ 575 \ldots & 600 \end{array}$	3RT19 65-5AB31 3RT19 65-5AD31 3RT19 65-5AF31 3RT19 65-5AM31 3RT19 65-5AP31 3RT19 65-5AU31 3RT19 65-5AV31 3RT19 65-5AR31 3RT19 65-5AS31 3RT19 65-5AT31	0.65
		3RT12 6 Vacuum contactor	$\begin{array}{rrr} 23 & \ldots & 26 \\ 42 \ldots & 48 \\ 110 \ldots & 127 \\ 200 \ldots & 220 \\ 220 \ldots & 240 \\ 240 \ldots & 277 \\ 380 \ldots & 420 \\ 440 \ldots & 480 \\ 500 \ldots & 550 \\ 575 \ldots & 600 \end{array}$	3RT19 66-5AB31 3RT19 66-5AD31 3RT19 66-5AF31 3RT19 66-5AM31 3RT19 66-5AP31 3RT19 66-5AU31 3RT19 66-5AV31 3RT19 66-5AR31 3RT19 66-5AS31 3RT19 66-5AT31	
	S12	3RT10 7 , 3RT14 7, 3RT12 7 Vacuum contactor	$\begin{array}{rrr} 23 \ldots & 26 \\ 42 \ldots & 48 \\ 110 \ldots & 127 \\ 200 \ldots & 220 \\ 220 \ldots & 240 \\ 240 \ldots & 277 \\ 380 \ldots & 420 \\ 440 \ldots & 480 \\ 500 \ldots & 550 \\ 575 \ldots & 600 \end{array}$	3RT19 75-5AB31 3RT19 75-5AD31 3RT19 75-5AF31 3RT19 75-5AM31 3RT19 75-5AP31 3RT19 75-5AU31 3RT19 75-5AV31 3RT19 75-5AR31 3RT19 75-5AS31 3RT19 75-5AT31	1.1

Withdrawable coils

Solid-state operating mechanism • for DC 24 V PLC output

3RT19 55-5N	S6	3RT10 5, 3RT14 5	$\begin{array}{cc} 21 \ldots & 27.3 \\ 96 \ldots . & 127 \\ 200 \ldots & 277 \end{array}$	3RT19 55-5NB31 3RT19 55-5NF31 3RT19 55-5NP31	0.49
	S10	$\begin{aligned} & \text { 3RT10 6, } \\ & \text { 3RT14 } 6 \end{aligned}$	$\begin{gathered} 21 \ldots \\ 96 \ldots 127.3 \\ 200 \ldots . .277 \end{gathered}$	3RT19 65-5NB31 3RT19 65-5NF31 3RT19 65-5NP31	0.65
		3RT12 6 Vacuum contactor	$\begin{array}{ccc} 21 \ldots & 27.3 \\ 96 \ldots \ldots & 127 \\ 200 \ldots & 277 \end{array}$	3RT19 66-5NB31 3RT19 66-5NF31 3RT19 66-5NP31	
	S12	3RT10 7 , 3RT14 7, 3RT12 7 Vacuum contactor	$\begin{gathered} 21 \ldots \\ 96 \ldots 127 \\ 200 \ldots 277 \end{gathered}$	3RT19 75-5NB31 3RT19 75-5NF31 3RT19 75-5NP31	1.1

Solid-state operating mechanism • for DC 24 V PLC output/PLC relay output, with remaining lifetime indication (withdrawable coil with lateral electronics module)

S6	$\begin{aligned} & \text { 3RT10 5, } \\ & \text { 3RT14 } 5 \end{aligned}$	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT19 55-5PF31 3RT19 55-5PP31
S10	$\begin{aligned} & \text { 3RT10 } 6, \\ & \text { 3RT14 } 6 \end{aligned}$	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT19 65-5PF31 3RT19 65-5PP31
S12	$\begin{aligned} & \text { 3RT10 7, } \\ & \text { 3RT14 } 7 \end{aligned}$	$\begin{array}{r} 96 \ldots 127 \\ 200 \ldots 277 \end{array}$	3RT19 75-5PF31 3RT19 75-5PP31

Spare parts for 3RT1 contactors

Selection and ordering data

Contacts with fixing parts

- for contactors with 3 main contacts

S2	3RT20 35 3RT20 36 3RT20 37 3RT20 38	Main contacts (3 NO) for AC-3 utilization category (1 set $=3$ moving and 6 fixed contacts with fixing parts)	3RT29 35-6A 3RT29 36-6A 3RT29 37-6A 3RT29 38-6A		1 set
S3	3RT10 44 3RT10 45 3RT10 46		3RT19 44-6A 3RT19 45-6A 3RT19 46-6A		
S6	3RT10 54 3RT10 55 3RT10 56		3RT19 54-6A 3RT19 55-6A 3RT19 56-6A	0.28	
S10	3RT10 64 3RT10 65 3RT10 66		3RT19 64-6A 3RT19 65-6A 3RT19 66-6A	0.48	
S12	3RT10 75 3RT10 76		3RT19 75-6A 3RT19 76-6A	0.9	
S3	3RT14 46	Main contacts (3 NO) for AC-1 utilization category	3RT19 46-6D		
$\begin{aligned} & \text { S6 } \\ & \text { S10 } \\ & \text { S12 } \end{aligned}$	3RT14 56 3RT14 66 3RT14 76	(1 set $=3$ moving and 6 fixed contacts with fixing parts)	3RT19 56-6D 3RT19 66-6D 3RT19 76-6D	$\begin{aligned} & 0.28 \\ & 0.48 \\ & 0.9 \end{aligned}$	
- for 3RT12 vacuum contactors					
S10	3RT12 64 3RT12 65 3RT12 66	3 vacuum interrupters with fixing parts	3RT19 64-6V 3RT19 65-6V 3RT19 66-6V	1.4	1 set
S12	$\begin{aligned} & \text { 3RT12 } 75 \\ & \text { 3RT12 } 76 \end{aligned}$		3RT19 75-6V 3RT19 76-6V	1.5	
- for contactors with 4 main contacts					
S2	$\begin{aligned} & \text { 3RT23 } 36 \\ & \text { 3RT23 } 37 \end{aligned}$	Main contacts (4 NO contacts) for utilization category AC-1	$\begin{aligned} & \text { 3RT29 36-6E } \\ & \text { 3RT29 37-6E } \end{aligned}$		1 set
S3	3RT13 44 3RT13 46	(1 set $=4$ moving and 8 fixed contacts with fixing parts)	3RT19 44-6E 3RT19 46-6E		

3TB World Series Contactors

Rated control supply voltages for coils

Selection and ordering data

Coil type		3 TY6 503-0A	3 3TB50	3 TY7 683-0C..	3TF68
Rated control	Control supply	3 3TY6 523-0A	3 3TB52	3TY7 693-0C..	3TF69
supply voltage $U_{\text {s }}$	voltage at	3TY6 3TY6 543-0A.. 56-0A	3 3TB54		

Rated control supply voltages (changes to 10th and 11th positions of the Order No.)
AC operation
Coils for 50 Hz
50 Hz

AC 24 V	AC 39 V	BO
AC 32 V	AC 28 V	-
AC 36 V	AC 42 V	GO
AC 42 V	AC 50 V	DD
AC 48 V	AC 58 V	HO
AC 60 V	AC 72 V	ED
AC 110 V	AC 132 V	FO
AC $125 / 127 \mathrm{~V}$	AC $150 / 152 \mathrm{~V}$	LO
AC $230 / 220 \mathrm{~V}$	AC 277 V	PO
AC 240 V	AC 288 V	OO
AC $400 / 380 \mathrm{~V}$	AC $480 / 460 \mathrm{~V}$	VO
AC 415 V	AC 500 V	RO
AC 500 V	AC 600 V	SO

Coils for $50 / 60 \mathrm{~Hz}$
AC $110 \mathrm{~V} . . .132 \mathrm{~V}$
AC 200 V ... 240 V
AC 230 V ... 277 V
AC $380 \mathrm{~V} \ldots 460 \mathrm{~V}$
AC 500 V ... 600 V
\square

Coil type Rated control supply voltage U_{s}	3TY6 503-0B 3TY6 523-0B. 3TY6 543-0B. 3TY6 563-0B..	$\begin{aligned} & \text { 3TB50 } \\ & \text { 3TB52 } \\ & \text { 3TB54 } \\ & \text { 3TB56 } \end{aligned}$	3TY7 683-0D.. 3TY7 693-0D..	$\begin{aligned} & \text { 3TF68 } \\ & \text { 3TF69 } \end{aligned}$
Rated control supply voltages (changes to 10th and 11th positions of the Order No.)				
DC operation				
DC 24 V	B4		B4	
DC 30 V	C4		-	
DC 36 V	V4			
DC 42 V	D4			
DC 48 V	W4		-	
DC 60 V	E4		F4	
DC 110 V DC 125 V	F4		F4	
DC 180 V	K4		-	
DC 220 V	M4		M4	
DC 230 V	P4		P4	

Due to the mature nature of some product series, supply cannot be guaranteed on all versions listed on this page.

1) Coil voltage tolerance at 220 V or 380 V :
0.85 to $1.15 \times U_{s}$
lower tolerance range limit acc. to
IEC 60947.
2) Lower tolerance range limit at 220 V : $0.85 \times U_{\mathrm{s}}$ acc. to IEC 60947 .

3TB World Series Contactors

Spare parts

Coils，AC1）								
	Frame	Catalog No						
Hemito	Size	24 V AC	120 V AC	208 V AC	220／240V AC	277 V AC	480 V AC	600 V AC
＊	3TB40－44	3TY7403－0AC2	3TY7403－0АK6	3TY7403－0AM1	3TY7403－0AP6	3TY7403－0AU1	3TY7403－0AV0	3TY7403－0ASO
1	3TB47－48	3TY6483－0AC1	3TY6483－0AK6	3TY6483－0AM1	3TY6483－0AP6	3TY6483－0AP0	3TY6483－0AV0	3TY6483－0ASO
1\％	3TB52	－	3TY6523－0АК6	3TY6523－0AM1	3TY6523－0AP6	3TY6523－0АР0	3TY6523－0AV0	－
Luer	3TB56	－	－	－	－	3TY6566－0APO	3TY6566－0AV0	3TY6566－0AS0
3TY6463－0AK6								
Coils，DC								
	Frame Size	Catalog No						
		12V DC	24 V DC	42V DC	48 V DC	110 V DC	125 V DC	240 V DC
	3TB40－43	3TY4803－0BA4	3TY4803－0BB4	3TY4803－0BD4	3TY4803－0BW4	3TY4803－0BF4	3TY4803－0BG4	3TY4803－0BQ4
	3TB44	3TY6443－0BA4	3TY6443－0BB4	3TY6443－0BD4	3TY6443－0BW4	3TY6443－0BF4	3TY6443－0BG4	3TY6443－0BQ4
	3TB46	－	－	3TY6463－0BD4	3TY6463－0BW4	3TY6463－0BF4	－	3TY6463－0BQ4
	3TB47－48	－	3TY6483－0BB4	3TY6483－0BD4	3TY6483－0BW4	3TY6483－0BF4	3TY6483－0BG4	－
	3 3TB50	－	3TY6503－0BB4	3TY6503－0BD4	3TY6503－0BW4	3TY6503－0BF4	3TY6503－0BG4	3TY6503－0BQ4
	3 TB52	－	3TY6523－0BB4	3TY6523－0BD4	－	3TY6523－0BF4	3TY6523－0BG4	－
3 TY6483－0BB4	3TB54	－	3TY6543－0BB4	3TY6543－0BD4	3TY6543－0BW4	3TY6543－0BF4	－	3TY6543－0BQ4
	3TB56	－	3TY6563－0BB4	3TY6563－0BD4	－	3TY6563－0BF4	3TY6563－0BG4	3TY6563－0BQ4
	3TB58	－	－	－	－	－	－	－

Main Contacts（Includes 3 Moving and 6 Fixed Contacts）${ }^{\text {2）}}$			
曾	Frame Size	Catalog No	
曾自	3TB40－43	Not Replaceable	
－	3TB44	3TY6440－0A	
0 ab	3TB46	3TY6460－0A	
0.0	3TB47	3TY6470－0A	
$\stackrel{\square}{\square}$	3 TB48	3TY6480－0A	
\ldots	3 TB50	3TY6500－0A	
0	3 31852	3TY6520－0A	
0	3 TB54	3TY6540－0A	
	3TB56	3TY6560－0A	
3TY6500－0A	3TB58	3TY6580－0A	

Select Complete Catalog Number From Above ${ }^{1}$ ）	
Old Number	New Number
3TY6465－0A $\dagger \dagger$	3TY6463－0A $\dagger \dagger$
3TY6485－0A $\dagger \dagger$	3TY6483－0A $\dagger \dagger$
3TY6505－0A $\dagger \dagger$	3TY6503－0A $\dagger \dagger$
3TY6525－0A $\dagger \dagger$	3TY6523－0A $\dagger \dagger$
3TY6545－0A $\dagger \dagger$	3TY6543－0A $\dagger \dagger$
3TY6565－0A $\dagger \dagger$	3TY6566－0A $\dagger \dagger$

Coil Voltages	
Old Number	New Number
A8	K6
B8	M1
C8	P6
D8	00
E8	S0
F8	C1
G8	P0

Due to the mature nature of some product series，supply cannot be guaranteed on all versions listed on this page．
1）Some old 3 TB coil catalog numbers have been superceded．Cross to current catalog number from these tables． 2）Main contact kits for size 3TB47 and larger include springs．Smaller sizes do not．

Coils, AC Type 3TF and CRLtF

	Catalog No						
Frame	24 V AC, 60Hz	120 V AC, 60 Hz	208 V AC, 60 Hz	240 V AC, 60 Hz	277 V AC, 60 Hz	460 V AC, 60 Hz	600 V AC, 60 Hz
Size	24 V AC, 50 Hz	110 V AC, 50 Hz	173 V AC, 50 Hz	220 V AC, 50 Hz	220 V AC, 50 Hz	380 V AC, 50 Hz	500 V AC, 50 Hz
3TF40-43	3TY7403-0AC2	3TY7403-0AK6	3TY7403-0AM1	3TY7403-0AP6	3TY7403-0AU1	3TY7403-0AVO	3TY7403-0ASO
$\begin{aligned} & \text { 3TF34-35, } \\ & \text { 3TF44-45 } \end{aligned}$	3TY7443-0AC2	3TY7443-0AK6	3TY7443-0AM1	3TY7443-0AP6	3TY7443-0AU1	3TY7443-0AV0	3TY7443-0ASO
3TF46-47	3TY7463-0AC2	3TY7463-0AK6	3TY7463-0AM1	3TY7463-0AP6	3TY7463-0AU1	3TY7463-0AV0	3TY7463-0AS0
3TF48-49	3TY7483-0AC2	3TY7483-0AK6	3TY7483-0AM1	3TY7483-0AP6	3TY7483-0AU1	3TY7483-0AV0	3TY7483-0ASO
3TF50-51	3TY7503-0AC2	3TY7503-0АK6	3TY7503-0AM1	3TY7503-0AP6	3TY7503-0AU1	3TY7503-0AV0	3TY7503-0AS0
3TF52-53	3TY7523-0AC2	3TY7523-0AK6	3TY7523-0AM1	3TY7523-0AP6	3TY7523-0AU1	3TY7523-0AV0	3TY7523-0AS0
3TF54-55	3TY7543-0AC2	3TY7543-0AK6	3TY7543-0AM1	3TY7543-0AP6	3TY7543-0AU1	3TY7543-0AV0	3TY7543-0ASO
3TF56	3TY7563-0AC2	3TY7563-0АK6	3TY7563-0AM1	3TY7563-0AP6	3TY7563-0AU1	3TY7563-0AV0	3TY7563-0ASO
3TF57	-	3TY7573-0CF7	-	3TY7573-0CM7	-	3TY7573-0C07	-
3TF68	-	3TY7683-0CF7	-	3TY7683-0CM7	-	3TY7683-0C07	3TY7683-0CS7
3TF69	-	3TY7693-0CF7	-	3TY7693-0CM7	-	3TY7693-0C07	3TY7693-0CS7

Goils, DC Type 3TF and CRL†F

	Frame Size	Catalog No						
		12V DC	24V DC	42 V DC	48V DC	110 V DC	125 V DC	240 V DC
	DC Solenoid							
	$\begin{aligned} & \text { 3TF30-33 } \\ & \text { 3TF40-43 } \\ & \hline \end{aligned}$	3TY4803-0BA4	3TY4803-0BB4	3TY4803-0BD4	3TY4803-0BW4	3TY4803-0BF4	3TY4803-0BG4	3TY4803-0B04
9	$\begin{aligned} & \hline 3 T F 34-35, \\ & 3 T F 44-45 \end{aligned}$	3TY7443-0BA4	3TY7443-0BB4	3TY7443-0BD4	3TY7443-0BW4	3TY7443-0BF4	3TY7443-0BG4	-
	3TF46-47	-	3TY7463-0BB4	3TY7463-0BD4	3TY7463-0BW4	-	3TY7463-0BG4	3TY7463-0BQ4
	DC Economy	uit (Replacemen	coils only. Does	include interlo	or interposing re			
	3TF46-47	-	3TY7463-0DB4	3TY7463-0DD4	3TY7463-0DW4	3TY7463-0DF4	3TY7463-0DG4	3TY7463-0D04
	3TF48-49	-	-	3TY7483-0DD4	3TY7483-0DW4	3TY7483-0DF4	3TY7483-0DG4	3TY7483-0D04
3TY4803-0BB4	3TF50-51	-	3TY7503-0DB4	3TY7503-0DD4	3TY7503-0DW4	3TY7503-0DF4	3TY7503-0DG4	3TY7503-0D04
	3TF52-53	-	3TY7523-0DB4	3TY7523-0DD4	3TY7523-0DW4	3TY7523-0DF4	3TY7523-0DG4	3TY7523-0D04
	3TF54-55	-	-	3TY7543-0DD4	3TY7543-0DW4	3TY7543-0DF4	3TY7543-0DG4	3TY7543-0D04
	3TF56	-	3TY7563-0DB4	3TY7563-0DD4	3TY7563-0DW4	-	3TY7563-0DG4	3TY7563-0D04
	3TF57	-	3TY7573-0DB4	3TY7573-0DD4	3TY7573-0DW4	3TY7573-0DF4	3TY7573-0DG4	3TY7573-0D04
	3TF68	-	3TY7683-0DB4	-	-	3TY7683-0DF4	-	-

Main Contacts (Includes 3 Moving and 6 Fixed Contacts)

Frame Size	Catalog No
3TF30-35	Not Replaceable
3TF40-43	Not Replaceable
3TF44	3TY7442-0A
3TF45	3TY7452-0A
3TF46	3TY7462-0A
3TF47	3TY7472-0A
3TF48	3TY7482-0A
3TF50	3TY7502-0A
3TF51	3TY7512-0A
3TF52	3TY7522-0A
3TF53	3TY7532-0A
3TF54	3TY7542-0A
3TF55	3TY7552-0A
3TF56	3TY7562-0A
3TF57	3TY7572-0A
3TF68	Not Available
3TF69	Not Available

Due to the mature nature of some product series, supply cannot be guaranteed on all versions listed on this page.

1) Vacuum bottles with mounting hardware.

3TF Contactors and 3TH Control Relays

Spare parts

Mechanical Interlocks

Frame Size	Catalog No
3TF44-54	3TX7466-1A

3TX7466-1A

Control Relays, Type 3TH8 Coils, AC								
Type	Frame Size	Catalog No						
		24 V AC	120 V AC	208 V AC	220/240V AC	277 V AC	480 V AC	600 V AC
3TH	3TH80-83	3TY7403-0AC2	3TY7403-0AK6	3TY7403-0AM1	3TY7403-0AP6	3TY7403-0AU1	3TY7403-0AV0	3TY7403-0AS0

Coils, DC

Type	Frame Size	Catalog No						
		12 V AC	24 V AC	42 V AC	48 V AC	110 V AC	125 V AC	240 V AC
3TH	3TH80-83	3TY4803-0BA4	3TY4803-0BB4	3TY4803-0BD4	3TY4803-0BW4	3TY4803-0BF4	3TY4803-0BG4	3TY4803-0B04

Due to the mature nature of some product series, supply cannot be guaranteed on all versions listed on this page.

1) Maximum 4 blocks per relay.

3RT contactors, 3-pole, sizes S00 to S3

AC and DC operation

IEC 60 947, EN 60947
(VDE 0660), UL 508

Design

The 3RT contactors are suitable for use in any climate They are safe from touch to DIN VDE 0106 Part 100

The 3RT contactors are available screw, spring-type, or ring lug connections.
An auxiliary contact is integrated in the basic unit of size SOO contactors. The basic units of sizes S0 to S3 only contain the main conducting paths.
All the basic units can be extended with auxiliary switch blocks. Cabinet units with 2 NO +2 NC (terminal designations acc. to EN 50012) are available as of size SO ; the auxiliary switch block is removable.
The size S3 contactors have removable box terminals for the main conductor connections. Ring cable lugs or bars can thus also be connected.

Contact reliability

If voltages $\leq 110 \mathrm{~V}$ and currents $\leq 100 \mathrm{~mA}$ are to be switched, the auxiliary contacts of 3RT contactors and 3RH contactor relays should be used to ensure good contact stability.
These auxiliary contacts are suitable for electronic circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V .

Short-circuit protection of contactors

For the short-circuit protection of contactors without an overload relay, see the technical data.

For the short-circuit protection of contactors with an overload relay, see section 3.

Motor protection

3RU overload relays can be mounted onto the 3RT contactors for protection against overloads. The overload relays must be ordered separately (see section 3).

Surge suppression

The 3RT contactors can be retrofitted with RC elements, varistors, diodes or diode assemblies (combination of an interference suppression diode and a Zener diode for short tripping times) for suppressing opening surges in the coil.
The surge suppressors are plugged onto the front of size SOO contactors. Space is provided for them next to a snapon auxiliary switch block.
With all size S0 to S3 contactors, varistors and RC elements can be plugged on directly at the coil terminals, either on the op or underneath. Diode assemblies are available in two different designs with different polarities. Depending on the application, they can be attached either only on the bottom (assembly with circuitbreaker) or only on the top (assembly with overload relay).
The plug-in direction of the diodes and diode assemblies is determined by a coding device. Exceptions 3RT29 26-1E. 00 and 3RT19 36-1T.00; in these cases the plug-in direction is identified by "+" and "-".
Coupling relays are supplied either without surge suppression or with a varistor or diode connected as standard according to the design.

Note

The opening times of the NO contacts and the closing times of the NC contacts increase if the contactor coils are protected against voltage peaks (interference suppression diode 6 to 10 times; diode assemblies 2 to 6 times; varistor +2 ms to 5 ms).

3RT20 1. contactors (size S00),
Terminal designations acc. to EN 50012 or DIN 50005

Auxiliary switch blocks

The 3RT basic units can be extended with various auxiliary switch blocks, depending on the application:

Size S00 (3RT201)
Contactors with one NO contact as the auxiliary contact and with either screw or
spring-type connections, identification number 10E, can be extended to obtain contactors with 2,4 or 5 auxiliary contacts in accordance with EN 50012 using auxiliary switch blocks. The identification numbers 11E, $22 \mathrm{E}, 23 \mathrm{E}$ and 32 E on the auxiliary switch blocks apply to the complete contactors. These auxiliary switch blocks cannot be combined with contactors that have an NC contact in their basic unit, identification number 01, as these are coded.

All size S00 contactors with one auxiliary contact, identification number 10 E or 01 , and the contactors with 4 main contacts can be extended to obtain contactors with 3 or 5 auxiliary contacts (contactors with 4 main contacts: 2 or 4 auxiliary contacts) according to EN 50005 using auxiliary switch blocks
with identification numbers 40 to 02. The identification numbers on the auxiliary switch blocks apply only to the attached auxiliary contacts.
Single or 2-pole auxiliary switch blocks that can be connected on either the top or the bottom facilitate quick, straightforward wiring, especially when assembling feeders. These auxiliary switch blocks are only available with screw-type terminals.
The solid-state compatible 3RH29 11-1NF.. auxiliary switch blocks for size SOO contactors contain two enclosed contact elements. They are ideal for switching low voltages and currents (hard gold-plated contacts) or for use in dusty atmosphere. The contacts do not have positively-driven operation.

All the above-mentioned auxiliary switch variants can be snapped into the location holes on the front of the contactors. The auxiliary switch block has a centrally positioned release lever for disassembly.

3RT20 2. to 3RT20 4. contactors (sizes S0 to S3), single-pole auxiliary switch blocks,
terminal designations acc. to EN 50005 or EN 50012.

Sizes S0 to S3 (3RT202 to 3RT204)
An extensive range of auxiliary switch blocks is available for various applications. The contactors themselves do not have an integrated auxiliary conducting path.

The auxiliary switch variants are identical for all size SO to S3 contactors.
One 4-pole or up to four singlepole auxiliary switch blocks (with screw or spring-type connections) can be snapped onto the front of the contactors. When the contactors are energized, the NC contacts open before the NO contacts close.

The terminal designations of the single-pole auxiliary switch blocks consist of location digits on the basic unit and function digits on the auxiliary switch blocks.

In addition, 2-pole auxiliary switch blocks (screw-type terminals) are provided for cable entries from above or below in the style of a four-connector block (feeder auxiliary switch).
If the available installation depth is restricted, 2-pole auxiliary switch blocks (screw or spring-type connections) can be mounted laterally on the left or right.
The auxiliary switch blocks designed for mounting onto the front can be disassembled with the aid of a centrally positioned release lever; the laterally mountable auxiliary switch blocks can be removed easily by pressing on the fluted grips.
The terminal designations of the individual auxiliary switch blocks comply with EN 50005 or EN 50012 , while those of the complete contactors with an auxiliary switch block with 2 NO +2 NC comply with EN 50012.

3RT20 2. to 3RT20 4. contactors (sizes S0 to S3), single-pole auxiliary switch blocks,
terminal designations acc. to EN 50005 or EN 50012.

The laterally mountable auxiliary switch blocks to EN 50012 can only be used if no 4-pole auxiliary switch blocks are snapped onto the front. If sin-gle-pole auxiliary switch blocks are used in addition, the location digits on the contactor must be noted.
Two enclosed contact elements and two standard contact elements are available for the 3RH29 21-.FE22 solid-state compatible auxiliary switch block mountable on the front. The laterally mountable 3RH29 21-2DE11 solid-state compatible auxiliary switch block contains 2 enclosed contact elements ($1 \mathrm{NO}+1 \mathrm{NC}$). The enclosed contact elements are ideal for switching low voltages and currents (hard goldplated contacts) or for use in a dusty atmosphere. The contacts are positively driven.

Sizes S0 and S2 (3RT202 and 3RT203)
Up to four auxiliary contacts can be mounted, whereby any design of the auxiliary switch blocks is permitted. If two 2pole, laterally mounted, auxiliary switch blocks are used, one must be mounted on the left and one on the right for the sake of symmetry.
Under certain circumstances, more auxiliary contacts are allowed for size S2 (please ask for details).
With regard to 3RT23 and 3RT24 4-pole contactors, please refer to pages 2/12 to 2/14.

Sizes S3 to S12 (3RT204 to

 3RT107)Up to eight auxiliary contacts can be mounted, whereby the following points must be noted:

- Of these eight auxiliary contacts, no more than four must be NC contacts.
- If laterally mounted auxiliary switch blocks are used, they must be symmetrical.
With regard to 3RT15 4-pole contactors, please refer to pages 2/13 to 2/15.

Overview

Design

- 3RT10 contactors for switching motors
- 3RT12 vacuum contactors for switching motors
- 3RT14 contactors for AC-1 applications

Operating mechanism

Two types of solenoid-operated mechanism are available:

- Conventional operating mechanism
- Solid-state operating mechanism
(with 3 performance levels)

UC operation

The contactors can be AC (40 to 60 Hz) and DC driven.

Withdrawable coils

To allow easy coil changing, for example if the application is changed, the magnetic coil can be pulled out upwards without tools after the release mechanism has been actuated, and can be replaced by any other required coil of the same size.

Auxiliary contact complement

The contactors can be equipped with a maximum of 8 auxiliary contacts, with identical auxiliary switch blocks from S0 to S12. Of these, no more than 4 are permitted to be NC contacts.

- 3RT10 and 3RT14 contactors: auxiliary contacts mounted laterally and on front
- 3RT12 vacuum contactors: auxiliary contact mounted laterallv

Contactors with conventional operating mechanism

3RT1...-.A:

The magnetic coil is switched on and off directly with the control supply voltage U_{s} via terminals A1/A2.

Multi-voltage range for the control supply voltage U_{s} :
Several closely adjacēnt control supply voltages, available around the world, are covered by just one coil, for example UC 110-115-120-127 V or UC 220-230-240 V.

In addition, allowance is also made for a coil voltage tolerance of 0.8 times the lower rated control supply voltage ($U_{s \text { min }}$) and 1.1 times the upper rated control supply voltage $\left(U_{s \text { max }}\right)$, within which the
contactor switches reliably and no thermal overloading occurs.

Contactors with solid-state operating mechanism

The power required for reliable switching and holding is supplied selectively to the magnetic coil by series-connected control electronics.

Features:

- Extended voltage range for the control supply voltage U_{s} :
Compared with the conventional operating mechanism, the solid-state operating mechanism covers an even broader range of globally available control supply voltages within one coil variant. For example, the globally available voltages 200-208-220-230-240-254-277 V are covered with the coil for UC 200 to $277 \mathrm{~V}\left(U_{\mathrm{s} \text { min }}\right.$ to $\left.U_{\mathrm{s} \text { max }}\right)$.
- Extended coil voltage tolerance 0.7 to $1.25 \times U_{s}$:
On account of the broad range for the rated control supply voltage and the additionally allowed coil voltage tolerance of $0.8 \times U_{\text {s min }}$ to 1.1 $\times U_{\text {s max }}$, an extended coil voltage tolerance of at least 0.7 to $1.25 \times U_{s}$, within which the contactors will operate reliably, is available for the most common control supply voltages of 24,110 and 230 V .
- Bridging short-time voltage dips:
Control voltage failures dipping to 0 V (at A1/A2) are bridged for up to approx. 25 ms , therefore preventing unintentional disconnection.
- Defined ON and OFF thresholds:
As of voltages $\geq 0.8 \times U_{\text {s min }}$, the electronics reliably switch the contactor on and as of $\leq 0.5 \times U_{\text {s min }}$ it is reliably switched off. The differential travel in the switching thresholds prevents chattering of the main contacts and hence increased wear or welding when operated in weak, unstable networks. Similarly, thermal overloading of the contactor coil is prevented if the voltage applied is too low - the contactor is not switched on and is operated with overexcitation.
- Low control power consumption when closing and in closed state.

Electromagnetic compatibility (EMC)

The contactors with solid-state operating mechanism conform to the requirements for operation in industrial plants.

- Noise immunity
- Burst (IEC 61 000-4-4): 4 kV
- Surge (IEC 61 000-4-5): 4 kV
- Electrostatic discharge,

ESD (IEC 61 000-4-2): 8/15 kV

- Electromagnetic field
(IEC 61 000-4-3): $10 \mathrm{~V} / \mathrm{m}$

- Emitted interference

Limiting value class A to EN 55011
Note:
In connection with converters, the control cables should be installed separately from the load cables to the converter.

3RT1...-.N: for DC 24 V PLC output

2 control options:

- Control without an interface directly via a DC $24 \mathrm{~V} / \geq 30$ mA PLC output (EN 61 1312). Connection via a 2-pole plug-in connection; the connector, using screwless spring-force technology, is included in the scope of supply. The control supply voltage for supplying power to the solenoid operating mechanism must be connected to A1/A2.
Note:
Before start-up, the slidingdolly switch for PLC operation must be moved to the "PLC ON" position (setting ex works:
"PLC OFF").

(1) Sliding-dolly switch, must be in PLC "ON" position
(2) Plug-in connection, 2-pole
- Conventional control by applying the control supply voltage at A1/A2 via a switching contact.
Note:
The sliding-dolly switch must be in the "PLC OFF" position (= setting ex works).

\$ Sliding-dolly switch, must be in PLC "OFF" position

3RT1 contactors, 3-pole, sizes S6 to S12

Overview

Contactors with solid-state operating mechanism
3RT1...-.P: for DC 24 V PLC output or PLC relay output, with indication of remaining lifetime (Indication of remaining lifetime RLT: see 2/69.)

- The remaining lifetime RLT status signal is available at terminals R1/R2 via a floating relay contact (hard goldplated, enclosed) and can be processed for example via SIMOCODE-DP or PLC inputs or elsewhere

Permissible current carrying capacity of relay output R1/ R2:

- $I_{\mathrm{e}} / \mathrm{AC}-15 / 24$ to $230 \mathrm{~V}: 3 \mathrm{~A}$
$-I_{\mathrm{e}} / \mathrm{DC}-13 / 24 \mathrm{~V}: 1 \mathrm{~A}$
- LED indicators

The following statuses are indicated by LEDs on the laterally mounted electronics module:

- Contactor ON (energized state):
Green LED ("ON")
- Indication of remaining lifetime (see 2/69)

To supply power to the solenoid operating mechanism and the remaining lifetime indication the control supply voltage U_{s} must be run to terminals A1/A2 of the laterally mounted electronics module. The control inputs of the contactor are brought out to a 7 -pole plug-in connection; the connector, using screwless spring-force technology, is included in the scope of supply.

2 control options:

- Contactor control without an interface directly via a DC $24 \mathrm{~V} / \geq 30 \mathrm{~mA}$
PLC output (EN 61 131-2) via terminals $\mathrm{IN}+/ \mathrm{IN}$ -

Electronics module of 3RT1-.P contactor
Plug-in connection, 7 -pole
S1 Changeover switch from automatic control via PLC semiconductor output to local control
S2 Local control option

Possibility of switching from automatic control to local control via terminals $\mathrm{H} 1 / \mathrm{H} 2$, i.e. automatic control via a PLC or SIMOCODE-DP/PROFIBUS-DP can be deactivated, for example during start-up or in the event of a fault, and the contactor can be controlled manually.

- Contactor control via relay outputs, e.g. by
- PLC
- SIMOCODE-DP 3UF5
via terminals H1/H2.
Contact loading:
$U_{s} /$ approx. 5 mA .
When operated via SIMO-CODE-DP, a communication link to PROFIBUS-DP is also provided.

Electronics module of 3RT1 ...-.P contactor
Plug-in connection, 7 -pole
S1 Changeover switch from automatic control, e.g. via SIMOCODE-DP or PLC relay output to local control
S2 Local control option

3RT12 vacuum contactors

In contrast with the 3RT10 contactors - the main contacts operate in air under atmospheric conditions - the contact gaps of the 3RT12 vacuum contactors are contained in hermetically enclosed vacuum contact tubes. Neither arcs nor arcing gases are produced. The particular benefit of 3RT12 vacuum contactors, however, is that their electrical endurance is at least twice as long as that of 3RT10 contactors.

They are therefore particularly well suited to frequent switching in jogging/mixed operation, for example in crane control systems.
Advantages:

- Very long electrical endurance
- High short-time current-carrying capacity for heavy starting
- No open arcs, no arcing gases, i.e. no minimum clearances from earthed parts required either
- Longer maintenance intervals
- Increased plant availability

Notes on operation:

- Switching motors with rated operational voltages $U_{\text {e_ }}$ $>500 \mathrm{~V}$:
In order to damp overvoltages and protect the motor winding insulation against multiple reignition when switching off three-phase motors, it is recommended to fit the contactors on the outgoing side (T1/T2/T3) with the 3RT19 66-1PV. surge suppression module - RC varistor - (accessory).

This additional equipment is not required for operation in circuits with converters. It might be damaged by the voltage peaks and harmonics generated.

- Switching DC voltage:

Vacuum contactors are basically unsuitable for switching DC voltage.

Contactor Assemblies for Switching Motors

Contactor assemblies for WYE－delta starting

Overview

The contactor assemblies for star－delta starting can be ordered as follows：
－Sizes SOO－SO as assemblies．（see pages 2／47－2／48）
－Sizes S2－S12 as components for customer assembly

For accessories，see page 2／85
For circuit diagrams，see page 2／205．

1）The installation kit contains mechanical inter－ lock； 3 connecting clips；wiring connectors on the top（connection between line contactor and delta contactor）and the bottom（connection between delta contactor and star contactor）； WYE jumper．

2）The installation kit contains 5 connecting clips； wiring connectors on the top（connection between line contactor and delta contactor）and the bottom（connection between delta contactor and WYE contactor）；star jumper．

3) Installation kit contains wiring connector on the bottom (connection between delta contactor and WYE contactor) and WYE jumper.
4) Wiring connector on top from reversing contactor assembly (note conductor cross-sections).
5) A mechanical interlock adapter, 3RA1954-2C, is required to use the standard 3RA1954-2A mechanical interlock for the AC version of the S6-S6-S3 WYE-Delta starter. The S6-S6-S3 WYE-Delta DC version would require a special custom build spacer, which is not manufactured, to allow the mechanical interlock to operate.
6) Only use wiring connector on the top from reversing contactor assembly (note conductor cross-sections); order WYE jumper in addition.
7) For overload relays $>100 \mathrm{~A}$, see 3RB2 electronic Section 3, paqe 23.

Application

WYE-delta starting can only be used either if the motor normally operates in a $\boldsymbol{\Delta}$ (delta) connection or starts softly or if the load torque during Y starting is low and does not increase sharply. On the Ystep the motors can carry approximately 50% (class KL 16) or 30% (class KL 10) of their rated torque; the starting torque is approximately $1 / 3$ of that during direct on-line starting. The starting current is approximately 2 to 2.7 times the rated motor current.
The changeover from \mathbf{Y} to Δ must not be effected until the motor has run up to rated speed. Drives which require this changeover to be performed earlier are unsuitable for WYEdelta starting.

The ratings given in the above table are only applicable to motors with a starting current ratio of $I_{\mathrm{A}} \leq 8.4 \times I_{\mathrm{N}}$ and using either a 3RT19 16-2G or 3RT19 26-2G solid-state time-delay auxiliary switch block with a WYE-delta function or a 3RP1574 WYEdelta time-delay relay with a dead interval of approximately 50 ms on reversing.
For the circuit diagrams for the main and control circuits, see page $2 / 161$. The size selected for the installation kits for WYEdelta starting is determined by the line contactor.

Design

Components for customer assembly
Installation kits with wiring connectors and, if necessary, mechanical connectors are available for contactor assemblies for WYE-delta starting. Contactors, overload relays, star-delta time-delay relays and auxiliary switches for the electrical interlock - if required also feeder terminals, mechanical interlocks ${ }^{1}$) and baseplates must be ordered separately.
The wiring installation kits for sizes SOO and SO contain the top and bottom main conducting path connections between the line and delta contactors (top) and between the delta and WYE contactors (bottom).
In the case of sizes S2 to S12 only the bottom main conducting path connection between the delta and WYE contactors is included in the wiring connector, owing to the larger conductor cross-section at the infeed.

Motor protection

Overload relays or thermistor motor protection tripping units can be used for overload protection.

The overload relay can be either mounted onto the line contactor or separately fitted. It must be set to 0.58 times the rated motor current

Surge suppression

Sizes S00 to S3

All contactor assemblies can be fitted with RC elements, varistors or diode assemblies for damping opening surges in the coil.

As with the individual contactors, the surge suppressors can either be plugged onto the top of the contactors (S00) or fitted onto the coil terminals on the top or bottom (S0 to S3).

Sizes S6 to S12

The contactors are fitted with varistors as standard.

[^29]
Contactor Assemblies for Switching Motors

Contactor assemblies for WYE-delta starting

Selection and ordering data

Fully wired and tested contactor assemblies • Size S00-S00-S00 • Up to 11 kW
The figure shows the version with screw terminals

1) Part (9) can only be mounted in the case of contactors with screw terminal.
2) The version with 1 NO is required for momentary-contact operation.

Note:
When the function modules for contactor assemblies for wyedelta starting are used, no other auxiliary switches are allowed to be mounted on the basic units.

Contactor Assemblies for Switching Motors

Contactor assemblies for WYE-delta starting

Fully wired and tested contactor assemblies • Size SO-SO-SO • Up to 22 kW
The figure shows the version with screw terminals

Contactor Assemblies for Switching Motors

Contactor assemblies for WYE-delta starting

Size S2-S2-SO • up to 65 A, 30 HP
The figure shows the version with screw terminals in S2-S2-S2

Mountable accessories (optional)

To be ordered separately

Three-phase infeed terminal
3RV2935-5A

Complete contactor assembly for star-delta (wye-delta) starting

Individual parts

Contactors, $22 / 30 \mathrm{~kW}$
Contactors, 37 kW
Contactors, 45 kW
Assembly kit S2-S2-S0 comprising:

Type

Q11
3RT2035 Q13 Q12
3RT2035 3RT2035 3RT2026
3RT2035
3RT2036 3RT2036 3RT2028

3RA2933-2C
(4) Four connectors for three contactors (not required for fully prewired contactor assemblies for star-delta (wye-delta) starting)
(5) Wiring modules on top and bottom for connecting the main and auxiliary circuits
(6) Star jumper S2
(7) Cable for connecting the A2 coil contact from the line contactor with the A2 coil contact of the delta contactor (not shown in the drawing)
(8) Mechanical interlock 3RA2934-2B
(9) Function modules for star-delta 3RA2816-0EW20
(wye-delta) starting
(10) Base plate star-delta (wye- 3RA2932-2F delta)

For overview, see page 2/112.
For circuit diagrams, see page 2/205.

Contactor Assemblies for Switching Motors

Contactor assemblies for WYE-delta starting

Size S2-S2-S2 • up to 86 A, 60 HP

For overview, see page 2/112.
For circuit diagrams, see page 2/205.

Size S3-S3-S2 • up to 150 A, 100 HP

${ }^{1)}$ Contactor assembly for star-delta (wye-delta) starting for customer assembly in size S3-S3-S3 (not shown): The 3RA2943-2BB. assembly kit is to be used here, see page 3/106.

For overview, see page 2/112
For circuit diagrams, see page $2 / 205$.

AC and DC operation

IEC 60947, EN 60947.
The 3RH2 contactor relays have screw, ring lug terminal or spring-type terminals. Four contacts are available in the basic unit.
The 3RH2 contactor relays are suitable for use in any climate. They are finger-safe according to EN 50274. The devices with ring lug terminal connection comply with degree of protection IP20 when fitted with the related terminal cover.

Contact reliability

High contact stability at low voltages and currents, suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage of 17 V .

Surge suppression

RC elements, varistors, diodes or diode assemblies (combination of a diode and a Zener diode) can be plugged onto all contactor relays from the front for damping opening surges in the coil. The plug-in direction is determined by a coding device.
Note:
The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times; diode assemblies 2 to 6 times, varistor +2 to 5 ms).

Auxiliary switch blocks

The 3RH2 contactor relays can be expanded by up to four contacts by the addition of snap-on auxiliary switch blocks.
The auxiliary switch block can easily be snapped onto the front of the contactors. The auxiliary switch block has a centrally positioned release lever for disassembly.
The contactor relays with 4 contacts according to EN 50011, with the identification number 40E, can be extended with 80E to 44 E auxiliary switch blocks to obtain contactor relays with 8 contacts according to EN 50011. The identification numbers 80 E to 44 E on the auxiliary switch blocks apply to the complete contactors. These auxiliary switch blocks (3RH29 11-1GA..) cannot be combined with contactor relays with identification numbers 31 E and 22E; they are coded.
All contactor relays with 4 contacts according to EN 50011, identification numbers 40 E to 22 E , can be extended with auxiliary switch blocks 40 to 02 to obtain contactor relays with 6 or 8 contacts in accordance with EN 50005. The identification numbers on the auxiliary switch blocks apply only to the attached auxiliary switch blocks.

In addition, fully mounted 3RH22 8-pole contactor relays are available; the mounted 4-pole auxiliary switch block in the 2nd tier is not removable. The terminal designations are according to EN 50011.
These versions are built according to special Swiss regulations SUVA and are distinguished externally by a red labeling plate.

Of the auxiliary contacts (integrated plus mountable) possible on the device, no more than four NC contacts are permitted.

3RH24 latched control relays, size S00

Application

$A C$ and $D C$ operation
IEC 60 947, EN 60947
(VDE 0660)

The terminal designations comply with EN 50011.
The relay coil and the coil of the release solenoid are both designed for continuous duty.

The number of auxiliary contacts can be extended by means of auxiliary switch blocks (up to 4 poles).
RC elements, varistors, diodes or diode assemblies can be plugged onto both coils
from the front for damping opening surges.
The control relay can also be switched on and released manually.

Design
EN 60 947-4-1
(VDE 0660 Part 102).
The 3TF contactors are suitable for use in any climate. They are safe from touch according to DIN VDE 0106 Part 100. Terminal covers (see accessories) may have to be fitted onto the connecting bars, depending on the configuration with other devices.

Main contacts

Contact erosion indication with 3TF68/69 vacuum contactors

The contact erosion of the vacuum interrupters can be monitored in the closed position by means of three white double slides on the contactor base The vacuum interrupter must be replaced if the distance indicated by one of the double slides is less than 0.5 mm while the contactor is in the closed position.
It is advisable to replace all three interrupters in order to ensure maximum reliability.

Surge suppression

Auxiliary contacts

The terminal designations comply with EN 50012
When the contactors are energized, the NC contacts open before the NO contacts close.

Contact reliability

The auxiliary contacts are extremely reliable and as such are suitable for electronic circuits

- with currents $\geq 1 \mathrm{~mA}$,
- at voltages greater than 17 V .

Control circuit

Protection of the coil circuits against surges:
AC operation

- fitted with varistors as standard.
DC operation
Retrofitting options:
- varistors

Electromagnetic compatibility (EMC)
3TF68/69...-. contactors for AC operation are equipped with an electronically controlled solenoid mechanism with a high level of immunity to interference (see table opposite).

Note:

In operation in installations where it is not possible to observe the emitted interference limits, e.g. as an output contactor in static frequency changers, use of 3TF68/69...-Q contactors (NS E catalogue, available in German) is recommended, without a main conductor path circuit (for further information refer also to the description below).

Contactor Type	Rated control supply voltage Us	Overvoltage type (IEC 60 801)	Severity to IEC 60 801	Surge strength
3TF68 44-.C...	$110 \mathrm{~V} \ldots 132 \mathrm{~V}$	Burst	3	2 kV
3TF69 44-.C..		Surge	4	6 kV
	$200 \mathrm{~V} \ldots 276 \mathrm{~V}$	Burst	4	4 kV
		Surge	4	5 kV
	$380 \mathrm{~V} \ldots 600 \mathrm{~V}$	Burst	4	4 kV
		Surge	4	6 kV

Circuit of the main conducting paths

An integrated RC varistor circuit in the main conducting paths of the contactors damps the rate of rise of switching overvoltages to uncritical values. Multiple restriking of the switching arcs is thereby prevented.
The operator of an installation can thus assume that the danger to the motor winding arising from switching overvoltages with a high rate of rise is ruled out.

The contactors can therefore be used without reservation for all AC switching applications, including three-phase motors with the demanding AC-4 utilization category.

Important note

The surge suppression circuit is not necessary when 3TF68/69 contactors are used in circuits with e.g. d.c. choppers, frequency converters or variablespeed drives.

It might be damaged by the voltage peaks and harmonics generated. This may also cause phase-to-phase short-circuits in the contactors.
Remedy: Order the special contactor design without surge suppression. In this case the Order No. must be supplemented with "-Z" and the order code "A02". No additional charge is made.

Short-circuit protection

 of contactorsFor assembling fuseless load feeders, please select a circuitbreaker/contactor combination according to the brochure entitled "Verbraucherabzweige in sicherungsloser Bauweise", Order No. E20001-P285-A726 (available in German only).

The timer module, which is available in "ON-delay" and "OFF-delay" designs, allows time-delayed functions up to 100 s (3 distinct delay ranges). It contains a relay with one NO contact and one NC contact; the relay is switched either after an ON-delay or after an OFFdelay.
The timer module with a WYEDELTA function is equipped with one delayed and one instantaneous NO contact, with an interval time of 50 ms between the two (see diagram). The delay time of the NO contact can be set between 1.5 s and 30 s .

WYE-delta function

The contactor on which the solid-state, time-delay auxiliary switch block is mounted operates without a delay.

Size S00 (3RT201)

The solid-state, time-delay auxiliary switch block is fitted onto the front of the contactor. The timer module is supplied with power directly by plug-in contacts via the coil terminals of the contactor, in parallel with A1/A2. The time function is activated by closing the contactor on which the auxiliary switch block is mounted. The OFFdelay variant operates without an auxiliary power supply. Minimum ON period: 200 ms .

A varistor is integrated in the timer module for damping opening surges in the contactor coil.
The solid-state, time-delay auxiliary switch block cannot be mounted on size SOO coupling relays.

Sizes S0 to S12 (3RT202 to 3RT107)
The solid-state, time-delay auxiliary switch block is fitted onto the front of the contactor.
The timer module is supplied with power via two terminals (A1/A2); the time delay of the auxiliary switch block can be activated either by a parallel link to any contactor coil or by any power source.

The OFF-delay variant operates without an auxiliary power supply. Minimum ON period: 200 ms .
A single-pole auxiliary switch block can be snapped onto the front of the contactor in addition to the timer module.
The timer module has no integrated components for damping opening surges.

The timer module, which is available in "ON-delay" and
"OFF-delay" with auxiliary power supply designs, allows time-delayed functions up to 100 s (3 distinct delay ranges). Contactors fitted with a timedelay block close or open after a delay according to the set time.
The ON-delay variant of the time-delay relay is connected in series with the contactor coil; terminal A1 of this coil must not be connected.
With the OFF-delay variant of the time-delay relay, the contactor coil is contacted directly via the relay; terminals A1 and A2 of the coil must not be connected.
The time-delay relays are suitable for both AC and DC operation.

Size S00 (3RT201)

The variant for size SOO contactors is fitted onto the front of the contactor (with the supply voltage switched off) and then slid into its latched position; at the same time, the time-delay relay is connected by means of plugin contacts to coil terminals A1 and A 2 of the contactor. Any contactor coil terminals which are not required are sealed off by means of covers on the enclosure of the time-delay block, to prevent them from being connected inadvertently (for circuit diagrams, see page 2/149).
A varistor is integrated in the timer module for damping opening surges in the contactor coil.
The solid-state, time-delay block cannot be mounted on size SOO coupling relays.

Solid-state time-delay block with semiconductor output

Sizes S0 to S3 (3RT202 to 3RT107)

The time-delay block for size S0 to S3 contactors is plugged into coil terminals A1 and A2 on top of each contactor; the timedelay relay is connected both electrically and mechanically by means of pins.
A varistor is integrated in the timer module for damping opening surges in the contactor coil.

Configuration note

Activation of loads parallel to the start input is not permitted with AC operation (see (a).
The 3RT19 16-2D .../3RT19 262D... time-delay blocks with an OFF delay have a voltage-carrying start input B1. This means that if there is a parallel load on terminal B1, activation can be simulated with AC voltage. In this case, the additional load (e. g. contactor K3) must be wired as shown in (b).

Time-delay block
Contactor

Accessories for 3RT / 3RH Contactors

3-phase EMC interference suppression module for size S00 contactor

A so-called backr-e.m.f. (electromotive force) is produced when motors or various inductive loads are turned off. Voltage peaks of up to 4000 V may occur as a result, with a frequency spectrum from 1 kHz to 10 MHz and a rate of voltage variation from 0.1 to $20 \mathrm{~V} / \mathrm{ns}$.

The connection between the main conducting path and the EMC interference suppression module enables contact arcing, which is responsible for contact erosion and the majority of clicking noises, to be reduced; this in turn is conducive to an electromagnetically compatible design.
Since the EMC interference suppression module achieves a significant reduction in radiofrequency components and the voltage level in three phases, the contact endurance is also improved considerably. This makes an important contribution towards enhancing the reliability and availability of the system as a whole.
There is no need for fine graduations within each performance class, as smaller motors inherently have a higher inductance, so that one solution for all fixed-speed drives up to 7.5 HP is adequate.

Two electrical variants are available:

The advantages of the RC circuit lie mainly in the reduction in the rate of rise and in its RF damping ability. The selected values ensure effective interference suppression over a wide range.

The varistor circuit is able to absorb high energy levels and is also suitable for frequencies from 10 to 400 Hz (variablespeed drives). There is no limiting below the knee-point voltage, however.

OFF-delay device
 for size S00 to S3 contactors

$A C$ and $D C$ operation
 IEC 60 947, EN 60947

For screwing and snapping onto 35 mm standard mounting rail. The OFF-delay devices have screw connections.

Application

The OFF-delay device prevents a contactor from dropping out unintentionally when there is a short-time voltage dip or voltage failure. It supplies the necessary power for a seriesconnected, DC-operated contactor during a voltage dip to ensure that the
contactor does not open. The 3RT19 16/3RT29 16 OFF-delay devices are specifically designed for operation with the 3RT contactors and 3RH contactor relays of the SIRIUS series.

Principle of operation

The OFF-delay device operates without external voltage on a capacitive basis, and can be energized with either AC or DC (24 V version for DC operation only). Voltage matching, which is only necessary with AC operation, is performed using a rectifier bridge.

A contactor opens after a delay when the capacitors of the contactor coil, built into the OFFdelay device, are switched in parallel. In the event of voltage failures, the capacitors are discharged via the coil and thereby delay the opening of the contactor.
If the command devices are upstream of the OFF-delay device in the circuit, the OFF delay takes effect with every opening operation. If the opening operation is downstream of the OFF-delay device, an OFF delay only applies in the event of failure of the mains voltage.

Operation

In the case of the versions for rated control supply voltages of 110 V and 230 V , either AC voltage or DC voltage can be applied on the line side, where as the variant for 24 V is designed for DC operation only.
A DC-operated contactor is connected to the output in accordance with the input voltage that is applied.
The mean value of the OFF delay is approximately 1.5 times the specified minimum time.

Interface for mounting on size S0 to S3 contactors

| Application | Functions |
| :--- | :--- | :--- |
| DC operation | Design |
| IEC 60 947 and EN 60 947 | System-compatible operation |
| The interface is suitable for use | with DC 24 V, coil voltage toler- |
| in any climate. It is safe from | ance 17 V to 30 V . |
| touch to DIN VDE 0106 Part | Low power consumption in con- |
| 100. The terminal designations | formity with the technical data |
| conform to EN 50 005. | of the electronic systems. |
| | A light-emitting diode indicates |
| | the circuit state. |

Surge suppression

The 3RH29 24-1GP11 interface has an integrated surge suppressor (varistor) for the contactor coil being switched.

Mounting

The 3RH29 24-1GP11 interface is mounted directly on the contactor coil.

Terminal diagram

3RH19/29 24-1GP1

with surge suppression

(1) Interface
(2) Contactor
(2) Contactor

Connection example

3RH19/29 24-1GP1

with surge suppression

(1) Interface
(2) Contactor

Contactors for Switching Motors

SIRIUS 3RT contactors, 3-pole up to 500 HP

Technical specifications

More information					
Technical specifications, see https://support.industry.siemens.com/cs/ww/en/ps/16134/td FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16134/faq			Manuals, see - System Manual "SIRIUS Modular System - System Overview", https://support.industry.siemens.com/cs/WW/en/view/60311318 - Manual "SIRIUS - SIRIUS 3RT Contactors/Contactor Assemblies", https://support.industry.siemens.com/cs/WW/en/view/60306557 - Application Manual "Controls with IE3/IE4 Motors", https://support.industry.siemens.com/cs/ww/en/view/94770820		
Type			Contactor 3RT2 S00 to S2	S3	3RT1 S6 to S12
Rated data of the auxiliary contacts					
According to IEC/EN 60947-5-1 Data applies to integrated auxiliary contacts and conventional contacts in the auxiliary switch blocks					
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3) - For laterally mountable auxiliary switch blocks - For front mountable auxiliary switch blocks		V V	$\begin{aligned} & 690 \\ & 690 \\ & 690 \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { (3RT20. .-0CCO: 690) } \\ & 690 \\ & 690 \end{aligned}$	500 690
Conventional thermal current $I_{\text {th }}=$ rated operational current $I_{\mathrm{e}} / \mathrm{AC}-12$		A	10		
AC load Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-15 / \mathrm{AC}$-14 - For rated operational voltage U_{e}	Up to 230 V 400 V 500 V 690 V	A A A A	$\begin{aligned} & 10^{1)} \\ & 3 \\ & 2 \\ & 1 \end{aligned}$	6	$\begin{aligned} & 6 \\ & 3 \\ & 2 \\ & 1^{2)} \end{aligned}$
DC load Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-12$					
Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-12$ - For rated operational voltage $U_{\text {e }}$	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A A A A A A A	$\begin{aligned} & 10 \\ & 6 \\ & 3 \\ & 2 \\ & 1 \\ & 0.3 \\ & 0.15 \end{aligned}$		$\begin{aligned} & 10 \\ & 6 \\ & 3 \\ & 2 \\ & 1 \\ & 0.3 \\ & 0.15^{22} \end{aligned}$
Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-13 - For rated operational voltage $U_{\text {e }}$	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A A A A A A A	$\begin{aligned} & 10^{1)} \\ & 2 \\ & 1 \\ & 0.9 \\ & 0.3 \\ & 0.14 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 10^{3)} \\ & 2 \\ & 1 \\ & 0.9 \\ & 0.3 \\ & 0.14 \\ & \left.0.15^{2}\right) \end{aligned}$

Contact reliability at $17 \mathrm{~V}, 1 \mathrm{~mA}$

Frequency of contact faults $<10^{-8}$ i.e. <1 fault per 100 million operating cycles
Acc. to IEC/EN 60947-5-4

1) 3 RH22, 3RH29, 3RT2 $\ldots-\ldots 4,3 R T 2 \ldots-\ldots .6: I_{\mathrm{e}}=6 \mathrm{~A}$ at AC-15/AC-14 and DC-13.
2) For laterally mountable auxiliary switch blocks, only the rated operational voltages up to 500 V apply.
3) For laterally mountable auxiliary switch blocks, DC-13/at 24 V : Max. 6 A .

Type
Size
Contact endurance of the auxiliary contacts
It is assumed that the operating mechanisms are switched
randomly, i.e. not synchronized with the phase angle of the supply
system.
The contact endurance is mainly dependent on the breaking
current.

3RT contactors

S00 to S12

Sizes S00 to S3

Diagram legend:
$I_{\mathrm{a}}=$ Breaking current
$I_{\text {e }}=$ Rated operational current
The characteristic curves apply to:

- Integrated auxiliary contacts on 3RT2.
- 3RH2911, 3RH2921 auxiliary switch blocks ${ }^{1)}$

Sizes S6 to S12

Diagram legend:

$I_{\mathrm{a}}=$ Breaking current
 $I_{\mathrm{e}}=$ Rated operational current

The characteristic curves apply to:

- Integrated auxiliary contacts on 3RT10
- 3RH1911, 3RH1921 auxiliary switch blocks ${ }^{3)}$

1) 3 RH22, 3RH29, 3RT2 $\ldots-\ldots 4,3 R T 2 \ldots-\ldots 6: I_{\mathrm{e}}=6 \mathrm{~A}$ at AC-15/AC-14 and DC-13, 3RT2.4: $I_{\mathrm{e}}=6 \mathrm{~A}$ at AC-15/AC-14.
${ }^{2)}$) For laterally mountable auxiliary switch blocks, DC-13/at 24 V : Max. 6 A .
2) For laterally mountable auxiliary switch blocks, only the rated operational voltages up to 500 V apply.

Type

Size
Contact endurance of the main contacts
The characteristic curves show the contact endurance of the contactors when switching resistive and inductive AC loads (AC-1/AC-3) depending on the breaking current and rated operational voltage. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The rated operational current I_{e} complies with utilization category AC-4 (breaking 6 times the rated operational current) and is intended for a contact endurance of approximately 200000 operating cycles.
If a shorter contact endurance is sufficient, the rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4$ can be increased.
If the contacts are used for mixed operation, i.e. normal switching (breaking the rated operational current according to utilization category AC-3) in combination with intermittent inching (breaking several times the rated operational current according to utilization category AC-4), the contact endurance can be calculated approximately from the following equation:

$$
x=\frac{A}{1+\frac{C}{100} \frac{\nabla_{\triangle}^{A}}{\triangle \bar{B}}-1 \frac{\boxtimes}{\boxtimes}}
$$

Characters in the equation:
X Contact endurance for mixed operation in operating cycles
A Contact endurance for normal operation ($I_{\mathrm{a}}=I_{\mathrm{e}}$) in operating cycles
B Contact endurance for inching ($I_{\mathrm{a}}=$ multiple of I_{e}) in operating cycles
C Inching operations as a percentage of total switching operations

3RT2 contactors
SOO and S0

Size S00
Operating cycles at

Size SO

Contactors for Switching Motors

SIRIUS 3RT contactors, 3-pole up to 500 HP

| Type 3RT2 contactors
 Size S2 to $\mathbf{S 1 2}$
 Contact endurance of the main
 contacts |
| :--- | :--- |

Size S2

Operating cycles at

Size S3

Sizes S6 to S12

Contactors for Switching Motors

SIRIUS 3RT contactors, 3-pole up to 500 HP

Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.

Upright mounting position

Mechanical endurance

- Basic unit
- Basic unit with mounted auxiliary switch block
- Basic unit with solid-state compatible auxiliary switch block

Operating cycles 30 million
Operating cycles 10 million
Operating cycles 5 million

Electrical endurance		For contact endurance of the main contacts, see page 3/20.
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6
Protective separation between the coil and the main contacts acc. to IEC 60947-1, Appendix N	V	400
Mirror contacts		
A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with an NO main contact. - 3RT2.1. (removable auxiliary switch block) - 3RH2919-.NF.. solid-state compatible auxiliary switch blocks		Yes, this applies to both the basic unit as well as to between the basic unit and the mounted auxiliary switch block acc. to IEC 60947-4-1, Appendix F No mirror contact for size S00
Ambient temperature		
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
- During storage	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$

Degree of protection acc. to IEC 60529

- On front
- Connecting terminal

Touch protection acc. to IEC 60529
IP20 (screw terminals and spring-type terminals)
IP20 (screw terminals and spring-type terminals)

Shock resistance

- Rectangular pulse

DC operation
g/ms 6.7/5 and 4.2/10
$\mathrm{g} / \mathrm{ms} \quad 6.7 / 5$ and $4.2 / 10$
$\mathrm{g} / \mathrm{ms} \quad 10.5 / 5$ and $6.6 / 10$
$\mathrm{g} / \mathrm{ms} \quad 10.5 / 5$ and $6.6 / 10$
7.3/5 and 4.7/10
7.3/5 and 4.7/10
11.4/5 and 7.3/10
$11.4 / 5$ and $7.3 / 10$

Power Contactors, 3-pole up to 500 HP

Power consumption of the solenoid coils

(for cold coil and $1.0 \times U_{\mathrm{s}}$)

- AC operation, $50 / 60 \mathrm{~Hz}$, standard version
- Closing

VA	$27 / 24.3$	$37 / 33$
	$0.8 / 0.75$	$5.7 / 4.4$

- Closed
- P.f.
- AC operation, 50 Hz , for USA/Canada
- Closing

VA $26.4 \quad 36$

- P.f. for closing
- Closed

0.81	0.8
4.4	5.9

- P.f. for closed
0.24
- AC operation, 60 Hz , for USA/Canada
- Closing

VA	31.7	43

- P.f. for closing
0.81
0.8
- Closed

VA 4.8
6.5

- P.f. for closed
0.25
- DC operation (closing = closed) W 4

Permissible residual current of the electronics

(with 0 signal)

- AC operation
$<3 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)^{1} \quad<4 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)^{1)}$
- DC operation
$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)^{1)}$

Operating times at $1.0 \times \mathbf{U s}_{\mathbf{s}}{ }^{2)}$

Total break time $=$ Opening delay + Arcing time

- AC operation
- Closing delay ms
9.5 ... 24
9... 22

Opening delay

- DC operation
- Closing delay
- Opening delay
- Arcing time

1) The 3RT2916-1GA00 additional load module is recommended for higher residual currents, see page 3/114.

4 ... 14
4.5 ... 15

35 ... 50
7... 12

10 ... 15
2) The OFF-delay times of the NO contacts and the ON-delay times of the NC contacts increase if the contactor coils are attenuated against voltage peaks (suppression diode 6x to 10x; diode assembly $2 x$ to $6 x$; suppression diode +1 to 5 ms ; varistor +2 to 5 ms).

Contactors for Switching Motors

SIRIUS 3RT contactors, 3-pole up to 500 HP

Operating times

- Closing delay
- OFF-delay NC

25 ... 40
Opening delay
ON-delay NO

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) The data applies to 3RT2516 and 3RT2517 contactors ($2 \mathrm{NO}+2 \mathrm{NC}$) up to a rated operational voltage of 400 V only.

Contactors for Switching Motors

SIRIUS 3RT contactors, 3-pole up to 500 HP

Utilization category DC-3/DC-5,

shunt-wound and series-wound motors ($L / R \boxtimes 15 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)

- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 15 \\ & 0.35 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.5 \\ & 0.15 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A A A	$\begin{aligned} & -- \\ & -- \\ & \hline- \end{aligned}$	
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A A A	$\begin{aligned} & 15 \\ & 3.5 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 20 \\ & 5 \\ & 0.35 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A		
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 1.2 \\ & 0.14 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.2 \\ & 0.2 \end{aligned}$

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays

- No-load switching frequency
- Switching frequency z during rated operation ${ }^{1)}$

$-I_{\mathrm{e}} /$ AC-1	At 400 V	$\mathrm{~h}^{-1}$	1000
$-I_{\mathrm{e}} /$ AC-2	At 400 V	$\mathrm{~h}^{-1}$	750
$-I_{\mathrm{e}} /$ AC-3	At 400 V	$\mathrm{~h}^{-1}$	750
$-I_{\mathrm{e}} /$ AC-4	At 400 V	$\mathrm{~h}^{-1}$	250

Contactors with overload relays

- Mean value
$h^{-1} \quad 15$

1) Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} :
$\left.\left.z^{\prime}=z \mathrm{e}^{\prime} / I^{\prime}\right) U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \boxtimes \| / \mathrm{h}$.

Contactors for Switching Motors

SIRIUS 3RT contactors, 3-pole up to 500 HP

		Contactors
Type		3RT2015 to 3RT2018
Size		S00
Conductor cross-sections		
Main conductors, auxiliary conductors and coil terminals (1 or 2 conductors can be connected)		(-) Screw terminals
- Solid or stranded - Finely stranded with end sleeve (DIN 46228-1) - AWG cables, solid or stranded - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5)^{11} ; 2 \times(0.75 \ldots 2.5)^{1)} ; \text { max. } 2 \times 4 \\ & 2 \times(0.5 \ldots 1.5)^{1)} ; 2 \times(0.75 \ldots 2.5)^{1)} \\ & 2 \times(20 \ldots 16)^{1)} ; 2 \times(18 \ldots 14)^{1)} ; 2 \times 12 \end{aligned}$ M3 (for Pozidriv size 2; 区 $5 \ldots$ 6) $0.8 \text {... } 1.2 \text { (7 ... } 10.3 \mathrm{lb} . \mathrm{in})$
Main conductors, auxiliary conductors and coil terminals ${ }^{\mathbf{2}}$ (1 or 2 conductors can be connected)		Spring-type terminals
- Operating devices - Solid or stranded - Finely stranded with end sleeve (DIN 46228-1) - Finely stranded without end sleeve - AWG cables, solid or stranded	mm mm^{2} mm^{2} mm^{2} AWG	$\begin{aligned} & 3.0 \times 0.5 \\ & 2 \times(0.5 \ldots 4) \\ & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(20 \ldots 12) \end{aligned}$

Auxiliary conductors for front and laterally mounted auxiliary switches ${ }^{2}$)

(1 or 2 conductors can be connected)

- Operating devices $\mathrm{mm} 3.0 \times 0.5$
- Solid or stranded
- Finely stranded with end sleeve (DIN 46228-1)
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 2.5)$
mm^{2}
- Finely stranded without end sleeve
- AWG cables, solid or stranded
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 2.5)$
${ }^{1)}$ If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

2) Max. external diameter of the cable insulation: 3.6 mm . On spring-type terminals with conductor cross-sections $\begin{aligned} & \text { ® } \\ & \mathrm{mm}^{2} \text {, }\end{aligned}$ an insulation stop must be used, see page 3/115.

Contactors for Switching Motors
SIRIUS 3RT contactors, 3-pole up to 500 HP

Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.

Upright mounting position

NSBO_00477a
Special version required,
also applies to 3RT202.-.K. 40 coupling contactors

Mechanical endurance

- Basic unit and
basic unit with mounted auxiliary switch block
- Basic unit with solid-state compatible auxiliary switch block

Electrical endurance		For contact endurance of the main contacts, see page 3/20.
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\mathbf{i m p}}$	kV	6
Protective separation between the coil and the main contacts (acc to IEC 60947-1, Appendix N)	V	400

Mirror contacts

A mirror contact is an auxiliary NC contact that cannot be closed
simultaneously with an NO main contact.

- Integrated auxiliary switches Yes, acc. to IEC 60947-4-1, Appendix F
- 3RT2.2. (removable auxiliary switch block)

Yes, acc. to IEC 60947-4-1, Appendix F

Permissible ambient temperature

- During operation ${ }^{\circ} \mathrm{C} \quad-25 \ldots+60$
- During storage ${ }^{\circ} \mathrm{C} \quad-55 \ldots+80$

Degree of protection acc. to IEC 60529

- On front
- Connecting terminal

Touch protection acc. to IEC 60529
IP20 (screw terminals and spring-type terminals)
P20 (screw terminals and spring-type terminals)

Shock resistance

- Rectangular pulse

AC operation
ac operation
DC operation
7.5/5 and 4.7/10
8.3/5 and 5.3/10

- Sine pulse

AC operation

- DC operation
g/ms $\quad 11.8 / 5$ and $7.4 / 10 \quad 13.5 / 5$ and $8.3 / 10$

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP

	Contactors	
Type	3RT2023 to 3RT2025	3RT2026
Size	SO	

Short-circuit protection

Main circuit

- Fuse links, operational class gG:

LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE acc. to IEC/EN 60947-4-1

- Type of coordination "1" A
- Type of coordination "1"
- Weld-free (test conditions according to IEC 60947-4-1)
- Miniature circuit breaker with C characteristic 63
25

63	100	125
25	35	50
10	16	
25	32	40

A 25

40

Auxiliary circuit

- Fuse links, operational class gG:

DIAZED, type 5SB; NEOZED, type 5SE (weld-free protection at $I_{\mathrm{k}} \boxtimes 1 \mathrm{kA}$)

- 230 V miniature circuit breaker, C characteristic

A 10
(short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)

Short-circuit protection for contactors with overload relays	See "Configuring the SIRIUS Modular System - Selection data for Fuseless and Fused Load Feeders", https://support.industry.siemens.com/cs/ww/en/view/39714188
Short-circuit protection for fuseless load feeders	See 3RA2 load feeders on page $8 / 4$ onwards

	Contactors	
Type	3RT2023 to	3RT2026 to
	3RT202.-.NB3 3RT202.-.NF3.. 3RT202.-.NP3	
Size	3RT2025	3RT2028

Control

Type of operating mechanism	AC or DC	AC/DC
Solenoid coil operating range	$\mathrm{AC} / \mathrm{DC}$	$0.8 \ldots 1.1 \times U_{\mathrm{s}}{ }^{1)}$
P	$0.7 \ldots 1.3 \times U_{\mathrm{s}}^{2)}$	

Power consumption of the solenoid coils
(for cold coil and $1.0 \times U_{\mathrm{s}}$)

- AC operation, 50 Hz , standard version
- Closing VA
- P.f.
- Closed

VA 65
0.82

- P.f.
- AC operation, $50 / 60 \mathrm{~Hz}$, standard version
- Closing
- P.f.
- Closed
P.f.
- AC operation, 50 Hz , for USA/Canada
- Closing
- P.f.
- Closed
- P.f.
- AC operation, 60 Hz , for USA/Canada
- Closing
- P.f.
- Closed

VA
0.76
7.2

- P.f.
- DC operation (closing = closed)

W $\quad 59 / 59$
$77 \quad 6.6$
$6.6 \quad 11.9$
11.9
12.7
7.6
0.25
9.8
0.98

3.9

68/67
81/79
6.6/6.7 0.79 0.51

Permissible residual current of the electronics
(with 0 signal)

- AC operation
$\left.30 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$
- DC operation
$\mathrm{mA}<16 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$

Operating times at $1.0 \times \mathbf{U}_{\mathbf{s}}{ }^{3)}$

- AC operation
- Closing delay

Opening delay
16

0 ... 17
65 ... 8
$65 \ldots 8$
30 ... 45
50... 70

60 ... 80

- DC operation
- Closing delay

ms	$55 \ldots 80$	$60 \ldots 80$	$56 \ldots 70$	$60 \ldots 80$
ms	$16 \ldots 17$	$30 \ldots 45$	$35 \ldots 45$	$30 \ldots 50$

- Arcing time
$\mathrm{ms} \quad 10$

1) Coil operating range

- At $50 \mathrm{~Hz}: 0.8$ to $1.1 \times U_{\mathrm{s}}$

3) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (varistor +2 ms to 5 ms , diode assembly: $2 x$ to 6 x).
4) The following applies to U_{S} max $=280 \mathrm{~V}$: Upper limit $=1.1 \times U_{\mathrm{S} \text { max }}$

Contactors for Switching Motors

SIRIUS 3RT contactors, 3-pole up to 500 HP

			Contactors					
Type			3RT2023	3RT2024	3RT2025	3RT2026	3RT2027	3RT2028
Size			S0					
Rated data of the main contacts								
Load rating with AC								
Utilization category AC-1, switching resistive loads								
- Rated operational current I_{e}	At $40^{\circ} \mathrm{C}$ up to 690 V At $60^{\circ} \mathrm{C}$ up to 690 V	$\begin{gathered} \mathrm{A} \end{gathered}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$				$\begin{aligned} & 50 \\ & 42 \end{aligned}$	
- Rated power for AC loads ${ }^{1)}$ $\text { P.f. }=0.95\left(\text { at } 60^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 230 \mathrm{~V} \\ & 400 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	kW kW kW	$\begin{aligned} & 13.3 \\ & 23 \\ & 40 \end{aligned}$				$\begin{aligned} & 15.5 \\ & 27.5 \\ & 47.5 \end{aligned}$	
- Minimum conductor cross-section for loads with I_{e}	$\begin{aligned} & \text { At } 40^{\circ} \mathrm{C} \\ & \text { At } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$					
Utilization categories AC-2 and AC-3								
- Rated operational currents I_{e}	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ 440 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \\ & 17 \\ & 13 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & 32 \\ & 21 \end{aligned}$	$\begin{aligned} & 38 \\ & 35 \end{aligned}$
- Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 2.2 \\ & 4 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 7.5 \\ & 11 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 11 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 15 \\ & 18.5 \end{aligned}$	$\begin{aligned} & 11 \\ & 18.5 \end{aligned}$
Thermal load capacity	10 s current	A	80	110	150	200	260	300
Power loss per conducting path	At $I_{\mathrm{e}} / \mathrm{AC}-3$	W	0.4	0.5	0.9	1.6	2.7	3.8
Utilization category AC-4 (for $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$) - Maximum values:								
- Rated operational current I_{e} - Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { Up to } 400 \mathrm{~V} \\ \text { At } 400 \mathrm{~V} \end{array}$	A kW	$\begin{aligned} & 8.5 \\ & 4 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 7.5 \end{aligned}$		$\begin{aligned} & 22 \\ & 11 \end{aligned}$	
- The following applies to a contact endurance of about 200000 operating cycles:								
- Rated operational currents I_{e}	Up to 400 V 690 V	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.1 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz	$\begin{array}{r} \text { At } 110 \mathrm{~V} \\ 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.1 \\ & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 1.5 \\ & 2.6 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3.5 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.5 \\ & 4.4 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.4 \\ & 6 \\ & 10.3 \end{aligned}$	

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP

	Contactors	
Type	3RT2023 to 3RT2025	3RT2026 to 3RT2028
Size	So	
Rated		

Rated data of the main contacts (continued)

Load rating with DC

Utilization category DC-1,
switching resistive loads ($L / R \boxtimes \mathbf{1 ~ m s}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)

-1 conducting path	Up to 24 V	A	35
60 V	A	20	
	110 V	A	4.5
	220 V	A	1
	440 V	A	0.4
600 V	A	0.25	
-2 conducting paths in series	Up to 24 V	A	35
60 V	A	35	
	110 V	A	35
	220 V	A	5
- 3 conducting paths in series	440 V	A	1
	600 V	A	0.8
	Up to 24 V	A	35
60 V	A	35	
	110 V	A	35
	220 V	A	35
	440 V	A	2.9
600 V	A	1.4	

Utilization category DC-3/DC-5,

shunt-wound and series-wound motors ($L / R \boxtimes 15 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)

-1 conducting path	Up to 24 V	A	20
60 V	A	5	
	110 V	A	2.5
	220 V	A	1
	440 V	A	0.09
-2 conducting paths in series	600 V	A	0.06
	Up to 24 V	A	35
60 V	A	35	
	110 V	A	15
220 V	A	3	
- 3 conducting paths in series	440 V	A	0.27
	600 V	A	0.16
	Up to 24 V	A	35
60 V	A	35	
	110 V	A	35
220 V	A	10	
	440 V	A	0.6
600 V	A	0.6	

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays

- No-load switching frequency
- Switching frequency z during rated operation ${ }^{1)}$
- $I_{\mathrm{e}} / \mathrm{AC}-1$

At 400 V	$\mathrm{~h}^{-1}$	1000	
At 400 V	$\mathrm{~h}^{-1}$	1000	750
At 400 V	$\mathrm{~h}^{-1}$	1000	750
At 400 V	$\mathrm{~h}^{-1}$	300	250

- $I_{\mathrm{e}} / \mathrm{AC}-3$
- I $/$ AC-3
$h^{-1} \quad 15$
- Mean value

1) Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} ': $\left.z^{\prime}=z \mathbb{N} / I^{\prime}\right)\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \mathbb{\|} / \mathrm{h}$.

SIRIUS 3RT contactors, 3-pole up to 500 HP

Auxiliary conductors ${ }^{2}$

(1 or 2 conductors can be connected)

- Operating devices
3.0×0.5
- Solid or stranded
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 2.5)$
- Finely stranded with end sleeve (DIN 46228-1)
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5)$
- Finely stranded without end sleeve
$\mathrm{mm}^{2} \quad 2 \times(0.5 \ldots 2.5)$
- AWG cables, solid or stranded

AWG $2 \times(20 \ldots 14)$
${ }^{1)}$ If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.
2) Max. external diameter of the cable insulation: 3.6 mm . On spring-type terminals with conductor cross-sections $\boxtimes 1 \mathrm{~mm}^{2}$, an insulation stop must be used, see page $3 / 115$.

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP
Type
Size
General data
Dimensions (W x H x D)

- Basic unit
- Screw/spring-type terminals
- Basic unit with mounted auxiliary switch block
- Screw terminals
- Spring-type terminals
- Basic unit with mounted function module or
solid-state time-delayed auxiliary switch block
- Screw/spring-type terminals
Permissible mounting position
The contactors are designed for operation on a
vertical mounting surface.
3RT2035

Mechanical endurance

- Basic units and
basic units with mounted auxiliary switch block
- Basic units with solid-state compatible auxiliary switch block

Operating cycles 10 million
Operating cycles 5 million

Electrical endurance		For contact endurance of the main contacts, see page 3/21 onwards.
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\mathbf{i m p}}$	kV	6
Protective separation between the coil and the main contacts	V	400

Mirror contacts

A mirror contact is an auxiliary NC contact that cannot be closed simultaneously with an NO main contact.

- Integrated auxiliary switches Yes, acc. to IEC 60947-4-1, Appendix F
- 3RT2.3. (removable auxiliary switch block)

Yes, acc. to IEC 60947-4-1, Appendix F

Permissible ambient temperature

- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
- During storage	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$

Degree of protection acc. to IEC 60529

- On front

IP20

- Connecting terminal

Touch protection acc. to IEC 60529
IP00 (for higher degree of protection, use additional terminal covers)

Shock resistance

- Rectangular pulse
- AC operation $\quad \mathrm{g} / \mathrm{ms} \quad 11.8 / 5$ and $7.4 / 10$
- DC operation
$\mathrm{g} / \mathrm{ms} \quad 7.7 / 5$ and $4.5 / 10$
- Sine pulse
- AC operation $\quad \mathrm{g} / \mathrm{ms} \quad 18.5 / 5$ and $11.6 / 10$
- DC operation $\quad \mathrm{g} / \mathrm{ms} \quad 12 / 5$ and $7 / 10$

Short-circuit protection

Main circuit

- Fuse links, operational class gG:

LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE acc. to IEC/EN 60947-4-1

- Type of coordination "1"
- Type of coordination "2"

Weld-free (test conditions acc. to IEC 60947-4-1)
A $\quad 160$

Auxiliary circuit

- Fuse links, operational class gG:

A 10
DIAZED, type 5SB; NEOZED, type 5SE
(weld-free protection at I_{k} Q 1 kA)

- 230 V miniature circuit breaker, C characteristic

A 10 (short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)
Short-circuit protection for contactors with overload relays See "Configuring the SIRIUS Modular System - Selection data for Fuseless and Fused Load Feeders"
https://support. industry.siemens.com/cs/ww/en/view/39714188
Short-circuit protection for fuseless load feeders
See 3RA2 load feeders, from page 8/4 onwards

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP

Contactors for Switching Motors

SIRIUS 3RT contactors， 3 －pole up to 500 HP

	Contactors			
Type	3RT2035	3RT2036	3RT2037	3RT2038
Size	S2			
S2				

Rated data of the main contacts

Load rating with AC

Utilization category AC－1，

 switching resistive loads－Rated operational current $I_{\text {e }}$
－Rated power for AC loads ${ }^{1)}$
P．f．$=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$
－Minimum conductor cross－section for loads with I_{e}

At $40^{\circ} \mathrm{C} \mathrm{up} \mathrm{to} 690 \mathrm{~V}$	A	60
At $60^{\circ} \mathrm{C}$ up to 690 V	A	55
230 V	kW	23
400 V	kW	39
690 V	kW	68
At $40^{\circ} \mathrm{C}$	mm^{2}	16
At $60^{\circ} \mathrm{C}$	mm^{2}	16

70	80	90
60	70	80
26	30	34
46	53	59
79	91	102
25		35

Utilization categories AC－2 and AC－3
－Rated operational currents I_{e}
－Rated power for slipring or squirrel－cage motors at 50 and 60 Hz

Up to 400 V	A	40
440 V	A	40
500 V	A	40
690 V	A	24
At 230 V	kW	11
400 V	kW	18.5
690 V	kW	22
10 s current	A	400
At I_{e}／AC－3	W	2.2

50

$50-65$
65 － 80

	690 V	kW	22
Thermal load capacity	10 s current	A	400
Power loss per conducting path	At $I_{\mathrm{e}} / \mathrm{AC}-3$	W	2.2

Up to 400 V	A	35	41	55
At 400 V	kW	18.5	22	30

－Rated power for squirrel－cage motors with 50 Hz and 60 Hz
－The following applies to a contact endurance of about 200000 operating cycles
－Rated operational currents I_{e}

Up to 400 V	A	22
690 V	A	18.5
At 110 V	kW	3.2
230 V	kW	6.7
400 V	kW	11.6
690 V	kW	16.8

24	28	30
20	22	24
3.5	4.1	4.3
7.3	8.5	9.1
12.6	14.7	15.8
18.2	20	21.8

1）Industrial furnaces and electric heaters with resistance heating，etc． （increased power consumption on heating up has been taken into account）．

Contactors for Switching Motors

SIRIUS 3RT contactors, 3-pole up to 500 HP

Type			Contactors			
			3RT2035	3RT2036	3RT2037	3RT2038
Size			S2			
Rated data of the main contacts (continued)						
Load rating with DC						
Utilization category DC-1, switching resistive loads ($L / R \boxtimes 1 \mathrm{~ms}$)						
- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)						
- 1 conducting path	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 55 \\ & 23 \\ & 4.5 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & 0.4 \\ & 0.25 \end{aligned}$			
- 2 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 55 \\ & 45 \\ & 45 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5 \\ & 1 \\ & 0.8 \end{aligned}$			
- 3 conducting paths in series	$\begin{array}{r} \text { Up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \end{aligned}$			
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 45 \\ & 2.9 \\ & 1.4 \end{aligned}$			

Utilization category DC-3/DC-5,

shunt-wound and series-wound motors ($L / R \boxtimes 15 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)
-1 conducting path
-2 conducting paths in series
-3 conducting paths in series

Up to 24 V	A	35
60 V	A	6
110 V	A	2.5
220 V	A	1
440 V	A	0.1
600 V	A	0.06
Up to 24 V	A	55
60 V	A	45
110 V	A	25
220 V	A	5
440 V	A	0.27
600 V	A	0.16
Up to 24 V	A	55
60 V	A	55
110 V	A	55
220 V	A	25
440 V	A	0.6
600 V	A	0.35

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
Contactors without overload relays

- No-load switching frequency
- Switching frequency z during rated operation ${ }^{1)}$
- I/ /AC-1

AC	h^{-1}	5000
AC/DC	h^{-1}	1500
At 400 V	$\mathrm{~h}^{-1}$	1200
At 400 V	$\mathrm{~h}^{-1}$	750
At 400 V	$\mathrm{~h}^{-1}$	1000
At 400 V	$\mathrm{~h}^{-1}$	300

1000
600
800
250

800	700
400	350
700	500
200	150

$-I_{\mathrm{e}} / \mathrm{AC}-2$
$-I_{2} / \mathrm{AC}-3$

- IJAC-4

Contactors with overload relays

- Mean value
$h^{-1} \quad 15$
${ }^{1)}$ Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z\left(\mathrm{e}^{\prime} / U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \boxtimes / \mathrm{h}$.

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP

SIRIUS 3RT contactors, 3 -pole up to 500 HP

Short-circuit protection

Main circuit

- Fuse links, operational class gG

LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE acc. to IEC/EN 60947-4-1

- Type of coordination "1"
- Type of coordination "2"
- Weld-free (test conditions according to IEC 60947-4-1)
A 250

Auxiliary circuit

- Fuse links, operational class gG:
A 10

DIAZED, type 5SB; NEOZED, type 5SE
(weld-free protection at I_{k} 区 1 kA)

- 230 V miniature circuit breaker, C characteristic

A 10
(short-circuit current $I_{\mathrm{k}}<400 \mathrm{~A}$)

Short-circuit protection for contactors with overload relays	See "Configuring the SIRIUS Modular System - Selection data for Fuseless and Fused Load Feeders", https://support.industry.siemens.com/cs/ww/en/view/39714188
Short-circuit protection for fuseless load feeders	See 3RA2 load feeders, from page 8/4 onwards

Contactors for Switching Motors

SIRIUS 3RT contactors， 3 －pole up to 500 HP

$\begin{aligned} & \text { Type } \\ & \text { Size } \end{aligned}$	Contactors 3RT204．－．A．．． S3	3RT204．－．N．3．	Coupling contactors 3RT204．－．KB4．
Control			
Type of operating mechanism	AC	AC／DC	DC
Solenoid coil operating range			
－AC operation ${ }^{1)}$	$0.8 \ldots 1.1 \times U_{\text {s }}$	－－	
－AC／DC operation ${ }^{1)}$	－－	$0.8 \ldots 1.1 \times U_{\text {s }}$	－－
－DC operation	－－		$0.8 \ldots 1.2 \times U_{s}$

Power consumption of the solenoid coils
（for cold coil and $1.0 \times U_{\mathrm{s}}$ ）
－AC operation， 50 Hz ，standard version
－Closing
－P．f．
－Closed
P．f．
－AC operation， $50 / 60 \mathrm{~Hz}$ ，standard version
－Closing
－P．f．
－Closed
－P．f．
－AC operation， 60 Hz ，for USA／Canada
－Closing
－Pf
－Closed
－P．f．
－AC／DC operation
－Closing for AC operation
－P．f．
－Closed for AC operation
－P．f．
－DC operation
－Closing for DC operation
－Closed for DC operation

W	--	76^{2}

--	--
--	--
--	-
--	-
--	--
--	-
--	--
--	--
--	--
--	--
--	--
163	-
0.95	25
3.1	0.9
0.95	
$76^{2)}$	
1.8	-

Permissible residual current of the electronics

（with 0 signal）
－AC／DC operation mA
－DC operation
mA
Overvoltage configuration of the solenoid coil
mA
－－
<20
－－
296
0.61
19
19

Operating times at $0.8 \ldots 1.2 \times \boldsymbol{U}_{\mathbf{s}}{ }^{3}$ ）
Total break time $=$ Opening delay + Arcing time
－DC operation
－Closing delay
Closing delay ms
Opening delay ms
Operating times for $1.0 \times \mathbf{U s}^{3}{ }^{3}$
－AC operation
－Closing delay
ms 15.25
－Opening delay
－DC operation
－Closing delay
$\mathrm{ms} \quad 11 \ldots 20$
－Opening delay
－Arcing time
${ }^{1)}$ Coil operating range

$$
\text { - At } 50 \mathrm{~Hz}: 0.8 \text { to } 1.1 \times U_{\mathrm{s}}
$$

－At $60 \mathrm{~Hz}: 0.85$ to $1.1 \times U_{\mathrm{s}}$ ．
2）In the case of $\mathrm{AC} / \mathrm{DC}$ coils，increased starting currents（2．6 A on average） occur during the first 200 ms ．For direct control from a PLC，we recom－ mend special 3RT204．－．KB4．coupling contactors with adapted power consumption，suitable for a PLC output current of 2 A （see page $3 / 62$ ）．

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

Contactors without overload relays

- No-load switching frequency
- Switching frequency z during rated operation ${ }^{1)}$
$-I_{\mathrm{e}} / \mathrm{AC}-1$
$-I_{\mathrm{e}} / \mathrm{AC}-2$

At 400 V	$\mathrm{~h}^{-1}$	900	
At 400 V	$\mathrm{~h}^{-1}$	400	350
At 400 V	$\mathrm{~h}^{-1}$	1000	850
At 400 V	$\mathrm{~h}^{-1}$	300	250

- I_{e} /AC-4 At 400 V

Contactors with overload relays

- Mean value

1) Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} ': $\left.z^{\prime}=z\left(U_{\mathrm{e}} / I^{\prime}\right) / U^{\prime}\right)^{1.5} \mathrm{Wl} / \mathrm{h}$.

Contactors for Switching Motors

SIRIUS 3RT contactors, 3 -pole up to 500 HP

3RT10.5. contactors

Technical data

1) According to excerpt from

IEC 60 947-4-1 (VDE 0660 Part 102):
Type of coordination "1":
Destruction of the contactor and the overload
relay is permissible. The contactor and/or over-
load relay must be replaced if necessary.

Type of coordination "2":
No damage can be tolerated to the overload relay, but contact welding on the contactor is permitted if the contacts can be easily separated.

3RT10.5. contactors

Technical data

Contactor	Size	S6	S6	S6
	Type	3RT10 54	3RT10 55	3RT10 56

Main circuit

Load ratings with AC

| AC-1 utilization category, switching resistive load | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Rated operational currents I_{e} | | | |

AC-6b utilization category, switching low-inductance

(low-loss, metallized-dielectric) three-phase capacitors

Ambient temperature $40^{\circ} \mathrm{C}$
Rated operational currents I_{e}
Ratings of single capacitors
or of capacitor banks (minimum inductance
up to 500 V A
at 230 V
between parallel capacitors $6 \mu \mathrm{H}$)
at $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ and

105	125	145
42	50	58
72	86	100
90	108	125
72	86	100

1) Industrial furnaces and electric heaters with resistance heating, for example (higher current input allowed for during heating up)
2) Acc. to VDE 0660 Part 102
For rated values for various starting conditions, see Section 3.

Technical data

Contactor	Size	S6	S6	S6
	Type	3RT10 54	3RT10 55	3RT10 56

Main circuit
Load ratings with DC
DC-1 utilization category,
switching resistive load ($\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$)
Rated operational current $I_{\mathrm{e}}\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$

Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour
Contactors without overload relays
Dependence of the operating frequency z ' on the operational current I^{\prime} and the operational voltage U^{\prime} :
$z^{\prime}=z \cdot \frac{I_{\overrightarrow{\vec{\prime}}}}{\bar{I}^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$
Contactors with overload relays (mean value)

No-load operating frequency

Contactor Conductor cross-sections Screw connections

Contactors for Switching Motors

3RT10.6. contactors

Technical data

Contactor	Size	S10	S10
	Type	3RT10 64	3RT10 65

General data
Permissible mounting position
The contactors are designed for operation
on a vertical mounting surface.

Short-circuit protection

Main circuit

Fuse links, utilization category gL/gG
NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE

- acc. to IEC 60 947-4-1/EN 60 947-4-1

$$
\begin{aligned}
& \text { Type of coord. "1" 1) } \\
& \text { Type of coord. "2" } 1 \text {) } \\
& \text { Weld-free }^{2} \text {) }
\end{aligned}
$$

Auxiliary circuit

Fuse links, utilization category gL/gG
砳
DIAZED Type 5SB, NEOZED Type 5SE
or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400 \mathrm{~A}$)

Contactor	Size Type		$\begin{aligned} & \text { S10 } \\ & \text { 3RT10 } 6 . \end{aligned}$		
Control circuit					
Coil voltage tolerance		AC/DC (UC)	$0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$		
Power consumption of solenoid mechanism (with coil in cold state and rated range $U_{\text {s min }} \ldots U_{\text {s max }}$)			Conventional op. mechanism	Solid-state op. mechanism	
			$U_{\mathrm{s} \text { min }} \quad U_{\mathrm{s} \text { max }}$	$U_{\text {s min }}$	$U_{\text {s max }}$
AC operation	closing p.f. closed p.f.	VA VA	490 590 0.9 0.9 5.6 6.7 0.9 0.9	$\begin{gathered} 400 \\ 0.8 \\ 4 \\ 0.5 \end{gathered}$	$\begin{gathered} 530 \\ 0.8 \\ 5 \\ 0.4 \end{gathered}$
DC operation	closing closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	540 650 6.1 7.4	$\begin{aligned} & 440 \\ & 3.2 \end{aligned}$	$\begin{gathered} 580 \\ 3.8 \end{gathered}$
PLC control input (EN 61 131-2/	2/Type 2)		DC $24 \mathrm{~V} / \leq 30 \mathrm{~mA}$		
Operating times (Break-time $=$ opening time +	ing time)		Conventional op. mechanism	Solid-state Operation v A1/A2	mechanism PLC input
- at $0.8 \times U_{s \text { min }} \ldots 1.1 \times U_{s \text { max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 30 \ldots 95 \\ & 40 \ldots 80 \end{aligned}$	$\begin{array}{r} 105 \ldots 145 \\ 80 \ldots 100 \end{array}$	$\begin{array}{ll} 45 \ldots & 80 \\ 80 \ldots & 100 \end{array}$
- at $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 50 \\ & 50 \ldots 80 \end{aligned}$	$\begin{array}{r} 110 \ldots 130 \\ 80 \ldots 100 \end{array}$	$\begin{aligned} & 50 \ldots 65 \\ & 80 \ldots 100 \end{aligned}$
Arcing time		ms	10... 15	$10 \ldots 15$	$10 \ldots 15$

1) According to excerpt from

IEC 60 947-4-1 (VDE 0660 Part 102): Type of coordination "1":
Destruction of the contactor and the overload relay is permissible. The contactor and/or overload relay must be replaced if necessary.

Type of coordination "2":
No damage can be tolerated to the overload relay, but contact welding on the contactor is permitted if the contacts can be easily separated.

3RT10.6. contactors

Technical data

Contactor	Size	S10	S10	S10
	Type	3RT1064	3RT1065	3RT1066

Main circuit
Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents I_{e}

Ratings of three-phase loads ${ }^{1}$)
p.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)

at $40^{\circ} \mathrm{C}$ up to 690 V	A	275	330
at $60^{\circ} \mathrm{C}$ up to 690 V	A	250	300
at $60^{\circ} \mathrm{C}$ up to 1000 V	A	100	150
at 230 V	kW	94	113
400 V	kW	164	197
500 V	kW	205	246
690 V	kW	283	340
1000 V	kW	164	246
at $40^{\circ} \mathrm{C}$	mm^{2}	150	185
$60^{\circ} \mathrm{C}$	mm^{2}	120	185

AC-6b utilization category, switching low-inductance (low-loss, metallized-dielectric) three-phase capacitors
Ambient temperature $40^{\circ} \mathrm{C}$
Rated operational currents I_{e}

up to 500 V	A	183	220
at 230 V	kvar	73	88
400 V	kvar	127	152
500 V	kvar	159	191
690 V	kvar	127	152

or of capacitor banks (minimum inductance
500 V kva
between parallel capacitors $6 \mu \mathrm{H}$)
690 V kvar
127 19

1) Industrial furnaces and electric heaters with resistance heating, for example (higher current input allowed for during heating up).
2) Acc. to VDE 0660 Part 102. For rated values for various starting conditions, see Section 3.

3RT10.6. contactors

Technical data

Contactor	Size Type		$\begin{aligned} & \text { S10 } \\ & \text { 3RT10 } 64 \end{aligned}$			$\begin{aligned} & \text { S10 } \\ & \text { 3RT10 } 65 \end{aligned}$			S10 3RT10 66
Main circuit									
Load ratings with DC									
DC-1 utilization category, switching resistive load ($\mathrm{L} / \mathrm{R} \leq 1 \mathrm{~ms}$)									
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)									
	Number of conducting paths connected in series		1	2	3	1	2	3	
	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ 18 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} 300 \\ 300 \\ 33 \end{array}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3.4 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{gathered} 20 \\ 3.2 \\ 1.6 \end{gathered}$	$\begin{gathered} 200 \\ 11.5 \\ 4 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{array}{r} 300 \\ 4 \\ 2 \end{array}$	$\begin{gathered} 300 \\ 11 \\ 5.2 \end{gathered}$	
DC-3 and DC-5 utilization categories, shunt and series motors (L/R $\leq 15 \mathrm{~ms}$)									
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)									
	Number of conducting paths connected in series		1	2	3	1	2	3	
	$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \end{array}$	A	$\begin{array}{r} \hline 200 \\ 7.5 \\ 2.5 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} 300 \\ 11 \\ 3 \end{array}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$	
	$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 0.6 \\ & 0.17 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} 200 \\ 1.4 \\ 0.75 \end{gathered}$	$\begin{aligned} & 0.6 \\ & 0.18 \\ & 0.125 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} 300 \\ 1.4 \\ 0.75 \end{gathered}$	

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour					
Contactors without overload relays	No-load operating frequency	1/h	2000	2000	2000
Dependence of the operating frequency z^{\prime} on the	for AC-1	1/h	750	800	750
operational current I^{\prime} and the operational voltage U^{\prime} :	for AC-2	1/h	250	300	250
	for AC-3	1/h	500	700	500
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$	for AC-4	1/h	130	130	130
Contactors with overload relays (mean value)		1/h	60	60	60

Contactor	Size Type		$\begin{aligned} & \text { S10 } \\ & \text { 3RT10 } 6 . \end{aligned}$		
Conductor cross-sections					
Screw connections	Main conductor: with 3RT19 66-4G box terminal		Front terminal connected	Back terminal connected	Both terminals connected
	Finely stranded with end sleeve	mm^{2}		$\begin{array}{lll} 120 \ldots & \ldots 5 \\ 120 & \ldots & 185 \\ 120 & \ldots & 240 \end{array}$	min. 2×50, max. 2×185 min. 2×50, max. 2×185
	Finely stranded without end sleeve	mm^{2}			
	Stranded	mm^{2}			min. 2×70,
	AWG conductor connections, solid or stranded	AWG	3/0 ... 600 kcmil	250 ... 500 kcmil	$\min .2 \times 2 / 0$, max. $2 \times 500 \mathrm{kcmil}$
	Ribbon cable (qty. \times width \times thickness)	mm	min. $6 \times 9 \times 0.8$	min. $6 \times 9 \times 0.8$	
	- Terminal screws	mm	$\max .20 \times 24 \times 0.5$ M 12 (hexagon	max. $20 \times 24 \times 0.5$	$\max .2 \times(20 \times 24 \times 0.5)$
	- Tightening torque	Nm	$\begin{aligned} & \text { sokket, A/F 5) } \\ & 20 \ldots 22 \text { (180 ... } 195 \end{aligned}$		
	Without box terminal/busbar connection				
	Finely stranded with cable lug Stranded with cable lug	$\begin{gathered} \mathrm{mm}^{2} \\ \mathrm{~mm}^{2} \end{gathered}$	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \end{aligned}$	If cable lugs acc. to nected, as of a cond $240 \mathrm{~mm}^{2}$ and acc. to ductor cross-section 4EA1 terminal cover with the phase clear	DIN 46234 are conuctor cross-section of DIN 46235 as of a conof $185 \mathrm{~mm}^{2}$ a 3RT19 66is necessary to comply ance.
	AWG conductor connections, solid or stranded	AWG	2/0 ... 500 kcmil		
	Connecting bar (max. width) - Terminal screws	mm	$\begin{aligned} & 25 \\ & M \\ & 10 \times 30(A / F ~ 17) \end{aligned}$		
	- Tightening torque	Nm	$14 . .24$ (124 ... 210		
	Auxiliary conductor:				
		mm^{2}	$\begin{align*} & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & \operatorname{max.} 2 \times(0.75 \ldots 4) \end{align*}$	$0.75 \ldots 2.5$) acc. to IE	$\text { C } 60 \text { 947; }$
	Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5) ; 2 \times$	0.75 ... 2.5)	
	AWG conductor connections, solid or stranded - Terminal screws	AWG	$\begin{aligned} & 2 \times(18 \ldots 14) \\ & M 3(P Z 2) \end{aligned}$		
	- Tightening torque	Nm	$0.8 \ldots 1.2(7 \ldots 10.3$		

3RT10.7. contactors

Technical data

Contactor	Size	S12	S12
	Type	3RT10 75	3RT10 76

General data

Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.

10 million
See page $2 / 123$
1000
890
Yes, between main contacts and auxiliary NC contacts and within
the auxiliary switch blocks acc. to ZH 1/457, IEC 60 947-4-1,
Annex (draft $17 \mathrm{~B} / 996 / \mathrm{DC}$)
-25 ... +60/+55 with AS-Interface
-55 ... +80
IP 00/open type, coil system IP 20
8.5/5 and $4.2 / 10$
$13.4 / 5$ and $6.5 / 10$
See page $2 / 156$
See page $2 / 108$

Short-circuit protection
Main circuit
Fuse links, utilization category gL/gG
NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE

Type of coord. "1" 1 1)	A	630	630
Type of coord. "2 1)	A	500	500
Weld-free ${ }^{2}$)	A	250	315
	A	10	
A)			

Fuse links, utilization category gL/g
(weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)
DIAZED Type 5SB, NEOZED Type 5SE
or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400 \mathrm{~A}$)
Control circuit

Coil voltage tolerance	AC/DC (UC)	$0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$		
Power consumption of solenoid mechanism (with coil in cold state and rated range $U_{\text {s min }} \ldots U_{\text {s max }}$)		Conventional op. mechanism	Solid-state op. mechanism	
		$U_{s \text { min }} \quad U_{s \text { max }}$	$U_{\text {s min }}$	$U_{\text {s max }}$
AC operation closing	VA	700830	560	750
p.f.		0.9 0.9	0.8	0.8
closed	VA	7.6	5.4	7
p.f.		0.9 0.9	0.8	0.8
DC operation $\begin{aligned} & \text { closing } \\ & \text { closed }\end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	770 920 8.5 10	$\begin{array}{r} 600 \\ 4 \end{array}$	$\begin{array}{r} 800 \\ 5 \end{array}$
PLC control input (EN 61 131-2/Type 2)		DC $24 \mathrm{~V} / \leq 30 \mathrm{~mA}$		
Operating times (Break-time $=$ opening time + arcing time $)$		Conventional op. mechanism	Solid-state Operation via A1/A2	echanism PLC input
- at $0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }} \begin{aligned} & \text { closing time } \\ & \text { opening time }\end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 45 \ldots 100 \\ & 60 \ldots 100 \end{aligned}$	$\begin{array}{r} 120 \ldots 150 \\ 80 \ldots 100 \end{array}$	$\begin{aligned} & 60 \ldots 90 \\ & 80 \ldots \end{aligned}$
- at $U_{\mathrm{s} \text { min }} \ldots U_{\mathrm{s} \text { max }} \quad \begin{aligned} & \text { closing time } \\ & \text { opening time }\end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 50 \ldots \\ & 70 \ldots \\ & 70 \end{aligned}$	$\begin{array}{r} 125 \ldots 150 \\ 80 \ldots .100 \end{array}$	$\begin{aligned} & 65 \ldots \\ & 80 \ldots \\ & 80 \end{aligned} 100$
Arcing time	ms	$10 \ldots 15$	$10 \ldots 15$	$10 \ldots 15$

1) According to excerpt from IEC 60 947-4-1 (VDE 0660 Part 102): Type of coordination "1":
Destruction of the contactor and the overload
relay is permissible. The contactor and/or overload relay must be replaced if necessary.

Type of coordination "2"
No damage can be tolerated to the overload relay, but contact welding on the contactor is permitted if the contacts can be easily separated.

Contactors for Switching Motors

3RT10.7. contactors

Technical data

Contactor	Size	S12
	Type	3RT10 75

Main circuit
Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents I_{e}

Ratings of three-phase loads ${ }^{1}$
p.f. $=0.95$ (at $60^{\circ} \mathrm{C}$)
um conductor cross-section with $I_{\text {e load }}$
AC-2 and AC-3 utilization categories
Rated operational currents I_{e}

Ratings of slipring or squirrel-cage
motors at 50 Hz and 60 Hz

at $40^{\circ} \mathrm{C}$ up to 690 V	A	430	610
at $60^{\circ} \mathrm{C}$ up to 690 V	A	400	$\left.550^{3}\right)$
at $60^{\circ} \mathrm{C}$ up to 1000 V	A	200	200
at 230 V	kW	151	208
400 V	kW	263	362
500 V	kW	329	452
690 V	kW	454	624
1000 V	kW	329	329
at $40^{\circ} \mathrm{C}$	mm^{2}	2×150	2×185
$60^{\circ} \mathrm{C}$	mm^{2}	240	2×185

${ }^{\circ} \mathrm{C}$	mm^{2}	240
		2×185
2×185		

-	500 V	kW	291		363	
	$\begin{array}{r} 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 400 \\ & 250 \end{aligned}$		$\begin{aligned} & 453 \\ & 250 \end{aligned}$	
Thermal loading capacity 10	10 s current ${ }^{2}$)	A	3200		4000	
Power loss per conducting path at I_{e}	at $I_{\mathrm{e}} / \mathrm{AC}-3 / 500 \mathrm{~V}$	W	35		55	
AC-4 utilization category (at $I_{\mathrm{a}}=6 \times I_{\mathrm{e}}$)						
Rated operational current $I_{\text {e }}$	up to 400 V	A	350		430	
Ratings of squirrel-cage motors at 50 Hz and 60 Hz	at 400 V	kW	200		250	
- For a contact endurance of approx. 200000 operating cycles:						
Rated operational currents $I_{\text {e }}$	$\begin{array}{r} \text { up to } 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & A \\ & A \\ & \text { A } \end{aligned}$	$\begin{array}{r} 150 \\ 135 \\ 80 \end{array}$		$\begin{array}{r} 175 \\ 150 \\ 80 \end{array}$	
Ratings of squirrel-cage motors at 50 Hz and 60 Hz	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$ kW	$\begin{array}{r} 48 \\ 85 \\ 105 \end{array}$		$\begin{array}{r} 56 \\ 98 \\ 123 \end{array}$	
	$\begin{array}{r} 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 133 \\ & 113 \end{aligned}$		$\begin{aligned} & 148 \\ & 113 \end{aligned}$	
AC-6a utilization category, switching three-phase transformers with inrush		n	30	20	30	20
Rated operational current $I_{\text {e }}$	up to 690 V	A	251	377	270	404
Ratings of three-phase transformers with an inrush of $n=30$ or 20 . The ratings must be re-calculated for other inrush factors x :	$\begin{gathered} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{gathered}$	kVA kVA kVA kVA	$\begin{aligned} & 100 \\ & 173 \\ & 217 \\ & 300 \end{aligned}$	$\begin{aligned} & 150 \\ & 261 \\ & 326 \\ & 450 \end{aligned}$	$\begin{aligned} & 107 \\ & 187 \\ & 234 \\ & 323 \end{aligned}$	$\begin{aligned} & 161 \\ & 280 \\ & 350 \\ & 483 \end{aligned}$
$P_{x}=P_{n 30} \cdot \frac{30}{x}$	1000 V	kVA	311	311	311	311

AC-6b utilization category, switching low-inductance

low-loss, metallized-dielectric) three-phase capacitors

Ambient temperature $40^{\circ} \mathrm{C}$
Rated operational currents I_{e}
Ratings of single capacitors

up to 500 V	A	287	407
at 230 V	kvar	114	162
400 V	kvar	199	282
500 V	kvar	248	352
690 V	kvar	199	282

or of capacitor banks (minimum inductance 00 V
between parallel capacitors $6 \mu \mathrm{H}$)
690 V kvar 199

1) Industrial furnaces and electric heaters with resistance heating, for example (higher current input allowed for during heating up)
2) Acc. to VDE 0660 Part 102. For rated values for various starting conditions, see Section 3.
3) Ambient temperature $50^{\circ} \mathrm{C}$ for 3RT10 76-N contactor
4) Ambient temperature $55^{\circ} \mathrm{C}$ for 3RT10 76-.N contactor

3RT10.7. contactors

Technical data

| Contactor | Size | S12 | S12 |
| :--- | :--- | :--- | :--- | :--- |
| | Type | 3RT10 75 | 3RT10 76 |

Main circuit

Load ratings with DC
DC-1 utilization category,
switching resistive load (L/R $\leq 1 \mathrm{~ms}$)
Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)
Number of conducting paths connected in series

DC-3 and DC-5 utilization categories,
shunt and series motors ($\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms}$)

Rated operational current I_{e} (at $60^{\circ} \mathrm{C}$)

Number of conducting paths connected in series

Operating frequency

Operating frequency \boldsymbol{z} in operating cycles per hour
Contactors without overload relays

Dependence of the operating frequency z ' on the frequency $1 / \mathrm{h}$ for AC-1 or AC-1 or AC-2 for AC-3 1/h 700 operational current I ' and the operational voltage U^{\prime} : for AC-4
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$
Contactors with overload relays (mean value)

No-load operating			
frequency			
for AC-1	$1 / \mathrm{h}$	2000	2000
for AC-2 for AC-3 for AC-4	$1 / \mathrm{h}$	700	200
	$1 / \mathrm{h}$	130	500
			170
	$1 / \mathrm{h}$	60	420
		130	

Contactor	Size Type		$\begin{aligned} & \text { S12 } \\ & \text { 3RT10 } 7 . \end{aligned}$		
Conductor cross-sections					
Screw connections	Main conductor: with 3RT19 66-4G box terminal Finely stranded with end sleeve Finely stranded without end sleeve Stranded AWG conductor connections, solid or stranded Ribbon cable (qty. \times width \times thickness) - Terminal screws - Tightening torque	mm^{2} mm^{2} mm^{2} AWG mm mm Nm	Front terminal connected $3 / 0 \ldots 600 \mathrm{kcmil}$ min. $6 \times 9 \times 0.8$ $\max .20 \times 24 \times 0.5$ M 12 (hexagon socket, A/F 5) 20... 22 (180 ... 195	Back terminal connected 120 ... 185 120 ... 185 120 ... 240 250 ... 500 kcmil min. $6 \times 9 \times 0.8$ $\max .20 \times 24 \times 0.5$ b.in)	Both terminals connected min. 2×50, max. 2×185 $\min .2 \times 50$, $\max .2 \times 185$ $\min .2 \times 70$, max. 2×240 min. $2 \times 2 / 0$, max. $2 \times 500 \mathrm{kcmil}$ $\max .2 \times(20 \times 24 \times 0.5)$
	Without box terminal/busbar connection Finely stranded with cable lug Stranded with cable lug	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \end{aligned}$	If cable lugs acc. to nected, as of a cond $240 \mathrm{~mm}^{2}$ and acc. to ductor cross-section 4EA1 terminal cover with the phase clear	DIN 46234 are conuctor cross-section of DIN 46235 as of a conof $185 \mathrm{~mm}^{2}$ a 3RT19 66is necessary to comply ance.
	AWG conductor connections, solid or stranded Connecting bar (max. width) - Terminal screws - Tightening torque	AWG mm Nm	$\begin{aligned} & 2 / 0 \ldots 500 \text { kcmil } \\ & 25 \\ & \text { M } 10 \times 30(\text { A/F 17) } \\ & 14 \ldots 24(124 \ldots 210 \end{aligned}$	lb.in)	
	Auxiliary conductor: Solid Finely stranded with end sleeve AWG conductor connections, solid or stranded - Terminal screws - Tightening torque	mm² mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & \max .2 \times(0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & 2 \times(18 \ldots 14) \\ & M 3(P Z 2) \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \end{aligned}$	$\begin{aligned} & 0.75 \ldots 2.5) \text { acc. to IE } \\ & 0.75 \ldots 2.5) \end{aligned}$	60947

Contactors for Switching Motors

3RT12.6. vacuum contactors

Technical data

1) According to excerpt from IEC 60 947-4-1 (VDE 0660 Part 102): Type of coordination "1":
Destruction of the contactor and the overload
relay is permissible. The contactor and/or overload relay must be replaced if necessary.

Type of coordination "2":
No damage can be tolerated to the overload relay,
but contact welding on the contactor is permitted if
the contacts can be easily separated.
2) Test conditions acc. to IEC 60 947-4-1.

3RT12.6. vacuum contactors

Technical data

Contactor	Size	S10	S10	S10
	Type	3RT12 64	3RT12 65	3RT12 66

Main circuit

Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents I_{e}

Ratings of three-phase loads ${ }^{1}$)	at 230 V	kW	113
p.f. $=0.95\left({\text { at } 60^{\circ} \mathrm{C}}^{\circ}\right.$)	400 V	kW	197
	500 V	kW	246
	690 V	kW	340
	1000 V	kW	492
Minimum conductor cross-section with $I_{\text {e load }}$	at $40^{\circ} \mathrm{C}$	mm^{2}	185
	$60^{\circ} \mathrm{C}$	mm^{2}	185

AC-2 and AC-3 utilization categories

Rated operational currents I_{e}
Ratings of slipring or squirrel-cage
motors at 50 Hz and 60 Hz
motors at 50 Hz and 60 Hz

Contactors for Switching Motors

3RT12.6. vacuum contactors

Technical data

Contactor	Size Type		$\begin{aligned} & \text { S10 } \\ & \text { 3RT12 } 6 . \end{aligned}$		
Conductor cross-sections					
Screw connections	Main conductor: with 3RT19 66-4G box terminal		Front terminal connected	Back terminal connected	Both terminals connected
	Finely stranded with end sleeve Finely stranded without end sleeve Stranded AWG conductor connections, solid or stranded Ribbon cable (qty. \times width \times thickness) - Terminal screws - Tightening torque	mm^{2} mm^{2} mm^{2} AWG mm mm Nm			min. 2×50, max. 2×185 min. 2×50, max. 2×185 $\min .2 \times 70$, $\max .2 \times 240$ $\min .2 \times 2 / 0,$ max. 1×500 kcmil
	Without box terminal/busbar connection				
	Finely stranded with cable lug Stranded with cable lug	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \end{aligned}$	If cable lugs acc. to nected, as of a cond $240 \mathrm{~mm}^{2}$ and acc. ductor cross-section 4EA1 terminal cover with the phase clear	DIN 46234 are conuctor cross-section of DIN 46235 as of a conof $185 \mathrm{~mm}^{2}$ a 3RT19 66is necessary to comply ance.
	AWG conductor connections, solid or stranded	AWG	2/0 ... 500 kcmil		
	Connecting bar (max. width) - Terminal screws - Tightening torque	mm Nm	$\begin{aligned} & 25 \\ & \text { M } 10 \times 30(\text { A/F 17) } \\ & 14 \ldots 24(124 \ldots 210 \end{aligned}$	in)	
	Auxiliary conductor: Solid	mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & \max .2 \times(0.75 \ldots 4) \end{aligned}$	0.75 ... 2.5) acc. to IE	$60 \text { 947; }$
	Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5) ; 2 \times(0.7$	0.75 ... 2.5)	
	AWG conductor connections, solid or stranded - Terminal screws - Tightening torque	AWG Nm	$\begin{aligned} & 2 \times(18 \ldots 14) \\ & M 3(P Z 2) \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \end{aligned}$	in)	

3RT12.7. contactors

Technical data

Short-circuit protection

Main circuit

Fuse links, utilization category $\mathrm{gL} / \mathrm{gG}$
NH Type 3NA, DIAZED Type 5SB, NEOZED Type 5SE

- to IEC 60 947-4/EN 60 947-4-4 (VDE 0660Part 102)

Auxiliary circuit

Fuse links, utilization category gL/gG

Type of coord. "1" 1)	A	800
Type of coord. "2" 1)	A	800
Weld-free ${ }^{2}$)	A	500
	A	10

(weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)
DIAZED Type 5SB, NEOZZED Type 5SE
or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400 \mathrm{~A}$)
Control circuit

1) According to excerpt from

IEC 60 947-4-1 (VDE 0660 Part 102):
Type of coordination "1":
Destruction of the contactor and the overload relay is permissible. The contactor and/or overload relay must be replaced if necessary.

Type of coordination "2"
No damage can be tolerated to the overload relay,
but contact welding on the contactor is permitted if the contacts can be easily separated.
2) Test conditions acc. to IEC 60 947-4-1.

Contactors for Switching Motors

3RT12.7. vacuum contactors

Technical data

Contactor	Size	S12	S12
	Type	3RT12 75	3RT12 76

Main circuit

Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents I_{e}
Ratings of three-phase loads ${ }^{1}$)

at $40^{\circ} \mathrm{C}$ up to 1000 V	A	610
at $60^{\circ} \mathrm{C}$ up to 1000 V	A	550
at 230 V	kW	208
400 V	kW	362
500 V	kW	452
690 V	kW	624
1000 V	kW	905
at $40^{\circ} \mathrm{C}$	mm^{2}	2×185
$60^{\circ} \mathrm{C}$	mm^{2}	2×185

AC-2 and AC-3 utilization categories

Rated operational currents I_{e}
Ratings of slipring or squirrel-cage
motors at 50 Hz and 60 Hz
motors at 50 Hz and 60 Hz

Contactors for Switching Motors

3RT12.7. vacuum contactors

Technical data

3RT24 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data					
Contactor $\begin{aligned} & \text { Size } \\ & \text { Type }\end{aligned}$		$\begin{aligned} & \text { S3 } \\ & \text { 3RT24 } 46 \end{aligned}$			
General data					
Permissible mounting position AC and DC operation The contactors are designed for operation on a vertical mounting surface.		$22.5^{\circ} 22.5^{\circ}$ For DC operation and forward inclination up to 22.5° : coil voltage tolerance 0.85 ... $1.1 \times$ U_{s}			
Upright mounting position: AC operation DC operation		Special design required. Positions $13 \ldots 16$ of the Order No. must be changed to - 1AAO. Additional charge.			
Mechanical endurance	Oper. cycles	10 million			
Electrical endurance AC-1 utilization category at I_{e}	Oper. cycles	0.5 million			
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	1000			
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6			
Safe isolation between coil and main contacts (acc. to DIN VDE 0106 Part 101 and A1 [draft 2/89])	V	690			
Permissible ambient temperature $\begin{gathered}\text { in operation } \\ \text { when stored }\end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$			
Degree of protection acc. to IEC 60 947-1 and DIN 40050		IP 20 (terminal compartment IP 00), coil system IP 40			
Shock resistance					
$A C$ and DC operation	g / ms	6.8/5 and 4/10			
AC and DC operation	g / ms	10.6/5 and 6.2/10			
Conductor cross-sections		See page 2/165			
Short-circuit protection of contactors without overload relays					
Main circuit					
Fuse links, utilization category gL/gG NH, Type 3NA	A	250			
Fuse links, utilization category gR SITOR, Type 3NE Type of coord. "2" 2)	A	250			
Auxiliary circuit Fuse links, utilization category $\mathrm{gL} / \mathrm{gG}$ (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) DIAZED Type 5SB, NEOZED Type 5SE or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400$ A)	A	10			
	A	10			
Control circuit					
Coil voltage tolerance AC/DC		$0.8 \ldots 1.1 \times U_{\text {s }}$			
Power consumption of the coils (with coil in cold state and $1.0 \times U_{s}$)AC operation	Hz	Standard design		For USA and Canada	
		50	50/60	50	60
closing p.f. closed p.f.	VA VA	$\begin{gathered} \hline 270 \\ 0.68 \\ 22 \\ 0.27 \\ \hline \end{gathered}$	$\begin{array}{ccc} 298 & / 274 \\ 0.7 & 1 & 0.62 \\ 27 & / 20 \\ 0.29 / & 0.31 \end{array}$	$\begin{gathered} \hline 270 \\ 0.68 \\ 22 \\ 0.27 \end{gathered}$	$\begin{gathered} 300 \\ 0.52 \\ 21 \\ 0.29 \end{gathered}$
DC operation closing = closed	W	15			
Operating times at $0.8 \ldots 1.1 \times U_{s}{ }^{1}$) Break-time $=$ opening time + arcing time					
AC operation \quadclosing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{ll} 17 \ldots & 90 \\ 10 \ldots & 25 \end{array}$			
DC operation $\quad \begin{aligned} & \text { closing time } \\ & \text { opening time }\end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 90 \ldots 230 \\ & 14 \ldots .20 \end{aligned}$			
Arcing time	ms	$10 \ldots 15$			
Operating times at $1.0 \times U_{s}{ }^{1}$)					
AC operation closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{ll} 18 \ldots & 30 \\ 11 & . . \\ 23 \end{array}$			
DC operation $\quad \begin{aligned} & \text { closing time } \\ & \text { opening time }\end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{rr} 100 & \ldots \\ 16 & 120 \\ 16 & 20 \end{array}$			

1) The opening times of the NO contacts and the closing times of the NC contacts increase if the contactor coils are protected against voltage peaks: varistor +2 ms to 5 ms , diode assemblies 2 to 6 times.
2) According to excerpt from

IEC 60 947-4-1 (VDE 0660 Part 102):
Type of coordination "1":
Destruction of the contactor and the overload relay is permissible. The contactor and/or over load relay must be replaced if necessary.

Type of coordination "2":
No damage can be tolerated to the overload relay, but contact welding on the contactor is permitted if the contacts can be easily separated.

Contactors for Special Applications

3RT24 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

Contactor $\begin{aligned} & \text { Size } \\ & \text { Type }\end{aligned}$			$\begin{aligned} & \text { S3 } \\ & \text { 3RT24 } 46 \end{aligned}$
Main circuit			
Load ratings with AC			
AC-1 utilization category, switching resistive			
Rated operational currents $I_{\text {e }}$	at $40^{\circ} \mathrm{C}$ up to 690 V at $60^{\circ} \mathrm{C}$ up to 690 V at 1000 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} 140 \\ 130 \\ 60 \end{array}$
Ratings of three-phase loads p.f. $=0.95\left(\right.$ at $\left.60^{\circ} \mathrm{C}\right)$	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \\ 1000 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{array}{r} 50 \\ 86 \\ 107 \\ 148 \\ 98 \end{array}$
Minimum conductor cross-section with $I_{\text {e load }}$	$\begin{aligned} & \text { at } 40^{\circ} \mathrm{C} \\ & \text { at } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$
AC-2 and AC-3 utilization categories With an electrical endurance of 1.3 million op			
Rated operational current $I_{\text {e }}$	up to 690 V	A	44
Ratings of slipring or squirrel-cage motors at 50 Hz and $60 \mathrm{~Hz}\left(\right.$ at $60^{\circ} \mathrm{C}$)	$\begin{array}{r} \text { at } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \\ & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 12.7 \\ & 22 \\ & 29.9 \\ & 38.2 \\ & \hline \end{aligned}$
Power loss per conducting path	at $I_{\mathrm{e}} / \mathrm{AC}-1$	W	12.5

Load ratings with DC

3RT24 contactors, 3-pole, for switcing resistive loads (AC-1)

Technical data

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

$\begin{array}{ll}\text { Contactor } & \text { Size } \\ \text { Type }\end{array}$		$\begin{aligned} & \text { S6 } \\ & \text { 3RT14 } 56 \end{aligned}$
General data		
Permissible mounting position The contactors are designed for operation on a vertical mounting surface.		
Mechanical endurance	Oper. cycles	10 million
Electrical endurance AC-1 utilization category at I_{e}	Oper. cycles	0.5 million
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	1000
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	8
Safe isolation between coil, auxiliary contacts and main contacts (acc. to DIN VDE 0106 Part 101 and A1 [draft 2/89])	V	690
Permissible ambient temperature $\begin{array}{r}\text { in operation } \\ \text { when stored }\end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 /+55 \text { with AS-Interface } \\ & -55 \ldots+80 \end{aligned}$
Shock resistance		
Rectangular pulse	g / ms	8.5/5 and 4.2/10
Sine pulse	g / ms	13.4/5 and 6.5/10
Conductor cross-sections		See page 2/167
Electromagnetic compatibility (EMC)		See page 2/108
Short-circuit protection		
Main circuit		
Fuse links, utilization category gL/gG, NH, Type 3NA Type of coordination "1"	Type of coordination "1" A	355
Fuse links, utilization category gR, SITOR, Type 3NE Type of coordination "2"		350
Auxiliary circuit Fuse links, utilization category gL/gG (weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$) DIAZED Type 5SB, NEOZZED Type 5SE or miniature circuit-breaker with C-characteristic ($I_{\mathrm{k}}<400 \mathrm{~A}$)	A	10

Control circuit

Coil voltage tolerance		AC/DC (UC)	$0.8 \times U_{\text {s }}$	$\times U_{\text {s max }}$		
Power consumption of solen	hanism		Convent	mechanism	Solid-state	mechanism
(with coil in cold state and rate	$\left.U_{\text {s min }} \ldots U_{\text {s max }}\right)$		$U_{\text {s min }}$	$U_{\text {s max }}$	$U_{\text {s min }}$	$U_{\text {s max }}$
AC operation	closing p.f.	VA	$\begin{gathered} 250 \\ 0.9 \end{gathered}$	$\begin{gathered} 300 \\ 0.9 \end{gathered}$	$\begin{gathered} 190 \\ 0.8 \end{gathered}$	$\begin{gathered} 280 \\ 0.8 \end{gathered}$
	closed	VA	4.8	5.8	3.5	4.4
	p.f.		0.8	0.8	0.5	0.4
DC operation	closing closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{gathered} 300 \\ 4.3 \end{gathered}$	$\begin{array}{r} 360 \\ 5.2 \end{array}$	$\begin{gathered} 250 \\ 2.3 \end{gathered}$	$\begin{array}{r} 320 \\ 2.8 \end{array}$
PLC control input (EN 61 131-2/Type 2)			DC $24 \mathrm{~V} / \leq 30 \mathrm{~mA}$			
Operating times (Break-time $=$ opening time + arcing time)			Conventional op. mechanism		Solid-state op. mechanism Operation via A1/A2	
- at $0.8 \times U_{\text {s min }} \cdots 1.1 \times U_{\text {s max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 20 \ldots 95 \\ & 40 \ldots 60 \end{aligned}$		$\begin{aligned} & 95 \ldots 135 \\ & 80 \ldots \quad 90 \end{aligned}$	$\begin{aligned} & 35 \ldots 75 \\ & 80 \ldots . \end{aligned}$
- at $U_{\text {s min }} \ldots U_{\text {s max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 50 \\ & 40 \ldots 60 \end{aligned}$		$\begin{array}{r} 100 \ldots 120 \\ 80 \ldots .90 \end{array}$	$\begin{aligned} & 40 \ldots 60 \\ & 80 \ldots 90 \end{aligned}$
Arcing time		ms	$10 \ldots 15$		$10 \ldots 15$	$10 \ldots 15$

Main circuit

Load ratings with AC
AC-1 utilization category, switching resistive load

Rated operational currents I_{e}	at $40^{\circ} \mathrm{C}$ up to 690 V	A	275
	at $60^{\circ} \mathrm{C}$ up to 690 V	A	250
	at 1000 V	A	100
Ratings	at 230 V	kW	95
of three-phase loads	400 V	kW	165
p.f. $=0.95\left(\right.$ at $60^{\circ} \mathrm{C}$)	500 V	kW	205
	690 V	kW	285
Minimum conductor cross-section with $I_{\text {e load }}$	1000 V	kW	165
	at $40^{\circ} \mathrm{C}$	mm^{2}	2×70
at $60^{\circ} \mathrm{C}$	mm^{2}	120	
Power loss per conducting path	at $I_{e} / \mathrm{AC}-1$	W	20

Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

Contactors for Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

Contactor	Size	S10	S12
	Type	3RT14 66	3RT14 76
General date			

Permissible mounting position

The contactors are designed for operation on a vertical mounting surface.

Mechanical endurance	Oper. cycles	10 million
Electrical endurance	Oper. cycles	0.5 million
AC-1 utilization category at I_{e}		

Contactor	Size Type		$\begin{aligned} & \text { S10 } \\ & \text { 3RT14 } 66 \end{aligned}$		
Control circuit					
Coil voltage tolerance		AC/DC (UC)	$0.8 \times U_{\text {s min }} \ldots 1.1 \times U_{\text {s max }}$		
Power consumption of solenoid mechanism (with coil in cold state and rated range $U_{\text {s min }} \ldots U_{\text {s max }}$)			Conventional op. mechanism	Solid-state op. mechanism	
			$U_{\text {s min }} U_{\text {s max }}$	$U_{\text {s min }}$	$U_{\text {s max }}$
AC operation	closing p.f. closed p.f.	VA VA	490 590 0.9 0.9 5.6 6.7 0.9 0.9	$\begin{gathered} 400 \\ 0.8 \\ 4 \\ 0.5 \end{gathered}$	$\begin{gathered} 530 \\ 0.8 \\ 5 \\ 0.4 \end{gathered}$
DC operation	closing closed	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	540 650 6.1 7.4	$\begin{gathered} 440 \\ 3.2 \end{gathered}$	$\begin{gathered} 580 \\ 3.8 \end{gathered}$
PLC control input (EN 61131	e 2)		DC $24 \mathrm{~V} / \leq 30 \mathrm{~mA}$		
Operating times (Break-time $=$ opening time +			Conventional op. mechanism	Solid-state Operation v A1/A2	mechanism PLC input
- at $0.8 \times U_{s \text { min }} \ldots 1.1 \times U_{s \text { max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 30 \ldots 95 \\ & 40 \ldots 80 \end{aligned}$	$\begin{array}{r} 105 \ldots 145 \\ 80 \ldots 200 \end{array}$	$\begin{array}{llr} 45 \ldots & 80 \\ 80 \ldots & 100 \end{array}$
- at $U_{s \text { min }} \ldots U_{s \text { max }}$	closing time opening time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 50 \\ & 50 \ldots 80 \end{aligned}$	$\begin{array}{r} 110 \ldots 130 \\ 80 \ldots 100 \end{array}$	$\begin{array}{ll} 50 \ldots & 65 \\ 80 \ldots & 100 \end{array}$
Arcing time		ms	10... 15	$10 \ldots 15$	$10 \ldots 15$

Contactors for Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

Main circuit
Load ratings with AC
AC-1 utilization category, switching resistive load
Rated operational currents $I_{\text {e }}$

Load ratings with DC

DC-1 utilization category, switching resistive load (L/R $\leq 1 \mathrm{~ms}$) Number of conducting paths connected in series		1	2	3	1	2	3
Rated operational currents $I_{\mathrm{e}}\left(\right.$ at $60^{\circ} \mathrm{C}$) \quad up to 24 V	A A A	$\begin{array}{r} \hline 380 \\ 380 \\ 33 \end{array}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{aligned} & 380 \\ & 380 \\ & 380 \end{aligned}$	$\begin{array}{r} 500 \\ 500 \\ 33 \end{array}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$
$\begin{aligned} & 220 \mathrm{~V} \\ & 440 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	A	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{array}{r} 380 \\ 4 \\ 2 \end{array}$	$\begin{gathered} 380 \\ 11 \\ 5.2 \end{gathered}$	$\begin{aligned} & 3.8 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{array}{r} 500 \\ 4 \\ 2 \end{array}$	$\begin{gathered} 500 \\ 11 \\ 5.2 \end{gathered}$
DC-3 and DC-5 utilization categories, shunt and series motors $(\mathrm{L} / \mathrm{R} \leq 15 \mathrm{~ms})$ Number of conducting paths connected in series		1	2	3	1	2	3
Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$) up to 24 V 60 V 110 V 220 V 440 V 600 V	A A A A A A	$\begin{gathered} \hline 380 \\ 11 \\ 3 \\ 0.6 \\ 0.18 \\ 0.125 \end{gathered}$	$\begin{aligned} & \hline 380 \\ & 380 \\ & 380 \\ & 2.5 \\ & 0.65 \\ & 0.37 \end{aligned}$	$\begin{gathered} \hline 380 \\ 380 \\ 380 \\ 380 \\ 1.4 \\ 0.75 \end{gathered}$	500 11 3 0.6 0.18 0.125	$\begin{gathered} \hline 500 \\ 500 \\ 500 \\ 2.5 \\ 0.65 \\ 0.37 \end{gathered}$	$\begin{gathered} \hline 500 \\ 500 \\ 500 \\ 500 \\ 1.4 \\ 0.75 \end{gathered}$

[^30]
Contactors for Special Applications

3RT14 contactors, 3-pole, for switching resistive loads (AC-1)

Technical data

Contactor	Size	S10	S12
	Type	3RT14 66	3RT14 76
Main circuit			

Main circuit
Operating frequency
Operating frequency \boldsymbol{z} in operating cycles per hour Contactors without overload relays

No-load op. frequency	$1 / h$	2000
for AC-1	$1 / h$	600
for AC-3	$1 / h$	1000

Dependence of the operating frequency z ' on the operational current I^{\prime} and operational voltage U^{\prime} :
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{400 \mathrm{~V}}{U^{\prime}}\right)^{1.5} 1 / \mathrm{h}$

Conductor cross-sections

Screw connections	Main conductor: with 3RT19 66-4G box terminal		Front terminal connected	Back terminal connected	Both terminals connected
	Finely stranded with end sleeve Finely stranded without end sleeve Stranded AWG conductor connections, solid or stranded Ribbon cable (qty. \times width \times thickness) - Terminal screws - Tightening torque	mm^{2} mm^{2} mm^{2} mm mm Nm	M 12 (hexagon socket, A/F 5) 20 ... 22 (180 ... 195		min. 2×50, max. 2×185 min. 2×50, max. 2×185 $\min .2 \times 70$, max. 2×240 $\min .2 \times 2 / 0$, max. $2 \times 500 \mathrm{kcmil}$ $\max .2 \times(20 \times 24 \times$ 0.5)
	Without box terminal/busbar connection				
	Finely stranded with cable lug Stranded with cable lug AWG conductor connections, solid or stranded Connecting bar (max. width) - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG mm Nm	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \\ & 2 / \ldots \ldots 500 \mathrm{kcmil} \\ & 25 \ldots \\ & \text { M } 10 \times 30(\mathrm{~A} / \mathrm{F} 17) \\ & 14 \ldots 24 \\ & (124 \ldots 210 \text { lb.in }) \end{aligned}$	If cable lugs acc. to are connected, as tion of $240 \mathrm{~mm}^{2}$ and ductor cross-sectio 3RT19 66-4EA1 term to comply with the	N 46234 conductor cross-secIN 46235 as of a con$185 \mathrm{~mm}^{2}$, a al cover is necessary se clearance.
	Auxiliary conductor: Solid Finely stranded with end sleeve AWG conductor connections, solid or stranded - Terminal screws - Tightening torque	mm^{2} mm^{2} AWG Nm	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & \max .2 \times(0.75 \ldots 4) \\ & 2 \times(0.5 \ldots 1.5) ; 2 \times \\ & 2 \times(18 \ldots 14) \\ & \mathrm{M} 3(\mathrm{PZ3}) \\ & 0.8 \ldots 1.2(7 \ldots 10.3 \end{aligned}$	$\begin{aligned} & 75 \ldots 2.5) \text { acc. to IE } \\ & 75 \ldots 2.5) \end{aligned}$	$\text { } 0 \text { 947; }$

Contactors for Special Applications

3RT23 contactors, 4-pole (4 NO), switching resistive loads

More information

Control

Solenoid coil operating range

- DC operation - At $50^{\circ} \mathrm{C}$
- At $60^{\circ} \mathrm{C}$

$$
\begin{aligned}
& 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\
& 0.85 \ldots 1.1 \times U_{\mathrm{s}} \\
& 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\
& 0.85 \ldots 1.1 \times U_{\mathrm{s}}
\end{aligned}
$$

- AC/DC operation

| -- |
| :--- | :--- |
--
--
$0.8 \ldots 1.1 \times U_{S}$

Power consumption of the solenoid coils (when coil is cold and $1.0 \times U_{S}$)

- AC operation, 50 Hz , standard version	- Closing - P.f.	VA	--		$\begin{aligned} & 77 \\ & 0.82 \end{aligned}$	
	- Closed - P.f.	VA	--		$\begin{aligned} & 9.8 \\ & 0.25 \end{aligned}$	
- AC operation, $50 / 60 \mathrm{~Hz}$, standard version	- Closing - P.f.	VA	$\begin{aligned} & 27 / 24.3 \\ & 0.8 / 0.75 \end{aligned}$	$\begin{aligned} & 37 / 33 \\ & 0.8 / 0.75 \end{aligned}$	$\begin{aligned} & 81 / 79 \\ & 0.72 / 0.74 \end{aligned}$	
	- Closed - P.f.	VA	$\begin{aligned} & \text { 4.2/3.3 } \\ & 0.25 / 0.25 \end{aligned}$	$\begin{aligned} & 5.7 / 4.4 \\ & 0.25 / 0.25 \end{aligned}$	$\begin{aligned} & 10.5 / 8.5 \\ & 0.25 / 0.28 \end{aligned}$	
- AC operation, 60 Hz , USA, Canada	- Closing - P.f.	VA	$\begin{aligned} & 31.7 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 43 \\ & 0.77 \end{aligned}$	$\begin{aligned} & 87 \\ & 0.76 \end{aligned}$	
	- Closed - P.f.	VA	$\begin{aligned} & 4.8 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 0.28 \end{aligned}$	
- DC operation	- Closing = Closed	W	4		5.9	
Operating times for 0.8 ... $1.1 \times \mathrm{U}^{2}{ }^{2}$						
- AC operation	- Closing delay - Opening delay	ms	$\begin{aligned} & 8 \ldots 35 \\ & 3.5 \ldots 14 \end{aligned}$	$\begin{aligned} & 8 \ldots 33 \\ & 4 \ldots 15 \end{aligned}$	$\begin{aligned} & 9 \ldots 38 \\ & 4 \ldots 16 \end{aligned}$	$\begin{aligned} & 8 \ldots 40 \\ & 4 \ldots 16 \end{aligned}$
- DC operation - Arcing time	- Closing delay - Opening delay	ms	$\begin{aligned} & 30 \ldots 100 \\ & 7 \ldots 13 \\ & 10 \ldots 15 \end{aligned}$		$\begin{array}{lll} 50 \ldots & 170 \\ 15 \ldots & 17.5 \\ 10 & & \end{array}$	

Main circuit
AC capacity

Utilization category AC-1, switching resistive loads

- Rated operational currents I_{e}
- Rated power for AC loads
P.f. $=0.95$ (at $40^{\circ} \mathrm{C}$)
- Minimum conductor cross-section for loads with I_{e}

Utilization category AC-3

- Rated operational currents I_{e}
- Rated power for slipring or squirrel-cage motors at 60 Hz

At $40^{\circ} \mathrm{C}$, up to 690 V	A	18	22	35	40
At $60^{\circ} \mathrm{C}$, up to 690 V	A	16	20	30	35
At 460 V	HP	5	5	10	10
At $40^{\circ} \mathrm{C}$	mm^{2}	2.5	2.5	10	10
At $60^{\circ} \mathrm{C}$	mm^{2}	2.5	2.5	10	10
			12	15.5	10
At $60^{\circ} \mathrm{C}$, up to 400 V	A	9	5	10	10
At 460 V	HP	5		10	10

1) In accordance with the corresponding 3-pole 3RT2. contactors.
2) With size S00, DC operation: Operating times at $0.85 \ldots 1.1 \times U$
3) Dimensions for devices with screw terminals. Size SO for AC operation. DC operation: Depth +10 mm .

Contactors for Special Applications

3RT23 contactors, 4-pole (4 NO), for switching resistive loads

Technical specifications

Type Size Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) - With mounted auxiliary switch block		mm mm	3RT23 36 S2 $74.5 \times 113.5 \times 130 /$ $74.5 \times 113.5 \times 130$ $74.5 \times 113.5 \times 173.5 /$ $74.5 \times 113.5 \times 177.5$	3RT23 44 S3 $\begin{aligned} & 73 \times 112 \times 110 \\ & 73 \times 112 \times 160 \end{aligned}$	$\begin{aligned} & \text { 3RT23 } 46 \\ & \text { S3 } \\ & 93 \times 146 \times 134 \\ & 93 \times 146 \times 183 \end{aligned}$
General technical specifications					
Permissible mounting position ${ }^{1)}$ Mechanical endurance		Operating cycles	10 million		
Electrical endurance at $I_{\mathrm{e}} / \mathbf{A C - 1}$		Operating cycles	Approx. 0.5 million		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)		V	690		
Permissible ambient temperature - During operation - During storage		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{r} -25 \ldots+60 \\ -55 \ldots+80 \\ \hline \end{array}$		
Degree of protection acc. to IEC 60947-1, Appendix C	Device Connection range		IP20		
Touch protection acc. to EN 50274			Finger-safe		
Short-circuit protection of contactors without overload relays					
Main circuit					
Fuse links, operational class gG: LV HRC, 3NA; DIAZED, 5SB; NEOZED, 5SE according to IEC 60947-4-1/EN 60947-4-1	- Type of coordination "1"1) - Type of coordination "2"1) - Weld-free	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	on request on request on request	$\begin{aligned} & 250 \\ & 125 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 160 \\ & 100 \\ & \hline \end{aligned}$
Control circuit					
Coil operating range (AC/DC)			$0.8 \ldots 1.1 \times U_{S}$		
Power consumption of the solenoid coils - AC operation, 50 Hz	oil is cold and $1.0 \times U_{\mathrm{s}}$) - Closing - P.f. - Closed - P.f.	VA VA VA VA	$\begin{aligned} & 190 \\ & 0.72 \\ & 16 \\ & 0.37 \end{aligned}$	270 0.68 22 0.27	
- AC operation, $50 / 60 \mathrm{~Hz}$ - DC operation	- Closing - P.f. - Closed - P.f. - Closing = Closed	VA VA W	$\begin{aligned} & 210 / 188 \\ & 0.69 / 0.65 \\ & 17.2 / 16.5 \\ & 0.36 / 0.3 \end{aligned}$	$\begin{aligned} & 298 / 274 \\ & 0.72 / 0.62 \\ & 27 / 20 \\ & 0.29 / 0.31 \\ & 15 \end{aligned}$	
Operating times for $0.8 \ldots 1.1 \times \boldsymbol{U}_{s}{ }^{2)}$ Total break time $=$ Opening delay + Arcing time					
- DC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$		$\begin{aligned} & 110 \ldots 200 \\ & 14 \ldots 20 \end{aligned}$	
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 10 \ldots 80 \\ & 10 \ldots .818 \end{aligned}$	$\begin{aligned} & 20 \ldots 50 \\ & 10 \ldots 25 \end{aligned}$	
- Arcing time		ms	10... 20	10... 15	
Main circuit					
AC capacity					
- Rated operational currents I_{e}	At $40^{\circ} \mathrm{C}$, up to 690 V At $60^{\circ} \mathrm{C}$, up to 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 140 \\ & 120 \end{aligned}$
- Rated power for AC loads P.f. $=0.95\left(\right.$ at $\left.40^{\circ} \mathrm{C}\right)$	$\begin{array}{r} \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { kW } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 21 \\ & 36 \end{aligned}$	$\begin{aligned} & 42 \\ & 72 \end{aligned}$	$\begin{aligned} & 53 \\ & 92 \end{aligned}$
- Minimum conductor cross-section for loads with I_{e}	$\begin{aligned} & \text { At } 40^{\circ} \mathrm{C} \\ & \text { At } 60^{\circ} \mathrm{C} \end{aligned}$	mm^{2} mm^{2}	$\begin{aligned} & 16 \\ & 25 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$
Utilization categories AC-2 and AC-3 - Rated operational currents I_{e} - Rated power for slipring or squirrel-cage motors at 50 and 60 Hz	$\begin{array}{r} \text { At } 60^{\circ} \mathrm{C} \text {, up to } 400 \mathrm{~V} \\ \text { At } 230 \mathrm{~V} \\ 400 \mathrm{~V} \end{array}$	A kW kW			--

${ }^{1)}$ In accordance with the corresponding 3-pole 3RT1 contactors.
${ }^{2)}$ With size $\mathrm{SOO}, \mathrm{DC}$ operation: Operating times for $0.85 \ldots 1.1 \times U_{\mathrm{s}}$

Contactors for Special Applications

3RT25 contactors, 4-pole (2 NO + 2 NC), for switching motors

Technical specifications

Type Size		3RT2516 S00	3RT2517	3RT2518	$\begin{aligned} & \text { 3RT2536 } \\ & \text { S2 } \end{aligned}$	3RT2537
Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})^{1)}$ - with mounted auxiliary switch block		$\begin{aligned} & 45 \times 57.5 \\ & 45 \times 57.5 \end{aligned}$	$\begin{aligned} & 3 / 45 \times 70 \\ & 116 / 45 \times 7 \end{aligned}$	$\begin{array}{r} 73 \\ \times 121 \end{array}$	$\begin{aligned} & 74.5 \times 113 \\ & 74.5 \times 113 \end{aligned}$	$\begin{array}{r} \times 130 / 74.5 \\ \times 173.5 / 74 \end{array}$
Type Size		$\begin{aligned} & \text { 3RT2526 } \\ & \text { SO } \end{aligned}$				
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$) for AC operation ${ }^{1) 2}$ - with mounted auxiliary switch block		$\begin{aligned} & 60 \times 85 \times \\ & 60 \times 85 x \end{aligned}$	$\begin{aligned} & / 60 \times 101 \\ & 1 / 60 \times 10 \end{aligned}$	$\begin{aligned} & \times 97 \\ & 5 \times 144 \end{aligned}$		
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$) for DC operation ${ }^{1)^{2}}$		$60 \times 85 \times$	$7 / 60 \times 101$	¢ $\times 107$		
- with mounted auxiliary switch block		$60 \times 85 \times$	$1 / 60 \times 10$	¢ $\times 154$		

1) Dimensions for devices with screw terminals/spring-type terminals
2) For size SO, devices for AC and DC operation differ in depth. The following applies: Depth $(D C)=$ Depth $(A C)+10 \mathrm{~mm}$.

Contactors for Special Applications

3RT25 contactors, 4-pole (2 NO + 2 NC), for switching motors

Load rating with DC

Switching resistive loads ($L / R \leq 1 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)
- 1 conducting path
- 2 conducting paths in series

up to 24 V	A	16	20
60 V	A	16	20
110 V	A	2.1	2.1
220 V	A	0.8	0.8
440 V	A	0.6	0.6
up to 24 V	A	16	20
60 V	A	16	20
110 V	A	12	12
220 V	A	1.6	1.6
440 V	A	0.8	0.8

35	55
20	23
4.5	4.5
1	1
0.4	0.4
35	55
35	45
35	45
5	5
1	1

Utilization category DC-3/DC-5 ${ }^{2)}$

Shunt-wound and series-wound motors ($L / R \leq 15 \mathrm{~ms}$)

- Rated operational currents I_{e} (at $60^{\circ} \mathrm{C}$)

up to 24 V	A	16	20	20	35
60 V	A	0.5	0.5	5	6
110 V	A	0.15	0.15	2.5	2.5
220 V	A	0.75	0.75	1	1
440 V	A	--	--	0.09	0.1
up to 24 V	A	16	20	35	55
60 V	A	5	5	35	45
110 V	A	0.35	0.35	15	25
220 V	A	--	--	5	5
440 V	A	--	--	0.27	0.27

1) Values for devices with AC and DC operation: for 3RT25 26 with DC operation, different values apply to AC-2 and AC-3 for the NC.
2) For $U_{\mathrm{S}}>24 \mathrm{~V}$, the rated operational currents I_{e} for the NC contact conducting paths are 50% of the values for the NO contact conducting paths.

Contactors for Special Applications

3RT16 capacitor contactors

Technical specifications

All technical specifications not mentioned in the table below are identical to those of the 3RT10 17 contactors for size SOO, to
those of the 3RT10 26 contactors for size S0 and to those of the 3RT10 45 contactors for size S3.

1) $3 R V 1925-5 A B$ feeder terminal for $16 \mathrm{~mm}^{2}$
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Contactors for Special Applications

3RT20 coupling relays (interface) for switching motors

More information

All technical specifications not mentioned in the table below are identical to those of the 3RT20 contactors for switching motors (see 2/130-2/130)

General data

$\left.\begin{array}{l|llll}\text { Mechanical endurance } & \begin{array}{l}\text { Oper- } \\ \text { ating } \\ \text { cycles }\end{array} & 30 \text { million }\end{array}\right]$

Operating times of the coupling contactors

- Closing

- At 20.5 V	ON-delay NO	ms	$30 \ldots 120$
- At 24 V	OFF-delay NC	ms	$20 \ldots 110$
	ON-delay NO	ms	$25 \ldots 90$
- At 44 V	OFF-delay NC	ms	$15 \ldots 80$
	ON-delay NO	ms	$15 \ldots 60$
- Opening	OFF-delay NC	ms	$10 \ldots 50$
	OFF-delay NO	ms	$5 \ldots 20$

$20 \ldots 80$	$5 \ldots 20$
$30 \ldots 90$	$10 \ldots 30$

3TF68 and 3TF69 Vacuum contactors

Overview

Standards

IEC 60947-1, EN 60947-1,
IEC 60947-4-1, EN 60947-4-1,
IEC 60947-5-1, EN 60947-5-1 (auxiliary switches)
The 3TF68/69 contactors are climate-proof.
They are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices (see Accessories and Spare Parts on page 2/56).

Main contacts

Contact erosion indication with 3TF68/69 vacuum contactors
The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base. If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, then the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters simultaneously.

Auxiliary contacts

Contact reliability
These auxiliary contacts are particularly suitable for solid-state circuits with currents $\geq 1 \mathrm{~mA}$ at a voltage $\geq 17 \mathrm{~V}$.

Electromagnetic compatibility

The 3TF68/69. .-. C contactors for AC operation are fitted with an electronically controlled solenoid operating mechanism with a high interference immunity (for EMC values see page 3/115). The solenoid coil is connected to varistors for protection against overvoltages.
The 3TF68/69..-. Q.. contactors for AC operation are designed for operation in systems with AC control supply voltage which is subject to strong interference. The solenoid systems of these contactors are configured in the DC economy circuit with rectification. The rectifier bridge is connected to varistors for protection against overvoltages.

Protection of the main current paths

An integrated $R C$ varistor connection for the main current paths dampens the switching overvoltage rises to safe values. This prevents multiple restricting. It can therefore be assumed that the motor winding cannot be damaged by switching overvoltages with steep voltage rises.
Note:
During operation in installations in which the emitted interference limits cannot be observed, e.g. when used for output contactors in converters, 3TF68/69..-. Q contactors without a main current path circuit are recommended.

Technical specifications

Contactor	Type	3TF68 and 3TF69		
Rated data of the auxiliary contacts		Acc. to IEC 60947-5-1		
Rated insulation voltage U_{i} (pollution degree 3)	V	690		
Conventional thermal current $I_{\text {th }}=$ Rated operational current $I_{\mathrm{e}} /$ AC-12	A	10		
AC load Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-15/AC-14 - For rated operational voltage $U_{\text {e }}$				
- At 24 V - At 110 V - At 125 V - At 220 V - At 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \end{aligned}$		
- At 380 V - At 400 V - At 500 V - At 660 V - At 690 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \\ & 2.3 \end{aligned}$		
DC load Rated operational current $I_{\mathrm{e}} / D C-12$ - For rated operational voltage $U_{\text {e }}$				
- At 24 V - At 60 V - At 110 V - At 125 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 3.2 \\ & 2.5 \end{aligned}$		
- At 220 V - At 440 V - At 600 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.33 \\ & 0.22 \end{aligned}$		
Rated operational current $I_{e} /$ DC-13 - For rated operational voltage U_{e}			Auxiliary contacts with delayed NC contact:	NS $=$ No specification
- At 24 V - At 60 V - At 110 V - At 125 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \\ & 1.14 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 6 \\ & \text { NS } \\ & 0.98 \\ & \text { NS } \end{aligned}$	
- At 220 V - At 440 V - At 600 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.13 \\ & 0.07 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { NS } \\ & \text { NS } \\ & 0.07 \\ & \hline \end{aligned}$	
(14. and (1) rated data of the auxiliary contacts				
Rated voltage, max.	V AC	600		
Switching capacity		A 600, P 600		

3TF68 and 3TF69 Vacuum contactors

Contactor
Contact endurance of the auxiliary contacts
The contact endurance for utilization category AC-12 or AC-15/AC-14 depends mainly on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
The characteristic curves apply to 230 V AC.

Contact erosion indication with vacuum contactors

3TF68 and 3TF69

The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base.
If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters.
Contact endurance of the main contacts

Diagram legend:
$P_{\text {rated }}=$ Rated power for squirrel-cage motors at 400 V
$I_{\mathrm{a}}=$ Breaking current
$I_{\text {e }}=$ Rated operational current

3TF68 and 3TF69 Vacuum contactors

| Type | | |
| :--- | :--- | :--- | :--- |
| Size | | |
| Dimensions (W $\times \mathrm{H} \times \mathrm{D}$) | | |

${ }^{1)}$ To easily replace the laterally mounted auxiliary switches it is recommended to maintain a minimum distance of 30 mm between the contactors.
2) If mounted at a 90° angle (conducting paths are horizontally above each other), the switching frequency is reduced by 80% compared with the normal values.
3) See "Endurance of the auxillary contacts", page 2/178.
4) Test conditions according to IEC 60947-4-1.
5) For ambient temperatures $>55^{\circ} \mathrm{C}$, only 3 TF6.33-.Q..-Z A02 contactors (= without connection of the main current path circuits) can be used.
Then derating is also possible with these contactors:

- AC-1: $I_{\mathrm{e}}=782 \mathrm{~A}, 644$ operating cycles/h;
- AC-3: operating range $0.85-1.05 \times$ Us, 460 operating cycles/hour,
mechanical endurance 5 million operating cycles, lateral clearance 10 mm

3TF68 and 3TF69 Vacuum contactors

Contactor		Type Size	$\begin{aligned} & \text { 3TF68 } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { 3TF69 } \\ & 14 \end{aligned}$
Control				
Coil operating range			$0.8 \times U_{\text {S }}$ min $\ldots 1.1 \times U_{\text {S }}$ max	
Power consumption of the solenoid coils (when coil is cold and $1.0 \times U_{\mathrm{s}}$)				
- AC operation, $U_{\text {s max }}$	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 1850 / 1 \\ & 49 / 0.15 \end{aligned}$	$\begin{aligned} & 950 / 0.98 \\ & 30.6 / 0.31 \end{aligned}$
- AC operation, $U_{\text {S min }}$	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 1200 / 1 \\ & 13.5 / 0.47 \end{aligned}$	$\begin{aligned} & \text { 600/0.98 } \\ & 12.9 / 0.43 \end{aligned}$
- DC economy circuit ${ }^{11}$)	- Closing at 24 V - Closed	$\begin{aligned} & W \\ & W \end{aligned}$	$\begin{aligned} & 1010 \\ & 28 \end{aligned}$	$\begin{aligned} & 960 \\ & 20.6 \end{aligned}$
For contactors of type 3TF68/69..- . Q:				
- AC operation, $U_{\text {s min }}{ }^{2}$	- Closing - Closed	VA/p.f. VA/p.f.	$\begin{aligned} & 1000 / 0.99 \\ & 11 / 1 \end{aligned}$	$\begin{aligned} & 1150 / 0.99 \\ & 11 / 1 \end{aligned}$
Operating times for $0.8 \ldots 1.1 \times U_{S}$ (Total break time $=$ Opening delay + Arcing time)			(Values apply to cold and warm coil)	
- AC operation	- Closing delay - Opening delay	ms ms	$\begin{aligned} & 70 \ldots 120(22 \ldots 65)^{3)} \\ & 70 \ldots 100 \end{aligned}$	$\begin{aligned} & 80 \ldots 120 \\ & 70 \ldots 80 \end{aligned}$
- DC economy circuit	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 76 \ldots 110 \\ & 50 \end{aligned}$	$\begin{aligned} & 86 \ldots 280 \\ & 19 \ldots 25 \end{aligned}$
- Arcing time		ms	10... 15	10
For contactors of type 3TF68/69..- . Q:				
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 90 \\ & 65 \ldots 90 \end{aligned}$	$\begin{aligned} & 45 \ldots 160 \\ & 30 \ldots 80 \\ & \hline \end{aligned}$
Operating times for $1.0 \times U_{S}$ (Total break time = Opening delay + Arcing time)				
- AC operation	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 80 \ldots 100(30 \ldots 45)^{3)} \\ & 70 \ldots 100 \end{aligned}$	$\begin{aligned} & 85 \ldots 100 \\ & 70 \end{aligned}$
- DC economy circuit	- Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 80 \ldots 90 \\ & 50 \end{aligned}$	$\begin{aligned} & 90 \ldots 125 \\ & 19 \ldots 25 \end{aligned}$
Minimum command duration for closing	Standard Reduced make-time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 120 \\ & 90 \end{aligned}$	120
Minimum interval time between two ON commands		ms	100	300

1) At 24 V DC; for further voltages, deviations of up to $\pm 10 \%$ are possible.
2) Including reversing contactor.
${ }^{3}$) Values in brackets apply to contactors with reduced operating times.

Contactor	Type	3TF6. 44.CF7	$\begin{aligned} & \text { 3TF6. 44- } \\ & \text {.CM7 } \end{aligned}$	3TF6. 44.CP7	$\begin{aligned} & \text { 3TF6. 44- } \\ & . \text { CQ7 } \end{aligned}$	$\begin{aligned} & \text { 3TF6. 44- } \\ & . C S 7 \end{aligned}$
Electromagnetic compatibility						
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	V AC	110... 132	200... 240	$230 \ldots 277$	$380 \ldots 460$	$500 \ldots 600$
Overvoltage type acc. to IEC 60801		Burst/Surge				
Degree of severity acc. to IEC 60801						
- Burst		3	4	4	4	4
- Surge		4	4	4	4	4
Overvoltage resistance						
- Burst	kV	2	4	4	4	4
- Surge	kV	6	5	5	6	6

3TF68 and 3TF69 Vacuum contactors

Contactor	Type		3TF68
		Size	

${ }^{1)}$ Max. permissible rated operational current $I_{\mathrm{e}} / \mathrm{AC}-4=I_{\mathrm{e}} / \mathrm{AC}-3$ up to 500 V , for reduced contact endurance and reduced switching frequency.

3TF68 and 3TF69 Vacuum contactors

Contactor	Type Size	$\begin{aligned} & \text { 3TF68 } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { 3TF69 } \\ & 14 \end{aligned}$
Conductor cross-sections			
Main conductors:		Screw terminals	
- Busbar connections - Finely stranded with cable lug - Stranded with cable lug - Solid or stranded - Connecting bar (max. width)	mm^{2} mm^{2} AWG mm	$\begin{aligned} & 50 \ldots 240 \\ & 70 \ldots 240 \\ & 2 / 0 \ldots 500 \mathrm{MCM} \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \ldots 240 \\ & 50 \ldots 240 \\ & 2 / 0 \ldots 500 \mathrm{MCM} \\ & 60\left(U_{\mathrm{e}} \leq 690 \mathrm{~V}\right) \\ & 50\left(U_{\mathrm{e}}>690 \mathrm{~V}\right) \end{aligned}$
- Terminal screw - Tightening torque - With box terminal ${ }^{1)}$	Nm	$\begin{aligned} & \text { M10 } \times 30 \\ & 14 \ldots 24(124 \ldots 210 \mathrm{lb} . \mathrm{in}) \end{aligned}$	$\begin{aligned} & \text { M12 } \times 40 \\ & 20 \ldots 35(177 \ldots 310 \mathrm{lb} . \mathrm{in}) \end{aligned}$
- Connectable copper bars - Width - Max. thickness - Terminal screw - Tightening torque	mm mm Nm lb.in	$\begin{aligned} & 15 \ldots 25 \\ & 1 \times 26 \text { or } 2 \times 11 \\ & \text { A/F } 6 \text { (hexagon socket) } \\ & 25 \ldots 40 \\ & 221 \ldots 354 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \ldots 38 \\ & 1 \times 46 \text { or } 2 \times 18 \\ & \text { A/F } 8 \text { (hexagon socket) } \\ & 35 \ldots 50 \\ & 266 \ldots 443 \end{aligned}$
Auxiliary conductors:			
- Solid - Finely stranded with end sleeve - Pin-end connector acc. to DIN 46231 - Solid or stranded - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \\ & \mathrm{Nm} \\ & \mathrm{lb} . \mathrm{in} \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 1)^{2)} / 2 \times(1 \ldots 2.5)^{2)} \\ & 2 \times(0.5 \ldots 1)^{2)} / 2 \times(0.75 \ldots 2.5)^{2)} \\ & 2 \times(1 \ldots \ldots 1.5) \\ & 2 \times(18 \ldots 12) \\ & 0.8 \ldots 1.4 \\ & 7 \ldots 12 \end{aligned}$	

1) See "Accessories and Spare Parts", page $2 / 56$.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Overview

3TC4 and 3TC5
EC 60947-1, EN 60947-1,
IEC 60947-4-1, EN 60947-4-1
The contactors are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depend ing on the configuration with other devices.

The DC motor ratings given in the tables are applicable to the DC-3 and DC-5 utilization categories with two-pole switching of the load or with the two conducting paths of the contactor connected in series.

One contactor conducting path can switch full power up to 220 V . The ratings for higher voltages are available on request.

3 TC7

IEC 60947-4-1, EN 60947-4-1.
The contactors are suitable for use in any climate. They are suitable for switching and controlling DC motors as well as all other DC circuits.
The solenoid excitation is configured for a particularly large operating range. It is between 0.7 or 0.8 to $1.2 \mathrm{Zx} U_{\mathrm{s}}$.

3 TC74 contactors can be used at up to $750 \mathrm{~V} / 400 \mathrm{~A}$ and 50 Hz in AC-1 operation.

Application

The contactors are suitable for switching and controlling DC motors as well as all other DC circuits.

A version with an especially large coil operating range is available for operation in electrically driven vehicles and in switchgears with significant fluctuations in the actuating voltage

Technical specifications

Contactors	Type		3TC4 and 3TC7	3TC5
Rated data of the auxiliary contacts				
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)		V	690	
Conventional thermal current $I_{\text {th }}=$ Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-12		A	10	10
AC load Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-15 / \mathrm{AC}-14$ - For rated operational voltage U_{e}	$\begin{array}{r} 24 \mathrm{~V} \\ 110 \mathrm{~V} \\ 125 \mathrm{~V} \\ 220 \mathrm{~V} \\ 230 \mathrm{~V} \\ 380 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 660 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	A A A A A A A A A A	10 10 10 6 5.6 4 3.6 2.5 2.5 --	10 10 10 6 5.6 4 3.6 2.5 2.5 --

DC load
Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-12

- For rated operational voltage U_{e}

| | | | 10 |
| :--- | :--- | :--- | :--- | :--- |

3TC contactors

Contactors	Type Size	$\begin{aligned} & 3 \text { 3TC44 } \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \text { 3TC48 } \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \text { 3TC52 } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { 3TC56 } \\ & 12 \end{aligned}$

General technical specifications

Permissible mounting positions

The contactors are designed for operation on a vertical mounting surface.

Mechanical endurance
 Electrical endurance

Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)
Protective separation between the coil and the main contacts
Operating cycles
Operating cycles
acc. to IEC 60947-1, Appendix N

Mirror contacts ${ }^{2}$)

A mirror contact is an auxiliary NC contact that cannot be closed simultane-
ously with a NO main contact

Permissible ambient temperature

- During operation
${ }^{\circ} \mathrm{C} \quad-25 \ldots+55$
- During storage
${ }^{\circ} \mathrm{C} \quad-50 \ldots+80$
Degree of protection acc. to IEC 60947-1, Appendix C
Shock resistance Rectangular pulse Short-circuit protection

Main circuit

Fuse links, operational class gG:
LV HRC, type 3NA; DIAZED, type 5SB; NEOZED, type 5SE

- Type of coordination "1"
A 50
- Type of coordination "2"

A $\quad 35$
IP00/open, for AC operation, coil assembly IP40
$7.5 / 5$ and $3.4 / 10 \quad 10 / 5$ and $5 / 10 \quad 12 / 5$ and $5.5 / 10$
12/5 and 5.6/10

Auxiliary circuit

- Short-circuit test with fuse links of gG operational class:
with short-circuit current $I_{\mathrm{k}}=1 \mathrm{kA}$ acc. to IEC 60947-5-1
- Test with miniature circuit breaker up to 230 V with C characteristic: Short-circuit current $I_{\mathrm{k}}=400 \mathrm{~A}$ acc. to IEC 60947-5-1

1) See the endurance diagram above.
2) For 3TC44, one NC contact each must be connected in series for the right and left auxiliary switch block respectively

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

AC/DC operation

- With resistive load DC-1
- For inductive load DC-3/DC-5

Conductor cross-sections (1 or 2 conductors connectable)

Main conductors:

- Solid
- Finely stranded with end sleeve
- Stranded with cable lug
- Pin-end connector acc. to DIN 46231
- Busbars
- Terminal screw

Auxiliary conductors:

- Solid
- Finely stranded with end sleeve

mm^{2}	$2 \times(2.5 \ldots 10)$	$2 \times(6 \ldots 16)$	--	--
mm^{2}	$2 \times(1.5 \ldots 4)$	-	-	
mm^{2}	2×16	2×35	2×120	2×150
$\mathrm{~mm}^{2}$	$2 \times(1 \ldots 6)$	--	--	--
mm	--	15×2.5	25×4	$2 \times(25 \times 3)$
	M 5	M 6	M 10	M 10
$\mathrm{~mm}^{2}$	$2 \times(1 \ldots 2.5)$			
mm^{2}	$2 \times(0.75 \ldots 1.5)$			

1) The opening delay times can increase if the contactor coils are damped against voltage peaks. Only 3TC44 contactors are allowed to be fitted with diodes.

3TC contactors

Main circuit

Load rating with DC
Utilization category DC-1, switching resistive loads ($L / R \leq 1 \mathbf{m s}$)

- Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-1$ (at $55^{\circ} \mathrm{C}$)
- Minimum conductor cross-section
- Rated power
- Critical currents, without arc extinction

	A	500	500
	$\mathrm{~mm}^{2}$	2×150	2×150
At 220 V	kW	110	110
440 V	kW	220	220
600 V	kW	300	300
750 V	kW	375	375
1200 V	kW	-	600
1500 V	kW	-	750
At 440 V	A	≤ 7	-
600 V	A	≤ 13	-
750 V	A	≤ 15	≤ 7
$\leq 800 \mathrm{~V}$	A	-	≤ 13
1200 V	A	-	≤ 15
1500 V	A	-	
		$2)$	

Utilization categories DC-3 and DC-5, switching DC motors

Permissible rated current for regenerative braking At 110 ... 600 V

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour
AC/DC operation

- With resistive load DC-1
- For inductive load DC-3/DC-5

h^{-1}	750
$\mathrm{~h}^{-1}$	500

1000

${ }^{1)}$ Endurance see page 2/184..
2) See Selection and ordering data.

Accessories - 3RT1 contactors

Technical specifications

Contactor Type		3RT19 26-2C 3RT19 26-2D	3RT19 26-2E 3RT19 26-2F 3RT19 26-2G
		Solid-state timing relay blocks with semiconductor output	Solid-state time-delay auxiliary switch blocks
General data			
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ Pollution degree 3 Overvoltage category III acc. to EN 60664-1	V AC	250	
Permissible ambient temperature			
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$	
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$	
Degree of protection acc. to EN 60947-1, Appendix C - Cover - Terminals		$\begin{aligned} & \text { IP40 } \\ & \text { IP20 } \end{aligned}$	
Shock resistance Half-sine acc. to IEC 60068-2-27	g / ms	15/11	
Vibration resistance according to IEC 60068-2-6	Hz/mm	$10 . .55 / 0.35$	
EMC tests Basic specification		IEC 61000-6-4	
Conductor connections			
- Solid	mm^{2}	$2 \times(0.5 \ldots 1.5), 2 \times(0.75 \ldots 4)$	
- Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 2.5)$	
- AWG cables, solid or stranded	AWG	$2 \times(18 \ldots 14)$	
- Terminal screws		M3	
- Tightening torque	Nm lb.in	$\begin{aligned} & 0.8 \ldots 1.2 \\ & 7 \ldots 10.3 \end{aligned}$	
Permissible mounting positions		Any	
Control			
Operating range of excitation		$0.8 \ldots 1.1 \times U_{\mathrm{s}},$ $0.95 \ldots 1.05$ times the rated frequency	$0.85 \ldots 1.1 \times U_{s}$, 0.95 ... 1.05 times the rated frequency
Rated power	W	1	2
- Power consumption at $230 \mathrm{~V} \mathrm{AC}$,	VA	1	4
Overvoltage protection		Varistor integrated in timing relay	--
Recovery time	ms	50	150
Minimum ON period	ms	35	200 (with OFF-delay)
Setting accuracy With reference to upper limit of scale	\%	± 15	
Repeat accuracy Max.	\%	± 1	
Load side			
Rated operational currents $I_{\text {e }}$			
- Load current	A	0.3	--
- AC-15, $230 \mathrm{~V}, 50 \mathrm{~Hz}$	A	--	3
- DC-13, 24 V	A	--	1
- DC-13, 110 V	A	--	0.2
- DC-13, 230 V	A	--	0.1
Short-time loading capacity Up to 10 ms	A	10	--
DIAZED protection gG operational class	A	--	4
Residual current Max.	mA	5	--
Voltage drop With conducting output Max.	VA	3.5	--
Mechanical endurance	Operating cycles	100×10^{6}	10×10^{6}
Switching frequency for load			
- With I_{e} at 230 V AC	h^{-1}	200	2500
- With 3RT20 16 contactor at 230 V AC	h^{-1}	2500	5000

| Function |
| :--- | :--- | :--- | :--- |

Accessories - 3RT1 contactors

Contactor	Type		3RH19 24, 3TX7 090
			Coupling links for mounting on contactors acc. to IEC 60947/EN 60947
General data			
Rated insulation voltage \boldsymbol{U}_{i} (pollution degree 3)		V	300
Protective separation between coil and contacts acc. to IEC 60947-1, Appendix N		V AC	Up to 300
Permissible ambient temperature			
- During operation		${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
- During storage		${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$
Degree of protection acc. to IEC 60947-1, Appendix C			
- Connections			IP20
- Enclosure			IP40
Circuit diagram			B1+ ${ }^{32-N}$
Conductor cross-sections			
- Solid		mm^{2}	$2 \times(0.5 \ldots 2.5)$
- Finely stranded with end sleeve		mm^{2}	$2 \times(0.5 \ldots 1.5)$
Terminal screws			M3
Control side			
Rated control supply voltage $\boldsymbol{U}_{\text {S }}$		V DC	24
Operating range		V DC	$17 . .30$
Power consumption at $\boldsymbol{U}_{\text {S }}$		W	0.5
Nominal current input		mA	20
Release voltage		V	≥ 4
Function display			Yellow LED
Protection circuit			Varistor
Load side			
Mechanical endurance	Operating cycles		20×10^{6}
Electrical endurance at $I_{\text {e }}$	Operating cycles		1×10^{5}
Switching frequency	Operating cycles		5000
Make-time		ms	Approx. 7
Break-time		ms	Approx. 4
Bounce time		ms	Approx. 2
Contact material			AgSnO
Switching voltage	AC/DC	V	$24 . .250$
Permissible residual current of the electronics (w	gnal)	mA	2.5

Control Relays

Technical specifications

Contactor relays	Type Size
Permissible mounting positions	
The contactor relays are designed for operation on a vertical mounting surface.	
Upright mounting position	

Positively-driven operation of contacts in contactor relays

3RH2:

Yes, in the basic unit and the auxiliary switch block as well as between the basic unit and the front-mounted auxiliary switch block (removable)
acc. to:

- ZH 1/457
- IEC 60947-5-1, Appendix L

3RH22:
Yes, in the basic unit and the auxiliary switch block as well as between the basic unit and the snap-on auxiliary switch block (permanently
mounted) acc. to:

- ZH 1/457
- IEC 60947-5-1, Appendix L

Note:
3RH29 11-. NF. solid-state compatible auxiliary switch blocks have no positively-driven contacts.

Contact reliability

Contact reliability at $17 \mathrm{~V}, 1 \mathrm{~mA}$ acc. to IEC 60947-5-4
Explanations:
There is positively-driven operation if it is ensured that the NC and NO contacts cannot be closed at the same time.

ZH1/457

Safety Rules for Controls on Power-Operated Metalworking Presses.
IEC 60947-5-1, Appendix L
Low-Voltage Controlgear, Controls and Contact Blocks. Special requirements

Contact endurance for AC-15/AC-14 and

DC-13 utilization categories

The contact endurance is mainly dependent on the breaking current. It is assumed that the operating mechanisms are switched randomly, i.e. not synchronized with the phase angle of the supply system.
If magnetic circuits other than the contactor coil systems or solenoid valves are present, e.g. magnetic brakes, protective measures for the load circuits are necessary, e.g. in the form of RC elements and freewheel diodes.
The characteristic curves apply to:

- 3RH21/3RH22 contactor relays
- 3RH24 latched contactor relays
- 3RH29 11 auxiliary switch blocks ${ }^{11}$
- Auxiliary switch blocks for snapping onto the front,
max. 4-pole and for mounting onto the side in size SOO
for positively-driven contacts

Frequency of contact faults $<10^{-8}$ i.e. <1 fault per 100 million operating cycles

Diagram legend:

$I_{\mathrm{a}}=$ Breaking current
$I_{\mathrm{e}}=$ Rated operational current

1) $I_{\mathrm{e}}=6 \mathrm{~A}$ for $\mathrm{AC}-15 / \mathrm{AC}-14$.

3RH2 control relays - size S00

Tool for opening the spring-type terminals see Accessories, page 2/81.
An insulation stop must be used for conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$, see Accessories, page 2/81.

Control Relays

3RH2 control relays - size S00

Contactor relays	Type Size		$\begin{aligned} & \text { 3RH2. } \\ & \text { SOO } \end{aligned}$
Control circuits			
Coil operating range			
- AC operation	$\begin{aligned} & \text { At } 50 \mathrm{~Hz} \\ & \text { At } 60 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{s}} \end{aligned}$
- DC operation	$\begin{aligned} & \mathrm{At}+50^{\circ} \mathrm{C} \\ & \mathrm{At}+60^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \ldots 1.1 \times U_{\mathrm{s}} \\ & 0.85 \ldots 1.1 \times U_{\mathrm{s}} \end{aligned}$
Power consumption of the solenoid coils (when coil is cold and $1.0 \times \mathrm{U}_{\mathrm{s}}$)			
- AC operation, 50 Hz			
- Closing - Closed		VA/p.f. VA/p.f.	$\begin{aligned} & 37 / 0.8 \\ & 5.7 / 0.25 \end{aligned}$
- AC operation, 60 Hz			
- Closing - Closed		VA/p.f. VA/p.f.	$\begin{aligned} & 33 / 0.75 \\ & 4.4 / 0.25 \end{aligned}$
- DC operation (closing = closed)		W	4.0
Permissible residual current of the electronics (with 0 signal)			
- For AC operation ${ }^{1)}$ - For DC operation			$\begin{aligned} & <4 \mathrm{~mA} \times\left(230 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \\ & <10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right) \end{aligned}$
Operating times ${ }^{2)}$ Total break time $=$ OFF-delay + Arcing time			
Values apply with coil in cold state and at operating temperature for operating range			
AC operation			
- Closing			
- ON-delay of NO contact	With 0.8 ... $1.1 \times U_{S}$ With $1.0 \times U_{s}$ 3RH24 minimum operating time	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 8 \ldots 33 \\ & 9 \ldots 22 \\ & \geq 35 \end{aligned}$
- OFF-delay of NC contact	With $0.8 \ldots 1.1 \times U_{S}$ With $1.0 \times U_{s}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 6 \ldots 25 \\ & 6.5 \ldots 19 \end{aligned}$
- Opening			
- OFF-delay of NO contact	With 0.8 ... $1.1 \times U_{S}$ With $1.0 \times U_{s}$ 3RH24 minimum operating time	ms ms ms	$\begin{aligned} & 4 \ldots 15 \\ & 4.5 \ldots 15 \\ & \geq 30 \end{aligned}$
- ON-delay of NC contact	With $0.8 \ldots 1.1 \times U_{S}$ With $1.0 \times U_{S}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 5 \ldots 15 \\ & 5 \ldots \\ & 5 \end{aligned}$
DC operation			
- Closing			
- ON-delay of NO contact	With $0.8 \ldots 1.1 \times U_{S}$ With $1.0 \times U_{s}$ 3RH24 minimum operating time	ms ms ms	$\begin{aligned} & 30 \ldots 100 \\ & 35 \ldots 50 \\ & \geq 100 \end{aligned}$
- OFF-delay of NC contact	With $0.8 \ldots 1.1 \times U_{S}$ With $1.0 \times U_{s}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 90 \\ & 30 \ldots .45 \end{aligned}$
- Opening			
- OFF-delay of NO contact	With 0.8 ... $1.1 \times U_{S}$ With $1.0 \times U_{S}$ 3RH24 minimum operating time	ms ms ms	$\begin{aligned} & 7 \ldots 13 \\ & 7 \ldots 12 \\ & \geq 30 \end{aligned}$
- ON-delay of NC contact - Arcing time	With $0.8 \ldots 1.1 \times U_{S}$ With $1.0 \times U_{S}$	ms ms ms	$\begin{aligned} & 13 \ldots 19 \\ & 13 \ldots . \end{aligned}$
Dependence of the switching frequency z^{\prime} on the operational current I^{\prime} and operational voltage U^{\prime} : $z^{\prime}=z \cdot I_{\mathrm{e}} / I^{\prime} \cdot\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$			

1) The 3RT29 16-1GA00 additional load module is recommended for higher residual currents (see page 2/76).
2) The OFF-delay of the NO contact and the ON-delay of the NC contact are increased if the contactor coils are attenuated against voltage peaks (noise suppression diode 6 to 10 times;
diode assembly 2 to 6 times, varistor +2 to 5 ms).

Coupling Relays

3RH2 control relays - size S00

Contactor relays	Type Size		$\begin{aligned} & \text { 3RH2. } \\ & \text { SOO } \end{aligned}$
Load side			
AC capacity			
Rated operational currents I_{e}			
AC-15/AC-14 for rated operational voltage U_{S}	$\begin{array}{r} \text { Up to } 230 \mathrm{~V} \\ 400 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 \mathrm{~V} \end{array}$	A A A A	$\begin{aligned} & 6 \\ & 3 \\ & 2 \\ & 1 \end{aligned}$
Load rating with DC Rated operational currents I_{e} DC-12 for rated operational voltage U_{S} - 1 conducting path	$\begin{gathered} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 4400 \mathrm{~V} \\ 600 \end{gathered}$	A A A A A A	$\begin{aligned} & 6 \\ & 6 \\ & 3 \\ & 1 \\ & 0.3 \\ & 0.15 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A A A A A A	$\begin{aligned} & 10 \\ & 10 \\ & 4 \\ & 2 \\ & 1.3 \\ & 0.65 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 3.6 \\ & 2.5 \\ & 1.8 \end{aligned}$
DC-13 for rated operational voltage U_{S} - 1 conducting path	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A A A A A A	$\begin{aligned} & 6 \\ & 2 \\ & 1 \\ & 0.3 \\ & 0.14 \\ & 0.1 \end{aligned}$
- 2 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 10 \\ & 3.5 \\ & 1.3 \\ & 0.9 \\ & 0.2 \\ & 0.1 \end{aligned}$
- 3 conducting paths in series	$\begin{array}{r} 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \\ 600 \mathrm{~V} \end{array}$	A	$\begin{aligned} & 10 \\ & 4.7 \\ & 3 \\ & 1.2 \\ & 0.5 \\ & 0.26 \end{aligned}$

Switching frequency

Switching frequency \boldsymbol{z} in operating cycles/hour

- For rated operation

For utilization category

- No-load switching frequency

AC-12/DC-12 $h^{-1} 1000$
AC-15/AC-14 $\quad h^{-1} \quad 1000$
DC-13 h $h^{-1} 1000$
$h^{-1} 10000$

Dependence of the switching frequency z^{\prime} on
the operational current I^{\prime} and operational voltage U^{\prime} ':
$z^{\prime}=z \cdot I_{\mathrm{e}} / I^{\prime} \cdot\left(U_{\mathrm{e}} / U^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

(C) and © $\mathbb{1}$ rated data

Basic units and auxiliary switch blocks

- Rated control supply voltage
- Rated voltage
- Switching capacity
- Uninterrupted current at 240 V AC

VAC max. 600
V AC 600
A 600, Q 600
A 10

Control Relays

SIRIUS 3RH21 coupling relays for switching auxiliary circuits, 4-pole

Technical specifications

All technical specifications not mentioned in the table below are identical to those of the 3RH21 contactor relays (see page 5/6).

Contactor type Size		$\begin{aligned} & \text { 3RH21 ..-.HB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH21 ..-.JB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH21 ..-.KB40 } \\ & \text { S00 } \end{aligned}$
Control circuits				
Coil operating range		$0.7 \ldots 1.85 \times U_{S}$		
Power consumption of the solenoid coil (for cold coil) Closing = Closed				
- At $U_{\mathrm{S}}=17 \mathrm{~V}$	W	1.4		
- At $U_{S}=24 \mathrm{~V}$	W	2.8		
- At $U_{S}=30 \mathrm{~V}$	W	4.4		
Permissible residual current of the electronics for 0 signal		$<10 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$		
Overvoltage configuration of the solenoid coil		No overvoltage damping C^{-1}	With diode \rightarrow	With suppressor diode DA
Operating times				
- Closing at 17 V ON-delay NO - OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 40 \ldots 130 \\ & 30 \ldots 80 \end{aligned}$		
- At 24 V - ON-delay NO - OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \ldots 60 \\ & 25 \ldots 40 \end{aligned}$		
- At 30 V - ON-delay NO - OFF-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 25 \ldots 50 \\ & 15 \ldots 30 \end{aligned}$		
- Opening at $17 \ldots 30 \mathrm{~V}$ - OFF-delay NO - ON-delay NC	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 7 \ldots 20 \\ & 20 \ldots . .30 \end{aligned}$	$\begin{aligned} & 38 \ldots 65 \\ & 55 \ldots 75 \end{aligned}$	$\begin{aligned} & 7 \ldots 20 \\ & 20 \ldots 30 \end{aligned}$
Upright mounting position		Request required		
Contactor type Size		$\begin{aligned} & \text { 3RH21 ...-MB40-0KT0 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH21 ..-.VB40 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RH21 ..-. WB40 } \\ & \text { S00 } \end{aligned}$
Control circuits				
Coil operating range		$0.85 \ldots 1.85 \times U_{\text {S }}$		
Power consumption of the solenoid coil (for cold coil) Closing $=$ Closed at $U_{\mathrm{S}}=24 \mathrm{~V}$	W	1.6		
Permissible residual current of the electronics for 0 signal		$<8 \mathrm{~mA} \times\left(24 \mathrm{~V} / \mathrm{U}_{\mathrm{s}}\right)$		
Overvoltage configuration of the solenoid coil		Diode, varistor or RC element, attachable	Built-in diode	Built-in suppressor diode
Control circuits				
Operating times - Closing at 20.5 V - ON-delay NO - OFF-delay NC	ms ms	$\begin{aligned} & 30 \ldots 120 \\ & 20 \ldots 110 \end{aligned}$		
- At 24 V - ON-delay NO - OFF-delay NC	ms ms	$\begin{aligned} & 25 \ldots 90 \\ & 15 \ldots 80 \end{aligned}$		
- At 44 V - ON-delay NO - OFF-delay NC	ms ms	$\begin{aligned} & 15 \ldots 60 \\ & 10 \ldots 50 \end{aligned}$		
- Closing at $17 \ldots 30 \mathrm{~V}$ - OFF-delay NO - ON-delay NC	ms ms	$\begin{aligned} & 5 \ldots 20 \\ & 10 \ldots 30 \end{aligned}$	$\begin{aligned} & 20 \ldots 80 \\ & 30 \ldots 90 \end{aligned}$	$\begin{aligned} & 5 \ldots . .20 \\ & 10 \ldots 30 \end{aligned}$
Upright mounting position		Request required		

3RT Contactors

Terminal designations and identification numbers for auxiliary contacts

Terminal designations
The terminal designations are 2-digit, e.g. 13, 14, 21, 22 :

- Tens digit: Sequence digit
- Related terminals have the same sequence digit
- Units digit: Function digit
- 1-2 for normally closed contacts (NC)
- 3-4 for normally open contacts (NO)

Identification numbers

The identification number indicates the number and type of the auxiliary contacts, e.g. 40, 31, 22, 13:

- 1st digit: number of normally open contacts (NO)
- 2nd digit: number of normally closed contacts (NC)

Examples:

- $31=3 \mathrm{NO}+1 \mathrm{NC}$
- $40=4 \mathrm{NO}$

Selection guide for mountable auxiliary switch blocks for power contactors and contactor relays
The auxiliary switch blocks of the 3RH29 series for mounting on the front and side can be used for power contactors as well as for contactor relays.
The possible combinations of basic unit and mounted auxiliary switch block can be found in the tables below.

1) Combinations according to EN 50012, EN 50011 and IEC 60947-5-1 are in bold print. All combinations comply with EN 50005.

Where the columns and lines intersect (blue and green in the example) you will find the identification number for the combination of basic unit (column) and auxiliary switch block (line).

3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxiliary switch blocks											
Auxiliary contacts Version NO NC	3-pole contactors			4-pole contactors				Contactor relays			
	$\begin{array}{\|l\|} \hline \text { S00 } \\ \text { 3RT20 } 1 \\ 10 \end{array}$	3RT20 1 01	$\begin{array}{\|l} \text { So } \\ 3 R T 202 \\ 11 \end{array}$		3RT25 1	$\begin{aligned} & \mathrm{SO} / \mathrm{S} 2 \\ & 3 \mathrm{RT} 23 \\ & 11 \end{aligned}$	$\begin{array}{\|l\|l} \hline 3 R T 25 \\ 11 \end{array}$	S00 3RH21, 3RH24 40E	3RH21, 3RH24 31E	$\begin{aligned} & 3 \mathrm{RH} 21,3 \mathrm{RH} 24 \\ & \text { 22E } \end{aligned}$	
14	$-\left.\right\|_{14} ^{13}$ $\text { 2. 3. } 4 .$ $5 .$	$\left\lvert\, \begin{aligned} & \mathfrak{l}_{21}^{2} \\ & -7 \\ & 22 \\ & 22 \\ & 5.6 .7 . \\ & 8 . \end{aligned}\right.$	$\begin{array}{\|l} \left.V_{13}^{13}\right\|_{22} ^{21} \\ 14 \\ 3.4 .5 . \\ 6 . \end{array}$	$\begin{aligned} & \text { 1. 2. } 3 . \\ & \text { 4. } \end{aligned}$	$\text { 1. 2. } 3 .$ $4 .$	$\left\lvert\, \begin{aligned} & \left.V_{14}^{13}\right\|_{22} ^{21} \\ & 3.4 .5 . \\ & 6 . \end{aligned}\right.$	$\begin{aligned} & \left.\left.\left.\right\|_{-} ^{13}\right\|_{14} ^{21}\right\|_{22} ^{4} \\ & \text { 3. 4.5. } \\ & \text { 6. } \end{aligned}$	$\left.\left.\left.\left.\right\|_{14} ^{13}\right\|_{24} ^{23}\right\|_{34} ^{23}\right\|_{44} ^{43}$ 5.6.7.8			
Front auxiliary switches	According to EN 500121)			According to EN 500121)				According to EN 500111)			Order No.
Without NO contact											
$\begin{array}{lll} -- & 1 & \left.\right\|_{i} ^{1} \\ i \\ \hline \end{array}$	11	02	12	01	01	12	12	41X	32X	$23 X$	3RH29 11-.HA01
	12	03	13	02	02	13	--	42E	$33 X$	24	3RH29 11-.HA02
	13	04	14	03	--	--	--	43	34	--	3RH29 11-.HA03
	14	--	--	--	--	--	--	44E	--	--	3RH29 11-.FA04
With 1 NO contact											
$\begin{array}{llll} 1 & -- & \left.\right\|^{\cdot 3} \\ \hline \end{array}$	20	11	21	10	10	21	21	50E	41E	32E	3RH29 11-.HA10
	21	12	22	11	11	22	22	51X	42X	$33 X$	3RH29 11-.HA11
	22	13	23	12	12	23	--	52	43	34	3RH29 11-.HA12
	23	14	24	13	--	--	--	53X	44X	--	3RH29 11-.HA13
With 2 NO contacts											
$\begin{array}{lll} 2 & -- & \left.\right\|_{.} ^{-3}-\left.\right\|_{.4} ^{.3} \end{array}$	30	21	31	20	20	31	31	60E	51X	42X	3RH29 11-.HA2O
	31	22	32	21	21	32	32	61	52	43	3RH29 11-.HA21
	32	23	33	22	22	33	--	62X	53	44X	3RH29 11-.HA22
	32	23	33	22	22	33	--	62X	53	44X	3RH29 11-.FA22

[^31]
3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxillary switch blocks

1		$-\left.\right\|_{74} ^{73}$	20	11	21	10	10	21	21	50	41	32	3RH29 11-1AA10
1		$-\left.\right\|_{74} ^{73}$	20	11	21	10	10	21	21	50	41	32	3RH29 11-1BA10
--	1	$\left.\right\|_{72} ^{71}$	11	02	12	01	01	12	12	41	32	23	3RH29 11-1AA01
--	1	$\left.\right\|_{72} ^{71}-$	11	02	12	01	01	12	12	41	32	23	3RH29 11-1BA01
1	1	$\left.\left.\right\|_{74} ^{73}\right\|_{82} ^{81}$	21	12	22	11	11	22	22	51	42	33	3RH29 11-1LA11
1	1	$\left.\left.\right\|_{74} ^{73}\right\|_{82} ^{81}$	21	12	22	11	11	22	22	51	42	33	3RH29 11-1MA11
2	--		30	21	31	20	20	31	31	60	51	42	3RH29 11-1LA2O
2	--	$\left.\left.\right\|_{74} ^{73}\right\|_{84} ^{73}$	30	21	31	20	20	31	31	60	51	42	3RH29 11-1MA2O

[^32]
3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxillary switch blocks

Auxiliary contacts Version NO NC	3-pole contactors			4-pole contactors			
		3RT20 1 01	$\begin{array}{\|l\|l} \mathrm{SO} \\ 3 R T 202 \\ 11 \end{array}$	S00	$\text { 3RT25 } 1$	$\begin{aligned} & \mathrm{S} 0 / \mathrm{S} 2 \\ & 3 R T 23 \\ & 11 \end{aligned}$	$\begin{array}{\|l} \text { 3RT25 } \\ 11 \end{array}$
14	$-\left.\right\|_{14} ^{13}$	$\stackrel{L_{21}^{21}}{-}$	$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{21}$			$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{21}$	
	$\begin{aligned} & \text { 2. 3. 4. } 5 . \\ & \text { Acc. to } \end{aligned}$	$\begin{aligned} & \text { 5. 6. } 7.8 . \\ & \text { N } 50005 \end{aligned}$	3.4.5.6.	1.2.3.4. Acc. to	$\begin{gathered} \text { 1.2.3.4. } \\ \text { N } 50005 \end{gathered}$	3.4.5.6.	3.4.5.6.

Front auxiliary switches with complete inscription (for contactor relays)

Front auxiliary switches with complete inscription, special version

	50	41	51	40	40	51	51	80E	71X	62X	$\begin{aligned} & \text { 3RH29 11-.XA40 } \\ & \text {-OMAO } \end{aligned}$
	41	32	42	31	31	42	42	71E	62X	53	$\begin{aligned} & \text { 3RH29 11-.XA31 } \\ & \text {-OMAO } \end{aligned}$
$\left.\begin{array}{ll} 2 & 2 \\ & \left\|\begin{array}{l} 53 \\ - \\ 54 \end{array}\right\| \begin{array}{l} 61 \\ 7 \\ 7 \\ 62 \end{array}\left\|\begin{array}{l} 71 \\ 72 \end{array}\right\|_{84} \\ \hline \end{array}\right\|_{83} ^{83}$	32	23	33	22	22	33	--	62E	53	44X	$\begin{aligned} & \text { 3RH29 11-.XA22 } \\ & \text {-OMAO } \end{aligned}$
	14	--	--	--	--	--	--	44E	--	--	$\begin{aligned} & \text { 3RH29 11-.XA04 } \\ & \text {-OMAO } \end{aligned}$
Front auxiliary switches, Solid-state compatible											
$\begin{array}{lll} -- & 2 & \left\lvert\, \begin{array}{l} .1 \\ \vdots \\ \hline \end{array}\right. \\ \hline \end{array}$	12	03	13	02	02	13	--	42	33	24	3RH29 11-.NF02
	21	12	22	11	11	22	22	51	42	33	3RH29 11-.NF11
$\left.\begin{array}{lll} \hline 2 & -- & \left.\right\|_{.} ^{\cdot 3} \\ -4 \end{array}\right\|_{.4} ^{.^{3}}$	30	21	31	20	20	31	31	60	51	42	3RH29 11-.NF20

[^33]
3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxillary switch blocks

[^34]
3RT Contactors

3RT2 and 3RH2 contactors and relays

Additional auxillary switch blocks

Auxiliary contacts Version NO NC	$\left\|\begin{array}{l} \text { 3-pole co } \\ \text { S00 } \\ \text { 3RT20 } 1 \\ 10 \end{array}\right\|$	ontactors 3RT20 1 01	$\left\lvert\, \begin{aligned} & \text { S0 } \\ & \text { 3RT20 } 2 \\ & 11 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \text { 4-pole co } \\ & \text { S00 } \\ & 3 R T 231 \\ & -- \end{aligned}\right.$	ntactors 3RT25 1 --	$\begin{aligned} & \text { SO/S2 } \\ & 3 R T 23 \\ & 11 \end{aligned}$	$\begin{aligned} & \text { 3RT25 } \\ & 11 \end{aligned}$	Contactor rel SOO 3RH21, 3RH2 40E		22E	
14	$-\left.\right\|_{14} ^{13}$	$\stackrel{L_{2}^{21}}{-}$	$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{12}$			$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{12}$	$\left.\left.\right\|_{14} ^{13}\right\|_{22} ^{12}$				
Left Right	2. 3. 4. 5. Accordin	5.6.7.8. g to EN 500	$\begin{gathered} \text { 3.4.5. } 6 . \\ 0012^{11} \end{gathered}$	1. 2. 3. 4. Accordin	$\text { . 2. 3. } 4 .$ to EN 50	$\text { 3. 4. 5. } 6 .$ 0012^{11}	3.4.5.6.	5.6.7. 8 According to	$\begin{aligned} & \text { 5. 6.7.8 } \\ & \text { EN } 500111 \text {) } \end{aligned}$	5.6.7.8	Order No.
Lateral auxiliary switches for size S00 to S3											
$\begin{array}{lll} 2 & -- \\ 1 & 1 \end{array}\left\|\begin{array}{ll} 53 \\ -1 \\ 54 \end{array}\right\|_{64}^{63} \quad \begin{aligned} & \left\|\begin{array}{l} 31 \\ -1 \\ 32 \end{array}\right\|_{44}^{43}, ~ \end{aligned}$	41	32	42	31	31	42	42	--	--	--	$\begin{aligned} & \text { 3RH29 21-.DA20 + } \\ & \text { 3RH29 } 1 \text { 21- DA11 } \end{aligned}$
$\left.\begin{array}{lll} \hline 2 & -- \\ -- & 2 & \left.\right\|_{54} ^{53} \\ -1 \end{array}\right\|_{64} ^{63} \begin{array}{ll} \left.\right\|_{32} ^{31} & \left.\right\|_{42} ^{41} \\ 4 & 4 \\ 4 \end{array}$	32	23	33	22	22	33	--	--	--	--	$\begin{aligned} & \text { 3RH29 21-.DA20 + } \\ & \text { 3RH29 21-.DA02 } \end{aligned}$
	23	14	24	13	--	--	--	--	--	--	$\begin{aligned} & \hline \text { 3RH29 21-.DA11 + } \\ & \text { 3RH29 21-.DA02 } \end{aligned}$
Lateral auxiliary switches for contactor relays											
	--	--	--	--	--	--	--	$42 Z$	33X	24	3RH29 21-.DA02
$\begin{array}{lll} 1 & 1 & \left.\begin{array}{c} 51 \\ \vdots \\ 52 \end{array}\right\|_{64} ^{63} \end{array} \underbrace{63}$	--	--	--	--	--	--	--	51X	42X	33X	3RH29 21-.DA11
$\left.\begin{array}{lll} \hline 2 & -- \\ 54 \end{array}\right\|_{64} ^{53}-\left.1\right\|^{63}$	--	--	--	--	--	--	--	$60 Z$	51X	42X	3RH29 21-.DA20
Lateral auxiliary switches, Solid-state compatible for size S00											
	21	--	--	11	11	--	--	--	--	--	3RH29 11-2DE11
	32	--	--	22	22	--	--	--	--	--	3RH29 11-2DE11
Lateral auxiliary switches, Solid-state compatible for size S00 to S3											
11 $\left.\left.\right\|_{34} ^{33}\right\|_{42} ^{41}$	21	12	22	11	11	22	22	--	--	--	3RH29 21-2DE11
	32	23	33	22	22	33	--	--	--	--	3RH29 21-2DE11
Lateral auxiliary switches, Solid-state compatible for contactor relays											
	--	--	--	--	--	--	--	51X	42X	33X	3RH29 21-.DE11

[^35]
3RT Contactors

3RT1 contactors and accessories

Internal circuit diagrams（applicable to screw，spring and ring lug connection）
Sizes S6 to S12
Terminal designations according to EN 50012

3RT10 5 to 3RT10 7，3RT12，3RT14 contactors

3RT1．5，3RT1．6，3RT1． 7 contactors（sizes S6，S10，S12）
With 3RH19 21－1DA11 2－pole auxiliary switch blocks，laterally mountable
$2 \mathrm{NO}+2 \mathrm{NC}$

3RH19 21－．．．／－．XA．．4－pole auxiliary switch blocks， for snapping onto the front ${ }^{2}$
$2 \mathrm{NO}+2 \mathrm{NC}$
22

3RH19 21－．DA11，3RH19 21－2DE11 first laterally mountable auxiliary switch block（solid－state compatible）

$\underset{\text { left }}{\mathbf{1} \mathrm{NO}+1 \mathrm{NC}}$	$\underset{\text { right }}{1 \mathrm{NO}+1 \mathrm{NC}}$

Contactors with 4 main contacts，sizes S3
Terminal designations acc．to EN 50005
3RT13／23 and 3RT15／25 contactors
4 NO

（3RH19 21 auxiliary switch blocks acc．to EN 50005 can be snapped on）

3RT26 capacitor contactors

Size S00

Sizes S0 and S2

3RH19 21－．JA11，3RH19 21－2JE11 second laterally mountable auxiliary switch block（solid－state compatible）
（only for sizes S3 to S12）
$1 \mathrm{NO}+1 \mathrm{NC} \quad 1 \mathrm{NO}+1 \mathrm{NC}$
left right

Surge suppressor（plug－in direction coded；exception：marked＋／－for 3RT19 16－1T．．．diode assembly）for sizes S2 to S3

Diode	Diode assembly	Varistor	RC element	Diode with LED	Varistor with LED

[^36]Internal circuit diagrams (applicable to screw connection and Spring-type terminal connection)
Accessories for size S61) to S12 contactors
Terminal designations acc. to EN 50005

(terminal designations according to EN 50005 or EN 50 012)

Accessories for size S0 to S12 contactors
Terminal designations acc. to EN 50005

3RH19 21-. EA.. first laterally mountable auxiliary switch blocks (left)

2 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC
$\left\|\left.\right\|_{54} ^{53}\right\|_{64}^{63} \stackrel{\stackrel{0}{0}}{0}$		

3RH19 21-.KA.. second laterally mountable auxiliary switch blocks (left) (only for sizes S3 to S12)

2 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC
$\left.\left.\right\|^{153}\right\|^{163}$	$\left.\left.\right\|^{151}\right\|^{163}$	$\left.\left.\right\|^{151}\right\|^{161}$
$\left.\left.\right\|_{154} ^{-1}\right\|_{164} \frac{\stackrel{y}{0} \text { bi }}{2}$		$\left(\begin{array}{l} 4-7 \\ 152 \end{array}\right.$

3RH19 21-. EA.. first laterally mountable auxiliary switch blocks (right)

2 NO	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC
$\left.{ }^{73}\right\|^{83}=$	$717 \mid 83^{\text {y }}$	$717181^{\text {m }}$

3RH19 21-. KA.. second laterally mountable auxiliary switch blocks (right) (only for sizes S3 to S12)
2 NO 1 NO +1 NC 2 NC

| \|173|183 | $\|171\| 183 ~_{\text {¢ }}$ | $\left.{ }^{171}\right\|^{181}$ 。 |
| :---: | :---: | :---: |
| | $\binom{\text { - }}{172}_{184} \stackrel{\text { 宮 }}{2}$ | |

1) RH29 auxiliaries are intended to be used only with 3RT2 or 3RH2 base devices.

3RH19 auxiliaries are intended to be used only with 3RT1 or 3RH1 base devices.
2) Not for 3RT12. vacuum contactors

3RT Contactors and 3RH2 Control Relays

Accessories for size $\mathbf{S 0 0}$ to $\mathbf{S 3}$

Circuit diagrams
Accessories for size S3 contactors and control relays

Solid-state time-delay blocks

(see configuring aid on page $2 / 38$)

3RT19 26-2C...
ON-delay
Sizes S0 to S3

3RT19 16-2D...
OFF-delay (with auxiliary voltage)
Size SOO

3RT19 26-2D...
OFF-delay (with auxiliary voltage)
Sizes S0 to S3

Sizes S2 to S12
3RT19 16-2E.../2F.../2G... solid-state, time-delay auxiliary switch blocks
$1 \mathrm{NO}+1 \mathrm{NC}$
ON-delay

OFF-delay

WYE-delta function

A2 can be connected to
$N\left(L_{-}\right)$via either the contac-
tor or the time-delay relay.
--- optional connection

A2 can only be connected
to $N(L-)$ via the time-delay
relay.
x don't connect
(1) Time-delay block
(2) Contactor

3RT29 accessories are intended to be used only with 3RT2 or 3RH2 base devices
3RT19 auxiliaries are intended to be used only with 3RT1 or 3RH1 base devices.

Circuit diagrams

Size SOO to SO
Main circuit

The 3RA2913-2AA. (S00) and 3RA2913-2AA (S0) installation kit contains wiring connectors for connecting the main conducting paths, the mechanical interlock and two connecting clips for the contactors.

Sizes S2 to S3

Main circuit

The 3RA19 .3-2A installation kits contain, among other things, the wiring connectors on the top and bottom for connecting the main conducting paths.

Control circuit (sizes S00 and S0)
(terminal designations of contactors according to EN 50 012)

Control circuit
(terminal designations of contactors according to EN 50 005)
for momentary-contact operation for maintained-contact operation

The 3RA19 24-2B mechanical interlock contains one NC contact for the NC contact interlock for each contactor

Position of terminals

Sizes S2 to S3

Terminal designations according to EN 50005
3RA19 24-2B mechanical interlock (laterally mountable),
integrated in reversing contactor assemblies (reversing starters),
contains one NC contact for the electrical interlock for each contactor
2 NC

[^37]Circuit diagrams
Size S00 / So
Main circuit

Sizes S2 to S3
Main circuit
Sizes S2 and S3

SO "OFF" button
S1 "ON" button
S Maintained-contact switch
K1 Line contactor
K2 Star contactor
K3 Delta contactor
K4 Solid-state, time-delay auxiliary switch block or time-delay relay
FO Fuses
F1 Overload relay

Control circuits

with 3RA2816-0EW20 function module (set of three) snapped onto the front

3RA2816-0EW20

Control circuits

with 3RP15 7. time-delay relay,
laterally mounted (typical circuits)
for momentary-contact operation

for maintained-contact operation

Contact element $17 / 18$ is only closed on the star step; the contact element is open on the delta step and when de-energized.

Internal circuit diagrams
3TF68 44 and 3TF69 44 contactors
4 NO＋ 4 NC
AC operation
max．complement of auxiliary switches

3TF68 33 and 3TF69 33 contactors
3 NO＋ 3 NC
DC operation
max．complement of auxiliary
switches

Auxiliary switch blocks 3TY7 681－1G	Auxiliary switch blocks 3TY7 561－1AA00		Auxiliary switch blocks 3TY7 561－1KA00		Auxiliary switch blocks 3TY7 561－1EA00	
for coil reconnection， 3TF68 and 3TF69， DC economy circuit	first auxiliary swi left or right mounted on left	mounted on right	second auxiliary left or right mounted on left	switch block mounted on right	with make－befor	break contacts mounted on right

Auxiliary switch blocks

3TY7 561－1．
solid－state compatible aux．switch block
mounted on left mounted on right

Interface for control by PLC
3TX7 090－0D
with surge suppression

Circuit diagrams for DC economy circuit • maintained－contact operation
3TF68 33 and 3TF69 33 contactors

[^38]
Coupling Relays

3RH21 coupling for switcing auxillary circuits

Terminal diagrams

DC operation

$L+$ is to be connected to coil terminal A1.
3 RH21 coupling relays for auxiliary circuits,
size S00
Terminal designations according to EN 50011
(it is not possible to snap on an auxiliary switch block)
Surge suppressor can be mounted

4 NO Ident no.: 40E	$\begin{aligned} & 3 \mathrm{NO}+1 \mathrm{NC} \\ & 31 \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{2} \mathrm{NO}+\mathbf{2 N C} \\ & 22 \mathrm{~N} \end{aligned}$

Suppressor Diode integrate		
4 NO Ident no.:40E	$\begin{aligned} & \mathbf{3} \mathrm{NO}+1 \mathrm{NC} \\ & 31 \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{2} \mathrm{NO}+2 \mathrm{NC} \\ & 22 \mathrm{E} \end{aligned}$

Diode integrated	
N NO Ident $\mathrm{no}: 40 \mathrm{E}$	$3 \mathrm{NO}+1 \mathrm{NC}$
31 E	

Position of terminals

Size S00

3RH21 coupling relays
4 NO
Ident no.: 40 E

[^39]
3RH2 Control \＆Latching Relays

3RH2 Terminal Designations

Terminal designations according to EN 50011
3RH21 control relays

$\begin{aligned} & 4 \mathrm{NO} \\ & \text { Ident } \end{aligned}$	\％． 40					${ }_{31 \mathrm{E}}^{\mathbf{3} \mathrm{NO}+1 \mathrm{NC}}$						$\underset{22 \mathrm{E}}{2 \mathrm{NO}+2 \mathrm{NC}}$				
O^{13}	O^{23}	$\stackrel{33}{\bigcirc}$	$\stackrel{43}{\bigcirc}$			O^{13}	$\stackrel{21}{\circ}$	$\stackrel{3}{0}_{0}$	$\stackrel{43}{\bigcirc}$	$\begin{gathered} \mathrm{A} 1 \\ \bigcirc \end{gathered}$		O_{0}^{13}	$\begin{aligned} & 21 \\ & \bigcirc \end{aligned}$	$\stackrel{31}{\bigcirc}$	$\stackrel{43}{0}^{3}$	$\begin{aligned} & \hline \mathrm{A} 1 \\ & \bigcirc \end{aligned}$
$\stackrel{\bigcirc}{14}$	$\begin{aligned} & \circ \\ & 24 \\ & \hline \end{aligned}$	\bigcirc	$\begin{aligned} & \circ \\ & 44 \end{aligned}$	${ }_{\text {A } 2}$	噣	$\stackrel{\bigcirc}{14}$	$\begin{array}{r} \bigcirc \\ 22 \\ \hline \end{array}$	$\begin{aligned} & \bigcirc \\ & 34 \end{aligned}$	$\begin{array}{r} \circ \\ 44 \\ \hline \end{array}$		告	$\stackrel{14}{ }$	$\begin{aligned} & \bigcirc \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & \bigcirc \\ & 32 \end{aligned}$	$\stackrel{\bigcirc}{\bigcirc}$	$\stackrel{\bigcirc}{\mathrm{A} 2}$

3RH21 40 control relays
with 3RH19 11－1GA．．auxiliary switch blocks snapped onto the front

$5 \mathrm{NO}+3 \mathrm{NC}$
53 E

13	23	33	43	$\mathrm{A1}$
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
53	61	71	81	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
54	62	72	82	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A 2
$\stackrel{0}{0}$				
苋				

$4 \mathrm{NO}+4 \mathrm{NC}$
Ident no．：44E

${ }_{0}^{13}$	O^{23}	${ }^{33}$	$\begin{aligned} & 43 \\ & 0 \\ & \hline \end{aligned}$	O^{O}
5	${ }^{61}$	${ }^{71}$	81	
\bigcirc	\bigcirc	72	${ }_{82}$	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

3RH24 latched control relays

4 NO
Ident no．： 40 E

$3 \mathrm{NO}+1 \mathrm{NC}$
31E

$2 \mathrm{NO}+2 \mathrm{NC}$
Ident no．：22E

Position of terminals (applicable to screw connection and Cage Clamp connection)

Size SO 0
Terminal designations according to EN 50012
3RT20 1 contactors, 3RT20 1 coupling relays,
1 NO
Ident. no. 10E

1 NC
01

3RT20 1 contactors (with 1 NO)
with auxiliary switch blocks snapped onto the front 3RH19 11-. H..

$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. no.: 11

$2 \mathrm{NO}+3 \mathrm{NC}$
Ident. no.: 23
$3 \mathrm{NO}+2 \mathrm{NC}$
32

Size SO
Terminal designations according to EN 50012
3RT20 2 Contactors with 1NO + 1NC 3RT20 2 Contactors 3RT20 2 Coupling Relays with $3 \mathrm{NO}+3 \mathrm{NC}$

$1 / L 1$	$3 / L 2$	$5 / L 3$
\bigcirc	\bigcirc	\bigcirc
13	21	A 1
\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc
14	22	A 2
\bigcirc	\bigcirc	\bigcirc
$2 / \mathrm{T} 1$	$4 / \mathrm{T} 2$	$6 / \mathrm{T} 3$

\bigcirc	\bigcirc	$\mathrm{S}_{\mathrm{C}}^{\mathrm{L} 3}$
13	21	A1
$\stackrel{1}{\bigcirc} \stackrel{1}{\bigcirc} \bigcirc \stackrel{3}{\bigcirc} \stackrel{3}{\bigcirc} \bigcirc$		
\bigcirc	$\begin{aligned} & \bigcirc \\ & 4 \end{aligned}$	\bigcirc
14	22	A2
$\bigcirc \bigcirc$		
2/T1	4/T2	6/T3

Sizes S3 to S12
Terminal designations according to EN 50012
3RT 20 3,
3RT20 4, 3RT124 46 contactors,

Size S2
Terminal designations according to EN 50012
3RT20 3 Contactors with 1NO + 1NC 3RT20 3 Contactors 3RT20 3 Coupling Relays with 3NO + 3NC

$1 / \mathrm{L} 1$	$3 / \mathrm{L} 2$	$5 / \mathrm{L} 3$
\bigcirc	\bigcirc	\bigcirc
13	21	A 1
\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc
14	22	A 2
\bigcirc	\bigcirc	\bigcirc
$2 / \mathrm{T} 1$	$4 / \mathrm{T} 2$	$6 / \mathrm{T} 3$

\bigcirc
$\begin{array}{llll}13 & 21 & \text { A1 }\end{array}$
$\stackrel{1}{\bigcirc} \stackrel{1}{\bigcirc} \bigcirc{ }^{\circ} \mathrm{O}{ }^{\circ} \mathrm{O}$
$\mathrm{Cllll}_{\mathrm{O}}^{\bigcirc}$
14 22 A2
$\bigcirc \bigcirc$
2/T1 4/T2 6/T3

3RT Contactors

$+$
3RT1/2 contactors and accessories

Position of terminals (applicable to screw connection and Spring-type connection)
Accessories for size S3 to S12 contactors
Terminal designations according to EN 50005 or EN 50012
3RH19 21-. CA.. auxiliary switch blocks, single-pole,
for snapping onto the front

1 NO		1 NC
${ }^{3}$		\bigcirc
\bigcirc	휸	\bigcirc

with extended contact-making

with extended contact-making

3RT1/2

Position of terminals

Accessories for size S2 to S12 contactors
Terminal designations acc. to EN 50005
3RH19 21-. EA.. first laterally mountable auxiliary switch blocks (left) 2 NO

1 NO + 1 NC 2 NC

3RH19 21-. KA.. second laterally mountable auxiliary switch blocks (left) (only for sizes S3 to S12; can only be used if no auxiliary switches are snapped onto the front)

2 NO

Accessories for size S3 to S12 contactors
Terminal designations acc. to DIN 46199 Part 5
3RT19 26-2E.../2F.../2G... solid-state, time-delay auxiliary switch blocks

3RT26 capacitor contactors

Size $\mathbf{S 0 0}$

with 4-pole auxiliary switch block mounted on the front

The auxiliary switch block comprises 3 leading contacts (not shown) and one unassigned NO contact.

3RH19 21-. EA.. first laterally mountable auxiliary switch blocks (right)

2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$
 2 NC

3RH19 21-. KA.. second laterally mountable auxiliary switch blocks (right) (only for sizes S3 to S12; can only be used if no auxiliary switches are snapped onto the front)
2 NO

$173 \bigcirc$ tst
$\left\lvert\, \begin{aligned} & 183 \bigcirc t 9 \downarrow \\ & 184 \bigcirc \varepsilon 9 \downarrow \end{aligned}\right.$
$174 \bigcirc \varepsilon \varsigma \downarrow$

2 NC

Sizes S2 and S3
with 4-pole auxiliary switch block mounted on the front

The auxiliary switch block comprises 3 leading contacts (not shown) and one unassigned NO contact.

3RT1 contactors and accessories

Position of terminals (applicable to screw connection and Spring-type terminal connection)
Sizes S6 to S12
3RT1.5, 3RT1.6, 3RT1.7 contactors

- with conventional op. mechanism (3RT1...-. A...)
with laterally mountable auxiliary switch blocks 3RH19 21-1DA11 (for $2 \mathrm{NO}+2 \mathrm{NC}$, incl. in contactor) 3RH19 21-1JA11
(expandable to $4 \mathrm{NO}+4 \mathrm{NC}$)
$2 \mathrm{NO}+2 \mathrm{NC}$ or $4 \mathrm{NO}+4 \mathrm{NC}$

- with solid-state op. mechanism (3RT1. ..-. N...)
with laterally mountable auxiliary switch blocks 3RH19 21-1DA11 (for $2 \mathrm{NO}+2 \mathrm{NC}$, incl. in contactor) 3RH19 21-1JA11
(expandable to $4 \mathrm{NO}+4 \mathrm{NC}$)
$2 \mathrm{NO}+2 \mathrm{NC}$ or $4 \mathrm{NO}+4 \mathrm{NC}$

Contactors with 4 main contacts, size S00
Terminal designations acc. to EN 50005
3RT23 and 3RT25 contactor s

4 NO

$2 \mathrm{NO}+2 \mathrm{NC}$

- with solid-state op. mechanism (3RT1...-.P...)
with laterally mountable auxiliary switch blocks 3RH19 21-1DA11 (for $1 \mathrm{NO}+1 \mathrm{NC}$, incl. in contactor) 3RH19 21-1JA11
(expandable to $2 \mathrm{NO}+2 \mathrm{NC}$)
$1 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}$

Contactors with 4 main contacts, sizes S2 to S3 Terminal designations acc. to EN 50005

3RT13 and 3RT15 contactors

4 NO

$2 \mathrm{NO}+2 \mathrm{NC}$

3T Contactors

3TF68 and 3TF69 vacuum contactors, 3-pole

Position of terminals

AC operation
3TF68 and 3TF69 contactors $4 N O+4 N C$

DC operation
3TF68 and 3TF69 contactors
$3 \mathrm{NO}+3 \mathrm{NC}$
max. complement of auxiliary switches

Solid-state compatible auxiliary switch blocks
3TY7 561-1. for lateral mounting onto
size 6 to 14 contactors

mounted on left	mounted on right
${ }^{54}$	$\left.\begin{array}{\|c\|} \hline 62 \\ 0 \\ 61 \\ 01 \end{array} \right\rvert\,$
$\begin{array}{\|c\|} \hline 51 \\ 0 \\ 52 \\ 0 \\ \hline \end{array}$	

3RT20 contactors, 3-pole

Dimension drawings
3RT2.1.-1 contactor and 3RH21..-1 contactor relays
Size S00 and NEMA Size 0, screw connection
with surge suppressor and auxiliary switch block

Lateral clearance from earthed parts $=6$ mm

1) Laterally mountable auxiliary switch block 3RH2911-1DA.. / -1DE.. / -1EE..
2) Auxiliary switch block for mounting on the front 3RH2911-1FA.. /-1GA.. / -1HA.. / -1NF..

3RT2.1.-2 contactor and 3RH21..-2 contactor relay
Size S00, Spring-type terminal connection
with auxiliary switch block

1) Laterally mountable auxiliary switch block 3RH2911-2DA.. / -2DE.. / -2EE..
2) Auxiliary switch block for mounting on the front 3RH2911-2FA.. / -2GA.. / -2HA.. / -2NF..

3RT2.2.-1 contactors Size S0 and NEMA Size 1,
(screw-type connection system) with auxiliary switch blocks mounted and other accessories

1) Laterally mountable auxiliary switch block 3RH2921-1DA.. / -1DE..
2) Auxiliary switch block for mounting on the front 3RH2911-1FA.. / -1GA.. / -1HA.. / -1NF..
3) 3-phase infeed terminal 3RV2925-5AB
[^40]
3RT20 contactors, 3-pole

Dimension drawings

3RT2.2.-2 and 3RT202.-....-0LA2 contactors
Size S0 (spring-loaded connection) with auxiliary switch blocks mounted

For size S0:

1) Laterally mountable auxiliary switch block 3RH2921-2DA.. / -2DE..
2) Auxiliary switch block for mounting on the front 3RH2911-2FA.. / -2GA.. / -2HA.. / -2NF.

3RT20 3 contactors

Size S2 and NEMA Size 2, screw connection
with surge suppressor, auxiliary switch blocks and mounted overload relay

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax
For size S2:
a $=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$, diode assembly
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor > 240 V
$\mathrm{a}=17 \mathrm{~mm}$ with RC element
b = DC 15 mm deeper than AC

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front (1, 2 and 4-pole)
3) Surge suppressor
4) Drilling pattern

Dimension drawings

3RT20 3 contactors
Size S2, Spring-type terminal connection
with surge suppressor, auxiliary switch blocks and mounted overload relay

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

3RT20 4, 3RT24 46 contactors
Size S3 and NEMA Size 3, screw connection with surge suppressor, auxiliary switch blocks and mounted overload relay

Lateral clearance from earthed parts $=6 \mathrm{~mm}$

For size S2:
a $=0 \mathrm{~mm}$ with varistor $<240 \mathrm{~V}$, diode assembly
$a=3.5 \mathrm{~mm}$ with varistor $>240 \mathrm{~V}$
a $=17 \mathrm{~mm}$ with RC element
b = DC 15 mm deeper than AC

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front (1, 2 and 4 -pole)
3) Surge suppressor
4) Drilling pattern

For size S3:
a $=0 \mathrm{~mm}$ with varistor, diode assembly and < 240 V
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor and $>240 \mathrm{~V}$
$\mathrm{a}=17 \mathrm{~mm}$ with RC element
b = DC 13 mm deeper than AC

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front (1, 2 and 4 -pole), same dimensions for designs with screw or Spring-type connection
3) Surge suppressor
4) Drilling pattern
5) For mounting on 35 mm standard mounting rail (15 mm deep) acc. to EN 50022 or 75 mm standard mounting rail acc. to EN 50023
6) Hexagon socket screw 4 mm

3RT20 contactors, 3-pole

Dimension drawings

3RT20 4 contactors,
Size S3, Spring-type terminal connection
with surge suppressor, auxiliary switch blocks
and mounted overload relay

For size S3:

a $=0 \mathrm{~mm}$ with varistor, diode assembly and < 240 V
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor and $>240 \mathrm{~V}$
$a=17 \mathrm{~mm}$ with RC element
b $=$ DC 13 mm deeper than $A C$

1) Auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front (1, 2 and 4-pole), same dimensions for designs with screw or Spring-type terminal connection
3) Surge suppressor
4) Drilling pattern
5) For mounting on 35 mm standard mounting rail (15 mm deep) acc. to EN 50022 or 75 mm standard mounting rail acc. to EN 50023
For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax
6) Hexagon socket screw 4 mm

Dimension drawings

3RT10 5, 3RT14 5 contactors

Size S6 and NEMA Size 4

with auxiliary switch block, laterally mountable and mountable on the front, mounted overload relay and box terminals
laterally mounted electronics module with remaining lifetime indication

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Clearance from earthed parts with
directly mounted overload relay:
lateral: 10 mm
front: 20 mm

For size S6:

$k=120 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) Second auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front
3) RC element
4) 3RB10 overload relay, mounted
5) 3RT19 55-4G box terminal block (hexagon socket 4 mm)
6) 3RT19 56-4G box terminal block (hexagon socket 4 mm)
7) PLC connection DC 24 V and changeover switch (with 3RT1...-.N)
8) Electronics module with remaining lifetime indication (auxiliary switch block not mountable on righthand side)

3RT10 and 3RT14 contactors, 3-pole

Dimension drawings

3RT10 6, 3RT14 6 contactors

Size S10

with auxiliary switch block, laterally mountable and mountable on the front, mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

3RT10 7, 3RT14 7 contactors

Size S12

with auxiliary switch block, laterally mountable and mountable on the front, mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

For sizes S10 and S12
Clearance from earthed parts with directly mounted overload relay:
lateral: 10 mm
front: $\quad 20 \mathrm{~mm}$

For sizes S10 and S12:

$\mathrm{k}=150 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) Second auxiliary switch block, laterally mountable
2) Auxiliary switch block, mountable on the front
3) RC element
4) 3RB10 overload relay, mounted
5) Box terminal block (hexagon socket 6 mm)
6) PLC connection DC 24 V and changeover switch (with 3RT1...-.N)
7) Electronics module with remaining lifetime indication (auxiliary switch block not mountable on righthand side)

Dimension drawings
3RT10 contactors with integrated safety Size S6

Size S10

Size S12

3RT12 vacuum contactors, 3-pole

Dimension drawings

3RT12 6 vacuum contactors

Size S10

with auxiliary switch block, laterally mountable
mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

Detail
Contact erosion indicator for vacuum interrupters

3RT12 7 vacuum contactors
Size S12
with auxiliary switch block, laterally mountable
mounted overload relay and box terminals,
laterally mounted electronics module with remaining lifetime indication

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

For sizes S10 and S12:

$\mathrm{k}=150 \mathrm{~mm}$ (minimum clearance for removing the withdrawable coil)

1) Second auxiliary switch block, laterally mountable
2) Position and contact erosion indicator
3) RC element
4) 3RB10 overload relay, mounted
5) Box terminal block (hexagon socket 6 mm)
6) PLC connection DC 24 V and changeover switch (with 3RT1...-.N)
7) Electronics module with remaining lifetime indication (auxiliary switch block not mountable on right hand side)

Dimension drawings

3RT23 1 and 3RT25 1 contactors

Size S00, screw connection
with surge suppressor and auxiliary switch block

3RT23 2 and 3RT25 2 contactors
Size S0 with coil terminal module
and auxiliary switch block

For size $\mathbf{S 0}$:

4) 4-pole contactor for switching 4 resistive loads 3RT232. 4-pole pole-changing contactor for changing the polarity of hoisting gear motors (2 NO contacts and 2 NC contacts) 3RT252.
5) Coil terminal module 3RT2926-4RA11/-4RB11
6) Auxiliary switch block for mounting on the front 3RH2911-1AA.. / -1BA

3RT23 3 and 3RT25 3 contactors
Size $\mathbf{S 2}$ with surge suppressor
and auxiliary switch block

For sizes S2 and S3:

a $=0 \mathrm{~mm}$ with varistor < 240 V
$\mathrm{a}=3.5 \mathrm{~mm}$ with varistor $>240 \mathrm{~V}$
$\mathrm{a}=17 \mathrm{~mm}$ with RC element and diode assembly
b = S2: DC 15 mm deeper than AC S3: DC 13 mm deeper than $A C$

1) Auxiliary switch block, laterally mountable (right or left)
2) Auxiliary switch block, mountable on the front, (1, 2 and 4-pole, also 3RH19 21-1FE22 solid-state compatible design)
3) Surge suppressor
4) Drilling pattern
5) For mounting on 35 mm standard mounting rail (15 mm deep) acc. to EN 50022 or, in the case of size $\mathrm{S} 3,75 \mathrm{~mm}$ standard mounting rail acc. to EN 50023
6) Hexagon socket screw 4 mm

3RT23 4 contactors
Size S3 with surge suppressor and auxiliary switch block

[^41]
3RT16 capacitor contactors

Dimension drawings
3RT16 17 capacitor contactors
Size S00

3RT16 27 capacitor contactors
Size S0

3RT16 47 capacitor contactors
Size S3

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Dimension drawings

Size S00 / 3RA231

Size SO / 3RA232

Size S2 / 3RA233

Size S3 / 3RA234

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Dimension drawings

Size S6

Size S10

[^42]
Dimension drawings

3TF68 and 3TF69 vacuum contactors, 3TC4 and 3TC5 DC contactors

Dimension drawings

3TF68 vacuum contactors

Detail
A = Contact erosion indicator for vacuum interrupter contacts

3TC4 and 3TC5 contactors
3TC44 contactors
Size 2, AC and DC operation

$t=$ minimum clearance from insulated components: $15 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)
from grounded components: $30 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	a	b
DC operation	109	141
AC operation	68	100

3TC52 contactors
Size 8, AC and DC operation

$t=$ minimum clearance from insulated components: $20 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)
from grounded components: $70 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	a	b
DC operation	147	232
AC operation	115	200

[^43]3TF69 vacuum contactors

Detai
A = Contact erosion indicator for vacuum interrupter contacts

3 TC48 contactors
Size 4, AC and DC operation

$\mathrm{t}=$ minimum clearance from insulated components: $15 \mathrm{~mm}(600 \mathrm{~V})$, $20 \mathrm{~mm}(750 \mathrm{~V})$ $35 \mathrm{~mm}(600 \mathrm{~V})$, 55 mm (750 V)

	a	b	c
DC operation	112	180	21.5
AC operation	86	154	23.5

3TC56 contactors
Size 12, AC and DC operation

$\mathrm{t}=$ minimum clearance from insulated components: $25 \mathrm{~mm}(600 \mathrm{~V}$ and 750 V)

	from grounded components: $80 \mathrm{~mm}(600 \mathrm{~V})$	
		m
	a	b
DC operation	200	310
AC operation	141	251

2) DC operation only

Dimension drawings

Terminal cover for box terminals
for size S2,
3RT29 36-4EA2

Terminal cover for box terminals
for size S3,
3RT19 46-4EA2

Auxiliary conductor terminal, 3-pole
3RT19 46-4F
Size S3
mounted on contactor

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Accessories for 3RA1 contactor assemblies

Dimension drawings

3RA19.2-2A baseplates for reversing contactor assemblies

3RA19.2-2E, 3RA19.2-2F
baseplates for star-delta assemblies

	A	B	C	D	E
S6-S6-S3	316	205	376	229	9
S6-S6-S6	343	205	403	229	9
S10-S10-S6	393	250	453	275	11
S10-S10-S10	423	250	483	275	11
S12-S12-S10	450	250	510	275	11
S12-S12-S12	465	250	525	275	11

For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

Dimension drawings

3RH21 control relays
 Size S00, with screw connections

Lateral clearance from earthed parts $=6 \mathrm{~mm}$

3RH24 latched control relays Size SOO

3RH21 coupling relay

Dimension drawings
Size S00, with screw connections,
with surge suppressor

[^44]
Overload Relays

contents

Solid state overload relays

3RB24 overload relays up to 630A with IO-Link current monitoring

Page
Selection and ordering data

- Basic Unit

3/51

- Accessories

3/54
Description 3/51-3/52
Technical data
3/57-3/61

SIRIUS 3RV motor starter protectors up to 100 A

Overload Relays

General data

Overview

			वक्रयक्य			
Features	3RU21	3RB30/3RB31	3RB20/3RB21	3RB22/3RB23	3RB24	Benefits
General data						
Sizes	S00 ... S3	S00 ... S3	S6 ... S12	S00 ... S12	S00 ... S12	- Are coordinated with the dimensions, connections and technical characteristics of the other devices in the SIRIUS modular system (contactors, etc., ...) - Permit the mounting of slim and compact load feeders in widths of 45 mm (SOO), 45 mm (SO), 55 mm (S2), 70 mm (S3), $120 \mathrm{~mm}(\mathrm{~S} 6)$ and 145 mm (S10/S12); this does not include the current measuring modules for the 3RB22 to 3RB24 evaluation modules sizes S00 to S3 - Simplify configuration
Seamless current range	$0.11 \ldots 100 \mathrm{~A}$	0.1... 100 A	$50 \ldots 630$ A	$\begin{gathered} 0.3 \ldots 630 \mathrm{~A} \\ (\text { up to } 820 \mathrm{~A})^{1)} \end{gathered}$	$\begin{gathered} 0.3 \ldots 630 \mathrm{~A} \\ (\text { up to } 820 \mathrm{~A})^{1)} \end{gathered}$	- Allows easy and consistent configuration with one series of overload relays (for small to large loads)
Protection functions						
Tripping due to overload	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Provides optimum inverse-time delayed protection of loads against excessive temperature rises due to overload
Tripping due to phase unbalance	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Provides optimum inverse-time delayed protection of loads against excessive temperature rises due to phase unbalance
Tripping due to phase failure	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Minimizes heating of induction motors during phase failure
Protection of single-phase loads	\checkmark	-	-	\checkmark	\checkmark	- Enables the protection of single-phase loads
Tripping in the event of overheating by integrated thermistor motor protection function	- ${ }^{2)}$	- ${ }^{2)}$	- ${ }^{2}$	\checkmark	\checkmark	- Provides optimum temperature-dependent protection of loads against excessive temperature rises e.g. for stator-critical motors or in the event of insufficient coolant flow, contamination of the motor surface or for long starting or braking operations - Eliminates the need for additional special equipment - Saves space in the control cabinet - Reduces wiring outlay and costs
Tripping in the event of a ground fault by	-	$\begin{gathered} \stackrel{\checkmark}{2} \\ \text { (only 3RB31) } \end{gathered}$	$\begin{gathered} \text { (only 3RB21) } \end{gathered}$	\checkmark	\checkmark	- Provides optimum protection of loads against high-resistance short circuits or ground faults due to moisture, condensed water, damage to the insulation material, etc.
internal groundfault detection (activatable)						- Eliminates the need for additional special equipment - Saves space in the control cabinet - Reduces wiring outlay and costs
\checkmark Available - Not available				1) Motor cur measurin 3UF18 68 2) The SIRIU vide additio	urrents up to 820 ng module, e.g. 68-3GA00 (820 A IUS 3RN thermist ditional temperatu	A can be recorded and evaluated by a current RB29 06-2BG1 (0.3 to 3 A), in combination with a 1 A) series transformer. or motor protection devices can be used to pro-e-dependent protection.

Features	3RU21	3RB30/3RB31	3RB20/3RB21	3RB22/3RB23	3RB24	Benefits
Features						
RESET function	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Allows manual or automatic resetting of the device
Remote RESET function	(by means of separate module)	(only with 3RB31 and external auxiliary voltage 24 V DC)	(only with 3RB21 and external auxiliary voltage 24 V DC)	(electrically via external button)	(electrically with button or via IO-Link)	- Allows the remote resetting of the device
TEST function for auxiliary contacts	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Allows easy checking of the function and wiring
TEST function for electronics	-	\checkmark	\checkmark	\checkmark	\checkmark	- Allows checking of the electronics
Status display	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Displays the current operating state
Large current adjustment button	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Makes it easier to set the relay exactly to the correct current value
Integrated auxiliary contacts ($1 \mathrm{NO}+1 \mathrm{NC}$)	\checkmark	\checkmark	\checkmark	$\begin{gathered} \boldsymbol{V} \\ (2 \times) \end{gathered}$	--	- Allows the load to be switched off if necessary - Can be used to output signals
Integrated auxiliary contacts (1 CO and 1 NO in series)	-	-	-	-	\checkmark	- Enables the controlling of contactors directly from the higher-level control system through IO-Link
IO-Link connection	-	-	-	-	\checkmark	- Reduction of wiring in the control cabinet - Enables communication
Connection of optional handheld device	-	-	-	-	\checkmark	- Enables local operation
Communication capability through 10-Link						
Full starter functionality through IO-Link	-	-	-	-	\checkmark	- Enables in combination with the SIRIUS 3RT contactors the assembly of communication-capable motor starters (direct-on-line, reversing and wye-delta starting)
Reading out of diagnostics functions	-	-	-	-	\checkmark	- Enables the reading out of diagnostics information such as overload, open circuit, ground fault, etc.
Reading out of current values	-	-	-	-	\checkmark	- Enables the reading out of current values and their direct processing in the higherlevel control system
Reading out all set parameters	-	-	-	-	\checkmark	- Enables the reading out of all set parameters, e.g. for plant documentation
\checkmark Available - Not available						

Features	3RU21	3RB30/3RB31	3RB20/3RB21	3RB22/3RB23	3RB24	Benefits
Design of load feeders						
Short-circuit strength up to 100 kA at 690 V (in conjunction with the corresponding fuses or the corresponding motor starter protector)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Provides optimum protection of the loads and operating personnel in the event of short circuits due to insulation faults or faulty switching operations
Electrical and mechanical matching to 3RT contactors	\checkmark	\checkmark	\checkmark	$\checkmark^{1)}$	${ }^{1)}$	- Simplifies configuration - Reduces wiring outlay and costs - Enables stand-alone installation as well as space-saving direct mounting
Straightthrough transformers for main circuit ${ }^{2}$) (in this case the cables are routed through the feed-through openings of the overload relay and connected directly to the box terminals of the contactor)	-	$\stackrel{\sqrt{\prime}}{(S 2, S 3)}$	$\stackrel{\checkmark}{(S 6)}$	$\left(\mathrm{SOO}{ }^{\downarrow} \ldots \mathrm{S} 6\right)$	$\left(\mathrm{S} 00^{\boxed{\prime}} \ldots \mathrm{S} 6\right)$	- Reduces the contact resistance (only one point of contact) - Saves wiring costs (easy, no need for tools, and fast) - Saves material costs - Reduces installation costs
Spring-type connection system for main circuit 2)	$\stackrel{\checkmark}{(S 00, ~ S O)}$	$\stackrel{\checkmark}{(S 00, S O)}$	-	-	-	- Enables fast connections - Permits vibration-resistant connections - Enables maintenance-free connections
Spring-type connection system for auxiliary circuits ${ }^{2}$)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Enables fast connections - Permits vibration-resistant connections - Enables maintenance-free connections
Ring terminal lug connection method for main and auxiliary circuits ${ }^{2}$)	$\stackrel{\checkmark}{(S 00, S O)}$	-	-	-	-	- Enables fast connections - Permits vibration-resistant connections - Enables maintenance-free connections
Full starter functionality through IO-Link	-	-	-	-	\checkmark	- Enables in combination with the SIRIUS 3RT contactors the assembly of communication-capable motor starters (direct-on-line, reversing and wye-delta starting)
Starter function	-	-	-	-	\checkmark	- Integration of feeders via IO-Link in the control system up to 630 A or 820 A

Available

- Not available

1) Exception: up to size $S 3$, only stand-alone installation is possible.
2) Alternatively available for screw terminals.

General data

Features	3RU21	3RB30/3RB31			3RB24	Benefits
Other features						
Temperature compensation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Allows the use of the relays at high temperatures without derating - Prevents premature tripping - Allows compact installation of the control cabinet without distance between the devices/load feeders
Very high longterm stability	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Provides safe protection for the loads even after years of use in severe operating conditions
Wide setting ranges	-	$\stackrel{\downarrow}{(1: 4)}$	$\stackrel{\checkmark}{(1: 4)}$	$\stackrel{\sqrt{\prime}}{(1: 10)}$	$\stackrel{\sqrt{2}}{(1: 10)}$	- Minimize the configuration outlay and costs - Minimize storage overheads, storage costs, tied-up capital
Fixed trip class	$\begin{gathered} \text { CLASS } 10 \\ \text { CLASS 10A } \end{gathered}$	$\begin{aligned} & \text { 3RB30: } \\ & \text { CLASS 10E or } \\ & \text { CLASS 20E } \end{aligned}$	$\begin{aligned} & \text { 3RB20: } \\ & \text { CLASS 10E or } \\ & \text { CLASS 20E } \end{aligned}$			- Optimum motor protection for standard starts
Trip classes adjustable on the device CLASS 5E, 10E, 20E, 30E	-	3RB31: \checkmark	3RB21: \checkmark	\checkmark	\checkmark	- Enables solutions for very fast starting motors requiring special protection (e.g. Ex motors) - Enables heavy starting solutions - Reduces the number of versions
Low power loss	-	\checkmark	\checkmark	\checkmark	\checkmark	- Reduces energy consumption and energy costs (up 98% less energy is used than for thermal overload relays). - Minimizes temperature rises of the contactor and control cabinet - in some cases this may eliminate the need for controlgear cabinet cooling. - Direct mounting to contactor saves space, even for high motor currents (i.e. no heat decoupling is required).
Internal power supply	1)	\checkmark	\checkmark	-	-	- Eliminates the need for configuration and connecting an additional control circuit
Supplied from an external voltage through IO-Link	-	-	-		\checkmark	- Eliminates the need for configuration and connecting an additional control circuit
Overload warning	-	-	-	\checkmark	\checkmark	- Indicates imminent tripping of the relay directly on the device due to overload, phase unbalance or phase failure through flickering of the LEDs or in the case of the 3RB24 as a signal through IO-Link - Allows the imminent tripping of the relay to be signaled - Allows measures to be taken in time in the event of inverse-time delayed overloading of the load for an extended period over the current limit
Analog output	-	-	-	\checkmark	\checkmark	- Allows the output of an analog output signal for actuating moving-coil instruments, feeding programmable logic controllers or transfer to bus systems - Eliminates the need for an additional measuring transducer and signal converter
\checkmark Available - Not available				1) SIRIUS 3RU21 thermal overload relays use a bimetal contactor and therefore do not require a control supply voltage.		

General data

Overview of overload relays - matching contactors

	Overload	Current	Current	Contactors (type, size, rating in HP)							
	relays	measurement	range	3RT20 1.	3RT20 2.	3RT20 3.	3RT20 4.	3RT20 5.	3RT20 6.	3RT20 7	$\begin{aligned} & \text { 3TF68/ } \\ & \text { 3TF69 } \end{aligned}$
				S00	SO	S2	S3	S6	S10	S12	Size 14
	Type	Type	A	3/5/7.5/10	5/7.5/10/15/20/25	30/40/50	50/60/70	100/125/150	150/200/250	300/400	500/700
SIRIUS 3RU21 thermal overload relays											
bua?	3RU21 1	Integrated	$0.11 \ldots 16$	\checkmark	-	-	-	-	-	-	-
1144	3RU21 2	Integrated	$1.8 \ldots 40$	-	\checkmark	-	-	-	-	-	-
	3RU21 3	Integrated	$22 . .80$	-	-	\checkmark	-	-	-	-	-
cecec	3RU214	Integrated	$28 \ldots 100$	-	-	-	\checkmark	-	-	-	-

3RU21

SIRIUS 3RB30 solid-state overload relays ${ }^{1)}$										
	3RB30 1	Integrated 0.1... 16	\checkmark	-	-	-	-	-	-	-
114	3RB30 2	Integrated 0.1... 40	-	\checkmark	-	-	-	-	-	-
	3RB30 3	Integrated 12... 80	-	-	\checkmark	-	-	-	-	-
	3RB30 4	Integrated $32 \ldots 115$	-	-	-	\checkmark	-	-	-	-

3RB30

SIRIUS 3RB31 solid-state overload relays ${ }^{1 /}$										
	3RB31 1	Integrated 0.1... 16	\checkmark	-	-	-	-	-	-	-
114	3RB31 2	Integrated 0.1... 40	-	\checkmark	-	-	-	-	-	-
	3RB31 3	Integrated 12... 80	-	-	\checkmark	-	-	-	-	-
	3RB31 4	Integrated $32 . . .115$	-	-	-	\checkmark	-	-	-	-

3RB31
SIRIUS 3RB20 solid-state overload relays ${ }^{1)}$

3RB20 5 Integrated $50 \ldots 200$
3RB20 6 Integrated 55 ... 630
3RB20 1 + Integrated 630 ... 820
3UF18

3RB20
SIRIUS 3RB21 solid-state overload relays ${ }^{1)}$

3RB215 Integrated 50... 200
3RB216 Integrated 55 ... 630
3RB211 + Integrated 630 ... 820
3UF18
\checkmark Can be used

- Cannot be used

1) "Technical Specifications" for use of the overload relays with trip class \geq CLASS 20 can be found in "Short-circuit protection with fuses for motor feeders",

General data

Connection methods

Depending on the device version of the 3RU2 and 3RB3 overload relays, the terminals for screw terminals, spring-type terminals or ring terminal lug connection are configured for both the main and auxiliary circuit in frame sizes SOO and SO

The 3RU21 thermal overload relays come with screw terminals.
The electronic overload relays 3RB20 and 3RB21 are available with screw terminals (box terminals) or spring-type terminals on the auxiliary current side; the same applies for the evaluation modules of the 3RB22 to 3RB24 electronic overload relays for High-Feature applications.

Description

The 3RU thermal overload relays up to 100 A are designed for current-dependent protection of applications with normal start-up conditions (see "Trip classes") against impermissibly high rises in temperature as a result of overload or phase failure (see "Phase failure protection"). An overload or phase failure causes the motor current to rise above the set rated motor current (see "Setting"). This current rise heats up the bimetal strips within the relay via heating elements which, in turn, operate the auxiliary contacts via a tripping mechanism due to their deflection (see "Auxiliary contacts"). These switch the load off via a contactor. The switch-off time is dependent on the ratio of tripping current to operational current I_{e} and is stored in the form of a tripping characteristic with long-term stability (see "Tripping characteristics"). The "Tripped" state is signalled by means of a switching position indicator (see "Indication of status").
Resetting takes place manually or automatically (see "Manual and automatic resetting") after a recovery time has elapsed (see "Recovery time").
The 3RU thermal overload relays are electrically and mechanically optimised to the 3RT contactors such that, in addition to individual mounting, they can also be directly mounted onto the contactors to save space (see "Design and mounting"). The main and auxiliary circuits can be connected in various ways (see "Connection"), including the use of Cage Clamp terminals. When the overload relay has been connected, it can be tested for correct functioning using a TEST slide (see "TEST function"). In addition to the TEST function, the 3RU thermal overload relay is equipped with a STOP function (see "STOP function").
For a wide variety of application possibilities for the 3RU thermal overload relay, please refer to the sections "Application", "Ambient conditions", "Overload relays in WYE-delta combinations" and "Operation with frequency converters".
The 3RU thermal overload relays can protect your loads from overload and phase failure. You must implement short-circuit protection (see "Short-circuit protection") by means of a fuse or circuit-breaker.
The 3RU thermal overload relays are environmentally friendly
(see "Environmental considerations") and comply with all the main international standards and approvals (see "Specifications" and "Increased safety type of protection EEx").
The accessories for the 3RU thermal overload relays have been designed on the principle that all requirements are covered by a small number of variants.

Application

The 3RU thermal overload relays are designed for the protection of three-phase and singlephase AC and DC motors.
If single-phase AC or DC loads are to be protected using 3RU thermal overload relays, all three bimetal strips should be heated. Therefore all main circuits of the relay must be connected in series.

Overload relays in WYE-delta combinations

When overload relays are used in WYE-delta combinations, it is important to note that only $1 / \sqrt{ } 3$ of the motor current flows through the mains contactor. An overload relay mounted on the main contactor must be set to 0.58 times the motor current.

A second overload relay must be mounted on the star contactor if your load is also to be optimally protected in WYE operation. The WYE current is $1 / 3$ of the rated motor current. The relevant relay must be set to this current.

Control circuit

An additional power supply is not required for operation of the 3RU thermal overload relays.

Ambient conditions

The 3RU thermal overload relays are temperature compensating according to IEC 60947-4-1/DIN VDE 0660 Part 102 in the temperature range $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. For temperatures from $+60^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$, the upper setting value of the setting range must be reduced by a specific factor as given in the table below.

Ambient temperature in ${ }^{\circ} \mathrm{C}$	Reduction factor for the upper set- ting value
+60	1.0
+65	0.94
+70	0.87
+75	0.81
+80	0.73

Connection for mounting onto contactors:
Optimally adapted in electrical, mechanical and design terms to the contactors. The overload relay can be connected directly to these contactor using these pins. Stand-alone installation is possible as an alternative (in conjunction with a terminal bracket for stand-alone installation)
Selector switch for manual/automatic RESET and RESET button: With this switch you can choose between manual and automatic RESET. A device set to manual RESET can be reset locally by pressing the RESET button. A remote RESET is possible using the RESET modules (accessories), which are independent of size.

Switch position indicator and TEST function of the wiring: Indicates a trip and enables the wiring test.

(4) Motor current setting:

Setting the device to the rated motor current is easy with the large rotary knob.
STOP button:
If the STOP button is pressed, the NC contact is opened. This switches off the contactor downstream. The NC contact is closed again when the button is released.
Supply terminals:
Depending on the device version, the terminals for screw, spring-type or ring lug terminal connection are configured for the main and auxiliary circuit.

A sealable transparent cover can be optionally mounted (accessory). It secures the motor current setting against adjustment.

3RU21 26-4FB0 thermal overload relays

Trip classes

The 3RU thermal overload relay is available for normal startup conditions in CLASS 10. For further details about trip classes, see "Tripping characteristics".

Tripping characteristics

The tripping characteristics show the relationship between the tripping time and the tripping current as a multiple of the operational current I_{e} and are specified for symmetrical three-pole and two-pole loading from cold. The smallest current at which tripping occurs is called the limiting tripping current. In accordance with IEC 60 947-4-1/ DIN VDE 0660 Part 102, this must lie within certain specified limits. The limits of the limiting tripping current lie, in the case of the 3RU11 thermal overload re-
lay for symmetrical three-pole loading between 105 \% and 120% of the operational current. Starting from the limiting tripping current, the tripping characteristic moves on to larger tripping currents based on the characteristics of the so-called trip classes (CLASS 10, CLASS 20 etc.). The trip classes describe time-intervals within which the overload relay must trip with 7.2 times the operational current $/{ }_{\mathrm{e}}$ for symmetrical three-pole loading from cold.

The tripping times are:

CLASS	Tripping times
10 A	2 s to 10 s
10	4 s to 10 s
20	6 s to 20 s
30	9 s to 30 s

Description

This is the schematic representation of a characteristic. The characteristics of the individual 3RU thermal overload relays can be requested from Technical Assistance at the e-mail address:
nst.technical-assistance@siemens.de

The tripping characteristic of a three-pole 3RU thermal overload relay (see characteristic for symmetrical three-pole loading from cold) is valid when all three bimetal strips are loaded with the same current simultaneously. If, however, only two bimetal strips are heated as a result of phase failure, these two strips would have to provide the force necessary for operating the release mechanism and, if no additional measures were implemented, they would require a longer tripping time or a higher current. These increased current levels over long periods usually result in damage to the consumer. To prevent damage, the 3RU thermal overload relay features phase failure sensitivity which, thanks to an appropriate mechanical mechanism, results in accelerated tripping according to the characteristic for two-pole loading from cold.
In contrast to a load in the cold state, a load at operating temperature has a lower heat reserve. This fact affects the 3RU thermal overload relay in that following an extended period of loading at operational current I_{e}, the tripping time reduces by about a quarter.

Phase failure protection

The 3RU thermal overload relays feature phase failure protection (see "Tripping characteristics") for the purpose of minimizing the heating of the load during sin-gle-phase operation as a result of phase failure.

Setting

The 3RU thermal overload relay is adjusted to the rated motor current using a rotary knob. The scale of the rotary knob is calibrated in Amperes.

Manual and automatic resetting

It is possible to switch between manual resetting and automatic resetting by depressing and rotating the blue button (RESET button). When manual resetting is selected, a reset can be performed directly on the device by pressing the RESET button. Remote resetting can be implemented by using the mechanical and electrical RESET modules from the range of accessories (see "Accessories"). When the blue button is set to Automatic RESET, the relay will be reset automatically.
A reset is not possible until the recovery time has elapsed (see "Recovery time").

Recovery time

After tripping due to an overload, it takes a certain length of time for the bimetal strips of the 3RU thermal overload relays to cool down. The relay can only be reset once it has cooled down. This time (recovery time) is dependent on the tripping characteristic and the level of the tripping current.
After tripping due to overload, the recovery time allows the load to cool down.

TEST function

Correct functioning of the ready 3RU thermal overload relay can be tested with the TEST slide. The slide is operated to simulate tripping of the relay. During this simulation, the NC contact (95-96) is opened and the NO contact (9798) is closed whereby the overload relay checks that the auxiliary circuit is wired correctly. When the 3RU thermal overload relay is set to Automatic RESET, an automatic reset takes place when the TEST slide is released. The relay must be reset using the RESET button when it is set to Manual RESET.

STOP function

When the STOP button is pressed, the NC contact is opened and the series-connected contactor and therefore the load is switched Off.
The load is reconnected via the contactor when the STOP button is released.

Status indication

The current status of the 3RU thermal overload relay is indicated by the position of the marking on the "TEST function/switching position indicator" slide. The marking on the slide is on the left at the "O" mark following a trip due to overload or phase failure and at the "I" mark otherwise.

Auxiliary contacts

The 3RU thermal overload relay is equipped with an NO contact for the tripped signal and an NC contact for switching off the contactor.

Connection

All the 3RU thermal overload relays have screw terminals for the main and auxiliary circuits. Once the box terminals have been removed from the main conductor connections of the overload relays of size S3, it is possible to connect busbars. Alternatively the devices are available with either spring loaded or with ring lug terminals on both the control and the main terminals For details of various connection possibilities, see the "Technical data" and "Selection and ordering data".

Design and mounting

The 3RU thermal overload relays are suitable for direct mounting on the 3RT contactors. They can also be mounted as single units if the appropriate adapters are used. For details of the mounting possibilities, see the "Selection and ordering data" and the "Technical data".

Operation with frequency

 convertersThe 3RU thermal overload relays are suitable for operation with frequency converters. Depending on the frequency of the converter, a current higher than the motor current may have to be set due to the occurrence of eddy currents and skin effects.

Environmental considerations

The devices are manufactured taking environmental considerations into account and comprise environmentally-friendly and recyclable materials.

Specifications

The 3RU thermal overload relays comply with the requirements of:

- IEC 60 947-1/ DIN VDE 0660 Part 100
- IEC 60 947-4-1/ DIN VDE 0660 Part 102
- IEC 60 947-5-1/ DIN VDE 0660 Part 200
- IEC 60801-2, -3, -4, -5 and
- UL 508/CSA C 22.2 .

The 3RU11 thermal overload relays are also safe from touch according to DIN VDE 0106 Part 100 and climate-proof to IEC 721.

Degree of protection
 "Increased safety" EEx

The 3RU thermal overload relay meets the requirements for overload protection of motors of the
"Increased safety" type of protec-
tion EEx e IEC 50 019/
DIN VDE 0165, DIN VDE 0170, DIN VDE 171.
KEMA test certificate number
Ex-97.Y.3235,
DMT 98 ATEX G001,
EN 50 019: 1977 + A1. ... A5, Increased Safety "e": Appendix A, Guideline for temperature monitoring of squirrel cage motors during operation.

Accessories

For the 3RU thermal overload relay, there are:

- one adapter for each of the four overload relay sizes SOO to S3 for individual mounting
- one electrical remote RESET module for all sizes in three different voltage variants
- one mechanical remote RESET module for all sizes
- one cable release for all sizes for resetting inaccessible devices
- terminal covers

The accessories can also be used for the 3RB solid state overload relay.

Thermal Overload Relays

3RU21 up to 100 A, CLASS 10 UPDATED

Selection and ordering data
Features and technical characteristics

- Auxiliary contacts: $1 \mathrm{NO}+1 \mathrm{NC}$
- Manual/automatic RESET
- Switching position indication
- CLASS 10
- TEST function
- STOP button
- Phase failure sensitivity
- Sealable cover: optional in S00, S0 \& S2. Integrated in S3

Ordering information

- Replace the $(\bullet \bullet)$ with the letter Number combination from the Terminal types I table
- Replace the ($\boldsymbol{\dagger} \boldsymbol{\dagger}$) with the letter Number combination from the Terminal types II table

3RU2116-1GB0

- For description, see page 3/8
- For technical data, see pages 3/12-3/15
- For circuit diagrams, see page $3 / 15$
- For dimension drawings, see page 3/16-3/17

Screw	Direct to Contactor	B0
Screw	1)	Stand Alone
Spring ${ }^{2)}$	Direct to Contactor	C0
Spring ${ }^{1)}{ }^{2)}$	Stand Alone	C1
Ring Lug	Direct to Contactor	J0

3RU2116-1GC0

3RU2126-4NBO

3RU2136-4RB1

3RU2146-4JB0

Thermal Overload Relays up to 40A
Frame Size SOO and SO ${ }^{\bullet \bullet}$

Setting Range	Order No.	Setting Range	Order No.	Weight approx. (screw/ spring) kg
A				

Thermal Overload Relays up to 100A
Frame Size S2 and S3 ††
$\left.\begin{array}{lllll}\begin{array}{l}\text { Setting } \\ \text { Range }\end{array} & \text { Order No. } & \begin{array}{l}\text { Setting } \\ \text { Range }\end{array} & \text { Order No. } & \begin{array}{l}\text { Weight } \\ \text { approx. } \\ \text { (screw/ } \\ \text { spring) }\end{array} \\ \text { kg }\end{array}\right]$

1) Not available for size SO 3RU212 with current setting range below 14 A . 2) Size SOO and SO: main and auxiliary conductor terminals are spring-type.
${ }^{3}$) Size S2 and S3 auxiliary terminals are spring-type only. Main conductor terminals are screw.
2) 3RU Overloads in S2 and S3 frame are available preassembled with a terminal bracket for standalone mounting. S2 and S3 overloads can also be customer assembled to the terminal bracket (see Accessories).
${ }^{5)}$ For overload relays > 100A, see electronic overload relays.

Accessories

3RU up to 100 A UPDATED

Accessories	

${ }^{1)}$ The accessories are identical to those of the 3RB30/3RB31 solid-state overload relays.

Thermal Overload Relays

3RU21 up to 100 A, CLASS 10

Technical data

Type	3RU21 16	3RU21 26	3RU21 36	3RU21 46
Size	S00	S0	S2	S3
Width	45 mm	45 mm	55 mm	

General data

Release on			overload or phase failure		
Trip class	acc. to IEC 60947-4-1	CLASS	10	10, 10A	10
Phase failure sensitivity			Yes		
Overload warning			No		
Resetting and recovery Reset possibilities after tripping Recovery time	on automatic RESET on manual RESET on remote RESET	min min min	Manual, remote and automatic RESET ${ }^{1)}$ depending on the level of tripping current and the tripping characteristic depending on the level of tripping current and the tripping characteristic depending on the level of tripping current and the tripping characteristic		
Features Indication of status on the device TEST function RESET button STOP button			Yes, using the slide "TEST function/ON-OFF indicator" Yes Yes Yes		

overload or phase failure

Safe operation of motors with "increased safety" type of protection
EC type test certificate number according to directive 94/9/EC (ATEX)

Ambient temperatures

Storage/transport
Operation
Temperature compensation
Permissible rated current at

	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$	
${ }^{\circ} \mathrm{C}$	
Internal cabinet temperature of	
$60^{\circ} \mathrm{C}$	
$\%$	

Operation
Permissible rated current at
Internal cabinet temperature of $60^{\circ} \mathrm{C} \%$

-55 to +80	-55 to +80
-40 to +70	-40 to +70
up to +60	up to +60
100 (over $+60^{\circ} \mathrm{C}$,	100 (over $+60^{\circ} \mathrm{C}$
the current must be reduced)	current reduction
87	is not required)
87	

Repeat terminals
Repeat coil terminal
Auxiliary switch repeat termina
Internal cabinet temperature of $70^{\circ} \mathrm{C} \quad \% \quad 87$

Degree of protection acc. to IEC 60529		IP 20	IP 20 ${ }^{\text {2) }}$
Touch protection acc. to IEC 61140		Finger-safe for vertical contact from the front Finger-safe only with optional terminal covers	
Shock resistance (sine) acc. to IEC 60068-2-27	g / ms	15/11 (auxiliary contacts 95/96 and 97/98: $8 \mathrm{~g} / 11 \mathrm{~ms}$)	8/10
EMC - Interference immunity - Emitted interference		Not relevant Not relevant	
Resistance to extreme climates (humidity)	\%	90	100
Dimensions		see dimensional drawings	
Site altitude	m	Up to 2000; above this on request	
Installation angle		The permissible installation angles for mounting onto contactors and individual mounting are shown in the diagrams. For mounting in the shaded area, adjustment compensation of 10% is necessary. Individual mounting	

Inalviaual mounting

Contactor + overload relay

Mounting onto contactor/stand-alone installation with terminal support (For screw and snap-on mounting onto TH 35 standard mounting rail)

Direct mounting/ stand-alone installation with terminal support (For screw and snap-on mounting onto TH34 standard mounting rail size size S3 also for TH 75 standard mounting rail."

Thermal Overload Relays

3RU21 up to 100 A, CLASS 10

Technical data

Type Size Width		$\begin{aligned} & \text { 3RU21 } 16 \\ & \text { S00 } \\ & 45 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 3 R U 2126 \\ & \text { S0 } \\ & 45 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { 3RU21 } 36 \\ & \text { S2 } \\ & 55 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { 3RU21 } 46 \\ & \text { S3 } \\ & 70 \mathrm{~mm} \end{aligned}$
Main circuit					
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)	V	690			1000
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6			8
Rated operational voltage U_{e}	V	690			1000
$\begin{array}{ll}\text { Type of current } & \text { DC } \\ & \text { AC }\end{array}$		Yes Yes, frequency range up to 400 Hz			
Current setting	A	$\begin{aligned} & 0.11-0.16 \\ & \text { to } 11-16 \end{aligned}$	$\begin{aligned} & \hline 1.8-2.5 \\ & \text { to } 34-40 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5-8.0 \\ & \text { up to } 70-80 \end{aligned}$	$\begin{aligned} & 28-40 \\ & \text { to } 80-100 \end{aligned}$
Power loss per device (max.)	W	4.8 ... 7.5	$5.7 \ldots 9.6$	10.5 ... 18.9	13.5 ... 21
Short-circuit protection \quad With fuse and contactor		See selection and ordering data See technical data (short-circuit protection with fuses / circuit-breaker for motor feeders)			
Protective separation between main and auxiliary current paths Acc. to IEC 60947-1, - Screw terminals or ring terminal lug connections - Spring - type terminals	V	$\begin{aligned} & 440 \\ & 440 \end{aligned}$	690: Setting ranges $\leq 25 \mathrm{~A}$ 440: Setting ranges $>25 \mathrm{~A}$	$\begin{aligned} & 690 \\ & 690 \end{aligned}$	690 690

Connection of the main circuit

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified
2) Cable lug and busbar connection possible after removing the box terminals.
3) If bars larger than $12 \mathrm{~mm} \times 10 \mathrm{~mm}$ are connected, a 3RT2946-4EA2 cover is needed to maintain the required phase clearance.
4) If conductors larger than $25 \mathrm{~mm}^{2}$ are connected, the 3RT2946-4EA2 cover is needed to maintain the required phase clearance.

Thermal Overload Relays

3RU21 up to 100 A, CLASS 10

Technical data

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.

Thermal Overload Relays

3RU21 up to 100 A, CLASS 10

Circuit diagrams

Protection of DC motors

3RU21 16 overload relay

3RU21 26 to 3RU21 46 overload relays

Dimension drawings

Screw connection
Lateral clearance to grounded components: at least 6 mm .
3RU21 16-..B0
Size S00

3RU21 26-..B.
Size S0

3RU21 36-..B.
Size S2
with adapter for installation as a single unit

1) For mounting on 35 mm standard mounting rail (15 mm deep) acc. to EN 50022
or 75 mm standard mounting rail acc. to EN 50023

3RU21 16-..B1
Size S00
with adapter for installation as a single unit with accessories

3RU21 26-..B1
Size S0
with adapter for installation as a single unit

3RU21 46-..B.
Size S3
with adapter for installation as a single unit

Thermal Overload Relays

3RU21 up to 100 A, CLASS 10

Dimension drawings

Spring Loaded terminals
Lateral clearance to grounded components: at least 6 mm .

3RU21 16 -..C1
Size S00 with with adapter for installation as a single unit

3RU21 26-..C0

3RU11 46-..D.
Size S3

3RU2136-..D.
Size S2

1) For mounting on 35 mm standard mounting rail
(15 mm deep) acc. to EN 50022
or 75 mm standard mounting rail acc. to EN 50023
Dimension drawings "Contactor with built-on overload relay" see contactors and contactor combinations.

Overview

Connection for mounting onto contactors:
Optimally adapted in electrical, mechanical and design terms to the contactors. The overload relay can be connected directly to these contactor using these pins. Stand-alone installation is possible as an alternative (in conjunction with a terminal bracket for stand-alone installation).
2 Selector switch for manual/automatic RESET and RESET button: With this switch you can choose between manual and automatic RESET. A device set to manual RESET can be reset locally by pressing the RESET button. On the 3RB21 a solid-state remote is integrated into the unit.
Switch position indicator and TEST function of the wiring: Indicates a trip and enables the wiring test.

Enables a test of all important device components and functionsMotor current setting:
Setting the device to the rated motor current is easy with the large rotary knob.
Thip class setting/internal ground-fault detection (3RB21 only): Using the rotary switch you can set the required trip class and activate the internal ground-fault detection dependent on the starting conditions.

(7)
Connecting terminals (removable terminal block for auxiliary circuits): The generously sized terminals permit connection of two conductors auxiliary circuit can be connected with screw-type terminals or with spring-loaded terminals.

The 3RB and 3RB solid-state overload relays up to 630 A with internal power supply have been designed for inverse-time delayed protection of loads with normal and heavy starting (see Function) against excessive temperature rise due to overload, phase unbalance or phase failure. An overload, phase unbalance or phase failure result in an increase of the motor current beyond the set motor rated current. This current rise is detected by the current transformers integrated into the devices and evaluated by corresponding solid-state circuits which then output a pulse to the auxiliary contacts. The auxiliary contacts then switch off the load by means of the contactors control circuit. The break time depends on the ratio between the tripping current and set current I_{e} and is stored in the form of a long-term stable tripping characteristic (see Characteristic Curves).

In addition to inverse-time delayed protection of loads against excessive temperature rise due to overload, phase unbalance and phase failure, the 3RB21/31 solid-state overload relays also allow internal ground-fault detection (not possible in conjunction with wye-delta assemblies). This provides protection of loads against high-resistance short-circuits due to damage to the insulation material, moisture, condensed water etc.
The "tripped" status is signaled by means of a switch position indicator (see Function). Resetting takes place either manually or automatically after the recovery time has elapsed (see Function).

The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials. They comply with important worldwide standards and approvals.

Application

Industries

The 3RB2 / 3RB3 solid-state over load relays are suitable for customers from all industries who want to provide optimum inverse-time delayed protection of their electrical loads (e.g. motors) under normal and heavy starting conditions (CLASS 5E to CLASS 30E) minimize project completion times, inventories and power consumption, and optimize plant availability and maintenance management.

Application

The 3RB2 / 3RB3 solid-state overload relays have been designed for the protection of three-phase motors in sinusoidal $50 / 60 \mathrm{~Hz}$ voltage networks. The relays are not suitable for the protection of single-phase AC or DC loads.
The 3RU thermal overload relay or the 3RB22/3RB23 solidstate overload relay can be used for single-phase AC loads. For DC loads the 3RU thermal overload relays are available.

Ambient conditions

The devices are insensitive to external influences such as shocks, corrosive environments, ageing and temperature changes.
For the temperature range from -25 C to $+60^{\circ} \mathrm{C}$, the 3RB2 / 3RB3 solid-state overload relays compensate the temperature according to IEC 60947-4-1.
The 3RB2 / 3RB3 solid-state overload relays are suitable for the overload protection of explosion-proof motors with "increased safety" type of protection EEx e according to ATEX guideline 94/9/EC. The relays meet the requirements of EN 60079-7 (Electrical apparatus for potentially explosive atmospheres Increased safety "e").
The basic safety and health requirements of ATEX guideline 94/9/EG are fulfilled by compliance with

- EN 60947-1
- EN 60947-4-1
- EN 60947-5-1
- EN 60079-14

EU type test certificate for Group II, Category (2) G/D under application. It has the number PTB 09 ATEX 3001.

Accessories

The following accessories are available for the 3RB2/3RB3 solid-state overload relays:

- One terminal bracket each for the overload relays size SOO and SO (sizes S 2 to S 12 can be installed as single units without a terminal bracket)
- One mechanical remote RESET module for all sizes
- One cable release for resetting devices which are difficult to access (for all sizes)
- One sealable cover for all sizes
- Box terminals for sizes S6 and S10/S12
- Terminal covers for sizes S2 to S10/S12

Design

Device concept

The 3RB2 / 3RB3 solid-state overload relays are compact devices, i.e. current measurement (transformer) and the evaluation unit are integrated in a single enclosure.

Mounting options

The 3RB2 / 3RB3 solid-state overload relays are suitable for direct and space-saving mounting onto 3RT1 / 3RT2 contactors and 3RW30/3RW31 soft starters as well as for stand-alone installation. For more information on the mounting options, please see Technical Specifications and Selection and Ordering Data

Connection technique

Main circuit

All sizes of the 3RB2 / 3RB3 solid-state overload relays can be connected with screw-type terminals. As an alternative for sizes S3 to S10/S12, the main circuits can be connected via the Busbar. Sizes S2 to S6 of the 3RB20/3RB21 relays are also available with a straight-through transformer. In this case, the cables of the main circuit are routed directly through the feed-through openings of the relay to the contactor terminals.

Auxiliary circuit

Connection of the auxiliary circuit (removable terminal block) is possible with either screw terminals or spring-loaded terminals.
For more information on the connection options,
see Technical Specifications and Selection and Ordering Data.

Overload relays in contactor assemblies for Wye-Delta starting

When overload relays are used in combination with contactor assemblies for Wye-Delta starting it must be noted that only 0.58 times the motor current flows through the line contactor. An overload relay mounted onto the line contactor must be set to 0.58 times the motor current.
When 3RB21 / 31 solid-state overload relays are used in combination with contactor assemblies for Wye-Delta starting, the internal ground-fault detection must not be activated.

Operation with frequency converter

The 3RB2 / 3RB3 solid-state overload relays are suitable for frequencies of $50 / 60 \mathrm{~Hz}$ and the associated harmonics. This permits the 3RB2 / 3RB3 overload relays to be used on the incoming side of the frequency converter.
If motor protection is required on the outgoing side of the frequency converter, the 3RN thermistor motor protection devices or the 3RU thermal overload relays are available for this purpose.

3RB20, 3RB21, 3RB30, 3RB31 up to 630A for standard applications

Function

Basic functions

The 3RB2 / 3RB3 solid-state overload relays are designed for:

- Inverse-time delayed protection of loads from overloading
- Inverse-time delayed protection of loads from phase unbalance
- Inverse-time delayed protection of loads from phase failure
- Protection of loads from high-resistance short-circuits (internal ground-fault detection only with 3RB21 / 31).

Control circuit

The 3RB2 / 3RB3 solid-state overload relays have an internal power supply, i.e. no additional supply voltage is required.

Short-circuit protection

Fuses or motor starter protectors must be used for short-circuit protection. For assignments of the corresponding short-circuit protection devices to the 3RB2 / 3RB3 solid-state overload relays with/without contactor see Technical Specifications and Selection and Ordering Data.

Trip classes

The 3RB20 / 30 solid-state overload relays are available for normal starting conditions with trip CLASS 10 or for heavy starting conditions with trip CLASS 20 (fixed setting in each case).
The 3RB21 / 31 solid-state overload relays are suitable for normal and heavy starting. The required trip class (CLASS 5E, 10E, 20E or 30 E) can be adjusted by means of a rotary knob depending on the current starting condition.
For details of the trip classes see Characteristic Curves.

Phase failure protection

The 3RB2 / 3RB3 solid-state overload relays are fitted with phase failure protection (see Characteristic Curves) in order to minimize temperature rise of the load during single-phase operation.
Phase failure protection is not effective for loads with starconnection and a grounded neutral point or a neutral point which is connected to a neutral conductor.

Setting

The 3RB2 / 3RB3 solid-state overload relays are set to the motor rated current by means of a rotary knob. The scale of the rotary knob is shown in amps.
With the 3RB21 / 31 solid-state overload relay it is also possible to select the trip class (CLASS 5E, 10E, 20E or 30E) using a second rotary knob and to switch the internal ground-fault detection on and off.

Manual and automatic reset

In the case of the 3RB2 / 3RB3 solid-state overload relays, a slide switch can be used to choose between automatic and manual resetting.
If manual reset is set, a reset can be carried out directly on the device after a trip by pressing the blue RESET button. Resetting is possible in combination with the mechanical reset options from the accessories range (see Accessories). As an alternative to the mechanical RESET options, the 3RB21 / 31 solid-state overload relays are equipped with an electrical remote RESET which may be utilized by applying a voltage of 24 V DC to the terminals A3 and A4.
If the slide switch is set to automatic RESET, the relay is reset automatically.
The time between tripping and resetting is determined by the recovery time.

Recovery time

With the 3RB2 / 3RB3 solid-state overload relays the recovery time after inverse-time delayed tripping is between 0.5 and 3 minutes depending on the preloading when automatic RESET is set. These recovery times allow the load (e.g. motor) to cool down.

If the button is set to manual RESET, the 3RB2 / 3RB3 devices can be reset immediately after inverse-time delayed tripping.
After a ground fault trip the 3RB21 / 31 solid-state overload relays (with ground-fault detection activated) can be reset immediately without a recovery time regardless of the reset mode set.

TEST function

With motor current flowing, the TEST button can be used to check whether the relay is working correctly (device/solid-state TEST). Current measurement, motor model and trip unit are tested. If these components are OK, the device is tripped in accordance with the table below. If there is an error, no tripping takes place.

Trip class	Required loading with the rated current prior to press- ing the test button	Tripping within
CLASS 5	2 min	8 s
CLASS 10	4 min	15 s
CLASS 20	8 min	30 s
CLASS 30	12 min	45 s

Note: The test button must be kept pressed throughout the test.
Testing of the auxiliary contacts and the control current wiring is possible with the switch position indicator slide. Actuating the slide simulates tripping of the relay. During this simulation the NC contact (95-96) is opened and the NO contact (97-98) is closed. This tests whether the auxiliary circuit has been correctly wired.
After a test trip the relay is reset by pressing the RESET button.

Self-monitoring

The 3RB2 / 3RB3 solid-state overload relays have a self-monitoring feature, i.e. the devices constantly monitor their own basic functions and trip if an internal fault is detected.

Display of operating status

The respective operating status of the 3RB2 / 3RB3 solid-state overload relays is displayed by means of the position of the marking on the switch position indicator slide. After tripping due to overload, phase failure, phase unbalance or ground fault (ground fault detection possible only with 3RB21 / 31) the marking on the slide is to the left on the "O" mark, otherwise it is on the "I" mark.

Auxiliary contacts

The 3RB2 / 3RB3 solid-state overload relays are fitted with an NO contact for the "tripped" signal, and an NC contact for switching off the contactor.

3RB2／3RB3 Solid－State Overload Relays

Selection and ordering data
Conversion aid 3RB10 or 3RB20 $\longrightarrow 3$ 3R20 or 30

Size	Old Order No．	Setting range A	New Order No．	Setting range A
S00	3RB20 16－םRB0	0.1 ．．． 0.4	3RB30 16－םRB0	0.1 ．．． 0.4
	3RB20 16－םNB0	0.32 ．．． 1.25	3RB30 16－םNB0	0.32 ．．． 1.25
			3RB30 16－םPB0	1 ．．． 4
	3RB20 16－םPB0	1 ．．． 4		
	3RB20 16－םSB0	3 ．．． 12	3RB30 16－■SB0	3．．． 12
S0	3RB20 26－पRB0	0.1 ．．． 0.4	3RB30 26－पRB0	0.1 ．．． 0.4
	3RB20 26－םNB0	0.32 ．．． 1.25	3RB30 26－םNB0	0.32 ．．． 1.25
	3RB20 26－口PB0	$1 . . .4$	3RB30 26－םPB0	1 ．．． 4
	3RB20 26－םSB0	3 ．．． 12	3RB30 26－םSB0	3 ．．． 12
	3RB20 26－ロQB0	6 ．．． 25	3RB30 26－ロQB0	6 ．．． 25
S2	3RB20 36－口QB0	6 ．．． 25	3RB30 36－םUB0	12.5 ．．． 50
	3RB20 36－םUB0	$13 . . .50$	3RB30 36－םWB0	$20 . . .80$
S3	3RB10 46－םUB0	13 ．．． 50	3RB30 46－םUB0	12.5 ．．． 50
	3RB10 46－םEB0	$25 . . .100$	3RB30 46－םXB0	32 ．．． 115
S6	3RB10 56－םFW0	－50 ．．． 200	3RB20 56－םFW2	50 ．．． 200
	3RB10 56－םFG0		3RB20 56－םFC2	
S10／S12	3RB10 66－םGG0	$55 . . .250$	3RB20 66－םGC2	$55 . .250$
	3RB10 66－ロKG0	200 ．．． 540	3RB20 66－口MC2	160 ．．． 630
	3RB10 66－םLG0	$300 . . .630$		

CLASS 10	$\mathbf{1}$	$\mathbf{1}$
CLASS 20	$\mathbf{2}$	$\mathbf{2}$

Conversion aid 3RB10／21 \longrightarrow 3RB21／31

3RB2 / 3RB3 Solid-State Overload Relays

3RB30/3RB20 electronic overload relays for mounting onto contactors and stand-alone installation, CLASS 10E or 20E
Features and technical specifications:

- Overload protection, phase failure protection and unbalance protection
- Internal power supply
- Auxiliary contacts 1 NO + 1 NC
Size
Contactor ${ }^{4}$)
Set current value

A

$\xrightarrow{2}$	S00	0.1 ... 0.4
114		0.32 ... 1.25
		$1 . . .4$
		3... 12
ckez		4... 16

3RB30 16-1RB0
Size SO ${ }^{1)}$

Screw Terminal	Spring Loaded Terminal Order Number	Weight per PU approx.
		kg

3RB30 16-पRB0	3RB30 16-पRE0	0.172
3RB30 16-םNB0	3RB30 16-पNE0	0.172
3RB30 16-口PB0	3RB30 16-पPE0	0.172
3RB30 16-םSB0	3RB30 16-पSE0	0.172
3RB30 16-口TB0	3RB30 16-पTE0	0.172

- Manual and automatic RESET
- Switch position indicator
- TEST function and self-monitoring

3RB30 26-पRB0	3RB30 26-पRE0	0.250
3RB30 26-пNB0	3RB30 26-םNE0	0.250
3RB30 26-वPB0	3RB30 26-םPE0	0.250
3RB30 26-वSB0	3RB30 26-पSE0	0.250
3RB30 26-םQB0	3RB30 26-DQE0	0.250
3RB30 26-वVB0	3RB30 26-वVE0	0.250

3RB30 36-םUB0	3RB30 36-םUD0	0.360
3RB30 36-םUW1	3RB30 36-пUX1	0.230
3RB30 36-םWB0	3RB30 36-םWD0	0.360
3RB30 36-םWW1	3RB30 36-CWX1	0.230

3RB20 56-पFC2 3RB20 56-पFF2 $\quad 1.030$

0.1 ... 0.4
0.32 ... 1.25
1... 4
3... 12

6 ... 25
$10 . . .40$

3RB30 36-1UB0
Size S3 ${ }^{1 / 3 / 5)}$
 Size $\mathrm{S}^{2 / 5)}$

3RB20 56-1FW2

Size S10/S12 ${ }^{2)}$

3RB20 66-1MC2

1) The relays with an Order No. ending with " 0 " are designed for direct mounting to the contactor. With the matching terminal brackets (see Accessories) the sizes SOO to S 3 can also be installed as stand-alone units.
2) The relays with an Order No. ending with "2" are designed for direct mounting and stand-alone installation. For 3TF68/3TF69 contactors, direct mounting is not possible.
3) The relays with an Order No. ending with "1" are designed for stand-alone installation.
4) Observe maximum rated operational current of the devices.
5) The relays with an Order No. with " \mathbf{X} " in 10th position are equipped with a straight-through transformer.

3RB20 66-■GC2	3RB20 66-पGF2	1.820
3RB20 66-■MC2	3RB20 66-पMF2	1.820
2 Class 20	2 Class 20	
1 Class 10	1 Class 10	

For accessories, see pages 3/49-3/50.
For description, see pages 3/18-3/20.
For technical data, see pages 3/24-3/29.
For dimension drawings, see page 3/30.
For schematic diagrams, see page $3 / 31$.

3RB2 / 3RB3 Solid-State Overload Relays

3RB20, 3RB21, 3RB30, 3RB31 up to 630A for standard applications

3RB31/3RB21 electronic overload relays for mounting onto

 contactors and stand-alone installation, CLASS 5E, 10E, 20E and 30E (adjustable)Features and technical specifications:

- Overload protection, phase failure protection and unbalance protection
- Internal ground fault detection (activatable)
- Internal power supply
- Auxiliary contacts 1 NO +1 NC
- Manual and automatic RESET
- Electrical remote RESET integrated
- Switch position indicator
- TEST function and self-monitoring

1) The relays with an Order No. ending with " 0 " are designed for direct mounting to the contactor. With the matching terminal brackets (see Accessories) the sizes S00 to S3 can also be installed as stand-alone units.
2) The relays with an Order No. ending with "2" are designed for direct mounting and stand-alone installation. For 3TF68/3TF69 contactors, direct mounting is not possible
3) The relays with an Order No. ending with "1" are designed for stand-alone installation.
4) Observe maximum rated operational current of the devices.
5) The relays with an Order No. with "X" in 10th position are equipped with a straight-through transformer.

For accessories, see pages 3/49-3/50. For description, see pages 3/18-3/21.
For technical data, see pages 3/24-3/29.
For dimension drawings, see page 3/30.
For schematic diagrams, see page 3/31.

3RB2 / 3RB3 Solid-State Overload Relays

3RB20, 3RB21, 3RB30, 3RB31 up to 630A for standard applications

Technical specifications

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type

Size

Width \& \& \begin{tabular}{l}
3RB30 16, 3RB31 13

SOO

45 mm

 \&

3RB30 26, 3RB31 23

SO

45 mm

\end{tabular} \& \[

$$
\begin{aligned}
& \text { 3RB30 } 36 \\
& \text { 3RB31 } 33 \\
& \text { S2 } \\
& 55 \mathrm{~mm} \\
& \hline
\end{aligned}
$$

\] \& | 3RB30 46, 3RB31 43 |
| :--- |
| S3 |
| 70 mm | \& | 3RB20 56, 3RB21 53 S6 |
| :--- |
| 120 mm | \& 3RB20 66, 3RB21 63 S10/S12 145 mm

\hline \multicolumn{2}{|l|}{General data} \& \& \& \& \& \&

\hline \multicolumn{2}{|l|}{Trips in the event of} \& \multicolumn{6}{|l|}{Overload, phase failure, and phase unbalance + ground fault (for 3RB31 only)}

\hline Trip class according to IEC 60947-4-1 \& CLASS \& \multicolumn{6}{|l|}{3RB30: 10E, 20E;
3RB31: 5E, 10E, 20E or 30 E adjustable}

\hline \multicolumn{2}{|l|}{Phase failure sensitivity} \& \multicolumn{6}{|l|}{Yes}

\hline \multicolumn{2}{|l|}{Overload warning} \& \multicolumn{3}{|l|}{} \& \multicolumn{3}{|l|}{No}

\hline \multicolumn{2}{|l|}{| Reset and recovery |
| :--- |
| - Reset options after tripping |
| - Recovery time |
| - For automatic RESET |
| - For manual RESET |
| - For remote RESET |} \& \multicolumn{3}{|l|}{| Manual and automatic RESET, 3RB31 has an integrated connection for electrical remote RESET (24 V DC) |
| :--- |
| Appox. 3 min Immediately Immediately |} \& \multicolumn{3}{|l|}{| 3RB20: Manual and automatic RESET; |
| :--- |
| 3RB21: Manual, automatic and remote RESET |
| Appox. 3 min Immediately |}

\hline \multicolumn{8}{|l|}{Features}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| - Display of operating status on device |
| :--- |
| - TEST function |
| - RESET button |
| - STOP button |}} \& \multicolumn{6}{|l|}{| Yes, by means of switch position indicator slide |
| :--- |
| Yes, test of electronics by pressing the button Test Test of auxiliary contacts and wiring of control current circuit by actuating the switch position indicator slide/self-monitoring |}

\hline \& \& \multicolumn{6}{|l|}{$$
\begin{aligned}
& \text { Yes } \\
& \text { No }
\end{aligned}
$$}

\hline \multicolumn{2}{|l|}{Protection and operation of explosion-proof motors Certificate of suitability/explosion protection type according to ATEX directive 2014/34/EU} \& \multicolumn{3}{|l|}{| PTB 09 ATEX 3001 |
| :--- |
| Exx I (2) G [Ex e] [Ex d] [Expx] |
| |} \& \multicolumn{3}{|l|}{| PTB 09 ATEX 3001 |
| :--- |
| 〔 $\mathrm{Ex}_{\mathrm{x}}^{\mathrm{II}}(2) \mathrm{G}[\mathrm{Ex} \mathrm{e]}$ [Ex d] [Expx] |
| Ex $\\|(2) G[E x t][E x p]$ |}

\hline \multicolumn{2}{|l|}{| Ambient temperatures |
| :--- |
| - Storage/transport |
| - Operation |
| - Temperature compensation |
| - Permissible rated current at |
| - Temperature inside control cabinet $60^{\circ} \mathrm{C}$, stand-alone installation \% |
| - Temperature inside control cabinet $60^{\circ} \mathrm{C}$, mounted on contactor \% |
| - Temperature inside control cabinet $70^{\circ} \mathrm{C}$ |} \& \multicolumn{6}{|l|}{\[

$$
\begin{aligned}
& -40 \ldots+80 \\
& -25 \ldots+60 \\
& +60
\end{aligned}
$$
\]}

\hline \multicolumn{2}{|l|}{| Repeat terminals |
| :--- |
| - Coil repeat terminal |
| - Auxiliary contact repeat terminal |} \& \multicolumn{6}{|l|}{| Yes | Not required |
| :--- | :--- |
| Yes | Not required |}

\hline \multicolumn{2}{|l|}{Degree of protection according to IEC 60529} \& \multicolumn{4}{|l|}{IP20} \& \multicolumn{2}{|l|}{IP20 ${ }^{3}$}

\hline Touch protection according to IEC 61140 \& \& \multicolumn{4}{|l|}{Finger-safe for vertical contact from the front} \& Finger-safe, for busbar connection with cover \& Finger-safe with cover

\hline \multicolumn{2}{|l|}{Shock resistance with sine according to IEC 60068-2-27 9/ms} \& \multicolumn{2}{|l|}{15/11 (signaling contact 97/98 in position "tripped": $9 \mathrm{~g} / 11 \mathrm{~ms}$)} \& 15/11 (signaling contact 97/98 in "Tripped" position $8 \mathrm{~g} / 11 \mathrm{~ms}$) \& \multicolumn{3}{|l|}{15/11 (signaling contact 97/98 in position "tripped": $4 \mathrm{~g} / 11 \mathrm{~ms}$)}

\hline \multicolumn{8}{|l|}{| - Conductor-related interference | kV | 2 (power ports), 1 (signal ports) |
| :--- | :--- | :--- |
| - Burst according to IEC 61000-4-4
 (corresponds to degree of severity 3) | kV | 2 (line to earth), 1 (line to line) |
| - Surge according to IEC 61000-4-5 | | |
| (corresponds to degree of severity 3) | | |}

\hline - Electrostatic discharge according to IEC 61000-4-2 (corresponds to degree of severity 3) \& kV \& \multicolumn{6}{|l|}{8 (air discharge), 6 (contact discharge)}

\hline - Field-related interference according to IEC 61000-4-3 (corresponds to degree of severity 3) \& V / m \& \multicolumn{6}{|l|}{10}

\hline \multicolumn{2}{|l|}{Electromagnetic compatibility (EMC) Emitted interference} \& \multicolumn{6}{|l|}{Degree of severity B according to EN 55011 (CISPR 11) and EN 55022 (CISPR 22)}

\hline Resistance to extreme climates - air humidity \& \% \& 95 \& \& \& 100 \& \&

\hline \multicolumn{2}{|l|}{Dimensions} \& \multicolumn{6}{|l|}{See dimensional drawings}

\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Installation altitude above sea level m m}} \& \multicolumn{6}{|l|}{Up to 2000}

\hline \& \& Any \& \& \& \& \&

\hline \multicolumn{2}{|l|}{Type of mounting} \& \multicolumn{3}{|l|}{Direct mounting/stand-alone installation with terminal support} \& \& \multicolumn{2}{|l|}{Direct mounting / Stand-alone installation}

\hline
\end{tabular}

1) Permissible rated current in case of heavy starting Size S0 at 10 A up to 40 A

- CLASS 20, le max $=32 \mathrm{~A}$
- CLASS 30, le max $=25 \mathrm{~A}$

2) 90% for relay with current setting range 160 A to 630 A
3) Terminal compartment: degree of protection IP00.

3RB2 / 3RB3 Solid-State Overload Relays

3RB20, 3RB21, 3RB30, 3RB31 up to 630A for standard applications

Type		$\begin{aligned} & \text { 3RB20 56, } \\ & \text { 3RB21 53 } \end{aligned}$	$\begin{aligned} & \text { 3RB20 66, } \\ & \text { 3RB21 63 } \end{aligned}$
Size Width		S6	S10/S12
		120 mm	145 mm
Main circuit			
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	1000	
Rated impulse withstand voltage $U_{\text {imp }}$	kV	8	
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$	V	1000	
Type of current - Direct current - Alternating current		No Yes, $50 / 60 \mathrm{~Hz} \pm 5$ (other frequencies on request)	
Set current	A	50 ... 200	$\begin{aligned} & 55 \ldots 250 \text { to } \\ & 160 \ldots 630 \end{aligned}$
Power loss per unit (max.)	W	0.05	
Short-circuit protection - With fuse without contactor - With fuse and contactor		See Selection and Ordering Data See Technical Specifications (short-circuit protection with fuses for motor feeders)	
Safe isolation between main and auxiliary conducting path according to IEC 60947-1	V	$690^{1)}$	
Connection for main circuit			
Electrical connection version		Screw terminal with box terminal/ Bus connection / Straight-through transformer	Screw terminal with box terminal/ Bus connection
Screw terminal - Terminal screw - Tightening torque - Conductor cross-sections (min./max.), 1 or 2 conductors - Solid	Nm mm^{2}	4 mm Allen screw $10 . . .12$	5 mm Allen screw $20 \ldots 22$
- Finely stranded without end sleeve	mm^{2}	With 3RT19 55-4G box terminal: $2 \times(1 \times \max .50,1 \times \max .70)$, $1 \times(10 \ldots 70)$ With 3RT19 56-4G box terminal: $2 \times(1 \times \max .95,1 \times \max .120)$, $1 \times(10 \ldots 120)$	$\begin{aligned} & 2 \times(50 \ldots 185) \text {, } \\ & \text { front clamping point only: } \\ & 1 \times(70 \ldots 240) \\ & \text { rear clamping point only: } \\ & 1 \times(120 \ldots 185) \end{aligned}$
- Finely stranded with end sleeve	mm^{2}	With 3RT19 55-4G box terminal: $2 \times(1 \times \max .50,1 \times \max .70)$, $1 \times(10 \ldots 70)$ With 3RT19 56-4G box terminal: $2 \times(1 \times \max .95,1 \times \max .120)$, $1 \times(10 . . .120)$	$2 \times(50 \ldots 185)$, front clamping point only: $1 \times(70 \ldots 240)$ rear clamping point only: $1 \times(120 \ldots 185)$
- Stranded	mm^{2}	With 3RT19 55-4G box terminal: $2 \times(\max .70)$, $1 \times(16 \ldots 70)$ With 3RT19 56-4G box terminal: $2 \times(\max .120)$, $1 \times(16 \ldots 120)$	$\begin{aligned} & 2 \times(70 \ldots 240) \text {, } \\ & \text { front clamping point only: } \\ & 1 \times(95 \ldots 300) \\ & \text { rear clamping point only: } \\ & 1 \times(120 \ldots 240) \end{aligned}$
- AWG conductors, solid or stranded	AWG	With 3RT19 55-4G box terminal: $2 \times(\max .1 / 0)$, $1 \times(6 \ldots 2 / 0)$ With 3RT19 56-4G box terminal: $2 \times(\max .3 / 0)$, $1 \times(6 \ldots 250$ kcmil)	$2 \times(2 / 0 \ldots 500 \mathrm{kcmil})$, front clamping point only: $1 \times(3 / 0 \ldots 600 \mathrm{kcmil})$ rear clamping point only: $1 \times(250 \mathrm{kcmil} . . .500 \mathrm{kcmil})$
- Ribbon cable conductors (number x width x circumference)	mm	With 3RT19 55-4G box terminal: $2 \times(6 \times 15.5 \times 0.8)$ $1 \times(3 \times 9 \times 0.8 \ldots 6 \times 15.5 \times 0.8)$ With 3RT19 56-4G box terminal: $\begin{aligned} & 2 \times(10 \times 15.5 \times 0.8), \\ & 1 \times(3 \times 9 \times 0.8 \ldots 10 \times 15.5 \times 0.8) \end{aligned}$	$\begin{aligned} & 2 \times(20 \times 24 \times 0.5), \\ & 1 \times(6 \times 9 \times 0.8 \ldots 20 \times 24 \times 0.5) \end{aligned}$
Busbar connections - Terminal screw - Tightening torque - Conductor cross-section (min./max.) - Finely stranded with cable lug - Stranded with cable lug - AWG connections, solid or stranded, with cable lug - With connecting bar (max. width)	Nm mm^{2} mm^{2} AWG mm	$\begin{aligned} & M 8 \times 25 \\ & 10 \ldots 14 \\ & 16 \ldots 95^{2)} \\ & 25 \ldots 120^{2)} \\ & 4 \ldots 250 \mathrm{kcmil} \\ & 15 \end{aligned}$	$\begin{aligned} & \text { M } 10 \times 30 \\ & 14 \ldots 24 \\ & \\ & 50 \ldots 240^{3)} \\ & 70 \ldots 240^{3)} \\ & 2 / 0 \ldots 500 \mathrm{kcmil} \\ & 25 \end{aligned}$
Straight-through transformers - Diameter of opening - Conductor cross-section (max.) - NYY - H07RN-F	mm mm^{2} mm^{2}	$\begin{aligned} & 24.5 \\ & 120 \\ & 70 \end{aligned}$	--

1) For grounded networks, otherwise 600 V .
2) When connecting cable lugs according to DIN 46235, use the 3RT19 56-4EA1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to ensure phase spacing.
3) When connecting cable lugs according to DIN 46234 for conductor crosssections from $240 \mathrm{~mm}^{2}$ as well as DIN 46235 for conductor cross-sections from $185 \mathrm{~mm}^{2}$, use the 3RT19 56-4EA1 terminal cover to ensure phase spacing.

3RB2 / 3RB3 Solid-State Overload Relays

3RB20, 3RB21, 3RB30, 3RB31 up to 630A for standard applications

Type	$\begin{aligned} & \text { 3RB30 16, } \\ & \text { 3RB31 13 } \end{aligned}$	$\begin{aligned} & \text { 3RB30 26, } \\ & \text { 3RB31 23 } \end{aligned}$	$\begin{aligned} & \text { 3RB30 36, } \\ & \text { 3RB31 33, } \end{aligned}$	$\begin{aligned} & \text { 3RB30 46, } \\ & \text { 3RB31 } 43 \end{aligned}$	$\begin{aligned} & \text { 3RB20 56, } \\ & \text { 3RB21 53 } \end{aligned}$	$\begin{aligned} & \text { 3RB20 66, } \\ & \text { 3RB21 63 } \end{aligned}$
Size	S00	S0	S2	S3		S10/S12
Width	45 mm	45 mm	55 mm	70 mm	120 mm	145 mm

Auxiliary circuit

Number of NO contacts	1	
Number of NC contacts	1	
Auxiliary contacts - assignment	1 NO for the signal "tripped",	
		1 NC for switching off the contactor
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	300
Rated impulse withstand voltage $\boldsymbol{U}_{\mathbf{i m p}}$	kV	4
Auxiliary contacts - Contact rating		

- NC, NO contact with alternating current AC-14/AC-15,
rated operational current le at Ue
- 24 V
- 120 V
- 125 V
A
- 250 V
A
A
- NC, NO contact with direct current DC-13:

Rated operational current I_{e} at U_{e} :

- 24 V
- 60 V
- 110 V
- 125 V
- 250 V
- Continuous thermal current $I_{\text {th }}$
- Contact reliability
(suitability for PLC control; $17 \mathrm{~V}, 5 \mathrm{~mA}$)

Short-circuit protection

- With fuse
- gL/gG operational class

A 6

Ground-fault protection (only 3RB31)

- Tripping value I_{Δ}
- Operating range /
- Response time $t_{\text {trip }}$ (in steady-state condition)

Integrated electrical remote RESET (only 3RB31)

Connecting terminals A3, A4
300
and auxiliary conducting path according to IEC 60947-1
CSA, UL, and UR rated data

3RB2 / 3RB3 Solid-State Overload Relays

3RB20, 3RB21, 3RB30, 3RB31 up to 630A for standard applications

Short-circuit protection with fuses for motor starters
For short-circuit currents up to 50 kA at 400 to 690 V

1) Please observe operational voltage
2) Coordination and short-circuit equipment according to EN 60947-4-1:

Type of coordination 1: the contactor or starter must not endanger persons or the installation in the event of a short-circuit.
They do not need to be suitable for further operation without repair and the renewal of parts.

Type of coordination 2: the contactor or starter must not endanger
persons or the installation in the event of a short-circuit.
They must be suitable for further operation. There is a risk of contact welding.
3) Contactor cannot be mounted.
4) Please ensure that the maximum AC-3 operational current has sufficient safety clearance from the rated current of the fuses.

Characteristic curves

The tripping characteristics show the relationship between the tripping time and tripping current as multiples of the set current I_{e} and are given for symmetrical three-pole and two-pole loads from the cold state.

The smallest current used for tripping is called the minimum tripping current. According to IEC 60947-4-1, this current must be within specified limits. The limits of the total tripping current for the 3RB20/3RB21 solid-state overload relays for symmetrical three-pole loads are between 105% and 120% of the set current.
The tripping characteristic starts with the minimum tripping current and continues with higher tripping currents based on the characteristics of the so-called trip classes (CLASS 10,
CLASS 20 etc.). The trip classes describe time intervals within which the overload relays have to trip with 7.2 times the set current I_{e} from the cold state for symmetrical three-pole loads.
The tripping times according to IEC 60947-4-1, tolerance band E, are as follows for:

Trip class	Tripping time
CLASS 5	$3 \ldots 5 \mathrm{~s}$
CLASS 10	$5 \ldots 10 \mathrm{~s}$
CLASS 20	$10 \ldots 20 \mathrm{~s}$
CLASS 30	$20 \ldots 30 \mathrm{~s}$

The tripping characteristic for a three-pole overload relay from the cold state (see illustration 1) only apply if all three phases are simultaneously loaded with the same current. In the event of a phase failure the 3RB20/3RB21 solid-state overload relays switch off the contactor more quickly in order to minimize heating of the load in accordance with the tripping characteristic for twopole loads from the cold state (see illustration 2). With phase unbalance the devices switch off depending on the reason for the unbalance between the two characteristic curves.

Compared with a cold load, a load at operating temperature obviously has a lower temperature reserve. The tripping time of the 3RB2/3RB3 solid-state overload relays is reduced therefore to about 30% when loaded with the set current I_{e} for an extended period.

Tripping characteristics for 3-pole loads

Illustration 1
Tripping characteristics for 2-pole loads

Illustration 2
The above illustrations are schematic representations of characteristic curves.

Dimensional drawings

3RB30 16, 3RB31 13, size S00

3RB30 26, 3RB31 23, size S0

3RB30 36, 3RB31 33, size S2

3RB30 46, 3RB31 43, size S3

3RB20 56, 3RB21 53, size S6

3RB20 56, 3RB21 53, size S6 with straight-through transformer

3RB2 / 3RB3 Solid-State Overload Relays

3RB20, 3RB21, 3RB30, 3RB31 up to 630A for standard applications

Schematics

3RB30 16 overload relays

3RB30 26 to 3RB20 66 overload relays

3RB31 13 overload relays

3RB31 23 to 3RB21 63 overload relays

Overview

3RB22/3RB23 evaluation module
(1) Green "Ready" LED:

A continuous green light signals that the device is working correctly.
(2) Red "Ground Fault" LED:

A continuous red light signals a ground fault.
(3)Red "Thermistor" LED:

A continuous red light signals an active thermistor trip.
(4) Red "Overload" LED:

A continuous red light signals an active overload trip; a flickering red light signals an imminent trip (overload warning).
(5)Motor current and trip class adjustment:

Setting the device to the motor current and to the required trip class dependent on the starting conditions is easy with the two rotary knobs.
(6) Selector switch for manual/automatic RESET:

With this switch you can choose between manual and automatic RESET.
(7) Test/RESET button:

Enables testing of all important device components and functions, plus resetting of the device after a trip when manual RESET is selected.
(8) Connecting terminals (removable terminal block):

The generously sized terminals permit connection of two conductors with different cross-sections for the auxiliary, control and sensor circuits. Connection is possible with screw-type terminals and alternatively with spring-loaded terminals.
(9)3RB29 85 function expansion module:

Enables more functions to be added, e.g. internal ground fault detection and/or an analog output with corresponding signals.

3RB29 06 current measuring module

The modular, solid-state overload relays with external power supply type 3RB22 (with monostable auxiliary contacts) and type 3RB23 (with bistable auxiliary contacts) up to 630 A (up to 820 A possible with a series transformer) have been designed for inverse-time delayed protection of loads with normal and heavy starting (see Function) against excessive temperature rises due to overload, phase unbalance or phase failure. An overload, phase unbalance or phase failure result in an increase of the motor current beyond the set motor rated current. This current rise is detected by means of a current measuring module and electronically evaluated by a special evaluation module which is connected to it. The evaluation electronics sends a signal to the auxiliary contacts. The auxiliary contacts then switch off the load by means of the contactors control circuit. The break time depends on the ratio between the tripping current and set current I_{e} and is stored in the form of a long-term stable tripping characteristic (see Characteristic Curves). The "tripped" status is signaled by means of a continuous red "Overload" LED.
The LED indicates imminent tripping of the relay due to overload, phase unbalance or phase failure by flickering when the limit current has been violated. This warning can also be used as a signal through auxiliary contacts.
In addition to the described inverse-time delayed protection of loads against excessive temperature rise, the 3RB22/3RB23 solid-state overload relays also allow direct temperature monitoring of the motor windings (full motor protection) by failsafe connection of a PTC sensor circuit. With this temperature-dependent protection, the loads can be protected against overheating caused indirectly by reduced coolant flow, for example, which cannot be detected by means of the current alone. In the event of overheating, the devices signal the contactor to switch off, and thus the load, by means of the auxiliary contacts. The "tripped" status is signaled by means of a continuous red "Thermistor" LED.
To also protect the loads against high-resistance short-circuits due to damage to the insulation, humidity, condensed water, etc., the 3RB22/3RB23 solid-state overload relays offer the possibility of internal ground fault monitoring in conjunction with a function expansion module; not possible in conjunction with a contactor assembly for Wye-Delta starting). In the event of a ground fault the 3RB22/3RB23 relays trip instantaneously. The "tripped" status is signaled by means of a red "Ground Fault" LED. Signaling through auxiliary contacts is also possible.
After tripping due to overload, phase unbalance, phase failure, thermistor tripping or ground fault, the relay may be reset manually or automatically after the recovery time has elapsed (see Function).
In conjunction with a function expansion module the motor current measured by the microprocessor can be output in the form of an analog signal $4 \ldots 20 \mathrm{~mA}$ DC for operating rotary coil instruments or for feeding into analog inputs of programmable logic controllers. With an additional AS-Interface analog module the current values can also be transferred over the AS-i bus system.
The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials.
They comply with important worldwide standards and approvals.

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for high-feature applications

Benefits

The most important features and benefits of the 3RB22/3RB23 solid-state overload relays are listed in the overview table (see Overload Relays, General Data).

Application

Industries

The 3RB22/3RB23 solid-state overload relays are suitable for customers from all industries who want to provide optimum inverse-time delayed and temperature-dependent protection of their electrical loads (e.g. motors) under normal and heavy starting conditions (CLASS 5E to CLASS 30E), minimize project completion times, inventories and power consumption, and optimize plant availability and maintenance management.

Application

The 3RB22/3RB23 solid-state overload relays have been designed for the protection of three-phase asynchronous and single-phase AC motors.
If single-phase AC motors are to be protected by the 3RB22/3RB23 solid-state overload relays, the main circuits of the current measuring modules must be series-connected.

Ambient conditions

The devices are insensitive to external influences such as shocks, corrosive environments, ageing and temperature changes.
For the temperature range from -25 C to $+60^{\circ} \mathrm{C}$, the 3RB22/3RB23 solid-state overload relays compensate the temperature according to IEC 60947-4-1.
Configuration notes for use of the devices below $-25^{\circ} \mathrm{C}$ or above $+60^{\circ} \mathrm{C}$ on request.

Use of SIRIUS protection devices in conjunction with IE3/IE4 motors

Note:

For the use of 3RB22 and 3RB23 electronic overload relays in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.

"Increased safety" type of protection EEx e according to ATEX guideline 94/9/EC

The 3RB22/3RB23 solid-state overload relays are suitable for the overload protection of explosion-proof motors with "increased safety" type of protection EEx e. The relays meet the requirements of EN 60079-7 (Electrical apparatus for potentially explosive atmospheres - Increased safety "e").

When using 3RB23 solid-state overload relays for the protection of EEx e motors, separate monitoring of the control supply voltage is recommended.

The basic safety and health requirements of ATEX guideline 94/9/EG are fulfilled by compliance with

- EN 60947-1
- EN 60947-4-1
- EN 60947-5-1
- EN 60079-14

EU type test certificate for Group II, Category (2) G/D under application. Number on request.

Accessories

The following accessories are available for the 3RB22/3RB23 solid-state overload relays:

- A sealable cover for the evaluation module
- Box terminal blocks for the current measuring modules size S6 and S10/S12
- Terminal covers for the current measuring modules size S6 and S10/S12
- Push-in lugs for screw (panel) mounting the size S00 to S3 current measuring modules

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for high-feature applications

3RB22/3RB23 solid-state overload relays for full motor protection with screw connection or spring-loaded terminals for stand-alone installation, CLASS 5E, 10E, 20E and 30E (adjustable)

Features and technical specifications:

- Overload protection, phase failure protection and unbalance protection
- TEST function and self-monitoring
- Internal ground fault detection with function expansion module
- External power supply 24 ... 240 V AC/DC
- Auxiliary contacts 2 NO +2 NC
- Screw connection or spring-loaded terminals for auxiliary,
control and sensor circuits
- Manual and automatic RESET
- Electrical remote RESET integrated
- Analog output with function expansion module
- 4 LEDs for operating and status displays

For accessories, see page $3 / 35$
For description, see pages 3/32-3/33
For technical data, see pages 3/39-3/44.
For dimension drawings, see pages 3/45-3/46.
For schematic diagrams, see page 3/47.

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for high-feature applications

Current measuring modules for direct mounting ${ }^{1)}$ and stand-alone installation ${ }^{1) 2 \text {) }}$

3) Observe maximum rated operational current of the devices.
4) The modules with an Order No. with "G" in 11th position are equipped with a straight-through transformer.

The current measuring modules with an Order No. ending with "1" are designed for stand-alone installation.

[^45]
Design

Device concept

The 3RB22/3RB23 solid-state overload relays are based on a modular device concept. Each device always comprises an evaluation module, which is independent of the motor current, and a current measuring module, which is dependent on the motor current. The two modules are electrically interconnected by a connection cable through the system interface.

The basic functionality of the evaluation module can be optionally expanded with corresponding function expansion modules. The function expansion modules are integrated in the evaluation module for this purpose through a simple plug connection.

Mounting options

Current measuring modules

The current measuring modules size S00/S0 and S2/S3 are designed for stand-alone installation. By contrast, the current measuring modules size S 6 and $\mathrm{S} 10 / \mathrm{S} 12$ are suitable for stand-alone installation or direct mounting.

Evaluation modules

The evaluation modules can be mounted either on the current measuring module (only sizes S00/S0 and S2/S3) or separately.

Connection technique

Main circuit (current measuring module)
For sizes S00/S0, S2/S3 and S6, the main circuit can also be connected by the straight-through transformer method. In this case, the cables of the main circuit are routed directly through the feed-through openings of the relay to the contactor terminals.

For sizes S6 and S10/S12, the main circuit can be connected with the help of the Busbar. In conjunction with the corresponding box terminals, screw terminals are also available.
Auxiliary circuit (evaluation module)
Connection of the auxiliary circuit (removable terminal block) is possible with either screw terminals or spring-loaded terminals.

Overload relays in contactor assemblies for

Wye-Delta starting
When overload relays are used in combination with contactor assemblies for Wye-Delta starting it must be noted that only 0.58 times the motor current flows through the line contactor. An overload relay mounted onto the line contactor must be set to 0.58 times the motor current.

When 3RB22/3RB23 solid-state overload relays are used in combination with contactor assemblies for Wye-Delta starting, the function expansion modules for internal ground-fault detection must not be used.

Operation with frequency converter

The 3RB22/3RB23 solid-state overload relays are suitable for frequencies of $50 / 60 \mathrm{~Hz}$ and the associated harmonics. This permits the 3RB22/3RB23 overload relays to be used on the incoming side of the frequency converter.
If motor protection is required on the outgoing side of the frequency converter, the 3RN thermistor motor protection devices or the 3RU11 thermal overload relays are available for this purpose.

Function

Basic functions

The 3RB22/3RB23 solid-state overload relays are designed for:

- Inverse-time delayed protection of loads from overloading
- Inverse-time delayed protection of loads from phase unbalance
- Inverse-time delayed protection of loads from phase failure
- Temperature-dependent protection of loads by connecting a PTC sensor circuit
- Protection of loads from high-resistance short-circuits (internal ground-fault detection; detection of fault currents > 30% of the set current $/ \mathrm{e}$)
- Output of an overload warning
- Output of an analog signal 4 to 20 mA DC as image of the flowing motor current
The basic functions of the evaluation modules in conjunction with function expansion modules are listed in the following table:

Evaluation module	Function expan- sion module	Basic functions
3RB22 83-4AA1 3RB22 83-4AC1 3RB23 83-4AA1 3RB23 83-4AC1	None	Inverse-time delayed protection, temperature-dependent protection, electrical remote RESET, overload warning
	3RB29 85-2CA1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, overload warning
	3RB29 85-2CB1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, ground fault signal
3RB29 85-2AAO	Inverse-time delayed protection, temperature-dependent protection, electrical remote RESET, overload warning, analog output	
	3RB29 85-2AA1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, overload warning, analog output
	3RB29 85-2AB1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, ground fault signal, analog output

Control circuit

The 3RB22/3RB23 solid-state overload relays require an external power supply (24-240 V AC/DC), i.e. an additional supply voltage is necessary.

Short-circuit protection

Fuses or motor starter protectors must be used for short-circuit protection. For assignments of the corresponding short-circuit protection devices to the 3RB22/3RB23 solid-state overload relays with/without contactor see Technical Specifications and Selection and Ordering Data.

Trip classes

The 3RB22/3RB23 solid-state overload relays are suitable for normal and heavy starting. The required trip class (CLASS 5E, 10E, 20E or 30E) can be adjusted by means of a rotary knob depending on the current starting condition.
For details of the trip classes see Characteristic Curves.

Phase failure protection

The 3RB22/3RB23 solid-state overload relays are fitted with phase failure protection (see Characteristic Curves) in order to minimize temperature rises of the load during single-phase operation.

Setting

The 3RB22/3RB23 solid-state overload relays are set to the motor rated current by means of two rotary knobs.

- The upper rotary knob (CLASS/I $I_{\text {emax }}$) is divided into 4 ranges: $1 \mathrm{~A}, 10 \mathrm{~A}, 100 \mathrm{~A}$ and 1000 A . The zone must be selected which corresponds to the rated motor current and the current measuring module to be used with it. With the range selected the required trip class (CLASS 5, 10, 20 or 30) can be determined.
- The lower rotary knob with percent scale (10 \% ... 100%) is then used to set the rated motor current in percent of the range selected with the upper rotary button.

Example

- Rating of induction motor $=45 \mathrm{~kW}(50 \mathrm{~Hz}, 400 \mathrm{~V}$ AC)
- Rated motor current $=80 \mathrm{~A}$
- Required trip class = CLASS 20
- Selected transformer: 10 to 100 A

Solution

- Step 1: Use the upper rotary knob (CLASS) to select the 100 A range
- Step 2: Within the 100 A range set the trip class CLASS 20
- Step 3: Set the lower rotary knob to $80 \%(=0.8)$ of $100 \mathrm{~A} \times 0.8=80 \mathrm{~A}$.
If the current which is set on the evaluation module does not correspond to the current range of the connected current transformer, an error will result.

Manual and automatic reset

In the case of the 3RB22/3RB23 solid-state overload relays, a slide switch can be used to choose between automatic and manual resetting.
If manual reset is set, a reset can be carried out directly on the device after a trip by pressing the blue TEST/RESET button. A remote RESET can be carried out electrically by jumpering the terminals Y 1 and Y 2 .
If the slide switch is set to automatic RESET, the relay is reset automatically.
The time between tripping and resetting is determined by the recovery time.

Recovery time

With the 3RB22/3RB23 solid-state overload relays the recovery time after inverse-time delayed tripping is approx. 3 minutes regardless of the selected reset mode. The recovery time allows the load to cool down.

However, in the event of temperature-dependent tripping by means of a connected PTC thermistor sensor circuit, the device can only be manually or automatically reset once the winding temperature at the installation location of the PTC thermistor has fallen 5 Kelvin below its response temperature.

After a ground fault trip the 3RB22/3RB23 solid-state overload relay trips can be reset immediately without a recovery time.

TEST function

The combined TEST/RESET button can be used to check whether the relay is working correctly. The test can be aborted at any time by letting go of the TEST/RESET button.
LEDs, the device configuration (this depends on which expansion module is plugged in) and the device hardware are tested while the button is kept pressed for 6 seconds. Simultaneously and for another 18 seconds a direct current proportional in size to the maximum phase of the main current is fed in at the terminals $\mathrm{I}(+)$ and $\mathrm{I}(-)$. By comparing the analog signal, which is to be measured, with the main current, the accuracy of the current measurement can be determined. In this case 4 mA corresponds to 0% and 20 mA to 125% of the set current. After 24 seconds the auxiliary contacts are switched and the feeder switch off as the result, bringing the test to an end.

After a test trip a faultless relay is reset by pressing the TEST/RESET button. If a hardware fault is detected, the device trips and cannot be reset.

Self-monitoring

The 3RB22/3RB23 solid-state overload relays have a self-monitoring feature, i.e. the devices constantly monitor their own basic functions and trip if an internal fault is detected.

Display of the operating status

The particular operating status of the 3RB22/3RB23 solid-state overload relays is displayed by means of four LEDs:

- Green "Ready" LED: A continuous green light signals that the overload relay is ready for operation. The 3RB22/3RB23 overload relays are not ready (LED "OFF") if there is no control supply voltage or if the function test was negative.
- Red "Ground fault" LED: A continuous red light signals a ground fault.
- Red "Thermistor" LED: A continuous red light signals a temperature-dependent trip.
- Red "Overload" LED: A continuous red light signals an inversetime delayed trip; a flickering red light signals an imminent inverse-time delayed trip (overload warning).

Auxiliary contacts

The 3RB22/3RB23 solid-state overload relays have two outputs, each with one NO contact and one NC contact. Their basic assignment/function may be influenced by function expansion modules.
The 3RB22 and 3RB23 differ with respect to the tripping characteristics of their auxiliary contacts - monostable or bistable:

The monostable 3RB22 solid-state overload relays will enter the "tripped" state if the control supply voltage fails (> 200 ms), and return to the original state they were in before the control supply voltage failed when the voltage returns. These devices are therefore especially suited for plants in which the control voltage is not strictly monitored.
The bistable 3RB23 overload relays do not change their "tripped" or "not tripped" status if the control voltage fails. The auxiliary contacts only switch over in the event of an overload and if the supply voltage is present. These devices are therefore especially suited for plants in which the control voltage is monitored separately.

Response if the control supply voltage fails

If the control supply voltage fails for more than 0.2 s , the output relays respond differently depending on the version: Monostable or bistable.

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for high-feature applications

Response of the output relays in the event of	Monostable $\mathbf{3 R B 2 2}$	Bistable $\mathbf{3 R B 2 3}$
Failure of the control supply voltage	The device trips	No change of the switch- ing status of the auxiliary contacts
Return of the control		
Supply out previous tripping	The device resets	No change of the switch- ing status of the auxiliary contacts
Return of the control		

Monostable and bistable responses of the output relays

Contactor open
Contactor closed

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

Technical specifications

The following technical information is intended to provide an initial overview of the various types of device and functions.
Detailed information, see

- Reference Manual "Protection Equipment - 3RU1, 3RB2 Overload Relays"
http://support.automation.siemens.com/WW/view/en/35681297
- or specific information on a particular article number via the product data sheet http://support.automation.siemens.com/WW//iew/en/20357046/133200

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Type - Overload relay of current measuring module \\
Size \\
Width
\end{tabular}} \& \& \begin{tabular}{l}
3RB29 \\
S2/S3 \\
55 mm
\end{tabular} \& \begin{tabular}{l}
3RB29 S6 \\
120 mm
\end{tabular} \& \begin{tabular}{l}
3RB29 \\
S10/S12 \\
145 mm
\end{tabular} \\
\hline \multicolumn{6}{|l|}{Main circuit} \\
\hline Rated insulation voltage \(\boldsymbol{U}_{\mathbf{i}}\) (pollution degree 3) \& V \& \multicolumn{2}{|l|}{690} \& \multicolumn{2}{|l|}{1000} \\
\hline Rated impulse withstand voltage \(\boldsymbol{U}_{\text {imp }}\) \& kV \& \multicolumn{2}{|l|}{6} \& \multicolumn{2}{|l|}{8} \\
\hline Rated operational voltage \(\boldsymbol{U}_{\mathbf{e}}\) \& V \& \multicolumn{2}{|l|}{690} \& \multicolumn{2}{|l|}{1000} \\
\hline \begin{tabular}{l}
Type of current \\
- Direct current \\
- Alternating current
\end{tabular} \& \& \multicolumn{4}{|l|}{\begin{tabular}{l}
No \\
Yes, \(50 / 60 \mathrm{~Hz} \pm 5 \%\) (other frequencies on request)
\end{tabular}} \\
\hline Set current \& A \& \[
\begin{aligned}
\& 0.3 \ldots 3 ; \\
\& 2.4 \ldots 25
\end{aligned}
\] \& 10 ... 100 \& \(20 . . .200\) \& \(63 . . .630\) \\
\hline Power loss per unit (max.) \& W \& \multicolumn{4}{|l|}{0.5} \\
\hline \begin{tabular}{l}
Short-circuit protection \\
- With fuse without contactor \\
- With fuse and contactor
\end{tabular} \& \& \multicolumn{4}{|l|}{\begin{tabular}{l}
See Selection and Ordering Data \\
See Technical Specifications (short-circuit protection with fuses for motor feeders)
\end{tabular}} \\
\hline Safe isolation between main and auxiliary conducting path according to IEC 60947-1 \& V \& \multicolumn{3}{|l|}{690 \({ }^{1)}\)} \& \\
\hline Connection for main circuit \& \& \multicolumn{4}{|l|}{} \\
\hline Electrical connection version \& \& \multicolumn{4}{|l|}{Screw terminals with box terminal} \\
\hline \begin{tabular}{l}
Screw terminal \\
- Terminal screw \\
- Tightening torque \\
- Conductor cross-sections (min./max.), 1 or 2 conductors \\
- Solid \\
- Finely stranded without end sleeve \\
- Finely stranded with end sleeve \\
- Stranded \\
- AWG conductors, solid or stranded \\
- Ribbon cable conductors (number x width x circumference)
\end{tabular} \& \(\mathrm{mm}^{2}\)
\(\mathrm{~mm}^{2}\)
\(\mathrm{~mm}^{2}\)

$\mathrm{~mm}^{2}$

AWG

mm \& -- \& \& | 4 mm Allen screw $10 \ldots 12$ |
| :--- |
| With 3RT19 55-4G box terminal: $2 \times(1 \times \max .50,1 \times \max .70)$, $1 \times(10 \ldots 70)$ |
| With 3RT19 56-4G box terminal: |
| $2 \times(1 \times \max .95,1 \times \max .120)$, $1 \times(10 \ldots 120)$ |
| With 3RT19 55-4G box terminal: |
| $2 \times(1 \times \max .50,1 \times \max .70)$, $1 \times(10 \ldots 70)$ |
| With 3RT19 56-4G box terminal: |
| $2 \times(1 \times \max .95,1 \times \max .120)$, $1 \times(10 \ldots 120)$ |
| With 3RT19 55-4G box terminal: |
| $2 \times($ max. 70), $1 \times(16 \ldots 70)$ |
| With 3RT19 56-4G box terminal: |
| $2 \times(\max .120)$, $1 \times(16 \ldots 120)$ |
| With 3RT19 55-4G box terminal: |
| $2 \times(\max .1 / 0)$, $1 \times(6 \ldots 2 / 0)$ |
| With 3RT19 56-4G box terminal: |
| $2 \times(\max .3 / 0)$, $1 \times(6 \ldots 250 \text { kcmil })$ |
| With 3RT19 55-4G box terminal: $2 \times(6 \times 15.5 \times 0.8)$ $1 \times(3 \times 9 \times 0.8 \ldots 6 \times 15.5 \times 0.8)$ |
| With 3RT1956-4G box terminal: $2 \times(10 \times 15.5 \times 0.8)$ |
| $1 \times(3 \times 9 \times 0.8 \ldots$ |
| $10 \times 15.5 \times 0.8$) | \& \[

$$
\begin{aligned}
& 5 \text { mm Allen screw } \\
& 20 \ldots 22 \\
& \\
& -- \\
& 2 \times(50 \ldots 185) \text {, } \\
& \text { front clamping point only: } \\
& 1 \times(70 \ldots 240) \\
& \text { rear clamping point only: } \\
& 1 \times(120 \ldots 185) \\
& 2 \times(50 \ldots 185) \text {, } \\
& \text { front clamping point only: } \\
& 1 \times(70 \ldots 240) \\
& \text { rear clamping point only: } \\
& 1 \times(120 \ldots 185) \\
& \\
& 2 \times(70 \ldots 240) \text {, } \\
& \text { front clamping point only: } \\
& 1 \times(95 \ldots 300) \\
& \text { rear clamping point only: } \\
& 1 \times(120 \ldots 240) \\
& 2 \times(2 / 0 \ldots 500 \text { kcmil }) \text {, } \\
& \text { front clamping point only: } \\
& 1 \times(3 / 0 \ldots 600 \text { kcmil }) \\
& \text { rear clamping point only: } \\
& 1 \times(250 \text { kcmil } \ldots 500 \text { kcmil) } \\
& 2 \times(20 \times 24 \times 0.5), \\
& 1 \times(6 \times 9 \times 0.8 \ldots \\
& 20 \times 24 \times 0.5)
\end{aligned}
$$
\]

\hline | Busbar connections |
| :--- |
| - Terminal screw |
| - Tightening torque |
| - Conductor cross-section (min./max.) |
| - Solid with cable lug |
| - Stranded with cable lug |
| - AWG connections, solid or stranded, with cable lug |
| - With connecting bar (max. width) | \& | Nm |
| :--- |
| mm^{2} |
| mm^{2} |
| AWG |
| mm | \& -- \& \& \[

$$
\begin{aligned}
& \text { M8 } \times 25 \\
& 10 \ldots 14 \\
& \\
& 16 \ldots 95^{2)} \\
& 25 \ldots 120^{2)} \\
& 4 \ldots 250 \mathrm{kcmil} \\
& 15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{M} 10 \times 30 \\
& 14 \ldots 24 \\
& \\
& 50 \ldots 240^{3)} \\
& 70 \ldots 240^{3)} \\
& 2 / 0 \ldots 500 \mathrm{kcmil} \\
& 25 \ldots
\end{aligned}
$$
\]

\hline | Straight-through transformers |
| :--- |
| - Diameter of opening |
| - Conductor cross-section (max.) |
| - NYY |
| - H07RN-F | \& mm

\[
$$
\begin{aligned}
& \mathrm{mm}^{2} \\
& \mathrm{~mm}^{2}
\end{aligned}
$$

\] \& | 7.5 |
| :--- |
| 4) |
| 4) | \& 14 \& \[

$$
\begin{aligned}
& 25 \\
& 120 \\
& 70
\end{aligned}
$$
\] \& --

\hline
\end{tabular}

1) For grounded networks, otherwise 600 V .
2) When connecting cable lugs according to DIN 46235, use the 3RT19 56-4EA1 terminal cover for conductor cross-sections from $95 \mathrm{~mm}^{2}$ to ensure phase spacing.
3) When connecting cable lugs according to DIN 46234 for conductor crosssections from $240 \mathrm{~mm}^{2}$ as well as DIN 46235 for conductor cross-sections from $185 \mathrm{~mm}^{2}$, use the 3RT19 56-4EA1 terminal cover to ensure phase spacing.
4) On request.

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

1) The assignment of auxiliary contacts may be influenced by function expansion modules.

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

Short-circuit protection with fuses for motor feeders
For short-circuit currents up to 50 kA at 400 to 690 V

1) Please observe operational voltage.
2) Coordination and short-circuit equipment according to EN 60947-4-1:

Type of coordination 1: the contactor or starter must not endanger
persons or the installation in the event of a short-circuit.
They do not need to be suitable for further operation
without repair and the renewal of parts.
Type of coordination 2: the contactor or starter must not endanger
persons or the installation in the event of a short-circuit.
They must be suitable for further operation.
There is a risk of contact welding.
3) Contactor cannot be mounted.
4) Please ensure that the maximum AC-3 operational current has sufficient safety clearance from the rated current of the fuses.

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

Characteristic curves

The tripping characteristics show the relationship between the tripping time and tripping current as multiples of the set current I_{e} and are given for symmetrical three-pole and two-pole loads from the cold state.

The smallest current used for tripping is called the minimum tripping current. According to IEC 60947-4-1, this current must be within specified limits. The limits of the minimum tripping current for the 3RB22/3RB23 solid-state overload relays for symmetrical three-pole loads are between 105% and 120% of the set current.
The tripping characteristic starts with the minimum tripping current and continues with higher tripping currents based on the characteristics of the so-called trip classes (CLASS 10, CLASS 20 etc.). The trip classes describe time intervals within which the overload relays have to trip with 7.2 times the set current I_{e} from the cold state for symmetrical three-pole loads.
The tripping times according to IEC 60947-4-1, tolerance band E, are as follows for:

Trip class	Tripping time
CLASS 5	$3 \ldots 5 \mathrm{~s}$
CLASS 10	$5 \ldots 10 \mathrm{~s}$
CLASS 20	$10 \ldots 20 \mathrm{~s}$
CLASS 30	$20 \ldots 30 \mathrm{~s}$

The tripping characteristic for a three-pole overload relay from the cold state (see illustration 1) only apply if all three phases are simultaneously loaded with the same current. In the event of a phase failure or a current unbalance of more than 40%, the 3RB22/3RB23 solid-state overload relays switch off the contactor more quickly in order to minimize heating of the load in accordance with the tripping characteristic for two-pole loads from the cold state (see illustration 2).
Compared with a cold load, a load at operating temperature obviously has a lower temperature reserve. The tripping time of the 3RB22/3RB23 solid-state overload relays are reduced therefore to about 30% when loaded with the set current $/ \mathrm{e}$ for an extended period.

Tripping characteristics for 3-pole loads

Illustration 1
Tripping characteristics for 2-pole loads

Illustration 2
The above illustrations are schematic representations of characteristic curves.

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

Dimensional drawings

3RB22 83-4, 3RB23 83-4 evaluation module

3RB29 06-2BG1, 3RB29 06-2DG1 current measuring module

3RB29 06-2JG1 current measuring module

3RB29 56-2TG2 current measuring module

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

3RB29 56-2TH2 current measuring module

3RB29 66-2WH2 current measuring module

Overload Relays

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

Schematics

Protection of single-phase motors
(not in conjunction with internal ground-fault detection)

3RB29 06-2.G1, 3RB29 56-2TG2
3RB29 56-2TH2, 3RB29 66-2WH2
Schematic representation of a possible application (3-phase)

3RB2 Solid-State Overload Relays

3RB22, 3RB23 for standard applications

Connections

Evaluation module	Function expansion module	Basic functions	Inputs A1/A2	T1/T2	Y1/Y2
$\begin{aligned} & \hline \text { 3RB22 83-4AA1 } \\ & \text { 3RB22 83-4AC1 } \\ & \text { 3RB23 83-4AA1 } \end{aligned}$	None	Inverse-time delayed protection, temperature-dependent protection, electrical remote RESET, overload warning	Power supply 24 ... 240 V AC/DC	Connection for PTC sensor	Electrical remote RESET
3RB23 83-4AC1	3RB29 85-2CA1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, overload warning	Power supply 24 ... 240 V AC/DC	Connection for PTC sensor	Electrical remote RESET
	3RB29 85-2CB1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, ground fault signal	Power supply 24 ... 240 V AC/DC	Connection for PTC sensor	Electrical remote RESET
	3RB29 85-2AA0	Inverse-time delayed protection, temperature-dependent protection, electrical remote RESET, overload warning, analog output	Power supply 24 ... 240 V AC/DC	Connection for PTC sensor	Electrical remote RESET
	3RB29 85-2AA1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, overload warning, analog output	Power supply 24 ... 240 V AC/DC	Connection for PTC sensor	Electrical remote RESET
	3RB29 85-2AB1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, ground fault signal, analog output	Power supply 24 ... 240 V AC/DC	Connection for PTC sensor	Electrical remote RESET

Evaluation module	Function expansion module	Outputs I (-) / I (+)	95/96 NC	97/98 NO	05/06 NC	07/08 NO
$\begin{aligned} & \hline \text { 3RB22 83-4AA1 } \\ & \text { 3RB22 83-4AC1 } \\ & \text { 3RB23 83-4AA1 } \\ & \text { 3RB23 83-4AC1 } \end{aligned}$	None	No	Switching off the contactor (inversetime delayed/temper-ature-dependent protection)	Signal "tripped"	Overload warning	Overload warning
	3RB29 85-2CA1	No	Switching off the contactor (inversetime delayed/temper-ature-dependent protection + ground fault)	Signal "tripped"	Overload warning	Overload warning
	3RB29 85-2CB1	No	Switching off the contactor (inversetime delayed/temper-ature-dependent protection)	Signal "tripped"	Switching off the contactor (ground fault)	Signal "ground fault trip"
	3RB29 85-2AA0	Analog signal	Switching off the contactor (inversetime delayed/temper-ature-dependent protection)	Signal "tripped"	Overload warning	Overload warning
	3RB29 85-2AA1	Analog signal	Switching off the contactor (inversetime delayed/temper-ature-dependent protection + ground fault)	Signal "tripped"	Overload warning	Overload warning
	3RB29 85-2AB1	Analog signal	Switching off the contactor (inversetime delayed/temper-ature-dependent pro-	Signal "tripped"	Switching off the contactor (ground fault)	Signal "ground fault trip"

3RB2/3RB3 Solid-State Overload Relays

Accessories

Overview

Overload relays for standard applications

The following accessories are available for the 3RB2/3RB3 solid-state overload relays:

- One terminal bracket each for the overload relays size S00 and S0 (sizes S2 to S12 can be installed as single units without a terminal bracket)
- One mechanical RESET module for all sizes
- One cable release for resetting devices which are difficult to access (for all sizes)
- One sealable cover for all sizes
- Box terminal blocks for sizes S6 and S10/S12
- Terminal covers for sizes S2 to S10/S12

Overload relays for high-feature applications

The following accessories are available for the 3RB22/3RB23 solid-state overload relays:

- A sealable cover for the evaluation module
- Box terminal blocks for the current measuring modules size S6 and S10/S12
- Terminal covers for the current measuring modules size S6 and S10/S12
- Push-in lugs for screw mounting the size S00 to S3 current measuring modules

Selection and ordering data

1) Accessories with a prefix of 3RB39 are intended for 3RB20/3RB30 overload relays only.
2) Only for 3RB20/3RB21. The accessories are identical to those of the $3 R \cup 1 / 3 R U 2$ thermal overload relays.

Overload Relays

3RB2 Solid-State Overload Relays

Accessories

	Version	Size	Order No.	List Price \$	Pack Units	Weight per PU approx.
						kg
Sealable covers						
	For covering the setting knobs - For 3RB30/3RB31 - For 3RB20/3RB21 - For 3RB22 to 3RB24	$\begin{aligned} & \text { S00 to S3 } \\ & \text { S6 to S12 } \end{aligned}$	$\begin{aligned} & \text { 3RB39 84-0 } \\ & \text { 3RB39 84-0 } \\ & \text { 3RB29 84-2 } \end{aligned}$		10 units 10 units 10 units	$\begin{aligned} & 0.003 \\ & 0.020 \\ & 0.050 \end{aligned}$
Terminal covers						
	Covers for cable lugs and rail connection - Length 100 mm - Length 120 mm	$\begin{aligned} & \text { S6 } \\ & \text { S10/S12 } \end{aligned}$	3RT19 56-4EA1 3RT19 66-4EA1			$\begin{aligned} & 0.067 \\ & 0.124 \end{aligned}$
3RT19 46-4EA1	Covers for box terminals - Length $20.6 \mathrm{~mm}^{1)}$ - Length $20.8 \mathrm{~mm}^{1)}$ - Length 25 mm - Length 30 mm	$\begin{aligned} & \text { S2 } \\ & \text { S3 } \\ & \text { S6 } \\ & \text { S10/S12 } \\ & \hline \end{aligned}$	3RT29 36-4EA2 3RT29 46-4EA2 3RT19 56-4EA2 3RT19 66-4EA2			$\begin{aligned} & 0.016 \\ & 0.023 \\ & 0.028 \\ & 0.038 \end{aligned}$
3RT19 36-4EA2 The figures show mounting on the contactor	Covers for screw connections between contactor and overload relay, without box terminals (1 unit required per combination)	$\begin{aligned} & \text { S6 } \\ & \text { S10/S12 } \end{aligned}$	3RT19 56-4EA3 3RT19 66-4EA3			$\begin{aligned} & 0.021 \\ & 0.062 \end{aligned}$
Box terminal blocks						
	For round and ribbon cables up to $70 \mathrm{~mm}^{2}$ 2/0 AWG up to $120 \mathrm{~mm}^{2} 4 / 0$ AWG up to $240 \mathrm{~mm}^{2} 500 \mathrm{mcm}$	$\begin{aligned} & S 6^{2)} \\ & \text { S6 } \\ & \text { S10/S12 } \end{aligned}$	3RT19 55-4G 3RT19 56-4G 3RT19 66-4G			$\begin{aligned} & 0.237 \\ & 0.270 \\ & 0.676 \end{aligned}$
3RT19 5.-4G						
Push-in lugs						
	For screw fixing of 3RB22 to 3RB24 overload relays	--	3RP19 03		10 units	0.002
	For screw mounting of 3RB29 06 current measuring modules (2 units are required per module)	S00 ... S3	3RB1900-0B		10 units	0.100

For more accessories (tools for spring-loaded terminals and labeling plates), see page 3/56.

1) Only for 3RB20/3RB21. The accessories are identical to those of the 3RU11 thermal overload relays.
2) In the scope of supply for 3RT10 54-1 contactors (55 kW).

Overview

\qquad Green LED "DEVICE/IO-Link:
A continuous green light signals that the device is working correctly, a green flickering light signals the communication through IO-Link.Red LED "GND FAULT": A continuous red light signals an active ground-fault trip.Red LED "THERMISTOR": A continuous red light signals an active thermistor trip.Red LED "OVERLOAD":
A continuous red light signals an active overload trip; a flickering red light signals an imminent trip (overload warning).
(5)

Setting the device to the motor current and to the required trip class dependent on the start-up conditions is easy with the two rotary switches.Selector switch for manual/automatic RESET:
With this switch you can choose between manual and automatic RESET.

Test/RESET button:
Enables testing of all important device components and functions plus resetting of the device after a trip when manual RESET is selected.

Connecting terminals (removable terminal block):
The generously sized terminals permit connection of two conductors with different cross-sections for the auxiliary, control and sensor circuits. Connection is possible with screw connection and alternatively with spring-type connection.Plug-in point for operator panel: enables connection of the 3RA69 35-0A operator panel.

SIRIUS 3RB24 evaluation module

The modular electronic overload relay 3RB24, which is powered via IO-Link (with monostable auxiliary contacts) up to 630 A (up to 820 A possible with a series transformer) have been designed for inverse-time delayed protection of loads with normal and heavy starting ("Function" see "Manual for SIRIUS 3RB24 SolidState Overload Relay for IO-Link",) against excessive temperature rises due to overload, phase unbalance or phase failure. It comprises an evaluation unit, a current measuring module and a connecting cable. The evaluation module 3RB24 also offers an motor starter function: The contactors, which are connected via the auxiliary contacts, can also be actuated for operation via IO-Link. In this way, direct, reversing and star-delta starters up to 630 A (or 830 A) can be connected to the controller wirelessly via the IO-Link controller.

An overload, phase unbalance or phase failure result in an increase of the motor current beyond the set rated motor current.
This current rise is detected by means of the current measuring module (see page 3/54) and electronically evaluated by the evaluation module which is connected to it. The evaluation electronics sends a signal to the auxiliary contacts. The auxiliary contacts then switch off the load by means of a contactor. The
break time depends on the ratio between the tripping current and current setting I_{e} and is stored in the form of a long-term stable tripping characteristic see www.siemens.com/sirius/support \rightarrow "Characteristic Curves"). The "tripped" status is signaled by means of a continuously illuminated red "OVERLOAD" LED and also reported as a group fault via IO-Link.

The LED indicates imminent tripping of the relay due to overload, phase unbalance or phase failure by flickering when the limit current has been violated. This warning can also be reported to the higher-level PLC via IO-Link at the 3RB24 overload relay.
In addition to the described inverse-time delayed protection of loads against excessive temperature rises, the 3RB24 solidstate overload relays also allow direct temperature monitoring of the motor windings (full motor protection) by connection with broken-wire interlock of a PTC sensor circuit. With this tempera-ture-dependent protection, the loads can be protected against overheating caused indirectly by reduced coolant flow, for example, which cannot be detected by means of the current alone. In the event of overheating, the devices switch off the contactor, and thus the load, by means of the auxiliary contacts. The "tripped" status is signaled by means of a continuously illuminated "THERMISTOR" LED and also reported as a group fault via IO-Link.
To the loads against incomplete ground faults due to damage to the insulation, humidity, condensation, etc., to protect the electronic overload relay 3RB24 offer the possibility of internal ground-fault detection (for details see "Manual for SIRIUS 3RB24 Solid-State Overload Relay for IO-Link", , not possible in conjunction with contactor assembly for wye-delta starting). In the event of a ground fault, the 3RB24 relays trip instantaneously.
The "tripped" status is signaled by means of a flashing red LED "Ground Fault" and reported at the overload relay 3RB24 as a group fault via IO-Link.
The reset after overload, phase unbalance, phase failure, thermistor or ground-fault tripping is performed manually by key on site, via IO-Link or by electrical remote RESET or automatically after the cooling time (motor model) or for thermistor protection after sufficient cooling. Power cuts in devices due to function monitoring (broken wire or short circuit on the thermistor) can only be reset on-site ("Function" see "Manual for SIRIUS 3RB24 Solid-State Overload Relay for IO-Link",). In conjunction with a function expansion module, the motor current measured by the microprocessor can be output in the form of an analog signal DC 4 to 20 mA for operating rotary coil instruments or for feeding into analog inputs of programmable logic controllers.
The current values can be transmitted to the higher-level controller via IO-Link.

The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials.

They comply with all important worldwide standards and approvals.

Type of protection "increased safety EEx e and explosionproof enclosure EEx $d^{\prime \prime}$ in accordance with ATEX Directive 94/9/EC

The electronic overload relay 3RB24 (monostable) are suitable for the overload protection of explosion-proof motors of types of protection EEx e and EEx d.
They comply with the requirements of EN 60079-7 (Electrical apparatus for areas subject to explosion hazards - Increased safety "e" as well as for flameproof enclosure "d");
see www.siemens.com/sirius/atex.
EC type test certificate for Group II, Category (2) G/D has been submitted. On request.

3RB24 Solid-State Overload Relays

3RB24 for IO-Link, up to 630 A for High-Feature applications

Order No. scheme

Digit of the Order No.	1st - 3rd $\square \square \square$	4th \square	5th \square	6th \square	7th ㅁ	-	8th \square	9th \square	10th ㅁ	11th
Solid-state overload relays	3 R B									
SIRIUS 2nd generation		2								
Device series			\square							
Size, rated operational current and power				\square						
Version of the automatic RESET, electrical remote RESET					\square					
Trip class (CLASS)							\square			
Setting range of the overload release								\square		
Connection methods									\square	
Installation type										\square
Example	3 R B	2	4	8	3	-	4	A	A	1
Note:				$\begin{aligned} & \text { you } \\ & \text { alog } \end{aligned}$	ord in th		eas ctio	$\begin{aligned} & \text { se us } \\ & \text { on an } \end{aligned}$	e the d ord	ord derin

The Order No. scheme is presented here merely for information purposes and for better understanding of the logic behind the order numbers.

Benefits

The most important features and benefits of the 3RB24 solidstate overload relays for IO-Link are listed in the overview table (see "General Data", page 3/2 onwards).

Advantages through energy efficiency

Overview of the energy management process

We offer you a unique portfolio for industrial energy management, using an energy management system that helps to optimally define your energy needs. We split up our industrial energy management into three phases - Identification, Evaluation and Realization - and we support you with the appropriate hardware and software solutions in every process phase.
The innovative products of the SIRIUS industrial controls portfolio can also make a substantial contribution to a plant's energy efficiency (see www.siemens.com/sirius/energysaving).
3RB24 solid-state overload relays for IO-Link contribute to energy efficiency throughout the plant as follows:

- Transmission of current values
- Reduced inherent power loss
- Less heating of the control cabinet
- Smaller control cabinet air conditioners can be used

Application

Industries

The 3RB24 solid-state overload relays are suitable for customers from all industries who want to guarantee optimum inverse-time delayed and temperature-dependent protection of their electrical loads (e.g. motors) under normal and heavy starting conditions (CLASS 5E to 30E), minimize project completion times, inventories and energy consumption, and optimize plant availability and maintenance management.

Application

The 3RB24 solid-state overload relays have been designed for the protection of three-phase asynchronous and single-phase AC motors.
In addition to protection function, these devices can be used together with contactors as direct or reversing starters (star-delta (wye-delta) start also possible), which are controlled via IO-Link. This makes it possible to directly control drives via IO-Link from a higher-level controller or on site via the optional hand-held device lamps and also, for example, to return current values directly via IO-Link.

If single-phase AC motors are to be protected by the 3RB24 solid-state overload relays, the main current paths of the current
measuring modules must be series-connected ("Schematics" see "Manual for SIRIUS 3RB24 Solid-State Overload Relay for IO-Link",).

Ambient conditions

The devices are insensitive to external influences such as shocks, corrosive ambient conditions, ageing and temperature fluctuations.

For the temperature range from -25 C to $+60^{\circ} \mathrm{C}$, the 3RB24 solid-state overload relays compensate the temperature in accordance with IEC 60947-4-1.
Configuration notes for use of the devices below $-25^{\circ} \mathrm{C}$ or above $+60^{\circ} \mathrm{C}$ on request.

Use of SIRIUS protection devices in conjunction with IE3/IE4 motors.

Note:
For the use of 3RB24 electronic overload relays in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.

Overload Relays

3RB24 Solid-State Overload Relays

3RB24 for IO-Link, up to 630 A for High-Feature applications IE3/IE4 ready

Selection and ordering data

3RB24 solid-state overload relays (evaluation module) for full motor protection, stand-alone installation, CLASS 5E, 10E, 20E and 30E (adjustable)

Type	3RB24 83-4A. 1
Features and technical specifications	
Overload protection, phase failure protection and unbalance protection	\checkmark
Supplied from an external voltage	24 V DC through IO-Link
Direct-on-line or reversing starters (wye-delta starting also possible) controllable through IO-Link	\checkmark
Auxiliary contacts	1 CO and 1 NO in series
Manual and automatic RESET	\checkmark
Remote-RESET	(electrically or via IO-Link)
4 LEDs for operating and status displays	\checkmark
TEST function and self-monitoring	\checkmark
Internal ground-fault detection	\checkmark
Screw or spring-type terminals for auxiliary, control and sensor circuits	\checkmark
Input for PTC sensor circuit	\checkmark
Analog output	\checkmark
IO-Link-specific functions	
- Connection of direct-on-line, reversing and star-delta starters to the controller via IO-Link - On-site controlling of the starter using the hand-held device - Accessing process data (e.g. current values in all three phases) via IO-Link - Accessing parameterization and diagnostics data (e.g. tripped signals) via IO-Link	\checkmark \checkmark \checkmark \checkmark

PU (UNIT, SET, M) = 1

PS^{*}	$=1$ unit

3RB24 83-4AA1

3RB24 83-4AC1

Size of contactor	Version	Screw terminals	(1)	Spring-type terminals	00
		Order No.	Price per PU	Order No.	Price per PU
Evaluation modules					
S00 ... S12	Monostable	3RB24 83-4AA1		3RB24 83-4AC1	

Notes:

- Analog input modules, e.g. SM 331, must be configured for 4 -wire measuring transducers. The analog input module may not supply current to the analog output of the 3RB24 relay.

Current measuring modules and related connecting cables see page 3/54, accessories see pages 3/55 and 3/56.

Overload Relays

3RB24 Solid-State Overload Relays

Current measuring modules for 3RB22, 3RB23, 3RB24 IE3/IE4 ready

Selection and ordering data
Current measuring modules for mounting onto contactor ${ }^{1)}$ and stand-alone installation ${ }^{1) 2)}$ (essential accessories)

Accessories

	Size of contactor	Version	For overload relays	DT	Order No.	Price per PU	PU (UNIT, SET, M)	Pack Units	PG
Connecting cables (necessary accessories)									
	S00 ... S3	For connection between evaluation module and current measuring module - Length 0.1 m (only for mounting of the evaluation module directly onto the current measuring module)	$\begin{aligned} & \text { 3RB24, } \\ & \text { 3RB29 } \end{aligned}$	-	3RB29 87-2B		1	1 unit	41F
3RB29 87-2.	S00 ... S12	- Length 0.5 m	$\begin{aligned} & \text { 3RB24, } \\ & \text { 3RB29 } \end{aligned}$	-	3RB29 87-2D		1	1 unit	41F

Additional general accessories see page 3/56

3RB24 Solid-State Overload Relays

Accessories for 3RB22, 3RB23, 3RB24

Overview

Overload relays for High-Feature applications
The following optional accessories are available for the 3RB22 to 3RB24 solid-state overload relays:

- Operator panel for the evaluation modules 3RB24
- Sealable cover for the evaluation modules 3RB22 to 3RB24
- Terminal covers for the 3RB29 current measuring modules sizes S6 and S10/S12
- Box terminal blocks for the 3RB29 current measuring modules sizes S6 and S10/S12
- Push-in lugs for screw fixing for 3RB22 to 3RB24 evaluation modules and 3RB29 06 current measuring modules

Selection and ordering data
Accessories for overload relay 3RB24

	Version	For overload relays	DT	Order No.	Price per PU		Pack Units	PG
Operator panels for evaluation modules								
3RA69 35-0A	Operator panels (set) 1 set comprises: - $1 \times$ operator panel - 1×3 RA69 36-0A enabling module - $1 \times$ 3RA69 33-0B interface cover - $1 \times$ fixing terminal Note: The connecting cable between the evaluation module and the operator panel is not included in the scope of supply; please order separately.	3RB24	A	3RA69 35-0A		1	1 unit	42F
	Connecting cable Length 2 m (round), for connecting the evaluation module to the operator panel	3RB24	-	3UF79 33-0BA00-0		1	1 unit	42J
	Enabling modules (replacement)	3RB24	A	3RA69 36-0A		1	1 unit	42F
	Interface covers	3RB24	A	3RA69 33-0B		1	5 units	42F

Additional general accessories see next page.

Overload Relays

3RB24 Solid-State Overload Relays

Accessories for 3RB22, 3RB23, 3RB24

General accessories

	Version	Size	For overload relays	Order No.	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	Pack Units
Sealable covers for evaluation modules						
	For covering the setting knobs	--	$\begin{aligned} & \text { 3RB22 to } \\ & \text { 3RB24 } \end{aligned}$	3RB29 84-2	1	10 units
3RB29 84-2						

Terminal covers for current measuring modules
Covers for cable lugs and busbar con-
nections

- Length 100 mm S6 3RB2956 3RT19 56-4EA1 1 unit
- Length 120 mm S10/S12 3 3RB29 66 3RT19 66-4EA1 1

Covers for box terminals

- Length 25 mm
S6 3RB29 56

3RT19 56-4EA2	1	1 unit
3RT19 66-4EA2	1	1 unit
3RT19 56-4EA3	1	1 unit
3RT19 66-4EA3	1	1 unit

Covers for screw terminals

between contactor and overload relay without box terminals

S10/S12	3RB29 66
S6	3RB29 56

S10/S12 3RB29 66
3RT19 66-4EA3
1 unit (1 unit required per combination)

Box terminal blocks for current measuring modules

${ }^{1)}$ In the scope of supply for 3RT10 54-1 contactors (55 kW).

${ }^{1)} \mathrm{PC}$ labeling system for individual inscription of unit labeling plates available from: murrplastik Systemtechnik GmbH (see "Appendix" \rightarrow "External Partners").

Overload Relays

3RB24 Solid-State Overload Relays

3RB24 for IO-Link, up to 630 A for High-Feature applications

Technical specifications

Type - Overload relay of evaluation modules		3RB24 83-4A. 1	
Size of contactor		S00 ... S10/S12	
General data			
Trips in the event of		Overload, phase failure and phase unbalance ($>40 \%$ according to NEMA), + ground fault (connectable and disconnectable) and activation of the thermistor motor protection (with closed PTC sensor circuit)	
Trip class acc. to IEC 60947-4-1		CLASS 5E, 10E, 20E and 30E adjustable	
Phase failure sensitivity		Yes	
Overload warning		Yes, from $1.125 \times I_{\mathrm{e}}$ for symmetrical loads and from $0.85 \times I_{\mathrm{e}}$ for unsymmetrical loads	
Reset and recovery - Reset options after tripping - Recovery time - For automatic RESET - For manual RESET - For remote RESET	min min min	Manual and automatic RESET, electrical remote RESET or through IO-Link - for tripping due to overcurrent: 3 (stored permanently) - for tripping by thermistor: time until the motor temperature has fallen 5 K below the response temperature - for tripping due to a ground fault: no automatic RESET - for tripping due to overcurrent: 3 (stored permanently) - for tripping by thermistor: time until the motor temperature has fallen 5 K below the response temperature - for tripping due to a ground fault: Immediately - for tripping due to overcurrent: 3 (stored permanently) - for tripping by thermistor: time until the motor temperature has fallen 5 K below the response temperature - for tripping due to a ground fault: Immediately	
Features - Display of operating state on device - TEST function - RESET button		Yes, with 4 LEDs - Green LED "DEVICE/IO-Link" - Red "Ground Fault" LED - Red "Thermistor" LED - Red "Overload" LED Yes, test of LEDs, electronics, auxiliary contacts and wiring of control circuit by pressing the button TEST/RESET / self-monitoring Yes, with the TEST/RESET button No	
Explosion protection - Safe operation of motors with "increased safety EEX e and explosion-proof enclosure EEx d" type of protection		PTB 11 ATEX 3014 II (2) G [Ex e][Ex d][Ex px] ($\mathrm{x}_{\mathrm{x}} \\|(2) \mathrm{D}[\mathrm{Ex} \mathrm{t}][\mathrm{Ex} \mathrm{p}]$ See https://support.industry.siemens.com/cs/ww/en/view/60524083	
Ambient temperatures - Storage/transport - Operation - Temperature compensation - Permissible rated current - Temperature inside control cabinet $60^{\circ} \mathrm{C}$ - Temperature inside control cabinet $70^{\circ} \mathrm{C}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & -40 \ldots+80 \\ & -25 \ldots+60 \\ & +60 \\ & 100 \\ & \text { On request } \end{aligned}$	
Repeat terminals - Coil repeat terminals - Auxiliary contact repeat terminal		Not required Not required	
Degree of protection acc. to IEC 60529		IP20: Current measuring modules in sizes S 6 and $\mathrm{S} 10 / \mathrm{S} 12$ with busbar connection in conjunction with the cover	
Touch protection acc. to IEC 61140		Finger-safe: Current measuring modules in sizes S 6 and S10/S12 with busbar connection in conjunction with the cover	
Shock resistance with sine acc. to IEC 60068-2-27	g/ms	15/11	
Electromagnetic compatibility (EMC) - Interference immunity - Conductor-related interference - Burst acc. to IEC 61000-4-4 (corresponds to degree of severity 3) - Surge acc. to IEC 61000-4-5 (corresponds to degree of severity 3) - Electrostatic discharge according to IEC 61000-4-2 (corresponds to degree of severity 3) - Field-related interference according to IEC 61000-4-3 (corresponds to degree of severity 3)	kV kV kV V/m	```2 (power ports), 1 (signal ports) 2 (line to earth), }1\mathrm{ (line to line) 8 (air discharge), 6 (contact discharge) 10```	
Electromagnetic compatibility (EMC) - emitted interference		Degree of severity A according to EN 55011 (CISPR 11) and EN 55022 (CISPR 22)	
Resistance to extreme climates - air humidity	\%	100	
Dimensions		"Dimensional drawings" see "Manual for SIRIUS 3RB24 Solid-State Overload Relay for IO-Link".	
Installation altitude above sea level	m	Up to 2000	
Mounting position		Any	
Type of mounting - Evaluation modules - Current measuring module	Size	Stand-alone installation SOO to S3: Stand-alone installation, S6 and S10/S12: stand-alone installation or mounting onto contactors	

Overload Relays

3RB24 Solid-State Overload Relays

3RB24 for IO-Link, up to 630 A for High-Feature applications

1) If two different conductor cross-sections are
connected to one clamping point, both
cross-sections must be in the range specified

3RB24 Solid-State Overload Relays

3RB24 for IO-Link, up to 630 A for High-Feature applications

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type - Overload relay of evaluation modules Size of contactor}} \& 3RB24 83-4A. 1 \\
\hline \& \& S00 ... S10/S12 \\
\hline \multicolumn{3}{|l|}{Control and sensor circuit as well as the analog output} \\
\hline Rated insulation voltage \(\boldsymbol{U}_{\mathrm{i}}\) (pollution degree 3) \& V \& 300 \\
\hline Rated impulse withstand voltage \(\boldsymbol{U}_{\text {imp }}\) \& kV \& 4 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Rated control supply voltage \(\boldsymbol{U}_{\mathrm{s}}\) \\
- DC
\end{tabular}} \\
\hline \begin{tabular}{l}
Operating range \\
- DC
\end{tabular} \& \& \(0.85 \times U_{\mathrm{s} \text { min }} \leq U_{\mathrm{S}} \leq 1.1 \times U_{\mathrm{s} \text { max }}\) \\
\hline \multicolumn{3}{|l|}{Rated power} \\
\hline Mains buffering time \& ms \& 200 \\
\hline \begin{tabular}{l}
Thermistor motor protection (PTC thermistor \\
- Summation cold resistance \\
- Response value \\
- Return value
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{k} \Omega \\
\& \mathrm{k} \Omega \\
\& \mathrm{k} \Omega
\end{aligned}
\] \& \[
\begin{aligned}
\& \leq 1.5 \\
\& 3.4 \ldots 3.8 \\
\& 1.5 \ldots 1.65 \\
\& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Ground-fault detection \\
- Tripping value \(I_{\Delta}\) \\
- For \(0.3 \times I_{\mathrm{e}}<I_{\text {motor }}<2.0 \times I_{\mathrm{e}}\) \\
- For \(2.0 \times I_{\mathrm{e}}<I_{\text {motor }}<8.0 \times I_{\mathrm{e}}\) \\
- Response time \(t_{\text {trip }}\)
\end{tabular} \& ms \& The information refers to sinusoidal residual currents at \(50 / 60 \mathrm{~Hz}\).
\[
\begin{aligned}
\& >0.3 \times I_{\mathrm{e}} \\
\& >0.15 \times I_{\text {motor }} \\
\& 500 \ldots 1000
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Analog output \({ }^{1)}\) \\
- Output signal \\
- Measuring range \\
- Load, max.
\end{tabular} \& \(m A\)

Ω \& | 4 ... 20 |
| :--- |
| $0 \ldots 1.25 \times I_{\text {e }}$ |
| 4 mA corresponds to $0 \times I_{\mathrm{e}}$ |
| 16.8 mA corresponds to $1.0 \times I_{\mathrm{e}}$ |
| 20 mA corresponds to $1.25 \times I_{\mathrm{e}}$ |
| 100 |

\hline \multicolumn{3}{|l|}{Conductor cross-sections for the control and sensor circuit as well as the analog output}

\hline Connection type \& \& (S Screw terminals

\hline Terminal screw \& \& M3, Pozidriv size 2

\hline Operating devices \& mm \& 3.0×0.5

\hline Prescribed tightening torque \& Nm \& 0.8 ... 1.2

\hline | Conductor cross-sections (min./max.), 1 or 2 |
| :--- |
| - Solid |
| - Finely stranded without end sleeve |
| - Finely stranded with end sleeve |
| - Stranded |
| - AWG cables, solid or stranded | \& | mm^{2} |
| :--- |
| mm^{2} |
| mm^{2} |
| mm^{2} |
| AWG | \& \[

$$
\begin{aligned}
& 1 \times(0.5 \ldots 4)^{2)}, 2 \times(0.5 \ldots 2.5)^{2)} \\
& - \\
& 1 \times(0.5 \ldots 2.5)^{2)}, 2 \times(0.5 \ldots 1.5)^{2)} \\
& - \\
& 2 \times(20 \ldots 14)
\end{aligned}
$$
\]

\hline Connection type \& \& Spring-type terminals

\hline Operating devices \& mm \& 3.0×0.5

\hline | Conductor cross-sections (min./max.), 1 or 2 |
| :--- |
| - Solid |
| - Finely stranded without end sleeve |
| - Finely stranded with end sleeve |
| - Stranded |
| - AWG cables, solid or stranded | \& | mm^{2} |
| :--- |
| mm^{2} |
| mm^{2} |
| mm^{2} |
| AWG | \& \[

\left.$$
\begin{array}{l}
2 \times(0.25 \ldots 1.5) \\
- \\
2 \times(0.25 \ldots 1.5) \\
2 \times(0.25 \ldots \\
2 \times(24 \ldots
\end{array}
$$\right)
\]

\hline
\end{tabular}

1) Analog input modules, e.g. SM 331, must be configured for 4-wire measuring transducers. The analog input module may not supply current to the analog output of the 3RB24 overload relay.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.

Overload Relays

3RB24 Solid-State Overload Relays

Current measuring modules for 3RB22, 3RB23, 3RB24

Overview

SIRIUS 3RB29 06 current measuring module

The current measuring modules are designed as system components for connecting to evaluation units 3RB22 to 3RB24. Using these evaluation units the motor current is measured and the measured value sent to the evaluation unit for evaluation. The current measuring modules in sizes SOO to S 3 up to 55 mm wide are equipped with straight-through transformers and can be snap-fitted under the evaluation units. The larger evaluation units are installed directly on the contactor or as stand-alond units.

Technical specifications

Type - Overload relays: Current measuring modules
Size of contactor
Dimensions of current measuring modules
($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)

Main circuit

Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690		1000	
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6		8	
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$	V	690		1000	
Type of current - Direct current - Alternating current		No$\text { Yes, } 50 / 60 \mathrm{~Hz} \pm 5 \%$			
Current setting	A	$\begin{aligned} & 0.3 \ldots 3 ; \\ & 2.4 \ldots 25 \\ & \hline \end{aligned}$	$10 \ldots 100$	$20 . . .200$	$63 . . .630$
Power loss per unit (max.)	W	0.5			
Short-circuit protection - With fuse without contactor - With fuse and contactor		- "Configuration Manual for Configuring SIRIUS - Selection Data for Load Feeders in Fuseless and Fused Designs" - "Configuration Manual for Configuring SIRIUS Innovations - Selection Data for Load Feeders in Fuseless and Fused Designs"			
Protective separation between main and acc. to IEC 60947-1 (pollution degree 2)	V	690 for grounded networks, otherwise 600			

3RB24 Solid-State Overload Relays

Current measuring modules for 3RB22, 3RB23, 3RB24

Overview

SIMOCODE pro S and SIMOCODE pro V

More information

Home page, see www.usa.siemens.com/simocode
Industry Mall, see www.siemens.com/product?3UF7
TIA Selection Tool Cloud (TST Cloud)

- For SIMOCODE pro S, see
https://mall.industry.siemens.com/spice/TSTWeb/?kmat=SimocodeProS
- For SIMOCODE pro V, see
https://mall.industry.siemens.com/spice/TSTWeb/?kmat=SimocodeProV
SIMOCODE pro is a flexible, modular motor management system for motors with constant speeds in the low-voltage performance range. It optimizes the connection between I\&C and motor feeder, increases plant availability and allows significant savings to be made for installation, commissioning, operation and maintenance of a system.

SIMOCODE pro offers, for example:

- Multifunctional, solid-state full motor protection that is independent of the automation system
- Integrated control functions instead of hardware for the motor control
- Detailed operational, service and diagnostics data
- Open communication via PROFIBUS, PROFINET/PROFIsafe, Modbus RTU, and Ethernet IP and OPC UA - which also lets you take advantage of the cloud
- Safety relay function for the fail-safe disconnection of motors up to SIL 3 (IEC 61508, IEC 62061) or PL e with Category 4 (EN ISO 13849-1)
- SIMOCODE ES (TIA Portal) is the software package for SIMOCODE pro parameterization, start up and diagnostics.

Device series

Basic Performance with SIMOCODE pro C
The compact system for direct-on-line starters and reversing starters or for controlling a motor starter protector.

General Performance with SIMOCODE pro S or SIMOCODE pro V PN GP

The smart system for direct-on-line, reversing, and wye-delta starters or for controlling a motor starter protector or soft starter. Its expandability with an expansion module/multifunction module provides comprehensive input/output project data volume, precise ground-fault detection via the 3UL23 residualcurrent transformers and temperature measurement.

High Performance with SIMOCODE pro V

The variable system with all control functions and with the possibility of expanding the inputs, outputs and functions of the system at will using expansion modules

Device series

SIMOCODE pro 3UF7

General data

SIMOCODE pro 3UF7

General data

Expansion possibilities	SIMOCODE pro C Basic Performance PROFIBUS	SIMOCODE pro S General Performance PROFIBUS	SIMOCODE pro V General Performance PROFINET GP	SIMOCODE pro V High Performance PROFIBUS／Modbus RTU	PROFINET／ EtherNet／IP
Operator panels	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Operator panels with display	－－	－－	－－	\checkmark	\checkmark
Current measuring modules	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Current／voltage measuring modules	－－	－－	－－	\checkmark	\checkmark
Expansion modules：					
－Digital modules	－－	－－	$1^{2)}$	2	2
－Fail－safe digital modules ${ }^{1)}$	－－	－－	－－	1	1
－Analog modules	－－	－－	－－	1	2
－Ground－fault modules	－－	－－	1	1	1
－Temperature modules	－－	－－	1	1	2
－Multifunction modules	－－	1	－－	－－	－－

\checkmark Available
－－Not available
${ }^{1)}$ The fail－safe digital module can be used instead of one of the two digital modules．
2）Only monostable version can be used．

Per feeder each system always comprises one basic unit and one current measuring module．The two modules are connected together electrically through the system interface with a connec－ tion cable and can be mounted mechanically connected（one behind the other）or separately（side by side）．The motor current to be monitored determines the size of the current measuring module．
An operator panel for mounting in the control cabinet door is optionally connectable through a second system interface on the basic unit．Both the current measuring module and the operator panel are electrically supplied by the basic unit through the connection cable．More inputs，outputs and functions can be
added to the SIMOCODE pro V and SIMOCODE pro S by means of optional expansion modules，thus supplementing the inputs and outputs already existing on the basic unit．With the DM－F Local and DM－F PROFIsafe fail－safe digital modules it is also possible to integrate the fail－safe disconnection of motors in the SIMOCODE pro V motor management system．
All modules are connected by connection cables．The connec－ tion cables are available in various lengths．The maximum dis－ tance between modules（e．g．between the basic unit and the current measuring module）must not exceed 2.5 m ．The total length of all the connection cables per system interface of the basic unit may be up to 3 m ．

Article No．scheme

Product versions		Article number			
SIMOCODE pro motor management syst		3UF7	ロロロ－1	$\square \square 0$	$\square-0$
Type of unit／module	e．g． $0=$ basic unit		\square		
Functional version of the module	e．g． $20=$ SIMOCODE pro S		$\square \square$		
Connection type of the current transformer	e．g．$A=$ through－hole technology			\square	
Voltage version	e．g． $\mathrm{B}=24 \mathrm{~V}$ DC			\square	
Enclosure color	e．g． $1=$ titanium gray				\square
Example		3UF7	020－1	A B 0	1－0

Note：

The Article No．scheme shows an overview of product versions for better understanding of the logic behind the article numbers．

For your orders，please use the article numbers quoted in the selection and ordering data．

SIMOCODE pro 3UF7

General data

Benefits

General customer benefits

- Integrating the whole motor feeder into the process control by means of PROFIBUS DP, PROFINET/OPC UA, Modbus RTU or EtherNet/IP significantly reduces the wiring between the motor feeder and the PLC
- Decentralization of the automated processes by means of configurable control and monitoring functions in the feeder saves resources in the automation system and ensures full functionality and protection of the feeder even if the I\&C or bus system fails
- The acquisition and monitoring of operating, service and diagnostics data in the feeder and process control system increases plant availability as well as maintenance and service-friendliness
- The high degree of modularity allows users to perfectly implement their plant-specific requirements for each motor feeder
- The SIMOCODE pro system offers functionally graded and space-saving solutions for each customer application
- The replacement of the control circuit hardware with integrated control functions decreases the number of hardware components and wiring required and in this way limits stock keeping costs and potential wiring errors
- The use of electronic full motor protection permits better utilization of the motors and ensures long-term stability of the tripping characteristic and reliable tripping even after years of service
- Thanks to the precision of the current, voltage, power and energy measurements, costs can be internally allocated with a high degree of accuracy
- By virtue of its wide frequency range (20 to 400 Hz), SIMOCODE can be used in combination with the 2nd-generation current/voltage measuring modules in a wide range of motor applications.

Multifunctional, electronic full motor protection for rated motor currents up to 820 A

SIMOCODE pro offers comprehensive protection of the motor feeder by means of a combination of different, multi-step and delayable protection and monitoring functions:

- Inverse-time delayed electronic overload protection (CLASS 5E to 40E)
- Thermistor motor protection
- Phase failure/unbalance protection
- Stall protection
- Monitoring of adjustable limit values for the motor current
- Voltage and power monitoring
- Monitoring of the power factor (motor idling/load shedding)
- Ground-fault monitoring
- Temperature monitoring, e.g. via Pt100/Pt1000
- Monitoring of operating hours, downtime and number of starts etc.

Recording of measuring curves

SIMOCODE pro can record measuring curves and therefore is able, for example, to present the progression of motor current during motor start up.

Flexible motor control implemented with integrated control
functions (instead of comprehensive hardware interlocks)
Many predefined motor control functions have already been integrated into SIMOCODE pro, including all necessary logic operations and interlocks:

- Overload relays
- Direct-on-line and reversing starters
- Wye/delta starters (also with direction reversal)
- Two speeds, motors with separate windings (pole-changing starter); also with direction reversal
- Two speeds, motors with separate Dahlander windings (also with direction reversal)
- Positioner actuation
- Solenoid valve actuation
- Actuation of a motor starter protector
- Soft starter actuation (also with direction reversal)

These control functions are predefined in SIMOCODE pro and can be freely assigned to the inputs and outputs of the device (including the PROFIBUS/PROFINET process image).
These predefined control functions can also be flexibly adapted to each customized configuration of a motor feeder by means of freely configurable logic modules (truth tables, counters, timers, edge evaluation, etc.) and with the help of standard functions (power failure monitoring, emergency start, external faults, etc.), without additional auxiliary relays being necessary in the control circuit.
SIMOCODE pro makes a lot of additional hardware and wiring in the control circuit unnecessary, which results in a high level of standardization of the motor feeder in terms of its design and circuit diagrams.

SIMOCODE pro 3UF7

General data

Detailed operational, service and diagnostics data

SIMOCODE pro makes different operational, service and diagnostics data available and helps to detect potential faults in time and to prevent them by means of preventative measures. In the event of a malfunction, a fault can be diagnosed, localized and rectified very quickly - there are no or very short downtimes.

Operating data

- Motor switching state derived from the current flow in the main circuit
- All phase currents
- All phase voltages and phase-to-phase voltages
- Active power, apparent power and power factor
- Phase unbalance and phase sequence
- Ground-fault current
- Frequency
- Time to trip
- Motor temperature
- Remaining cooling time etc.

Service data

- Motor operating hours
- Motor stop times
- Number of motor starts
- Number of overload trips
- Interval for compulsory testing of the enabling circuits
- Energy consumed
- Internal comments stored in the device etc.

Diagnostics data

- Numerous detailed early warning and fault messages
- Internal device fault logging with time stamp
- Time stamping of freely selectable status, alarm or fault messages etc.

Easy operation and diagnostics

Operator panel

The operator panel is used to control the motor feeder and can replace all conventional pushbuttons and indicator lights to save space. It makes SIMOCODE pro or the feeder directly operable in the control cabinet. It features all the status LEDs available on the basic unit and externalizes the system interface for simple parameterization or diagnosis on a PC/PG.

Operator panel with display

As an alternative to the 3UF720 standard operator panel for SIMOCODE pro V, a 3UF721 operator panel with display is also available. This can additionally indicate current measured values, operational and diagnostics data or status information of the motor feeder at the control cabinet. The pushbuttons of the operator panel can be used to control the motor. Furthermore, it is possible to set parameters such as rated motor current, limit values, etc. directly via the operator panel with display (with SIMOCODE pro V PROFIBUS as of E15, SIMOCODE pro V Modbus RTU as of E03 and with all SIMOCODE pro V PROFINET and EtherNet/IP).

Communication

SIMOCODE pro V has either an integrated PROFIBUS DP or Modbus RTU interface (SUB-D or terminal connection) or a PROFINET or EtherNet/IP interface ($2 \times$ RJ45) .

Fail-safe disconnection through PROFIBUS or PROFINET with the PROFIsafe profile is also possible in conjunction with a fail-safe controller (F-CPU) and the DM-F PROFIsafe fail-safe digital module.

SIMOCODE pro PROFIBUS

SIMOCODE pro PROFIBUS supports, for example:

- Cyclic services (DPVO) and acyclic services (DPV1)
- Extensive diagnostics and hardware interrupts
- Time stamp with high timing precision (SIMATIC S7) for SIMOCODE pro V
- DPV1 communication after the Y-Link

SIMOCODE pro PROFINET
SIMOCODE pro PROFINET supports, for example:

- Line and ring bus topology (for 2-port devices with an integrated switch)
- Media redundancy via MRP protocol (for 2-port devices with an integrated switch)
- Operating, service and diagnostics data via standard web browser
- OPC UA server for open communication with visualization and control system
- NTP-synchronized time
- Interval function and measured values for power management via PROFIenergy
- Module exchange without PC/memory module through proximity detection
- Extensive diagnostics and maintenance alarms

System redundancy with SIMOCODE pro PROFINET
All SIMOCODE PROFINET devices support the system redundancy mechanisms of PROFINET IO and therefore can be operated directly on fault-tolerant systems such as SIMATIC S7-400 H. As such, SIMOCODE pro can provide decisive added value also for the field level of plants in which plant availability and control system redundancy are priorities.

SIMOCODE pro Modbus RTU

SIMOCODE pro Modbus RTU supports, for example:

- Communication at 1 200/2 400/4 800/9 600/19 200 or 57600 baud
- Access to freely parameterizable process image via Modbus RTU
- Access to all operating, service and diagnostics data via Modbus RTU

SIMOCODE pro EtherNet/IP

SIMOCODE pro EtherNet/IP supports, for example:

- Line and ring bus topology thanks to an integrated switch
- Ring structures via Device Level Ring (DLR) protocol
- Operating, service and diagnostics data via standard web browser
- NTP-synchronized time
- Parameter assignment via SIMOCODE ES V14 or higher - via local device interface and Ethernet

SIMOCODE pro 3UF7

General data

Notes on security

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information on Industrial Security, see
www.siemens.com/industrialsecurity.

Autonomous operation

An essential feature of SIMOCODE pro is the autonomous execution of all protection and control functions, even when communication to the I\&C system is interrupted. This means that even in the event of bus system or automation system failure, full functionality of the feeder is ensured or a specific behavior can be parameterized in case of such a fault, e.g. targeted shutdown of the feeder or execution of particular parameterized control mechanisms (such as reversal of the direction of rotation).

Advantages from integrated energy management

Ready for
 SIMATIC
 Energy Suite

As an integrated option for the TIA Portal, the SIMATIC Energy Suite couples energy management with automation efficiently, making energy consumption at your production facility transparent.
Thanks to the simplified configuration of energy-measuring components, e.g. SIMOCODE pro V , configuration effort is also clearly reduced.

Thanks to end-to-end connection with higher-level energy management systems or cloud-based services, you can seamlessly expand the recorded energy data to create a cross-site energy management system.
The advantages at a glance:

- Automatic generation of energy management data
- Integration into TIA Portal and into automation
- Simple configuration

For more information, see
www.siemens.com/energysuite.

Application

SIMOCODE pro is often used for automated processes where plant downtimes are very expensive (e.g. chemical, oil/gas, water/wastewater, steel or cement industries) and where it is important to prevent plant downtimes through detailed operational, service and diagnostics data or to localize faults very quickly when they occur.
SIMOCODE pro is modular and space-saving and suited especially for operation in motor control centers (MCCs) in the process industry and for power plant technology.

Applications

- Protection and control of motors in hazardous areas for types of protection EEx e/d according to ATEX directive 2014/34/EU - With heavy starting (paper, cement, metal and water industries)
- In high-availability plants (chemical, oil, raw material processing industries, power plants)
- New: Dry-running protection of centrifugal pumps based on active power monitoring for type of protection Ex b

Use of SIMOCODE pro 3UF7 with IE3/IE4 motors

Note:
When using the SIMOCODE pro 3UF7 in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.

Safety technology for SIMOCODE pro

The safe disconnection of motors in the process industry is becoming increasingly important as the result of new and revised standards and requirements in the safety technology field.

With the DM-F Local and DM-F PROFIsafe fail-safe expansion modules it is easy to integrate functions for fail-safe disconnection in the SIMOCODE pro V motor management system while retaining service-proven concepts. The strict separation of safety functions and operational functions proves particularly advantageous for planning, configuring and construction. Seamless integration in the motor management system leads to greater transparency for diagnostics and during operation of the system.
Suitable components for this purpose are the DM-F Local and DM-F PROFIsafe fail-safe expansion modules, depending on the requirements:

- The DM-F Local fail-safe digital module for when direct assignment between a fail-safe hardware shutdown signal and a motor feeder is required, or
- The DM-F PROFIsafe fail-safe digital module for when a fail-safe controller (F-CPU) creates the signal for disconnection and transmits it in a fail-safe manner through PROFIBUS/PROFIsafe or PROFINET/PROFIsafe to the motor management system

New: Dry-running protection of centrifugal pumps with SIMOCODE pro in hazardous areas

With special versions of the current/voltage measuring modules, SIMOCODE pro enables dry-running protection of centrifugal pumps through active power monitoring and motor switch-off. This applies to centrifugal pumps with progressive flow characteristics, which are also suitable for pumping flammable media and are also installed in hazardous areas. If the active power, and thus the flow rate, falls below a minimum value, the motor - and thus the centrifugal pump - is switched off. When determining the limit values to be monitored, the user is supported by a menu-guided teach-in process in the engineering software.

SIMOCODE pro 3UF7

Technical data

Technical specifications

More information

Technical specifications, see
https://support. industry.siemens.com/cs/ww/en/ps/16337/td
Manual Collection "SIMOCODE pro", see
https://support.industry.siemens.com/cs/ww/en/view/109743951
System Manual "SIMOCODE pro Safety Fail-Safe Digital Modules", see
https://support.industry.siemens.com/cs/ww/en/view/50564852

Application Manual "SIRIUS Controls with IE3/IE4 motors", see https://support.industry.siemens.com/cs/ww/en/view/94770820
Configuration Manual "Load Feeders - SIRIUS Modular System", see https://support.industry.siemens.com/cs/ww/en/view/39714188

General data

Type 3UF7

Permissible ambient temperature

- During operation
C -25 ... +60 ; 3UF721: $0 \ldots+60$

Degree of protection (acc. to IEC 60529)

- Measurement modules with busbar connection IPOO
- Operator panel (front) and door adapter (front) with cover IP54
- Other components

IP20

Shock resistance (sine pulse)	g / ms
	$15 / 11$
Mounting position	Any

Frequency Hz

EMC interference immunity (according to IEC 60947-1)
50/60 $\pm 5 \%$

- Conducted interference, burst acc. to IEC 61000-4-4

Corresponds to degree of severity 3

- Conducted interference, high frequency acc. to IEC 61000-4-6
- Conducted interference, surge acc. to IEC 61000-4-5
- Electrostatic discharge, ESD acc. to IEC 61000-4-2
- Field-related interference acc. to IEC 61000-4-3
2 (power ports)
kV 1 (signal port)

EMC emitted interference (according to IEC 60947-1)

- Conducted and radiated interference emission

EN 55011/EN 55022 (CISPR 11/CISPR 22
(corresponds to degree of severity A)
Protective separation (acc. to IEC 60947-1)
All circuits in SIMOCODE pro are safely separated from each other according to IEC 60947-1, i.e. they are designed with doubled creepage paths and clearances. In this context, compliance with the instructions in the test report "Safe Isolation" No. 2668 is required.

SIMOCODE pro 3UF7

Technical data

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Basic units} \\
\hline Type \& \& \multicolumn{3}{|l|}{\begin{tabular}{l}
3UF7000-1 AU00-0, 3UF7010-1 AU00-0, 3 \\
3UF7011-1 AU00-., 3UF7020-1AU01-0, \\
3UF7012-1 AU00-0, 3UF7013-1AU00-0
\[
\begin{array}{r}
30 \\
30 \\
\hline
\end{array}
\]
\end{tabular}} \& \multicolumn{2}{|l|}{3UF7000-1AB00-0, 3UF7010-1AB00-0, 3UF7011-1AB00-., 3UF7020-0AB01-0, 3UF7012-1AB00-0, 3UF7013-1AB00-0} \\
\hline \multicolumn{7}{|l|}{Control circuit} \\
\hline Rated control supply voltage \(\boldsymbol{U}_{\mathbf{s}}\) (acc. to IEC 61131-2) \& \& \multicolumn{3}{|l|}{110 ... \(240 \mathrm{~V} \mathrm{AC/DC;} 50 / 60 \mathrm{~Hz}\)} \& \multicolumn{2}{|c|}{24 V DC} \\
\hline \begin{tabular}{l}
Operating range \\
- SIMOCODE pro C (3UF7000) and SIMOCODE pro V PROFIBUS \\
(3UF7010) SIMOCODE pro V Modbus RTU (3UF7012) \\
- SIMOCODE pro V PROFINET (3UF7011), SIMOCODE pro V EtherNet/IP (3UF7013) and SIMOCODE pro S (3UF7020) \\
- Operation \\
- Start up
\end{tabular} \& \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& 0.85 \ldots 1.1 \times U_{\mathrm{s}} \\
\& \\
\& \\
\& 0.85 \ldots 1.1 \times U_{\mathrm{s}} \\
\& 0.85 \ldots 1.1 \times U_{\mathrm{s}}
\end{aligned}
\]} \& \multicolumn{2}{|l|}{\(0.80 \ldots 1.2 \times U_{\text {s }}\)} \\
\hline \begin{tabular}{l}
Power consumption \({ }^{1)}\) \\
- SIMOCODE pro C (3UF7000) and SIMOCODE pro S (3UF7020) \\
- SIMOCODE pro V PROFIBUS (3UF7010) and SIMOCODE pro V Modbus RTU (3UF7012) \\
- SIMOCODE pro V PROFIBUS E15/V4.0 (3UF7010-1A.00-0 -Z B01) and SIMOCODE pro V Modbus RTU E03/V2.0 (3UF7012-1A.00-0-Z B01) \\
- SIMOCODE pro V PROFINET (3UF7011) and SIMOCODE pro V EtherNet/IP (3UF7013)
\end{tabular} \& \& \begin{tabular}{l}
7 VA/5 W 10 VA/7 W \\
7 VA/5 W \\
11 VA/8 W
\end{tabular} \& \& \(5 W\)
\(7 W\)
\(4 W\) \& \& \\
\hline Rated insulation voltage \(\boldsymbol{U}_{\mathbf{i}}\) \& V \& \multicolumn{5}{|l|}{300 (for pollution degree 3)} \\
\hline Rated impulse withstand voltage \(U_{\text {imp }}\) \& kV \& \multicolumn{5}{|l|}{4} \\
\hline \begin{tabular}{l}
Relay outputs \\
- Number \\
- SIMOCODE pro C, SIMOCODE pro V (incl. SIMOCODE pro V PN \\
- SIMOCODE pro S \\
- Specified short-circuit protection for auxiliary contacts (relay outputs) \\
- Fuse links \\
- Miniature circuit breaker \\
- Rated uninterrupted current \\
- Rated switching capacity - AC-15 \\
- DC-13
\end{tabular} \& GP)

A \& \begin{tabular}{l}
3 monosta

2 monosta

6 A opera

1.6 A, C ch

6

6 A/24 V A

$2 \mathrm{~A} / 24 \mathrm{~V}$

 \&

lay outputs

lay outputs

class gG; 10

eristic (IEC

/120 V AC;

55 A/60 V

 \&

uick-respon 7-5-1); 6 A,

30 V AC

25 A/125 V

\end{tabular} \& EC 60947-5-1) haracteristic (I_{k} \& \[

500 A)
\]

\hline \multicolumn{2}{|l|}{Inputs (binary)} \& \multicolumn{5}{|l|}{4 inputs supplied internally by the device electronics (with 24 V DC) and connected to a common potential}

\hline | Thermistor motor protection (binary PTC) |
| :--- |
| - Summation cold resistance |
| - Response value |
| - Return value | \& \[

$$
\begin{aligned}
& \mathrm{k} \Omega \\
& \mathrm{k} \Omega \\
& \mathrm{k} \Omega
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \leq 1.5 \\
& 3.4 \ldots 3.8 \\
& 1.5 \ldots 1.65
\end{aligned}
$$
\] \& \& \& \&

\hline \multicolumn{7}{|l|}{2nd-generation current/voltage measuring modules}

\hline Type \& \& | 3UF7..0- |
| :--- |
| 1AA01-0 | \& | 3UF7..1- |
| :--- |
| 1AA01-0 | \& | 3UF7..2- |
| :--- |
| 1AA01-0 | \& \[

$$
\begin{aligned}
& \text { 3UF7..3- } \\
& \text { 1.A01-0 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { 3UF7..4- } \\
& \text { 1BA01-0 }
\end{aligned}
$$
\]

\hline \multicolumn{7}{|l|}{Main circuit}

\hline Rated insulation voltage U_{i} \& V \& \multicolumn{5}{|l|}{690}

\hline Rated operational voltage U_{e} \& V \& \multicolumn{5}{|l|}{690}

\hline Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$ \& kV \& \multicolumn{5}{|l|}{6}

\hline Rated frequency \& Hz \& \multicolumn{5}{|l|}{50/60}

\hline Type of current \& \& \multicolumn{5}{|l|}{Three-phase current}

\hline Short circuit \& \& \multicolumn{5}{|l|}{Additional short-circuit protection is required in the main circuit}

\hline \multicolumn{2}{|l|}{| Typical voltage measuring range |
| :--- |
| - Phase-to-phase voltage/line-to-line voltage (e.g. $U_{\text {L1 L2 }}$) |
| - Phase voltage (e.g. $U_{\mathrm{L} 1 \mathrm{~N}}$) |
| Accuracy at $25^{\circ} \mathrm{C}, \mathbf{5 0} / 60 \mathrm{~Hz}$ |} \& \multicolumn{5}{|l|}{\[

$$
\begin{aligned}
& 110 \ldots 690 \\
& 65 \ldots 400 \\
& \hline
\end{aligned}
$$
\]}

\hline \multicolumn{2}{|l|}{Accuracy at $25^{\circ} \mathrm{C}, 50 / 60 \mathrm{~Hz}$ Valid for voltage range} \& \multicolumn{5}{|l|}{| - Phase-to-phase voltage U_{L} in the range $0.85 \times 110 \mathrm{~V} \ldots 1.1 \times 690 \mathrm{~V}$ |
| :--- |
| - Phase voltage U_{L} in the range $0.85 \times 65 \mathrm{~V} \ldots 1.1 \times 400 \mathrm{~V}$ |}

\hline | Valid for current range |
| :--- |
| - Voltage measurement |
| - Current measurement |
| - Temperature drift of current measurement |
| - 3UF7110-1AA01-0 |
| - 3UF7111-1AA01-0, 3UF7112-1AA01-0, 3UF7113-1AA01-0, 3UF7113-1BA01-0, 3UF7114-1BA01-0 |
| - Power factor measurement (p.f. ≥ 0.5) |
| - Apparent power measurement (p.f. ≥ 0.5) |
| - Active power measurement (p.f. ≥ 0.5) |
| - Energy measurement (p.f. ≥ 0.5) |
| - Frequency measurement (p.f. ≥ 0.5) | \& \[

$$
\begin{aligned}
& \text { A } \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \% \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.25 \ldots 8 / \\
& 8 \ldots .32 \\
& \pm 1.5 \\
& \pm 1.5 / 3(\mathrm{typ} \\
& \\
& \pm 0.02 \mathrm{~K} \\
& \pm 0.01 \mathrm{~K} \\
& \pm 1.5 / 5(\mathrm{typ} \\
& \pm 3 / 5 \text { (typic } \\
& \pm 5 / 10 \\
& \pm 5 / 10 \\
& \pm 1.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.25 \ldots 80 \\
& 80 \ldots 320
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7.5 \ldots 230 / \\
& 230 \ldots 920
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15 \ldots 400 / \\
& 400 \ldots .1600
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 47 \ldots 1260 / \\
& 1260 \ldots 5040
\end{aligned}
$$
\]

\hline \multicolumn{2}{|l|}{| Notes on voltage measurement |
| :--- |
| - Supply lines for voltage measurement |} \& \multicolumn{5}{|l|}{In the supply lines from the main circuit for voltage measurement of SIMOCODE pro it may be necessary to provide additional line protection!}

\hline
\end{tabular}

2nd-generation current/voltage measuring modules

All values are based on a combination consisting of basic unit, current measuring module and operator panel.

SIMOCODE 3UF Motor Management and Control Devices
SIMOCODE pro 3UF7
Technical data

SIMOCODE pro 3UF7

Technical data

Analog module					
Type		3UF74			
Control circuit					
Inputs - Channels - Parameterizable measuring ranges - Shielding - Max. input current (destruction limit) - Accuracy - Input resistance - Conversion time - Resolution - Open-circuit detection	mA mA \% Ω ms Bit	2 (passive) 0/4 ... 20 Up to 30 m shield 40 ± 1 50 150 12 With measuring ran	commended, from 3 ge $4 \ldots 20 \mathrm{~mA}$	m shield required	
Outputs - Channels - Parameterizable output range - Shielding - Max. voltage at output - Accuracy - Max. output load - Conversion time - Resolution - Short-circuit proof	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~V} \text { DC } \\ & \% \\ & \Omega \\ & \mathrm{~ms} \\ & \text { Bit } \end{aligned}$	1 0/4 ... 20 Up to 30 m shield r 30 ± 1 500 25 12 Yes	commended, from 3	m shield required	
Connection type		Two-wire connection			
Electrical separation of inputs/output to the device electronics		No			
Fail-safe digital modules					
Type		3UF7320-1AB00-0	3UF7320-1AU00-0	3UF7330-1AB00-0	3UF7330-1AU00-0
Control circuit					
Rated control supply voltage $\boldsymbol{U}_{\text {s }}$	V	24 DC	$\begin{aligned} & 110 \ldots 240 \mathrm{AC} / \mathrm{DC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	24 DC	$\begin{aligned} & 110 \ldots 240 \mathrm{AC} / \mathrm{DC} ; \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Power consumption		3 W	9.5 VA/4.5 W	4 W	11 VA/5.5 W
Rated insulation voltage	V	300			
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	4			
Relay outputs - Number		2 relay enabling circuits, 2 relay outputs			
Version of the fuse link For short-circuit protection of the relay enabling circuit		4, operational class gG			
Rated uninterrupted current	A	5			
Rated switching capacity - AC-15 - DC-13		3 A/24 V AC; 3 A/120 V AC; 1.5 A/230 V AC $4 \mathrm{~A} / 24 \mathrm{~V}$ DC; $0.55 \mathrm{~A} / 60 \mathrm{~V}$ DC; $0.22 \mathrm{~A} / 125 \mathrm{~V}$ DC			
Inputs (binary)		5 (with internal power supply from the device electronics)			
Cable length - Between sensor/start signal and evaluation electronics - For further digital signals	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1500 \\ & --\quad \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 \\ & --\quad \\ & \hline \end{aligned}$	300	300
Safety data ${ }^{1)}$					
SIL level max. according to IEC 61508		3			
Achievable performance level PL according to EN ISO 13849-1		e			
Achievable category according to EN ISO 13849-1		4			
Stop category according to EN 60204-1		0			
Probability of a dangerous failure for SIL 3 applications - Per hour $\left(\mathrm{PFH}_{d}\right)$ at a high demand rate according to IEC 62061 - Per hour ($\mathrm{PFD}_{\text {avg }}$) at a low demand rate according to IEC 61508		1.0×10^{-8} for 2-channel sensor evaluation 2.0×10^{-6} for 2-channel sensor evaluation		$\begin{aligned} & 1.0 \times 10^{-8} \\ & 2.0 \times 10^{-6} \end{aligned}$	
T1 value for proof test interval or service duration according to IEC 61508	a	20			

[^46]
SIMOCODE pro 3UF7

Technical data

More information

Configuration instructions

When using an operator panel with display, please note that the type and number of expansion modules that can be connected are limited for the use of a SIMOCODE pro V PROFIBUS basic unit (with product version lower than E15) or SIMOCODE pro V Modbus RTU (with product version lower than E03), see

- TIA Selection Tool
- SIMOCODE pro Manual Collection

Protective separation

All circuits in SIMOCODE pro are safely isolated from each other in accordance with IEC 60947-1. That is, they are designed with double creepages and clearances. In the event of a fault, therefore, no parasitic voltages can be formed in neighboring circuits. The instructions of test log No. 2668 must be complied with.

Types of protection EEx e and EEx d

The overload protection and the thermistor motor protection of the SIMOCODE pro system comply with the requirements for overload protection of explosion-proof motors to the type of protection:

- EEx d "Flameproof enclosure" e.g. according to IEC 60079-1
- EEx e "Increased safety" e.g. according to IEC 60079-7

When using SIMOCODE pro devices with a 24 V DC control voltage, electrical separation must be ensured using a battery or a safety transformer according to IEC 61558-2-6.
EC type test certificate: BVS 06 ATEX F 001
Test report: BVS PP 05.2029 EC.

Type of protection Ex b

The function for dry-running protection of centrifugal pumps in hazardous areas complies with the requirements of the following type of protection:

- Ex b "Control of ignition source", ignition protection system b1, e.g. according to EN 80079-37

SIMOCODE pro is registered for the dry-running protection of centrifugal pumps by means of active power monitoring according to both ATEX and IEC EX.

SIMOCODE pro 3UF7

Basic units IE3/IE4 ready

Selection and ordering data

${ }^{1)}$ For the use of $2 n d$-generation current/voltage measuring modules, SIMOCODE pro V PROFIBUS with product version E15 (V4.0) must be ordered. This version does not have an NEPSI certificate. It can be ordered at no extra charge. The article number must be supplemented by "-Z" and the order code "B01", e.g. 3UF7010-1AB00-0 -Z B01.

SIMOCODE pro 3UF7

Basic units IE3/IE4 ready

1) The SIMOCODE ES (TIA Portal) V14 software or higher is necessary for parameterization, see page 3/82.
2) When installing the basic unit on a current/voltage measuring module, the connection cable must be at least 15 cm long.
3) The current/voltage measuring modules for dry-running protection require SIMOCODE pro V PROFIBUS basic units as of product version E16 (expected to be available from 03/2019), SIMOCODE pro V PROFINET as of product version E13 (expected to be available from 10/2018) or SIMOCODE pro V EtherNet/IP as of product version E04 (expected to be available from 03/2019).
4) When using an operator panel with display with the current/voltage measuring modules for dry-running protection, an operator panel with display as of product version E03 (both versions 3UF7210-1AA01-0 and 3UF7210-1BA01-0 expected to be available from 03/2019) is required.
5) For the use of 2nd-generation current/voltage measuring modules, SIMOCODE pro V Modbus RTU with product version E03 (V2.0) must be ordered. This version does not have an NEPSI certificate. It can be ordered at no extra charge. The article number must be supplemented by "-Z" and the order code "B01", e.g. 3UF7012-1AB00-0 -Z B01.
6) One terminal parts kit 3RT1955-4PA00 or 3RT1966-4PA00 (see page 3/81) is included in the scope of delivery for connection to a contactor.

Note:
SIMOCODE pro V basic unit in a hardened version via SIPLUS extreme upon request.

SIMOCODE pro 3UF7

Basic units IE3/IE4 ready

SIMOCODE pro 3UF7

Expansion modules

Selection and ordering data

SIMOCODE pro 3UF7

Expansion modules

	Version	SD	Screw terminals	(1)		PS*
		d	Article No.	Price per PU		
Expansion modules for SIMOCODE pro S						
3UF7600-1AU01-0	With SIMOCODE pro S, it is possible to expand the type and number of inputs and outputs. The expansion module has two system interfaces on the front. Through the one system interface the expansion module is connected to the system interface of the SIMOCODE pro S using a connection cable; through the second system interface, the operator panel can be connected The power supply for the expansion module is provided by the connection cable through the basic unit. Note: Please order connection cable separately, see page 3/79.					
	Multifunction modules					
	The multifunction module is the expansion module of the SIMOCODE pro S device series with the following functions: - Digital module function with four digital inputs and two monostable relay outputs - Ground-fault module function with an input for the connection of a 3UL23 residual-current transformer with freely selectable warning and trip limits in a wide zone of $30 \mathrm{~mA} . . .40 \mathrm{~A}$ - Temperature module function with an input for connecting an analog temperature sensor Pt100, Pt1000, KTY83, KTY84, or NTC					
	Max. one multifunction module can be connected per pro S basic unit					
	Input voltage of the digital inputs:					
	- 24 V DC	\checkmark	3UF7600-1AB01-0		1	1 unit
	- 110 ... 240 V AC/DC	-	3UF7600-1AU01-0		1	1 unit

SIMOCODE pro 3UF7

Fail-safe expansion modules

Selection and ordering data

${ }^{1)}$ Cannot be used in conjunction with SIMOCODE pro V for Modbus RTU or EtherNet/IP communication.

SIMOCODE pro 3UF7

Accessories

Selection and ordering data

SIMOCODE pro 3UF7

Accessories

SIMOCODE pro 3UF7

Accessories

Overview

Selection of SIMOCODE pro device configuration in SIMOCODE ES (TIA Portal)

More information

Industry Mall, see www.siemens.com/product?3ZS1
TIA Selection Tool Cloud (TST Cloud)
Software download

- For SIMOCODE pro S, see
https://support.industry.siemens.com/cs/ww/en/view/109752321
- For SIMOCODE pro V, see
https://support.industry.siemens.com/cs/ww/en/view/109480470
- SIMOCODE ES 2007, see
https://support.industry.siemens.com/cs/ww/en/view/109750623
SIMOCODE ES is the central software for configuration, startup, operation and diagnostics of SIMOCODE pro.

SIMOCODE ES Version 15.1 is available as a powerful successor to Version 2007, which is based on the central engineering framework Totally Integrated Automation Portal (TIA Portal).

SIMOCODE ES V15.1 is integrated seamlessly when further TIA Portal-based software such as STEP 7 or WinCC is available, thus enabling users to achieve a consistent, efficient and intuitive solution for all automation tasks.
However, use of SIMOCODE ES V15.1 as stand-alone software also provides these advantages.

Three program versions

The user can choose between three different versions of SIMOCODE ES:

- SIMOCODE ES Basic
- SIMOCODE ES Standard
- SIMOCODE ES Premium

From V15, the powerful SIMOCODE ES Basic tool for startup or maintenance personnel is available for downloading free of charge in the Siemens Industry Online Support (see "More information").
SIMOCODE ES Standard and Premium are the perfect tools for engineers or configuration engineers on account of their larger scope of functions and integrated graphics editor. Unlike the Standard version, SIMOCODE ES Premium also permits parameterization and diagnostics via PROFIBUS/PROFINET/ Ethernet. Indication of all operating, service and diagnostics data supplies important information about the current state of the motor and plant at all times - everywhere on PROFIBUS/PROFINET/Ethernet.

SIMOCODE ES V15.1	Basic	Standard	Premium
Access via the local interface on the device	\checkmark	\checkmark	\checkmark
Parameter assignment in list form	\checkmark	\checkmark	\checkmark
Parameter printing in list form	\checkmark	\checkmark	\checkmark
Operating	\checkmark	\checkmark	\checkmark
Diagnostics	\checkmark	\checkmark	\checkmark
Test	\checkmark	\checkmark	\checkmark
Service data	\checkmark	\checkmark	\checkmark
Analog value recording ${ }^{1)}$	\checkmark	\checkmark	\checkmark
Trend display of measured values	--	\checkmark	\checkmark
Parameterizing with convenient graphical display	--	\checkmark	\checkmark
Parameterizing with the integrated graphics editor (CFC-based)	--	\checkmark	\checkmark
Printing of diagrams	--	\checkmark	\checkmark
Parameter comparison	--	\checkmark	\checkmark
Access via PROFIBUS/PROFINET/Ethernet ${ }^{2}{ }^{2}$	--	--	\checkmark
Teleservice via MPI	--	--	\checkmark
Routing ${ }^{\text {3) }}$	--	--	\checkmark

\checkmark ®Function available
-- Function not available

1) For SIMOCODE pro V.
2) In combination with Modbus devices, SIMOCODE ES Premium does not offer any additional functions compared with SIMOCODE ES Standard.
3) See https://support.industry.siemens.com/cs/ww/en/view/109738745.

Working with libraries

Users can create copy templates for SIMOCODE pro device configuration and can manage them in global or project libraries.
This way, individual modules, diagrams and complete device configurations can be saved as reusable elements for frequently occurring tasks.

Integrated graphics editor

The graphics editor is a part of SIMOCODE ES Standard and SIMOCODE ES Premium. It is based on the Continuous Function Chart (CFC) and adds a powerful tool to the parameterizing interface that enables easy parameterization of devices by drag \& drop. What is more, all the parameters can also be edited directly in the graphics editor. Extremely compact documentation of all configured parameters is possible, as is the graphic online presentation of the configured device functions including all signal states during operation.

Parameterize easily and ergonomically with the CFC-based graphics editor of SIMOCODE ES V15.1

SIMOCODE pro 3UF7

SIMOCODE ES (TIA Portal) NEW

Online functions for startup and diagnostics

To this end, SIMOCODE ES provides powerful functions for startup and diagnostics of motor feeders. Besides a detailed display of status information and the causes of faults, all available measurement and statistics data can be retrieved online. Access to the fault and event memory and also to analog values recorded on the device, e.g. current or voltage, is also possible.

Commissioning functions of SIMOCODE ES V15

Trend display of measured values

With this online function, SIMOCODE ES Standard or Premium can present the trends of different measured values. It is thus possible for example to record and evaluate the start-up characteristic of a motor or its behavior under different load conditions.

Live trend display of SIMOCODE ES V15.1

Additional functions

SIMOCODE ES V15.1 offers numerous advantages of the TIA Portal that can be used in an integrated working environment.

Seamless integration

When using other TIA Portal-based software such as STEP 7 or WinCC, for example, the configuration for devices and networks for all components used is created in a standardized environment.

Teleservice via MPI

The SIMOCODE ES (TIA Portal) Premium version supports the use of MPI Teleservice (comprising the Teleservice software and various Teleservice adapters) for remote diagnostics of the devices. This facilitates diagnostics and maintenance, and it shortens response times for service purposes.

Benefits

- Easy parameterization with the graphics editor based on the Continuous Function Chart (CFC) reduces engineering work and shortens startup times
- Clear plant documentation by means of graphic presentation
- Detailed information, also when there are faults, is a help for maintenance personnel and shortens downtimes
- Universally applicable through stand-alone version or seamless integration into the central engineering framework when other TIA Portal-based software such as STEP 7 or WinCC are available
- Parameter changes are also possible during normal operation
- Users can create copy templates for device configurations and can manage them in global libraries

SIMOCODE pro 3UF7

SIMOCODE ES (TIA Portal) NEW

Selection and ordering data

Parameterization and service software for SIMOCODE pro 3UF7

- Delivered without PC cable

	Version	SD	Article No.	Price per PU		PS*	
		d					
SIMOCODE ES V15.1 Basic							
	Basic functional scope including Premium Trial License Engineering software, software download 6 languages (German/English/French/Italian/ Spanish/Chinese), for all SIMOCODE pro, online functions via system interface Available free of charge as a download, see https://support.industry.siemens.com/cs/ww/en/view/109763898	-					
SIMOCODE ES V15.1 Standard							
3ZS1322-5CC13-0YA5	Floating license for one user Engineering software, software and documentation on DVD, 6 languages (German/English/French/Italian/Spanish/ Chinese), Combo license for parallel use of versions 2007 and V15.1 of SIRIUS ES, for all SIMOCODE pro, online functions via system interface, parameterizing with the integrated graphics editor (CFC-based)		3ZS1322-5CC13-0YA5 3ZS1322-5CE13-0YB5		11		
	- License key on USB flash drive, Class A - License key and software download, Class A	\checkmark			1 unit		
		-			1 unit		
	Upgrade for SIMOCODE ES 2007 Standard	2	3ZS1322-5CC13-0YE5			1	1 unit
	Floating license for one user, engineering software, software and documentation on DVD, license key on USB flash drive, Class A, 6 languages (German/English/French/Italian/Spanish/ Chinese), Combo license for parallel use of versions 2007 and V15.1 of SIRIUS ES, for all SIMOCODE pro, online functions via system interface, parameterizing with integrated graphics editor (CFC-based)						
	Software Update Service	-	3ZS1322-5CC00-0YL5		1	1 unit	
	For 1 year with automatic extension, requires software version of SIMOCODE ES (TIA Portal), engineering software, software and documentation on DVD, online functions via system interface, parameterizing with integrated graphics editor (CFC-based)						

SIMOCODE ES V15.1 Basic
Basic functional scope
including Premium Trial License
Engineering software,

Notes:
SIMOCODE ES V12/V13/V14/V15 licenses can also be used for SIMOCODE ES V15.1.

Please order PC cable separately, see page 3/79.
For a description of the software versions, see page 3/82.

SIMOCODE pro 3UF7

SIMOCODEES (TIA Portal) NEW

| Version | SD |
| :--- | :--- | :--- |

SIMOCODE ES V15.1 Premium

3ZS1322-6CC13-0YA5

Floating license for one user

Engineering software,
software and documentation on DVD,
6 languages (German/English/French/Italian/Spanish/
Chinese), Combo license for parallel use of versions 2007 and
V15.1 of SIRIUS ES, for all SIMOCODE pro,
online functions via system interface and
PROFIBUS/PROFINET/Ethernet,
parameterizing with the integrated graphics editor (CFC-based)

- License key on USB flash drive, Class A
- License key and software download, Class A

Upgrade for SIMOCODE ES 2007 Premium	2	3ZS1322-6CC13-0YE5	1 unit

Floating license for one user,
engineering software,
software and documentation on DVD
license key on USB flash drive, Class A,
6 languages (German/English/French/Italian/Spanish/
Chinese), Combo license for parallel use of versions 2007 and
V15.1 of SIRIUS ES, for all SIMOCODE pro,
online functions via system interface and PROFIBUS/PROFINET/Ethernet, parameterizing with the integrated graphics editor (CFC-based)

Software Update Service

For 1 year with automatic extension,
requires software version of SIMOCODE ES (TIA Portal), engineering software,
software and documentation on DVD
online functions via system interface and
PROFIBUS/PROFINET/Ethernet, parameterizing with integrated graphics editor (CFC-based)
Notes:
Please order PC cable separately, see page 3/79.
For a description of the software versions, see page 3/82
\qquad

Starters

Industrial Controls Product Catalogue 2021

contents

Self Protected Motor Starters per UL 508 Type E 3RA6

3RA61 / 3RA62 up to 32 A for mounting rail, surface, comb busbar, infeed system

Page
Selection and ordering data

- Direct start, Reversing duty 4/7
- Accessories 4/9-4/13

3RA64 / 3RA65 up to 32 A for mounting rail, surface, comb busbar, infeed system Page
Selection and ordering data

- Direct start, Reversing duty 4/8
- Accessories

4/9-4/13

3RA68 up to 100 A for 3RA6 direct and reversing starters

Page
Selection and ordering data

- Infeed Components 4/16-4/19
- Accessories 4/20-4/21

4/20-4/21

Combination starters \& starters for group installation 3RA2

3RA21 up to 100 A for mounting rail and Fast Bus busbar systems

Page
Selection and ordering data

- Direct start

4/36-4/39

- Accessories 4/44-4/52

Technical data	$4 / 53-4 / 58$
Installation guidelines	$4 / 59-4 / 68$
Circuit diagrams	$4 / 68$
Dimension drawings	$4 / 69-4 / 72$

3RA22 up to 100 A for mounting rail and Fast Bus busbar systems

Page
Selection and ordering data

- Reversing duty 4/40-4/43
- Accessories 4/44-4/52

Technical data	$4 / 53-4 / 58$
Installation guidelines	$4 / 59-4 / 68$
Circuit diagrams	$4 / 68$
Dimension drawings	$4 / 69-4 / 72$

Overview

3RA6 fuseless compact starters and infeed system for 3RA6

3RA62 reversing starter
Integrated functionality
The SIRIUS 3RA6 compact starters are a generation of innovative load feeders with the integrated functionality of a motor starter protector, contactor and electronic overload relay. In addition, various functions of optional mountable accessories (e.g. auxiliary switches, surge suppressors) are already integrated in the SIRIUS compact starter.

3RA6 compact starters with the integrated functionality of a motor starter protector, contactor and electronic overload relay.

Applications

The SIRIUS compact starters can be used wherever standard three-phase motors up to $32 \mathrm{~A}(20 \mathrm{HP} / 460 \mathrm{~V}$) are directly started.
The compact starters are not suitable for the protection of DC loads.

Approvals according to IEC, UL, CSA and CCC standards have been issued for the compact starters.

Low variance of devices

Thanks to wide setting ranges for the rated current and wide voltage ranges, the equipment variance is greatly reduced compared to conventional load feeders.

Very high operational reliability
The high short-circuit breaking capacity and defined shut-down when the end of service life is reached means that the SIRIUS compact starter achieves a very high level of operational reliability that would otherwise have only been possible with considerable additional outlay. This sets it apart from devices with similar functionality.

Safe disconnection

The auxiliary switches (NC contacts) of the 3RA6 compact starters are designed as mirror contacts. This enables their use for safe disconnection - e.g. EMERGENCY STOP up to SIL 1 (IEC 62061) or PL c (ISO 13849-1) or, if used in conjunction with an additional infeed contactor, up to SIL 3 (IEC 62061) or PL e (ISO 13849-1).

Communications integration through AS-Interface

To enable communications integration through AS-Interface there is an AS-i add-on module available in several versions for mounting instead of the control circuit terminals on the SIRIUS compact starter.

The design of the AS-i add-on module permits a group of up to 62 feeders with a total of four cables to be connected to the control system. This reduces wiring work considerably compared to the parallel wiring method.

Communications integration using IO-Link

Up to 4 compact starters in IO-Link version (reversing and direct-on-line starters) can be connected together and conveniently linked to the IO-Link master through a standardized IO-Link connection. The SIRIUS 4SI electronic modules are used e.g. as IO-Link masters for connection to the SIMATIC ET 200 S distributed I/O system.
The IO-Link connection enables a high density of information in the local range.
Details of the communications integration using IO-Link, see Chapter 14 Communications.
The diagnostics data of the process collected by the 3RA6 compact starter, e.g. short circuit, end of service life, limit position etc., are not only indicated on the compact starter itself but also transmitted to the higher-level control system through IO-Link.

Thanks to the optionally available operator panel, which can be installed in the control cabinet door, it is easy to control the 3RA6 compact starters with IO-Link from the control cabinet door.
Permanent wiring / easy replacement
Using the SIRIUS infeed system for 3RA6 (see page 4/16) it is possible to carry out the wiring in advance without a compact starter needing to be connected.
A compact starter is very easily replaced simply by pulling it out of the device without disconnecting the wiring.
Even with screw connections or mounting on a standard mounting rail there is no need to disconnect any wiring (on account of the removable main and control circuit terminals) in order to replace a compact starter.
Consistent solution from the infeed to the motor feeder
The SIRIUS infeed system for 3RA6 with integrated PE bar is offered as a user-friendly possibility of feeding in summation currents up to 100 A with a maximum conductor cross-section of 2/0 AWG and connecting the motor cable directly without additional intermediate terminals.

Screw and spring-type terminals

The SIRIUS compact starters and the infeed system for 3RA6 are available with screw and spring-type terminals.

SIRIUS 3RA6 Compact Starters

General data

To comply with the clearance and creepage distances demanded according to UL 508 there are the following infeed possibilities:

Type of infeed	Feeder terminal (according to UL 508, type E)	Type
Conventional wiring	Terminal block for "Self- Protected Combination Motor Controller (Type E)"	3RV29 28-1H
Three-phase busbars	Three-phase infeed ter- minal for constructing "Type E Starters", UL 508	3RV29 25-5EB
Infeed systems for 3RA6	Infeed on left, 50/70 mm 2, screw terminal with 3 sockets, outgoing terminal with screw/spring-type connections, including PE bar	3RA68 13-8AB terminals), 3RA68 13-8AC (spring-type terminals)

SIRIUS 3RA6 compact starters

The SIRIUS 3RA6 compact starters are universal motor starters according to IEC/EN 60947-6-2. As control and protective switching devices (CPS) they can connect, convey and disconnect the thermal, dynamic and electrical loads from short-circuit currents up to $\boldsymbol{I}_{\mathrm{q}}=53 \mathrm{kA}$, i.e. they are essentially weld-free. They combine the functions of a motor starter protectors, a contactor and a solid-state overload relay in a single enclosure and can be used wherever standard induction motors up to 32 A (up to approx. 20 HP at 480 V AC) are started directly. Available versions are the direct-on-line starters with 45 mm width and the reversing starters with 90 mm width.

The reversing starter version comes with not only an internal electrical interlock but also with a mechanical interlock to prevent simultaneous actuation of both directions of rotation.

3RA6 compact starters are supplied in 5 current setting ranges. The 3RA61 and 3RA62 have 2 control voltage ranges (AC/DC), the 3RA64 and 3RA65 have one control voltage range (DC):

Current setting range	At 460 V AC for induction motors Standard output P HP	Rated control supply voltage for 3RA61, 3RA62 compact starters	3RA64, 3RA65 compact starters for IO-Link
A	V AC/DC		

Note:
The 3RA1 motor starters can be used as motor starters $>32 \mathrm{~A}$ up to 100 A .
The SENTRON 3VL circuit breakers and the SIRIUS 3RT contactors can be used for motor starters >100 A.

Operating conditions

The SIRIUS 3RA6 compact starters are suitable for use in nearly all climates. They are intended for use in enclosed rooms in which no severe operating conditions (such as dust, caustic vapors, hazardous gases) prevail. Suitable covers must be provided for installation in dusty and damp locations.
The SIRIUS compact starters are generally designed to degree of protection IP20. The permissible ambient temperature during operation is -20 to $+60^{\circ} \mathrm{C}$
The maximum short-circuit current based on UL testing is 30 kA up to 12 A and 15 kA for the $8 \ldots 32 \mathrm{~A}$ versions at 480 V .

Note:
More technical specifications can be found in the system manual at
www.siemens.com/compactstarter

Overload tripping times

The overload tripping time can be set on the device to less than 10 s (CLASS 10) and less than 20 s (CLASS 20 for heavy starting). As the breaker mechanism still remains closed after an overload, resetting is possible by either local manual reset or autoreset after 3 minutes cooling time.
With autoreset there is no need to open the control cabinet
Diagnostics options
The compact starter provides the following diagnostics options on site:

- With LEDs
- Connection to the control voltage
- Position of the main contacts
- With mechanical indication
- Tripping due to overload
- Tripping due to short-circuit
- Tripping due to malfunction (end of service life reached because of worn switching contacts or a worn switching mechanism or faults in the control electronics)

These states can also be evaluated in the higher-level control system:

- With conventional wiring using the integrated auxiliary and signaling switches of the compact starter
- With AS-Interface or IO-Link in even greater detail using the respective communication interface

Four complement variants for 3RA6 compact starters

- For standard mounting rail or screw mounting: basic version including 1 pair of main circuit terminals and 1 pair of control circuit terminals
- For standard mounting rail or screw mounting when using the AS-i add-on module:
comes without control circuit terminals because the AS-i addon module is attached in lieu of them
- For use with the infeed system for 3RA6: without main circuit terminals because they are supplied with the infeed system and the expansion modules
- For use with the infeed system for 3RA6 and AS-i add-on module: without main or control circuit terminals as they are not needed
- The control circuit terminals are always required by the compact starters for IO-Link; the main circuit terminals depend on the use of the infeed system.

Additional components of the 3RA6

The two control circuit terminals on the 3RA61/3RA62 allow access to signalling contacts for overload (1 CO) and shortcircuit / malfunction (1 NO). Furthermore, the 3RA61 has two auxiliary contacts ($1 \mathrm{NO}+1 \mathrm{NC}$) for indicating the position of the main contacts, while the 3RA62 has one auxiliary contact (1 NO) per direction of rotation per main contact.

3RA6 Compact Starters

Overview

Function

Trip units

The SIRIUS 3RA6 compact starters are equipped with the following trip units:

- Inverse-time delayed solid-state overload release
- Instantaneous electronic trip unit (electromagnetic shortcircuit release)

The overload releases can be adjusted in accordance with the load current.
The electronic trip units are permanently set to a value 13 times the maximum rated current of the $4 \mathrm{~A}, 12 \mathrm{~A}$ and 32 A starter and thus enable trouble-free starting of motors.

Trip classes

The trip classes of electronically delayed trip units are based on the tripping time (t_{A}) at 7.2 times the set current in the cold state (excerpt from IEC 60947-4):

CLASS 10: $4 \mathrm{~s}<t_{\mathrm{A}}<10 \mathrm{~s}$
CLASS 20: $6 \mathrm{~s}<t_{\mathrm{A}}<20 \mathrm{~s}$ (for heavy starting)
The compact starter must trip within this time.

Disconnection due to malfunction

The following malfunctions can be detected:

- End of service life
- Worn switching contacts (for electrical endurance see "Technical data")
- Worn switching mechanisms (for mechanical endurance see "Technical data")
- Faults in the control electronics

Short-circuit protection

If a short-circuit occurs, the short-circuit releases of the SIRIUS 3RA6 compact starters isolate the faulty motor starter from the network and thus prevent further damage. The shortcircuit releases are factory-set to 14 times the value of the maximum rated current I_{n} of the device.

The SIRIUS compact starters have a short-circuit breaking capacity up to 30 kA at a voltage of 480 VAC .

Overload relay function

In the event of an overload, the compact starter switches off without the breaker mechanism being opened.
The overload trip can be signaled to the higher-level control system through an integrated signal switch.
The overload signal can be reset automatically or by means of a manual reset.

Control through AS-Interface

For control through AS-Interface, the AS-i add-on module is mounted instead of the two control circuit terminals on the SIRIUS 3RA6 compact starters (direct-on-line starters and reversing starters).
The AS-i auxiliary voltage and the AS-i data line are installed on the AS-i add-on module easily and quickly without tools by means of two plug-in connector blocks with insulation displacement connection.

The AS-i add-on module is equipped with the latest A/B technology and has an addressing socket onboard.
An addressing unit is required and can be ordered for addressing the AS-i add-on module.
Bit assignment (see below) is similar to that for the SIRIUS motor starters, which means that the same programming can be used here.

DI 0.0 ready
DI 0.1 motor on
DI 0.2 group fault
DI 0.3 group warning
DO 0.0 motor on or motor clockwise
DO 0.1 motor counterclockwise

A 24 V DC PELV power supply unit according to EN 61140 safety class III is required for the auxiliary voltage.
The AS-i data line is supplied with voltage by means of a 30 V DC AS-i power supply unit and is controlled by means of the AS-i master.
The AS-i add-on modules are available in the following five versions:

- AS-i add-on module for compact starters
- AS-i add-on module for compact starters with two local inputs for safe disconnection of the "clockwise rotation" or "counterclockwise rotation" outputs
- AS-i add-on module with two free external inputs
- AS-i add-on module with two free external outputs
- AS-i add-on module with one free external input and output

The AS-i add-on module can only be used with compact starters with a control voltage of 24 V AC/DC.

Integrated auxiliary switches

The control circuit terminals of the SIRIUS 3RA6 compact starters have the following connections:

- A1/A2 for the control voltage for 3RA61, A1/A2 and B1/B2 for the control voltage for 3RA62
- "Overload" signal switch
- "Fault" signal switch, e. g. "short-circuit"
- Internal auxiliary switch for position of the main contacts (in case of direct-on-line starters: $1 \mathrm{NO}+1 \mathrm{NC}$ with mirror contact to the main contact; in case of reversing starters: 2 NO)

Compact Combination Starters

3RA6 Compact Starters

Overview

Design

Mounting
The 3RA6 compact starters can be mounted in 4 ways: 1) By snapping onto a TH 35 standard mounting rail

The SIRIUS compact starters can be snapped onto a standard mounting rail according to EN 60715 with a width of 35 mm .

2) By screw fixing to a flat surface

The SIRIUS compact starters are suitable for screw fixing to a flat surface. One set of 3RA69 40-0A adapters for screw connection (including push-in lugs) is required per direct-on-line starter, two sets are required per reversing starter.

1 ... 5 : order of mounting steps
3) By integrating in the infeed system for 3RA6

The SIRIUS compact starters can be assembled with the infeed system for 3RA6 (see "Infeed system for 3RA6").

4) By using the 8US busbar adapter for Fast Bus systems with 60 mm busbar center-to-center clearance

1 ... 6: order of mounting steps

Compact Combination Starters

3RA6 Compact Starters

Overview

4a) By using an additional device holder in the case of reversing starters

When the 8US busbar adapter is used on Fast Bus systems with 60 mm busbar center-to-center clearance, a device holder is needed in addition for a reversing starter on account of its double width.
The reversing starter is mounted in the same way as the direct-on-line starter on the busbar adapter. Then the device holder is snapped on alongside the busbar adapter.

Mounting regulations

The module can be installed horizontally or vertically. For the different installations attention must be paid however to limit values for protective separation according to IEC/EN 60947-2 of the compact starters (for details see the "Technical specifications").

The following distances must be observed when mounting the compact starters:

- Lateral clearance to grounded components: 10 mm
- Arcing space at top and bottom: 30 mm

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Selection and ordering data

Standard induction motor at $600 \mathrm{~V}^{1)}$	Setting range for solid－state overload release	Order No．	Order No．
Standard output P			
	द		
HP	A		
For use with the infeed system for 3RA6 and with the AS－i add－on module or as a replacement device， without main and control circuit terminals			
－－	0.1 ．．． 0.4	3RA6 $\square \square 0-04 \square 32$	－
1／2	0.32 ．．． 1.25	3RA6 $\square \square 0-0 \mathrm{~B} \square \square 32$	－
3	1．．． 4	3RA6 $\square \square 0-0 C \square 32$	－
10	3 ．．． 12	3RA6 $\square \square 0-0 \mathrm{D} \square 32$	－
30	8 ．．． 32	3RA6 $\square \square 0-0 \mathrm{E} \square 32$	－

		Screw terminals ${ }^{\text {2 }}$	（1）	Spring－type terminals	00 \square
For incl 1 pair	mounting， and				
－－	$0.1 \ldots 0.4$	3RA6 $\square \square 0-1 \mathrm{~A} \square 32$		3RA6 $\square \square 0-2 A \square 32$	
1／2	0.32 ．．． 1.25	3RA6 $\square \square 0-1 \mathrm{~B} \square 32$		3RA6 $\square \square 0-2 B \square 32$	
3	1．．． 4	3RA6 $\square \square 0-1 \mathrm{C} \square 32$		3RA6 $\square \square 0-2 C \square 32$	
10	3 ．．． 12	3RA6 $\square \square 0-1 \mathrm{D} \square 32$		3RA6 $\square \square 0-2 D \square 32$	
30	8 ．．． 32	3RA6 $\square \square 0-1 \mathrm{C} \square 32$		3RA6ロロ0－2E $\square 32$	

For use in the infeed system for 3RA6，
without main circuit terminals，with 1 pair of control circuit terminals

－－	0.1 ．．． 0.4	3RA6 $\square \square 0-1$ A $\square 33$	3RA6 $\square \square 0-2 A \square 33$
1／2	0.32 ．．． 1.25	3RA6ロロ0－1B $\square 33$	3RA6 $\square \square 0-2 \mathrm{~B} \square 33$
3	1．．． 4	3RA6ロロ0－1C $\square 33$	3RA6 $\square \square 0-2 \mathrm{C} \square 33$
10	3 ．．． 12	3RA6ロロ0－1D $\square 33$	3RA6 $\square \square 0-2 \mathrm{D} \square 33$
30	8 ．．． 32	3RA6ロロ0－1E $\square 33$	3RA6ロロ0－2E $\square 33$

For standard mounting rail or screw mounting when using the AS－i add－on module
with 1 pair of main circuit terminals，without control circuit terminals

--	$0.1 \ldots 0.4$	3RA6ロロ0－1A \square 34
$1 / 2$	$0.32 \ldots 1.25$	3RA6ロロ0－1B \square 34
3	$1 \ldots 4$	3RA6 $\square \square 0-1 C \square 34$
10	$3 \ldots 12$	3RA6 $\square \square 0-1 D \square 34$
30	$8 \ldots 32$	3RA6ロロ0－1E \square 34

3RA6 $\square \square 0-2 A \square 34$ 3RA6 $\square \square 0-2 B \square 34$ 3RA6 $\square \square 0-2 C \square 34$ 3RA6ロロ0－2D $\square 34$ 3RA6ロロ0－2E $\square 34$

Order No．supplements for rated control supply voltage
－Direct－on－line starter
－Reversing duty starter
－ 24 V AC／DC（for combining with AS－I add－on module）
－ 110 ．．． 240 V AC／DC
${ }^{1)}$ Selection depends on the motor full load amps．Horse Power ratings pro－ vided for reference only．
${ }^{2)}$ A set of 3RA69 40－0A adapters is required for screw mounting．

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

3RA64, 3RA65 compact starters for IO-Link

Selection and ordering data

3RA64 with 3RA69 11-1A
Standard induction motor 3-pole at $600 \mathrm{~V} \mathrm{AC} \mathrm{Standard} \mathrm{output} P$ HP ${ }^{1)}$

Setting range
for solid-state overload release
A
For standard mounting rail or screw moutning, including 1 pair of main circuit terminals and 1 pair of control circuit terminals

-	$0.1 \ldots 0.4$	3RA64 00-1AB42
$1 / 2$	$0.32 \ldots 1.25$	3RA64 00-1BB42
3	$1 \ldots 4$	3RA64 00-1CB42
10	$3 \ldots 12$	3RA64 00-1DB42
30	$8 \ldots 32$	3RA64 00-1EB42
For use in the infeed system for 3RA6, without main circuit terminals, with 1 pair of control circuit terminals		
-	$0.1 \ldots 0.4$	3RA64 00-1AB43
$1 / 2$	$0.32 \ldots 1.25$	3RA64 00-1BB43
3	$1 \ldots 4$	3RA64 00-1CB43
10	$3 \ldots 12$	3RA64 00-1DB43
30	$8 \ldots 32$	3RA64 00-1EB43

3RA65 with 3RA69 11-1A

- Reversing starters

- Rated control supply voltage 24 V DC
- Width 90 mm
- One set of 3RA69 40-0A adapters is required for screw fixing

For standard mounting rail or screw moutning, including 1 pair of

 main circuit terminals and 1 pair of control circuit terminals| - | $0.1 \ldots 0.4$ | 3RA65 00-1AB42 |
| :--- | :--- | :--- |
| $1 / 2$ | $0.32 \ldots 1.25$ | 3RA65 00-1BB42 |
| 3 | $1 \ldots 4$ | 3RA65 00-1CB42 |
| 10 | $3 \ldots 12$ | 3RA65 00-1DB42 |
| 30 | $8 \ldots 32$ | 3RA65 00-1EB42 |

3RA65 00-2AB42
3RA65 00-2BB42
3RA65 00-2CB42
3RA65 00-2DB42
3RA65 00-2EB42
For use in the infeed system for 3RA6, without main circuit terminals, with 1 pair of control circuit terminals

-	$0.1 \ldots 0.4$	3RA65 00-1AB43
$1 / 2$	$0.32 \ldots 1.25$	3RA65 00-1BB43
3	$1 \ldots 4$	3RA65 00-1CB43
10	$3 \ldots 12$	3RA65 00-1DB43
30	$8 \ldots 32$	3RA65 00-1EB43

3RA65 00-2AB43
3RA65 00-2BB43
3RA65 00-2CB43
3RA65 00-2DB43
3RA65 00-2EB43

Overview

Accessories for SIRIUS 3RA6 compact starters

The following accessories are available for the 3RA6 compact starters:

- AS-i add-on module: see AS-Interface Add-On Modules for 3RA6, page 4/14
- External auxiliary switch blocks: Snap-on auxiliary switch as versions $2 \mathrm{NO}, 2 \mathrm{NC}$ and $1 \mathrm{NO}+1 \mathrm{NC}$ with screw or springtype connections; the contacts of the auxiliary switch block open and close jointly with the main contacts of the compact starter. The NC contacts are designed as mirror contacts.
- Control kit: aid for manually closing the main contacts in order to evaluate the wiring and motor direction under conditions of short-circuit protection
- Adapter for screw mounting the compact starter, including push-in lugs
- Main circuit terminals: Available in screw and spring-type terminals
- Main circuit terminals for mixed connection method: With the main circuit terminal for the mixed connection method it is also possible in the main circuit to change over from the screw connection method on the incoming side to the springtype connection method on the outgoing side.
This enables for example the side-by-side mounting of several compact starters and their cost-effective connection using the three-phase busbars on the infeed side. The motors are then directly connected by the quick and reliably contacting spring-type connection method.

Accessories for UL applications

The terminal block for "Self-Protected Combination Motor Controller", type E is available for complying with the clearance and creepage distances according to UL 508.

Accessories for infeed using three-phase busbar systems

The three-phase busbars can be used as an easy, time-saving and clearly arranged means of feeding SIRIUS 3RA6 compact starters with screw connection. Motor starter protectors size S00 and SO can also be integrated.
The busbars are suitable for between 2 and 5 devices. However, any kind of extension up to a maximum summation current of 63 A is possible by clamping the terminals of an additional busbar (rotated by 180°) underneath the terminals of the respective last motor circuit protector.
A connecting piece is required for the combination with motor starter protector size SOO . S00 and SO motor starter protectors of the 3RV2 series do not require the additional connecting piece. The motor starter protectors are supplied by appropriate feeder terminals. Special feeder terminals are required for constructing "Type E Starters" according to UL/CSA.
The three-phase busbar systems are finger-safe but empty connection terminals must be fitted with covers. They are designed for any short-circuit stress which can occur at the output side of connected SIRIUS 3RA6 compact starters or motor starter protectors.

8US Fast Bus busbar adapters for 60 mm systems

The compact starters are mounted directly with the aid of busbar adapters on the Fast Bus busbar systems with 60 mm center-tocenter clearance in order to save space and to reduce infeed times and costs. These starters are suitable for copper busbars with a width from 12 to 30 mm . The busbars can be 4 to 5 mm or 10 mm thick.

The 8US Fast Bus busbar system can be loaded with a maximum summation current of 630A.
The "reversing starter" version requires a device holder along side the busbar adapter for lateral mounting.
The compact starters are snapped onto the adapter and connected on the line side. This prepared unit is then plugged directly onto the busbar system, and is thus connected both mechanically and electrically at the same time.
For more accessories such as incoming and outgoing terminals, flat copper profiles etc., see Section 5 "Fastbus Busbar Systems".

Accessories for operation with closed control cabinet doors

Door-coupling rotary operating mechanisms for standard and emergency-stop applications are available for operating the compact starter with closed control cabinet doors.
Accessories for SIRIUS 3RA6 compact starters in IO-Link version

The following accessories are available specifically for the 3RA64, 3RA65 compact starters:

- The 4SI SIRIUS solid-state module as IO-Link master allows for the simple and economical connection of SIRIUS controls with IO-Link (e.g up to four groups of 4 compact starters) to the multifunctional SIMATIC ET 200S distributed I/O system.
- Additional connection cables for side-by-side mounting of up to 4 compact starters
- Operator panel for local control and diagnostics of up to 4 compact starters coupled to each other

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Accessories

Selection and ordering data

SIRIUS 3RA6 Compact Starters

Accessories

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Accessories

	Modular spacing	Number of motor starter protectors that can be connected			Rated current I_{n} at 690 V	For motor starter protectors	Order No.	Std. pack qty.	Weight approx.
		Without lateral accessories	With lateral auxiliary switch	With auxiliary release					
	mm				A	Size			
Three-phase busbars ${ }^{1}$									
For feedimountedwith touc									
		2	--	--	63	S00, $\mathrm{SO}^{2)}$	3RV1915-1AB	1 unit	0.044
		3	--	--	63	S00, S0 ${ }^{2)}$	3RV1915-1BB	1 unit	0.071
		4	--	--	63	S00, $\mathrm{SO}^{2)}$	3RV1915-1CB	1 unit	0.099
		5	--	--	63	$\mathrm{SOO}, \mathrm{SO}^{2)}$	3RV1915-1DB	1 unit	0.124
3RV1915-1BB	554)	--	2	--	63		3RV1915-2AB		
		--	3	--	63	SOO, SO	3RV1915-2BB		
		--	4	--	63	S00, $\mathrm{SO}^{2)}$	3RV1915-2CB		
		--	5	--	63	S00, S0 ${ }^{2}$	3RV1915-2DB		
3RV1915-1CB		2	--	--			3RV1935-1A		
		3	--	--	108	S2	3RV1935-1B		
		4	--	--	108	S2	3RV1935-1C		
AMM	635)	--	--	2	63	S00, $\mathrm{SO}^{2)}$	3RV1915-3AB		
		--	--	4	63	$\mathrm{SOO}, \mathrm{SO}^{2)}$	3RV1915-3CB		
3RV1915-1DB	$75^{5)}$	--	2	2	108	S2	3RV1935-3A		
		--	3	3	108	S2	3RV1935-3B		
		--	4	4	108	S2	3RV1935-3C		

1) Not suitable for 3 RV2 21 motor starter protectors for motor protection with overload relay function and for 3RV27 and 3RV28 circuit breakers according to UL 489/CSA C22.2 No. 5.
2) For 3RV2 motor starter protectors with auxiliary switches with $1 \mathrm{NO}+1 \mathrm{NC}$, 2 NO and 2 NC mounted on the left (9 mm wide).
3) Approved for motor starter protectors size SO with $I_{\mathrm{n}} \leq 32 \mathrm{~A}$.
4) For 3RV2 motor starter protectors with mounted accessories (18 mm wide). Auxiliary switches with $2 \mathrm{NO}+2 \mathrm{NC}$ or signaling switch (mounted on the
5) For 3RV2 motor starter protectors without accessories mounted left) or with auxiliary release (mounted on the right).
on the side.

SIRIUS 3RA6 Compact Starters

Accessories

SIRIUS 3RA6 Compact Starters

Add-on modules for AS-Interface

Overview

Various AS-i add-on modules are available for communication of the 3RA6 compact starter with the control system using AS-Interface:

- Standard version
- With two local inputs
- With two free external inputs
- With one free external input and one free external output
- With two free external outputs
- For local control

The AS-i add-on modules can be combined only in connection with compact starters with a rated control supply voltage of 24 V AC/DC.

AS-i add-on module for communications controlling

With this new module it is also possible for the connected compact starter to be operated directly using simple switches, i.e. without recourse to AS-i Communication, if required.
"Automatic" mode
NC contacts can be connected to the inputs Y2 and Y4 through the local terminals on the AS-i add-on module. If the " + " connections are connected simultaneously to both local inputs, the AS-i add-on module will be in "Automatic" mode, i.e. it will communicate with the control system through AS-Interface. Local control
Opening the two inputs Y 2 and Y 4 will result in the direct disconnection of the compact starter. Operation through AS-i Communication is ended and the compact starter can now be switched on and off directly using NO contacts (one NO contact per direction of rotation on the reversing starter).
"LED AUX Power" must light up green, the 24 V DC supply must be connected and the AS-i control supply voltage must no longer be applied.

Resetting to "Automatic" mode

Simultaneous application of a "1" signal at the local inputs. The availability bit DI 0 is switched to a " 1 " signal.
If AS-i Communication is reset, the motor is first switched off and then on again when requested by the control system.

Switch with 3 switch positions			
Switch	Automatic	0	Manual
S0	Closed	Open	Open
S1	Closed	Open	Open
S2	Open	Open	Closed

Circuit diagram example for operating a 3RA61 20 direct-on-line starter using an AS-i add-on module for on-site controller

Switch with 2 switch positions		
Switch	Left	Right
S3	Open	Closed
S4	Closed	Open

Circuit diagram example for operating a 3RA62 50 reversing starter using an AS-i add-on module for on-site controller

SIRIUS 3RA6 Compact Starters

Add-on modules for AS-Interface

Selection and ordering data

Connectors for data and auxiliary supply cable
with 2 insulation displacement terminations for standard litz wires $2 \times 0.5 \ldots 0.75 \mathrm{~mm}^{2}$

- Flat, yellow, extender 3RK1901-0NA00 5 units
- Flat, black, extender 3RK1901-0PA00 5 units
0.540

Compact Combination Starters

3RA6 Compact Starters

Infeed systems for 3RA6 - up to 100 A

Overview

The infeed system for 3RA6 compact starters enables far less wiring in the main circuit and, thanks to the easy exchangeability of the compact starters, reduces the usual downtimes for maintenance work during the plant's operating phase.
The infeed system provides the possibility of completely prewiring the main circuit without a compact starter needing to be connected at the same time. As the result of the removable terminals in the main circuit, compact starters can be integrated in an infeed system in an easy manner (without the use of tools).

In addition, the integrated PE bar means it is optionally possible to connect the motor cable directly to the infeed system without additional intermediate terminals. The infeed system for 3RA6 compact starters is designed for summation currents up to 100 A with a conductor cross-section of max. 2/0 AWG on the feeder terminal block.
The infeed system can be mounted on a standard mounting rail or flat surfaces.

Infeed system for 3RA6 compact starters

SIRIUS 3RA6 Compact Starters

Infeed systems for 3RA6 - up to 100 A

(1) Infeed

The 3-phase infeed is available as an infeed with screw connection (4-2 AWG up to 63 A or 0-2/0 AWG up to 100 A) and a an infeed with spring-type connection (4-2 AWG up to 63 A).

The infeed with spring-type terminal can be attached to the left side, as well as the right side, of an expansion module.
The screw terminal infeeds are permanently fitted to the left side of a 3-socket expansion module.
The infeeds with screw connection enable connection of the main conductors (L1, L2, L3) either from above or from below.
The infeeds with screw connection come packaged with 1 end cover, while the infeed with spring-type connection comes packaged with 2 end covers.

2 Three-socket expansion modules

The expansion module with 3 sockets for compact starters is available with screw connection and with spring-type connection.

Expansion modules enable the infeed system to be expanded and can be connected to each other in any number up to a maximum length of 1.2 meters.
Two expansion modules are held together with the help of 2 connecting plates and 1 expansion plug. These assembly parts are included in the scope of supply of the respective expansion module.
When the infeed system for 3RA6 compact starters is used, the compact starters (plug-in modules) are easily mounted and removed even when live.
Optional possibilities:

- PE connection on motor starter side
- Outfeed for external auxiliary devices
- Connection to 3RV29 infeed system
- Integration of SIRIUS 3RV1 and 3RV2 motor starter protectors size S0 up to 25 A (using 3RA68 90-OBA adapter)

(3) Two-socket expansion modules

If only 2 instead of 3 additional sockets are required, then the 2 -socket expansion module is the right choice. It has the same functionality as the 3 -socket expansion module.

(4) Expansion plug

Two expansion modules can be connected together using the expansion plug. Flexible expansion of the infeed system is thus possible.

(5) PE infeeds

This module enables a PE cable to be connected.
The PE infeed can be ordered with screw connection and spring-type connection (2 AWG) and can be fitted on the right or left to the expansion block.

(6) PE expansion plug

The PE expansion plug is inserted from below and enables two PE bars to be connected.

(7) PE tap-off

The PE tap-off is available with screw connection and springtype connection (10-8 AWG). It is snapped into the infeed system from below.

(8) Connecting plates

Two connecting plates are used to hold together 2 adjacent expansion modules.

(9) End covers

On the last expansion module of a row, the slot provided for the expansion plug can be covered by inserting the end cover.
(10) 45 mm adapters for SIRIUS 3 RV motor starter protectors

SIRIUS 3RV1 and 3RV2motor starter protectors size SO with screw connection can be fitted to the adapter, enabling them to be plugged into the infeed system.

Terminal blocks

Using the terminal block, three phase power can be fed out of the infeed system; this means that single-phase, two-phase and three-phase components can also be integrated in the system.
If the end cover is removed, the terminal block can be inserted into an expansion module.

Expansion plug for SIRIUS 3RV29 infeed systems

If the end cover is removed, the expansion plug for the SIRIUS 3RV29 infeed system can be inserted into an expansion module. It connects the infeed system for 3RA6 compact starters with the SIRIUS 3RV29 infeed system.

Maximum rated operational current

The following maximum rated operational currents apply for the components of the infeed system for 3RA6:

Component	Maximum rated operational current
A	

When several expansion modules are mounted side by side, the maximum rated operational current from the 2nd expansion module to the end of the row is 63 A .

Proposal for upstream short-circuit protection devices

The following short-circuit data apply for the components of the infeed system for 3RA6 compact starters:

Conductor crosssection AWG	Inscriptions	Proposal for upstream short-circuit protection device
Short-circuit protection for infeed block (4-2 AWG) with screw connection		
14-2	$I_{\mathrm{d}, \max }=19 \mathrm{kA}, I^{2} t=440 \mathrm{kA}^{2} \mathrm{~s}$	3RV10 41-4JA10
Short-circuit protection for infeed block (0-2/0 AWG) with screw connection		
14-2/0	$I_{\mathrm{d}, \max }=$ approx. 22 kA	3RV10 41-4MA10
Short-circuit protection for infeed block with spring-type connection		
12	$I_{\mathrm{d}, \max }=9.5 \mathrm{kA}, I^{2} t=85 \mathrm{kA}^{2} \mathrm{~S}$	3RV10 21-4DA10
10	$I_{\mathrm{d}, \max }=12.5 \mathrm{kA}, I^{2} t=140 \mathrm{kA}^{2} \mathrm{~s}$	3RV10 31-4EA10
8	$I_{\mathrm{d}, \max }=15 \mathrm{kA}, I^{2} t=180 \mathrm{kA}^{2} \mathrm{~s}$	3RV10 31-4HA10
6-4	$I_{\mathrm{d}, \max }=19 \mathrm{kA}, I^{2} t=440 \mathrm{kA}^{2} \mathrm{~s}$	3RV10 41-4JA10
Short-circuit protection for terminal block		5SY... 1)
16	$I_{\text {d, max }}=7.5 \mathrm{kA}$	
14	$I_{\text {d, max }}=9.5 \mathrm{kA}$	
12	$I_{\text {d, max }}=9.5 \mathrm{kA}$	
10	$I_{\text {d, max }}=12.5 \mathrm{kA}$	

1) To prevent the possibility of short-circuits, the cables on the terminal block must be installed so that they are short-circuit proof according to EN 60439-1 Section 7.5.5.1.2.

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Infeed systems for 3RA6 - up to 100 A

Selection and ordering data

SIRIUS 3RA6 Compact Starters

Infeed systems for 3RA6

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Accessories

SIRIUS 3RA6 Compact Starters

	Terminal blocks			. 0.050
	For integration of single-phase, 2-phase and 3-phase external components	Spring-type terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$	
	- Spring-type terminals	3RV2917-5D		
3RV2917-5D				
Tools for opening spring-type terminals				
	Screwdrivers			
	For all SIRIUS devices with spring-type terminals	Spring-type terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$	
3RA2908-1A	Length approx. 200 mm , $3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, titanium gray/black, partially insulated	3RA2908-1A		. 0.045
System Manual "SIRIUS Compact Starters and Accessories"				
	The system manual can be downloaded free of charge in PDF format from the Internet, see http://support.automation.siemens.com/WW/view/en/ 27136554/133300			

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

General data

More information

| Type |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Size |
| Number of poles |

Permissible rated current of the compact starter,
when several compact starters are mounted side-
by-side on a vertical standard mounting rail
or in the 3RA6 infeed system

- For a control cabinet inside temperature of	$+40^{\circ} \mathrm{C}$	$\%$	100
- For a control cabinet inside temperature of	$+60^{\circ} \mathrm{C}$	$\%$	80

- For a control cabinet inside temperature of $\quad+70^{\circ} \mathrm{C} \quad \%$

Relative air humidity		\%	10 ... 90
Installation altitude		m	Up to 2000 above sea level without restriction
Rated frequency		Hz	50/60
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)		V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$		kV	6
Trip class (CLASS)	Acc. to IEC 60947-4-1, EN 60947-4-1		10/20
Rated short-circuit current I_{q} at AC $50 / 60 \mathrm{~Hz} 480 \mathrm{~V}$	Acc. to IEC 60947-4-1, EN 60947-4-1	kA	$\begin{aligned} & 30 \text { (up to } 12 \mathrm{~A} \text { units) } \\ & 15 \text { (8 ... } 32 \text { A unit) } \\ & \hline \end{aligned}$
Types of coordination	Acc. to IEC 60947-6-2, EN 60947-6-2		Continuous
Power loss $\boldsymbol{P}_{\mathrm{V} \text { max }}$ of all main current paths Dependent on the rated current I_{e} (upper setting range)	$\begin{aligned} & \hline 0.4 \mathrm{~A} \\ & 1.25 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 12 \mathrm{~A} \\ & 32 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \mathrm{mW} \\ & \mathrm{~mW} \\ & \mathrm{~W} \\ & \mathrm{~W} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 100 \\ & 1 \\ & 1.8 \\ & 5.4 \end{aligned}$
Max. switching frequency	$\begin{aligned} & \text { AC-41 } \\ & \text { AC-43 } \\ & \text { AC-44 } \end{aligned}$	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 750 \\ & 250 \\ & 15 \end{aligned}$

Drive losses

Active power

At 24 V		
$\bullet 0.1 \ldots 12 \mathrm{~A}$	W	2.7
$\bullet 8 \ldots 32 \mathrm{~A}$	W	2.95
At $110 \ldots 240 \mathrm{~V}$		
$\bullet 0.1 \ldots 12 \mathrm{~A}$	W	3.4
$\bullet 8 \ldots 32 \mathrm{~A}$	W	3.8

Overload function
$\begin{array}{ll}\text { Ratio of lower to upper current mark } & 1: 4\end{array}$
Shock resistance (sine-wave pulse) $\quad a=60 \mathrm{~m} / \mathrm{s}^{2}=6 \mathrm{~g}$ with 10 ms ; for every 3 shocks in all axes

Vibratory load		$f=4 \ldots 5.8 \mathrm{~Hz} ; d=15 \mathrm{~mm} ; f=5.8 \ldots 500 \mathrm{~Hz} ; a=20 \mathrm{~m} / \mathrm{s}^{2} ; 10 \mathrm{cycles}$
Degree of protection	Acc. to IEC 60947-1	IP20
Touch protection	Acc. to IEC/EN 61140	Finger-safe
Isolating features of the compact starter	Acc. to IEC/EN 60947-3	Yes: Isolation is assured only by moving the actuator into the *OFF* position
Main and EMERGENCY-STOP switch characteristics of the compact starter and accessories	Acc. to IEC 60204	Yes

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

General data

1) To maintain maximum interference immunity in a harsh electromagnetic environment, additional overvoltage protection should be provided in the control supply current circuit. A suitable choice is for example the Dehn Blitzductor BVT AD 24 V, Art. No. 918402 or an equivalent protective element.
Manufacturer: DEHN+SÖHNE GmbH+Co. KG, Hans-Dehn-Straße. 1, Postfach 1640, D-92306 Neumarkt

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

General data

Type		3RA61 20-.पB3., 3RA62 50-.ロB3. $\square=A, B, C$ or D Rated operational current $\leq 12 \mathrm{~A}$				3RA61 20-.EB3., 3RA62 50-.EB3. Rated operational current 32 A			
Rated control supply voltage	V	24 AC		24 DC		24 AC		24 DC	
Inrush peak current	A	0.59		0.47		0.59		0.47	
Hold current	A	0.13		0.12		0.17		0.14	
Closed	W	2.8		2.9		3.5		3.1	
Operating times, typical - On - Off	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & <160 \\ & <35 \end{aligned}$		$\begin{aligned} & <140 \\ & <35 \end{aligned}$		$\begin{aligned} & <160 \\ & <30 \end{aligned}$		$\begin{aligned} & <140 \\ & <30 \end{aligned}$	
Type		$\begin{aligned} & \text { 3RA61 20-. } \square \text { E3., 3RA62 50-. } \square \text { P3. } \\ & \square=\text { A, B, C or D } \\ & \text { Rated operational current } \leq 12 \text { A } \end{aligned}$				3RA61 20-.EE3., 3RA62 50-.EE3. Rated operational current 32 A			
Rated control supply voltage	V	110 AC	240 AC	110 DC	240 DC	110 AC	240 AC	110 DC	240 DC
Inrush peak current	A	0.24	0.40	0.17	0.29	0.24	0.40	0.17	0.29
Hold current	A	0.06	0.08	0.03	0.02	0.06	0.07	0.04	0.03
Closed	W	3.8	6	3.1	5.1	3.7	5.2	3.4	5.8
Operating times, typical - On - Off	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \\ & \hline \end{aligned}$	$\begin{aligned} & <160 \\ & <50 \\ & \hline \end{aligned}$	$\begin{aligned} & <140 \\ & <80 \\ & \hline \end{aligned}$	$\begin{aligned} & <150 \\ & <50 \\ & \hline \end{aligned}$	$\begin{aligned} & <140 \\ & <70 \end{aligned}$	$\begin{aligned} & <160 \\ & <40 \end{aligned}$	$\begin{aligned} & <140 \\ & <60 \\ & \hline \end{aligned}$	$\begin{aligned} & <150 \\ & <40 \\ & \hline \end{aligned}$	$\begin{aligned} & <140 \\ & <60 \\ & \hline \end{aligned}$
Type		$\text { 3RA64 00-.םB4., 3RA65 00-. } \square \mathrm{B} 4 .$ $1=A, B, C \text { or } D$ Rated operational current $\leq 12 \mathrm{~A}$				3RA64 00-.EB4., 3RA65 00-.EB4. Rated operational current 32 A			
Rated control supply voltage	V	24 DC				24 DC			
Inrush peak current	A	0.39				0.53			
Hold current	A	0.13				0.15			
Closed	W	2.9				3.4			
Operating times, typical ${ }^{11}$ - On - Off	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & <140 \\ & <35 \end{aligned}$				$\begin{aligned} & <140 \\ & <30 \end{aligned}$			

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

General data

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

General data

$\begin{aligned} & \text { Type } \\ & \text { Size } \\ & \text { Number of poles } \end{aligned}$			$\begin{aligned} & \text { 3RA61 } \\ & \text { S0 } \\ & 3 \end{aligned}$	3RA62	3RA64	3RA65
External auxiliary switch block, internal auxiliary switch						
Endurance in operating cycles - Mechanical endurance - Electrical endurance	AC-15, 230 V - At 6 A - At 3 A - At 1 A - At 0.3 A DC-13, 24 V - At 6 A - At 3 A - At 0.5 A - At 0.2 A DC-13, 110 V - At 1 A - At 0.55 A - At 0.3 A - At 0.1 A - At 0.04 A DC-13, 220 V - At 0.3 A - At 0.1 A - At 0.05 A - At 0.018 A		$\begin{aligned} & 10000000 \\ & 200000 \\ & 500000 \\ & 2000000 \\ & 10000000 \\ & 30000 \\ & 100000 \\ & 2000000 \\ & 10000000 \\ & 40000 \\ & 100000 \\ & 300000 \\ & 2000000 \\ & 10000000 \\ & 110000 \\ & 650000 \\ & 2000000 \\ & 10000000 \end{aligned}$		3000	
Contact stability	At 17 V and 5 mA	Operating cycles	1 incorrect switching operation per 100000000			
Short-circuit protection - Short-circuit current $I_{\mathrm{K}} \leq 1.1 \mathrm{kA}$ - Short-circuit current $I_{K}<400 \mathrm{~A}$	Fuse links operational class gG - NEOZED Type 5SE - DIAZED Type 5SB - LV HRC Type 3NA Miniature circuit breaker up to 230 V with C characteristic	A A	10 10			
Signaling switches						
Endurance in operating cycles - Mechanical endurance - Electrical endurance AC-15	At 230 V and 3 A		$\begin{aligned} & 20000 \\ & 6050 \end{aligned}$			
Contact stability	At 17 V and 5 mA	Operating cycles	1 incorrect	hing op	er 1000	
Short-circuit protection - Short-circuit current $I_{\mathrm{K}} \leq 1.1 \mathrm{kA}$ - Short-circuit current $I_{\mathrm{K}}<400 \mathrm{~A}$	Fuse links operational class gG - NEOZED Type 5SE - DIAZED Type 5SB - LV HRC Type 3NA Miniature circuit breaker up to 230 V with C characteristic	A A	6 6			
Overload (short-circuit current $I_{\mathrm{K}} \leq 1.1 \mathrm{kA}$)	Fuse links operational class gG - NEOZED Type 5SE - DIAZED Type 5SB - LV HRC Type 3NA	A	4			

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

3RA6 - up to 32 A

Technical data

Connection type		(G) Screw connection		Spring-type connection	
Max. rated current $I_{\text {max }}$		12 A	32 A	12 A	32 A
Conductor cross-sections of main circuit terminals					
Tools		Posidrive size 2		$(3.5 \times 0.5) \mathrm{mm}, 8 \mathrm{WA2} 803$	
Prescribed tightening torque	NM	2 ... 2.5		--	
Minimum/maximum conductor cross-sections - Solid	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(1.5 \ldots 2.5) \\ & 2 \times(2.5 \ldots 6) \\ & \text { Мах. } 1 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 6) \\ & \operatorname{Max} .1 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times(1.5 \ldots 6) \\ & \operatorname{Max} .1 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 6) \\ & \text { Max. } 1 \times 10 \end{aligned}$
- Finely stranded without ferrule	mm^{2}		--	$2 \times(1.5 \ldots 6)$	$2 \times(2.5 \ldots 6)$
- Finely stranded with ferrule	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(1.5 \ldots 2.5) \\ & 2 \times(2.5 \ldots 6) \end{aligned}$	$2 \times(2.5 \ldots 6)$	$2 \times(1.5 \ldots 6)$	$2 \times(2.5 \ldots 6)$
- AWG cables	AWG AWG AWG	$\begin{aligned} & 2 \times(16 \ldots 14) \\ & 2 \times(14 \ldots 10) \\ & 1 \times 8 \end{aligned}$	$\begin{aligned} & 2 \times(14 \ldots 10) \\ & 1 \times 8 \end{aligned}$	$\begin{aligned} & 2 \times(16 \ldots 10) \\ & 1 \times 8 \end{aligned}$	$\begin{aligned} & 2 \times(14 \ldots 10) \\ & 1 \times 8 \end{aligned}$
Connection type		(i) Screw connection		OO Spring-type connection	
Conductor cross-sections of control circuit terminals					
Tools		Posidrive size 2		$(3.0 \times 0.5) \mathrm{mm}$, DIN ISO $2380-1 \mathrm{~A}$	
Prescribed tightening torque	NM	0.8... 1.2		--	
Minimum/maximum conductor cross-sections - Solid	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 1 \times(0.5 \ldots 4) \\ & 2 \times(0.5 \ldots 2.5) \end{aligned}$		$2 \times(0.25 \ldots 1.5)$	
- Finely stranded without ferrule	mm^{2}	--		$2 \times(0.25 \ldots 1.5)$	
- Finely stranded with ferrule	mm^{2} mm^{2}	$\begin{aligned} & 1 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots 1.5) \end{aligned}$		$2 \times(0.25 \ldots 1.5)$	
- AWG cables	AWG	$2 \times(20 \ldots 14)$		$2 \times(24 \ldots 16)$	
Conductor cross-sections of the auxiliary switch for compact starters					
Order No.		3RA69 1.-1A		3RA69 1.-2A	
Tools		Posidrive size 2		(2.5 $\times 0.4$) mm, 8WA2 807	
Prescribed tightening torque	NM	0.8 ... 1.2		--	
Conductor cross-sections - Solid	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) \\ & 2 \times(0.75 \ldots 2.5) \\ & 2 \times(1 \ldots 4) \end{aligned}$		$2 \times(0.25 \ldots 2.5)$	
- Finely stranded without ferrule	mm^{2}	--		$2 \times(0.25 \ldots 2.5)$	
- Finely stranded with ferrule	mm^{2} mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) \\ & 2 \times(0.75 \ldots 2.5) \end{aligned}$		$2 \times(0.25 \ldots 1.5)$	
- AWG cables	AWG AWG AWG	$\begin{aligned} & 2 \times\left(\begin{array}{ll} 20 \ldots 16) \\ 2 \times(18 \ldots & 14) \\ 1 \times 12 \end{array}\right. \end{aligned}$		$2 \times(24 \ldots 14)$	

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

3RA6 - up to 32A

Technical data

Order No.			3RA6970-3A, 3RA6970-3B, 3RA6970-3C, 3RA6970-3D, 3RA6970-3E
General data of the AS-i add-on module			
Permissible ambient temperature - Storage - Transport	Acc. to IEC/EN 60721-3-1 Acc. to IEC/EN 60721-3-2	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+70 \\ & -25 \ldots+70 \end{aligned}$
Degree of protection	Acc. to IEC/EN 60947-1		IP20
EMC interference immunity	Acc. to EN 50295		
Conductor-related interference	BURST acc. to IEC/EN 61000-4-4	kV	1/2
Electrostatic discharge	Acc. to IEC/EN 61000-4-2	kV	6/8
Field-related interference	Acc. to IEC/EN 61000-4-3	V/m	10 (80 MHz ... 2.7 GHz)
Maximum pick-up current		mA	400
Maximum hold current		mA	200
Power consumption, max.		mA	30
10 code			7
ID code			A
ID2 code			E
Order No. Connection type			3RA6970-3B, 3RA6970-3C, 3RA6970-3D, 3RA6970-3E
			(i) Screw connection
Conductor cross-sections of the AS-i add-on module			
Tools			Posidrive size 1
Prescribed tightening torque		NM	0.5 ... 0.6
Conductor cross-sections - Solid		mm^{2}	$1 \times(0.5 \ldots 2.5)$
		mm^{2}	$2 \times(0.5 \ldots 1.0)$
- Finely stranded with ferrule		mm^{2}	$1 \times(0.5 \ldots 2.5)$ $2 \times(0.5 \ldots 10)$
- AWG cables		AWG	$1 \times(20 \ldots 12)$

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Infeed systems for 3RA6 - up to 100 A

Technical data

) To prevent the possibility of short-circuits, the cables on the terminal block must be installed so that they are short-circuit resistant according to EN 60439-1 Section 7.5.5.1.2

Type Connection type		3RV29.
		OO Spring-type connection
Conductor cross-sections of terminal block		
Order No.		3RV29 17-5D
Conductor cross-sections - Solid - Finely stranded with ferrule - Finely stranded without ferrule - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 1.5 \ldots 6 \\ & 1.5 \ldots 4 \\ & 1.5 \ldots 6 \\ & 15 \ldots 10 \end{aligned}$

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Infeed systems for 3RA6 - up to 100 A

Technical data

Conductor cross-sections of infeed with screw connection
10-2/0 AWG (L1, L2, L3) ${ }^{1)}$

Order No.	3RA68 13-8AB, 3RA68 13-8AC	
Tools	SW	4
Specified tightening torque	NM	$6 \ldots 8$

Conductor cross-sections

- Solid
- Stranded
- Finely stranded with ferrule
- Finely stranded without ferrule
- AWG cables

Connection type

Conductor cross-sections of infeed with spring-type

connection 10-3 AWG (L1, L2, L3) ${ }^{1}$) and PE infeed 3 AWG
Order No.

Order No.		3RA68 30-5AC, 3RA68 60-5AC			
Tools	8WA2 806 mm	5.5×0.8			
Conductor cross-sections - Solid - Stranded - Finely stranded with ferrule - Finely stranded without ferrule - AWG cables	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 4 \ldots 16 \\ & 4 \ldots 35 \\ & 4 \ldots 25 \\ & 6 \ldots 25 \\ & 10 \ldots 3 \\ & \hline \end{aligned}$			
Connection type		(1) Screw connection		OO Spring-type connection	
Conductor cross-sections of infeed with screw connection 4-2 AWG (T1, T2, T3 $)^{2}$), infeed with screw connection 0-2/0 AWG (T1, T2, T3) ${ }^{2}$) 2-socket and 3-socket expansion modules (T1, T2, T3) ${ }^{2}$) and PE tap-off 10-8 AWG					
Order No.		3RA68 12-8AB, 3RA68 13-8AB, 3RA68 22-0AB, 3RA68 23-0AB, 3RA68 70-4AB		3RA68 12-8AC, 3RA68 13-8AC, 3RA68 22-0AC, 3RA68 23-0AC, 3RA68 70-3AC	
Tools		Posidrive size 2		$(3.5 \times 0.5) \mathrm{mm}, 8 \mathrm{WA} 2803$	
Specified tightening torque	NM	$2 . .2 .5$		--	
Maximum rated current	A	12	32	12	32
Conductor cross-sections - Solid	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 2.5) \\ & 2 \times(2.5 \ldots 6) \\ & \max .1 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 6) \\ & \max .1 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times(1.5 \ldots 6) \\ & \max .1 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 6) \\ & \max .1 \times 10 \end{aligned}$
- Finely stranded with ferrule	mm^{2}			$2 \times(1.5 \ldots 6)$	$2 \times(2.5 \ldots 6)$
- Finely stranded without ferrule	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 2.5) \\ & 2 \times(2.5 \ldots 6) \end{aligned}$	$2 \times(2.5 \ldots 6)$	$2 \times(1.5 \ldots 6)$	$2 \times(2.5 \ldots 6)$
- AWG cables	AWG AWG AWG	$\begin{aligned} & 2 \times(16 \ldots 14) \\ & 2 \times(14 \ldots .10) \\ & 1 \times 8 \end{aligned}$	$\begin{aligned} & 2 \times(14 \ldots 10) \\ & 1 \times 8 \end{aligned}$	$\begin{aligned} & 2 \times(16 \ldots 10) \\ & 1 \times 8 \end{aligned}$	$\begin{aligned} & 2 \times(14 \ldots 10) \\ & 1 \times 8 \end{aligned}$

1) L1, L2, L3 main conductors on input side.
2) $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3$ main conductors on outp rut side.

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

3RA6 - up to 32 A

Dimensional drawings

Direct-on-line starters and reversing starters

Schematics

3RA61 direct-on-line starters

Schematic for 3RA61 direct-on-line starters (main circuit)

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Dimensional drawings

3RA62 reversing starters

Schematic for 3RA62 reversing starters (main circuit)

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Infeed systems for 3RA6 - up to 100 A

Dimensional drawings

Infeed with screw connection 0-2/0 AWG on left with fixed 3-socket expansion module with outgoing screw terminals

Infeed with screw connection 4-2 AWG on left with fixed 3-socket expansion module with outgoing screw terminals

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Infeed with screw connection 0-2/0 AWG on left with fixed 3-socket expansion module with outgoing spring-type terminals

Infeed with screw connection 4-2 AWG on left with fixed 3-socket expansion module with outgoing spring-type terminals

Infeed with spring-type terminals

Compact Combination Starters

SIRIUS 3RA6 Compact Starters

Infeed systems for 3RA6 - up to 100 A

3-socket expansion module and 2-socket expansion module with outgoing screw terminals

3-socket expansion module and 2-socket expansion module with outgoing spring-type terminals

3RA2 Starters

Selection and ordering data

3RA21 10

3RA21 20

Rated control supply voltage $50 / 60 \mathrm{~Hz} 110 / 120$ V AC With screw connections

- The motor starter protector and contactor are mechanically and electrically connected by means of the link module.
- Auxiliary switches ${ }^{1)}$ on the motor starter protector and the contactor can be easily fitted due to the modular system.
- Integrated auxiliary switches:
- Contactor size SOO: 1 NO;
- Contactor size SO: 1 NO + 1 NC

Combination Starter, UL508 Type F

All size S00 and SO devices can be applied as Combination Starters with the addition of either of these line side connectors: 3RV29 28-1H, 3RV29 25-5EB or 3RV29 28-1K.

Order No. supplement for:

- Standard DIN rail or screw mounting with no additional auxiliaries
- Standard DIN rail or screw mounting with 1 SPDT NO/NC MSP auxiliary (S00 frame contactor has 1 NO auxiliary and SO frame contactor has 1NO/1NC auxiliary)
- With Fast Bus adaptor and no additional auxiliaries
- With Fast Bus adaptor and 1 SPDT NO/NC MSP auxiliary
(SOO frame contactor has 1 NO auxiliary and SO frame contactor has $1 \mathrm{NO} / 1 \mathrm{NC}$ auxiliary)

1) For auxiliary switches see Accessories page $4 / 44$

2) Selection depends on the motor full load amps.

HP ratings for reference only.
3) Used only for mounting starter on 8US Fast Bus busbar systems.

3RA2 Starters

Direct－on－line starting

For $\mathbf{3 5 m}$ standard mounting rail or screw mounting
－The motor starter protector and contactor are mechanically and electrically connected by means of the link module．
－Auxiliary switches ${ }^{1}$ ）on the motor starter protector and the contactor can be easily fitted due to the modular system．
－Integrated auxiliary switches：
－Contactor size S2： 1 NO \＆ 1 NC
－Contactor size S3： 1 NO \＆ 1 NC

Combination Starter，UL508 Type F

－Size S2 devices can be applied as Combination Starters． For versions of 50A or higher，the addition of a 3RV2938－1K line side phase barrier is required．
－Size S3 devices can be applied as Combination Starters with the addition of a 3RT2946－4GA07 line side terminal kit

24V UC											
3	7.5	10	15	30	40	65	22．．． 32	3RA21 3 \square－4EA35－■NB3	S2	3RT2035－1NB30	
3	10	15	15	40	50	65	28．．． 36	3RA21 3■－4PA36－■NB3		3RV20 31－4PA10	
3	10	15	15	40	50	65	32．．． 40	3RA21 3口－4UA36－■NB3		－3RT2036－1NB30	
3	10	15	15	40	50	65	35．．． 45	3RA21 3口－4VA36－■NB3		3RV20 31－4VA10 $]$	3RA2931－1AA00
5	10	20	20	50	50	65	42．．． 52	3RA21 3■－4WA37－■NB3		3RV20 31－4WA10 3RT2037－1NB30	3RA2932－1AA00
5	15	20	25	50	60	20	49．．． 59	3RA21 3■－4XA38－■NB3		3RV20 31－4XA10	（must be ordered
5	15	20	25	50	60	20	54．．． 65	3RA21 3■－4JA38－\square NB3		3RV20 31－4JA10－3RT2038－1NB30	separately）
7.5	15	25	30	60	60	65	28．．． 40	3RA21 4D－4FB45－■NB3	S3	3RV20 41－4FA10 ］$]$	
7.5	15	25	30	60	60	65	36．．． 50	3RA21 4■－4HB45－■NB3		3RV20 41－4HA10－3RT2045－1NB30	
7.5	15	25	30	60	60	65	45．．． 63	3RA21 4■－4JB45－■NB3		3RV20 41－4JA10	
10	20	30	30	75	75	65	57．．． 75	3RA21 4■－4KB46－■NB3		3RV20 41－4KA10	RA1941－1BA00
10	20	30	30	75	75	65	65．．． 84	3RA21 4■－4RB46－■NB3		3RV20 41－4RA10－3RT2046－1NB30	
10	20	30	30	75	－	65	70．．． 90	3RA21 4■－4YB46－■NB3		3RV20 41－4YA10 ］	
10	20	30	40	75	－	65	80．．． 100	3RA21 4■－4MB47－■NB3		3RV20 41－4MA10 3RT2047－1NB30 」	

Order No．supplement for：
－Standard DIN rail or screw mounting with no additional auxiliaries $\quad \mathbf{0} \quad \mathbf{0}$
－Standard DIN rail or screw mounting with 1 SPDT NO／NC MSP auxiliary （S2 frame contactor has 1NO／1NC integrated auxiliary）
（S3 frame contactor has 1NO top mounted auxiliary）
1 （S3）

1）For auxilary switches，see accessories page $4 / 44$ ．
2）Selection depends on motor full load amps．
Horsepower ratings for reference only．
3）Adapters for standard mounting rail are included for all S3 starters and optional to be ordered as accessories for S2 non－reversing starters．

Note：
In the S2 frame，for 100kA SCCR versions，replace the prefix 3RA213x with 3RA215x．Rating exceptions would be the 59A and 65A versions having a 30kA SCCR at 480Y／277V．For UL 508 type E／F，order 3RV2938－1K Phase Barrier for field installation on all versions．

Combination Starters \＆Starters for Group Installation

3RA2 Starters

Rated control supply voltage 24 V DC With screw connections

－The motor starter protector and contactor are mechanically and electrically connected by means of the link module．
－Auxiliary switches ${ }^{11}$ on the motor starter protector and the con－ tactor can be easily fitted due to the modular system．
－Integrated auxiliary switches：
－Contactor size SOO： 1 NO；
－Contactor size SO： 1 NO＋ 1 NC

Combination Starter，UL508 Type F

All size S00 and SO devices can be applied as Combination Starters with the addition of either of these line side connectors： 3RV29 28－1H，3RV29 25－5EB or 3RV29 28－1K．

Size	UL Data							FLA setting range inverse－ time delayed overload release		Consisting of the following single devices			Assembled starter	Weight approx．
	Single HP rat	－phase ings	Three－ HP rat	phase ${ }^{2}$ ings			$\begin{aligned} & \text { SCCR } \\ & \text { at } \\ & 480 \mathrm{~V} \end{aligned}$			Motor starter protector	＋Contactor	＋Link module ＋Busbar	Screw terminals	
	115 V	230 V	200 V	230 V	460 V	575 V						adapter ${ }^{3}$	Order No．	kg
Selection depends on motor full load amps														
										3RV20	3RT20	3RA		
S00	－－	－－	－－	－－	－－	－－	65	0.11	．．． 0.16	11－0AA10	15－1BB41	1921－1DA00	3RA21 1ロ－0Aロ15－1BB4	0.630
	－－	－－	－－	－－	－－	－－	65	0.14	．．． 0.2	11－OBA10		＋8US1251－	3RA21 1口－0BD15－1BB4	0.630
	－－	－－	－－	－－	－－	－－	65	0.18	．．． 0.25	11－0CA10		5DS10	3RA21 1口－0CD15－1BB4	0.630
	－－	－－	－－	－－	－－	－－	65	0.22	．． 0.32	11－0DA10			3RA21 1口－0D ${ }^{\text {a }} 15-1 \mathrm{BB} 4$	0.630
	－－	－－	－－	－－	－－	－－	65	0.28	．．． 0.4	11－0EA10			3RA21 1口－0ED15－1BB4	0.630
	－－	－－	－－	－－	－－	－－	65	0.35	．．． 0.5	11－OFA10			3RA21 1■－0F口15－1BB4	0.630
	－－	－－	－－	－－	－－	－－	65	0.45	．．． 0.63	11－0GA10			3RA21 1口－0G口15－1BB4	0.630
	－－	－－	－－	－－	－－	－－	65	0.55	．．．0．8	11－0HA10			3RA21 1口－0HD15－1BB4	0.630
	－－	－－	－－	－－	－－	1／2	65	0．7．．		11－0JA10			3RA21 1口－0J口15－1BB4	0.630
	－－	－－	－－	－－	1／2	1／2	65	0．9．．	． 1.25	11－0KA10			3RA21 1口－0Kロ15－1BB4	0.630
	－－	1／10	－－	－－	3／4	3／4	65	1．1．．	． 1.6	11－1AA10			3RA21 1－－1A口15－1BB4	0.630
	－－	1／8	－－	－－	3／4	1	65	1．4．．	． 2	11－1BA10			3RA21 1－1BD15－1BB4	0.630
	－－	1／6	1／2	1／2	1	11／2	65	1．8．．	． 2.5	11－1CA10			3RA21 1ロ－1C口15－1BB4	0.630
	1／10	1／4	1／2	3／4	11／2	2	65	2．2．．	． 3.2	11－1DA10			3RA21 1－1D ${ }^{\text {a }}$ 15－1BB4	0.630
	1／8	1／3	3／4	3／4	2	3	65	2．8．．	． 4	11－1EA10				0.630
	1／6	1／2	1	1	3	3	65	3．5．．	． 5	11－1FA10			3RA21 1口－1Fロ15－1BB4	0.630
	1／4	1／2	1	11／2	3	5	65	4．5．．	． 6.3	11－1GA10			3RA21 1口－1G口15－1BB4	0.630
	1／3	1	2	2	5	5	65	5．5．．	． 8	11－1HA10	16－1BB41		3RA21 1－1HD16－1BB4	0.630
	1／2	11／2	2	3	5	$71 / 2$	65	7．．．	10	11－1JA10			3RA21 1口－1J口16－1BB4	0.630
	1／2	2	3	3	$71 / 2$	10	65	9．．．		11－1KA10	17－1BB41		3RA21 1口－1Kロ17－1BB4	0.630
	1	2	3	5	10		65	11．．．		11－4AA10	18－1BB41		3RA21 1■－4AD18－1BB4	0.630
S0	1／6	1／2	1	1	3	3	65	3．5．．	． 5	11－1FA10	24－1BB40	2921－1BA00	3RA21 2口－1Fロ24－0BB4	0.948
	1／4	1／2	1	11／2	3	5	65	4．5．．	． 6.3	11－1GA10		＋8US1251－	3RA21 2■－1Gロ24－0BB4	0.948
	1／3	1	2	2	5	5	65	5．5．．	． 8	11－1HA10		5NT10	3RA21 2－1HD24－0BB4	0.948
	1／2	11／2	2	3	5	71／2	65			11－1JA10			3RA21 2－－1J口24－0BB4	0.948
	1／2	2	3	3	$71 / 2$	10	65	9．．．	12.5	11－1KA10			3RA21 2口－1Kロ24－0BB4	0.948
	1	2	3	5	10	－－	65	11．．．		21－4AA10	26－1BB40		3RA21 2■－4A $\square 26$－0BB4	0.948
	11／2	3	5	5	10	－－	65	14．．．		21－4BA10			3RA21 2■－4Bロ26－0BB4	0.948
	$11 / 2$	3	5	$71 / 2$	15	－－	50	17．．．		21－4CA10	27－1BB40		3RA21 2■－4C口27－0BB4	0.948
	2	3	5	$71 / 2$	15	－－	50	20．．．	25	21－4DA10			3RA21 2■－4D $\square 27-0 \mathrm{BB} 4$	0.948
	2	5	$71 / 2$	10	20	－－	50	27．．．	32	21－4EA10			3RA21 2口－4ED27－0BB4	0.948

Order No．supplement for：
－Standard DIN rail or screw mounting with no additional auxiliaries
－Standard DIN rail or screw mounting with 1 SPDT NO／NC MSP auxiliary （S00 frame contactor has 1NO auxiliary and SO frame contactor has 1NO／1NC auxiliary）
－With Fast Bus adaptor and no additional auxiliaries
－With Fast Bus adaptor and 1 SPDT NO／NC MSP auxiliary
（SOO frame contactor has 1 NO auxiliary and SO frame contactor has 1NO／1NC auxiliary）

1）For auxiliary switches，see Accessories page 4／44．
2）Selection depends on the concrete motor full load amps．
HP ratings for reference only．
3）Use only for mounting starter on 8US Fast Bus busbar systems．

3RA2 Starters

Non－Reversing Fast Bus ${ }^{\text {® }}$－AC and DC Coil

Selection and ordering data

Direct－on－line starting

For 60mm Fast Bus busbar systems
－The motor starter protector and contactor are mechanically and electrically connected by means of the link module．
－Auxiliary switches ${ }^{1}$ ）on the motor starter protector and the contactor can be easily fitted due to the modular system．
－Integrated auxiliary switches：
－Contactor size S2： 1 NO \＆ 1 NC
－Contactor size S3： 1 NO \＆ 1 NC

Combination Starter，UL508 Type F

－Size S2 devices can be applied as Combination Starters． For versions of 50A or higher，the addition of a 3RV2938－1K line side phase barrier is required．
－Size S3 devices can be applied as Combination Starters with the addition of a 3RT1946－4GA07 line side terminal kit

24V UC											
3	7.5	10	15	30	40	65	22．．． 32	3RA21 3■－4ED35－■NB3	S2	3RV20 31－4EA10 3RT2035－1NB30	
3	10	15	15	40	50	65	28．．． 36	3RA21 3■－4PD36－■NB3		3RV20 31－4PA10	
3	10	15	15	40	50	65	32．．． 40	3RA21 3口－4UD36－－NB3		3RV20 31－4UA10－3RT2036－1NB30	3RA2931－1AA00
3	10	15	15	40	50	65	35．．． 45	3RA21 3口－4VD36－■NB3		3RV20 31－4VA10 」	＋+
5	10	20	20	50	50	65	42．．． 52	3RA21 3■－4WD37－■NB3		3RV20 31－4WA10 3RT2037－1NB30	1261－6MT10
5	15	20	25	50	60	20	49．．． 59	3RA21 3口－4XD38－■NB3		3RV20 31－4XA10	
5	15	20	25	50	60	20	54．．． 65	3RA21 3■－4JD38－■NB3		3RV20 31－4JA10－	
7.5	15	25	30	60	60	65	28．．． 40	3RA21 4■－4FD45－पNB3	S3	3RV20 41－4FA10 7	
7.5	15	25	30	60	60	65	36．．． 50	3RA21 4■－4HD45－■NB3		3RV20 41－4HA10－3RT2045－1NB30	
7.5	15	25	30	60	60	65	45．．． 63	3RA21 4■－4JD45－■NB3		3RV20 41－4JA10 」	3RA1941－1BA00
10	20	30	30	75	75	65	57．．． 75	3RA21 4■－4KD46－■NB3		3RV20 41－4KA10 7	＋
10	20	30	30	75	75	65	65．．． 84	3RA21 4■－4RD46－■NB3		3RV20 41－4RA10－3RT2046－1NB30	8US1211－4TR00
10	20	30	30	75	－	65	75．．． 93	3RA21 4■－4YD46－■NB3		3RV20 41－4YA10	
10	20	30	40	75	－	65	80．．． 100	3RA21 4■－4MD47－■NB3		3RV20 41－4MA10 3RT2047－1NB30	

Order No．supplement for：
－Standard DIN rail or screw mounting with no additional auxiliaries 0
－Standard DIN rail or screw mounting with 1 SPDT NO／NC MSP auxiliary （S2 frame contactor has 1NO／1NC integrated auxiliary）
（S3 frame contactor has 1NO top mounted auxiliary）

0 （S2）

1 （S3）
1）For auxiliary switches，see Accessories page 4／44
2）Selection depends on motor full load amps． Horsepower ratings for reference only．

Note：
In the S2 frame，for 100kA SCCR versions，replace the prefix 3RA213x with 3RA215x．Rating exceptions would be the 59A and 65A versions having a 30kA SCCR at 480Y／277V．For UL 508 type E／F，order 3RV2938－1K Phase Barrier for field installation on all versions．

Combination Starters \& Starters for Group Installation

3RA2 Starters

Reversing, AC Coil - up to 22 A

Selection and ordering data

Rated control supply voltage $50 / 60 \mathrm{~Hz}$ 110/120 V AC With screw connections

- The motor starter protector and contactor are mechanically and electrically connected by means of the link module.
- Auxiliary switches ${ }^{1)}$ on the motor starter protector and the contactor can be easily fitted due to the modular system.
- With the contactor SO, an integrated NO contact is available for free use.

Combination Starter, UL508 Type F

All size SOO and SO devices can be applied as Combination Starters with the addition of either of these line side connectors: 3RV29 28-1H, 3RV29 25-5EB or 3RV29 28-1K.

Size	UL Data							FLA setting range inversetime delayed overload release	Consisting of the following single devices			Assembled starter		Weight approx.
	Single HPra	-phase ings	Three HP ra	phase ${ }^{2}$ ings			$\begin{aligned} & \text { SCCR } \\ & \hline \end{aligned}$		Motor starter protector	$\begin{aligned} & +2 \text { contac- } \\ & \text { tors } \end{aligned}$	+ Link module + Assembly kit	Screw ter	nals (i)	
	115 V	230 V	200 V	230 V	460 V	575 V	kA	$\text { A } \leftrightarrows$				Order No.		kg
Selection depends on motor full load amps														
3RV20 3RT20 3RA														
S00	--	--	--	--	--	--	65	0.11..0.16	11-0AA10	15-1AK62	1921-1DA00	3RA22 10	-15-2AK6	0.824
	--	--	--	--	--	--	65	0.14...0.2	11-0BA10		+ 2913-2AA1 ${ }^{4)}$	3RA22 10	-15-2AK6	0.824
	--	--	--	--	--	--	65	0.18...0.25	11-0CA10		+ 2913-1DB1 (RS)	3RA22 10	-15-2AK6	0.824
	--	--	--	--	--	--	65	0.22...0.32	11-0DA10			3RA22 10	-15-2AK6	0.824
	--	--	--	--	--	--	65	0.28...0.4	11-0EA10			3RA22 10	-15-2AK6	0.824
	--	--	--	--	--	--	65	0.35...0.5	11-0FA10			3RA22 10	$\square 15-2 A K 6$	0.824
	--	--	--	--	--	--	65	0.45... 0.63	11-OGA10			3RA22 10	-15-2AK6	0.824
	--	--	--	--	--	--	65	0.55..0.8	11-0HA10			3RA22 10	115-2AK6	0.824
	--	--	--	--	--	1/2	65	0.7... 1	11-0JA10			3RA22 10	-15-2AK6	0.824
	--	--	--	--	1/2	1/2	65	0.9... 1.25	11-0KA10			3RA22 10	-15-2AK6	0.824
	--	1/10	--	--	3/4	3/4	65	1.1... 1.6	11-1AA10			3RA22 10	D15-2AK6	0.824
	--	1/8	--	--	3/4	1	65	1.4... 2	11-1BA10			3RA22 10	-15-2AK6	0.824
	--	1/6	1/2	1/2	1	11/2	65	1.8... 2.5	11-1CA10			3RA22 10	15-2AK6	0.824
	1/10	1/4	1/2	3/4	$11 / 2$	2	65	2.2... 3.2	11-1DA10			3RA22 10	-15-2AK6	0.824
	1/8	1/3	3/4	3/4	2	3	65	2.8... 4	11-1EA10			3RA22 10	-15-2AK6	0.824
	1/6	1/2	1	1	3	3	65	3.5... 5	11-1FA10			3RA22 10	$\square 15-2 A K 6$	0.824
	1/4	1/2	1	11/2	3	5	65	4.5... 6.3	11-1GA10			3RA22 10	-15-2AK6	0.824
	1/3	1	2		5	5	65	5.5... 8	11-1HA10	16-1AK62		3RA22 10	16-2AK6	0.824
	1/2	11/2	2	3	5	$71 / 2$	65	7... 10	11-1JA10			3RA22 10	口16-2AK6	0.824
	1/2	2	3	3	$71 / 2$	10	65	9... 12	11-1KA10	17-1AK62		3RA22 10	-17-2AK6	0.824
	1	2	3	5	10	--	65	11... 16	11-4AA10	18-1AK62		3RA22 10	$\square 18-2 A K 6$	0.824
S0	1/6	1/2	1	1	3	3	65	3.5... 5	11-1FA10	24-1AK60	2921-1AA00	3RA22 20	$\square 24-0 A K 6$	1.434
	1/4	1/2	1	$11 / 2$	3	5	65	4.5... 6.3	11-1GA10		+ 2923-1BB1 (RH)	3RA22 20	-24-0AK6	1.434
	1/3	1	2		5	5	65	5.5... 8	11-1HA10		+ 2923-1DB1 (RS)	3RA22 20	24-0AK6	1.434
	1/2	11/2	2	3	5	$71 / 2$	65	7... 10	11-1JA10			3RA22 20	$\square 24-04 K 6$	1.434
	1/2	2	3	3	7 1/2	10	65	9... 12.5	11-1KA10			3RA22 20	$\square 24-0 A K 6$	1.434
	1	2	3	5	10	--	65	11... 16	21-4AA10	26-1AK60		3RA22 20	-26-0AK6	1.434
	$11 / 2$	3	5		10	-	65	14... 20	21-4BA10			3RA22 20	-26-0AK6	1.434
	11/2	3	5	$71 / 2$	15	--	50	17... 22	21-4CA10	27-1AK60		3RA22 20	-27-0AK6	1.434
		3	5	$71 / 2$	15	--	50	20... 25	21-4DA10			3RA22 20	-27-0AK6	1.434
	2	5	$71 / 2$	10	20	--	50	27... 32	21-4EA10			3RA22 20	$\square 27-0 A K 6$	1.434
													Add	d. weight
Order No. supplement for mounting onto standard mounting rail or screw fixing														
- Without standard mounting rail adapter for size $\mathrm{SOO}^{4)}$ - With 2 standard mounting rail adapters for size S0												1	A	
												2	B	
Screw fixing with 2 push-in lugs each per motor starter is possible														
Order No. supplement for mounting onto Fastbus $\mathbf{6 0 m m}$ busbar system With 8US Fast Bus busbar adapter											for size S00	1	D	0.486
											for size S0	2	D	0.293

[^47]
3RA2 Starter

Reversing, AC Coil - up to 100 A

Selection and ordering data

3RA12 40

Reversing duty

For 35 mm standard mounting rail or screw mounting

- All starters are suitable for use in Group Installation applications per NEC 430-53 (c)
- Motor starter protector and contactor are linked electrically and mechanically by means of a link module and adapter plate
- Starter includes both electrical and mechanical interlocks
- Auxiliary switches ${ }^{1}$) can be added easily to the MSP and the contactor

Combination Starter, UL508 Type F

- Size S2 devices can be applied as Combination Starters For versions of 50A or higher, the addition of a 3RV2938-1K line side phase barrier is required.
- Size S3 devices can be applied as Combination Starters with the addition of a 3RT1946-4GA07 line side terminal kit
- SCCR: 65kA at 480V

24VDC							For customer assembly			3RA2931-1AA00 3RA2933-1BB1
3	7.5	10	15	30	40	22... 32		S2	3RV20 31-4EA10 3RT2035-1NB30	
3	10	15	15	40	50	28... 36			3RV20 31-4PA10 7	
3	10	15	15	40	50	32... 40			3RV20 31-4UA10-3RT2036-1NB30	
3	10	15	15	40	50	35... 45			3RV20 31-4VA10 」	
5	10	20	20	50	50	42... 52			3RV20 31-4WA10 3RT2037-1NB30	
5	15	20	25	50	60	49... 59			3RV20 31-4XA10 ${ }^{\text {a }}$ -	
5	15	20	25	50	60	54... 65			3RV20 31-4JA10 -3RT2038-1NB30	
7.5	15	25	30	60	60	$28 . . .40$		S3	3RV20 41-4FA10 $]$	
7.5	15	25	30	60	60	$36 . . .50$			3RV20 41-4HA10 - 3RT2045-1NB30	
7.5	15	25	30	60	60	$45 . . .63$	For customer		3RV20 41-4JA10]	3RA1941-1BA00
10	20	30	30	75	75	$57 . . .75$	assembly		3RV20 41-4KA10	
10	20	30	30	75	75	$65 \ldots 84$			3RV20 41-4RA10 - 3RT2046-1NB30	3RA1943-1B4)
10	20	30	30	75	-	$75 \ldots 93$			3RV20 41-4YA10	
10	20	30	40	75	-	$80 . .100$			3RV20 41-4MA10 3RT2047-1NB30	

RH = Reversing duty for rail mounting.

1) For auxiliary switches, see Accessories page 4/44.
2) Selection depends on motor full load amps. Horse power ratings for reference only.
3) Adapters for standard mounting rail are also suitable for screw mounting.
4) Mechanical interlock must be ordered separately; see Accessories page 4/50

Combination Starters \＆Starters for Group Installation

3RA2 Starter

Rated control supply voltage 24 V DC With screw connections
－The motor starter protector and contactor are mechan－ ically and electrically connected by means of the link module．
－Auxiliary switches ${ }^{1)}$ on the motor starter protector and the contactor can be easily fitted due to the modular system．
－With the contactor SO，an integrated NO contact is available for free use．

Combination Starter，UL508 Type F

All size SOO and SO devices can be applied as Combina－ tion Starters with the addition of either of these line side connectors：3RV29 28－1H，3RV29 25－5EB or 3RV29 28－1K．

Size	UL Data							FLA setting range inverse－ time delayed overload release	Consisting of the following single devices			Assembled starter		Weight approx．
	Single HPra	phase ings	Three HP ra	$\begin{aligned} & \text { phase }{ }^{2)} \\ & \text { ings } \end{aligned}$			$\begin{aligned} & \text { SCCR } \\ & \text { at } \\ & 480 \mathrm{~V} \end{aligned}$		Motor starter protector	+2 contac－ tors	＋Link module ＋Assembly kit RH／RS ${ }^{3}$ ）	Screw term	nals（H）	
	115 V	230 V	200 V	230 V	460 V	575 V		A \square				Order No．		kg
Selection depends on motor full load amps														
3RV20 3RT20 3RA														
S00	－－	－－	－－	－－	－－	－－	65	0．11．．0．16	11－0AA10	15－1BB42	1921－1DA00＇＋	3RA22 10	A－15－2BB4	0.934
	－－	－－	－－	－－	－－	－－	65	$0.14 \ldots 0.2$	11－0BA10		2913－2AA1 ${ }^{4)}$＇＋	3RA22 10－	B－15－2BB4	0.934
	－－	－－	－－	－－	－－	－－	65	0．18．．．0．25	11－0CA10		2913－1DB1（RS）	3RA22 10－	C口15－2BB4	0.934
	－－	－－	－－	－－	－－	－－	65	0．22．．． 0.32	11－0DA10			3RA22 10－	－15－1BB4	0.934
	－－	－－	－－	－－	－－	－－	65	0．28．．．0．4	11－0EA10			3RA22 10－	－15－2BB4	0.934
	－－	－－	－－	－－	－－	－－	65	0．35．．．0．5	11－0FA10			3RA22 10－	$\square 15-1 \mathrm{BB} 4$	0.934
	－－	－－	－－	－－	－－	－－	65	0．45．．． 0.63	11－OGA10			3RA22 10－	G口15－2BB4	0.934
	－－	－－	－－	－－	－－	－－	65	0．55．．．0．8	11－0HA10			3RA22 10－	HD15－2BB4	0.934
	－－	－－	－－	－－	－－	1／2	65	0．7．．． 1	11－0JA10			3RA22 10－	J15－2BB4	0.934
	－－	－－	－－	－－	1／2	1／2	65	0．9．．． 1.25	11－0KA10			3RA22 10－	K口15－2BB4	0.934
	－－	1／10	－－	－－	3／4	3／4	65	1．1．．． 1.6	11－1AA10			3RA22 10－1	Aㅁ15－2BB4	0.934
	－－	1／8	－－	－－	3／4	1	65	1．4．．． 2	11－1BA10			3RA22 10－1	B－15－2BB4	0.934
	－－	1／6	1／2	1／2	1	11／2	65	1．8．．． 2.5	11－1CA10			3RA22 10－1	C－15－2BB4	0.934
	1／10	1／4	1／2	3／4	11／2		65	2．2．．． 3.2	11－1DA10			3RA22 10－1	－15－2BB4	0.934
	1／8	1／3	3／4	3／4	2	3	65	2．8．．． 4	11－1EA10			3RA22 10－1	－口15－2BB4	0.934
	1／6	1／2	1	1	3	3	65	3．5．．． 5	11－1FA10			3RA22 10－1	－15－2BB4	0.934
	1／4	1／2	1	$11 / 2$	3	5	65	4．5．．． 6.3	11－1GA10			3RA22 10－1	G口15－2BB4	0.934
	1／3	1	2		5	5	65	5．5．．． 8	11－1HA10	16－1BB42		3RA22 10－1	Hव16－2BB4	0.934
	1／2	$11 / 2$	2	3	5	71／2	65	7．．． 10	11－1JA10			3RA22 10－1	J16－2BB4	0.934
	1／2	2	3	3	$71 / 2$	10	65	9．．． 12	11－1KA10	17－1BB42		3RA22 10－1	K口17－2BB4	0.934
	1	2	3	5	10	－－	65	11．．． 16	11－4AA10	18－1BB42		3RA22 10－	A口18－2BB4	0.934
S0	1／6	1／2	1	1	3	3	65	3．5．．． 5	11－1FA10	24－1BB40	2921－1BA00＇＋	3RA22 20	－ $24-0 \mathrm{BB} 4$	1.811
	1／4	1／2	1	11／2	3	5	65	4．5．．． 6.3	11－1GA10		2923－1BB1（RH）＇＋	3RA22 20	G－24－0BB4	1.811
	1／3	1	2		5	5	65	5．5．．． 8	11－1HA10		2923－1DB1（RS）	3RA22 20	H－24－0BB4	1.811
	1／2	$11 / 2$	2		5	$71 / 2$	65	7．．． 10	11－1JA10			3RA22 20	－24－0BB4	1.811
	1／2	2	3	3	$71 / 2$	10	65	9．．． 12.5	11－1KA10			3RA22 20－1	K口24－0BB4	1.811
	1	2	3		10	－－	65	11．．． 16	21－4AA10	26－1BB40		3RA22 20	A믈－0BB4	1.811
	11／2	3	5	5	10	－	65	14．．． 20	21－4BA10			3RA22 20	－26－0BB4	1.811
	$11 / 2$	3	5	7 1／2	15	－－	50	17．．． 22	21－4CA10	27－1BB40		3RA22 20	－ $27-0 \mathrm{BB} 4$	1.811
	2	3	5	$71 / 2$	15	－－	50	20．．． 25	21－4DA10			3RA22 20	－27－0BB4	1.811
	2	5	$71 / 2$	10	20	－－	50	27．．． 32	21－4EA10			3RA22 20	－प27－0BB4	1.811
Order No．supplement for mounting onto standard mounting rail or screw fixing														
－Without standard mounting rail adapter for size S00 ${ }^{4)}$ －With 2 standard mounting rail adapters for size S0												［ 1	A	－
Order No．supplement for mounting onto Fastbus $\mathbf{6 0 m m}$ busbar system With 8US Fast Bus busbar adapter											for size S00	1	D	0.486
											for size S0	2	D	0.306

1）For push－in lugs and auxiliary switches，see Accessories on pages $4 / 44$ and $4 / 52$ ．
2）Selection depends on the motor full load amps．HP ratings for reference only．
3）Code for abbreviations：
RH＝assembly kit for reversing duty with standard rail mounting adapter in size S0
RS＝assembly kit for reversing duty with 8US Fast Bus busbar mounting．
4）With standard rail mounting or screw fixing，the 3RA29 13－2AA1 wiring kit and link module are required for size SOO．

3RA2 Starter

Reversing Fast Bus ${ }^{\text {® }}$, AC and DC Coil - up to 100 A

Selection and ordering data

For 60 mm Fast Bus busbar systems

- All starters are suitable for use in Group Installation applications per NEC 430-53 (c)
- Motor starter protector and contactor are linked electrically and mechanically by means of a link module and mounted on a Fastbus Shoe
- Starter includes both electrical and mechanical interlocks
- Auxiliary switches ${ }^{11}$ can be added easily to the MSP and the contactor
- Size S3 is kit form only - assembly required

Combination Starter, UL508 Type F

- Size S2 devices can be applied as Combination Starters
- Size S3 devices can be applied as Combination Starters with the addition of a 3RT2946-4GA07 line side terminal kit
- SCCR: 65kA at 480V

24VDC							For customer assembly	S2		$\begin{gathered} \text { 3RA2931-1AA00 } \\ + \\ \text { 3RA2933-1DB1 } \end{gathered}$
3	7.5	10	15	30	40	$\begin{array}{lll} 22 \ldots & 32 \\ 28 \ldots & 36 \\ 32 \ldots & 40 \\ 35 \ldots & 45 \\ 42 \ldots & 52 \\ 49 \ldots & 59 \\ 54 \ldots & 65 \end{array}$			3RV20 31-4EA10 3RT2035-1NB30	
3	10	15	15	40	50				3RV20 31-4PA10	
3	10	15	15	40	50				3RV20 31-4UA10-3RT2036-1NB30	
3	10	15	15	40	50				3RV20 31-4VA10 」	
5	10	20	20	50	50				3RV20 31-4WA10 3RT2037-1NB30	
5	15	20	25	50	60				3RV20 31-4XA10 - 3RT2038-1NB30	
5	15	20	25	50	60				3RV20 31-4JA10 J 10	
7.5	15	25	30	60	60	$28 \ldots 40$$36 \ldots 50$$45 \ldots 63$$57 \ldots 75$$65 \ldots 84$$75 \ldots 93$$80 \ldots 100$	For customer assembly	S3	3RV20 41-4FA10 7	
7.5	15	25	30	60	60				3RV20 41-4HA10 - 3RT2045-1NB30	
7.5	15	25	30	60	60				3RV20 41-4JA10]	3RA1941-1BA00
10	20	30	30	75	75				3RV20 41-4KA10	$\stackrel{+}{+}$
10	20	30	30	75	75				3RV20 41-4RA10 - 3RT2046-1NB30	3RA 1943-2A3)
10	20	30	30	75	-				3RV20 41-4YA10	
10	20	30	40	75	-				3RV20 41-4MA10 3RT2047-1NB30	

RH = Reversing duty for rail mounting.

1) For auxiliary switches, see Accessories page 4/44
2) Selection depends on motor full load amps. Horsepower ratings for reference only.
3) Mechanical interlock must be ordered separately; see Accessories page 4/50.

Combination Starters \& Starters for Group Installation

3RA2 Accessories

Auxiliary switches

Overview

The accessories listed here are parts and add-ons for the 3RA2 direct-on-line and reversing starters as well as components for the customer assembly of motor starters

Selection and ordering data

3RV29 01-1E

3RV29 01-1A

3RV29 01-2A

3RV29 02-1A

3RV29 02-2D

Auxillary switches for motor starter protectors ${ }^{1}$

Transverse auxillary switches
For front mounting

| 1 CO | S00 \ldots S3 | 3RV29 01-1D | 0.014 | - | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 NO + 1 NC | S00 \ldots S3 | 3RV29 01-1E | 0.016 | 3RV29 01-2E | 0.016 |

Lateral auxillary switches
Mountable on the left

| 1 NO + 1 NC | S00 ... S3 | 3RV29 01-1A | 0.036 | 3RV29 01-2A | 0.035 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1 One transverse auxillary switch and one lateral auxillary switch can be attached per motor starter protector.
When the lateral auxillary switch with $2 \mathrm{NO}+2 \mathrm{NC}$ is used, a transverse auxillary switch is not allowed.

Rated control supply voltage Us				For MSPs	Screw Terminals	\bigoplus	Weight approx.	Spring-type Terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$	Weight approx.
$\begin{aligned} & \hline \mathrm{AC} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { AC } \\ & 60 \mathrm{~Hz} \end{aligned}$	AC $50 / 60 \mathrm{~Hz}$ 100% ON period ${ }^{1}$	AC/DC $50 / 60 \mathrm{~Hz}$, DC 5s ON period ${ }^{2}$							
V	V	V	V	Size	Order No.		kg	Order No.		kg

Auxillary releases for motor starter protectors ${ }^{3}$
Undervoltage releases

| 415 | 480 | - | - | S00 \ldots S3 | 3RV29 02-1AV1 | 0.117 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Shunt releases

-	-	$20 \ldots 24$	$20 \ldots 70$	SO0... S3	3RV29 02-1DB0	0.119	3RV29 02-2DB0	0.115
-	-	$90 \ldots 110$	$70 \ldots 190$		3RV29 02-1DF0	0.119	3RV29 02-2DF0	0.115

1 The voltage range is valid for 100% (infinite) ON period. The response voltage lies at 0.9 of the lower limit of the voltage range.
2 The voltage range is valid for 5 s ON period at $\mathrm{AC} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ and DC . The response voltage lies at 0.85 of the lower limit of the voltage range.
3 One auxiliary release can be mounted on the right per motor starter protector
(does not apply to 3RV21 motor starter protectors with overload reset function).

3RA2 Accessories

Auxiliary switches, terminals

Selection and ordering data

	For Conductors Size	Version		Screw Terminals Order No.	Weight approx. kg	Spring-type Terminals Order No.	oo	Weight approx. kg
Auxillary switch blocks for snapping on the front for contactors								
Cable entry from below	S00 ... S3	1-pole	1 NC	3RH29 11-1BA10	0.020	-		
\cdots	S00 ... S3	1-pole	1 NO	3RH29 11-1BA01	0.020	-		
	S00 ... S3	2-pole	$1 \mathrm{NO}+1 \mathrm{NC}$	3RH29 11-1MA11	0.050	-		
	S00 ... S3	2-pole	2 NO	3RH29 11-1MA2O	0.050	-		

3RH29 11-1BA10

3RH29 11-1MA20

Cable entry from two sides	S00 ... S3	4-pole	$2 \mathrm{NO}+2 \mathrm{NC}$	3RH29 11-1FA22	0.060	3RH29 11-2FA22	0.049
	S00	2-pole	$1 \mathrm{NO}+1 \mathrm{NC}$	3RH29 11-1DA11	0.039	3RH29 11-2DA11	0.050
4at	S00	2-pole	2 NC	3RH29 11-1DA02	0.039	3RH29 11-2DA02	0.050
cec	S0 ... S3	2-pole	$1 \mathrm{NO}+1 \mathrm{NC}$	3RH29 21-1DA11	0.039	3RH29 21-2DA11	0.050
	S0 ... S3	2-pole	2 NC	3RH29 21-1DA02	0.041	3RH29 21-2DA02	0.050
3RH29 11-1FA22	S0 ... S3	2-pole	2 NO	3RH29 21-1DA20	0.041	3RH29 21-2DA20	0.050

Laterally mountable auxiliary switch blocks for contactors						
	S00	2 NC	3RH29 11-1DA02	0.020	3RH29 11-2DA02	0.050
<	S00	$1 \mathrm{NO}+1 \mathrm{NC}$	3RH29 11-1DA11	0.040	3RH29 11-2DA11	0.050
	S00	1 NO	3RH29 11-1DA20	0.040	3RH29 11-2DA20	0.050
	S0 ... S3	2 NC	3RH29 21-1DA02	0.050	3RH29 21-2DA02	0.050
3RH29 11-1DA11	S0 ... S3	$1 \mathrm{NO}+1 \mathrm{NC}$	3RH29 21-1DA11	0.050	3RH29 21-2DA11	0.050
	S0 ... S3	2 NO	3RH29 21-1DA20	0.050	3RH29 21-2DA20	0.050

Connection modules for contactors with screw terminals

Adaptors for contactors

3RT19 26-4RD01

Ambient temperature $\operatorname{Tumax}=60^{\circ} \mathrm{C}$				
S00	Rated operational current l_{e} at AC-3/400 V: 20A	3RT19 16-4RD01	0.020	-
S0	Rated operational current l_{e} at AC-3/400 V: 25A	3RT19 26-4RD01	0.020	-

Plugs for contactors	$\mathrm{SOO}, \mathrm{SO}$	3RT19 00-4RE01	0.025	-	

3RT19 00-4RE01

Combination Starters \& Starters for Group Installation

3RA2 Accessories

Terminals

Selection and ordering data

For Conductors	Version	Screw Terminals	(1)	Weight approx.
Size		Order No.		kg

Auxillary switch blocks for snapping on the front for contactors
Note: UL 508 demands for "Combination Motor Controller Type E" 1" air gaps and 2" creepage distances

3RV29 28-1H at lineside. The following terminal blocks must be used in S3 MSP's 3RV10. The S2 MSP 3RV10 conforms with stipulated air gaps and creepage distances without terminal block.
Terminal blocks are not required for use according to CSA. With size SO these terminal blocks cannot be used in combination with 3-phase busbars 3RV19.5. This also applies to size S3 in combination with transverse auxiliary switches.

| Terminal block type E
 for extended air/creepage distance (1" and 2") | SOO, S0 | 3RV29 28-1H | 0.120 |
| :--- | :--- | :--- | :--- | :--- |
| | SO0, S0 | 3RV29 28-1K | 0.120 |
| | S2 | 3RV29 38-1K | 0.120 |
| | S3 | 3RT29 46-4GA07 | 0.120 |
| | | | |

3RA2 Accessories

Surge suppressors

Selection and ordering data

For	Version			Surge	Weight Conductors	Rated control supply voltage U_{s}	Suppressors
Size	AC V	DC V	Order No.				

Auxillary switch blocks for snapping on the front for contactors

Size SOO - For plugging onto the front side of the contactors with and without auxiliary switch blocks

	3RT2.1	Varistors	\|24 ... 48 AC	$24 \ldots 70$ DC	3RT29 16-1BB00	0.010
			$48 \ldots 127$ AC	$70 . .150 \mathrm{DC}$	3RT29 16-1BC00	0.010
	3RT2.1	RC elements	$24 \ldots 48$ AC	$24 . .70$ DC	3RT29 16-1CB00	0.010
			48 ... 127 AC	$70 . .150 \mathrm{DC}$	3RT29 16-1CC00	0.010
	3RT2.1	Noise suppression		$12 . .250$ DC	3RT29 16-1DG00	0.010
3RT29 16-1EH00	3RT2.1	Diode assemblies (diode and Zener diode) for DC operation and short break times		$12 \ldots 250$ DC	3RT29 16-1EH00	0.010

Size SO - For plugging onto the front side of the contacctors (prior to mounting of the auxiliary switch block)

3RT29-26-1BB00	3RT2.2	Varistors	\|24 ... 48 AC	24... 70 DC	3RT29 26-1BB00	0.010
			$48 \ldots 127$ AC	70 ... 150 DC	3RT29 26-1BC00	0.010
	3RT2.2	RC elements	$24 \ldots 48$ AC	$24 \ldots 70$ DC	3RT29 26-1CB00	0.010
			$48 \ldots 127$ AC	$70 \ldots 150 \mathrm{DC}$	3RT29 26-1CC00	0.010
	3RT2.2	Diode assemblies for DC operation and short break times		$24 \text { DC }$	3RT29 26-1ER00	0.010
	3RT2.3	Varistors	\|24... 48 AC	24 ... 70 DC	3RT29 36-1BB00	0.010
			$127 . . .240$ AC	150 ... 250 DC	3RT29 36-1BD00	0.010
			48 ... 127 AC	70 ... 150 DC	3RT29 36-1BC00	0.010
$\text { 3RT2936-1B. } 00$	3RT2.3	RC elements	$24 . . .48$ AC	$24 \ldots 70$ DC	3RT29 36-1CB00	0.010
			127 ... 240 AC	150 ... 250 DC	3RT29 36-1CD00	0.010
			48 ... 127 AC	70 ... 150 DC	3RT29 36-1CC00	0.010
	3RT2.3	Diode assemblies	--	24 DC	3RT29 36-1ER00	0.010
			--	30 ... 250 DC	3RT29 36-1ES00	0.010
	3RT20 4.	Varistors	\|24 ... 48 AC	24... 70 DC	3RT29 36-1BB00	0.025
			$48 . .127$ AC	70 ... 150 DC	3RT29 36-1BC00	0.025
	3RT20 4.	RC elements	$24 \ldots 48$ AC	$24 \ldots 70$ DC	3RT29 36-1CB00	0.040
			$48 \ldots 127$ AC	70 ... 150 DC	3RT29 36-1CC00	0.040
	3RT20 4.	Diode assemblies		24 DC	3RT29 36-1ER00	0.025
		for $D C$ operation and short break times, can be plugged in at bottom		$30 . .250$ DC	3RT29 36-1ES00	0.025

3RT2936-1CC00

For additional surge suppression, see page 2/75

Combination Starters \& Starters for Group Installation

3RA2 Accessories

Surge suppressors, link modules

Selection and ordering data

For MSP	For contactors	Actuating voltage of contactor	Screw Terminals	(®)	Pack Qty.	Weight approx.
Size			Order No.			kg

Auxillary switch blocks for snapping on the front for contactors
Electrical and mechanical link between motor starter protector and contactor

Hybrid link modules from motor starter protector to contactor

3RA29 11-2FA00

For mechanical and electrical connection between motor starter protector with screw terminals and contactor with spring-type terminals

Single-unit	S00	S00	AC and DC	3RA29 11-2FA00	1 unit	0.029
packaging	SO	SO	AC ${ }^{1)}$ and DC	3RA29 21-2FA00	1 unit	0.056
Multi-un	S00	S00	AC and DC	3RA29 11-2F	10 unit	0.290
packaging	SO	SO	AC ${ }^{1)}$ and DC	3RA29 21-2F	10 unit	0.560

For MSPs	For soft starters	Screw Terminals	\bigoplus	Pack Qty.	Weight approx.
Size	Size	Order No.			kg

Link modules from motor starter protector to soft starters

Electrical and mechanical link between motor starter protector and soft starter

Single-unit packaging	SOO/S0	SOO/S0	3RA29 21-1BA00	1 unit	0.001
Multi-unit packaging	SOO/S0	SOO/SO	3RA29 21-1B	10 unit	0.001

3RA29 11-2GA00

| Single-unit
 packaging | SOO | SOO | 3RA29 11-2GA00 | 1 unit | 0.038 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | SO | SO | 3RA29 21-2GA00 | 1 unit | 0.072 |
| Multi-unit
 packaging | SOO | SOO | 3RA29 11-2G | 10 unit | 0.380 |
| | SO | SO | 3RA29 21-2G | 10 unit | 0.720 |

[^48]
Combination Starters \& Starters for Group Installation

3RA2 Accessories

Mounting kits for Fast Bus

Accessories

| | Screw
 Terminals | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Wiring kits for contactors | Reversing | |

Combination Starters \& Starters for Group Installation

3RA2 Accessories

Mounting kits for Fast Bus

Accessories

	For Conductors Size	For MSPs Size	Version	Screw Terminals Order No.		Pack Qty.	Weight approx. kg
Mechanical interlocks							
	S2/S3	--	For reversing contactors, laterally mounted, no electrical connections (each contactor has 1NO/1NC auxiliaries)	3RA29 34-2B			0.010
3RA29 34-2B							
Terminals for contactor coil							
118	S3	--	For A1 and A2 of reversing contactors (includes $2 \times \mathrm{A} 1$ and $1 \times \mathrm{A} 2$)	3RA19 23-3B			0.020

Standard mounting rail adapters

For mechanical fixing of motor start protector and contactor; for snapping onto standard mounting rail or for screw fixing.

SO0, SO	SOO, SO	Single-unit packaging	3RA29 22-1AA00	1 unit	0.001
S2	S2		3RA19 31-1AA00	1 unit	0.020
S3	S3		3RA19 41-1AA00	1 unit	0.250
SOO, S0	SOO, SO	Multi-unit packaging	3RA29 22-1A	5 units	0.001

3RA29 22-1AA00

Side modules for standard mounting rail adaptors

S00 ...S3 S00 ...S3 For standard mountin rail adaptors 10 mm wide, 96 mm long, for widening standard mounting rail adaptors when using lateral auxiliary switches, For size S00 to S2: 2 units required.
For size S3: 3 units required

3RA19 02-1B
3RA19 02-1B 10 units 0.009

RH assembly kits for reversing duty and standard rail mounting

3RA29 23-1BB1

RH assembly kits for screw terminals		
So	SO	Comprising: • Wiring kits
S2	S2	- 2 standard mounting rail adaptors - 2 connecting wedges
S3	S3	Link modules may be ordered seperately.

3RA29 23-1BB1	1 unit	0.001	
3RA29 33-1BB1	1 unit	0.560	
3RA29 43-1BB1	1 unit	0.810	
Spring-type Terminals	0		
3RA29 23-1BB2	1 unit	0.001	

Combination Starters \& Starters for Group Installation

3RA2 Accessories

Busbar adapters

Combination Starters \& Starters for Group Installation

3RA2 Accessories

Connecting wedges, spaces, and tools

1) PC labeling system for individual inscription of unit labeling plates available from:
murrplastik Systems, Inc.
www.murrplastik.com

Selection and ordering data

Components for IEC types of coordination 1 and 2 at AC 500 V

Technical data

| Three-phase standard motor ${ }^{1}$)
 4-pole at AC 500 V
 Standard
 output
 P | Motor current
 (guide value) | Setting range
 Inverse-time delayed
 overload release | Motor starter
 protector | Contactor ${ }^{2}$) |
| :--- | :--- | :--- | :--- | :--- | :--- |

IEC Type of coordination 2 at $I_{\mathrm{q}}=50 \mathrm{kA} / \mathrm{AC} 400 \mathrm{~V}$
Normal starting Class 10

0.06	0.2	$0.14 \ldots 0.2$	3RV20 11-0BA10	3RT20 15-1AP01	S00
0.06	0.2	0.18 ... 0.25	3 RV 20 11-0CA10		
0.09	0.3	0.22 ... 0.32	3RV20 11-0DA10		
0.09	0.3	0.28 ... 0.4	3RV20 11-0EA10		
0.12	0.4	0.35 ... 0.5	3 RV 20 11-OFA10		
0.18	0.6	0.45 ... 0.63	3 3V20 11-0GA10		
0.18	0.6	$0.55 \ldots 0.8$	3RV20 11-OHA10		
0.25	0.85	0.7 ... 1	3RV20 11-0JA10		
0.37	1.1	0.9 ... 1.25	3RV20 11-0KA10		
0.55	1.5	1.1 ... 1.6	3RV20 11-OAA10		
0.75	1.9	1.4 ... 2	3RV20 11-1BA10		
0.75	1.9	1.8 ... 2.5	3 RV 20 11-1CA10		
1.1	2.7	2.2 ... 3.2	3RV20 11-1DA10		
1.5	3.6	2.8 ... 4	3RV20 11-1EA10		
1.5	3.6	3.5 ... 5	3 RV 20 11-1FA10	3RT20 24-1AP01	so
2.2	4.9	4.5 ... 6.3	3RV20 11-1GA10		
3	6.5	$5.5 \ldots 8$	3 RV 20 11-1HA10		
4	8.5	7 ... 10	3RV20 11-1JA10		
5.5	11.5	$9 . . .12 .5$	3RV20 11-1KA10		
7.5	15.5	$11 \ldots 16$	3 RV 20 21-4AA10	3RT20 26-1AP01	
7.5	15.5	$14 . . .20$	3RV20 21-4BA10		
11	22	$17 . . .22$	3RV20 21-4CA10	3RT20 27-1AP01	
11	22	$20 . .35$	3RV20 21-4DA10		
15	29	$27 . . .32$	3RV20 21-4EA10		

1) Selection depends on the actual startup and rated data of the protected motor.
2) Rated control supply voltage 120 V AC. Other voltages are possible.

Components for IEC types of coordination 1 and 2 at AC 500 V

Technical data

| Three-phase standard motor ${ }^{1}$)
 4-pole at AC 500 V | Setting range
 Inverse-time delayed
 overload release | Motor starter
 protector | Contactor ${ }^{\text {S }}$) |
| :--- | :--- | :--- | :--- | :--- | :--- |

IEC Type of coordination 2 at $I_{\mathrm{q}}=50 \mathrm{kA} / \mathrm{AC} 500 \mathrm{~V}$ Normal starting Class 10

On request	3RV20 31-4AA10	3RT20 35-1AK60	
On request	SR2		
On request	3RV20 31-4BA10	3RT20 35-1AK60	
On request	3RV20 31-4DA10	3RT20 35-1AK60	
On request	3RV20 31-4EA10	3R20 35-1AK60	
On request	3RV20 31-4FA10	3RT20 35-1AK60	
On request	3RV20 31-4GA10	3RT20 36-1AK60	
On request	3RV20 31-4HA10	3RT20 36-1AK60	
On request	3RV20 31-4JA10	3RT20 45-1AK60	
On request	3RV20 31-4KA10	3RT20 45-1AK60	

1) Selection depends on the actual startup and rated data of the protected motor.
2) Rated control supply voltage 120 V AC. Other voltages are possible.

Components for IEC types of coordination 1 and 2 at AC 690 V

Technical data

| Three-phase standard motor
 4-pole at AC $690 \mathrm{~V}^{3}$) | Setting range
 MSP | Standard
 IEC circuit-breaker
 with
 limiting function | Subsequent
 MSP | Contactor 1) |
| :--- | :--- | :--- | :--- | :--- | :--- |

IEC Types of coordination 1 and 2 at AC 690 V

Normal starting Class 10

On request	11	... 16	3RV13 31-4HC10	3RV20 31-4AA10	3RT20 35-1AK60	S2	50
On request	14	... 20	Size S2	3RV20 31-4BA10	3RT20 35-1AK60		
On request	18	... 25	$I_{\text {n }}=50 \mathrm{~A}$	3RV20 31-4DA10	3RT20 35-1AK60		
On request	22	... 32		3RV20 31-4EA10	3RT20 35-1AK60		
On request	28	... 40		3RV20 31-4FA10	3RT20 45-1AK602)	S2/S3	50
On request	36	... 45		3RV20 31-4GA10	3RT20 45-1AK60²)		
On request	40	... 50		3RV20 31-4HA10	3RT20 46-1AK60²)		

Installation guidelines for AC 400/500 V
The following distances from earthed components must be observed when installing combinations:

- No upstream circuit-breaker required; short-circuit proof up to 100 kA .

1) Rated control supply voltage 120 V AC. Other voltages are possible.
2) With these combinations, the distance between the subsequent MSP and the contactor must be at least 10 cm .
3) Selection depends on the specific startup and rated data of the protected motor.
4) Minimum distance to contactor at front. For the MSP, no minimum distance at the front must be maintained.

Technical data
Installation guidelines for AC 690 V

Size	Mounting method	Standard surface mounting for sizes S0 up to 5.5 kW , S2 and S3			Surface mounting for sizes $\mathbf{S 0}$ from 7.5 to 11 kW	
So	Mounting on an insulated base plate. If screws are used for fixing, the screws must not be earthed. Alternatively, the standard rail adapter can be used for all units.	$\bigcirc \bigcirc$ 3RV2...	\bigcirc	3-phase busbar Size SO: 3RV29 15-1A Size S2: 3RV19 35-1A	Infeed side 3RV2...	
S2/S3	Mounting on an insulated base plate. Alternatively, the standard rail adapter can also be used without restriction.					

The following distances from earthed components must be observed when installing combinations:

Two MSPs in combination with contactors

MSP	Contactor	Rated operational voltage	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} 2 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} 3 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{X} 1 \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \mathrm{X} 2 \\ & \mathrm{~mm} \end{aligned}$	Z mm
3RV2. 2 with	3RT20 2	690 V	80	10	95	20	14	20
3RV2. 3 with	$\begin{aligned} & \text { 3RT20 } 3 \\ & \text { 3RT20 } 4 \end{aligned}$	$\begin{aligned} & 690 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	32 40	$\begin{aligned} & 10 \\ & 10 \end{aligned}$

b In combination with size S2 MSPs and size S3 contactors, a spacing of 100 mm must be maintained.

Technical data

[^49]3RA2 - up to 100 A

Technical data

Conductor cross-sections of main circuit

Specifications		IEC 60 947-1, EN 60 947-1 (VDE 0660 Part 100) IEC 60 947-2, EN 60 947-2 (VDE 0660 Part 101) IEC 60 947-4-1, EN 60 947-4-1 (VDE 0660 Part 102)			
Type Size Number of poles		$\begin{aligned} & \text { 3RA2. } 1 \\ & \text { S00 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3RA2. } 2 \\ & \text { S0 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3RA2.3 } \\ & \text { S2 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3RA21 } 4 \\ & \text { S3 } \\ & 3 \end{aligned}$
Connection type Terminal screw		Screw terminal M3 Posidrive size 2	Screw terminal M3 Posidrive size 2	Screw Terminals M6 Pozidriv size 2	Box terminals Allen screw
Conductor cross-sections (min./max) 1 or 2 conductors can be connected - Solid and stranded - Finely stranded without end sleeve - Finely stranded with end sleeves (DIN 46228 T1) - AWG cables, solid or stranded	mm² mm^{2} mm^{2} mm^{2} mm^{2} AWG AWG AWG	$\begin{aligned} & 2 \times(0.5 \ldots 1.5)^{2)} \mathrm{O} \\ & 2 \times(0.75 \ldots 2.5)^{2)} \\ & \max .2 \times 4 \\ & - \\ & 2 \times(0.5 \ldots 1.5)^{2)} \\ & 2 \times(0.75 \ldots .5)^{2)} \\ & \\ & 2 \times(20 \ldots 16)^{2)} \\ & 2 \times(18 \ldots 14) \\ & 2 \times 12 \end{aligned}$	ly for contactors		
Minimum/maximum conductor cross-sections - flexible with ferrule - 1 conductor - 2 conductors - solid or stranded - 1 conductor - 2 conductors Ribbon cable Bus connection - solid or stranded - stranded	mm² mm^{2} mm^{2} mm^{2} AWG AWG			$\begin{aligned} & 0.75 / 25 \\ & 0.75 / 16 \\ & 0.75 / 35 \\ & 0.75 / 25 \\ & \text { yes } \\ & -\quad 2 \times(30 \ldots .2) \end{aligned}$ -	$\left.2.5 / 50^{1}\right)$ $\left.2.5 / 35^{1}\right)$ $\left.2.5 / 70^{1}\right)$ $\left.2.5 / 50^{1}\right)$ yes yes $-2 \times(10 \ldots 1 / 0)$
Connection type - Solid and stranded - Finely stranded without end sleeve - Finely stranded with end sleeves - AWG cables, solid or stranded	mm^{2} mm^{2} mm^{2} AWG	$2 \times(0.5 \ldots 2.5)$	-	$\begin{aligned} & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots .2 .5) \\ & 2 \times(20 \ldots .14) \end{aligned}$	
Permissible mounting position		Attention: acc. to DIN 43602 Start command "I" right-hand or abov			

) Cable-lug and busbar connection possible after removing the box terminals.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical cross-sections are used, this restriction does not apply.

Overview

The 3RA combination starters consist of the 3RV MSP and the 3RT contactor. MSP and contactor are prewired and mechanically connected with preassembled kits (link modules, connection assembly kits and mounting rail or busbar adapters).
As the 3RA combination starters are constructed from 3RV MSPs and 3RT contactors, the same accessories can be used for the combination starter as for these MSPs and contactors
Pre-assembled link modules are available as accessories for the power spectrum up to 75 HP. The desired combination starter can thus be assembled quickly and economically by the customer. A time saving is also achieved with the link modules as - unlike with conventional wiring systems - there is no need to rectify possible wiring errors.
As a combination starter rated for tap conductor protection for group installation the 3RV MSP is responsible for overload and short-circuit protection in the motor circuit. Back-up protective devices, such as fuses or SIEMENS Sentron circuit breakers are required as per NEC 430-53 guidelines for group installations for multiple motor applications
The 3RT contactor is ideal for extremely complex switching tasks requiring durable components.

The permissible ambient temperature is $60^{\circ} \mathrm{C}$ with buttmounting and without derating ($70^{\circ} \mathrm{C}$ possible subject to certain restrictions).
3RA combination starters are available for motors up to 75 Hp at 460 V AC and setting ranges from 0.14 A to 100 A .

3RA combination starters are supplied in four different sizes:

Size	Overall width	Max. rated current $I_{\mathrm{n} \text { max }}$	For three- phase motors up to HP
S00	45	8	5
S0	45	22	15
S2	55	50	40
S3	70	100	75

Operating conditions

3RA combination starters are climate-proof. They are intended for use in enclosed rooms in which no severe conditions (such as dust, caustic vapors, hazardous gases) prevail. Suitable enclosures must be provided for installation in dusty and damp locations.

Accessories

The accessories for the special equipment, such as auxiliary contacts and undervoltage trips, can also be used for the 3RA combination starters

In addition, certain accessories have been optimized for the combination starters. They include the top-connected, transverse auxiliary contact on the MSP with one changeover contact or one NO contact + one NC contact. Special auxiliary contact blocks that can be snapped on from below are available for the contactor. These two accessories enable the combination starters to be wired easily without having to route cables via the equipment.
The special accessories for 3RA combination starters take the form of link modules for 3RV MSPs and 3RT contactors.

Technical data

For technical data, see pages $4 / 56-4 / 58$. Additional details are contained in the respective tables for the 3RV MSPs and 3RT contactors.

Configuration

Overload tripping times

All the 3RA combination starters described here are designed for normal starting, in other words for overload tripping times of less than 10 s (CLASS 10). At rated-load operating temperature the tripping times are shorter, depending on the particular equipment and the setting range. The exact values can be derived from the tripping characteristics of the MSPs.

Classification types

DIN VDE 0660 Part 102 and IEC 60 947-4-1 make a distinction between two different types of coordination (types 1 and 2). Any short-circuits that occur are cleared safely by both types of coordination. The only differences concern the extent of the damage caused to the equipment by a short-circuit.

IEC Type of coordination 1

The combination starter may be non-operational after a short-circuit has been cleared. Damage to the contactor or to the overload relay is permissible. In 3RA load feeders, the MSP itself always achieves type of coordination 2.

IEC Type of coordination 2

There must be no damage to the overload trip or to any other components after a short-circuit has been cleared. The 3RA combination starter can resume operation without needing to be be renewed. At most, it is permissible to weld the contactor contacts if they can be disconnected easily without any significant deformation.

Mounting

Complete equipment

The 3RA combination starters can be ordered as complete equipment for direct starting or for reversing mode. Control supply voltages of 50 Hz AC 230 V or DC 24 V and assembly on a 35 mm standard mounting rail or in a 40 or 60 mm busbar system are possible.

Special equipment for customer assembly can be ordered if other rated control supply voltages are required. The link modules simplify customer assembly of the load feeders.
The corresponding distances from earthed or live parts, as detailed in the technical data, must be observed.

Customer assembly

The standard devices can be combined optimally in terms of both technical data and dimensions, thanks to the modular system of the SIRIUS series.
The combination starters can thus be assembled easily by the customer. It is simply necessary to assemble the standard 3RV MSP and 3RT contactor and the appropriate link module together.
For the order numbers for special equipment and link modules, see the selection and ordering data.
For the link modules for direct starting or reversing mode and assembly on a standard mounting rail or busbar, see accessories.
If a MSP with a rotary operating mechanism is required for the lower setting ranges up to 12 A , the SO MSP can also be assembled with an SOO contactor. A special connecting module is available for this purpose.
For the installation of feeders, it is imperative to use standard rail adapters, as from size S2 for direct starting and as from size SO for reversing, to ensure the necessary mechanical strength. A standard rail adapter is not necessary if a busbar adapter is used.

Assembly

3RA combination starters are available for assembly on standard mounting rails in accordance with EN $50022-35 \times 15$ or on busbar adapters with a busbar centre-line spacing of 40 or 60 mm and a busbar thickness of 5 or 10 mm .
The combination starters are also suitable for screw fixing.
Size SOO and SO can be screwed on with the aid of plugin clips (see accessories on page 4/47).

```
3RA2 - up to 100 A
```

Direct-on-line starting • For standard rail mounting or screw fixing•Sizes SOO and SO

Left: \quad 3RA21 load feeder with screw terminals
Center: 3RA21 load feeder with spring-type terminals
Right: Motor starter protector combination with screw terminals, with contactor with spring-type terminals

Direct-on-line starting • For standard rail mounting • Up to Size S3

Load feeder for direct-on-line starting and standard rail mounting in size S3 (the version with screw terminals is shown in the picture)

3RA2 - up to 100 A

Direct-on-line starting • For 60 mm busbar systems • Sizes S00 and SO

Left: 3RA21 load feeder for direct-on-line starting with busbar adapter with screw terminals
Right: 3RA21 load feeder for direct-on-line starting with busbar adapter with spring-type terminals

Direct-on-line starting • For 60 mm busbar systems • Size S2

3RA21 load feeder for direct-on-line starting with busbar adapter with screw terminals

```
3RA2 - up to 100 A
```

Reversing duty • For standard rail mounting or screw fixing • Size S00

Left: \quad 3RA22 load feeder with screw terminals with push-in lugs with two contactors for reversing duty and 3RA2913-2AA1 wiring kit for connection of the contactors (incl. mechanical interlocking and connecting clips)
Right: 3RA22 load feeder with spring-type terminals with push-in lugs with two contactors for reversing duty and 3RA2913-2AA2 wiring kit (incl. mechanical interlocking and connecting clips)

Reversing duty • For standard rail mounting • Size SO

3RA22 load feeder for reversing duty and standard rail mounting in size S0 (the version with screw terminals is shown in the picture)
RH assembly kits for reversing duty and standard rail mounting in size S0, see page 4/50.

Reversing duty • For standard rail mounting • Size S2

Load feeder for reversing duty and standard rail mounting in size S2 (the version with screw terminals is shown in the picture)

RH assembly kits for reversing duty and standard rail mounting in size S2, see page 4/50.

3RA2 - up to 100 A

Reversing duty \cdot For standard rail mounting \cdot size S3

Load feeder for reversing duty and standard rail mounting in size S3 (the version with screw terminals is shown in the picture)

RH assembly kits for reversing duty and standard rail mounting in size S3, see page 4/50.

Reversing duty • For $\mathbf{6 0 ~ m m ~ b u s b a r ~ s y s t e m s ~ \cdot ~ S i z e s ~ S O O ~ a n d ~ S O ~}$

3RA22 load feeder for reversing duty and 60 mm busbar
(the version with screw terminals is shown in the picture)
RS assembly kits for reversing duty and busbar mounting in size S00/S0, see page 4/51.

3RA2 - up to 100 A

Reversing duty • For 60 mm busbar systems • size S2

Load feeder for reversing duty and 60 mm busbar in size S2
(the version with screw terminals is shown in the picture)
RS assembly kits for reversing duty and busbar mounting in size S2, see page 4/51.

Components for Fast Bus mounting

(1) Link module
for AC: 3RA19 41-1A
for DC: 3RA19 41-1B
(2) Mechanical
interlock
3RA19 24-2B

3RA2943-2AA1 Wiring kit (screw type) 3RA2943-2AA2 Wiring kit (spring type)
(a) Upper wiring module
(b) Lower wiring module

2 Contactors
3RT204

3RV204 with Reversing 3RT204
Adapter shoe 8US1211-4TR00

MSP
3RV204

(1)

(b)

Circuit diagrams
Direct-on-line starting

Size S00: 3RA21.1

Reversing duty

Size S00: 3RA22

Sizes S0, S2 and S3: 3RA21 2, 3RA21 3

Size S0: 3RA22

Dimension drawings

Size SOO • for standard rail mounting

S0 direct-on-line starter,
AC, screw-type connection system 3RA2120-..A

SO/S0 and SOO/S0 reversing starters,
AC, screw-type connection system
3RA2220-..B..-0APO

Size S00 for 40 mm and 60 mm busbar systems

SO/SO and SOO/SO direct-on-line starters,

AC, screw-type connection system
$\mathrm{SO} / \mathrm{SO}$ and SOO/SO reversing starters,
3RA2120-..D..--OAPO

Dimension drawings

Size SO • for standard rail mounting

SO direct-on-line starter, AC, screw-type connection system 3RA2120-..A

$\mathrm{SO} / \mathrm{SO}$ and $\mathrm{SOO} / \mathrm{SO}$ reversing starters, AC, screw-type connection system 3RA2220-..B..-OAPO

Size SO for 40 mm and 60 mm busbar systems

SO/S0 and S00/S0 direct-on-line starters, AC, screw-type connection system

SO/S0 and SOO/SO reversing starters, AC, screw-type connection system 3RA2220-..D..-0APO

[^50]
Dimension drawings

Size S2 • for standard rail mounting

Direct-on-line starting

Size S2 for 40 mm and 60 mm busbar systems
Direct-on-line starting

Reversing duty

1) Alternative fixing methods
a) 235 mm mounting rails acc. to DIN EN 50022 Spacing: 125 mm Depth: 7.5 or 15 mm
b) 175 mm mounting rail acc. to DIN EN 50023

2) Busbar adapter
suitable for rail thicknesses of 5 and 10 mm with chamfered edges.
[^51]
Dimension drawings

Size S3 • for standard rail mounting
Direct-on-line starting

Reversing duty

1) Alternative fixing methods
a) 235 mm mounting rails acc. to DIN EN 50022 Spacing: 125 mm Depth: 7.5 or 15 mm .
b) 175 mm mounting rail acc. to DIN EN 50023
[^52]
Fast Bus Busbar System

contents

Fast Bus busbar adapter system

FBCB Fast Bus circuit breakers

FBCB Fast Bus main and feeder circuit breakers

Page
Selection and ordering data UPDATED

- Fast Bus circuit breakers assemblies and kits 5/7
- Fast Bus adapter shoes for VL breakers

Fast Bus combination starters

3RA2 Fast Bus combinations starters 3RA6 Fast Bus compact starters

Selection and ordering data

- See Section 4

Fast Bus

Fast Bus Busbar Adapter System

Overview

Busbar adapter systems

Busbar adapter systems
with busbar centerline spacing of 60 mm

60 mm busbar system
for sharp-edged copper busbars to DIN 46433
width 20 mm to 30 mm thickness 5 mm and 10 mm
(1) Busbar holder

End and intermediate holders for flat copper profiles
2) Fast Bus main circuit breakers 5/6 from 15 to 500A
(3) Fast Bus circuit breakers

5/7
from 15 to 500A

Fast Bus Busbar Adapter System

Introduction

General

The Fast Bus Multi-Motor Control system is a 3-phase insulated busbar system and is ideal for space saving in panel designs. The system saves considerable line side wiring and space for multi-motor panels. It is also ideal for panels where several feeder breakers are used and will save significant wiring space and wiring labor. The system is also ideal for future expansion planning. when building control panels. SIRIUS 3RV/3RT starter combinations and Siemens circuit breakers are all adaptable to Fast Bus for convenient mounting and faster replacement times.

Fast Bus is ideal for industrial applications where system availability is important.

How to Select Fast Bus

1) Determine the required load.
2) Select method to power Fastbus.
—Main lug up to 800A using a single set of lugs or up to 1400A using a double set of lugs.
—Circuit breakers, 15A to 500A
If load exceeds 500A, the CB must be separately panel mounted and fed to a main lug infeed module.
3) Select 3RV MSP \& 3RT contactor components and appropriate adapter shoe or select preassembled 3RA starters. See section 4.
4) Select appropriate length busbar, busbar holders, insulation covers and any other required components.

Features

- Simple economical installation
- Compact design
- Requires fewer mounting holes
- Domestic and International approvals
- Touch safe
- Modular design
- Provision for system expansion
- Clip-on shoes provide mechanical and electrical connections to panel mounted busbars
- Main and Feeder breakers mount to busbars

Benefits

- Saves installation time
- Reduces space requirements
- Minimizes layout time
- Allows flexibility for domestic and export business
- Protection for maintenance personnel
- Improves equipment mounting density
- Reduces time and costs associated with system expansion
- Reduces mounting and wiring time and provides trouble free connections
- Allows for quick retrofitting of breakers

General Ratings of Fastbus System

Rated operating voltage

Rated insulation voltage, IEC VDE
Temperature stability
Busbar support and adapter shoe material Color

Ampacity		
Busbar thickness and width		
$5 \times 20 \mathrm{~mm}$	$3 / 16^{\prime \prime} \times 3 / 4^{\prime \prime}$	362 A
$5 \times 25 \mathrm{~mm}$	$3 / 16^{\prime \prime} \times 1^{\prime \prime}$	432 A
$5 \times 30 \mathrm{~mm}$	$3 / 16^{\prime \prime} \times 11 / 8^{\prime \prime}$	500 A
$10 \times 20 \mathrm{~mm}$	$3 / 8^{\prime \prime} \times 3 / 4^{\prime \prime}$	564 A
$10 \times 25 \mathrm{~mm}$	$3 / 8^{\prime \prime} \times 1^{\prime \prime}$	660 A
$10 \times 30 \mathrm{~mm}$	$3 / 8^{\prime \prime} \times 11 / 8^{\prime \prime}$	756 A
$720 \mathrm{~mm}^{2}$	---	1400 A

For technical information on E and F frame circuit breakers used as main and feeder breakers, see section 17

Thermal busbar currents, E-Cu, bare, at $35^{\circ} \mathrm{C}$ ambient temperature in accordance with DIN 436711

Busbar dimensions mm	System mm	```Thermal current at 65 '}\textrm{C}\quad85\mp@subsup{}{}{\circ}\textrm{C Busbar temperature A A```	$105{ }^{\circ} \mathrm{C}$ A
20×5	60	274362	430
25×5	60	327	513
30×5	60	379500	595
20×10	60	427564	670
30×10	60	573	900

Fast Bus

Fast Bus Busbar Adapter System

Introduction

Fast Bus set-up

The Fast Bus system is designed to be easy to use and to save set up time.

8US Busbar holders
The 8US busbar holders are designed to accommodate ampacities up to 1400A. In some cases, the busbar holder will accept busbars in either 5 mm or 10 mm widths. Refer to page 5/6 for selection details.

High quality material
Busbar supports and fuse bases are manufactured from glassfiber reinforced, thermoplastic polyester with the color RAL 7035, light gray. The material ensures excellent mechanical, chemical and electrical properties. Furthermore, the material has an extremely low flammability and meets the requirements of UL 94 V 0 .

8WC Busbar and

busbar systems
The most common size busbar for applications in the US is the 8WC5053 (20 mm x 5 mm), how ever there are other styles available depending on your application.

Busbar systems with 60 mm busbar center-to-center clearance have now become firmly established in the US market.

The permissible busbar temper ature is a decisive factor when dimensioning the busbars. The ousbar temperature is dependent on the current, the current distribution, the busbar crosssection, the busbar surface, the position of the busbar, the convection and the ambient temperature. The values stated in the table on page 5/3 can only be considered as reference values because the conditions vary with each location. The values are based on constant current over the whole busbar length.
The trend toward busbars proves most advantageous when the incoming supply is centrally located and the load is distributed symmetrically on both sides.

For the assemblies of a busbar system in the feeder circuit the UL directives specify components with large clearance in air and creepage distances (see the table below). Components of the 8US1 busbar system which meet this requirement can be found in this chapter.
Note.
The design of an 8US1 busbar system for use in the feeder circuit always presumes the use of the UL base plate (8US19 222UA01) so that the clearance in air and creepage distance requirements are met.

Feeder/branch circuit according to UL 508A

The feeder circuit is that part of a circuit which comes in front of the last short circuit protection device (SCPD). The branch circuit is that part of the circuit which follows after the last short circuit protection device. When the 8US1 busbar system is used in a switchgear which must comply with UL directives, it is important to establish whether it is to be used in the feeder circuit or the branch circuit. Components used in the feeder circuit require larger clearance in air and creepage distances than in the branch circuit

Simple Fast Bus system

The two illustrations above show the very basic items needed when setting up a Fastbus system.
(1) 8US1 Busbar holder (5/6)
(2) 8US1 Ground busbar support (shown attached however can be mounted separately 5/6)
(3) Ground busbar available in
$5 \times 20 \mathrm{~mm}$ to $10 \times 30 \mathrm{~mm}$
(4) 8WC Busbar (8WC5053
shown) FBB36 Busbar (5/6)

Short-circuit strength

The short-circuit strength of the busbar system is dependent on the spacing of the busbar holders and on the busbar crosssection.
The short-circuit strength of the whole system is dependent on the short-circuit strength of the busbar system and the components that are mounted to the system.

Applications

The 8US Fast Bus distribution system is ideal for control pane builders with multiple motor applications. These applications are most common in the material handling, automotive, food processing, pharmaceutical and paper processing industries.

	Clearance in air	Creepage distance
Between live parts	$25.4 \mathrm{~mm}(1 \mathrm{inch})$	$50.8 \mathrm{~mm}(2$ inch $)$
Between live parts and grounded, non-insulated metal parts	$25.4 \mathrm{~mm}(1 \mathrm{inch})$	$25.4 \mathrm{~mm}(1$ inch $)$

Fast Bus Busbar Adapter System

Introduction

Fast Bus combination starters and group installation assemblies

Ratings for Group Installations per

 NEC 430-53Group Installation is an approach to building multiple motor control systems in accordance with Section 430-53 of the National Electrical Code. In Group installation, multiple motor starters can be grouped under one short circuit protective device. The 3RV MSPs have been UL listed for use in Group Installations both with and without 3RT contactors when mounted on the Fast Bus system. A 3RT contactor is added when remote operation of the motor is required.

Standard Installation, NEC 430-52

Each Motor has Branch Circuit Protective Device

Group Installation, NEC 430-53

Branch Circuit
Protective Device
(Fuses or Circuit Breaker)

One Branch Circuit Protective Device for All Motors

MSP	FLA Amp	FLA Amp	Maximum rating of Group Branch Circuit Protective Device		Short Circuit		
Type	Range	Range	Fuse	Circuit Breaker	240 V	480 V	600 V
3RV201	S00	0.11-12.5	The main fuse should	The main CB should be	65kA	-	30kA
3RV201	S00	0.11-16	be selected based on	selected based on the	65kA	65kA	-
3RV202	S0	3.5-12.5	the FUSE selection	CIRCUIT BREAKER	65kA	-	30kA
3RV202	S0	3.5-25	procedure listed below.	selection procedure	65kA	65kA	-
3RV202	SO	28-32		listed below.	65 kA	50kA	-
3RV202	S0	36-40			65kA	12kA	-
3RV203	S2	11-50			65kA	65kA	25kA
3RV204	S3	28-100			65 kA	65kA	30kA

The selection of components for Group Installation is a simple process of the following three steps:

1. Selection of the Branch Circuit Protective Device, fuse or circuit breaker.
2. Selection of the 3RA Motor Starter based on the motor Full Load Amps.

Circuit Breaker Selection

Select a circuit breaker (CB) between: Minimum CB size (per NEC430-110): Sum of all motor FLC (per NEC table 430-150) $\times 115 \%$.
Maximum CB size (per NEC430-53c): $250 \% \times$ FLC of the largest motor + FLC of all other motors.

Fuse Selection

Calculate the maximum fuse size per NEC430-53c.
Max Fuse Size $=175 \% \times$ FLC of largest motor + FLC of all other motors (FLC's from NEC table 430-150).

Assembled Starter	Starter Frame	FLA	Short Circuit Current Ratings (Type E) ${ }^{1 \text {) }}$		
Type	Size	Range	240V	480Y/277V	600Y/347V
3RA201	S00	0.11-12.5	-	-	30kA
3RA201	S00	0.11-16	65kA	65kA	-
3RA202	SO	0.45-12.5	-	-	30kA
3RA202	SO	0.45-25	65kA	65kA	-
3RA202	SO	28-32	50kA	50kA	-
3RA203	S2	11-50	65kA	65 kA	25kA
3RA204	S3	28-75	-	-	30kA
3RA204	S3	28-100	65kA	65kA	-

[^53]
Fast Bus

Fast Bus Busbar Adapter System

60 mm system

Selection and ordering data

(1) Busbar holder
(2) Insulating Base Plate
(3) End cover
(4) Busbar 3-phase
(5) Busbar Neuteral or PE
(6) Ground busbar holder
(7) Terminals for Round Conductors

	Description		UL Current rating	UL508A Compliance ${ }^{1}$)	Order No.	Pack Units
8US1922-2UA01	Base plate (2)					
	3-pole system flat	$230 \mathrm{~mm} \times 1100 \mathrm{~mm}$	-	required	8US19 22-2UA01	
	Copper Busbar with tin plating					$\begin{aligned} & 3 \mathrm{pcs} \\ & 3 \mathrm{pcs} \end{aligned}$
8WC5	$20 \mathrm{~mm} \times 5 \mathrm{~mm} \times 914 \mathrm{~mm}$ (36")	for 60 mm systems	362A	yes	FBB36	
	$20 \mathrm{~mm} \times 5 \mathrm{~mm} \times 1524 \mathrm{~mm}$ (60")	for 60 mm systems	362A	yes	FBB60	
8US1948-2AA00	$20 \mathrm{~mm} \times 5 \mathrm{~mm} \times 2000 \mathrm{~mm}$ (78.74")	for 60 mm systems	362A	yes	8WC5053	
	$25 \mathrm{~mm} \times 5 \mathrm{~mm} \times 2000 \mathrm{~mm}$ (78.74")	for 60 mm systems ${ }^{4}$	432A	yes	8WC5054	
	$30 \mathrm{~mm} \times 5 \mathrm{~mm} \times 2000 \mathrm{~mm}$ (78.74")	for 60 mm systems	500A	yes	8WC5055	
8US1922-1AC00	$20 \mathrm{~mm} \times 10 \mathrm{~mm} \times 2000 \mathrm{~mm}$ (78.74")	for 60 mm systems	564A	yes	8WC5063	
	$30 \mathrm{~mm} \times 10 \mathrm{~mm} \times 2000 \mathrm{~mm}$ (78.74")	for 60 mm systems	756A	yes	8WC5065	
	$720 \mathrm{~mm}^{2} \times 2400 \mathrm{~mm}$ (94.49")	Twin T (TT) Busbar	1400A	yes	8US19 48-2AA00	
	Busbar holder (end and intermediate) (1)					
	3 -pole with inside mounting	for 20 mm and $30 \mathrm{~mm} \times 5 \mathrm{~mm}$ or 10 mm	-	yes	8US19 23-3UA01	
	3 -pole with inside mounting	for $25 \mathrm{~mm} \times 5 \mathrm{~mm}$ or $\times 10 \mathrm{~mm}$	-	-	8US19 23-3AA00	
8US1923-3UA01	3 -pole with inside mounting	for Twin T (TT) w/ end cover	-	yes	8US19 43-3AA01	
	Busbar holder end cover (3)					
8US1923-1AA01	3 -pole end cover	fits 8US19 23-3UA01 and 8US1923-3AA01		required	8US19 22-1AC00	
	Ground Busbar holder (6)					
	1-pole with inside mounting	for $20 \mathrm{~mm}-30 \mathrm{~mm} \times 5 \mathrm{~mm}$ or $10 \mathrm{~mm}^{2)}$		n/a	8US19 23-1AA01	
	Cover profiles for Busbars					
8US1922-2AA00	for 5 mm busbars up to 30 mm wide	1000 mm length	-	required	8US19 22-2AA00	
	for 10 mm busbas up to 30 mm	1000 mm length	-	required	8US19 22-2BA00	
	for Twin T (TT) busbar	1000 mm length	-	required	8US19 22-2DA00	
	Reserve Space Cover (for covering round terminals placed on 3-phase busbar)					
	Holder for reserve space cover	32 mm height	-	required	8US1922-2EA00	4 pcs
	Holder for reserve space cover	107 mm length	-	required	8US1922-2EA01	8 pcs
	Reserve space cover	195 mm height / 700 mm length	-	required	8US1922-2EB00	
8US1922-2EB00	Feeder Lugs (mounts to all busbar sizes on this page)					
\square	3-pole terminal plate with cover	$20 \mathrm{~mm} \times 200 \mathrm{~mm}$ 16-4 AWG	80A	yes	5SH3538	
	3-pole terminal plate with cover	$54 \mathrm{~mm} \times 200 \mathrm{~mm}$ 10-2/0 AWG	175A	yes	8US19 21-1BA00	
	3 -pole terminal plate with cover	$81 \mathrm{~mm} \times 200 \mathrm{~mm} 2$ AWG-250 MCM	440A	yes	8US19 21-1AA00	
	3 -pole terminal plate with cover	$180 \mathrm{~mm} \times 200 \mathrm{~mm} 250-600$ MCM	560A	yes	FBT600F	
5SH3538	3-pole terminal plate	$154 \mathrm{~mm} \times 184 \mathrm{~mm} 300-600 \mathrm{MCM}$	560A	yes	8US19 41-2AA03	
8US1921-1BA00	3-pole terminal plate	$160 \mathrm{~mm} \times 184 \mathrm{~mm}$ for flat bars up to $32 \mathrm{~mm} \times 20 \mathrm{~mm}$	800A	yes	8US19 41-2AA04	
$5{ }^{5}$	Cover for 8US19 41-2AA03 and 04	$180 \mathrm{~mm} \times 200 \mathrm{~mm} \times 90 \mathrm{~mm}$	-	yes	8US19 22-1GC00	

1) UL 508A labeled panels require the use of components that meet the creepage and air distances of 1 " air clearance and 2 " creepage distance. N/A = not applicable for given item.
FBT600F w/cover
2) Current rating dependent on size of busbar used. Refer to busbar selection data.

Fast Bus Busbar Adapter System

60 mm system - Circuit breaker assemblies and kits UPDATED

Selection and ordering data

Description

FBCB Fast Bus circuit breakers

Offer a full range of feeder circuit breakers from 15A to 500A. All Sentron kits 125A and under are pre-assembled on 60 mm Fast Bus adaptor shoes and ready to place on the busbar. All other circuit breaker kits are pre-packaged for fast user
assembly and must be torqued down to the busbar prior to assembly. For VL breakers, adaptors are available for up to 500A breakers (both main and feeder orientation).
See page $5 / 8$.

3VA and GG Feeder Circuit Breakers
Bus bar system for 3VA circuit breakers
are available from 15A up to 500A.

Type

Busbar adapter system with 60 mm busbar center-to-center spacing, 3-pole

Part Number
8US1211-4SS00
8US1213-4AP03
8US1213-4AH04

For molded case circuit breakers / SCCR Rating 3VA5 \& GG 125A 3VA5 250A 3VA6 150A-250A 3VA5 400A-500A 3VA6 400A-500A 65KA @ 480VAC 100KA @ 480VAC 150KA @ 480VAC 100KA @ 480VAC 150KA @ 480VAC $\checkmark \quad-$

3VA and GG Main Circuit Breakers

Busbar adapter system with 60 mm busbar center-to-center spacing, top-fed, 15A to 125A 3-pole

8US1215-4SS00
8US1213-4AP03
8US1213-4AH04

FBCB250M

1) UL Short Circuit Current ratings are based on 480 V .

FBCB015-125 SCCR = 18kA @ 600V
FBCB015H-125H SCCR $=18 \mathrm{kA} @ 600 \mathrm{~V}$
FBCB150-250 SCCR = 22kA @ 600V
2) $\mathrm{FBCB} 100 \mathrm{M}-125 \mathrm{M}$ SCCR $=18 \mathrm{kA} @ 600 \mathrm{~V}$

FBCB150M -250 M SCCR $=25 \mathrm{kA} @ 600 \mathrm{~V}$
FBCB150M-HB $-250 \mathrm{M}-\mathrm{HB}$ SCCR $=25 \mathrm{kA} @ 600 \mathrm{~V}$

Fast Bus

Fast Bus Busbar Adapter System

60 mm system - Busbar adapters and device holders

Selection and ordering data

	Busbar device adapters	Number of mounting rails (35 mm)	Rated current	Connecting cables	Adapter length	Adapter width	Rated voltage UL	UL508A ${ }^{1)}$ compliance	Order No.	Pack units	Weight per PU approx
			A	AWG	mm	mm	V				kg
	For SIRIUS										
	MSPs	1	25	12	182	45	600	yes	8US12 51-5DM07		0.183
	Direct start load feeders	1	25	12	182	45	600	yes	8US12 51-5DM07		0.183
	Reversing feeders										
	Busbar adapters	1	25	12	182	45	600	yes	8US12 51-5DM07		0.183
8US21 51-5DM07	+ Device holders	1	--	--	182	45	600	yes	8US12 50-5AM00		0.158
	+ Connecting plates	--	--	--	--	--	--	yes	8US19 98-1AA00	100 units	0.100
	Size S00/S0 Cage Clamp										
	Direct start load feeders	1	12	14	182	45	600	yes	8US12 51-5CM47		0.190
	Size S2										
	MSPs	1	50	8	182	55	600	yes	8US12 61-5FM08		0.263
	Contactors + Overload relays	1	50	8	182	55	600	yes	8US12 61-5FM08		0.263
8US21 60-5AM00	Direct start load feeders	1	50	8	245	55	600	yes	8US12 61-5FP08		0.292
8US12 11-4TR00	Reversing feeders										
	Busbar adapters	1	50	8	242	55	600	yes	8US12 61-5FP08		0.292
		1	--	--	242	55	600	yes	8US12 60-5AM00		0.202
	+ Device holders	--	--	--	242	55	600	yes	8US12 60-5AP00		0.243
	+ Connecting plates	--	--	--	--	--	--	yes	8US19 98-1AA00	100 units	0.100
	Size S3		80	4	215	72	600	yes	8US12 11-4TR00 ${ }^{4}$		0.659
		1	100	--	200	72	600	yes	FBS100723R		0.590
			100	--	200	72	600	yes	FBS100722		0.610
	For VL UL circuit breakers ${ }^{2}$										
	VL150 UL, DG frame	--	150	Tubular contacts	190	105	600	yes	8US12 13-4AQ03		1.020
	VL250 UL, FG frame	--	250	Tubular con- tacts	190	105	600	yes	8US12 13-4AQ03		1.020
8US12 13-4AQ03	VL400 UL, JG frame	--	400	Tubular contacts	296	140	600	yes	8US12 13-4AH00		1.900
	VL400X UL, LG frame	--	$540{ }^{3)}$		296	140	600	yes	8US12 13-4AH00		1.900
		Tubular		contacts							

[^54]1) UL 508A labeled panels require the use of components that meet the creepage and air distances of 1 " air clearance and 2 " creepage distance.
$\mathrm{N} / \mathrm{A}=$ not applicable for given item.
2) For use with $10 \mathrm{~mm} \times 30 \mathrm{~mm}$ and twin T (T) busbars only. Adaptors can be configured for main or feeder breakers applications.
3) For use with maximum 500A circuit breaker. Circuit breakers greater than 500A must be panel mounted off the busbar system and fed to the busbars via an infeed module. See page 5/6.
4) Rated 100A @ 480V. Rated 100A @ 600V with Class J Fuses.

Fast Bus Busbar Adapter System

60 mm system - Terminals and accessories

Selection and ordering data

Fast Bus

Fast Bus Busbar Adapter System

Dimension drawings

Dimension	A
FBB36	36 (914)
FBB60	60 (1524)

Copper Busbar/TT profile, 8US19 48-2AA00

8US19 23-1AA01

8US19 23-3UA01

8US19 22-1AC00 with 8US19 23-3UA01 8US19 22-1AC00 with 8US19 23-3AA01

8US19 43-3AA00

Support for blanking covers, 8US1922-2EA00

8US19 22-2AA00
8US19 22-2BA00

8US19 22-2DA00

Blanking cover, 8US1922-2EB00

Fast Bus Busbar Adapter System

Dimension drawings

Infeed, 8US19 21-1BA00

Infeed, 8US19 21-1AA00

Infeed 5SH3538

FBT600F (supplied with cover)

Infeed, 8US19 41-2AA03

FBT600F Cover

Fast Bus

Fast Bus Busbar Adapter System

Dimension drawings

Busbar device adapter, 8US12 61-5FM08

Busbar device adapter, 8US12 60-5AP00

Busbar device adapter, 8US12 11-4TR00

Busbar device adapter, 8US12 61-5FP08

Fast Bus Busbar Adapter System

Dimension drawings

Busbar device adapter, 8US12 51-5CM47

Busbar device adapter, 8US12 13-4AQ01

8US19 98-2BM00

Busbar device adapter, 8US12 13-4AQ03

Busbar device adapter, 8US12 13-4AH00

Fast Bus Busbar Adapter System

Dimension drawings

Type		a	b	c	d	e	f	Max tighening torque
5 mm	8US1921-2AA0.	7.5	11.5	22.5	25	5	10	4 Nm
	8US1921-2AB0.	10.5	15.5	29	35	5	10	6 Nm
	8US1921-2AC0.	17	23.5	36	55	5	12	15 Nm
	8US1921-2AD0.	14.5	20.5	32	42	5	12	10 Nm
10 mm	8US1921-2BAO.	7.5	11.5	22.5	25	10	10	4 Nm
	8US1921-2BB0.	10.5	15.5	29	35	10	10	6 Nm
	8US1921-2BCO.	17	23.5	36	55	10	12	15 Nm
	8US1921-2BD0.	14.5	20.5	32	42	10	12	10 Nm

8US1941-2AA02

8US1921-2A / -2B

FBC135
I

8US1922-1GA00

Fast Bus

Fast Bus Busbar Adapter System

60 mm system

Dimension drawings

8US19 98-1CA00

8US19 98-1DA00

8US19 98-4AA00

8US19 98-7CA08

8US19 98-7CA10

8US19 98-7CA16

8US19 98-1BA00

8US19 98-8AA10

8US19 98-1CA00

8US19 98-1DA00

Fast Bus

SIRIUS 3RA Fast Bus Combination Starters and Group Installation Assemblies

General data

Order No. scheme

Digit of the Order No.	1st 3rd $\square \square \square$				7th 0	-					12th	-	13th			16th
SIRIUS starters	3 R A															
SIRIUS 2nd generation		2														
Type of starter (direct-on-line starter $=1$, reversing starter $=2$)			\square													
Size (S00 = 1, S0 = 2)				\square												
Setting range for overload release							\square	\square								
Design type and connection method									\square							
Rated power at 460 V AC										\square	\square					
Integrated auxiliary switches of the contactor													\square			
Operating range / solenoid coil circuit (contactor)														\square		
Rated control supply voltage (contactor)															\square	\square
Example	3 R A	2	1	1	0	-	0	B	A	1	5	-	1	A	K	6

Note:
The Order No. scheme is presented here merely for information purposes and for better understanding of the logic behind the order numbers. For your orders, please use the order numbers quote in the catalog in the Selection and ordering data.

Technical specifications

| Direct-on-line starters/
 reversing starters | Size Connection methods Mounting | Control voltage Width W Height H Depth D |
| :--- | :--- | :--- | :--- |

					mm	mm	mm
Mounting dimensi							
Direct-on-line starters	S00	Screw terminals	Standard mounting rails	AC/DC	45	167	97
3RA21.	3RA21 1.		Busbar adapters	AC/DC	45	200	155
		Spring-type terminals	Standard mounting rails	AC/DC	45	198	97
			Busbar adapters	AC/DC	45	260	155
5	SO	Screw terminals	Standard mounting rails	AC	45	193	97
	3RA21 2.			DC	45	193	107
\bigcirc			Busbar adapters	AC	45	260	155
				DC	45	260	165
		Spring-type terminals	Standard mounting rails	AC/DC	45	243	107
			Busbar adapters	AC/DC	45	260	165
Reversing starters	S00	Screw terminals	Standard mounting rails	AC/DC	90	170	97
3RA22.	3RA22 1.		Busbar adapters	AC/DC	90	200	155
		Spring-type terminals	Standard mounting rails	AC/DC	90	204	97
			Busbar adapters	AC/DC	90	260	155
	SO	Screw terminals	Standard mounting rail	AC	90	265	120.3
	3RA22 2.		adapters	DC	90	265	130
			Busbar adapters	AC	90	260	155
				DC	90	260	165
		Spring-type terminals	Standard mounting rail adapters	AC/DC	90	270	131
			Busbar adapters	AC/DC	90	260	165

Type	3RA2.1	3RA2. 2
Size	S00	S0
Number of poles	$\mathbf{3}$	$\mathbf{3}$

Mechanics and environment

Permissible ambient temperature		
- During operation	${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$
- Storage and transport	${ }^{\circ} \mathrm{C}$	$-55 \ldots+80$

Weight $\quad \mathrm{kg} \quad 0.6 \ldots 1.5 \quad 0.8 \ldots 2.3$

Permissible mounting

Shock resistance (sine-wave pulse)	Acc. to IEC 60086 Part 2-27	g	Up to 6	Up to 6
Degree of protection	Acc. to IEC 60947-1	IP20		

General data

Direct-on-line starting • For 60 mm busbar systems \cdot Sizes SOO and SO

Left: 3RA21 motor starter for direct-on-line starting with busbar adapters with screw connection

60 mm busbar adapter for spring-type terminals 8US12 51-5DT11 for S00 8US12 51-5NT11 for S0

Motor starter protector Size S00/S0 Spring-type terminals

Link module
3RA29 11-2AA00 for S00 3RA29 21-2AA00 for S0 ${ }^{1)}$

Contactor
Size S00/S0 Spring-type terminals

1) Additional 3RA29 11-1CA00 spacer for height compensation on AC contactors size S0 with spring-type terminals.

Right: 3RA21 motor starter for direct-on-line starting with busbar adapters with spring-type connection

3RV204 with 3RT204

MSP
3RV204

Link Module
3RA1941-1A AC/DC

Contactor
3RT204

Bracket
FBS0070B


```
RS assembly kit for reversing duty and
busbar mounting
Scrow connunting
    Screw connection:
    3RA29 13-1DB1 for S00
For spring-type connection
    3RA29 13-1DB2 for S00
    3RA29 23-1DB2 for S01)
Comprising:
    1 wiring kit
    1 \text { busbar adapter}
    1 \text { device holder}
    2 connecting wedges
1)}\mp@subsup{}{}{1)}\mathrm{ Also includes 3RA29 11-1CA00 spacer
for height compensation on AC contactors
size SO with spring-type terminals.
```

Motor starter protector
Size S00/S0
Screw terminals/ spring-type terminals

Link module For screw terminals: 3RA19 21-1DA00 for S00 3RA29 21-1AA00 for S0, AC contactor 3RA29 21-1BA00 for S0, DC contactor For spring-type terminals: 3RA29 11-2AA00 for SOO 3RA29 21-2AA00 for SO^{2})
${ }^{2)}$ Additional 3RA29 11-1CA00 spacer
for height compensation on AC contactors
size S 0 with spring-type terminals.

3RA22 motor starter for reversing duty and 60 mm standard mounting rail in size SOO/S0 (the version with screw connection is shown in the picture)

SIRIUS 3RA Fast Bus Combination Starters and Group Installation Assemblies

Selection

Required Components for Fast Bus Mounting

Fast Bus

SIRIUS 3RA Fast Bus Combination Starters and Group Installation Assemblies

Dimensions

Dimensions, 3RV201 with 3RT201

3RA2110
Fast Bus Non-reversing

3RA2210
Fast Bus Reversing

1) Lockable in OFF position. Padlock diameter 5 mm . 2) When a front auxiliary is installed on the contactor, add 44 mm to the depth of the contactor.

3RA2120
Fast Bus Non-reversing

1) Lockable in OFF position. Padlock diameter 5 mm .
2) When a front mount auxiliary is installed on the contactor, add 44 mm to the depth of the contactor.

3RA2220
Fast Bus Reversing

All dimensions shown in millimeters. For reference
purposes only. Not to be used for design or construc-
tion purposes.

SIRIUS 3RA Fast Bus Combination Starters and Group Installation Assemblies

Dimensions

3RV203 with 3RT203

3RA2130
Fast Bus Non-reversing

Lateral clearance to grounded
components minimum 6 mm .

1) Arcing space
2) Lockable in OFF position with padlock diameter 5 mm .
3) When a front mount auxiliary is installed on the
contactor, add 49 mm to the depth of the contactor.

3RA2230

All dimensions shown in millimeters. For reference purposes only. Not to be used for design or construction purposes.

3RV204 with 3RT204

Lateral clearance to grounded
components minimum 6 mm .

1) Arcing space
2) Lockable in OFF position with padlock diameter 5 mm .
3) When a front mount auxiliary is installed on the contactor, add 49 mm to the depth of the contactor.

All dimensions shown in millimeters. For reference
purposes only. Not to be used for design or construction purposes.

Hybrid Motor Starters

contents

SIRIUS 3RM1 motor starters

General data	$6 / 2-6 / 7$
Selection and ordering	$6 / 8-6 / 9$
Accessories	$6 / 10-6 / 11$

Accessories 6/10-6/11
ET 200SP motor starters
General data 6/12-6/18
Selection and ordering
$6 / 20$
Base units and control module
6/21
Accessories
ET 200pro motor starters
General data 6/22-6/27
Standard motor starters 6/28
High Feature motor starters 6/29
ET 200pro isolator modules 6/30
ET 200pro safety motor starters 6/31
Solutions local/PROFIsafe

- Safety modules local 6/32-6/33
- Safety modules PROFIsafe 6/34
Accessories for ET 200pro motor starters 6/35-6/39
Software
Motor Starter ES 6/40
SIRIUS M200D motor starters
General data 6/41-6/43
M200D motor starters for AS-Interface
General data 6/44-6/46
M200D Basic motor starters 6/47
M200D Standard motor starters 6/48
M200D motor starters for PROFIBUS/PROFINET
General data 6/49-6/54
Communication modules, motor starter modules 6/55
Software
Motor Starter ES 6/56
Accessories
For all M200D motor starters 6/57-6/61
For M200D motor starters for AS-Interface 6/62-6/63
For M200D motor starters for PROFIBUS 6/64
For M200D motor starters for PROFINET 6/65
Hybrid fieldbus connections
General data 6/66
Selection and ordering 6/67

SIRIUS 3RM1 motor starters

Introduction

Overview

3RM13 motor starter with reversing functionality, electronic overload protection and safety-related shutdown

Seamlessly integrated safety right through to the main circuit

Problem-free integration of functional safety into the main circuit through the simple combination of 3RM1 and 3SK devices

SIRIUS 3RM1 motor starters are compact devices, 22.5 mm wide, combining a large number of functions in a single enclosure. They consist of combinations of relay contacts, power semiconductors (hybrid technology), and an electronic overload relay for operational switching of three-phase motors up to 3 HP (at 380-400 V AC).
The 3RM1 motor starters with overload protection with wide setting range are available as direct-on-line starters and reversing starters and as versions with safety-related shutdown up to SIL 3/PL e.

Functional safety in the main circuit needs to be both simple and flexible.
The unique compatibility of hybrid 3RM1 fail-safe motor starters and 3SK safety relays means that integrated functional safety right through to the main circuit is no longer a problem.

Their compact design allows the motor starters to be installed to the right of the safety relay in a simple manner, just like an output expansion. The wiring of the safety-related signals to the relay can be performed simply, quickly and in an error-free manner using the device connector.

The ergonomically designed enclosure with removable terminals and terminal labeling in the hinged cover allows for the cables to be conveniently diagonally mounted from the front. Either screw or spring-loaded terminals with push-in technology are available.

Highlights

- Fail-safe disconnection of motors up to 3 HP
- Problem-free combination of fail-safe motor starters and safety relays
- End-to-end system, simple setup using device connectors
- Ergonomic enclosure

Note:

For SIRIUS 3SK safety relays, see page 13/133.
Limit Switches and Safety.

SIRIUS 3RM1 motor starters

General data

Article No. scheme

Product versions		Article number			
Product function	Direct-on-line starters Failsafe direct-on-line starters Reversing starters Failsafe reversing starters	3RM10 3RM11 3RM12 3RM13	$\begin{aligned} & \square-\square \mathbf{A A} \\ & \square-\square \mathbf{A A} \\ & \square-\square \mathbf{A A} \\ & \square-\square \mathbf{A A} \end{aligned}$	$\begin{aligned} & \square \\ & \square \\ & \square \\ & \square \end{aligned}$	with ATEX certification and safety-related shutdown with ATEX certification and safety-related shutdown
Wide setting range for electronic overload release	$\begin{aligned} & 0.1 \ldots 0.5 \mathrm{~A} \\ & 0.4 \ldots 2.0 \mathrm{~A} \\ & 1.6 \ldots 7.0 \mathrm{~A} \text { (UL/CSA 6.1A max } \end{aligned}$	rated)	$\begin{aligned} & 1 \\ & 2 \\ & 7 \end{aligned}$		For motor standard output up to $3 / 4 \mathrm{HP}^{1}$) For motor standard output up to $3 \mathrm{HP}^{1}$)
Connection method	Screw terminals Spring-loaded terminals (push-in) Mixed connection method		$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$		Spring-loaded terminals (push-in)
Rated control supply voltage U_{s}	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & 110 \text {... } 230 \mathrm{VAC} ; 110 \mathrm{~V} \text { DC } \end{aligned}$			0	
Example		3RM13 0	1-2 AA	0	

${ }^{1)}$ Standard three-phase motor; the actual startup characteristics of the motor as well as its rated data are important factors here.

Note:

The article number scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

Benefits

Product advantages

- Less space required in the control cabinet (20 to 80%) thanks to high functional density, which also means reduced wiring and testing
- Greater endurance and reduced heat losses thanks to hybrid technology
- Lower costs for stock keeping and configuration as a result of the wide setting range of the electronic overload release (up to 1:5)
- Fast wiring without tools for rigid conductors or conductors equipped with end sleeves thanks to spring-loaded terminals (push-in)
- Safety-related shutdown in accordance with SIL 3/PL e by shutting down the control supply voltage without additional devices in the main circuit
- The motor starters can be ideally combined with 3SK safety relays for safety-related shutdown (see Section 13 Limit Switches and Safety.
- Motor status feedback to the higher-level control system in the case of 3RM10 and 3RM12 motor starters in the 24 V DC version
- Virtually error-free wiring on the mains connection side and reduction in short-circuit protective devices by means of 3RM19 infeed system
- ATEX certification of the overload protection of the 3RM1 Failsafe motor starters: "Increased safety" type of protection EEx e according to ATEX directive 2014/34/EU
- The 3RM1 motor starters can be used with highly energyefficient IE3/IE4 motors. In this regard, please observe the information on dimensioning and configuring, see Application Manual.

Standards and approvals

- IEC/EN 60947-4-2
- UL 60947-4-2
- CSA
- ATEX
- IEC 61508-1: SIL 3
- ISO 13849: PL e
- CCC approval for China

SIRIUS 3RM1 motor starters

General data

Technical specifications

More information	
Industry Mall, see www.siemens.com/product?3RM1	FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16311/faq
Equipment Manual, see	
https://support.industry.siemens.com/cs/ww/en/view/66295730	

Article number		3RM1.01	3RM1.02	3RM1.07
Main circuit:				
Operational voltage, rated value, maximum	V	400		
Operating frequency	Hz	50/60		
Operational current at AC-53a at 400 V at an ambient temperature of $40{ }^{\circ} \mathrm{C}$	A	0.5	2	6.1
Minimum load [\% of IM]	\%	20		
Adjustable current response value of the inverse-time delayed overload release	A	$0.1 \ldots 0.5$	$0.4 \ldots 2$	1.6 ... 7
Article number		3RM1.0.-.AA04		3RM1.0.-.AA14
Control circuit:				
Type of voltage of the control supply voltage		DC		AC/DC
Control supply voltage - At DC - At AC at 50 Hz	$\begin{aligned} & V \\ & V \end{aligned}$	24		$\begin{array}{ll} 110 \\ 110 \ldots 230 \\ \hline \end{array}$
Frequency of the control supply voltage	Hz	--		50/60

SIRIUS 3RM1 motor starters

General data

\begin{tabular}{|c|c|c|c|c|}
\hline Type \& \& 3RM1.0.-1AA. 4 \& 3RM1.0.-3AA. 4 \& 3RM1.0.-2AA. 4 \\
\hline \multicolumn{5}{|l|}{Connections/terminals:} \\
\hline Type of electrical connection for main circuit (1 or 2 conductors can be connected) \& \& \multicolumn{2}{|l|}{(H) Screw terminals} \& Spring-loaded terminals (push-in) \\
\hline \begin{tabular}{l}
Connectable conductor cross-section for main contacts \\
- Solid \\
- Finely stranded \\
- With end sleeve \\
- Without end sleeve
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{mm}^{2}\) \\
\(\mathrm{mm}^{2}\) \\
\(\mathrm{mm}^{2}\)
\end{tabular} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& 1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 2.5) \\
\& 1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 1.5)
\end{aligned}
\]} \& \[
\begin{aligned}
\& 1 \times(0.5 \ldots 4) \\
\& 1 \times(0.5 \ldots 2.5) \\
\& 1 \times(0.5 \ldots 4)
\end{aligned}
\] \\
\hline Type of electrical connection for auxiliary and control circuit (1 or 2 conductors can be connected) \& \& Screw terminals \& \multicolumn{2}{|l|}{Spring-loaded terminals (push-in)} \\
\hline \begin{tabular}{l}
Type of connectable conductor cross-sections for auxiliary contacts \\
- Solid \\
- Finely stranded \\
- With end sleeve \\
- Without end sleeve
\end{tabular} \& \(\mathrm{mm}^{2}\)

$\mathrm{~mm}^{2}$

$\mathrm{~mm}^{2}$ \& $$
\left.\begin{array}{l}
1 \times(0.5 \ldots 2.5), \\
2 \times\left(\begin{array}{lll}
1.0 \ldots & 1.5
\end{array}\right) \\
1 \times(0.5 \ldots 2.5), \\
2 \times(0.5 \ldots
\end{array}\right),
$$ \& $1 \times(0.5 \ldots 1.5), 2$

$1 \times(0.5 \ldots 1.0), 2$
$1 \times(0.5 \ldots 1.5), 2$ \& (0.5 ... 1.5)
(0.5 ... 1.0)
(0.5 .. 1.5)

\hline | Type of connectable conductor cross-sections for AWG cables |
| :--- |
| - For main contacts |
| - For auxiliary contacts | \& \& \multicolumn{3}{|l|}{\[

$$
\begin{aligned}
& 1 \times(20 \ldots 12), 2 \times(20 \ldots 14) \\
& 1 \times(20 \ldots 14), \\
& 2 \times(18 \ldots 16)
\end{aligned}
$$
\]}

\hline
\end{tabular}

Accessories

More information

Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/66295730

Three-phase infeed system (3RM19 three-phase busbar system)

The system permits an easy, time-saving and safe means of feeding two or more 3RM1 motor starters. It can be used only with motor starters with screw terminals and in combination with 8US1716-ORK00 adapters for mounting rails in the main circuit.

The maximum summation current must not exceed 25 A . The primary infeed is connected via a three-phase infeed terminal.
The busbars are available in three lengths, for two, three or five motor starters. More than five devices can be connected by clamping the connection tags of a second busbar rotated by 180°.
The three-phase busbars are finger-safe but empty connection tags must be fitted with covers.

3RM19 infeed system with three-phase infeed terminal: In the above example, two three-phase busbars (5-pole busbars) rotated through 180° allow up to nine 3RM1 motor starters to be connected. Contact with the unused connection tags in unoccupied positions is prevented safely by the covers.

SIRIUS 3RM1 motor starters

General data

Fuse module for the use of 3RM1 motor starters on 8US busbar systems and mounting rails

The fuse module permits the very compact construction of a load feeder with a maximum width of 22.5 mm . The 3RM1 motor starter in combination with the integrated fuses for short-circuit protection can therefore be used on 8US busbar systems. Thanks to the range of different adapters, the fuse module can be used in all 60 mm busbar systems and also in compact busbar systems and on mounting rails. The interface to the adapter also permits a simple and secure replacement of the load feeder.

The fuse module can be combined with all 3RM1 motor starters. The easily replaceable fuses protect the connected motor and the cables.

By means of the fuse module, 3RM1 motor starters can be used in busbar systems and 8US compact busbar systems, as well as on mounting rails

SIRIUS 3RM1 motor starters

General data

Device connectors for the control circuit

The device connectors for 3RM1 motor starters (24 V DC control supply voltage only) reduce the outlay for cabling by looping through the control supply voltage. The device connectors can be snapped onto a standard mounting rail or fixed to a level mounting panel using screws.

Device connector with 3RM1 motor starter
Using the device connectors exclusively for feeding in the control supply voltage
By using device connectors, a maximum of five motor starters can be supplied with 24 V DC control supply voltage. This requires the control supply voltage to be applied to the A1 and A2 terminals of only one motor starter.
Device daisy chain connectors can be used for gaps between two motor starters. Device termination connectors terminate a group.
Using the device connectors for safe group shutdown
In combination with the 3RM11 and 3RM13 fail-safe motor starters, the device connector can also be used for safetyrelated shutdown. For this application, groups of no more than five fail-safe motor starters can be connected using a device connector, and the group must be terminated with a termination connector. Removing the control voltage supply from the first motor starter will safely shut down the whole group.

Safe group shutdown can be implemented particularly easily in conjunction with 3SK safety relays. In this case, up to five motor starters can be directly connected to 3SK safety relays via the device connector and then safely shut down (see page 13/133).

Ideal connection: Combination of four SIRIUS 3RM1 Failsafe motor starters with SIRIUS 3SK safety relays

Electromechanical switching devices in series with hybrid motor starters

Switching an inductive load - in particular of motors $<1 \mathrm{HP}$ with high inductance - with an electromechanical switching device (e.g. contactor) can cause high and steep voltage edges.

The resulting faults/damage can be prevented by first disconnecting with the hybrid motor starter or by using EMC suppression modules:

- For 3RT2916-1P.. EMC suppression modules for direct mounting on the contactor, see Section 2 Contactors.
- For motor suppression modules that are fitted in the main circuit, (see page 6/11).

Note:

For more information, see

https://support.industry.siemens.com/cs/ww/en/view/109758696.

SIRIUS 3RM1 motor starters

Selection and ordering data IE3/IE4 ready

Selection and ordering data
More information
Industry Mall, see www.siemens.com/product?3RM1

	Operational power for three-phase motor at $380 \mathrm{~V}^{1}$)	Adjustable current response value of the inverse-time delayed overload release	Control supply voltage			Article No.	Price per PU		PS*
			At DC	At AC at 50 Hz					
	HP	A	V	V	d				
Direct-on-line starters									
2mom	--	$0.1 \ldots 0.5$	24	--	2	3RM1001-■AA04		1	1 unit
	3/4	$0.4 \ldots 2$	24	--	2	3RM1002-■AA04		1	1 unit
	3	$1.6 \ldots 6.1$	24	--	2	3RM1007-■AA04		1	1 unit
	-- 0	$0.1 \ldots 0.5$	110	110... 230	2	3RM1001-■AA14		1	1 unit
	3/4	$0.4 \ldots 2$	110	110... 230	2	3RM1002-■AA14		1	1 unit
	3	$1.6 \ldots 6.1$	110	110... 230	2	3RM1007-■AA14		1	1 unit
3RM1001-1AA04									
Reversing starters									
A	--	$0.1 \ldots 0.5$	24	--	2	3RM1201-■AA04		1	1 unit
	3/4	$0.4 \ldots 2$	24	--	2	3RM1202-■AA04		1	1 unit
8	3	$1.6 \ldots 6.1$	24	--	2	3RM1207-■AA04		1	1 unit
	--	$0.1 \ldots 0.5$	110	110... 230	2	3RM1201-■AA14		1	1 unit
	3/4	$0.4 \ldots 2$	110	110... 230	2	3RM1202-■AA14		1	1 unit
	3	$1.6 \ldots 6.1$	110	110... 230	2	3RM1207-■AA14		1	1 unit
3RM1201-1AA04									
Failsaife direct-on-line starters									
-	--	$0.1 \ldots 0.5$	24	--	2	3RM1101-■AA04		1	1 unit
2	3/4	$0.4 \ldots 2$	24	--	2	3RM1102-■AA04		1	1 unit
	3	$1.6 \ldots 6.1$	24	--	2	3RM1107-■AA04		1	1 unit
4	--	$0.1 \ldots 0.5$	110	110... 230	2	3RM1101-■AA14		1	1 unit
	3/4	$0.4 \ldots 2$	110	110... 230	2	3RM1102-■AA14		1	1 unit
	3	$1.6 \ldots 6.1$	110	110 ... 230	2	3RM1107-■AA14		1	1 unit

3RM1101-1AA04

Failsafe reversing starters

--	$0.1 \ldots$	0.5	24	-	2
$3 / 4$	$0.4 \ldots$	2	24	--	2
3	$1.6 \ldots 6.1$	24	--	2	
--	$0.1 \ldots$	0.5	110	$110 \ldots 230$	2
$3 / 4$	$0.4 \ldots 2$	110	$110 \ldots 230$	2	
3	$1.6 \ldots 6.1$	110	$110 \ldots 230$	2	

3RM1301-1AA04
Type of electrical connection

- Screw terminals for main circuit, screw terminals for control circuit
- Spring-loaded terminals (push-in) for main circuit, spring-loaded terminals (push-in) for control circuit
- Screw terminals for main circuit, spring-loaded terminals (push-in) for control circuit

1) The actual startup characteristics of the motor as well as its rated data are important factors here.

SIRIUS 3RM1 motor starters

Accessories

1) For details of alternative fuses, see Equipment Manual.

SIRIUS 3RM1 motor starters

Accessories

Cover profiles for busbars

3ZY1212-2FA00

1) The cover profiles for busbars can be used for maintaining minimum
2) For further accessories for the configuration of a busbar system, see Catalog LV 10.

SIRIUS 3RM1 motor starters

Accessories

Hybrid Motor Starters

ET 200SP motor starter

Introduction

Overview

Motor starter, BaseUnit, fan and 3DI/LC control module

3RK1308 motor starter in the ET 200SP I/O system

More information

Homepage, see www.siemens.com/ET200SP-motorstarter
Industry Mall, see www.siemens.com/product?3RK1308
TIA Selection Tool, see www.siemens.com/TST
Further components in the ET 200SP I/O system:

- Catalog ST 70
- Industry Mall, see www.siemens.de/product?ET200SP

ET 200SP motor starters

ET 200SP is a scalable and extremely flexible modular I/O system with IP20 degree of protection.
As I/O modules, the ET 200SP motor starters are an integral part of this I/O system. They are switching and protection devices for single- and three-phase loads and are available as direct-on-line or reversing starters.

Basic functionality

All versions of the ET 200SP motor starter feature the following functionality:

- Fully pre-wired motor starters for switching and protecting any AC loads up to 7.5 HP from 48 V AC to 480 V AC
- Disconnection possible via fail-safe motor starters up to SIL 3 and PL e Cat. 4
- With self-assembling 32 A power bus, i.e. the load voltage is only fed in once for a group of motor starters
- All control supply voltages connected only once, i.e. when modules are added they are automatically connected to the next module
- Hot swapping is permissible
- Digital inputs can optionally be used via a 3DI/LC module
- Control of the motor starter from the control system and extensive diagnostics status via the cyclic process image
- Diagnostics capability for active monitoring of the switching and protection functions
- The signal states in the process image of the motor starter provide information about protective devices (short circuit or overload), the switching states of the motor starter, and system faults.

Starter Kit

The 3RK1908-1SK00 Starter Kit is a favorably priced complete package for switching and monitoring motors in the ET 200SP system, see page 6/21.
It contains:

- a 3RK1308-0BC00-0CP0 reversing starter (0.9 to 3 A)
- a 3RK1908-0AP00-0AP0 BaseUnit with 500 V and 24 V AC/DC infeed
- an EMC distance module (consisting of 6ES7193-6BP00-OBA0 BaseUnit plus 6ES7133-6CV15-1AMO BU cover 15 mm)

Use of fan

For motor starters with a 12 A rated current, the 3RW4928-8VB00 fan is included in the scope of supply.
This fan can also be ordered as an option for motor starters with lower rated currents, if the boundary conditions demand this. For information on the ambient conditions for the use of motor starters, see chapter "Product overview" in the Equipment Manual.

ET 200SP motor starter

Introduction

Designing interference-free motor starters

For interference-free operation of the ET 200SP station in accordance with IEC 60947-4-2 standard, use a dummy module before the first motor starter. The dummy module consists of the 6ES7193-6BP00-0BA0 or 6ES7193-6BP00-0DA0 BaseUnit and the 6ES7133-6CV15-1AM0 BU cover 15 mm .

The 15 mm BU cover protects the plug contacts of the BaseUnit against dirt.

Electromechanical switching devices in series with hybrid motor starters
Switching an inductive load - in particular of motors $<1 \mathrm{~kW}$ with high inductance - with an electromechanical switching device (e.g. contactor) can cause high and steep voltage edges.

The resulting faults/damage can be prevented by first disconnecting with the hybrid motor starter or by using EMC suppression modules:

- For 3RT2916-1P.. EMC suppression modules for direct mounting on the contactor, see page 13/133.
- For motor suppression modules that are fitted in the main circuit, see page 16/21.
Note:
For more information, see
https://support.industry.siemens.com/cs/ww/en/view/109758696.

3DI/LC control module

This is a digital input module with three inputs for local motor starter functions such as "manual local control", "implementation of fast inputs" or "end position disconnection". For a list of all the functions permitted by the 3DI/LC module, see chapter "Overview of functions" in the Equipment Manual.

The module is plugged into the front of the motor starter from which it is supplied with a 24 V DC operating voltage.

BaseUnits for motor starters

View of the BaseUnit infeeds for the motor starters
BaseUnits are components for accommodating the ET 200SP I/O modules.

The self-assembling voltage buses integrated into the BaseUnits reduce wiring outlay to the single infeed (both of auxiliary and load voltage).
All modules following on the right are automatically supplied upon plugging the BaseUnits together, if BaseUnits are inserted with routing.
The rugged design and keyed connection technology enables use in harsh industrial conditions.
The BaseUnits are available with various infeeds for the motor starters.

Hybrid Motor Starters

ET 200SP motor starter

General data

Article No. scheme

Product versions		Article number		
Motor starters		3RK1308-0 0 - 0 - 0 C P 0		
Product function	Direct-on-line starters		A	For motor standard output 1/10 ... 7-1/2 HP1)
	Reversing starters		B	For motor standard output 1/10 ... 7-1/2 HP1)
	Fail-safe direct-on-line starters		C	For motor standard output 1/10 $7-1 / 2 \mathrm{HP}^{1}$)
	Fail-safe reversing starters		D	For motor standard output 1/10 ... 7-1/2 HP1)
Current range			A	Maximum current-carrying capacity when starting 4 A
	$\begin{aligned} & 0.1 \ldots 0.4 \mathrm{~A} \\ & 0.3 \ldots 1 \mathrm{~A} \end{aligned}$	$0.3 \ldots 1 \mathrm{~A}$	B	Maximum current-carrying capacity when starting 10 A
			C	Maximum current-carrying capacity when starting 30 A
	$\begin{aligned} & 0.9 \ldots 3 \mathrm{~A} \\ & 2.8 \ldots 9 \mathrm{~A} \end{aligned}$		D	Maximum current-carrying capacity when starting 90 A
	4... 12 A		E	Including fan (3RW4928-8VB00), maximum current-carrying capacity when starting 100 A
Example		3RK1308-0 AD O-0CP 0		
1) For standard motors: Single- or three-phase asynchronous motors, single-phase AC motors, single-phase asynchronous motors, at 400 VAC and 500 VAC ; the actual startup characteristics of the motor as well as its rated data are important factors here.				

Product versions		Article number	
BaseUnit		3RK1908-0 A P 0-0	$\square \mathrm{P} 0$
BU infeed	24 V and 500 V AC		A
	24 V DC		B
	500 V AC		C
	without infeed		D
	500 V AC		G with F-DI infeed
	500 V AC		H with F-DI loop-through
	without infeed		J with F-DI loop-through
	without infeed		K with F-DI infeed
Example		3RK1908-0 A P 0-0	A P 0

Note:

The article number schemes show an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

Benefits

Product advantages

The ET 200SP motor starters offer a number of advantages:

- Fully integrated into the ET 200SP I/O system (including TIA Selection Tool and TIA Portal)
- High degree of flexibility when it comes to safety applications via SIMATIC F-CPU or SIRIUS 3SK safety relays up to SIL 3 and PL e Cat. 4.
- Simple, integrated current value transmission
- Extensive parameterization by means of TIA Portal
- Increase of plant availability through fast replacement of units (easy mounting and plug-in technology)
- Greater endurance and reduced heat losses thanks to hybrid technology
- Less space required in the control cabinet (20 to 80%) as a result of greater functional density (direct-on-line and reversing starters in same width)
- Extensive diagnostics and information for preventive maintenance
- Parameterizable inputs via 3DI/LC control module
- Less wiring and testing required as a result of integrating several functions into a single device
- Lower overheads for stock keeping and configuration as a result of the wide setting range of the electronic overload release (up to 1:3)
- The ET 200SP motor starters can be used with highly energy efficient IE3/IE4 motors, see Application Manual.
Take the current characteristics of the connected motor and motor starter into account when dimensioning. In addition to the rated current, the maximum permissible current range of the motor starter and the ratio of the rated current to the starting current of the motor are relevant.
For more information on IE3/IE4, see page 1/7.

Standards and approvals

- IEC/EN 60947-4-2
- UL 60947-4-2
- CSA
- ATEX
- IEC 61508-1: SIL 3
- ISO 13849: PL e
- CCC approval for China

ET 200SP motor starter

General data

Application

The ET 200SP motor starters are suitable for the following applications:

- Switching and monitoring of
- three-phase motors with overload and short-circuit protection (e.g. 400 V asynchronous motors for secondary drives in conveyor systems)
- single-phase motors with overload and short-circuit protection (e.g. 230 V motors for pump applications)
- Resistive loads by means of current value and diagnostics via the maintenance function (e.g. for heaters)
- Plant monitoring and energy management in conveyor systems:
By means of the phase asymmetry and zero current detection during current measurement, for example, drive belt monitoring and blocking monitoring are possible.
- Track switching and lifting table control in conveyor systems: Track switches can be implemented using the quick stop function and lifting table controls by means of the "immediate end position disconnection" function without any laborious programming.
- Safe isolation of the drive from main power supply: The isolating functions according to IEC 60947-1 offer protection against inadvertent activation during plant maintenance.

Motor starters in the process industry

For the ET 200SP motor starters, special BaseUnits are available that enable the device to be used in the ET 200SP HA I/O system, too. This is typically used in process engineering applications.

Technical specifications

More information

Industry Mall, see www.siemens.com/product?3RK1308 FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/21800/faq
Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/109479973

ET 200SP motor starters

Article number		3RK1308- OAA00-0CPO	3RK1308- OAB00-0CPO	3RK1308- 0AC00-0CPO	3RK1308- OAD00-0CPO	3RK1308- 0AE00-0CPO
		$\begin{aligned} & \text { 3RK1308- } \\ & \text { 0BA00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { 0BB00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { 0BC00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { 0BD00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { OBE00-0CP0 } \end{aligned}$
Product category		Motor starters				
General technical specifications:						
Width \mathbf{x} height \mathbf{x} depth	mm	$30 \times 142 \times 150$				
Design of the switching contact		Hybrid				
Design of the motor protection		Electronic				
Installation altitude at height above sea level, maximum	m	4000				
Mounting position		Vertical, horizontal, flat (observe derating)				
Type of mounting		Can be plugged into BaseUnit				
Ambient temperature - During operation - During transport - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+70 \\ & -40 \ldots+70 \end{aligned}$				
Relative humidity during operation	\%	$10 . . .95$				
Vibration resistance		15 mm up to $6 \mathrm{~Hz} ; 2 \mathrm{~g}$ up to 500 Hz				
Shock resistance		$6 \mathrm{~g} / 11 \mathrm{~ms}$				
Degree of protection		IP20				
Type of coordination		1				
Electrical data:						
Supply voltage at DC rated value	V	24				
Operational power for AC-53a at 440-480V rated value	HP	-	-	1-1/2	5	7-1/2
Operating frequency, rated value	Hz	$50 . . .60$				
Adjustable current response value of the inverse-time delayed overload release	A	$0.1 \ldots 0.4$	$0.3 \ldots 1$	$0.9 \ldots 3$	$2.8 \ldots 9$	$4 \ldots 12$
Max. current carrying capacity at startup at 480V	A	3.2	8	24	72	72
Max. permissible voltage for protective separation between main and auxiliary circuit	V	500				
Insulation voltage, rated value	V	500				
Trip class		CLASS 5 and 10 adjustable				

Hybrid Motor Starters

ET 200SP motor starter

General data

ET 200SP fail-safe motor starters

Article number	$\begin{aligned} & \text { 3RK1308- } \\ & \text { OCA00-0CPO } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { OCB00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { 0CC00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { OCD00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { 0CE00-0CP0 } \end{aligned}$
	3RK1308- 0DA00-0CPO	$\begin{aligned} & \text { 3RK1308- } \\ & \text { ODB00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { 0DC00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { ODD00-0CP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1308- } \\ & \text { ODE00-0CP0 } \end{aligned}$
Product category	Motor starters				

General technical specifications:

Design of the switch contact		Hybrid				
Design of the motor protection		Electronic				
Installation altitude at height above sea level, maximum	m	2000				
Mounting position		Vertical, horizontal, flat (observe derating)				
Type of mounting		Can be plugged into BaseUnit				
Ambient temperature - During operation - During transport - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+70 \\ & -40 \ldots+70 \\ & \hline \end{aligned}$				
Relative humidity during operation	\%	$10 . .95$				
Vibration resistance		15 mm up to $6 \mathrm{~Hz} ; 2 \mathrm{~g}$ up to 500 Hz				
Shock resistance		$6 \mathrm{~g} / 11 \mathrm{~ms}$				
Degree of protection		IP20				
Type of coordination		1				
Electrical data:						
Supply voltage at DC rated value	V	24				
Operational power for AC-53a at 440-480V, rated value	HP	-	-	1-1/2	5	7/12
Operating frequency, rated value	Hz	$50 \ldots 60$				
Adjustable current response value of the inverse-time delayed overload release	A	$0.1 \ldots 0.4$	0.3 ... 1	$0.9 \ldots 3$	$2.8 \ldots 9$	$4 \ldots 12$
Max. current carrying capacity at startup at 480V	A	3.2	8	24	72	72
Max. permissible voltage for protective separation between main and auxiliary circuit	V	500				
Insulation voltage, rated value	V	500				
Trip class		CLASS 5 and 10 adjustable				

ET 200SP motor starter

General data

BaseUnits for motor starters

Article number	$\begin{aligned} & \text { 3RK1908- } \\ & \text { OAP00-0AP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1908- } \\ & \text { OAP00-0BP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1908- } \\ & \text { OAP00-0CPO } \end{aligned}$	$\begin{aligned} & \text { 3RK1908- } \\ & \text { OAP00-0DP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1908- } \\ & \text { OAP00-0GP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1908- } \\ & \text { OAP00-0HPO } \end{aligned}$	$\begin{aligned} & \text { 3RK1908- } \\ & \text { OAP00-0JP0 } \end{aligned}$	$\begin{aligned} & \text { 3RK1908- } \\ & \text { OAP00-OKPO } \end{aligned}$
Product designation	BaseUnit							
General technical specifications:								
	$30 \times 215 \times 75$							
Ambient temperature - During operation - During transport - During storage	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+70 \\ & -40 \ldots+70 \end{aligned}$							
Degree of protection	IP20							
Touch protection against electric shock	Finger-safe							
Connections/terminals:								
Type of connectable conductor cross-sections								
- At the inputs for supply voltage - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - Solid for AWG cables	$\begin{aligned} & 1 \times 0.5 \ldots 2.5 \mathrm{~mm}^{2} \\ & 1 \times 0.5 \ldots 2.5 \mathrm{~mm}^{2} \\ & 1 \times 0.5 \ldots 2.5 \mathrm{~mm}^{2} \\ & 1 \times 20 \ldots 12 \end{aligned}$							
- For infeed - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - Solid for AWG cables	$\begin{aligned} & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 18 \ldots 10 \end{aligned}$		$\begin{aligned} & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 18 \ldots 10 \end{aligned}$	--	$\begin{aligned} & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 1 \ldots 6 \mathrm{~mm}^{2} \\ & 1 \times 18 \ldots 10 \end{aligned}$		--	
- For load-side outgoing feeder - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - Solid for AWG cables	$\begin{aligned} & 1 \times 0.5 \ldots 2.5 \mathrm{~m} \\ & 1 \times 0.5 \ldots 2.5 \mathrm{~m} \\ & 1 \times 0.5 \ldots 2.5 \mathrm{~m} \\ & 1 \times 20 \ldots 12 \end{aligned}$							
Type of electrical connection for auxiliary and control circuits	Spring-loaded terminals (push-in)							
Miscellaneous:								
Type of screwdriver tip	Slotted							
Size of screwdriver tip	Standard screwdriver $0.6 \mathrm{~mm} \times 3.5 \mathrm{~mm}$							

ET 200SP motor starter

General data

3DI/LC control module

Article number		3RK1908-1AA00-0BP0
Product designation		3DI/LC control module
General technical specifications:		
Width \mathbf{x} height \mathbf{x} depth	mm	$30 \times 54.5 \times 42.3$
Type of product		Accessories
Number of digital inputs		4
Installation altitude at height above sea level, maximum	m	2000
Mounting position		Vertical, horizontal, flat
Type of mounting		Can be plugged onto motor starter
Ambient temperature - During operation - During transport - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+70 \\ & -40 \ldots+70 \\ & \hline \end{aligned}$
Connections/terminals:		
Connectable conductor cross-section for auxiliary contacts - Solid or stranded - Finely stranded with end sleeve - Finely stranded without end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 0.2 \ldots 1.5 \\ & 0.25 \ldots 1.5 \\ & 0.2 \ldots 1.5 \end{aligned}$
AWG number as coded connectable conductor cross-section		$24 \ldots 16$
Type of electrical connection for auxiliary and control circuits		Spring-loaded terminals (push-in)
Electrical data:		
Type of voltage of the control supply voltage		DC
Control supply voltage at DC rated value	V	20.4 ... 28.8
Miscellaneous:		
Type of screwdriver tip		Slotted
Size of screwdriver tip		Standard screwdriver $0.6 \mathrm{~mm} \times 3.5$

ET 200SP motor starter

Selection and ordering data IE3/IE4 ready

Selection and ordering data

	Adjustable current response value of the inverse-time delayed overload release	Max. current carrying capacity at startup at 480 V		SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*
	A	A		d				
Motor starters								
	Direct-on-line starters							
	$\begin{aligned} & 0.1 \ldots 0.4 \\ & 0.3 \ldots 1 \\ & 0.9 \ldots 3 \\ & 2.8 \ldots 9 \\ & 4 \ldots .12 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 8 \\ & 24 \\ & 72 \\ & 72 \end{aligned}$	NEW	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3RK1308-0AA00-0CP0 3RK1308-0AB00-0CPO 3RK1308-0AC00-0CPO 3RK1308-0AD00-0CPO 3RK1308-0AE00-0CPO		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
3RK1308-0AB00-0CP0								

	Reversing starters						
	$\begin{aligned} & 0.1 \ldots 0.4 \\ & 0.3 \ldots .1 \\ & 0.9 \ldots 3 \\ & 2.8 \ldots 9 \\ & 4 \ldots 12 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 8 \\ & 24 \\ & 72 \\ & 72 \end{aligned}$	NEW	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3RK1308-0BA00-0CPO 3RK1308-0BB00-0CP0 3RK1308-0BC00-0CP0 3RK1308-0BD00-0CP0 3RK1308-0BE00-0CPO	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit
3RK1308-0BB00-0CP0							
	Fail-safe	ters					
	$\begin{aligned} & 0.1 \ldots 0.4 \\ & 0.3 \ldots 1 \\ & 0.9 \ldots 3 \\ & 2.8 \ldots 9 \\ & 4 \ldots 12 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 8 \\ & 24 \\ & 72 \\ & 72 \end{aligned}$	NEW	$\begin{array}{r} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}$	3RK1308-0CA00-0CPO 3RK1308-0CB00-0CPO 3RK1308-0CC00-0CP0 3RK1308-0CD00-0CP0 3RK1308-0CE00-0CPO	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit

Fail-safe reversing starters

1 unit
1 unit
1 unit
1 unit
1 unit

ET 200SP motor starter

Base units and control module

	Type of product	Operational voltage of the AC infeed	Supply voltage of the DC infeed	SD	Push-in terminals Article No.	$\begin{array}{r} 00 \\ \square \\ \text { Price } \\ \text { per PU } \end{array}$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		V	v	d				
BaseUnits ${ }^{11}$								
3RK1908-0AP00-OAPO	For motor starters							
	- with AC/DC infeed	500	24	2	3RK1908-0AP00-0APO		1	1 unit
	- with DC infeed	--	24	2	3RK1908-0AP00-0BPO		1	1 unit
	- with AC infeed	500	--	2	3RK1908-0AP00-0CP0		1	1 unit
	- without infeed	--	--	2	3RK1908-0AP00-ODPO		1	1 unit
	For fail-safe motor starters							
	- with AC infeed, with F-DI infeed for fail-safe motor starters	500	--	2	3RK1908-0AP00-0GPO		1	1 unit
	- with AC infeed, with F-DI loop-through for fail-safe motor starters	500	--	2	3RK1908-0AP00-OHPO		1	1 unit
	- without AC/DC infeed, with F-DI loop-through for fail-safe motor starters	--	--	2	3RK1908-0AP00-0.JPO		1	1 unit
	- without AC/DC infeed, with F-DI infeed for fail-safe motor starters	--	--	2	3RK1908-0AP00-0KPO		1	1 unit

) The voltage is looped-through from BaseUnits with infeed to subsequent BaseUnits without infeed

Type of product	Supply voltage at DC rated value	Loop through the potential group from the left	SD	Push-in terminals	$\begin{aligned} & \infty \\ & \square \end{aligned}$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
				Article No.	Price per PU		
	V		d				
For dummy modules							
- dark, looping through the potential group	24	Yes	1	6ES7193-6BP00-0BAO		1	1 unit
- light, opening a new potential group	24	No	1	6ES7193-6BP00-0DAO		1	1 unit

Hybrid Motor Starters

ET 200SP motor starter

Accessories

For Use in the Field, High Degree of Protection

Introduction

Overview

Flexible and cost-efficient distributed starter solutions

Be it their high degree of protection, compact design or integrated multifunctionality - our motor starters and soft starters for use in the field are ideal for realizing distributed drive solutions. The modular concepts, distributed power supply and integrated safety technology of our portfolio for a high degree of protection consistently supports current trends in drive technology.

3RK1304

3RK1315

General data

Overview

ET 200pro motor starters in I/O system ET 200pro

SIMATIC ET 200pro is the modular I/O system with high degree of protection IP65/66/67 for local, cabinet-free use. The ET 200pro motor starters with the high degree of protection IP65 are an integral part of ET 200pro.

ET 200pro motor starter: Isolator module, Standard starter and High Feature starter mounted on a wide module rack

ET 200pro motor starters (see pages 6/28 and 6/29)

- Only two variants up to 10 HP
- All settings can be parameterized by bus
- Comprehensive diagnostic signals
- Support for PROFlenergy
- Overload can be acknowledged by remote RESET
- Current asymmetry monitoring
- Stall protection
- EMERGENCY START function on overload
- Current value transmission by bus
- Current limit monitoring
- Full support of acyclic services
- Direct-on-line or reversing starters
- Power bus connection can be plugged in using Han Q4/2 connectors
- Motor feeder with Han Q8/0 plug
- Conductor cross-section up to $6 \times 4 \mathrm{~mm}^{2}$
- 25 A per segment (power looped through using jumper plug)
- In the Standard and High Feature versions (with 4 DI on-board)
- Electromechanical switching and electronic switching
- Electronic starter for direct activation or with integrated soft starter function
- Supplied with 400 V AC brake contact as an option
- Temperature sensor can be connected (Thermoclick or PTC type A)
- Provision of the motor current in PROFlenergy format to higher-level systems, motor current shutdown in dead times using PROFlenergy

More information

Homepage, see www.siemens.com/ET200pro
Industry Mall, see www.siemens.com/product?ET200pro
Further components in the ET 200pro distributed I/O system:

- Interface modules, central units, I/O modules, ET 200pro PS, see Catalog ST 70
- ET 200pro FC-2 frequency converters, see Catalog D 31.2

ET 200pro isolator modules (see page 6/30)
The isolator module with switch disconnector function is used for safe disconnection of the 400 V operational voltage during repair work in the plant and provides an integrated group fusing function (i.e. additional group short-circuit protection for all subsequently supplied motor starters).
Depending on the power distribution concept, all stations can be equipped with an isolator module as an option.

Safety applications

Safety Solution local (see page 6/31)
With the Safety local modules

- Safety local isolator module and
- 400 V disconnecting module
with an appropriate connection, safety level PLe
(according to ISO 13849-1) can be reached.
Safety Solution PROFIsafe (see page 6/34)
With the Safety PROFIsafe modules
- F-Switch and
- 400 V disconnecting module
with an appropriate connection, safety levels SIL 3
(according to IEC 62061) and PL e (according to ISO 13849-1) can also be reached.

Functionality

With the ET 200pro motor starters, any three-phase loads can be protected and switched.

The ET 200pro motor starters are available with mechanical and also electronic contacts.
The ET 200pro electromechanical starters are offered as direct-on-line starters (DSe) and reversing starters (RSe) as Standard and High Feature versions. There are device versions with or without control for externally fed brakes with 400 V AC.
Compared with the Standard motor starters, the High Feature, mechanical motor starter also has:

- Four digital inputs
- Advanced parameterization options

The ET 200pro electronic starters are offered as direct-on-line starters (sDSSte/sDSte) and reversing starters (sRSSte/sRSte) in the High Feature version.
Compared with the High Feature mechanical motor starters, the High Feature electronic motor starter also has:

- Soft starting and smooth ramp-down function
- Deactivated soft start function as an electronic starter for applications with a high switching frequency
- Advanced parameterization options

ET 200pro motor starter

General data

As a result of the protection concept with solid-state overload evaluation and the use of SIRIUS switching devices, size S00, additional advantages are realized on the Standard and High Feature motor starters - advantages that soon make themselves positively felt particularly in manufacturing processes with high plant stoppage costs:

- Configuration is made easier and flexibility is increased by the fine modular structure with ET 200pro. When using ET 200pro motor starters, the parts list per load feeder is reduced to two main items: the bus module and the motor starter. This makes the ET 200pro ideal for modular machine concepts or solutions for conveying systems and in machine-tool building.
- Expansions are easily possible through the subsequent adding of modules. The innovative plug-in technology also does away with the wiring needed up to now. Through the hot swapping function (disconnection and connection during operation) a motor starter can be replaced within seconds if necessary, without having to shut down the ET 200pro station and with it the process in the plant. The motor starters are therefore recommendable in particular for applications with special demands on availability. Storage costs are also optimized by the low level of variance (two units up to 7.5 HP).
- With four locally acting inputs available on the High Feature motor starter it is possible to realize autonomous special functions that work independently of the bus and the higher level control system, e.g. as a quick stop on gate valve controls or limit position disconnectors. In parallel with this, the states of these inputs are signaled to the control system.

Article No. scheme

Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.
For your orders, please use the article numbers quoted in the selection and ordering data.

ET 200pro motor starter

General data

ET 200pro motor starter

General data

Benefits

ET 200pro motor starters provide the following advantages:

- High flexibility thanks to a modular and compact design
- Little variance among all motor starter versions (two units up to 10 HP)
- Extensive parameterization using STEP 7 HW Config
- Increase of plant availability through fast replacement of units (easy mounting and plug-in technology)
- Extensive diagnostics and information for preventive maintenance
- Parameterizable inputs for on-site control functions (High Feature)
- Cabinet-free design thanks to high degree of protection IP65

Application

The SIMATIC ET 200pro motor starters are ideal for the use of several spatially concentrated distributed drive solutions in which several motors, or digital or analog sensors and actuators are addressed from a distributed station. They are perfectly suited for protecting and switching any AC loads.

Application areas

The SIMATIC ET 200pro motor starters are suitable for numerous sectors of industry, e.g. machinery and plant engineering or conveying applications.

Use of ET 200pro motor starters in conjunction with IE3/IE4 motors

Note:

For the use of ET 200pro motor starters in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring; see Application Manual.

Hybrid Motor Starters

ET 200pro motor starter

General data

Technical specifications

More information

Equipment Manual, see
https://support.industry.siemens.com/cs/ww/en/view/22332388

Notes on security:

System networking requires suitable protective measures (including network segmentation for IT security) in order to ensure safe plant operation. For more information on the subject of Industrial Security, see www.siemens.com/industrialsecurity.

TypeTechnology designation ${ }^{1)}$		Standard motor starters Mechanical switching without inputs DSe, RSe	High Feature motor starters		
		Mechanical switching with inputs DSe, RSe	Electronic switching with inputs and soft starter function sDSSte, sDSte, sRSSte, sRSte		
Mechanics and environment					
Motor starters or modules that can be connected to ET 200pro With width of 110 mm			max. 8		
Mounting dimensions (W x H x D)		$110 \times 230 \times 150$		$110 \times 230 \times 160$	
Permissible ambient temperature - During operation - During storage		$-25 \ldots+55$, from +40 with derating$-40 \ldots+70$			
Permissible mounting position		Vertical, horizontal			
Vibration resistance acc. to IEC 60068, Part 2-6	g	2			
Shock resistance acc. to IEC 60068, Part 2-27	g / ms	Half-sine 15/11			
Degree of protection		IP65			
Pollution degree		3, IEC 60664 (IEC 61131)			
Electrical specifications					
Power consumption at 24 V DC - From auxiliary circuit L+/M (U1) - From auxiliary circuit A1/A2 (U2)	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Approx. } 40 \\ & \text { Approx. } 200 \\ & \hline \end{aligned}$			
Rated operational current $/ \mathrm{e}$ for power bus	A	25			
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ - Approval according to EN 60947-1, Appendix N - Approval according to CSA and UL	$\begin{aligned} & \hline \text { VAC } \\ & \text { VAC } \\ & V A C \\ & \hline \end{aligned}$	400 (50/60 Hz) Up to $400(50 / 60 \mathrm{~Hz})$ Up to $600(50 / 60 \mathrm{~Hz})$		Up to $400(50 / 60 \mathrm{~Hz})$ Up to $480(50 / 60 \mathrm{~Hz})$	
Approval - DIN VDE 0106, Part 101 - CSA and UL approval	V	Up to 400 Up to 600		Up to 480 Up to 480	
Conductor cross-sections - Incoming power supply	mm^{2}	Max. 6×4			
Touch protection		Finger-safe			
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6			
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$	V	400			
Rated operational current $/ \mathrm{e}$ for starters - AC-1/2 / 3 at $40^{\circ} \mathrm{C} \quad$ - At 400 V - AC-4 at $40^{\circ} \mathrm{C}$ - At 400 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$0.15 \ldots 2.0 / 1.5 \ldots 12.0$$0.15 \ldots 2.0 / 1.5 \ldots .{ }^{2} .0$$0.15 \ldots 2.0 / 1.5 \ldots 4$		0.15 ... 2.0/1.5 ... 12.02)	
Rated short-circuit breaking capacity	kA	100 at 400 V			
Type of coordination acc. to IEC 60947-4-1		1			
Power of three-phase motors	HP	At 600V max 10		At 480 V max 7.5/5 ${ }^{3}$	
Utilization categories		AC-1, AC-2, AC-3, AC-4		AC-53a ${ }^{4}$ (max. 9 A with deactivated soft start function up to CLASS 10)	
Protective separation between main and auxiliary circuits V		400, acc. to EN 60947-1, Appendix N			
Endurance of contactor - Mechanical Operating cycles - Electrical		30 million Up to 10 million; depending on the current loading (see manual)		--	
Permissible switching frequency		Depending on the current loading, motor starting time, and relative ON period (see manual)			
Operating times for $0.85 \ldots 1.1 \times U_{e}$ - Closing delay - Opening delay		$\begin{aligned} & 11 \ldots 50 \\ & 5 \ldots 45 \end{aligned}$		--	
1) DS Direct-on-line starters RS Reversing starters DSS .. Direct-on-line soft starters RSS .. Reversing soft starters e Electronic motor protection te Full motor protection (thermal + electronic) s Electronic switching with semiconductor.		2) If the soft starter control function is deactivated, the permissible rated operational current is reduced to 9 A up to CLASS 10. 3) With parameterization as electronic starter max. 5 HP . 4) 8 -hour operation.			

ET 200pro motor starter

Standard motor starter IE3/IE4 ready

Overview

The functionality, device functions, and technical specifications of the Standard motor starter are described in "ET 200pro Motor Starters, General data" see page 6/23 onwards.

Selection and ordering data

$\checkmark=$ Additional price

1) Only functions when used together with the backplane bus module and the wide module rack. The backplane bus module and the wide module rack must be ordered separately (see "Accessories for ET 200pro motor starters", page 6/39).

ET 200pro motor starter

High Feature motor starter IE3/IE4 ready

Overview

The functionality, device functions, and technical specifications of the High Feature motor starter are described in "ET 200pro Motor Starters, General data" see page 6/23 onwards

The High Feature motor starter differs from the Standard motor starter in having more parameters and four integrated, freelyparameterizable digital inputs.

Selection and ordering data

Hybrid Motor Starters

ET 200pro motor starter

Isolator modules IE3/IE4 ready

Overview

The isolator module with integrated group fusing function (i.e. additional group short-circuit protection for all subsequently supplied motor starters) and switch disconnector function is used for safe disconnection of the 400 V operational voltage in the plant.

Depending on the power distribution concept, all stations can be equipped with an isolator module as an option.

The following properties apply to the isolator module:

- Increase of plant availability through fast replacement of units (easy mounting and plug-in technology)
- Cabinet-free design thanks to high degree of protection IP65

The isolator module is available in addition in a safety version (see "Safety local isolator module" on page 6/31).

Technical specifications

Type		Isolator modules
General data		
Mounting dimensions (W x H x D) - Direct-on-line starters and reversing starters		$110 \times 230 \times 170$
Permissible ambient temperature - During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -40 \ldots+70 \\ & \hline \end{aligned}$
Permissible mounting position		Any
Vibration resistance acc. to IEC 60068 Part 2-6	g	2
Shock resistance acc. to IEC 60068 Part 2-27	g / ms	Half-sine 15/11
Power consumption - From auxiliary circuit L+/M (U1) - From auxiliary circuit A1/A2 (U2)	mA	Approx. 20
Rated operational current I_{e} for power bus	A	25
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$	V	400
Approvals according to - DIN VDE 0106, Part 101 - CSA and UL	V	Up to 500 Up to 600
Conductor cross-sections - Incoming power supply	mm^{2}	Max. 6×4

Type		Isolator modules
Degree of protection		IP65
Touch protection		Finger-safe
Pollution degree		3, IEC 60664 (IEC 61131)
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6
Rated insulation voltage U_{i}	V	400
Rated operational current $I_{\text {e }}$ for starters		
$\begin{aligned} & \text { - AC-1/2/3 at } 40^{\circ} \mathrm{C} \\ & \text { - At } 400 \mathrm{~V} \\ & \text { - At } 500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$
Rated short-circuit breaking capacity	kA	50 at 400 V
Type of coordination acc. to IEC 60947-4-1		2
Protective separation between main and auxiliary circuits	V	400, according to DIN VDE 0106, Part 101
Device functions - Group diagnostics		Yes, parameterizable
Device indications - Group fault		SF LED (red)

Selection and ordering data

Version	SD	Article No.	Price per PU		PS*
	d				
odules, mechanical					
Isolator modules ${ }^{1)}$ Rated operational current 25 A	2	3RK1304-0HS00-6AA0		1	1 unit

3RK1304-0HS00-6AAO

1) Only functions when used together with the related 110 mm backplane bus module and the wide module rack. The backplane bus module and the wide module rack must be ordered separately (see page 6/39).

ET 200pro motor starter

Safety modules

Overview

Safety Solution local

With the Safety local modules

- Safety local isolator module and
- 400 V disconnecting module with an appropriate connection, safety level PL e (according to ISO 13849-1) can be reached.

ET 200pro motor starter (Safety Solution local): Safety local isolator module, disconnecting module, Standard starter and High Feature starter mounted on a wide module rack

Safety local isolator module

The Safety local isolator module is a repair switch with integrated safety evaluation functions that can be parameterized using DIP switches.
It is used for

- Connection of a one- or two-channel EMERGENCY STOP circuit up to PL e (protective door or EMERGENCY STOP pushbuttons) and parameterizable start behavior
- For controlling the 400 V disconnecting module by means of a safety rail signal

400 V disconnecting module

The 400 V disconnecting module enables the safe disconnection of an operational voltage of 400 V up to PL e. For operation in a Safety Solution local application, it functions only in combination with the Safety local isolator module.
For operation in a Safety PROFIsafe application it functions only in combination with the F -Switch.

Functionality

Safety local isolator module
The Safety local isolator module features the same functions as a standard isolator module with an additional local safety function.
The Safety local isolator module contains a 3TK2841 module and is equipped with M12 terminals for the connection of external safety components.

Terminals 1 and 2 can be used to connect either one- or twochannel EMERGENCY STOP circuits or protective door circuits (IN 1, IN 2).

For monitored starts, an external START switch can be connected to terminal 3.
The required safety functions can be set using two slide switches located under the left M12 opening.
In the event of an EMERGENCY STOP, the Safety local isolator module trips the downstream 400 V disconnecting module. This safely separates the 400 V circuit up to PL e.
In combination with the 400 V disconnecting module, the Safety local isolator module can be used for safety applications up to PL e.

400 V disconnecting module

The 400 V disconnecting module can be used together with the Safety local isolator module for local safety applications and together with the F-Switch for PROFIsafe safety applications.
It contains two contactors connected in series for safety-related disconnection of the main circuit.

The auxiliary circuit supply of the device is over a safety power rail in the backplane bus module.

The 400 V disconnecting module can be used in conjunction with the Safety local isolator module or with the F-Switch for safety applications up to PLe.

Hybrid Motor Starters

ET 200pro motor starter

Safety modules

Technical specifications

Type		Safety local isolator module	400 V disconnecting module
General data			
Mounting dimensions (W x H x D) - Direct-on-line starters and reversing starters	mm	$110 \times 230 \times 170$	$110 \times 230 \times 150$
Permissible ambient temperature - During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -40 \ldots+70 \\ & \hline \end{aligned}$	
Permissible mounting position		Any	
Vibration resistance acc. to IEC 60068, Part 2-6		2 g	
Shock resistance acc. to IEC 60068, Part 2-27		Half-sine $15 \mathrm{~g} / 11 \mathrm{~ms}$	
Power consumption - From auxiliary circuit L+/M (U1) - From auxiliary circuit A1/A2 (U2)	mA	Approx. 20	
Rated operational current I_{e} for power bus	A	25	
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$	V	400 (50/60 Hz)	
Approval DIN VDE 0106, Part 101	V	Up to 500	
CSA and UL approval	V	Up to 600	
Conductor cross-sections Incoming power supply	mm^{2}	Max. 6×4	
Degree of protection		IP65	
Touch protection		Finger-safe	
Pollution degree		3, IEC 60664 (IEC 61131)	
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6	
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$	V	400	
Rated operational current I_{e} for starters			
$\begin{aligned} & \text { - AC- } 1 / 2 / 3 \text { at } 40^{\circ} \mathrm{C} \\ & \text { - At } 400 \mathrm{~V} \\ & \text { - At } 500 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & \hline \end{aligned}$
Rated short-circuit breaking capacity	kA	50 at 400 V	
Type of coordination acc. to IEC 60947-4-1		2	
Protective separation between main and auxiliary circuits	V	400, according to DIN VDE 0106, Pa	
Operating times for $0.85 \ldots 1.1 \times U_{e}$ - Closing delay - Opening delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \\ & \hline \end{aligned}$	--	$\begin{aligned} & 25 \ldots 100 \\ & 7 \ldots 10 \\ & \hline \end{aligned}$
Device functions - Group diagnostics		Yes, parameterizable	
Device indications - Group fault		SF LED (red)	

ET 200pro motor starter

Safety modules IE3/IE4 ready

Selection and ordering data

1) The Safety local isolator module only functions when used together with the 400 V disconnecting module
2) Only in combination with the special backplane bus module for the Safety local isolator module (see "Accessories for ET 200pro motor starters", page 6/39)
3) The 400 V disconnecting module functions only when used together with the Safety local isolator module or with the F-Switch
4) The 400 V disconnecting module functions only when used together with the backplane bus module and the wide module rack. The backplane bus module and the wide module rack must be ordered separately (see
"Accessories for ET 200pro motor starters", page 6/39).

ET 200pro motor starter

Safety modules PROFIsafe IE3/IE4 ready

Overview

Safety Solution PROFIsafe

With the Safety PROFIsafe modules

- F-Switch and
- 400 V disconnecting module
with an appropriate connection, safety levels SIL 3
(according to IEC 62061) and PL e (according to ISO 13849-1) can be reached.

F-Switch PROFIsafe

Fail-safe digital inputs/outputs in degrees of protection IP65 to IP67 for near-machine, cabinet-free use.

Fail-safe digital inputs

- For the fail-safe reading in of sensor information (one-/two-channel)
- Including integrated discrepancy evaluation for 2 v 2 signals
- Internal sensor supplies (incl. testing) available

Fail-safe digital outputs

- Three fail-safe PP-switching outputs for safe switching of the backplane busbars
The F-Switch is certified up to SIL 3/PL e and has detailed diagnostics.
It supports PROFIsafe in PROFIBUS configurations as well as in PROFINET configurations.

Functionality

The PROFIsafe F-Switch is a fail-safe solid-state module for PROFIsafe safety applications. It has two fail-safe inputs and outputs for safe switching of the 24 V supply over backplane busbars. In combination with the 400 V disconnecting module, fail-safe disconnection of ET 200pro motor starters is possible in PROFIsafe applications up to SIL 3/PL e.

400 V disconnecting module

See "Safety modules local", Overview, page 6/31 and Technical specifications, page 6/32.

Selection and ordering data

1) The 400 V disconnecting module functions only when used together with the Safety local isolator module or with the F-Switch.
2) The 400 V disconnecting module functions only when used together with the backplane bus module and the wide module rack. The backplane bus module and the wide module rack must be ordered separately (see "Accessories for ET 200pro motor starters", page 6/39).

ET 200pro motor starter
Accessories

Overview

Basic design of an ET 200pro version with (from the left) connection module for IM, interface module for communication (IM), RSM isolator module, two ET 200pro motor starters (MS), and connections for energy

Infeed on the ET 200pro motor starter

(9) Power connection cable for isolator module

Infeed on the RSM isolator module

Legend:
(1) Power feeder plug (see page 6/37)
(2) Power connection plug (see page 6/37)
(3) Power jumper plug (see page 6/37)
(4) Motor connection plug (see page 6/37)
(5) Motor plug (see page 6/37)
(6) Motor plug with EMC suppressor circuit (see page 6/37)
(7) Power loop-through plug (see page 6/37)
(8) Power connection cable (see page 6/37)
(9) Power connection cable for isolator module (see page 6/37)
(10) Motor cable (see page 6/38)

ET 200pro motor starter

Accessories

Power bus

The power supply to the field devices (ET 200pro motor starters, M200D motor starters) is provided via the power bus, in which the power T terminal connectors or power double-T terminal connectors are connected by power bus cables.

Feeders

From the terminal connectors, spur lines with Han Q4/2 plugs lead to the field devices, from which the motors are supplied with power via motor connection cables.

Interruption-free thanks to power terminal connectors

In finger-safe connection technology the power T terminal connectors and power double-T terminal connectors connect the components of a feeder to the power bus. They ensure interruption-free operation, i.e. the power bus is not interrupted when the components are unplugged.

Power supply to the motors via the power bus with power T and double-T terminal connectors linked by power bus cables, spur lines to the field devices (motor starters), and power loop-through connections to the motors via motor connection cables

Motor control via PROFIBUS

The interface modules (IM) for PROFIBUS can be combined with three different connection modules for connecting PROFIBUS DP and the power supply:

- Direct connection with cable gland
- ECOFAST connection with hybrid fieldbus cables (with two copper cores for data transmission with PROFIBUS DP, and four copper cores for the power supply), and ECOFAST plugs (HanBrid) ${ }^{1)}$
- M12, 7/8" connection
- with M12 connecting cable and M12 plugs for data transmission with PROFIBUS DP
- with $7 / 8$ " connecting cable and $7 / 8$ " plugs for the power supply ${ }^{2}$

For connection modules with the relevant accessories, see
"Accessories for ET 200pro interface modules" in Catalog ST 70 or the Industry Mall.

1) Hybrid fieldbus connections with HanBrid sockets designed as cabinet bushings transmit data and energy from the control cabinet (IP20) to the field (IP65). They are the interface for jointly routing PROFIBUS DP and the auxiliary voltages into the hybrid fieldbus cable (see page 6/66).

Motor control via PROFINET

For connection modules with the relevant accessories, see
"Accessories for ET 200pro interface modules" in Catalog ST 70 or the Industry Mall.

Selection and ordering data

(4) Motor connection plugs

set for motor cable I connector hood, angular outgoing feeder, pin insert
,

5) Motor plugs

Connector set for motor cable for connection to motors
 jumper, incl. gland

- 7 female contacts, $1.5 \mathrm{~mm}^{2} \quad 30 ~$ 3RK1911-2BM21 $\quad 1 \begin{aligned} & 1 \text { set }\end{aligned}$
(6) Motor plugs with EMC suppressor circuit

Connector set for motor cable for connection to motors,
comprising a cable-end connector hood, straight
outgoing feeder, female insert for HAN 10e with

- 7 female contacts, $1.5 \mathrm{~mm}^{2} \quad 30$ 3RK1911-2BL21
$\bullet 7$ female contacts, $2.5 \mathrm{~mm}^{2} \quad 30 \quad$ 3RK1911-2BL22 $\quad 1 \quad 1$ set

Hybrid Motor Starters

ET 200pro motor starter

Accessories

ET 200pro motor starter

Accessories

1) The wide module rack can accommodate all ET 200pro motor starters and any optional modules (isolator module, Safety local isolator module and 400 V disconnecting module).
2) The backplane bus module is a prerequisite for operation of the ET 200pro motor starter and the optional module.

For more connection technology products, see
https://support.industry.siemens.com/cs/ww/en/view/65355810..

Motor starter ES

Software

Overview

Motor Starter ES for parameterization, monitoring, diagnostics and testing of motor starters

More information

Industry Mall, see www.siemens.com/product?3ZS1
Technical specifications and system requirements, see
https://support.industry.siemens.com/cs/ww/en/ps/16713/td
Motor Starter ES is used for the startup, parameterization, diagnostics, documentation and preventive maintenance of SIMATIC ET 200S, ET 200pro, ECOFAST and M200D motor starters.
The software program is available in three versions which differ in their user-friendliness, scope of functions and price.

SIRIUS M200D motor starters

General data

Overview

SIRIUS M200D AS-i Basic motor starter with manual local operation
The intelligent and highly flexible SIRIUS M200D motor starters for distributed installation start, monitor and protect motors and loads up to 7.5 HP .

The M200D motor starters are available in four versions:

M200D AS-i Basic	M200D AS-i Standard	M200D PROFIBUS	M200D PROFINET
Motor control with AS-i communication		PROFIBUS	PROFINET
Mechanical or electronic switching			
\checkmark	\checkmark	\checkmark	\checkmark
Electronic switching with soft starter functionality			
--	\checkmark	\checkmark	\checkmark
\checkmark Function available -- Function not available			

More information

Homepage, see www.siemens.com/motorstarter
Industry Mall, see www.siemens.com/product?M200D
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=MS_M200D

Basic functionality

The versions of the M200D motor starter are equipped with the following properties and functions:

- Available as direct-on-line and reversing starters in a rugged design
- Electromechanical or electronic switching version
- Low variance - only two device versions up to 7.5 HP thanks to wide range setting
- All versions have the same enclosure size.
- Degree of protection IP65
- Quick and fail-safe wiring of system and motor cables using ISO 23570 plug-in connector technology (Q4/2 and Q8/0)
- Robust and widely used M12 connection method for digital inputs and outputs
- Integrated feeder connector monitoring
- Full motor protection through overload protection and a temperature sensor (PTC, TC)
- Short-circuit and overload protection integrated
- Integrated repair switch lockable with three locks (multi-level service)
- Uniform wiring to the SINAMICS G110D, SINAMICS G110M and SINAMICS G120D frequency inverters and to the ET 200pro distributed I/O system
- Extensive diagnostics concept using LEDs
- Optional integrated manual local control with key-operated switch (ordering option)
- Optionally available brake actuation with voltages from 180 V DC (no rectifier needed in motor) or 230/400 V AC (ordering options)

Article No. scheme

Product versions		Article number						
Motor starters		3RK13	$\square 5-6$	$\square \mathrm{S}$	\square		$\square \square$	
Type	AS-i Basic AS-i Standard PROFIBUS/PROFINET		$\begin{aligned} & 1 \\ & 2 \\ & 9 \end{aligned}$				$\begin{aligned} & \text { A } \\ & \text { A } \\ & \mathbf{D} \end{aligned}$	
Setting range for rated operational current I_{A}	$\begin{aligned} & 0.15 \ldots 2 \mathrm{~A} \\ & 1.5 \ldots 9 \mathrm{~A} \\ & 1.5 \ldots 12 \mathrm{~A} \end{aligned}$			$\begin{aligned} & \mathrm{K} \\ & \mathrm{~N} \\ & \mathrm{~L} \end{aligned}$				
Starter version	Electromechanical starters Electronic starters				4			with integrated contactor with thyristors
Product function	Direct-on-line starters Reversing starters Direct-on-line starters Reversing starters					$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$		with manual local operation with manual local operation
Brake actuation	$\begin{aligned} & \text { None } \\ & 230 / 400 \text { V AC } \\ & 180 \text { V DC } \end{aligned}$						0 3 5	

Example
3RK13 1 5-6KS41-3AA 0

Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

SIRIUS M200D motor starters

General data

Benefits

M200D motor starters provide the following advantages for customers:

- High plant availability through plug-in capability of the main circuit, communication and I/Os - relevant for installing and replacing devices
- Cabinet-free construction and near-motor installation thanks to the high degree of protection IP65
- The motor starters record the actual current flow for the parameterizable electronic motor overload protection. Reliable messages concerning the overshooting or undershooting of setpoint values ensure comprehensive motor protection. All motor protection functions can be defined by simple parameterization
- Low stock levels and low order costs thanks to a wide setting range for the electronic motor protection of 1:10 (only two device versions up to 7.5 HP)
- The integrated wide range for the current enables a single device to cover numerous standard motors of different sizes.
- Comprehensive offering of accessories, including ready-assembled cables
- The M200D motor starters can be installed with a few manual steps. The integrated plug-in technology enables far lower wiring outlay:
Preassembled cables can be plugged directly onto the motor starter module.
- Easy and user-friendly installation because all versions have the same enclosure dimensions.
- Fast and user-friendly commissioning using optional manual local operation
- Increase of process speed through integrated functions such as "Quick Stop" and "Disable Quick Stop", e.g. at points and crossings
- Optional manual local control with momentary-contact and latching operation for easier startup and easier servicing

Application

The high degree of protection IP65 makes the M200D motor starters suitable in particular for use on extensive conveying systems such as are found in mail sorting centers, airports, automotive factories and the packing industry.
For simple drive tasks, particularly in conveyor applications, the new SINAMICS G110D frequency inverter series with a performance range from 0.75 kW to $7.5 \mathrm{~kW}(1.0$ to 10 HP) and degree of protection IP65 is the ideal partner for the M200D motor starters.
SINAMICS G110D converters allow for stepless speed control of three-phase asynchronous motors and comply with the requirements for materials handling applications with frequency control.
For simple drive tasks in conveyor applications in which a frequency inverter integrated into the motor is required, the SINAMICS G110M frequency inverter with a performance range from 0.37 kW to 4 kW and degree of protection IP65/66 is the ideal partner. The SINAMICS G110M is available individually as a frequency converter for self-assembly and pre-mounted on SIMOGEAR geared motors, and with its conveyor-specific functions it satisfies the requirements of conveyor technology applications.

Overview

For motor control using AS-Interface there are the following M200D motor starter versions: SIRIUS M200D AS-i Basic and SIRIUS M200D AS-i Standard (basic functionality, see page 16/41 "SIRIUS M200D Motor Starters" \rightarrow "General data" \rightarrow "Overview").

SIRIUS M200D AS-i Basic

Functionality

- Easy and fast on-site startup through parameterization of local setting knobs (DIP switches) and rotary coding switches for adjusting the rated operational current. The rotary coding switch has an OFF position for deactivating the overload protection with the help of the thermal motor model when using a temperature sensor.

Communications

- AS-i communication with A/B addressing according to Spec V2.1
- The AS-i bus is connected cost-effectively using an M12 connection on the device. Of the four digital inputs, two are contained in the process image and can therefore be used in the PLC program. The other two inputs are locally effective and permanently assigned with functions.
- The LEDs can provide comprehensive diagnostics of the device on the spot. In addition to diagnostics using the PAE process image, the device can create up to 15 different diagnostic signals per slave. The message with the highest priority can be read out through the AS-i communication. This is yet another new development which distinguishes the M200D AS-i Basic motor starter from the rest of the market and adds innovative technology, maximum availability and transparency to the system.

SIRIUS M200D AS-i Standard

The intelligent and highly flexible M200D AS-i Standard motor starter in A/B technology starts and protects motors and loads up to 5.5 kW . They are available in direct-on-line or reversing starter versions, in a mechanical version and also an electronic version (the latter with soft start function).
The M200D AS-i Standard motor starter is the most functional member of the SIRIUS motor starter family in the high degree of protection IP65 for AS-i communication. Consistency with other products of the SIRIUS M200D motor starter range and with the frequency converter and ET 200pro I/O system is assured.
Functionality

- AS-i communication with A / B addressing according to Spec 3.0
- Electronic version also with soft start function
- AS-i slave profile 7AE/7A5 with process image 6E/4A
- Full TIA integration: All digital inputs and outputs exist in the cyclic process image and are visible through AS-i, providing maximum flexibility and best adaptability to the application.
- Additionally expanded diagnostics using data record through AS-i bus
- Complete plant monitoring using statistics data record and current value monitoring by means of data records
- Parameterization through AS-i bus with the help of data records or an expanded process image from the user program
- Control of the motor starter using a command data record from the user program
- Flexible assignment of the digital inputs and outputs with all available assignable input actions
- Parameterization using Motor Starter ES at the local interface (ordering option for startup software)
- Diagnostics with the help of Motor Starter ES (ordering option for startup software)

Mounting and installation

The M200D motor starters can be installed with a few manual steps. The integrated plug-in technology enables far lower wiring outlay. Connecting cables can be plugged directly onto the motor starter module. Swapping of the connecting wires and malfunctions within the plant are prevented by preassembled cables. The AS-i bus is connected cost-effectively using an M12 connection on the device. All versions have identical enclosure dimensions for easier system design and conversion.
Parameterization and configuration
The particularly robust M200D AS-i Standard motor starter is characterized by numerous functions which can be flexibly parameterized. It enables highly flexible parameterization through the AS-i bus using data records from the user program as well as user-friendly local parameterization using the Motor Starter ES startup software through the local point-topoint interface.
Functions can be flexibly assigned to the digital inputs and outputs, adapting them to all possible conveyor applications. All motor protection functions, limit values and reactions can be defined by parameterization. The AS-i Standard is unique. In its 6E/4A process image the motor starter sends all four digital inputs and the digital output via the process image to the PLC in cyclic mode. System configuration and system documentation are facilitated not least by a number of CAX data.

Operation

The new generation of motor starters is characterized by its advanced functionality, maximum flexibility and extremely high degree of automation.
All digital inputs and outputs exist in the cyclic process image. All limit values for monitoring functions and their reactions are parameterizable and therefore adaptable to the application. The motor starters record the actual current flow. Evaluating the current of the parameterizable solid-state overload protection increases the availability of the drives, as do reliable messages concerning the overshooting or undershooting of setpoint values.

Diagnostics and maintenance

The M200D sets new standards for diagnostics. In addition to diagnostics using the PAE process image and diagnostics by "parameter echo" (up to 15 different diagnostic signals per slave can be read out via AS-i communication), the possibility of reading out diagnostic data records is unique on the market.
The AS-i Standard is recommended in particular for expansive and highly automated system components because the possibility of monitoring devices and systems with data records (statistical data, measured values and device diagnostics) provides an in-depth view of the plant from the control room, guaranteeing the monitoring process and increasing plant availability.
Preventive maintenance can be carried out with the integrated maintenance timer and plant downtimes prevented as a result in advance.
Local control of a drive is possible using the ordering option with integrated manual operation. This is yet another new development which distinguishes the M200D AS-i Standard motor starter from the rest of the market and adds innovative technology, maximum availability and transparency to the plant.

	SIRIUS M200D AS-i Basic	SIRIUS M200D AS-i Standard
Device functions (firmware features)		
Slave on the bus		
Fieldbus	\checkmark AS-i	
Slave type	\checkmark A/B acc. to Spec 2.1	\checkmark A/B acc. to Spec 3.0
Profile	\checkmark 7.A.E	\checkmark 7.A.E \& 7.A. 5
Number of assigned AS-i addresses on the bus	$\checkmark 1$	$\checkmark 2$
Number of stations per AS-i master	\checkmark Max. 62 devices	\checkmark Max. 31 devices
AS-i master profile	\checkmark M3 and higher	\checkmark M4 and higher
Parameter assignment		
DIP switches	\checkmark	--
Potentiometer for rated operational current	\checkmark	--
Motor Starter ES	--	\checkmark
Data records through AS-i	--	\checkmark
Diagnostics		
Diagnostics through parameter channel	\checkmark	
Acyclic through data records	--	\checkmark
Expanded process image PAE 4 bytes	--	\checkmark
Process image		
Process image	$\checkmark 4 \mathrm{E} / 3 \mathrm{~A}$	$\checkmark 6 \mathrm{E} / 4 \mathrm{~A}$
Data channels		
Local optical interface (manual local)	\checkmark	
AS-i bus	\checkmark	
Motor Starter ES through local interface	--	\checkmark
Motor Starter ES through bus	--	
Data records ${ }^{1)}$ (acyclic)		
Parameter assignment	--	\checkmark
Diagnostics	--	\checkmark
Measured values	--	\checkmark
Statistics	--	\checkmark
Commands	--	\checkmark
Inputs		
Number	$\checkmark 4$	
- Of these in the process image	$\checkmark 2$ through AS-i	$\checkmark 4$ through AS-i
Input action	\checkmark For permanently assigned functions, see manual	\checkmark Parameterizable: flexible
Quick stop	\checkmark Permanent function: latching, edge-triggered	\checkmark Parameterizable function: latching (edgetriggered), non-latching (level-triggered)
Outputs		
Number	$\checkmark 1$	
Output action	\checkmark Permanent function: assigned with group fault	\checkmark Parameterizable: For function, see manual
Brake output		
180 V DC / 230/400 V AC / none	\checkmark	
Motor protection		
Overload protection	\checkmark Electronic, wide range 1:10	
Short-circuit protection	\checkmark	
Full motor protection	\checkmark	
Temperature sensor	\checkmark Parameterizable using DIP switches: PTC or Thermoclick or deactivated	\checkmark Parameterizable via Motor Starter ES, data record: PTC or Thermoclick or deactivated
\checkmark Function available		
-- Function not available		
1) The data records are a reduced selection com PROFIBUS/PROFINET.	ed with	

SIRIUS M200D motor starters for AS-Interface

General data

Application

The M200D AS-i standard is particularly suitable for highly automated applications in conveyor systems requiring devices and systems to be monitored to prevent or limit plant downtime. The option of planning the functions of the motor starter or its interfaces also creates the prerequisite for fine-adjustment to the function of the motor starter in the application and hence provides for extreme flexibility.

Use of M200D motor starters in conjunction with IE3/IE4 motors

Note:
For the use of SIRIUS M200D motor starters in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring,; see Application Manual.

Technical specifications

More information

Manuals for SIRIUS M200D:

- AS-i Basic, see
https://support.industry.siemens.com/cs/ww/en/view/35016496
- AS-i Standard, see
https://support.industry.siemens.com/cs/ww/en/view/38722160
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16324/faq

SIRIUS M200D motor starters for AS-Interface

General data

SIRIUS M200D motor starters for AS-Interface

Basic motor starter IE3/IE4 ready

Selection and ordering data

M200D AS-i Basic without manual local operation

Electronic starters (with thyristors)
15 3RK1315-6 \square S71- \square AA \square Additional price 1 unit

Rated operational current setting range/A

- 0.15 ... 2
- 1.5 ... 9

Direct-on-line starters/reversing starters

- Direct-on-line starters
- Reversing starters
- Direct-on-line starters with manual local operation
- Reversing starters with manual local operation

Brake actuation

- Without brake actuation
- Brake actuation (230/400 V AC)
- Brake actuation (180 V DC)
$\checkmark=$ Additional price

Selection and ordering data

M200D AS-i Standard without manual local operation

M200D AS-i Standard with manual local operation

SIRIUS M200D motor starters for PROFIBUS/PROFINET

General data

Overview

The intelligent, highly flexible M200D PROFIBUS/PROFINET motor starters are the most functional motor starters of the SIRIUS motor starter family in the high degree of protection IP65 for PROFIBUS/PROFINET communication.

They start and protect motors and loads up to 7.5 HP Direct-on-line and reversing starter versions are available, in a mechanical version and also an electronic version (the latter with soft start function).

The particularly robust M200D PROFIBUS/PROFINET motor starters are characterized by numerous functions which can be flexibly parameterized. Their modular design comprises a motor starter module and a communication module.

The M200D PROFINET motor starters enable TIA-integrated parameterization through PROFINET from STEP 7 - in familiar, user-friendly manner with the look and feel of PROFIBUS.

Functionality

- For basic functionality, see page 16/41 "SIRIUS M200D Motor Starters" \rightarrow "General data" \rightarrow "Overview"
- Electronic version also with soft start function
- Robust and widely used M12 connection method for the digital inputs and outputs and the PROFIBUS/PROFINET bus connection
- All four digital inputs and two digital outputs exist in the cyclic process image. This provides complete transparency of the process on the control level
- Full TIA integration: All digital inputs and outputs exist in the cyclic process image and are visible through the bus, providing maximum flexibility and excellent adaptability to the application
- Flexible assignment of the digital inputs and outputs with all available assignable input actions
- Extensive diagnostics concept using LEDs and through the bus with the TIA-compatible mechanisms
- Expanded diagnostics using data records
- Complete plant monitoring using statistics data record and current value monitoring by means of data records
- Parameterization through PROFIBUS/PROFINET bus with the help of data records from the user program
- Control of the motor starter using a command data record from the user program
- Removable modular control unit - quicker device replacement and therefore lower costs when device outages occur - since existing wiring is on the control unit and only one device needs to be replaced
- Parameterization in STEP 7 HW Config using Motor Starter ES (ordering option for startup software)
- Startup and diagnostics with the help of Motor Starter ES (ordering option for startup software)
- Trace function through Motor Starter ES for optimized startup and tracking of process and device values
Only with PROFINET:
- Just one bus system from the MES level to the devices - no routers
- More stations on the bus and possible configuration of flexible bus structures
- Automatic re-parameterization in case of device replacement thanks to proximity detection
- Wireless integration of plant segments in difficult environments using WLAN
- Easier expansion of the system thanks to a higher number of stations on the bus and elimination of terminating resistors

SIRIUS M200D motor starters for PROFIBUS/PROFINET

General data

Mounting and installation

The M200D PROFIBUS/PROFINET motor starter is comprised of the communication module and the motor starter module. Only the motor starter module has to be replaced therefore when replacing devices. This saves time and money. The communication module remains as an active station on the bus and all other system components continue running. This prevents downtimes.
The integrated plug-in technology enables far lower wiring outlay: Connecting cables can be plugged directly onto the motor starter module. The PROFINET bus is connected costeffectively using an M12 connection on the device. All versions have identical enclosure dimensions for easier system design and conversion.

Parameterization and configuration

All motor protection functions, limit values and reactions can be defined by parameterization.

The user has several user-friendly options for the parameterization. In addition to parameterization directly from STEP 7, which also permits automatic re-parameterization in case of device replacement, it is possible to use the user-friendly Motor Starter ES startup software. By connecting a programming device directly to PROFIBUS/PROFINET and the Motor Starter ES startup software, the devices can also be conveniently programmed from a central point through the bus. Also, parameters can be changed during operation from the user program using the data record mechanism so that the function of the motor starter is adapted to the process when required. With the help of a PC and the Motor Starter ES software it is also possible to perform the parameterization through the local point-to-point interface on-site.

Functions can be flexibly assigned to the digital inputs and outputs, adapting them to all possible conveyor applications. All digital inputs and outputs exist in the cyclic process image. All limit values for monitoring functions and their reactions are parameterizable and therefore adaptable to the application. Consistency with other products of the SIRIUS M200D motor starter range and with the frequency converter and ET 200pro I/O system is assured.

Only with M200D PROFINET motor starters

Thanks to the integrated proximity detection, the device name does not need to be issued manually when a device is replaced. The name is issued automatically by the neighboring devices which note the "names" of the devices in their proximity. No additional startup measures are required therefore when replacing a device.
The new motor starter generation is characterized by high functionality, maximum flexibility and the highest level of automation. PROFINET is especially recommended for large-scale and highly automated system components, since the possibility of monitoring the devices or plants with data records (statistical data, measured values and device diagnostics) ensures a broader insight into the plant by the control room, and hence increases the availability of the plant sustainably.

Operation

The motor starters record the actual current flow. Evaluating the current of the parameterizable solid-state overload protection increases the availability of the drives, as do reliable signals concerning the overshooting or undershooting of setpoint values.
Diagnostics and maintenance
Diagnostics is provided through numerous mechanisms - and can be used as the customer prefers.

The motor starter is TIA-diagnostics compatible, which means that when a fault is identified, a diagnostics alarm is distributed, which invokes the diagnostics OB in the case of a SIMATIC control. The fault can be evaluated as usual in the user program.

The M200D motor starter offers a large variety of diagnostics data through data records. Its functionality is without equal on the market. There are extensive options for reading out data from the motor starter for monitoring devices, systems or processes.
The motor starter is equipped internally with three logbooks for device faults, motor starter trips and events that are issued with a time stamp. These logbooks can be read out of the motor starter at any time in the form of data records and provide the plant operator with plenty of information about the state of his plant and process which he can use to carry out improvements.
With the slave pointer and statistical data functions it is possible to read out, for example, the maximum internal current values or the number of motor starter connection operations for plant monitoring purposes. This allows deviations in the process to be monitored, but also optimum initial commissioning to take place. The user can draw conclusions about the actual load conditions of the devices in his process and on this basis can optimize his plant maintenance intervals.

The device diagnostics data record contains details of all the states of the motor starter, the device configuration and the communication status as a basis for central device and plant monitoring.
With installation and maintenance functions (I\&M), information on modules employed and data specified by the user during configuration, such as location designations, are stored in the motor starter. I\&M functions are used for troubleshooting faults and localizing changes in hardware in a plant or checking the system configuration. Reordering a device is particularly easy as the result.
The integrated maintenance timer can be used to implement preventative maintenance and avoid plant downtimes through look-ahead servicing.
Another new addition is the TRACE integrated into the Motor Starter ES software. It can be used to record measured values as a function of time following a trigger event. This enables process flows to be recorded and their timing optimized.
Local control of a drive is possible using the ordering option with integrated manual operation. This is yet another new development which distinguishes the M200D PROFIBUS/PROFINET motor starter from the rest of the market and adds innovative technology, maximum availability and transparency to the system.

M200D PROFINET motor starters with PROFlenergy

Increasing energy prices, far-reaching ecological problems worldwide and the threat of climate change make it necessary for you to be more conscious about your use of energy.
Active and effective energy management is possible with PROFIenergy.
PROFlenergy is a manufacturer-independent profile on PROFINET, which can be used by all manufacturers, has been standardized by PNO^{11} and supports switching off electrical devices during dead times and measuring the energy flow.
${ }^{1)}$ In the PNO (PROFIBUS Nutzerorganisation e. V. - PROFIBUS User Organization), manufacturers and users have come together to agree on the PROFIBUS and PROFINET standardized communication technologies.

SIRIUS M200D motor starters for PROFIBUS/PROFINET

General data

Switching off during dead times

PROFlenergy supports the targeted switching-off of loads during dead time.
These can be planned short breaks of a few minutes (such as lunch breaks), longer dead times (such as nights) or unplanned dead times. Energy is always saved when no power is required.
Measuring and visualizing the energy flow as a basis of energy management
The objective of energy management is to optimize the use of energy in a company - from the purchasing of energy through to the consumption of energy - economically and ecologically.
Analyses of energy consumption over time can be used to control energy flows, avoid energy peaks, improve ratings and thus save costs.

PROFlenergy enables consumption data to be read off from the devices in a unified form. This is recorded during operation and can be displayed on a control panel, for example, or sent to overlying energy management software packages. This ensures that the measured variables are in a uniform manufacturer-independent form and structure that is available to the user for further processing. These PROFlenergy functions thus provide the basis for active load and energy management during operation.

PROFlenergy in the M200D PROFINET motor starter

The M200D PROFINET motor starter supports the "switching during dead times" and "current measurement values" functions of the motor current using PROFlenergy. These are called commands, because they trigger a reaction in the M200D motor starter.

\checkmark Function available
-- Function not available

SIRIUS M200D motor starters for PROFIBUS/PROFINET

General data

Surs

Benefits

M200D PROFINET motor starters with PROFlenergy

Both standards and laws are making environmental protection and energy management increasingly important, as is the desire to cut energy costs in production facilities and thus ensure a sustainable competitive advantage.

It is thus an objective within the industry to save energy and actively reduce CO_{2} emissions. By the careful use of valuable resources, the manufacturer-independent PROFlenergy profile on PROFINET can make an active contribution to environmental protection.

Application

M200D PROFIBUS/PROFINET motor starters are particularly suitable for fully TIA-integrated, highly automated conveyor applications that meet all needs with regard to the monitoring of devices and systems and preventive maintenance.

Adaptability of the motor starter functions and maximum flexibility of the device enable a broad range of application without any limits. The PROFINET-specific expansions are the best assurance of a future-proof investment.

SIRIUS M200D motor starters for PROFIBUS/PROFINET

General data

Technical specifications

More information	
Equipment Manual for M200D PROFIBUS/PROFINET, see	Notes on security:
https://support.industry.siemens.com/cs/ww/en/view/38823402	In order to protect plants, systems, machines and networks against cyber
threats, it is necessary to implement - and continuously maintain - a holistic,	
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16325/faq	state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
	For more information on the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Type		M200D PROFIBUS/PROFINET	er modules
Technology designation ${ }^{1)}$		Electromechanical switching DSte/RSte	Electronic switching sDSSte/sRSSte
Mechanics and environment			
Mounting dimensions (W x H x D) - Without communication module - With communication module	mm mm	$\begin{aligned} & 294 \times 215 \times 159 \\ & 295 \times 215 \times 163 \end{aligned}$	
Permissible ambient temperature - During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -40 \ldots+70 \\ & \hline \end{aligned}$	
Weight	g	2 820/3 080	$3160 / 3360$
Permissible mounting position		Vertical, horizontal, lying	
Vibration resistance acc. to IEC 60068 Part 2-6	g	2	
Shock resistance - Acc. to IEC 60068 Part 2-27 - Without influencing the contact position	g / ms g / ms	12/11 half-sine 9.8/5 or 5.9/10	
Degree of protection acc. to IEC 529		IP65	
Installation altitude - Up to 1000 m - Up to 2000 m		No derating 1% per 100 m	
Cooling		Convection	
Protection class IEC 536 (VDE 0106-1)		1	
Electrical specifications			
Main circuit			
Maximum power of three-phase motors at 600 V AC	HP	10	
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ - Approval acc. to EN 60947-1 - Approval acc. to UL and CSA - Rated operational current range - Rated operational current range for soft starting - Rated operational current range for direct-on-line starting	$\begin{aligned} & \text { V AC } \\ & \text { V AC } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 400(50 / 60 \mathrm{~Hz}) \\ & 600(50 / 60 \mathrm{~Hz}) \\ & 0.15 \ldots 2 / 1.5 \ldots 12 \\ & --- \\ & -- \\ & \hline \end{aligned}$	$\begin{aligned} & 480(50 / 60 \mathrm{~Hz}) \\ & -\mathrm{O} \\ & 0.15 \ldots 2 / 1.5 \ldots 12 \\ & 0.15 \ldots 2 / 1.5 \ldots 9 \end{aligned}$
Rated operational current for starters $/ \mathrm{e}$ at 400 V AC - 400 V at $\mathrm{AC}-1 / 2 / 3$ - 500 V at $\mathrm{AC}-1 / 2 / 3$ - 400 V at $\mathrm{AC}-4$ - 400 V at $\mathrm{AC}-53 \mathrm{a}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 12 \\ & 9 \\ & 4 \\ & -- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & 12 \text { for soft starting, } \\ & 9 \text { for direct-on-line starting } \end{aligned}$
Mechanical endurance of contactor Operating	cycles	30 million	--
Trip class		CLASS 5, 10, 15, 20	
Permissible switching frequency		see manual	
Rated ultimate short-circuit breaking capacity $/ \mathbf{q}$ - At 400 V AC - At 500 V AC	$\begin{aligned} & \text { kA } \\ & \text { kA } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$20^{2)}$
Short-circuit protection - At $I_{\text {emax }}=2 \mathrm{~A}$ - At $I_{\text {emax }}=9 / 12 \mathrm{~A}$		Integrated, $2 \times 13 I_{\mathrm{e}}=26 \mathrm{~A}$ Integrated, $2 \times 13 I_{\mathrm{e}}=208 \mathrm{~A}$	

Hybrid Motor Starters

SIRIUS M200D motor starters for PROFIBUS/PROFINET

General data

		Line voltag	400 V AC	440 V AC	480 V AC	500 V AC
Brake voltage with brake actuation 180 V DC ${ }^{17}$						
Operational voltage	V	230/400 AC	30 DC			
Uninterrupted current	A	< 0.5 at 230	VAC, < 0.8	V DC		
Short-circuit protection		Yes, 1 A me	fuse			
Rectified brake voltage	V DC	171	180	198	216	225
Recommended brake coil voltage for Siemens motors	V DC	170 ... 200	170 ... 200	$184 \ldots 218$	$184 \ldots 218$	--

1) Integrated brake actuation supplies DC power supply for the brake.

Type		M200D communication modules For PROFIBUS	For PROFINET
Mechanics and environment			
Mounting dimensions (W x H x D)	mm	$174 \times 139 \times 40$	
Permissible ambient temperature - During operation - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -40 \ldots+70 \\ & \hline \end{aligned}$	
Weight	g	300	
Permissible mounting position		Vertical, horizontal, lying	
Vibration resistance acc. to IEC 60068 Part 2-6	g	2	
Shock resistance - Acc. to IEC 60068 Part 2-27 - Without influencing the contact position	g / ms g / ms	12/11 half-sine 9.8/5 or 5.9/10	
Degree of protection acc. to IEC 529		IP65	
Installation altitude - Up to 1000 m - Up to 2000 m		No derating 1% per 100 m	
Cooling		Convection	
Protection class IEC 536 (VDE 0106-1)		1	
Electrical specifications			
Control circuit			
Operational voltage - UDC24V-NS - UDC24V-S	$\begin{aligned} & \mathrm{V} D C \\ & \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & 20.4 \ldots 28.8 \\ & 20.4 \ldots 28.8 \\ & \hline \end{aligned}$	
Power consumption from - UDC24V-NS - UDC24V-S	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & <300 \\ & <100 \end{aligned}$	

SIRIUS M200D motor starters for PROFIBUS/PROFINET

Communication modules, motor starter modules

Selection and ordering data

M200D motor starter module
PROFIBUS/PROFINET (without communication module)

M200D motor starter PROFIBUS

M200D motor starter PROFINET

Electronic starters (with thyristors)

Rated operational current setting range/A

- 0.15 ... 2
- 1.5 ... 12

Direct-on-line starters/reversing starters

- Direct-on-line starters
- Reversing starters
- Direct-on-line starters with manual local operation
- Reversing starters with manual local operation

Brake actuation

- Without brake actuation
15 3RK1395-6 \square S71- \square AD $\square \quad 1$ unit
- Brake actuation (230/400 V AC)
- Brake actuation (180 V DC)
$\boldsymbol{\checkmark}$ = Additional price

Overview

Motor Starter ES for parameterization, monitoring, diagnostics and testing of motor starters

More information

Industry Mall, see www.siemens.com/product?3ZS1
Technical specifications and system requirements, see
https://support.industry.siemens.com/cs/ww/en/ps/16713/td
Motor Starter ES is used for the startup, parameterization, diagnostics, documentation and preventive maintenance of SIMATIC ET 200S, ET 200pro, ECOFAST and M200D motor starters.
The software program is available in three versions which differ in their user-friendliness, scope of functions and price.

SIRIUS M200D Motor Starters

Accessories for all M200D motor starters

Overview

Power and motor connection on the M200D motor starter (in this example: M200D for AS-i)

(9) Connection for digital input (IO communication, 5 -pole)
(10) Connection for digital output (IO communication, 4- or 5-pole)
(11) PROFIBUS connection (input)
(12) PROFIBUS connection (loop)
(13) Connection for 24 V supply (infeed)
(14) Connection for 24 V supply (loop)

Communication connection using PROFIBUS and digital inputs and outputs

(7) Connection for motor control with AS-i communication
(8) AS-Interface M12 feeder
(9) Connection for digital input (IO communication, 5 -pole)
(10) Connection for digital output (IO communication, 4 - or 5 -pole)

Communication connection using AS-Interface and digital inputs and outputs

(9) Connection for digital input (IO communication, 5 -pole)
(10) Connection for digital output (IO communication, 4 - or 5 -pole)
(13) Connection for 24 V supply (infeed)
(14) Connection for 24 V supply (loop)
(15) Connection with PROFINET (input on the left, loop on the right)

Communication connection using PROFINET and digital inputs and outputs

SIRIUS M200D Motor Starters

Power supply to the motors via the power bus with power T and double-T terminal connectors linked by power bus cables, spur lines to the field devices (motor starters), and power loop-through connections to the motors via motor connection cables

Power bus

The power supply to the field devices (ET 200pro motor starters, M200D motor starters) is provided via the power bus, in which the power T terminal connectors or power double-T terminal connectors are connected by power bus cables.

Feeders

From the terminal connectors, spur lines with Han Q4/2 plugs lead to the field devices, from which the motors are supplied with power via motor connection cables.

Interruption-free thanks to power terminal connectors

In finger-safe connection technology the power T terminal connectors and power double-T terminal connectors connect the components of a feeder to the power bus. They ensure interruption-free operation, i.e. the power bus is not interrupted when the components are unplugged.

SIRIUS M200D Motor Starters

Accessories for all M200D motor starters

Selection and ordering data

The accessories listed below represent a basic selection sorted by:

- Accessories for all M200D motor starters
- Accessories for M200D motor starters for AS-Interface
- Accessories for M200D motor starters for PROFIBUS
- Accessories for M200D motor starters for PROFINET

Hybrid Motor Starters

SIRIUS M200D Motor Starters

Accessories for all M200D motor starters

SIRIUS M200D Motor Starters

Accessories for all M200D motor starters

For more connection technology products, see
https://support.industry.siemens.com/cs/ww/en/view/65355810..

Hybrid Motor Starters

SIRIUS M200D Motor Starters

Accessories for M200D motor starters for AS-Interface

Selection and ordering data

Version	SD	Article No.	Price PU (UNIT, per PU
	d	PET, M)	

Motor control with AS-i communication

(7) Control cables, assembled at one end

M12 plug, angular, screw fixing, 4-pole, $4 \times 0.34 \mathrm{~mm}^{2}$,
A-coded, black PUR sheath, max. 4 A

| - Cable length 5 m | 5 | 3RK1902-4GB50-4AAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (7) M12 sockets, angled | 5 | 3RK1902-4CA00-4AAO | 1 | 1 unit |

For screw fixing, 4-pole screw terminals,
max. $0.75 \mathrm{~mm}^{2}$,
A-coded, max. 4 A

3RK1902-4CA00-4AAO

(8) AS-Interface M12 feeders

3RK1901-2NR21

For flat cable	For	Cable length	C fe
AS-i/Uaux	M12 socket	--	not
	M12 cable box	1 m	no

Cable terminating pieces
For sealing of open cable ends (shaped AS-Interface cable) in IP67

3RK1901-1MN00

SIRIUS M200D Motor Starters

Accessories for M200D motor starters for AS-Interface

	Version SD		Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		d				
Further accessories						
	AS-Interface addressing unit V3.0 - For AS-Interface modules and sensors and actuators with integrated AS-Interface according to AS-i Specification V3.0 - For setting the AS-i address of standard slaves, and slaves with extended addressing mode (A/B slaves) - With input/output test function and many other commissioning functions - Battery operation with four type AA batteries (IEC LR6, NEDA 15) - Scope of supply: - Addressing unit with four batteries - Addressing cable, with M12 plug to addressing plug (hollow plug), length 1.5 m	2	3RK1904-2AB02		1	1 unit
3RK1904-2AB02						
3RK1902-4PB15-3AAO	M12 addressing cables to M12 - Standard M12 cable for addressing slaves with M12 connection, e.g. K60R modules - When using the current version of the 3RK1904-2AB01 addressing unit - 1.5 m	5	3RK1902-4PB15-3AA0		1	1 unit
"SIRIUS M200D Motor Starter" manuals						
	Equipment Manual - SIRIUS M200D AS-Interface Basic Motor Starter, see https://support.industry.siemens.com/cs/ww/en/view/35016496					
	Equipment Manual - SIRIUS M200D AS-Interface Basic Motor Starter, see https://support.industry.siemens.com/cs/ww/en/view/38722160					

Hybrid Motor Starters

SIRIUS M200D Motor Starters

Accessories for M200D motor starters for PROFIBUS

Selection and ordering data

SIRIUS M200D Motor Starters

Accessories for M200D motor starters for PROFINET

Selection and ordering data

Hybrid fieldbus connections

General data

Overview

Hybrid fieldbus connection with two HanBrid sockets

Control cabinet bushing with two M12 sockets
Hybrid fieldbus connections with HanBrid sockets designed as cabinet bushings transmit data and energy from the control cabinet (IP20) to the field (IP65). They are the interface for jointly routing PROFIBUS DP and the auxiliary voltages into the hybrid fieldbus cable.
On the cabinet bushings with two M12 sockets for the PROFIBUS M12 connecting cables, the 24 V supply of the motor starters is implemented via separate $7 / 8^{\prime \prime}$ connecting cables.

Passive and active hybrid fieldbus connections

The hybrid fieldbus connections are available in two versions which differ in their functionality:

- Passive version
- Active version with signal refresher function to considerably increase the maximum PROFIBUS cable length

Connection methods

The field side is connected using HanBrid or M12 plug-in connections.

In the case of HanBrid, the following versions are available:

- Socket/socket for feeding into the field
- Pin/socket for looping through in the field

The M12 version is generally configured with socket/socket.
Following connections are available at the rear (cabinet side) in the case of the passive bushings:

- Direct connection
- FastConnect connection

The active bushing with refresher function has 9-pole Sub D sockets for the rear connection.

Auxiliary power infeed

HanBrid plug-in connection technology offers the option of feeding in or looping through two separate auxiliary voltages of 24 V DC (switched/unswitched) into the field in addition to the PROFIBUS signal. The terminal block with spring-loaded terminals on the rear (cabinet side) of the hybrid fieldbus connection provides a variety of interconnecting options for these auxiliary voltages.

Passive hybrid fieldbus connections

- Bushing from the control cabinet (IP20) into the field (IP65)
- HanBrid plug-in design socket/socket or pin/socket
- Direct connection or FastConnect connection for PROFIBUS at the rear
- Terminal block with spring-loaded terminals (0.25 to $2.5 \mathrm{~mm}^{2}$) for infeeding or forwarding the auxiliary voltages

Hybrid fieldbus connection as passive cabinet bushing

Active hybrid fieldbus connections with refresher function

- Bushing from the control cabinet (IP20) into the field (IP65)
- Three independent, electrically separated PROFIBUS segments
- Signal refresher function from and to all segments
- Automatic continuous baud rate detection
- Status/diagnostics displays with LEDs
- Cascading depth of a maximum nine hybrid fieldbus connections
- HanBrid plug-in design socket/socket and pin/socket
- M12 plug-in design socket/socket
- 9-pole Sub D socket connection for PROFIBUS at the rear
- Terminal block with spring-loaded terminals (0.25 to $2.5 \mathrm{~mm}^{2}$) for infeeding or forwarding the auxiliary voltages

Hybrid fieldbus connection as active control cabinet bushing with refresher function

Hybrid Motor Starters

Hybrid fieldbus connections

Selection and ordering

Technical specifications

Type		Passive hybrid fieldbus connections	Active hybrid fieldbus connections
Mechanics and environment			
Dimensions (W x H x D	mm	$93 \times 103 \times 65$	
Cutout (W x H)	mm	80×90	
Temperature range	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$	
Degree of protection		IP20 internal/IP65 on field side	
Material/enclosure	mm	Plastic (black PC), flame retardant	
Electrical specifications			
Rated operational voltage - 24 V DC not switched (NS) - 24 V DC switched (S)	$\begin{aligned} & \text { V DC } \\ & \text { V DC } \end{aligned}$	$\begin{aligned} & 24, \pm 25 \% \\ & 24, \pm 25 \% \\ & \hline \end{aligned}$	
Max. rated current	A	10	
Power supply		--	From 24 V DC not switched (NS)
Max. power consumption	mA	--	130
Mains buffering	ms	--	> 20
Baud rate detection		--	Automatic
Maximum cascading depth		--	9 hybrid fieldbus connections
Baud rates	kbps	9.6/19.2/45.45/93.75/187.5/500/1 500/3	$6000 / 12000$
Electrical separation	V DC	500	

Selection and ordering data

Hybrid fieldolbus connections

- $\mathrm{Cu} / \mathrm{Cu}$, for feeding into the field
- $\mathrm{Cu} / \mathrm{Cu}$, for looping through in the field
- $\mathrm{Cu} / \mathrm{Cu}$, for feeding into the field
- $\mathrm{Cu} / \mathrm{Cu}$, for looping through in the field
Active (refresher)
- $\mathrm{Cu} / \mathrm{Cu}$, for feeding into the field
- $\mathrm{Cu} / \mathrm{Cu}$, for looping through in the field
- $\mathrm{Cu} / \mathrm{Cu}$, for feeding into the field

Socket/socket Pin/socket ($2 \times$ HanBrid)
Socket/socket ($2 \times$ HanBrid) Pin/socket ($2 \times$ HanBrid)

Socket/socket ($2 \times$ HanBrid)
Pin/socket ($2 \times$ HanBrid)
Socket/socket (2 x M12)

	Version	$\begin{aligned} & \text { SD } \\ & \text { d } \end{aligned}$	Article No.	Price per PU	$\begin{gathered} \text { PU (UNIT, } \\ \text { SET, M) } \end{gathered}$	PS*
Accessories						
	Sealing caps for HanBrid Protective cover for bus and power supply connection (pack of 10)	1	6ES7194-1JB10-0XA0		1	10 units

PROFIBUS ECOFAST hybrid cables, see siemens.com/industrymall

Hybrid Motor Starters

Notes

Soft Starters

contents

Introduction	$7 / 2-7 / 3$
SIRIUS 3RW soft starters	
General data	$7 / 4-7 / 11$
High Performance soft starters	
3RW55 soft starters $N=W$	$7 / 12-7 / 25$
- General Data	$7 / 26-7 / 29$
- Inline circuit	$7 / 30-7 / 33$
- Inside-delta circuit	$7 / 34-7 / 35$
- Accessories	$7 / 36-7 / 48$
3RW55 Failsafe soft starters $N=W$	$7 / 49$
- General Data	$7 / 50$
- Inline circuit	$7 / 51-7 / 52$
- Inside-delta circuit	
- Accessories	

General Performance soft starters
3RW52 soft starters NEW

- General Data	$7 / 53-7 / 64$
- Inline circuit	$7 / 65-7 / 66$
- Inside-delta circuit	$7 / 67-7 / 68$
- Accessories	$7 / 69-7 / 70$

Basic Performance soft starters
3RW50 soft starters NEW

- General Data	$7 / 71-7 / 79$
- Inline circuit	$7 / 80$
- Accessories	$7 / 81-7 / 82$
3RW40 soft starters	$7 / 83-7 / 89$
- General Data	$7 / 90-7 / 91$
- Inline circuit	$7 / 92-7 / 93$
- Accessories	
3RW30 soft starters	$7 / 94-7 / 101$
- General Data	$7 / 102$
- Inline circuit	$7 / 103-7 / 104$
- Accessories	
Spare parts	$7 / 105-7 / 107$
For 3RW55/3RW55 Failsafe	$7 / 108-7 / 109$
For 3RW52	$7 / 110$

Class 73/74 Enclosed Softstarter applications
Overview \quad 7/111
Application 7/111
Selection and ordering data 7/112-7/123
Factory Modifications 7/124
Dimensional drawings 7/125
$\begin{array}{ll}\text { Schematics } & 7 / 126\end{array}$

Introduction

Overview

More information

Homepage, see www.siemens.com/softstarter Industry Mall, see www.siemens.com/product?3RW TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=Sirius3rwFolder

Industry Online Support (SIOS) topic page, see
https://support.industry.siemens.com/cs/ww/en/view/109747404
Simulation Tool for Soft Starters (STS), see page $7 / 7$ or
https://support.industry.siemens.com/cs/ww/en/view/101494917

General Performance soft starters

3RW52 soft starters - TIA integration optional \quad - Plug-in communication modules for PROFINET, PROFIBUS, EtherNet/IP and Modbus

- HMI modules optional
- Soft starting and stopping
- Current limiting
- Motor overload protection (optionally with thermistor motor protection)
- Analog output (optional)
- Up to 400HP @ 480V (600V ratings also available)
- Hybrid switching devices for minimum power loss and three-phase motor control for optimum/symmetrical motor control
- Soft Torque for reduced mechanical loading and optimum pump stop
- Parameterization using potentiometers

Use of soft starters in conjunction with IE3/IE4 motors

Note:

For the use of SIRIUS 3RW soft starters in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.

Soft Starters

SIRIUS 3RW Soft Starters
General data

Overview

More information	
Homepage, see www.siemens.com/softstarter	Industry Online Support (SIOS) topic page, see
Industry Mall, see www.siemens.com/product?3RW	https://support.industry.siemens.com/cs/ww/en/view/109747404
TIA Selection Tool Cloud (TST Cloud), see	Simulation Tool for Soft Starters (STS), see page 7/7 or
https://www.siemens.com/tstcloud/?node=Sirius3rwFolder	https://support.industry.siemens.com/cs/WW/en/view/101494917

SIRIUS 3RW soft starters - as versatile as your application

Applications

SIRIUS soft starters

Selection aid for soft starters

Normal starting (CLASS 10)
Pumps
Pumps with special pump stop (to prevent water hammer)
Heat pumps
Hydraulic pumps
Presses
Conveyor belts
Roller conveyors
Screw conveyors
Escalators
Piston compressors
Screw compressors
Small fans ${ }^{1)}$
Centrifugal blowers
Bow thrusters
Heavy starting (CLASS 20)

Heavy starting (CLASS 30)
Large fans ${ }^{2}$)
Circular saws/bandsaws
Centrifuges
Mills
Crushers

- Recommended soft starter

O Possible soft starter

Stirrers	-	\bigcirc	0	\bigcirc
Extruders	-	\bigcirc	\bigcirc	\bigcirc
Lathes	-	\bigcirc	\bigcirc	\bigcirc
Milling machines	-	\bigcirc	\bigcirc	\bigcirc

1) The mass inertia of the fan is <10 times the mass inertia of the motor.
2) The mass inertia of the fan is ≥ 10 times the mass inertia of the motor.

Applications		High Performance		General Performance 3RW52	Basic Performance		
SIRIUS soft starters		3RW55	3RW55-F		3RW50	3RW40	3RW30
General technical specifications							
Operational current at $40^{\circ} \mathrm{C}$	A	$13 . . .2217$	13 ... 987	$13 . . .987$	143 ... 570	12.5 ... 106	$3 . . .106$
Operational voltage	V	$200 . . .690^{1)}$	200... 480	200... 600	200... 600	200... 600	200... 480
Operating power for three-phase motors - At 400 V , at $40^{\circ} \mathrm{C} \quad$ - Inline circuit - Inside-delta circuit - At $460 / 480 \mathrm{~V}$ at $50^{\circ} \mathrm{C} \quad$ - Inline circuit - Inside-delta circuit	kW kW hp hp	$\begin{aligned} & 5.5 \ldots 710 \\ & 11 \ldots 1200 \\ & 7.5 \ldots 1000 \\ & 10 \ldots 1700 \end{aligned}$	$\begin{aligned} & 5.5 \ldots 315 \\ & 11 \ldots 560 \\ & 7.5 \ldots 400 \\ & 10 \ldots 750 \end{aligned}$	$\begin{aligned} & 5.5 \ldots 315 \\ & 11 \ldots 560 \\ & 7.5 \ldots 400 \\ & 10 \ldots 750 \end{aligned}$	$\begin{aligned} & 75 \ldots 315 \\ & - \\ & 100 \ldots 400 \end{aligned}$	$\begin{array}{lll} 5.5 & \ldots & 55 \\ -- & \\ 7.5 & \ldots . & 75 \\ \text {-- } \end{array}$	$\begin{array}{lll} 1.5 & \ldots & 55 \\ - \\ 1.5 & \ldots & \\ -- & \end{array}$
Ambient temperature ${ }^{\text {2 }}$	${ }^{\circ} \mathrm{C}$	-25 ... +60	-25 ... +60	-25 ... +60	$-25 \ldots+60$	$-25 \ldots+60$	$-25 \ldots+60$
Soft starting/ramp-down		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\checkmark^{3)}$
Voltage ramp		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Starting voltage	\%	20 ... 100	20 ... 100	$30 . .100$	$30 . .100$	40 ... 100	40 ... 100
Ramp-up and ramp-down time	S	0... 360	0... 360	0 ... 20	0 ... 20	0 ... 20	$0 \ldots 20^{3}$
Pump stop (torque control) ${ }^{4}$ - Starting torque - Torque limit	$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 10 \ldots 100 \\ & 20 \ldots 200 \end{aligned}$	$\begin{aligned} & 10 \ldots 100 \\ & 20 \ldots 200 \end{aligned}$	--	--		--
Soft Torque (torque limit)		--	--	\checkmark	\checkmark	--	--
Integral bypass contact system		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Intrinsic device protection		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	--
Motor overload protection		$\checkmark^{5)}$	$\checkmark^{5)}$	\checkmark	$\checkmark^{5)}$	$\checkmark^{5)}$	--
Thermistor motor protection evaluation		\checkmark	\checkmark	$\checkmark^{6)}$	$\checkmark^{6)}$	$\checkmark^{6)}$	--
Analog output		\checkmark	\checkmark	$\checkmark^{6)}$	$\checkmark^{6)}$	--	--
Remote RESET		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	--
Adjustable current limiting		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	--
Inside-delta circuit ${ }^{1}$)		\checkmark	\checkmark	\checkmark	--	--	--
Breakaway pulse		\checkmark	\checkmark	--	--	--	--
Automatic parameterization		\checkmark	\checkmark	--	--	--	--
Pump cleaning		\checkmark	\checkmark	--	--	--	--
Condition monitoring		\checkmark	\checkmark	--	--	--	--
User account administration ${ }^{8)}$		\checkmark	\checkmark	--	--	--	--
Creep speed in both directions of rotation		\checkmark	--	--	--	--	--
Reversing duty		\checkmark	\checkmark	--	--	--	--
Reversing DC braking ${ }^{477}$		\checkmark	--	--	--	--	--
DC braking ${ }^{447)}$		\checkmark	--	--	--	--	--
Dynamic DC braking ${ }^{477)}$		\checkmark	--	--	--	--	--
Motor heating		\checkmark	--	--	--	--	--
Communication function ${ }^{9}$		\checkmark	\checkmark	\checkmark	\checkmark	--	--
HMI module installable in the cabinet door		\checkmark	\checkmark	$\checkmark^{9)}$	\checkmark^{9}	--	--
Operating measured value display		\checkmark	\checkmark	$\checkmark^{9)}$	\checkmark^{9}	--	--
Logbooks		\checkmark	\checkmark	$\checkmark^{9)}$	\checkmark^{9}	--	--
Statistical data and slave pointer function		\checkmark	\checkmark	$\checkmark^{9)}$	\checkmark^{9}	--	--
Trace function ${ }^{8}$		\checkmark	\checkmark	--	--	--	--
Programmable control inputs and outputs		\checkmark	\checkmark	--	--	--	--
Number of parameter sets		3	3	1	1	1	1
Parameterizable via software ${ }^{8)}$		\checkmark	\checkmark	--	--	--	--
Number of controlled phases		3	3	3	2	2	2
Heavy starting CLASS 304)		\checkmark	\checkmark	--	--	--	--
\checkmark Function available -- Function not available			5) When using the motor overload protection according to ATEX/IECEx, an upstream contactor may be required, see page $7 / 10$.				
1) Inside-delta circuit only up to operational volta 2) Note derating above $40^{\circ} \mathrm{C}$. 3) Only soft starting available for 3RW30. 4) Calculate soft starter and motor with size allow	e 600	ere required.	6) 7) $^{\text {c }} \mathrm{N}$	device versio ssible in inside oftware Soft Sta conjunction w	only. elta circuit. e ES (TIA Po special acc	ries.	

Soft Starters

SIRIUS 3RW Soft Starters

General data

Constraints

The 3RW soft starters should always be designed on the basis of the required rated operational current of the motor. The motor ratings listed in the selection and ordering data are rough guide values and designed for basic starting conditions (CLASS 10). For other starting conditions we recommend the Simulation Tool for Soft Starters (STS).

Motor rating data in kW and hp is based on IEC 60947-4-1.
At an installation altitude above 2000 m , max. permissible operational voltage is reduced to 480 V .

Installation altitude for SIRIUS 3RW soft starters

The selection and ordering data were determined for the following constraints (stand-alone installation without auxiliary fan)

Applications SIRIUS soft starters		High Performance 3RW55/3RW55-F	General Performance 3RW52	Basic P 3RW50	3RW40	3RW30
Constraints						
Maximum starting time	s	20	10			3
Maximum starting current in \% of motor current	$I_{\text {e }}$	300				
Maximum number of starts per hour	1/h	5				20

Simulation Tool for Soft Starters (STS)

The Simulation Tool for Soft Starters (STS) provides a convenient means of designing soft starters using a simple, quick and easy-to-use interface
Entering the motor and load data will simulate the application and prompt suggestions for suitable soft starters.

Link to the free download of the Simulation Tool for Soft Starters (STS).

- Simple, quick and user-friendly interface
- Detailed and up-to-date Siemens motor database, including IE3/IE4 motors.
- Simulation of heavy starting up to CLASS 30
- Update-capable (e.g. motors, load types, functions)
- Fast simulations with minimum input data
- Immediate, graphical curve charts of start operations with limit values
- Table view of suitable soft starters for the application

Everything at a glance: Simulation and results list

Circuit concept

Three-phase controlled SIRIUS 3RW soft starters can be operated in two different types of circuit:

- Inline circuit

The controls for isolating and protecting the motor are simply connected in series with the soft starter. The motor is connected to the soft starter with three leads.

- Inside-delta circuit

The wiring is similar to that of wye-delta starters. The phases of the soft starter are connected in series with the individual motor windings. The soft starter then only has to carry the phase current, amounting to about 58% of the rated motor current (conductor current).
Comparison of the types of circuit

Inline circuit: Rated current I_{e} corresponds to the rated motor current I_{n}, three cables to the motor

Configuration

The solid-state 3RW soft starters are designed for normal starting. In case of heavy starting or increased starting frequency, a larger unit must be selected. The 3RW52 soft starters may be used in isolated supply networks (IT systems) up to 600 V AC and the 3RW55 soft starters even up to 690 V .
For long starting times it is recommended to have a PTC sensor or temperature switch in the motor. This also applies for the ramp-down modes torque control, pump stop and DC braking, because during the ramp-down time in these modes, an additional current loading applies in contrast to free ramp-down.
No capacitive elements are permitted in the motor feeder between the SIRIUS 3RW soft starter and the motor (e.g. no reactive-power compensation equipment). In addition, neither static systems for reactive-power compensation nor dynamic PFC (Power Factor Correction) must be operated in parallel during starting and ramp-down of the soft starter. This is important to prevent faults arising on the compensation equipment and/or the soft starter.
All elements of the main circuit (such as fuses and controls) should be dimensioned for direct-on-line starting, following the local short-circuit conditions. Fuses and switching devices must be ordered separately. The harmonic component load for starting currents must be taken into consideration for the selection of motor starter protectors (selection of release). Please observe the maximum switching frequencies specified in the technical specifications.

Notes:

When three-phase motors are switched on, voltage drops occur as a rule on starters of all types (direct-on-line starters, wye-delta starters, soft starters). The infeed transformer must always be dimensioned such that the voltage dip when starting the motor remains within the permissible tolerance. If the infeed transformer is dimensioned with only a small margin, it is best for the control voltage to be supplied from a separate circuit (independently of the main voltage) in order to avoid the potential switching off of the soft starter.

For dimensioning soft starters, we recommend our Simulation Tool for Soft Starters (STS), see page 7/7 or our Technical Support:
https://support.industry.siemens.com/My/ww/en/requests.
Recommended parameters for the initial commissioning of our SIRIUS 3RW soft starters are listed in every report of our Simulation Tool for Soft Starters (STS). In addition, our High Performance soft starters provide support by means of their commissioning wizards.

Inside-delta circuit: Rated current I_{e} corresponds to approx. 58% of the rated motor current I_{n}, six cables to the motor (as for wye-delta starters)

Which circuit?

Using the inline circuit involves the lowest wiring outlay. If the soft starter to motor connections are long, this circuit is preferable.

The wiring complexity is twice as high when using the insidedelta circuit, but a smaller device can be used with the same rating. Thanks to the choice of operating mode between the inline circuit and inside-delta circuit, it is always possible to select the most favorable solution.
The braking function is possible only in the inline circuit. The inside-delta circuit cannot be used in 690 V line supplies.

General data

Motor feeders with soft starters

The type of coordination according to which the motor feeder with soft starter is mounted depends on the application-specific requirements. Normally, fuseless mounting (combination of motor starter protector and soft starter) is sufficient.

If type of coordination "2" is to be fulfilled, then semiconductor fuses must be fitted in the motor feeder.

Type of coordination "1" according to IEC 60947-4-1: After a short-circuit incident, the unit is defective and therefore unsuitable for further use (protection of persons and system guaranteed).
$\left[\begin{array}{c}\text { Toc } \\ 2\end{array}\right]$ Type of coordination "2" according to IEC 60947-4-1: After a short-circuit incident the unit is suitable for further use (protection of persons and system guaranteed).

The type of coordination refers to soft starters in combination with the stipulated protective device (motor starter protector/fuse), not to any additional components in the feeder.

The types of coordination are indicated in the corresponding tables by the symbols shown on orange backgrounds.

Feeder tests and events

To keep the scope of feeder tests with SIRIUS 3RW soft starters within economically reasonable limits, tests were conducted with feeder components (motor starter protectors/circuit breakers, fuses) that cover the greatest number of use cases (different soft starter versions depending on, for example, line voltage, type of circuit, or necessary overdimensioning). For the combined tests that were conducted, the values for the short-circuit breaking capacity I_{q} in kA were determined and documented.
If the short-circuit breaking capacity is the same, of course, smaller circuit breakers or fuses can also be used for the selected soft starter provided the dimensioning of the shortcircuit components is suitable for the connected three-phase motor and the line protection for the cables used. For type of coordination "2" (with semiconductor protection), it is also necessary to compare the characteristics because the protection function would no longer be completely ensured if too small a fuse were selected. If the soft starter does not have a motor protection function, the motor protection must also be dimensioned appropriately.

Setting the motor current

If circuit breakers with an overload release are used (e.g. SIRIUS 3RV20 motor starter protector), we recommend activating the motor protection function of the SIRIUS 3RW soft starter to protect the motor and setting the soft starter to the rated operational current I_{e} of the motor. We recommend setting the circuit breaker in such a way that it provides line protection but does not usually trip before the soft starter when a motor overload occurs.

Line protection and motor protection

Line protection and motor protection are not ensured in all operating cases, depending on:

- How the motor feeder is constructed (e.g. with fuses or motor starter protectors)
- Whether the SIRIUS 3RW soft starters are operated within the specification relevant for the tests (IEC 60947-4-2)
- Or whether the documented constraints (see page 7/7) have been observed.

There are operating states of the thyristors (caused, for example, by high starting frequencies or heavy starting) that do not permit an overload to be disconnected by the SIRIUS 3RW soft starter. These cases are very rare but can not be ruled out in all cases.

In accordance with IEC 60947-4-2, the SIRIUS 3RW soft starters are dimensioned and checked for operation with up to 8 times the rated operational current I_{e}. For currents larger than this, reliable disconnection of an overcurrent by the SIRIUS 3RW soft starter is not ensured. Such large overcurrents have to be disconnected by a switching device at a higher level (e.g. by a circuit breaker or a fuse in conjunction with an optional line contactor).
Motor protection by the SIRIUS 3RW soft starter is ensured for currents up to 8 times the rated operational current I_{e} in any case. Line protection is covered by the line-side motor starter protector/circuit breaker or fuse. These motor feeder components must be dimensioned accordingly and the cable crosssections must be chosen to match.

Line protection

Line protection in motor feeders with soft starters is always covered by a fuse or a circuit breaker both in case of an overload and in case of a short circuit. The circuit breaker must have an overload release. That is the case for motor starter protectors (e.g. SIRIUS 3RV20).

Circuit breakers without an overload release (e.g. SIRIUS 3RV23 motor starter protectors) must not be used because they do not provide overload protection. The feeder tests for these were therefore not performed. If the motor feeder with SIRIUS 3RW soft starters is configured without a fuse, motor starter protectors must be used that ensure tripping on an overload.

Motor protection

If fuses are used to provide protection against overload and short circuit of the cables, the motor is protected by the SIRIUS 3RW soft starter. If the constraints (simple starting conditions CLASS 10, listed maximum values for starting current, starting time and number of starts per hour) of page 7/7) are observed, the motor feeders can be configured according to IEC as described in the section about soft starters (an optional line contactor is not required). If these preconditions are met, the SIRIUS 3RW soft starters are able to trip on overloads to protect the motor in any case.

In other starting conditions and on heavy starting, the following must be considered:

Trip classes

Tested fuseless switchgear assemblies comprising SIRIUS 3RW soft starters and motor starter protectors only comply with CLASS 10.
To configure tested motor feeders, for example, for CLASS 20 or CLASS 30, fuses must be used together with SIRIUS 3RW soft starters.

Line contactor

In applications with high starting frequencies or heavy starting as of CLASS 20, we recommend combining fuses with the use of a line contactor on the line side so that a motor overload is disconnected by the fault signaling contact of the soft starter in any case (that is, even in rare cases in which disconnection by the SIRIUS 3RW soft starter is no longer possible due to the operating state of the thyristors).

SIRIUS 3RW Soft Starters

General data

ATEXIIECEx-certified motor overload protection

Ambient temperature during operation
The SIRIUS 3RW soft starters are approved for operation in a temperature range of -25 to $+60^{\circ} \mathrm{C}$.
Please take into account derating of the rated operational current for ambient temperatures above $40^{\circ} \mathrm{C}$.
For more information, see Equipment Manual and the technical data sheet of the selected soft starter

Trip class (electronic overload protection)
The motor and cables must be dimensioned for the selected trip class.

The rated data of the soft starters refers to normal starting (CLASS 10). For heavy starting (> CLASS 10), the soft starter may need to be overdimensioned as only a rated motor current that is lower than the soft starter rated current can be set

Short-circuit protection

The SIRIUS 3RW soft starter does not have short-circuit protection. Short-circuit protection must be ensured

Line protection
Avoid impermissibly high cable surface temperatures by correctly dimensioning the cross-sections.

The cable cross-section must be adequately dimensioned.

Line contactor or additional undervoltage release on the motor starter protector

In many ATEX/IECEx applications no additional measures (e.g. the use of a line contactor) are necessary with regard to the motor feeder configuration.
The operation of the selected soft starter may, depending on the amplitude of the line voltage and the type of motor connection (inline circuit or inside-delta circuit), result in the loss of the certified motor overload protection according to ATEX/IECEx if one of the two remedial measures listed below is not implemented.

Remedial measures

- An additional line contactor in the main circuit
- An additional undervoltage release for a motor feeder configuration with a motor starter protector
The line contactor or the undervoltage release are connected to error outputs 95,96 and 98 of the selected soft starter

Note:
For ATEX/IECEx applications, the accompanying information on parameterization and commissioning must be observed in the ATEX/IECEx chapters of the Equipment Manual for the selected soft starter.

Article No. scheme

Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers

For your orders please use the article numbers quoted in the selection and ordering data.

Benefits

Can be flexibly deployed in many applications

Strong portfolio:

comprehensive, coordinated soft starter portfolio

- The right hardware for all requirements,
soft starters for tasks ranging from simple to demanding starting in Basic, General and High Performance versions
- Extensive portfolio for individual expansion:

Optional HMIs for installation in the device or mounting on the control cabinet door

- Communication via PROFINET, PROFIBUS, EtherNet/IP and Modbus
- Design enclosure with removable terminals, space-saving thanks to compact design and rugged thanks to coated printed circuit boards
- Can be used worldwide thanks to numerous certificates and approvals: IEC, UL, CSA, CCC, ATEX/IECEx, shipbuilding

Efficient switching:

hybrid switching technology on board

- Energy-efficient switching and mechanical protection of the drive train thanks to soft starters with hybrid switching technology
- Low-wear switching extends the service life of the devices
- Soft starting prevents current peaks, thereby increasing the network stability
- Protection against disturbances in the application.

Mechanical protection for the drive train

Intelligent operation:
concentrated, application-specific functionality

- Can be used in a wide variety of applications:

Pumping, ventilating, compressing, moving and processing

- Integrated, self-learning automatic parameterization depending on motor starting conditions
- Application-specific functionality such as pump cleaning and pump stop
- Condition monitoring:

Current and power monitoring with warning and alarm limits, starting time monitoring

Ready for a digital future:

data available whenever and wherever needed

- Support from tools and data during engineering
- Simulation Tool for Soft Starters for support during product selection
- Very simple, standardized commissioning and configuration via Soft Starter ES in TIA Portal
- Integration in the automation system via communication interfaces
- Data availability and analysis:
large volumes of data at any time and anywhere, even into MindSphere

High Performance Soft Starters

3RW55 soft starters > General data

Overview

More information

Homepage, see www.siemens.com/softstarter
Industry Mall, see www.siemens.com/product?3RW
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=Sirius3rwFolder

Industry Online Support (SIOS) topic page, see

https://support.industry.siemens.com/cs/ww/en/view/109747404
Simulation Tool for Soft Starters (STS), see page 7/7 or
https://support.industry.siemens.com/cs/ww/en/view/101494917

Equipped with the utmost functionality, the SIRIUS 3RW55 High Performance soft starters confidently handle even difficult starting and stopping operations. Thanks to innovative torque control, the device can be used for drives with an output of between 10 to 1,450 HP @ 600V.

The functions have been specially designed to offer maximum user friendliness. The HMI (with color display, local interface and a slot for micro SD memory card) and plug-in communication modules (PROFINET, PROFIBUS, EtherNet/IP and Modbus) ensure maximum flexibility. With their modern hybrid switching technology, the SIRIUS 3RW55 soft starters offer efficient switching for long-term, energy-saving use.

3RW55 High Performance soft starters with accessories, see nage 7/34.

High Performance Soft Starters

3RW55 soft starters > General data

Benefits

Product characteristics / function	Performance features / benefits
Automatic parameterization	Extremely easy commissioning and reliability even under changing load conditions
Hybrid switching devices and three-phase motor control	Efficient configuration and maximum flexibility in automation engineering
Integration into TIA Portal - communication modules optional	Reduced mechanical loading and optimum pump stop control
Removable card	Suitable for the starting of explosion-proof motors
Pump stop and torque control display, local interface, slot for micro SD memory	Maxility with regard to user interface and intuitive menu guidance
Certified according to ATEXIIECEx directive	

Soft Starters

High Performance Soft Starters

3RW55 soft starters > General data

Technical specifications

More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/25099/td
Equipment Manual "SIRIUS 3RW55 Soft Starter", see
https://support.industry.siemens.com/cs/ww/en/view/109753752

FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/25099/faq Simulation Tool for Soft Starters (STS), see page 7/7 or
https://support.industry.siemens.com/cs/ww/en/view/101494917

High Performance Soft Starters

3RW55 soft starters > General data

Type		3RW55..-.HAO.		3RW55..-.HA1.
Control circuit/control				
Control supply voltage				
- At AC/DC, rated value	V	24/24 --/--		
- At AC	V	-- 1		110... 250
- Relative negative tolerance/relative positive tolerance with AC	\%	-20/20 -		-15/10
- Relative negative tolerance/relative positive tolerance with DC	\%	-20/20 --		----
Frequency of the control supply voltage	Hz	50 ... 60		
- Relative negative tolerance/relative positive tolerance	\%	-10/10		
Type of overvoltage protection		Varistors		
Type of short-circuit protection for control circuit ${ }^{1}$)		Fuse $4 \mathrm{~A} \mathrm{gG}\left(I_{\mathrm{cu}}=1 \mathrm{kA}\right)$, fuse 6 A quick-response ($I_{\mathrm{cu}}=1 \mathrm{kA}$), MCB C1 $\left(I_{\mathrm{Cu}}=600 \mathrm{~A}\right)$, MCB C6 $\left(I_{\mathrm{Cu}}=300 \mathrm{~A}\right)$		
1) Not included in scope of supply				
Type		3RW55..-.HA. 4	3RW55..-.HA. 5	3RW55..-.HA. 6
Power electronics				
Operational voltage, rated value	V	200 ... 480	$200 . . .600$	200 ... 690
- Relative negative tolerance/relative positive tolerance	\%	-15/10		
Operational voltage for inside-delta circuit, rated value	V	200 ... 480	200 ... 600	
- Relative negative tolerance/relative positive tolerance	\%	-15/10		
Operating frequency, rated value	Hz	50 ... 60		
- Relative negative tolerance/relative positive tolerance	\%	-10/10		
Minimum load [\% of $\left.I_{M}\right]^{1)}$	\%	10		
Maximum cable length between soft starter and motor	m	800		

${ }^{1)}$ Relative to set $\boldsymbol{I}_{\mathrm{e}}$.

High Performance Soft Starters

3RW55 soft starters > General data

High Performance Soft Starters

3RW55 soft starters > General data

Type		3RW5521	3RW5524	3RW5525	3RW5526	3RW5527
Rated operational current $I_{\text {e }}$	A	25	47	63	77	93
Power electronics						
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a		25/22.3/19.6	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
Permissible rated motor current and starts/h						
Normal starting (CLASS 10A)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	25/22.3/19.6	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$
Normal starting (CLASS 10E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	25/22.3/19.6	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$				
- $350 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$
Heavy starting (CLASS 20E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	25/22.3/19.6	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$
Heavy starting (CLASS 30E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	25/22.3/19.6	43.4/38/34.4	53/48/43	68/62/56	82.5/75.5/65
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$				
Adjustable rated motor current I_{M} - Minimum/maximum - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5 / 25 \\ & 8.7 / 43.3 \end{aligned}$	$\begin{aligned} & 10 / 47 \\ & 17.3 / 81.4 \end{aligned}$	$\begin{aligned} & 13 / 63 \\ & 22.5 / 109 \end{aligned}$	$\begin{aligned} & 16 / 77 \\ & 27.7 / 133 \end{aligned}$	$\begin{aligned} & 19 / 93 \\ & 32.9 / 161 \end{aligned}$

High Performance Soft Starters

3RW55 soft starters > General data

High Performance Soft Starters

3RW55 soft starters > General data

Type		3RW5543	3RW5544	3RW5545	3RW5546	3RW5547	3RW5548
Rated operational current $I_{\text {e }}$	A	210	250	315	370	470	570
Power electronics							
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting at 40/50/60 ${ }^{\circ} \mathrm{C}$, AC-53a	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
Permissible rated motor current and starts/h							
Normal starting (CLASS 10A)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 40 \\ & 17 \end{aligned}$	$\begin{aligned} & 20 \\ & 6 \end{aligned}$			
- $350 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$
Normal starting (CLASS 10E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	551/490/445
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 17 \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \\ & 1 \end{aligned}$			
- $350 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \end{aligned}$	$\begin{gathered} 2 \\ -- \end{gathered}$			
Heavy starting (CLASS 20E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	162/146/130	200/180/160	231/207/183	258/230/202	272/254/236	284/262/240
- $300 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$					
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$
Heavy starting (CLASS 30E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	138/122/106	160/140/120	183/159/135	202/174/160	210/190/170	220/200/180
- $300 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$					
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$					
Adjustable rated motor current I_{M} - Minimum/maximum - Minimum/maximum in inside-delta circuits	$\begin{aligned} & A \\ & \text { A } \end{aligned}$	$\begin{aligned} & 42 / 210 \\ & 72.7 / 363 \end{aligned}$	$\begin{aligned} & 50 / 250 \\ & 86.6 / 433 \end{aligned}$	$\begin{aligned} & 63 / 315 \\ & 109.1 / 545 \end{aligned}$	$\begin{aligned} & 74 / 370 \\ & 128.2 / 640 \end{aligned}$	$\begin{aligned} & 94 / 470 \\ & 162.8 / 814 \end{aligned}$	$\begin{aligned} & 114 / 570 \\ & 197.5 / 987 \end{aligned}$

High Performance Soft Starters

3RW55 soft starters > General data

Type		3RW5552	3RW5553	3RW5554	3RW5556	3RW5558
Rated operational current I_{e}	A	630	720	840	1100	1280
Power electronics						
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a		630/561/510	720/641/580	840/748/670	1 100/979/890	$1280 / 1$ 139/1 030
Permissible rated motor current and start						
Normal starting (CLASS 10A) Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	630/561/510	720/641/580	840/748/670	1 100/979/890	$1280 / 1$ 139/1 030
- $300 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$1 / \mathrm{h}$ $1 / \mathrm{h}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 42 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 12 \end{aligned}$
- $350 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & 27 \\ & 9 \end{aligned}$	$\begin{aligned} & 17 \\ & 4 \end{aligned}$
Normal starting (CLASS 10E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	630/561/510	720/641/580	840/748/670	1 100/979/890	$1225 / 1$ 130/1 030
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 19 \\ & 7 \end{aligned}$	$\begin{aligned} & 18 \\ & 7 \end{aligned}$	$\begin{aligned} & 15 \\ & 5 \end{aligned}$
- $350 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 2 \end{aligned}$	$\begin{aligned} & 9 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
Heavy starting (CLASS 20E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	500/450/400	520/470/420	570/520/470	920/840/760	980/900/810
- $300 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$				
- $350 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$
Heavy starting (CLASS 30E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	380/340/300	400/360/320	420/380/340	740/670/600	790/720/650
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$				
Adjustable rated motor current I_{M} - Minimum/maximum - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 114 / 630 \\ & 197.5 / 987 \end{aligned}$	$\begin{aligned} & 144 / 720 \\ & 249.4 / 1247 \end{aligned}$	$\begin{aligned} & 168 / 840 \\ & 291 / 1454 \end{aligned}$	$\begin{aligned} & 220 / 1100 \\ & 381.1 / 1905 \end{aligned}$	$\begin{aligned} & 258 / 1280 \\ & 446.9 / 2217 \end{aligned}$

High Performance Soft Starters

3RW55 soft starters > General data

Motor feeders according to IEC with 3RV2/3VA motor starter protectors/circuit breakers (without semiconductor protection)
Type of coordination "1", CLASS 10,
short-circuit breaking capacity I_{q} in kA, see table
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 7/9.

Soft starters	Motor starter protector for 400 V systems		for 500 V systems		Motor starter protector for 400 V systems		for 500 V systems	
Q11	Q1	$I_{\text {q }}$						
Type	Type	kA	Type	kA	Type	kA	Type	kA
Type of coordina- tion "1" Toc 1	Inline circuit				Inside-delta circuit			
3RW5513	3RV2032-4TA10	65	3RV2032-4TA10	18	3RV2032-4DA10	65	3RV2032-4DA10	18
3RW5514	3RV2032-4DA10	65	3RV2032-4DA10	15	3RV2032-4EA10	65	3RV2032-4EA10	15
3RW5515	3RV2032-4EA10	65	3RV2032-4EA10	15	3RV2032-4VA10	65	3RV2032-4VA10	15
3RW5516	3RV2032-4VA10	65	3RV2032-4VA10	10	3RV2032-4JA10	65	3RV2032-4JA10	10
3RW5517	3RV2032-4WA10	65	3RV2032-4WA10	10	3RV2032-4RA10	65	3RV2032-4RA10	10
3RW5521	--	--	--	--	--	--	--	--
3RW5524	3RV2032-4JA10	65	3RV2032-4JA10	10	3RV2032-4RA10	65	3RV2032-4RA10	10
3RW5525	3VA2163-7MN32-0AAO	65	3VA2163-7MN32-0AA0	20	3VA2110-7MN32-OAAO	65	3VA2110-7MN32-0AAO	20
3RW5526	3VA2110-7MN32-0AAO	65	3VA2110-7MN32-0AA0	20	3VA2216-7MN32-0AA0	65	3VA2216-7MN32-0AA0	20
3RW5527	3VA2216-7MN32-0AAO	15	3VA2216-7MN32-0AA0	10	3VA2220-7MN32-0AA0	15	3VA2220-7MN32-0AA0	10
3RW5534	3VA2216-7MN32-0AAO	65	--	--	3VA2220-7MN32-0AA0	65	--	--
3RW5535	3VA2220-7MN32-0AA0	65	--	--	3VA2325-7MN32-0AA0	65	--	--
3RW5536	3VA2325-7MN32-0AA0	30	3VA2325-7MN32-0AA0	10	3VA2440-7MN32-0AA0	30	3VA2440-7MN32-0AA0	10
3RW5543	3VA2325-7MN32-0AA0	65	3VA2325-7MN32-0AAO	65	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65
3RW5544	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AAO	65	3VA2450-7MN32-0AA0	65	3VA2450-7MN32-0AA0	65
3RW5545	3VA2440-7MN32-0AAO	65	3VA2440-7MN32-0AAO	65	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AA0	65
3RW5546	3VA2440-7MN32-0AAO	65	3VA2440-7MN32-0AAO	65	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AAO	65
3RW5547	3VA2450-7MN32-0AAO	65	3VA2450-7MN32-0AAO	65	3VA2510-6HN32-0AA0	65	3VA2510-6HN32-0AAO	65
3RW5548	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AAO	65	3VA2510-6HN32-0AA0	65	3VA2510-6HN32-0AAO	65
3RW5552	3VA2580-6HN32-0AAO	65	3VA2580-6HN32-0AA0	65	3VA2716-7AB05-0AA0	65	3VA2716-7AB05-0AA0	65
3RW5553	3VA2510-6HN32-0AAO	65	3VA2510-6HN32-0AAO	65	3VA2716-7AB05-0AAO	65	3VA2716-7AB05-0AA0	65
3RW5554	3VA2510-6HN32-0AAO	65	3VA2510-6HN32-0AAO	65	3VA2716-7AB05-0AA0	65	3VA2716-7AB05-0AAO	65
3RW5556	3VA2716-7AB05-0AAO	65	3VA2716-7AB05-0AAO	65	--	--	--	--
3RW5558	3VA2716-7AB05-0AAO	65	3VA2716-7AB05-0AAO	65	--	--	--	--

Note:
The service factor or measurement inaccuracies have been taken into account, for example, for the selection of the specified motor starter protectors/circuit breakers; the specified shortcircuit breaking capacities I_{q} in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged shortcircuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

In 690 V systems, in motor feeder tests with soft starters demonstrable short-circuit breaking capacities can only be achieved with the use of fuses ($I_{\mathrm{q}}>5$ to 10 kA).

High Performance Soft Starters

3RW55 soft starters > General data

Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according
to IEC 60269-2, without semiconductor protection
Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	gG class fuse	Line contac	(optional)	gG class fuse	Line contact	ptional)		
	for systems up to 690 V	for systems up to 480 V	for systems up to 690 V	for systems up to 600 V	for systems up to 480 V in the supply cable	for systems up to 600 V in the supply cable	for systems up to 480 V in the delta	for systems up to 600 V in the delta
Q11	F1	Q21	Q21	F1	Q21	Q21	Q21	Q21
Type								
Type of coordina- tion "1" Toc 1	Inline circuit			Inside-delta circuit				
3RW5513	3NA3820-6	3RT2025	3RT2025	3NA3820-6	3RT2027	3RT2035	3RT2025	3RT2025
3RW5514	3NA3820-6	3RT2026	3RT2027	3NA3820-6	3RT2027	3RT2037	3RT2026	3RT2027
3RW5515	3NA3822-6	3RT2027	3RT2037	3NA3822-6	3RT2036	3RT2037	3RT2027	3RT2037
3RW5516	3NA3824-6	3RT2035	3RT2037	3NA3824-6	3RT2037	3RT2038	3RT2035	3RT2037
3RW5517	3NA3824-6	3 RT2035	3 RT2037	3NA3824-6	3 RT2038	3RT2046	3RT2035	3 RT2037
3RW5521	3NA3824-6	3 RT 2027	3 RT 2037	3NA3824-6	3RT2036	3RT2037	3RT2027	3RT2037
3RW5524	3NA3824-6	3 RT2036	3 T2037	3NA3824-6	3RT2046	3RT2047	3RT2036	3 RT2037
3RW5525	3NA3830-6	3RT2037	3RT2046	3NA3830-6	3RT2047	3RT1054	3RT2037	3RT2046
3RW5526	3NA3132-6	3RT2038	3 RT2046	3NA3132-6	3RT1055	3RT1055	3RT2038	3RT2046
3RW5527	3NA3136-6	3RT2046	3 RT 2047	3NA3136-6	3RT1056	3RT1056	3RT2046	3RT2047
3RW5534	3NA3244-6	3RT1054	3RT1054	3NA3244-6	3RT1064	3RT1064	3RT1054	3RT1054
3RW5535	3NA3244-6	3RT1055	3RT1055	3NA3244-6	3RT1065	3RT1065	3RT1055	3RT1055
3RW5536	3NA3365-6	3RT1056	3RT1064	3NA3365-6	3RT1066	3RT1075	3RT1056	3RT1064
3RW5543	2×3 A $3354-6$	3RT1064	3RT1064	2×3 A $3354-6$	3RT1075	3RT1075	3RT1064	3RT1064
3RW5544	2×3 NA3354-6	3RT1065	3RT1065	$2 \times 3 N A 3354-6$	3RT1076	3RT1076	3RT1065	3RT1065
3RW5545	$2 \times 3 N A 3365-6$	3RT1075	3RT1075	2×3 A $3365-6$	3TF68	3TF68	3RT1075	3RT1075
3RW5546	$2 \times 3 N A 3365-6$	3RT1075	3RT1075	$2 \times 3 N A 3365-6$	3TF69	3TF69	3RT1075	3RT1075
3RW5547	2×3 NA3365-6	3RT1076	3RT1276	2×3 NA3365-6	3TF69	3TF69	3RT1076	3RT1276
3RW5548	$2 \times 3 N A 3365-6$	3TF68	3TF68	$2 \times 3 N A 3365-6$	--	--	3TF68	3TF68
3RW5552	2×3 NA3365-6	3TF68	3TF69	--	--	--	3TF68	3TF69
3RW5553	2×3 A $3365-6$	3TF69	3TF69	--	--	--	3TF69	3TF69
3RW5554	$2 \times 3 N A 3365-6$	--	--	--	--	--	--	--
3RW5556	$3 \times 3 N A 3365-6$	--	--	--	--	--	--	--
3RW5558	$3 \times 3 N A 3365-6$	--	--	--	--	--	--	--

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

In inside-delta circuits, motor feeders with soft starters can only be operated in systems with up to 600 V .

High Performance Soft Starters

3RW55 soft starters > General data

Motor feeders according to IEC with 3NE1/3NB3 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

1) For systems up to 500 V .

Note:

The specified short-circuit breaking capacities I_{Q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.
In inside-delta circuits, a gR class full-range fuse could not provide the semiconductor protection of the delta-connected soft starter with a short-circuit breaking capacity that is adequate for practical use. In this case, we recommend using aR class partial-range fuses for semiconductor protection for type of coordination "2" (see page 7/24).

High Performance Soft Starters

3RW55 soft starters > General data

Motor feeders according to IEC with 3NE8 / 3NE3 / 3NC3 fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	gG class fuse	aR class fuse	Line cont (optional)		gG class fuse	aR class fuse	Line conta	ctor (optiona		
	for systems up to 690 V	for systems up to 690 V	for systems up to 480 V	for systems up to 690 V	for systems up to 600 V	for systems up to 600 V	for systems up to 480 V in the supply cable	forsystems up to 600 V in the supply cable	for sys- tems up to 480 V in the delta	for systems up to 600 V in the delta
Q11	F1	F3	Q21	Q21	F1	F3	Q21	Q21	Q21	Q21
Type										
Type of coordina- $\left[\begin{array}{l}\text { ToC } \\ \text { con } \\ \text { tion "2" }\end{array}\right.$	Inline circuit				Inside-delta cir	cuit				
3RW5513	3NA3820-6	3NE8017-1	3RT2025	3RT2025	3NA3820-6	3NE8017-1	3RT2027	3RT2035	3RT2025	3RT2025
3RW5514	3NA3820-6	3NE8020-1	3RT2026	3RT2027	3NA3820-6	3NE8020-1	3RT2027	3RT2037	3RT2026	3RT2027
3RW5515	3NA3822-6	3NE8021-1	3 T 2027	3 RT2037	3NA3822-6	3NE8021-1	3RT2036	3 3T2037	3 RT2027	3 RT2037
3RW5516	3NA3824-6	3NE8022-1	3RT2035	3RT2037	3NA3824-6	3NE8022-1	3RT2037	3RT2038	3RT2035	3RT2037
3RW5517	3NA3824-6	3NE8024-1	3RT2035	3RT2037	3NA3824-6	3NE8024-1	3RT2038	3RT2046	3RT2035	3RT2037
3RW5521	3NA3824-6	3NE8021-1	3RT2027	3RT2037	3NA3824-6	3NE8021-1	3RT2036	3RT2037	3RT2027	3RT2037
3RW5524	3NA3824-6	3NE8024-1	3RT2036	3RT2037	3NA3824-6	3NE8024-1	3RT2046	3RT2047	3RT2036	3RT2037
3RW5525	3NA3830-6	3NE3227	3 T 2037	3RT2046	3NA3830-6	3NE3227	3RT2047	3RT1054	3RT2037	3RT2046
3RW5526	3NA3132-6	3NE3227	3RT2038	3RT2046	3NA3132-6	3NE3227	3RT1055	3RT1055	3RT2038	3RT2046
3RW5527	3NA3136-6	3NE3227	3 T2046	3RT2047	3NA3136-6	3NE3227	3RT1056	3RT1056	3RT2046	3RT2047
3RW5534	3NA3244-6	3NE3231	3RT1054	3RT1054	3NA3244-6	3NE3231	3RT1064	3RT1064	3RT1054	3RT1054
3RW5535	3NA3244-6	3NE3233	3RT1055	3RT1055	3NA3244-6	3NE3233	3RT1065	3RT1065	3RT1055	3RT1055
3RW5536	3NA3365-6	3NE3334-0B	3RT1056	3RT1064	3NA3365-6	3NE3334-0B	3RT1066	3RT1075	3RT1056	3RT1064
3RW5543	2×3 A $3354-6$	3NE3333	3RT1064	3RT1064	$2 \times 3 N A 3354-6$	3NE3333	3RT1075	3RT1075	3RT1064	3RT1064
3RW5544	$2 \times 3 N A 3354-6$	3NE3335	3RT1065	3RT1065	$2 \times 3 N A 3354-6$	3NE3335	3RT1076	3RT1076	3RT1065	3RT1065
3RW5545	$2 \times 3 N A 3365-6$	--	3RT1075	3RT1075	$2 \times 3 N A 3365-6$	--	3TF68	3TF68	3RT1075	3RT1075
3RW5546	2×3 A $3365-6$	--	3RT1075	3RT1075	$2 \times 3 N A 3365-6$	--	3TF69	3TF69	3RT1075	3RT1075
3RW5547	2×3 NA3365-6	3NE3340-8	3RT1076	3RT1276	$2 \times 3 N A 3365-6$	3NE3340-8	3TF69	3TF69	3RT1076	3RT1276
3RW5548	2×3 A $3365-6$	3NC3342-1U	3TF68	3TF68	$2 \times 3 N A 3365-6$	3NC3342-1U	--	--	3TF68	3TF68
3RW5552	2×3 NA3365-6	3NC3343-1U	3TF68	3TF69	--	3NC3343-1U	--	--	3TF68	3TF69
3RW5553	$2 \times 3 N A 3365-6$	3NC3343-1U	3TF69	3TF69	--	3NC3343-1U	--	--	3TF69	3TF69
3RW5554	$2 \times 3 N A 3365-6$	3NC3343-1U	--	--	--	3NC3343-1U	--	--	--	--
3RW5556	$3 \times 3 N A 3365-6$	3×3 NE3340-8	--	--	--	3×3 NE3340-8	--	--	--	--
3RW5558	$3 \times 3 N A 3365-6$	3×3 NE3340-8	--	--	--	3×3 NE3340-8	--	--	--	--

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3RV2/3VA motor starter protectors/circuit breakers can also be used, possibly with reduced short-circuit breaking capacity (see page 7/21). In these cases, optional line contactors can be dispensed with.
In inside-delta circuits, motor feeders with soft starters can only be operated in systems with up to 600 V .

High Performance Soft Starters

3RW55 soft starters > General data

Reversing operation with reversing contactors

Note:
For general recommendations for constructing motor feeders
with soft starters, see page 7/9.
(For an example circuit, see
3RW55 Equipment Manual, Appendix A.3)

Soft starters	Reversing contactor assembly		For reversing contactor	
	for systems up to 480 V	for systems up to 690 V	for systems up to 480 V	for systems up to 690 V
Q11	Q21 / Q22	Q21 / Q22	Q21 / Q22	Q21 / Q22
Type	Type	Type	Type	Type
3RW5513	3RA2325	3RA2325	3RT2025	3 3RT2025
3RW5514	3RA2326	3RA2327	3RT2026	$3 \mathrm{RT2027}$
3RW5515	3RA2327	3RA2337	3 RT 2027	3 RT 2037
3RW5516	3RA2335	3RA2337	3RT2035	3 RT 2037
3RW5517	3RA2335	3RA2337	3RT2035	3RT2037
3RW5521	3RA2327	3RA2337	3RT2027	3 RT 2037
3RW5524	3RA2336	3RA2337	3RT2036	3RT2037
3RW5525	3RA2337	3RA2346	3 RT2037	3RT2046
3RW5526	3RA2338	3RA2346	3RT2038	3RT2046
3RW5527	3RA2346	3RA2347	3RT2046	3RT2047
3RW5534	--	--	3RT1054	3RT1054
3RW5535	-	--	3RT1055	3RT1055
3RW5536	--	--	3RT1056	3RT1064
3RW5543	--	--	3RT1064	3RT1064
3RW5544	--	--	3RT1065	3RT1065
3RW5545	--	--	3RT1075	3RT1075
3RW5546	--	--	3RT1075	3RT1075
3RW5547	--	--	3RT1076	3RT1276
3RW5548	--	--	3TF68	3TF68
3RW5552	--	--	3TF68	3TF69
3RW5553	--	--	3TF69	3TF69
3RW5554	--	--	--	--
3RW5556	--	--	--	--
3RW5558	--	--	--	--

DC braking with braking contactors

Note:
For general recommendations for constructing motor feeders
with soft starters, see page 7/9.
(For an example circuit, see
3RW55 Equipment Manual, Appendix A.3)

Soft starters	DC braking contactor for systems up to 400 V	DC braking contac for systems up to 48	sembly	for systems up to 690 V	
	with 2 NC contacts + 2 NO contacts parallel	with 3 NO contacts parallel			
Q11	Q93	Q91	Q92	Q91	Q92
Type	Type	Type	Type	Type	Type
3RW5513	3RT2517	3RT2015	3RT2016	3RT2015	3RT2016
3RW5514	3RT2518	3RT2015	3 T2017	3RT2015	3RT2023
3RW5515	3RT2526	3RT2015	3RT2025	3RT2015	3RT2025
3RW5516	3RT2526	3RT2015	3RT2025	3RT2015	3 RT 2027
3RW5517	3RT2535	3RT2015	3RT2027	3RT2015	3RT2027
3RW5521	3RT2526	3RT2015	3RT2025	3RT2015	3RT2025
3RW5524	3RT2535	3RT2016	3 T2027	3RT2016	3RT2035
3RW5525	--	3RT2024	3 TT2027	3RT2024	3 RT2037
3RW5526	--	3RT2025	3RT2035	3RT2025	3RT2037
3RW5527	--	3 T2027	3RT2036	3RT2027	3RT2037
3RW5534	--	3RT2035	3RT2037	3RT2035	3RT2038
3RW5535	--	3RT2036	3RT2038	3RT2036	3RT2046
3RW5536	--	3 T2037	3RT2046	3 T2037	3RT2047
3RW5543	--	3RT2045	3RT2047	3RT2045	3RT1054
3RW5544	--	3RT2045	3RT1055	3RT2045	3RT1055
3RW5545	--	3RT2446	3RT1056	3RT2446	3RT1056
3RW5546	--	3RT1055	3RT1056	3RT1055	3RT1064
3RW5547	--	3RT1456	3RT1065	3RT1456	3RT1065
3RW5548	--	3RT1456	3RT1066	3RT1456	3RT1075
3RW5552	--	3RT1065	3RT1075	3RT1065	3RT1075
3RW5553	--	3RT1065	3RT1075	3RT1065	3RT1075
3RW5554	--	3RT1466	3RT1076	3RT1466	3RT1076
3RW5556	--	3RT1476	3TF68	3RT1476	3TF68
3RW5558	--	3RT1476	3TF69	3RT1476	3TF69

High Performance Soft Starters

3RW55 soft starters > Inline circuit IE3/IE4 ready

Selection and ordering data

For normal starting (CLASS 10E)

3RW551.

3RW552.

At $40{ }^{\circ} \mathrm{C}$					Rating [hp] for three-phase motors				SD ${ }^{1)}$	Article No.	Price per PU		PS*
Operational current	Operating power for threephase motors												
	$\begin{aligned} & \text { At } \\ & 230 \mathrm{~V} \end{aligned}$	At 400 V	At 500 V	At 690 V	$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	At $460 / 480 \mathrm{~V}$	At 575/600 V					
A	kW	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage 200 ... 480 V													
13	3	5.5	--	--	3	3	7.5	--	5	3RW5513-DHAD4		1	1 unit
18	4	7.5	--	--	5	5	10	--	5	3RW5514-■HAD4		1	1 unit
25	5.5	11	--	--	5	7.5	15	--	5	3RW5515-■HAD4		1	1 unit
32	7.5	15	--	--	7.5	10	20	--	5	3RW5516-DHAD4		1	1 unit
38	11	18.5	--	--	10	10	25	--	5	3RW5517-■HAD4		1	1 unit
47	11	22	--	--	10	15	30	--	5	3RW5524-DHAD4		1	1 unit
63	18.5	30	--	--	20	20	40	--	5	3RW5525-DHAD4		1	1 unit
77	22	37	--	--	20	25	60	--	5	3RW5526--HAD4		1	1 unit
93	22	45	--	--	30	30	60	--	5	3RW5527-■HAD4		1	1 unit

Type of electrical connection for the control circuit
Screw terminals
Spring-loaded terminals

Control supply voltage

24 V AC/DC
110 ... 250 V AC

1) 3RW55 soft starter with screw terminals for operational voltage up to 480 V : Standard delivery time SD = 1 day (d).

Note:

For the constraints for the motor outputs specified here, see page 7/7.

High Performance Soft Starters

3RW55 soft starters > Inline circuit IE3/IE4 ready

For normal starting (CLASS 10E)

Type of electrical connection for the control circuit
Spring-loaded terminals
Screw terminals

Control supply voltage

24 V AC/DC
110 ... 250 V AC
${ }^{1)} 3 R W 55$ soft starter with screw terminals for operational voltage up to 480 V : Standard delivery time SD = 1 day (d).
Note:
For the constraints for the motor outputs specified here,
see page 7/7.

High Performance Soft Starters

3RW55 soft starters > Inline circuit IE3/IE4 ready

For normal starting (CLASS 10E)

3RW551.

3RW552.

At $40{ }^{\circ} \mathrm{C}$					Rating [hp] for three-phase motors				$S D^{1)}$	Article No.	Price per PU		PS*	
Operational	Operating power for threephase motors													
current	At $230 \mathrm{~V}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	At $500 \mathrm{~V}$	At $690 \text { V }$	$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	At $460 / 480 \mathrm{~V}$	At $575 / 600 \mathrm{~V}$						
A	kW	kW	kW	kW	hp	hp	hp	hp		d				

| A kW kW kW kW | |
| :--- | :--- | :--- |
| Operational voltage $200 \ldots 600 ~ V$ | |

13	3	5.5	7.5	--	3	3	7.5	10	5	3RW5513-■HAD5	I	1 unit
18	4	7.5	11	--	5	5	10	15	5	3RW5514-■HAD5	1	1 unit
25	5.5	11	15	--	5	7.5	15	20	5	3RW5515-■HAD5	1	1 unit
32	7.5	15	18.5	--	7.5	10	20	30	5	3RW5516-■HA $\square 5$	1	1 unit
38	11	18.5	22	--	10	10	25	30	5	3RW5517-■HAD5	1	1 unit
Operational voltage $200 \ldots 690 \mathrm{~V}$												
25	5.5	11	15	22	5	7.5	15	20	5	3RW5521-■HAD6	1	1 unit
47	11	22	30	45	10	15	30	40	5	3RW5524-■HAD6	1	1 unit
63	18.5	30	37	55	20	20	40	60	5	3RW5525-■HAロ6	1	1 unit
77	22	37	45	75	20	25	60	75	5	3RW5526-■HAD6	1	1 unit
93	22	45	55	90	30	30	60	75	5	3RW5527-■HAD6	1	1 unit

Type of electrical connection for the control circuit
 Screw terminals

Spring-loaded terminals

Control supply voltage

24 V AC/DC
110 ... 250 V AC

1) 3 RW55 soft starter with screw terminals for operational voltage up to 690 V :

Standard delivery time SD = 2 days (d).

Note:

For the constraints for the motor outputs specified here, see page 7/7.

High Performance Soft Starters

3RW55 soft starters > Inline circuit IE3/IE4 ready

For normal starting (CLASS 10E)

3RW553.

3RW554.

3RW555.

At $40{ }^{\circ} \mathrm{C}$					Rating [hp] for three-phase motors				SD ${ }^{1)}$	Article No.	Price per PU		PS*
Operational	Operating power for three-phase motors												
current	At 230 V	At 400 V	At 500 V	At 690 V	$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	At $220 / 230 \mathrm{~V}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At $575 / 600 \mathrm{~V}$					
A	kW	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage $200 \ldots 690$ V													
113	30	55	75	110	30	40	75	100	5	3RW5534-पHAD6		1	1 unit
143	37	75	90	132	40	50	100	125	5	3RW5535-ロHAD6		1	1 unit
171	45	90	110	160	50	60	125	150	5	3RW5536-■HAD6		1	1 unit
210	55	110	132	200	60	75	150	200	5	3RW5543-पHAD6		1	1 unit
250	75	132	160	250	75	100	200	250	5	3RW5544-ロHAD6		1	1 unit
315	90	160	200	315	100	125	250	300	5	3RW5545-■HAD6		1	1 unit
370	110	200	250	355	125	150	300	350	5	3RW5546-■HAD6		1	1 unit
470	132	250	315	400	150	150	350	450	5	3RW5547-■HAD6		1	1 unit
570	160	315	355	560	200	200	450	600	5	3RW5548-पHAD6		1	1 unit
630	200	355	400	630	200	250	500	700	15	3RW5552-■HAD6		1	1 unit
720	200	400	500	710	250	250	600	800	15	3RW5553-■HAD6		1	1 unit
840	250	450	560	800	300	350	700	900	15	3RW5554-पHAD6		1	1 unit
1100	215	560	710	1000	350	450	950	1250	15	3RW5556-पHAD6		1	1 unit
1280	400	710	900	1200	400	550	1100	1450	15	3RW5558-■HAD6		1	1 unit

Type of electrical connection for the control circuit
Spring-loaded terminals
Screw terminals

Control supply voltage

24 VAC/DC
110 ... 250 V AC

1) 3RW55 soft starter with screw terminals for operational voltage up to 690 V

- Sizes 3 and 4: Standard delivery time SD = 2 days (d).
- Size 5: Standard delivery time SD = 5 days (d).

Note:
For the constraints for the motor outputs specified here, see page 7/7

High Performance Soft Starters

3RW55 soft starters > Inside-delta circuit IE3/IE4 ready

Selection and ordering data

For normal starting (CLASS 10E)

3RW551.

3RW552.

At $40{ }^{\circ} \mathrm{C}$ for inside-delta circuit				Rating [hp] for three-phase motors				$S D^{1)}$	Article No.	Price per PU		PS*
Operational	Operating power for three-phase motors											
current	At $230 \mathrm{~V}$	At $400 \mathrm{~V}$	At $500 \mathrm{~V}$	At $200 / 208 \mathrm{~V}$	At 220/230 V	At $460 / 480 \mathrm{~V}$	At $575 / 600 \mathrm{~V}$					
A	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage 200 ... 480 V												
22.5	5.5	11	--	5	7.5	15	--	5	3RW5513-■HAD4		1	1 unit
31.5	7.5	15	--	7.5	10	20	--	5	3RW5514-DHAD4		1	1 unit
43.3	11	18.5	--	10	15	30	--	5	3RW5515-■HAD4		1	1 unit
55.4	15	22	--	15	20	40	--	5	3RW5516-■HAD4		1	1 unit
65.8	18.5	30	--	20	20	50	--	5	3RW5517-■HAD4		1	1 unit
81.4	22	45	--	25	30	60	--	5	3RW5524-■HAD4		1	1 unit
109	30	55	--	30	40	75	--	5	3RW5525-■HAD4		1	1 unit
133	37	75	--	40	50	100	--	5	3RW5526-■HAD4		1	1 unit
161	45	90	--	50	60	125	--	5	3RW5527-■HAD4		1	1 unit

Type of electrical connection for the control circuit
Screw terminals
Spring-loaded terminals

Control supply voltage

24 V AC/DC
0
110 ... 250 V AC

1) 3RW55 soft starter with screw terminals for operational voltage up to 480 V : Standard delivery time SD = 1 day (d).

Note:

For the constraints for the motor outputs specified here, see page 7/7.

High Performance Soft Starters

3RW55 soft starters > Inside-delta circuit IE3/IE4 ready

For normal starting (CLASS 10E)

Type of electrical connection for the control circuit
Spring-loaded terminals
Screw terminals

Control supply voltage

24 V AC/DC
110 ... 250 V AC
${ }^{1)} 3$ RW55 soft starter with screw terminals for operational voltage up to 480 V : Standard delivery time SD = 1 day (d).

Note

For the constraints for the motor outputs specified here,
see page 7/7

High Performance Soft Starters

3RW55 soft starters＞Inside－delta circuit IE3／IE4 ready

For normal starting（CLASS 10E）

3RW551．

3RW552．

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit				Rating［hp］for three－phase motors				$S D^{1)}$	Article No．	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊
Opera－ tional current	Operating power for three－phase motors											
	$\begin{aligned} & \text { At } \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 500 \mathrm{~V} \end{aligned}$	At 200/208 V	$\begin{aligned} & \text { At } \\ & \text { 220/230 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At $575 / 600 \mathrm{~V}$					
A	kW	kW	kW	hp	hp	hp	hp	d				

| A kW kW kW | hp | hp | hp | hp | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

22.5	5.5	11	15	5	7.5	15	20	5	3RW5513－■HAD5	1	1 unit
31.5	7.5	15	18.5	7.5	10	20	25	5	3RW5514－■HAロ5	1	1 unit
43.3	11	18.5	22	10	15	30	40	5	3RW5515－■HA■5	1	1 unit
55.4	15	22	30	15	20	40	50	5	3RW5516－■HA $\square 5$	1	1 unit
65.8	18.5	30	37	20	20	50	60	5	3RW5517－■HAD5	1	1 unit
43.3	11	18.5	22	10	15	30	40	5	3RW5521－■HAロ6	1	1 unit
81.4	22	45	45	25	30	60	75	5	3RW5524－■HAD6	1	1 unit
109	30	55	55	30	40	75	100	5	3RW5525－■HAD6	1	1 unit
133	37	75	90	40	50	100	125	5	3RW5526－■HAロ6	1	1 unit
161	45	90	110	50	60	125	150	5	3RW5527－■HAD6	1	1 unit

Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

Control supply voltage

24 V AC／DC

1） 3 RW55 soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time SD $=2$ days（d）．
Note：
For the constraints for the motor outputs specified here， see page 7／7

High Performance Soft Starters

3RW55 soft starters > Inside-delta circuit IE3/IE4 ready

For normal starting (CLASS 10E)

3RW553.

3RW554.

3RW555.

At $40{ }^{\circ} \mathrm{C}$ for inside-delta circuit				Rating [hp] for three-phase motors				SD ${ }^{1)}$	Article No.	Price per PU		PS*
Operational current	Operating power for three-phase motors											
	$\begin{aligned} & \text { At } \\ & 230 \mathrm{~V} \end{aligned}$	At 400 V	At 500 V	At 200/208 V	At 220/230 V	At $460 / 480 \mathrm{~V}$	At $575 / 600 \mathrm{~V}$					
A	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage $200 \ldots 600 \mathrm{~V}$												
196	55	110	132	60	75	150	200	5	3RW5534-DHAD6		1	1 unit
248	75	132	160	75	75	200	250	5	3RW5535-■HAD6		1	1 unit
296	90	160	200	100	100	200	300	5	3RW5536-■HAD6		1	1 unit
364	110	200	250	125	150	300	350	5	3RW5543-■HAD6		1	1 unit
433	132	250	315	150	150	350	450	5	3RW5544-■HAD6		1	1 unit
546	160	315	355	150	200	450	550	5	3RW5545-■HAD6		1	1 unit
641	200	355	450	200	250	500	700	5	3RW5546-■HAD6		1	1 unit
814	250	400	500	250	300	700	900	5	3RW5547-■HAD6		1	1 unit
987	315	560	630	350	400	850	1100	5	3RW5548-■HAD6		1	1 unit
1091	355	630	710	350	450	950	1200	15	3RW5552-■HAD6		1	1 unit
1247	400	710	800	400	500	1100	1400	15	3RW5553-■HAD6		1	1 unit
1454	450	800	900	500	600	1300	1600	15	3RW5554-■HAD6		1	1 unit
1905	560	1000	1200	650	800	1700	2100	15	3RW5556-■HAD6		1	1 unit
2217	710	1200	1500	800	950	1900	2500	15	3RW5558-■HAD6		1	1 unit

Type of electrical connection for the control circuit
Spring-loaded terminals
Screw terminals

Control supply voltage

24 V AC/DC
110 ... 250 V AC

1) 3RW55 soft starter with screw terminals for operational voltage up to 600 V

- Sizes 3 and 4: Standard delivery time SD = 2 days (d).
- Size 5: Standard delivery time SD = 5 days (d).

Note:

For the constraints for the motor outputs specified here,
see page 7/7.

Soft Starters

High Performance Soft Starters

3RW55 soft starters > Accessories

Selection and ordering data

High Performance Soft Starters

3RW55 soft starters > Accessories

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Overview

More information

Homepage, see www.siemens.com/softstarter
Industry Mall, see www.siemens.com/product?3RW
Industry Online Support (SIOS) topic page, see
https://support.industry.siemens.com/cs/ww/en/view/109747404

Simulation Tool for Soft Starters (STS), see page 7/7 or https://support.industry.siemens.com/Cs/ww/en/view/101494917 SIRIUS Soft Starter ES (TIA Portal), see page 7/7

Equipped with the utmost functionality, the SIRIUS 3RW55 Failsafe High Performance soft starters confidently handle even difficult starting and stopping operations. Thanks to innovative torque control, the device can be used for drives with an output of between 7.5 to $450 \mathrm{HP} @ 480 \mathrm{~V}$.

The innovative 3RW55 Failsafe soft starter features an integrated fail-safe digital input for directly connecting the EMERGENCY STOP, and thus covers SIL 1 STO applications. The HMI (with color display, local interface and a slot for micro SD memory card) and plug-in communication modules (PROFINET, PROFIBUS, EtherNet/IP and Modbus) ensure maximum flexibility. With their modern hybrid switching technology, the 3RW55 Failsafe soft starters offer efficient switching for long-term, energy-saving use.

3RW55 Failsafe High Performance soft starters with accessories, see nage 7/51.

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Benefits

Product characteristics / function	Performance features / benefits
Automatic parameterization	Extremely easy commissioning and reliability even under changing load conditions
Hybrid switching devices and three-phase motor control	Minimum power loss and optimum/symmetrical motor control
Integration into TIA Portal - communication modules optional	Efficient configuration and maximum flexibility in automation engineering
Removable HMI with color display, local interface, slot for micro SD memory card	Maximum flexibility with regard to user interface and intuitive menu guidance
Pump stop and torque control	Reduced mechanical loading and optimum pump stop control
Certified according to ATEX/IECEx directive	Suitable for the starting of explosion-proof motors
Fail-safe disconnection up to SIL 3-PL e / STO	Reduced costs and space requirements thanks to direct wiring of the EMERGENCY STOP mushroom pushbutton to the soft starter for SIL 1

Soft Starters

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Technical specifications

1) Derating from 1000 m , see characteristic curve on page $7 / 7$.
${ }^{2)}$ Note derating above $40^{\circ} \mathrm{C}$.

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

${ }^{1)}$ Relative to set $\boldsymbol{I}_{\mathrm{e}}$.

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Type	3RW5513	3RW5514	3RW5515	3RW5516	3RW5517
Rated operational current $I_{\text {e }}$ A	13	18	25	32	38
Power electronics					
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}, ~ A$ AC-53a	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	25/22.3/19.6	38/33.5/30.5

Permissible rated motor current and starts/h

Normal starting (CLASS 10A)
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 5 s
- Start-up time 10 s

A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
1/h	43	43	43	43	43
1/h	18	18	18	18	18
1/h	28	28	28	28	28
1/h	10	10	10	10	10
A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
1/h	21	21	21	21	21
1/h	8	8	8	8	8
1/h	13	13	13	13	13
1/h	4	4	4	4	4

- $350 \% I_{\mathrm{M}}$

Start-up time 5 s
Start-up time 10 s
A

Normal starting (CLASS 10E)
Rated motor current $I_{M}, T_{U}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 5 s
1/h

Start-up time 10 s

- $350 \% I_{\mathrm{M}}$

Start-up time 5 s

$1 / \mathrm{h}$	4	4	13	13	13

Heavy starting (CLASS 20E)

Rated motor current $I_{M}, T_{U}=40 / 50 / 60^{\circ} \mathrm{C}$

| A | $13 / 11.5 / 10.5$ | $18 / 15.9 / 13.8$ | $25 / 22.3 / 19.6$ | $29.6 / 27.2 / 23.6$ | $33.5 / 30.5 / 27.5$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 20 s
- Start-up time 40 s
- $350 \% I_{\mathrm{M}}$
- Start-up time 20 s
- Start-up time 40 s

Heavy starting (CLASS 30E)

Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$

Start-up time 20 s

- Start-up time 40 s
- $350 \% I_{\mathrm{M}}$
$\begin{array}{llllll}\text { - Start-up time } 20 \mathrm{~s} & 1 / \mathrm{h} & 4 & 4 & 4 & 4\end{array}$

- Start-up time 40 s	$1 / \mathrm{h}$	1.8	1.8	1.8	1.8
Adjustable rated motor current $\boldsymbol{I}_{\mathrm{M}}$				1.8	

- Minimum/maximum in inside-delta circuits
A $2.5 / 13$
3.5/18

5/25
6.5/32
7.5/38

A 4.3/22.5
6.1/31.1
8.7/43.3
11.3/55.

13/65.8

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

| Type | 3RW5524 | 3RW5525 | 3RW5526 | 3RW5527 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Rated operational current I_{e} | A | 47 | 63 | 77 | 93 |
| Power electronics | | | | | |
| Load rating with rated operational current I_{e}
 IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$,
 AC-53a A | $47 / 41.6 / 36.2$ | $63 / 55.5 / 50.5$ | $77 / 68 / 62$ | $93 / 82.5 / 75.5$ | |

Permissible rated motor current and starts/h

Normal starting (CLASS 10A)

Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C} \quad \mathrm{A}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 5 s
- Start-up time 10 s
A

$47 / 41.6 / 36.2$	$63 / 55.5 / 50.5$	$77 / 68 / 62$	$93 / 82.5 / 75.5$
43	43	43	43
18	18	18	18
28	28	28	28
10	10	10	10

- $350 \% I_{M}$
- Start-up time 5 s 1/h
- Start-up time 10 s 1/h

Normal starting (CLASS 10E)
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 5 s
- Start-up time 10 s
1/h
- $350 \% I_{\mathrm{M}}$
$\begin{array}{ll}\text { - Start-up time } 5 \mathrm{~s} & 1 / \mathrm{h} \\ \text { - Start-up time } 10 \mathrm{~s} & 1 / \mathrm{h}\end{array}$
-8

Heavy starting (CLASS 20E)
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 20 s
- Start-up time 40 s
- $350 \% I_{\mathrm{M}}$
- Start-up time 20 s
- Start-up time 40 s

Heavy starting (CLASS 30E)
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 20 s
- Start-up time 40 s
- $350 \% I_{\mathrm{M}}$
- Start-up time 20 s
- Start-up time 40 s

Adjustable rated motor current I_{M}

- Minimum/maximum
- Minimum/maximum in inside-delta circuits

A	$10 / 47$	$13 / 63$	$16 / 77$	$19 / 93$

| A $17.3 / 81.4 \quad 22.5 / 109$ | $27.7 / 133$ | $32.9 / 161$ |
| :--- | :--- | :--- | :--- | :--- |

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

| Type | | 3RW5534 | 3RW5535 | 3RW5536 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Rated operational current I_{e} | A | 113 | 143 | 171 |
| Power electronics | | | | |
| Load rating with rated operational current I_{e}
 IEC + UL/CSA, individual mounting at 40/50/60
 AC-53a | A | $113 / 101 / 89$ | $143 / 128 / 118$ | 171/153/141 |

Permissible rated motor current and starts/h

Normal starting (CLASS 10A)

Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 5 s
$\begin{array}{llll}A & 113 / 101 / 89 & 143 / 128 / 118 & 171 / 153 / 141\end{array}$

$1 / \mathrm{h}$	43

35

- Start-up time 10 s

$1 / h$	18	18

13

- $350 \% I_{\mathrm{M}}$

Start-up time 5 s

17	10
4	0

Normal starting (CLASS 10E)

Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 5 s

Start-up time 10 s

- $350 \% I_{\mathrm{M}}$
- Start-up time 5 s
$1 / \mathrm{h} \quad 8$
- Start-up time 10 s

$1 / h$	13	4	0
$1 / h$	4	0	0

Heavy starting (CLASS 20E)

Rated motor current $I_{M}, T_{U}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{M}$
- Start-up time 20 s

Start-up time 40 s

- $350 \% I_{\mathrm{M}}$
- Start-up time 20 s

Start-up time 40 s

Heavy starting (CLASS 30E)

Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$
ON period $=70 \%$; motor protection activated

- $300 \% I_{\mathrm{M}}$

Start-up time 20 s
Start-up time 40 s

- $350 \% I_{\mathrm{M}}$
- Start-up time $20 \mathrm{~s} \quad 1 / \mathrm{h} \quad 4 \quad 4$

Adjustable rated motor current $\boldsymbol{I}_{\mathrm{M}}$

- Minimum/maximum
- Minimum/maximum in inside-delta circuits

A $-39.8 / 195$	$29 / 143$	$34 / 171$

50.2/247
58.9/296

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Type		3RW5543	3RW5544	3RW5545	3RW5546	3RW5547	3RW5548
Rated operational current $I_{\text {e }}$	A	210	250	315	370	470	570
Power electronics							
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
Permissible rated motor current and starts/h							
Normal starting (CLASS 10A)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$1 / \mathrm{h}$ $1 / \mathrm{h}$	$\begin{aligned} & 43 \\ & 13 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 38 \\ & 14 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 13 \end{aligned}$	$\begin{aligned} & 13 \\ & 3 \end{aligned}$
- $350 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 14 \\ & 0 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 19 \\ & 5 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 19 \\ & 6 \end{aligned}$	$\begin{aligned} & 4 \\ & 0.4 \end{aligned}$
Normal starting (CLASS 10E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	551/490/445
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 2 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 14 \\ & 4 \end{aligned}$	$\begin{aligned} & 20 \\ & 8 \end{aligned}$	$\begin{aligned} & 13 \\ & 3 \end{aligned}$	
- $350 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 12 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 0.4 \end{aligned}$	$\begin{gathered} 1 \\ -- \end{gathered}$
Heavy starting (CLASS 20E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	162/146/130	200/180/160	231/207/183	258/230/202	272/254/236	284/262/240
- $300 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	1/h	$\begin{aligned} & 10 \\ & 4 \end{aligned}$					
- $350 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$1 / h$	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$				
Heavy starting (CLASS 30E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	138/122/106	160/140/120	183/159/135	202/174/160	210/190/170	220/200/180
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$1 / \mathrm{h}$ $1 / \mathrm{h}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$					
- $350 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 4 \\ & 1.8 \end{aligned}$					
Adjustable rated motor current I_{M} - Minimum/maximum - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 42 / 210 \\ & 72.7 / 363 \end{aligned}$	$\begin{aligned} & 50 / 250 \\ & 86.6 / 433 \end{aligned}$	$\begin{aligned} & 63 / 315 \\ & 109.1 / 545 \end{aligned}$	$\begin{aligned} & 74 / 370 \\ & 128.2 / 640 \end{aligned}$	$\begin{aligned} & 94 / 470 \\ & 162.8 / 814 \end{aligned}$	$\begin{aligned} & 114 / 570 \\ & 197.5 / 987 \end{aligned}$

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Motor feeders according to IEC with 3RV2/3VA motor starter protectors/circuit breakers (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity I_{q} in kA , see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	
	M

Motor starter protectors

for 400 V systems		for 480 V systems	
Q1	I_{q}	Q1	I_{q}
Type	kA	Type	kA

Inline circuit

Note:
The service factor or measurement inaccuracies have been taken into account, for example, for the selection of the specified motor starter protectors/circuit breakers; the specified shortcircuit breaking capacities I_{q} in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged shortcircuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

Motor starter protectors

for 400 V systems		for 480 V systems	
Q1	I_{Q}	Q 1	I_{q}
Type	kA	Type	kA

Inside-delta circuit

3RV2032-4DA10	65	3RV2032-4DA10	18
3RV2032-4EA10	65	3RV2032-4EA10	15
3RV2032-4VA10	65	3RV2032-4VA10	15
3RV2032-4JA10	65	3RV2032-4JA10	10
3RV2032-4RA10	65	3RV2032-4RA10	10
3RV2032-4RA10	65	3RV2032-4RA10	10
3VA2110-7MN32-OAAO	65	3VA2110-7MN32-0AAO	20
3VA2216-7MN32-0AAO	65	3VA2216-7MN32-0AAO	20
3VA2220-7MN32-0AA0	15	3VA2220-7MN32-0AAO	10
3VA2220-7MN32-OAAO	65	--	--
3VA2325-7MN32-0AA0	65		
3VA2440-7MN32-0AAO	30	3VA2440-7MN32-0AAO	10
3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65
3VA2450-7MN32-0AA0	65	3VA2450-7MN32-0AA0	65
3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AA0	65
3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AA0	65
3VA2510-6HN32-0AA0	65	3VA2510-6HN32-0AA0	65
3VA2510-6HN32-0AA0	65	3VA2510-6HN32-0AA0	65

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according to IEC 60269-2, without semiconductor protection
Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 7/9.

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	gG class fuse for systems up to 480 V	Line contactor (optional) for systems up to 480 V
Q11	F'1	Q21
Type	Type	Type
Type of coordina- tion "2"	Inline circuit	
3RW5513 3RW5514 3RW5515 3RW5516 3RW5517	3NE1815-0 3NE1802-0 3NE1817-0 3NE1818-0 3NE1820-0	3RT2025 3RT2026 3RT2027 3RT2035 3RT2035
3RW5524 3RW5525 3RW5526 3RW5527	3NE1021-2 3NE1022-0 3NE1224-0 3NE1224-0	3RT2036 3RT2037 3RT2038 3RT2046
3RW5534 3RW5535 3RW5536	3NE1225-0 3NE1227-0 3NE1230-0	3RT1054 3RT1055 3RT1056
3RW5543 3RW5544 3RW5545 3RW5546 3RW5547 3RW5548	3NE1230-2 3NE1331-0 3NE1334-2 3NE1334-2 3NE1436-2 3NE1437-2	3RT1064 3RT1065 3RT1075 3RT1075 3RT1076 3TF68

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.
In inside-delta circuits, a gR class full-range fuse could not provide the semiconductor protection of the delta-connected soft starter with a short-circuit breaking capacity that is adequate for practical use. In this case, we recommend using aR class partial-range fuses for semiconductor protection for type of coordination "2" (see page 7/47).

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Motor feeders according to IEC with 3NE8 / 3NE3 / 3NC3 fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	gG class fuse	$a \mathrm{R}$ class fuse	Line contactor (optional)	gG class fuse	aR class fuse	Line contac	otional)
	for systems up to 480 V in the supply cable	for systems up to 480 V in the delta					
Q11	F1	F3	Q21	F1	F3	Q21	Q21
Type							
Type of coordina- tion "2"	Inline circuit			Inside-delta cir			
3RW5513	3NA3820-6	3NE8017-1	3RT2025	3NA3820-6	3NE8017-1	3RT2027	3RT2025
3RW5514	3NA3820-6	3NE8020-1	3RT2026	3NA3820-6	3NE8020-1	3 TT2027	3RT2026
3RW5515	3NA3822-6	3NE8021-1	3RT2027	3NA3822-6	3NE8021-1	3RT2036	3RT2027
3RW5516	3NA3824-6	3NE8022-1	3RT2035	3NA3824-6	3NE8022-1	3 T2037	3RT2035
3RW5517	3NA3824-6	3NE8024-1	3RT2035	3NA3824-6	3NE8024-1	3RT2038	3RT2035
3RW5524	3NA3824-6	3NE8024-1	3RT2036	3NA3824-6	3NE8024-1	3RT2046	3RT2036
3RW5525	3NA3830-6	3NE3227	3RT2037	3NA3830-6	3NE3227	3 T2047	3RT2037
3RW5526	3NA3132-6	3 NE3227	3RT2038	3NA3132-6	3NE3227	3RT1055	3RT2038
3RW5527	3NA3136-6	3 NE3227	3RT2046	3NA3136-6	3NE3227	3RT1056	3RT2046
3RW5534	3NA3244-6	3NE3231	3RT1054	3NA3244-6	3NE3231	3RT1064	3RT1054
3RW5535	3NA3244-6	3NE3233	3RT1055	3NA3244-6	3NE3233	3RT1065	3RT1055
3RW5536	3NA3365-6	3NE3334-0B	3RT1056	3NA3365-6	3NE3334-OB	3RT1066	3RT1056
3RW5543	2×3 A $3354-6$	3NE3333	3RT1064	2×3 AA3354-6	3NE3333	3RT1075	3RT1064
3RW5544	$2 \times 3 N A 3354-6$	3NE3335	3RT1065	2×3 NA3354-6	3NE3335	3RT1076	3RT1065
3RW5545	$2 \times 3 N A 3365-6$	--	3RT1075	2×3 NA3365-6	--	3TF68	3RT1075
3RW5546	$2 \times 3 N A 3365-6$	--	3RT1075	2×3 NA3365-6	--	3TF69	3RT1075
3RW5547	$2 \times 3 N A 3365-6$	3NE3340-8	3RT1076	2×3 AA3365-6	3NE3340-8	3TF69	3RT1076
3RW5548	$2 \times 3 N A 3365-6$	3NC3342-1U	3TF68	2×3 A $3365-6$	3NC3342-1U	--	3TF68

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3RV2/3VA motor starter protectors/circuit breakers can also be used, possibly with reduced short-circuit breaking capacity (see nage 7/44). In these cases, optional line contactors can be dispensed with.

Soft Starters

High Performance Soft Starters

3RW55 Failsafe soft starters > General data NEW

Reversing operation with reversing contactors

Note:
For general recommendations for constructing motor feeders
with soft starters, see page 7/9.
(For an example circuit, see
3RW55 Equipment Manual, Appendix A.3)

Soft starters	Reversing contactor assembly for systems up to 480 V	For reversing contactor for systems up to 480 V
Q11	Q21 / Q22	Q21 / Q22
Type	Type	Type
3RW5513 3RW5514 3RW5515 3RW5516 3RW5517	3RA2325 3RA2326 3RA2327 3RA2335 3RA2335	3RT2025 3RT2026 3RT2027 3RT2035 3RT2035
3RW5524 3RW5525 3RW5526 3RW5527	$\begin{aligned} & \text { 3RA2336 } \\ & \text { 3RA2337 } \\ & \text { 3RA2338 } \\ & \text { 3RA2346 } \end{aligned}$	$\begin{aligned} & \hline \text { 3RT2036 } \\ & \text { 3RT2037 } \\ & \text { 3RT2038 } \\ & \text { 3RT2046 } \end{aligned}$
3RW5534 3RW5535 3RW5536	--	$\begin{aligned} & \text { 3RT1054 } \\ & \text { 3RT1055 } \\ & \text { 3RT1056 } \end{aligned}$
3RW5543 3RW5544 3RW5545 3RW5546 3RW5547 3RW5548	$\begin{gathered} -- \\ -- \\ -- \\ -- \\ -- \end{gathered}$	3RT1064 3RT1065 3RT1075 3RT1075 3RT1076 3TF68

High Performance Soft Starters

3RW55 Failsafe soft starters＞Inline circuit IE3／IE4 ready NEW

Selection and ordering data
For normal starting（CLASS 10E）
Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

Control supply voltage

24 V AC／DC
110 ．．． 250 V AC

3RW553

3RW554

			．			，				
At $40{ }^{\circ} \mathrm{C}$			Rating［hp］for three－phase motors			SD ${ }^{1)}$	Article No．	Price per PU		PS＊
Opera－ tional	Opera three－p	power for motors								
current	$\begin{aligned} & \mathrm{At} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{At} \\ & 400 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$					
A	kW	kW	hp	hp	hp	d				
Operational voltage 200 ．．． 480 V										
13	3	5.5	3	3	7.5	5	3RW5513－पHFD4		1	1 unit
18	4	7.5	5	5	10	5	3RW5514－■HF－4		，	1 unit
25	5.5	11	5	7.5	15	5	3RW5515－■HF口4		1	1 unit
32	7.5	15	7.5	10	20	5	3RW5516－■HF口4		1	1 unit
38	11	18.5	10	10	25	5	3RW5517－■HF口4		1	1 unit
47	11	22	10	15	30	5	3RW5524－पHFD4		1	1 unit
63	18.5	30	20	20	40	5	3RW5525－■HFD4		1	1 unit
77	22	37	20	25	60	5	3RW5526－DHFD4		1	1 unit
93	22	45	30	30	60	5	3RW5527－■HF口4		1	1 unit

1） 3 RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

Note：
For the constraints for the motor outputs specified here， see page 7／7

1） $3 R W 55$ soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

Note：
For the constraints for the motor outputs specified here， see page 7／7

Soft Starters

High Performance Soft Starters

3RW55 Failsafe soft starters＞Inside－delta circuit IE3／IE4 ready NEW

Selection and ordering data

For normal starting（CLASS 10E）

3RW551．

3RW552．

3RW553

3RW554．

Opera－	Operating power for three－phase motors

tional	three－phase motors
current	At

current	At 230 V 400 V	
		kW

| A kW kW | kW |
| :--- | :--- | :--- |
| Operational voltage $200 \ldots 480 \mathrm{~V}$ | |

22.5	5.5	11	5	7.5	15	5	3RW5513－पHFD4	1	1 unit
31.5	7.5	15	7.5	10	20	5	3RW5514－■HF■4	1	1 unit
43.3	11	18.5	10	15	30	5	3RW5515－■HFD4	1	1 unit
55.4	15	22	15	20	40	5	3RW5516－■HF口4	1	1 unit
65.8	18.5	30	20	20	50	5	3RW5517－■HF口4	1	1 unit
81.4	22	45	25	30	60	5	3RW5524－■HF口4	1	1 unit
109	30	55	30	40	75	5	3RW5525－■HF口4	1	1 unit
133	37	75	40	50	100	5	3RW5526－口HFD4	1	1 unit
161	45	90	50	60	125	5	3RW5527－■HF口4	1	1 unit

Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

Control supply voltage

24 V AC／DC
110 ．．． 250 V AC
1）3RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

Note：
For the constraints for the motor outputs specified here， see page 7／7

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit						$S D^{1)}$	Article No．	Price per PU	（UNIT SET，M）	PS＊
Opera－	Operating power for three－phase motors		Rating［hp］	three－phas	tors					
current			At 200/208 V	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	At $460 / 480 \mathrm{~V}$					
A	kW	kW	hp	hp	hp	d				
Operational voltage 200 ．．． 480 V										
196	55	110	60	75	150	5	3RW5534－ロHF■4		1	1 unit
248	75	132	75	75	200	5	3RW5535－口HF■4		1	1 unit
296	90	160	100	100	200	5	3RW5536－■HF口4		1	1 unit
364	110	200	125	150	300	5	3RW5543－■HF口4		1	1 unit
433	132	250	150	150	350	5	3RW5544－DHF■4		1	1 unit
546	160	315	150	200	450	5	3RW5545－■HF口4		1	1 unit
641	200	355	200	250	500	5	3RW5546－－${ }^{\text {HFD }} 4$		1	1 unit
814	250	400	250	300	700	5	3RW5547－ロHF口4		1	1 unit
987	315	560	350	400	850	5	3RW5548－■HF■4		1	1 unit

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

Control supply voltage

24 V AC／DC
110 ．．． 250 V AC

[^55]
Note：

For the constraints for the motor outputs specified here see page 7／7

High Performance Soft Starters

3RW55 Failsafe soft starters > Accessories
Selection and ordering data

High Performance Soft Starters

3RW55 Failsafe soft starters > Accessories

1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH.

General Performance Soft Starters

3RW52 soft starters > General data

Overview

More information

Homepage, see www.siemens.com/softstarter

Industry Mall, see www.siemens.com/product?3RW52
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=3rw52

Industry Online Support (SIOS) topic page, see
https://support.industry.siemens.com/cs/ww/en/view/109747404
Simulation Tool for Soft Starters (STS), see page $7 / 7$ or
https://support.industry.siemens.com/cs/ww/en/view/101494917
SIRIUS Soft Starter ES (TIA Portal), see page 7/7
SIRIUS 3RW52 General Performance soft starters are the ideal solution for standard applications. With ideal three-phase motor control, they cover the performance range from 10 to 600 HP @ 600V.
Optional HMI modules, plug-in communication modules (PROFINET, PROFIBUS, EtherNet/IP and Modbus) and either an analog output or thermistor motor protection ensure maximum flexibility. With their modern hybrid switching technology, the SIRIUS 3RW52 soft starters offer efficient switching for long-term, energy-saving use.

3RW52 General Performance soft starters with accessories (see page 7/69), for expansion with HMI module or communication module

General Performance Soft Starters
3RW52 soft starters > General data

Benefits

Product characteristics / function	Performance features / benefits
Hybrid switching devices and three-phase motor control	Minimum power loss and optimum/symmetrical motor control
TIA-Integration - communication modules and HMI modules optional	Efficient configuration and maximum flexibility in automation engineering
Soft Torque	Reduced mechanical loading and optimum pump stop
Parameterization using potentiometers	Simple and fast commissioning
Wide range for control supply and main voltage	Low variance, high system availability even with weak supply networks

Soft Starters

General Performance Soft Starters

3RW52 soft starters > General data

Technical specifications

More information	
Technical specifications, see	FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/25100/faq
https://support.industry.siemens.com/cs/ww/en/ps/25100/td	Simulation Tool for Soft Starters (STS), see page 7/7 or
Equipment Manual "SIRIUS 3RW52 Soft Starter", see	https://support.industry.siemens.com/cs/ww/en/view/101494917
https://support.industry.siemens.com/cs/ww/en/view/109753751	

Type		3RW5213 3RW5214 3RW5215	3RW5216 3RW5217	$\begin{aligned} & \text { 3RW5224 } \\ & \text { 3RW5225 } \end{aligned}$	3RW5226 3RW5227 3RW5234 3RW5235 3RW5236	3RW5243 3RW5244 3RW5245 3RW5246 3RW5247 3RW5248
Installation/fixing/dimensions						
Width \mathbf{x} height \mathbf{x} depth		$170 \times 275 \times 152$		$185 \times 306 \times 203$		$210 \times 393 \times 203$
Type of mounting		Screw fixing				
Mounting position		For vertical mounting surface can be rotated $+/-10^{\circ}$ and tilted forward or backward	For vertical mounting surface can be rotated + - 90°, for vertical mounting surface can be tilted +/- 22.5° forward or backward	For vertical mounting surface can be rotated $+/-10^{\circ}$ and tilted forward or backward	For vertica can be rot for vertica tilted +/- 2	ing surface 90°, g surface can be ard or backward

Distance to be maintained with side-by-side mounting

- Above
- At the side
mm 100
- At the side mm 5
- Below mm 75
Maximum installation altitude above sea level ${ }^{\mathbf{1}}$) m 5000
Degree of protection IP20 IP00

Ambient conditions

Ambient temperature

- During operation ${ }^{2)} \quad{ }^{\circ} \mathrm{C} \quad-25 \ldots+60$
- During storage and transport ${ }^{\circ} \mathrm{C} \quad-40 \ldots+80$

Environmental category according to IEC 60721

- During operation
- During storage
- During transport

3 K 6 (no ice formation, no condensation), 3C3 (no salt mist),
3S2 (sand must not get into the devices), 3M6
1K6 (only occasional condensation), 1C2 (no salt mist),
1S2 (sand must not enter the devices), 1M4
$2 \mathrm{~K} 2,2 \mathrm{C} 1,2 \mathrm{~S} 1,2 \mathrm{M} 2$ (max. height of fall 0.3 m)

1) Derating from 1000 m , see characteristic curve on page $7 / 7$.
2) Note derating above $40^{\circ} \mathrm{C}$.

Soft Starters

General Performance Soft Starters

3RW52 soft starters > General data

General Performance Soft Starters

3RW52 soft starters > General data

Type		3RW5213	3RW5214	3RW5215	3RW5216	3RW5217
Rated operational current $I_{\text {e }}$	A	13	18	25	32	38
Power electronics						
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
Permissible rated motor current and starts Normal starting (CLASS 10A)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$
Normal starting (CLASS 10E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	32/28.4/26	38/33.5/30.5
- $300 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$				
- $350 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \\ & \hline \end{aligned}$
Heavy starting (CLASS 20E)						
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	13/11.5/10.5	18/15.9/13.8	25/22.3/19.6	29.6/27.2/23.6	33.5/30.5/27.5
- $300 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$1 / h$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$
Adjustable rated motor current I_{M} - Minimum/maximum - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5.5 / 13 \\ & 9.5 / 22.5 \end{aligned}$	$\begin{aligned} & 7.5 / 18 \\ & 13 / 31.2 \end{aligned}$	$\begin{aligned} & 11.5 / 25 \\ & 19.9 / 43.3 \end{aligned}$	$\begin{aligned} & 14 / 32 \\ & 24.2 / 55.4 \end{aligned}$	$\begin{aligned} & 15.5 / 38 \\ & 26.8 / 65.8 \end{aligned}$

General Performance Soft Starters

3RW52 soft starters > General data

Type		3RW5224	3RW5225	3RW5226	3RW5227
Rated operational current I_{e}	A	47	63	77	93
Power electronics					
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a		47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
Permissible rated motor current and starts					
Normal starting (CLASS 10A) Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$			
- $350 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$			
Normal starting (CLASS 10E)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	77/68/62	93/82.5/75.5
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$			
- $350 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$			
Heavy starting (CLASS 20E)					
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	47/41.6/36.2	63/55.5/50.5	65/59/53	93/82.5/75.5
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 3 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$
- $350 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$
Adjustable rated motor current I_{M}					

General Performance Soft Starters

3RW52 soft starters > General data

Type		3RW5234	3RW5235	3RW5236
Rated operational current $I_{\text {e }}$	A	113	143	171
Power electronics				
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting $\text { at } 40 / 50 / 60^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$	A	113/101/89	143/128/118	171/153/141
Permissible rated motor current and st				
Normal starting (CLASS 10A) Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	113/101/89	143/128/118	171/153/141
- $300 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$
- $350 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 27 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 4 \end{aligned}$
Normal starting (CLASS 10E)				
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	113/101/89	139/127/116	158/146/129
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$1 / h$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 1 \end{aligned}$	$\begin{aligned} & 12 \\ & 1 \end{aligned}$
Heavy starting (CLASS 20E)				
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	109/97/85	113/103/93	129/117/105
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	10	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$
- $350 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \\ & \hline \end{aligned}$
Adjustable rated motor current I_{M} - Minimum/maximum - Minimum/maximum in inside-delta circuits	$\begin{aligned} & A \\ & \text { A } \end{aligned}$	$\begin{aligned} & 53 / 113 \\ & 91.8 / 196 \end{aligned}$	$\begin{aligned} & 68 / 143 \\ & 118 / 248 \end{aligned}$	$\begin{aligned} & 81 / 171 \\ & 140 / 296 \end{aligned}$

General Performance Soft Starters

3RW52 soft starters > General data

Type		3RW5243	3RW5244	3RW5245	3RW5246	3RW5247	3RW5248
Rated operational current I_{e}	A	210	250	315	370	470	570
Power electronics							
Load rating with rated operational current I_{e} IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}$, AC-53a	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
Permissible rated motor current and starts/h Normal starting (CLASS 10A)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
- $300 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 43 \\ & 14 \end{aligned}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 11 \end{aligned}$	$\begin{aligned} & 20 \\ & 6 \end{aligned}$
- $350 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \\ & 5 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 4 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \\ & 5 \end{aligned}$	$\begin{aligned} & 9 \\ & 1 \end{aligned}$
Normal starting (CLASS 10E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	197/184/170	250/220/200	279/255/231	370/328/300	398/362/326	460/416/372
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 18 \\ & 7 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 12 \\ & 1 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 11 \\ & 2 \end{aligned}$
Heavy starting (CLASS 20E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	162/146/130	200/180/160	195/171/147	258/230/202	272/236/218	284/262/240
- $300 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$					
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$					
Adjustable rated motor current I_{M} - Minimum/maximum - Minimum/maximum in inside-delta circuits	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 90 / 210 \\ & 156 / 364 \end{aligned}$	$\begin{aligned} & 100 / 250 \\ & 173 / 433 \end{aligned}$	$\begin{aligned} & 135 / 315 \\ & 234 / 546 \end{aligned}$	$\begin{aligned} & 160 / 370 \\ & 277 / 641 \end{aligned}$	$\begin{aligned} & 200 / 470 \\ & 346 / 814 \end{aligned}$	$\begin{aligned} & 240 / 570 \\ & 416 / 987 \end{aligned}$

General Performance Soft Starters

3RW52 soft starters > General data

Motor feeders according to IEC with 3RV2/3VA motor starter protectors/circuit breakers (without semiconductor protection)
Type of coordination "1", CLASS 10,
short-circuit breaking capacity I_{q} in kA, see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9

Soft starters	Motor starter protector for 400 V systems		for 500 V systems		Motor starter protector for 400 V systems		for 500 V systems	
Q11	Q1	$I_{\text {q }}$						
Type	Type	kA	Type	kA	Type	kA	Type	kA
Type of coordina- 1 cor tion "1"	Inline circuit				Inside-delta circuit			
3RW5213	3RV2032-4TA10	65	3RV2032-4TA10	18	3RV2032-4DA10	65	3RV2032-4DA10	18
3RW5214	3RV2032-4DA10	65	3RV2032-4DA10	15	3RV2032-4EA10	65	3RV2032-4EA10	15
3RW5215	3RV2032-4EA10	65	3RV2032-4EA10	15	3RV2032-4VA10	65	3RV2032-4VA10	15
3RW5216	3RV2032-4VA10	65	3RV2032-4VA10	10	3RV2032-4JA10	65	3RV2032-4JA10	10
3RW5217	3RV2032-4WA10	65	3RV2032-4WA10	10	3RV2032-4RA10	65	3RV2032-4RA10	10
3RW5224	3RV2032-4JA10	65	3RV2032-4JA10	10	3RV2032-4RA10	65	3RV2032-4RA10	10
3RW5225	3VA2163-7MN32-0AA0	65	3VA2163-7MN32-0AAO	20	3VA2110-7MN32-0AA0	65	3VA2110-7MN32-0AA0	20
3RW5226	3VA2110-7MN32-0AA0	65	3VA2110-7MN32-0AA0	20	3VA2216-7MN32-0AAO	65	3VA2216-7MN32-0AA0	20
3RW5227	3VA2216-7MN32-0AA0	15	3VA2216-7MN32-0AA0	10	3VA2220-7MN32-0AAO	15	3VA2220-7MN32-0AA0	10
3RW5234	3VA2216-7MN32-OAAO	65	--	--	3VA2220-7MN32-0AAO	65	--	--
3RW5235	3VA2220-7MN32-0AA0	65	--	--	3VA2325-7MN32-0AAO	65	--	--
3RW5236	3VA2325-7MN32-0AA0	30	3VA2325-7MN32-0AA0	10	3VA2440-7MN32-0AA0	30	3VA2440-7MN32-0AA0	10
3RW5243	3VA2325-7MN32-0AA0	65	3VA2325-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65
3RW5244	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65	3VA2450-7MN32-0AA0	65	3VA2450-7MN32-0AA0	65
3RW5245	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AAO	65	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AA0	65
3RW5246	3VA2440-7MN32-0AA0	65	3VA2440-7MN32-0AA0	65	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AA0	65
3RW5247	3VA2450-7MN32-0AA0	65	3VA2450-7MN32-0AA0	65	3VA2510-6HN32-0AA0	65	3VA2510-6HN32-0AAO	65
3RW5248	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AA0	65	3VA2510-6HN32-0AA0	65	3VA2510-6HN32-0AAO	65

Note:
The service factor or measurement inaccuracies have been taken into account, for example, for the selection of the specified motor starter protectors/circuit breakers; the specified shortcircuit breaking capacities I_{q} in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged shortcircuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

General Performance Soft Starters

3RW52 soft starters > General data

Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according
to IEC 60269-2, without semiconductor protection
Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	gG class fuse	Line contac	(optional)	gG class fuse	Line contact	ptional)		
	for systems up to 600 V	for systems up to 480 V	for systems up to 600 V	for systems up to 600 V	for systems up to 480 V in the supply cable	for systems up to 600 V in the supply cable	for systems up to 480 V in the delta	for systems up to 600 V in the delta
Q11	F1	Q21	Q21	F1	Q21	Q21	Q21	Q21
Type								
Type of coordina- tion "1" 1	Inline circuit			Inside-delta circuit				
3RW5213	3NA3820-6	3RT2025	3RT2025	3NA3820-6	3 RT 2027	3RT2035	3RT2025	3RT2025
3RW5214	3NA3820-6	3RT2026	3RT2027	3NA3820-6	3RT2027	3RT2037	3RT2026	3RT2027
3RW5215	3NA3822-6	3 T 2027	3RT2037	3NA3822-6	3RT2036	3RT2037	3RT2027	3RT2037
3RW5216	3NA3824-6	3RT2035	3 TT2037	3NA3824-6	3 T2037	3RT2038	3RT2035	3 TT2037
3RW5217	3NA3824-6	3RT2035	3RT2037	3NA3824-6	3RT2038	3RT2046	3RT2035	3RT2037
3RW5224	3NA3824-6	3RT2036	3RT2037	3NA3824-6	3RT2046	3RT2047	3RT2036	3RT2037
3RW5225	3NA3830-6	3RT2037	3RT2046	3NA3830-6	3RT2047	3RT1054	3RT2037	3RT2046
3RW5226	3NA3132-6	3RT2038	3RT2046	3NA3132-6	3RT1055	3RT1055	3RT2038	3RT2046
3RW5227	3NA3136-6	3RT2046	3RT2047	3NA3136-6	3RT1056	3RT1056	3RT2046	3RT2047
3RW5234	3NA3244-6	3RT1054	3RT1054	3NA3244-6	3RT1064	3RT1064	3RT1054	3RT1054
3RW5235	3NA3244-6	3RT1055	3RT1055	3NA3244-6	3RT1065	3RT1065	3RT1055	3RT1055
3RW5236	3NA3365-6	3RT1056	3RT1064	3NA3365-6	3RT1066	3RT1075	3RT1056	3RT1064
3RW5243	$2 \times 3 N A 3354-6$	3RT1064	3RT1064	$2 \times 3 N A 3354-6$	3RT1075	3RT1075	3RT1064	3RT1064
3RW5244	$2 \times 3 N A 3354-6$	3RT1065	3RT1065	$2 \times 3 N A 3354-6$	3RT1076	3RT1076	3RT1065	3RT1065
3RW5245	2×3 A $3365-6$	3RT1075	3RT1075	2×3 A $3365-6$	3TF68	3TF68	3RT1075	3RT1075
3RW5246	$2 \times 3 N A 3365-6$	3RT1075	3RT1075	$2 \times 3 N A 3365-6$	3TF69	3TF69	3RT1075	3RT1075
3RW5247	2×3 A $3365-6$	3RT1076	3RT1276	$2 \times 3 N A 3365-6$	3TF69	3TF69	3RT1076	3RT1276
3RW5248	$2 \times 3 N A 3365-6$	3TF68	3TF68	$2 \times 3 N A 3365-6$	--	--	3TF68	3TF68

Note:
The specified short-circuit breaking capacities I_{Q} in $k A$ are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

General Performance Soft Starters

3RW52 soft starters > General data

Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	gG class fuse for systems up to 600 V	Line contactor (optional)	
		for systems up to 480 V	for systems up to 600 V
Q11	F'1	Q21	Q21
Type	Type	Type	Type
Type of coordination "2"	Inline circuit		
3RW5213	3NE1815-0	3RT2025	3RT2025
3RW5214	3NE1802-0	3RT2026	3 RT2027
3RW5215	3NE1817-0	3RT2027	3RT2037
3RW5216	3NE1818-0	3RT2035	3RT2037
3RW5217	3NE1820-0	3RT2035	3RT2037
3RW5224	3NE1021-2	3RT2036	3 RT 2037
3RW5225	3NE1022-0	3RT2037	3RT2046
3RW5226	3NE1224-0	3RT2038	3RT2046
3RW5227	3NE1224-0	3RT2046	3 TT2047
3RW5234	3NE1225-0	3RT1054	3RT1054
3RW5235	3NE1227-0	3RT1055	3RT1055
3RW5236	3NE1230-0	3RT1056	3RT1064
3RW5243	3NE1230-2 ${ }^{1)}$	3RT1064	3RT1064
3RW5244	3NE1331-0	3RT1065	3RT1065
3RW5245	3NE1334-2	3RT1075	3RT1075
3RW5246	3NE1334-2	3RT1075	3RT1075
3RW5247	3NE1436-2	3RT1076	3RT1276
3RW5248	3NE1437-2	3TF68	3TF68

1) For systems up to 500 V .

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.
In inside-delta circuits, a gR class full-range fuse could not provide the semiconductor protection of the delta-connected soft starter with a short-circuit breaking capacity that is adequate for practical use. In this case, we recommend using aR class partial-range fuses for semiconductor protection for type of coordination "2" (see page 7/64).

General Performance Soft Starters

3RW52 soft starters > General data

Motor feeders according to IEC with fuses 3NE8 / 3NE4 / 3NE3

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	gG class fuse	aR class fuse	Line cont (optional)		gG class fuse	aR class fuse	Line contact	or (optional)		
	for systems up to 600 V	for systems up to 500 V	for systems up to 480 V	for systems up to 600 V	for systems up to 600 V	for systems up to 600 V	for systems up to 480 V in the supply cable	for systems up to 600 V in the supply cable	for sys- tems up to 480 V in the delta	for sys- tems up to 600 V in the delta
Q11	F1	F3	Q21	Q21	F1	F3	Q21	Q21	Q21	Q21
Type										
$\begin{array}{lr} \hline \begin{array}{l} \text { Type of } \\ \text { coordina- } \\ \text { tion "2" } \end{array} & \\ \hline \end{array}$	Inline circuit				Inside-delta ci	rcuit				
3RW5213	3NA3820-6	3NE8017-1	3RT2025	3RT2025	3NA3820-6	3NE8017-1	3 TT2027	3RT2035	3RT2025	3RT2025
3RW5214	3NA3820-6	3NE8020-1	3RT2026	3RT2027	3NA3820-6	3NE8020-1	3RT2027	3RT2037	3RT2026	3RT2027
3RW5215	3NA3822-6	3NE8021-1	3RT2027	3RT2037	3NA3822-6	3NE8021-1	3RT2036	3RT2037	3RT2027	3RT2037
3RW5216	3NA3824-6	3NE8022-1	3RT2035	3RT2037	3NA3824-6	3NE8022-1	3RT2037	3RT2038	3RT2035	3RT2037
3RW5217	3NA3824-6	3NE8024-1	3RT2035	3RT2037	3NA3824-6	3NE8024-1	3RT2038	3RT2046	3RT2035	3RT2037
3RW5224	3NA3824-6	3NE8024-1	3RT2036	3RT2037	3NA3824-6	3NE8024-1	3RT2046	3RT2047	3RT2036	3RT2037
3RW5225	3NA3830-6	3NE8024-1	3RT2037	3RT2046	3NA3830-6	3NE8024-1	3RT2047	3RT1054	3RT2037	3RT2046
3RW5226	3NA3132-6	3NE8024-1	3RT2038	3RT2046	3NA3132-6	3NE8024-1	3RT1055	3RT1055	3RT2038	3RT2046
3RW5227	3NA3136-6	3NE4124	3RT2046	3RT2047	3NA3136-6	3NE4124	3RT1056	3RT1056	3RT2046	3RT2047
3RW5234	3NA3244-6	3NE3332-0B	3RT1054	3RT1054	3NA3244-6	3NE3332-0B	3RT1064	3RT1064	3RT1054	3RT1054
3RW5235	3NA3244-6	3NE3334-OB	3RT1055	3RT1055	3NA3244-6	3NE3334-0B	3RT1065	3RT1065	3RT1055	3RT1055
3RW5236	3NA3365-6	3NE3335	3RT1056	3RT1064	3NA3365-6	3NE3335	3RT1066	3RT1075	3RT1056	3RT1064
3RW5243	2×3 NA3354-6	3NE3333	3RT1064	3RT1064	2×3 NA3354-6	3NE3333	3RT1075	3RT1075	3RT1064	3RT1064
3RW5244	2×3 NA3354-6	3NE3336	3RT1065	3RT1065	2×3 AA3354-6	3NE3336	3RT1076	3RT1076	3RT1065	3RT1065
3RW5245	2×3 AA3365-6	3NE3336	3RT1075	3RT1075	2×3 AA3365-6	3NE3336	3TF68	3TF68	3RT1075	3RT1075
3RW5246	2×3 NA3365-6	3NE3336	3RT1075	3RT1075	2×3 NA3365-6	3NE3336	3TF69	3TF69	3RT1075	3RT1075
3RW5247	2×3 A $3365-6$	3NE3340-8	3RT1076	3RT1276	2×3 AA3365-6	3NE3340-8	3TF69	3TF69	3RT1076	3RT1276
3RW5248	2×3 A $3365-6$	3NE3340-8	3TF68	3TF68	2×3 A $3365-6$	3NE3340-8	--	--	3TF68	3TF68

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3RV2/3VA motor starter protectors/circuit breakers can also be used, possibly with reduced short-circuit breaking capacity (see page 7/61). In these cases, optional line contactors can be dispensed with.

General Performance Soft Starters

3RW52 soft starters＞Inline circuit IE3／IE4 ready

Selection and ordering data

For normal starting（CLASS 10A）

At $40{ }^{\circ} \mathrm{C}$				Rating［hp］for three－phase motors				SD ${ }^{1)}$	Article No．	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊
Opera－ tional cur－ rent	Operating power for three－phase motors											
	$\begin{aligned} & \mathrm{At} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 500 \mathrm{~V} \end{aligned}$	At 200／208 V	At $220 / 230 \mathrm{~V}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At $575 / 600 \mathrm{~V}$					
A	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage $200 \ldots 480 \mathrm{~V}$												
13	3	5.5	－－	3	3	7.5	－－	5	3RW5213－पロC口4		1	1 unit
18	4	7.5	－－	5	5	10	－－	5	3RW5214－ロロCロ4		1	1 unit
25	5.5	11	－－	5	7.5	15	－－	5	3RW5215－ロロC口4		1	1 unit
32	7.5	15	－－	7.5	10	20	－－	5	3RW5216－ロロC口4		1	1 unit
38	11	18.5	－－	10	10	25	－－	5	3RW5217－ロロC口4		1	1 unit
47	11	22	－－	10	15	30	－－	5	3RW5224－ロロC口4		1	1 unit
63	18.5	30	－－	20	20	40	－－	5	3RW5225－ロロCロ4		1	1 unit
77	22	37	－－	20	25	60	－－	5	3RW5226－ロロCロ4		1	1 unit
93	22	45	－－	30	30	60	－－	5	3RW5227－ロロCロ4		1	1 unit

Type of electrical connection for the control circuit
Screw terminals
Spring－loaded terminals

Product function

Analog output
Thermistor motor protection

24 V AC／DC
110 ．．． 250 V AC

1）3RW52 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

Note：

For the constraints for the motor outputs specified here， see page 7／7．

At $40{ }^{\circ} \mathrm{C}$				Rating［hp］for three－phase motors				SD ${ }^{1)}$	Article No．	Price per PU	PU （UNIT， SET，M）	PS＊
Opera－ tional cur－ rent	Operating power for three－phase motors											
	At 230 V	At 400 V	At 500 V	At 200／208 V	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	At 460／480 V	At 575/600 V					
A	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage 200 ．．． 480 V												
113	30	55	－－	30	40	75	－－	5	3RW5234－$\square \square \square \square$		1	1 unit
143	37	75	－－	40	50	100	－－	5	3RW5235－$\square \square C \square 4$		1	1 unit
171	45	90	－－	50	60	125	－－	5	3RW5236－$\square \square \mathrm{C} \square 4$		1	1 unit
210	55	110	－－	60	75	150	－－	5	3RW5243－$\square \square \square \square 4$		1	1 unit
250	75	132	－－	75	100	200	－－	5	3RW5244－$\square \square \square \square 4$		1	1 unit
315	90	160	－－	100	125	250	－－	5	3RW5245－$\square \square \mathrm{C} \square 4$		1	1 unit
370	110	200	－－	125	150	300	－－	5	3RW5246－$\square \square \square \square 4$		1	1 unit
470	132	250	－－	150	150	350	－－	5	3RW5247－$\square \square \mathrm{C} \square 4$		1	1 unit
570	160	315	－－	200	200	450	－－	5	3RW5248－$\square \square C \square 4$		1	1 unit

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

Product function

Analog output
Thermistor motor protection

Note：
For the constraints for the motor outputs specified here， see page 7／7．

General Performance Soft Starters

3RW52 soft starters＞Inline circuit IE3／IE4 ready

For normal starting（CLASS 10A）

At $40{ }^{\circ} \mathrm{C}$				Rating［hp］for three－phase motors				SD ${ }^{1)}$	Article No．	Price per PU		PS＊
Opera－ tional cur－ rent	Operating power for three－phase motors											
	At $230 \mathrm{~V}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	At $500 \mathrm{~V}$	At 200/208 V	At 220/230 V	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At $575 / 600 \mathrm{~V}$					

A	kW	kW	kW	hp	hp	hp	hp	d			
Operational voltage 200 ．．． 600 V											
13	3	5.5	7.5	3	3	7.5	10	5	3RW5213－$\square \square \mathrm{C} \square 5$	1	1 unit
18	4	7.5	11	5	5	10	15	5	3RW5214－$\square \square \mathrm{C} \square 5$	1	1 unit
25	5.5	11	15	5	7.5	15	20	5	3RW5215－$\square \square \mathrm{C} \square 5$	1	1 unit
32	7.5	15	18.5	7.5	10	20	30	5	3RW5216－$\square \square \mathrm{C} \square 5$	1	1 unit
38	11	18.5	22	10	10	25	30	5	3RW5217－$\square \square \mathrm{C} \square 5$	1	1 unit
47	11	22	30	10	15	30	40	5	3RW5224－$\square \square \mathrm{C} \square 5$	1	1 unit
63	18.5	30	37	20	20	40	60	5	3RW5225－$\square \square \mathrm{C} \square 5$	1	1 unit
77	22	37	45	20	25	60	75	5	3RW5226－$\square \square \mathrm{C} \square 5$	1	1 unit
93	22	45	55	30	30	60	75	5	3RW5227－$\square \square \mathrm{C} \square 5$	1	1 unit

Note：
For the constraints for the motor outputs specified here， see page 7／7

Type of electrical connection for the control circuit

Screw terminals
Spring－loaded terminals

Product function

Analog output
Thermistor motor protection

Control supply voltage

$24 \mathrm{VAC} / \mathrm{DC}$
110 ．．． 250 V AC

1） 3 RW52 soft starter with screw terminals for operational voltage up to 600 V Standard delivery time SD＝ 2 days（d）．

At $40{ }^{\circ} \mathrm{C}$				Rating［hp］for three－phase motors				$S D^{1)}$	Article No．	Price per PU	PU （UNIT， SET，M）	PS＊
Opera－	Operating power for three－phase motors											
rent	$\begin{aligned} & \mathrm{At} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 400 \mathrm{~V} \end{aligned}$	At 500 V	At $200 / 208 \mathrm{~V}$	$\begin{aligned} & \text { At } \\ & \text { 220/230 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At 575/600 V					
A	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage $200 \ldots 600 \mathrm{~V}$												
113	30	55	75	30	40	75	100	5	3RW5234－पロCロ5		1	1 unit
143	37	75	90	40	50	100	125	5	3RW5235－ロロCロ5		1	1 unit
171	45	90	110	50	60	125	150	5	3RW5236－ロロCD5		1	1 unit
210	55	110	132	60	75	150	200	5	3RW5243－ロロC 5		1	1 unit
250	75	132	160	75	100	200	250	5	3RW5244－ロロCD5		1	1 unit
315	90	160	200	100	125	250	300	5	3RW5245－ロロCD5		1	1 unit
370	110	200	250	125	150	300	350	5	3RW5246－पロC口5		1	1 unit
470	132	250	315	150	150	350	450	5	3RW5247－पロCD5		1	1 unit
570	160	315	355	200	200	450	600	5	3RW5248－ロロCロ5		，	1 unit

Type of electrical connection for the control circuit

Spring－loaded terminals
Screw terminals

Product function

Analog output
Thermistor motor protection

Control supply voltage
24 V AC／DC
110 ．．． 250 V AC
1）3RW52 soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time $\mathrm{SD}=2$ days（d）．

Note：
For the constraints for the motor outputs specified here， see page 7／7

General Performance Soft Starters

3RW52 soft starters＞Inside－delta circuit IE3／IE4 ready

Selection and ordering data

For normal starting（CLASS 10A）

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit				Rating［hp］for three－phase motors				SD ${ }^{1)}$	Article No．	Price per PU	（UNIT， SET，M）	PS＊
Opera－ tional cur－	Operating power for three－phase motors											
rent	$\begin{aligned} & \mathrm{At} \\ & 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{At} \\ & 400 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 200 / 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 575 / 600 \mathrm{~V} \end{aligned}$					
A	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage 200 ．．． 480 V												
22.5	5.5	11	－－	5	7.5	15	－－	5	3RW5213－पロCD4		1	1 unit
31.5	7.5	15	－－	7.5	10	20	－－	5	3RW5214－ロロCD4		1	1 unit
43.3	11	18.5	－－	10	15	30	－－	5	3RW5215－ロロCD4		1	1 unit
55.4	15	22	－－	15	20	40	－－	5	3RW5216－पロC口4		1	1 unit
65.8	18.5	30	－－	20	20	50	－－	5	3RW5217－ロロC $\square 4$		1	1 unit
81.4	22	45	－－	25	30	60	－－	5	3RW5224－ロロCD4		1	1 unit
109	30	55	－－	30	40	75	－－	5	3RW5225－ロロCD4		1	1 unit
133	37	75	－－	40	50	100	－－	5	3RW5226－ロロCD4		1	1 unit
161	45	90	－－	50	60	125	－－	5	3RW5227－पロCD4		1	1 unit

Type of electrical connection for the control circuit

Screw terminals

Product function

Analog output
Thermistor motor protection

Control supply voltage

24 V AC／DC
110 ．．． 250 V AC
1）3RW52 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

Note：
For the constraints for the motor outputs specified here， see page 7／7．

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit				Rating［hp］for three－phase motors				SD ${ }^{1)}$	Article No．	Price per PU	PU （UNIT， SET，M）	PS＊
Opera－ tional cur－	Operating power for three－phase motors											
rent	At 230 V	At 400 V	At 500 V	$\begin{aligned} & \text { At } \\ & \text { 200/208 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 220 / 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At 575／600 V					
A	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage $200 \ldots 480 \mathrm{~V}$												
196	55	110	－－	60	60	150	－－	5	3RW5234－$\square \square \square \square 4$		1	1 unit
248	75	132	－－	75	75	200	－－	5	3RW5235－$\square \square \square \square 4$		1	1 unit
296	90	160	－－	100	100	200	－－	5	3RW5236－$\square \square \mathrm{C} \square 4$		1	1 unit
364	110	200	－－	125	125	300	－－	5	3RW5243－$\square \square \square \square 4$		1	1 unit
433	132	250	－－	150	150	350	－－	5	3RW5244－$\square \square \square \square 4$		1	1 unit
546	160	315	－－	150	150	450	－－	5	3RW5245－$\square \square \mathrm{C} \square 4$		1	1 unit
641	200	355	－－	200	200	500	－－	5	3RW5246－$\square \square \square \square 4$		1	1 unit
814	250	400	－－	250	250	700	－－	5	3RW5247－$\square \square \square \square 4$		1	1 unit
987	315	560	－－	350	350	850	－－	5	3RW5248－$\square \square \square \square 4$		1	1 unit

Type of electrical connection for the control circuit

Spring－loaded terminals
Screw terminals

Product function

Analog output
Thermistor motor protection

Control supply voltage

24 V AC／DC
110 ．．． 250 V AC
1）3RW52 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

General Performance Soft Starters

3RW52 soft starters＞Inside－delta circuit IE3／IE4 ready

For normal starting（CLASS 10A）

3RW521

3RW522．

3RW523．

3RW524．

Operational voltage 200 ．．． 600 V											
22.5	5.5	11	15	5	7.5	15	20	5	3RW5213－पロCロ5	1	1 unit
31.5	7.5	15	18.5	7.5	10	20	25	5	3RW5214－ロロCD5	1	1 unit
43.3	11	18.5	22	10	15	30	40	5	3RW5215－ロロCD5	1	1 unit
55.4	15	22	30	15	20	40	50	5	3RW5216－ロロC $\square 5$	1	1 unit
65.8	18.5	30	37	20	20	50	60	5	3RW5217－ロロCロ5	1	1 unit
81.4	22	45	45	25	30	60	75	5	3RW5224－ロロCロ5	1	1 unit
109	30	55	55	30	40	75	100	5	3RW5225－ロロCロ5	1	1 unit
133	37	75	90	40	50	100	125	5	3RW5226－पロCD5	1	1 unit
161	45	90	110	50	60	125	150	5	3RW5227－ロロCD5	1	1 unit

Type of electrical connection for the control circuit

Screw terminals
Spring－loaded terminals

Product function

Analog output
Thermistor motor protection

Control supply voltage

$24 \mathrm{VAC} / \mathrm{DC}$
110 ．．． 250 V AC

1）3RW52 soft starter with screw terminals for operational voltage up to 600 V ：

Note：
For the constraints for the motor outputs specified here， see page 7／7

At $40{ }^{\circ} \mathrm{C}$ for inside－delta circuit				Rating［hp］for three－phase motors				SD ${ }^{1)}$	Article No．	Price per PU	PU （UNIT， SET，M）	PS＊
Opera－ tional cur－	Operating power for three－phase motors											
rent	At 230 V	At 400 V	At 500 V	At 200/208 V	At 220/230 V	At $460 / 480 \mathrm{~V}$	At $575 / 600 \mathrm{~V}$					
A	kW	kW	kW	hp	hp	hp	hp	d				
Operational voltage 200 ．．． 600 V												
196	55	110	132	60	75	150	200	5	3RW5234－$\square \square \mathrm{C} \square 5$		1	1 unit
248	75	132	160	75	75	200	250	5	3RW5235－$\square \square \mathrm{C} \square 5$		1	1 unit
296	90	160	200	100	100	200	300	5	3RW5236－$\square \square \mathrm{C} \square 5$		1	1 unit
364	110	200	250	125	150	300	350	5	3RW5243－$\square \square \square \square 5$		1	1 unit
433	132	250	315	150	150	350	450	5	3RW5244－$\square \square \mathrm{C} \square 5$		1	1 unit
546	160	315	355	150	200	450	550	5	3RW5245－$\square \square \mathrm{C} \square 5$		1	1 unit
641	200	355	450	200	250	500	700	5	3RW5246－$\square \square \square \square$		1	1 unit
814	250	400	500	250	300	700	900	5	3RW5247－$\square \square C \square 5$		1	1 unit
987	315	560	630	350	400	850	1100	5	3RW5248－$\square \square \square \square 5$		1	1 unit

Type of electrical connection for the control circuit

Spring－loaded terminals
Screw terminals

Product function

Analog output
Thermistor motor protection

Control supply voltage

24 VAC／DC

110 ．．． 250 V AC

[^56]Note：
For the constraints for the motor outputs specified here see page 7／7

Soft Starters

General Performance Soft Starters

3RW52 soft starters > Accessories

Selection and ordering data

Soft Starters

General Performance Soft Starters

3RW52 soft starters > Accessories

1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH

Basic Performance Soft Starters

```
3RW50 soft starters > General data NEW
```


Overview

More information

Homepage, see www.siemens.com/softstarter

Industry Mall, see www.siemens.com/product?3RW50
TIA Selection Tool Cloud (TST Cloud), see
https://support.industry.siemens.com/cs/ww/en/view/109747404

[^57]SIRIUS 3RW50 Basic Performance soft starters are the compact solution for standard applications. With two-phase motor control, they cover the performance range from 125 to 600 HP @ 600V.

Optional HMI modules for installation in the control cabinet door, laterally mountable communication modules (PROFINET,
PROFIBUS, EtherNet/IP and Modbus) and either an analog output or thermistor motor protection ensure maximum flexibility. With their modern hybrid switching technology, the SIRIUS 3RW50 soft starters offer efficient switching for long-term, energy-saving use.

3RW50 Basic Performance soft starters with accessories (see page 7/81), for expansion with HMI module or communication module

Soft Starters

Basic Performance Soft Starters

```
3RW50 soft starters > General data NEW
```

Benefits

Product characteristics / function

Hybrid switching devices and two-phase motor control

Small and compact design

TIA-Integration - communication modules and HMI modules optional

Motor overload and intrinsic device protection without additional wiring

Soft Torque

Parameterization using potentiometers

Wide range for control supply and main voltage

Certified according to ATEX/IECEx directive

Performance features / benefits

Minimum power loss and optimized motor control by avoiding DC components

Space-saving, clearly arranged control panel layout

Efficient configuration and maximum flexibility in automation engineering

Adjustable trip classes, integrated diagnostics functions

Reduced mechanical loading and optimum pump stop

Simple and fast commissioning

Low variance, high system availability even with weak supply networks

Suitable for the starting of explosion-proof motors with "increased safety" type of protection

Basic Performance Soft Starters

3RW50 soft starters > General data NEW

Technical specifications

More information	
Technical specifications, see	FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/25252/faq
https://support.industry.siemens.com/cs/ww/en/ps/25252/td	Simulation Tool for Soft Starters (STS), see page 7/7 or
Equipment Manual "SIRIUS 3RW50 Soft Starter", see	https://support.industry.siemens.com/cs/WW/en/view/101494917
https://support.industry.siemens.com/cs/ww/en/view/109753750	

Type		3RW5055 3RW5056	3RW5072 3RW5073 3RW5074 3RW5075 3RW5076 3RW5077
Installation/fixing/dimensions		$120 \times 198 \times 249 \quad 160 \times 230 \times 282$	
Width \mathbf{x} height \mathbf{x} depth	mm		
Type of mounting		Screw fixing	
Mounting position		For vertical mounting surface can be rotated $+/-90^{\circ}$, for vertical mounting surface can be tilted $+/-22.5^{\circ}$ forward or backward	
Distance to be maintained with side-by-side mounting			
- Above	mm	100	
- At the side	mm	5	
- Below	mm	75	
Maximum installation altitude above sea level ${ }^{1)}$	m	5000	
Degree of protection		IP00	
Ambient conditions			
Ambient temperature			
- During operation²)	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$	
- During storage and transport	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$	
Environmental category according to IEC 60721			
- During operation		3K6 (no ice formation, only occasional condensation), 3C3 (no salt mist), 3S2 (sand must not get into the devices), 3M6	
- During storage		1K6 (only occasional condensation), 1C2 (no salt mist), 1 S 2 (sand must not enter the devices), 1M4	
- During transport		2K2, 2C1, 2S1, 2M2 (max. height of fall 0.3 m)	

Basic Performance Soft Starters

3RW50 soft starters > General data NEW

Basic Performance Soft Starters

3RW50 soft starters > General data NEW

Type		3RW5055	3RW5056				
Rated operational current I_{e}	A	143	171				
Power electronics							
IEC + UL/CSA, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}, ~ A$ AC-53a	A	143/128/118	171/153/141				
Permissible rated motor current and starts/h Normal starting (CLASS 10A)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated - $300 \% I_{\mathrm{M}} \quad$ - Start-up time 5 s - Start-up time 10 s - $350 \% I_{\mathrm{M}} \quad$ - Start-up time 5 s - Start-up time 10 s	A 1/h 1/h 1/h 1/h	$143 / 128 / 118$ 43 18 28 10	$\begin{aligned} & 171 / 153 / 141 \\ & 43 \\ & 18 \\ & 28 \\ & 9 \end{aligned}$				
Normal starting (CLASS 10E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	143/128/118	171/153/141				
- $300 \% I_{\mathrm{M}} \quad$ - Start-up time 20 s - Start-up time 40 s - $350 \% I_{\mathrm{M}} \quad$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \\ & 12 \\ & 4 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \\ & 9 \end{aligned}$				
Heavy starting (CLASS 20E)							
- $300 \% I_{\mathrm{M}} \quad$ - Start-up time 20 s - Start-up time 40 s - $350 \% I_{\mathrm{M}} \quad$ - Start-up time 20 s - Start-up time 40 s	A 1/h 1/h 1/h 1/h	$\begin{aligned} & 108 / 98 / 88 \\ & 10 \\ & 4 \\ & 7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 135 / 123 / 111 \\ & 10 \\ & 4 \\ & 7 \\ & 2.5 \end{aligned}$				
Adjustable rated motor current I_{M} - Minimum/maximum	A	68/143	81/117				
Type		3RW5072	3RW5073	3RW5074	3RW5075	3RW5076	3RW5077
Rated operational current I_{e}	A	210	250	315	370	470	570
Power electronics							
IEC + UL/CSA, individual mounting at $40 / 50 / 60{ }^{\circ} \mathrm{C}$, AC-53a	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
Permissible rated motor current and starts/h							
Normal starting (CLASS 10A)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{U}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
- $300 \% I_{M}$ - Start-up time 5 s - Start-up time 10 s	$1 / \mathrm{h}$ $1 / \mathrm{h}$	$\begin{aligned} & 43 \\ & 18 \end{aligned}$	$\begin{aligned} & 28 \\ & 11 \end{aligned}$				
- $350 \% I_{\mathrm{M}}$ - Start-up time 5 s - Start-up time 10 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 28 \\ & 8 \end{aligned}$	$\begin{aligned} & 28 \\ & 10 \end{aligned}$	16			
Normal starting (CLASS 10E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	210/186/170	250/220/200	315/279/255	370/328/300	470/416/380	570/504/460
- $300 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$	$\begin{aligned} & 20 \\ & 7 \end{aligned}$	$\begin{aligned} & 21 \\ & 8 \end{aligned}$			
- $350 \% I_{\mathrm{M}}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	8	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$	$\begin{aligned} & 12 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 4 \end{aligned}$
Heavy starting (CLASS 20E)							
Rated motor current $I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50 / 60^{\circ} \mathrm{C}$ ON period $=70 \%$; motor protection activated	A	162/146/130	200/180/160	219/195/171	258/230/202	272/254/218	284/262/240
- $300 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / h \\ & 1 / h \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \end{aligned}$					
- $350 \% I_{M}$ - Start-up time 20 s - Start-up time 40 s	$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 7 \\ & 2.5 \end{aligned}$					
Adjustable rated motor current I_{M} - Minimum/maximum	A	90/210	100/250	135/315	160/370	200/470	240/570

Basic Performance Soft Starters

3RW50 soft starters > General data NEW

Motor feeders according to IEC with 3VA motor starter protectors/circuit breakers (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity I_{q} in kA , see table
Note:
For general recommendations for constructing motor feeders
with soft starters, see page 7/9.

Soft starters	Motor starter protector for 400 V systems		for 500 V systems	
Q11	Q1	$I_{\text {q }}$	Q1	$I_{\text {q }}$
Type	Type	kA	Type	kA
Type of coordination "1"	Inline circuit			
3RW5055	3VA2220-7MN32-0AAO	20	3VA2220-7MN32-0AA0	20
3RW5056	3VA2220-7MN32-0AAO	20	3VA2220-7MN32-0AA0	20
3RW5072	3VA2440-7MN32-0AAO	65	3VA2440-7MN32-0AAO	65
3RW5073	3VA2440-7MN32-0AAO	65	3VA2440-7MN32-0AA0	65
3RW5074	3VA2440-7MN32-0AAO	65	3VA2440-7MN32-0AA0	65
3RW5075	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AA0	65
3RW5076	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AAO	65
3RW5077	3VA2580-6HN32-0AA0	65	3VA2580-6HN32-0AAO	65

Note:
The service factor or measurement inaccuracies have been taken into account, for example, for the selection of the specified motor starter protectors/circuit breakers; the specified shortcircuit breaking capacities I_{q} in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged shortcircuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

Basic Performance Soft Starters

3RW50 soft starters > General data NEW

Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according to IEC 60269-2, without semiconductor protection
Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	gG class fuse	Line contac	tional)
	for systems up to 600 V	for systems up to 480 V	for systems up to 600 V
Q11	F1	Q21	Q21
Type	Type	Type	Type
Type of coordination "1"	Inline circuit		
3RW5055	$\begin{aligned} & \text { 3NA3244-6 } \\ & \text { 3NA3244-6 } \end{aligned}$	$\begin{aligned} & \text { 3RT1055 } \\ & \text { 3RT1056 } \end{aligned}$	$\begin{aligned} & \text { 3RT1055 } \\ & \text { 3RT1064 } \end{aligned}$
3RW5072	2×3 NA3354-6	3RT1064	3RT1064
3RW5073	2×3 A $3354-6$	3RT1065	3RT1065
3RW5074	$2 \times 3 N A 3365-6$	3RT1075	3RT1075
3RW5075	$2 \times 3 N A 3365-6$	3RT1075	3RT1075
3RW5076	$2 \times 3 N A 3365-6$	3RT1076	3RT1076
3RW5077	$2 \times 3 N A 3365-6$	3TF68	3TF68

Note:
The specified short-circuit breaking capacities I_{Q} in $k A$ are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

Basic Performance Soft Starters

3RW50 soft starters > General data NEW

Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9

Soft starters	gG class fuse	Line contac	tional)
	for systems up to 600 V	for systems up to 480 V	for systems up to 600 V
Q11	F'1	Q21	Q21
Type	Type	Type	Type
Type of coordination "2"	Inline circuit		
3RW5055 3RW5056	$\begin{aligned} & \text { 3NE1227-0 } \\ & \text { 3NE1230-0 } \end{aligned}$	3RT1055 3RT1056	3RT1055 3RT1064
3RW5072 3RW5073 3RW5074 3RW5075 3RW5076 3RW5077	3NE1230-2 3NE1331-0 3NE1333-2 3NE1334-2 3NE1436-2 3NE1437-2	3RT1064 3RT1065 3RT1075 3RT1075 3RT1076 3TF68	3RT1064 3RT1065 3RT1075 3RT1075 3RT1076 3TF68

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

Basic Performance Soft Starters

3RW50 soft starters > General data NEW

Motor feeders according to IEC with 3NE3 fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$

Note:

For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters

| |
| :--- | :--- |

gG class fuse

for systems up to 600 V F1
Type
Inline circuit

aR class fuse	Line contactor (optional)	
for systems up to 600 V	for systems	for systems
up to 480 V	up to 600 V	
F3	Q21	Q21
Type	Type	Type

3NA3244-6	3NE3334-0B	3RT1055	3RT1055
3NA3244-6	3NE3335	3RT1056	3RT1064
$2 \times$ 3NA3354-6	3NE3333	3RT1064	3RT1064
$2 \times$ 3NA3354-6	3NE3335	3RT1065	3RT1065
$2 \times$ 3NA3365-6	3NE3335	3RT1075	3RT1075
$2 \times$ 3NA3365-6	3NE3336	3RT1075	3RT1075
$2 \times$ 3NA3365-6	3NE3340-8	3RT1076	3RT1076
$2 \times$ 3NA3365-6	3NE3340-8	3TF68	3TF68

Note:

The specified short-circuit breaking capacities I_{Q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3VA circuit breakers can also be used, possibly with reduced short-circuit breaking capacity (see page 7/76). In these cases optional line contactors can be dispensed with.

Basic Performance Soft Starters

3RW50 soft starters＞Inline circuit IE3／IE4 ready NEW

Selection and ordering data

For normal starting（CLASS 10E）

3RW5075

At $40{ }^{\circ} \mathrm{C}$				Rating［hp］for three－phase motors				Size	SD ${ }^{1)}$	Article No．	Price per PU		PS＊
Opera－ tional	Operating power for three－phase motors												
current	$\begin{aligned} & \mathrm{At} \\ & 230 \mathrm{~V} \end{aligned}$	At $400 \mathrm{~V}$	At $500 \mathrm{~V}$	At 200/208 V	At $220 / 230 \mathrm{~V}$	At $460 / 480 \mathrm{~V}$	At $575 / 600 \mathrm{~V}$						
A	kW	kW	kW	hp	hp	hp	hp		d				
Operational voltage $200 \ldots 480 \mathrm{~V}$													
$\begin{aligned} & 143 \\ & 171 \end{aligned}$	$\begin{aligned} & 37 \\ & 45 \end{aligned}$	$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & 90 \\ & 110 \end{aligned}$	$\begin{array}{\|l} \hline 40 \\ 50 \end{array}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$	－－	$\begin{aligned} & \text { S6 } \\ & \text { S6 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RW5055－$\square \square B \square 4$ 3RW5056－$\square \square \mathrm{B} \square 4$		1	1 unit 1 unit
210	55	110	132	60	75	150	－－	S12	5	3RW5072－ロロB $\square 4$		1	1 unit
250	75	132	160	75	100	200	－－	S12	5	3RW5073－ロロB $\square 4$		1	1 unit
315	90	160	200	100	125	250	－－	S12	5	3RW5074－ロロB $\square 4$		1	1 unit
370	110	200	250	125	150	300	－－	S12	5	3RW5075－ロロB $\square 4$		1	1 unit
470	132	250	315	150	150	350	－－	S12	5	3RW5076－ロロB $\square 4$		1	1 unit
570	160	315	355	200	200	450	－－	S12	5	3RW5077－ロロB $\square 4$		1	1 unit

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

Product function

Analog output
Thermistor motor protection

Control supply voltage

24 V AC／DC
110 ．．． 250 V AC

1）3RW50 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time $\mathrm{SD}=1$ day（d）．

Note：For the constraints for the motor outputs specified here， see page 7／7．

At $40{ }^{\circ} \mathrm{C}$				Rating［hp］for three－phase motors				Size	SD ${ }^{1)}$	Article No．	Price per PU	PU （UNIT， SET，M）	PS＊
Opera－ tional	Operating power for three－phase motors												
current	At $230 \text { V }$	At 400 V	At 500 V	At 200／208 V	$\begin{aligned} & \text { At } \\ & \text { 220/230 V } \end{aligned}$	$\begin{aligned} & \text { At } \\ & 460 / 480 \mathrm{~V} \end{aligned}$	At 575／600 V						
A	kW	kW	kW	hp	hp	hp	hp		d				
Operational voltage 200 ．．． 600 V													
143	37	75	90	40	50	100	125	S6	5	3RW5055－$\square \square \mathrm{B} \square 5$		1	1 unit
171	45	90	110	50	60	125	150	S6	5	3RW5056－$\square \square \mathrm{B} \square 5$		1	1 unit
210	55	110	132	60	75	150	200	S12	5	3RW5072－$\square \square$ В $\square 5$		1	1 unit
250	75	132	160	75	100	200	250	S12	5	3RW5073－$\square \square \mathrm{B} \square 5$		1	1 unit
315	90	160	200	100	125	250	300	S12	5	3RW5074－$\square \square$－$\square 5$		1	1 unit
370	110	200	250	125	150	300	350	S12	5	3RW5075－$\square \square$ В $\square 5$		1	1 unit
470	132	250	315	150	150	350	450	S12	5	3RW5076－$\square \square$ В $\square 5$		1	1 unit
570	160	315	355	200	200	450	600	S12	5	3RW5077－$\square \square \mathrm{B} \square 5$		1	1 unit

Type of electrical connection for the control circuit
Spring－loaded terminals
Screw terminals

Product function

Analog output
Thermistor motor protection

Control supply voltage

24 V AC／DC
110 ．．． 250 V AC

1）3RW50 soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time SD＝ 2 days（d）．

Note：For the constraints for the motor outputs specified here， see page 7／7．

Basic Performance Soft Starters

3RW50 soft starters > Accessories

Selection and ordering data

	Product designation	Manufacturer's Article No. of the soft starter	Type of product	Application	SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*	PG
					d					
Fan covers										
	Fan cover	3RW50 (1x)	--	--	-	3RW5985-0FC00		1	1 unit	42 S
3RW5985-0FC00										
Box terminal block										
	Box terminal block for round	3RW505 (2x)	Up to $70 \mathrm{~mm}^{2}$ Up to $120 \mathrm{~mm}^{2}$	--	$\stackrel{\rightharpoonup}{\nabla}$	3RT1955-4G 3RT1956-4G		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{~B} \\ & 41 \mathrm{~B} \end{aligned}$
3RT1956-4G	and ribbon cables	3RW507 (2x)	Up to $240 \mathrm{~mm}^{2}$ (with auxiliary conductor connection)		-	3RT1966-4G		1	1 unit	41B
Terminal covers										
	Covers for	3RW505 (2x)	--	--	-	3RT1956-4EA2		1	1 unit	41B
	box terminals	3RW507 (2x)	--	--	2	3RT1966-4EA2		1	1 unit	41B
	Covers for	3RW505 (2x)	--	--	-	3RT1956-4EA1		1	1 unit	41B
	cable lugs and busbar connections	3RW507 (2x)	--	--	2	3RT1966-4EA1		1	1 unit	41B
3RT1956-4EA1										
Communication modu										
	Communication module	3RW50	PROFINET Standard	--	-	3RW5980-0CS00		1	1 unit	42 S
			PROFIBUS		\checkmark	3RW5980-0CP00		1	1 unit	42S
			EtherNet/IP		-	3RW5980-0CE00		1	1 unit	42 S
			Modbus RTU		-	3RW5980-0CR00		1	1 unit	42 S
			Modbus TCP		-	3RW5980-0CT00		1	1 unit	42 S
1	COM connection cable	3RW50	0.3 m	--	-	3RW5900-0CC00		1	1 unit	42S
3RW5900-0CC00	For mounting laterally on the device									

Basic Performance Soft Starters

3RW50 soft starters > Accessories

1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH.

Basic Performance Soft Starters

3RW40 soft starters > General data

Overview

More information

Homepage, see www.siemens.com/softstarter Industry Mall, see www.siemens.com/product?3RW40

TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=3rw40
Simulation Tool for Soft Starters (STS), see page 7/7 or
https://support.industry.siemens.com/Cs/WW/en/view/101494917
The SIRIUS 3RW40 Basic Performance soft starters are suitable for soft starting and stopping of three-phase asynchronous motors.
Thanks to two-phase control, not only is the current kept at minimum values in all three phases throughout the entire starting time, but disturbing direct current components are also eliminated. This not only enables the two-phase starting of motors from 10 to 100 HP @ 600V but also avoids the current and torque peaks which occur e.g. with wye-delta starters.

The SIRIUS 3RW40 soft starters are suitable for the starting of explosion-proof motors with "increased safety" type of protection EEX e according to ATEX Directive 94/9/EC.

3RW40 Basic Performance soft starters with accessories (see page 7/92)

Basic Performance Soft Starters

3RW40 soft starters > General data

Benefits

3RW402.

3RW403.

3RW404.

Product characteristics / function	Performance features / benefits
Small and compact design	Space-saving, clearly arranged control panel layout
Motor overload and intrinsic device protection without additional wiring	Adjustable trip classes, integrated diagnostics functions
Integrated in the SIRIUS modular system	Link modules to motor starter protectors
Hybrid switching devices and two-phase motor control	Minimum power loss and optimized motor control by avoiding DC components
Certified according to ATEX Directive 94/9/EC	Suitable for the starting of explosion-proof motors with "increased safety" type of protection EEx
Optional thermistor motor protection	Full motor protection

Basic Performance Soft Starters

3RW40 soft starters > General data

Technical specifications

More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/25252/td
Equipment Manual "SIRIUS 3RW30/3RW40 Soft Starter", see
https://support.industry.siemens.com/cs/ww/en/view/38752095

FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/25251/faq Simulation Tool for Soft Starters (STS), see page 7/7 or
https://support.industry.siemens.com/cs/ww/en/view/101494917

Type		3RW402.	3RW403.	3RW404.
Mechanics and environment				
Mounting dimensions (W x H x D) - Screw terminals - Spring-loaded terminals		$\begin{aligned} & 45 \times 125 \times 154 \\ & 45 \times 150 \times 154 \end{aligned}$	$\begin{aligned} & 55 \times 144 \times 170 \\ & 55 \times 144 \times 170 \end{aligned}$	$\begin{aligned} & 70 \times 160 \times 188 \\ & 70 \times 160 \times 188 \end{aligned}$
Permissible ambient temperature During operation During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 ;(\text { derating from }+40) \\ & -40 \ldots+80 \end{aligned}$		
Weight	kg	0.77	1.35	1.9
Permissible mounting position ${ }^{1)}$				
- With auxiliary fan (for 3RW402. ... 3RW404.)				
- Without auxiliary fan (for 3RW402. ... 3RW404.)				
Installation type ${ }^{1)}$	Stand-alone installation			$\begin{aligned} & 0 \mathrm{~mm}(\geq 1.18 \mathrm{in}) \\ & 0 \mathrm{~mm}(\geq 1.56 \mathrm{in}) \\ & 0 \mathrm{~mm}(\geq 2.36 \mathrm{in}) \end{aligned}$
Permissible installation altitude	m	5000 (Derating from 1000 , see characte	curve on page	
Degree of protection		IP20 for 3RW402.; all others IP00		

1) In the case of deviations, please observe derating, see Equipment Manual
in the chapter "Configuring".

Type	Terminal		3RW402., 3RW403., 3RW404.	
Control electronics				
Rated values Rated control supply voltage - Tolerance	$\mathrm{A} 1 / \mathrm{A} 2$	V	$24 \mathrm{AC/DC}$	
Rated frequency - Tolerance	$\%$	± 20		

Basic Performance Soft Starters

3RW40 soft starters > General data

Type		3RW4024	3RW4026	3RW4027	3RW4028
Power electronics					
Load rating with rated operational current I_{e} - According to IEC and UL/CSA ${ }^{11}$, individual mounting at 40/50/60 ${ }^{\circ} \mathrm{C}$, AC-53a	A	12.5/11/10	25.3/23/21	32.2/29/26	38/34/31
Smallest adjustable rated motor current I_{M} For the motor overload protection	A	5	10	17	23
Power loss - In operation after completed starting with uninterrupted rated operational current $\left(40^{\circ} \mathrm{C}\right)$ approx. - During starting with current limiting set to $300 \% I_{M}\left(40^{\circ} \mathrm{C}\right)$	W W	2 68	8 188	13 220	19 256
Permissible rated motor current and starts per hour - For normal starting (CLASS 10) at $40 / 50^{\circ} \mathrm{C}$ - Rated motor current $I_{\mathrm{M}}{ }^{2)}$, start-up time 3 s - Starts per hour ${ }^{3)}$ - Rated motor current $I_{\mathrm{M}}{ }^{2)}$, start-up time 4 s - Starts per hour ${ }^{3)}$	$\begin{aligned} & \mathrm{A} \\ & 1 / \mathrm{h} \\ & \mathrm{~A} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 12.5 / 11 \\ & 50 / 50 \\ & 12.5 / 11 \\ & 36 / 36 \end{aligned}$	$\begin{aligned} & 25 / 23 \\ & 23 / 23 \\ & 25 / 23 \\ & 15 / 15 \end{aligned}$	$\begin{aligned} & 32 / 29 \\ & 23 / 23 \\ & 32 / 29 \\ & 16 / 16 \end{aligned}$	$\begin{aligned} & 38 / 34 \\ & 19 / 19 \\ & 38 / 34 \\ & 1 / 12 \end{aligned}$
- For heavy starting (CLASS 20) at $40 / 50^{\circ} \mathrm{C}$ - Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 6 s - Starts per hour ${ }^{3)}$ - Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 8 s - Starts per hour ${ }^{3)}$	A 1/h A 1/h	10/9 47/47 10/9 34/34	$\begin{aligned} & 21 / 19 \\ & 21 / 21 \\ & 21 / 19 \\ & 15 / 15 \end{aligned}$	$\begin{aligned} & 27 / 24 \\ & 20 / 20 \\ & 27 / 24 \\ & 14 / 14 \end{aligned}$	31/28 18/18 31/28 13/13

1) Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required.
${ }^{2)}$ Current limiting on soft starter set to $300 \% I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$. Maximum adjustable rated motor current I_{M} dependent on CLASS setting.
2) For intermittent duty S 4 with ON period $=30 \%, T_{u}=40 / 50^{\circ} \mathrm{C}$, stand-alone installation vertical. The quoted switching frequencies do not apply for automatic mode. Factors for permissible switching frequency in other mounting position, direct mounting, side-by-side mounting, and implementation of optional auxiliary fan, see Equipment Manual in the chapter "Configuring".

Type		3RW4036	3RW4037	3RW4038	3RW4046	3RW4047
Power electronics						
Load rating with rated operational current I_{e} - According to IEC and UL/CSA ${ }^{11}$, individual mounting at 40/50/60 ${ }^{\circ} \mathrm{C}$, AC-53a	A	45/42/39	63/58/53	72/62.1/60	80/73/66	106/98/90
Smallest adjustable rated motor current I_{M} For the motor overload protection	A	23	26	35	43	46
Power loss - In operation after completed starting with uninterrupted rated operational current ($40^{\circ} \mathrm{C}$) approx. - During starting with current limiting set to $300 \% I_{M}\left(40^{\circ} \mathrm{C}\right)$	W W	6 316	12 444	15 500	12 576	21 768

Permissible rated motor current and starts per hour

- For normal starting (CLASS 10) at $40 / 50^{\circ} \mathrm{C}$
- Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 3 s
- Starts per hour ${ }^{3}$)
- Rated motor current $I_{\mathrm{M}}{ }^{2)}$, start-up time 4 s - Starts per hour ${ }^{3)}$
- For heavy starting (CLASS 20) at $40 / 50^{\circ} \mathrm{C}$
- Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 6 s
- Starts per hour ${ }^{3}$)
- Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 8 s - Starts per hour ${ }^{3}$)

A	$45 / 42$	$63 / 58$	$72 / 62$	$80 / 73$	$106 / 98$
1/h	$38 / 38$	$23 / 23$	$22 / 22$	$22 / 22$	$15 / 15$
A	$45 / 42$	$63 / 58$	$72 / 62$	$80 / 73$	$106 / 98$
1/h	$26 / 26$	$15 / 15$	$15 / 15$	$15 / 15$	$10 / 10$
A	$38 / 34$	$46 / 42$	$50 / 46$	$64 / 58$	$77 / 70$
1/h	$30 / 30$	$31 / 31$	$34 / 34$	$23 / 23$	$23 / 23$
A	$38 / 34$	$46 / 42$	$50 / 46$	$64 / 58$	$77 / 70$
1/h	$21 / 21$	$22 / 22$	$24 / 24$	$16 / 16$	$16 / 16$

1) Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required.
2) Current limiting on soft starter set to $300 \% I_{M}, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$. Maximum adjustable rated motor current I_{M} dependent on CLASS setting.
3) For intermittent duty S 4 with ON period $=30 \%, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$, stand-alone installation vertical. The quoted switching frequencies do not apply for automatic mode. Factors for permissible switching frequency in other mounting position, direct mounting, side-by-side mounting, and implementation of optional auxiliary fan, see Equipment Manual in the chapter "Configuring".

Basic Performance Soft Starters

3RW40 soft starters > General data

Motor feeders according to IEC with 3RV2 motor starter protectors (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity I_{q} in kA, see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	Motor starter pro for 400 V systems		for 500 V systems	
Q11	Q1	$I_{\text {q }}$	Q1	$I_{\text {q }}$
Type	Type	kA	Type	kA
Type of coordina- tion "1" 1	Inline circuit			
3RW4024	3RV2021-4AA10	55	3RV2021-4AA10	10
3RW4026	3RV2021-4DA10	55	3RV2021-4DA10	10
3RW4027	3RV2021-4EA10	55	3RV2021-4EA10	10
3RW4028	3RV2021-4FA10	55	3RV2021-4FA10	10
3RW4036	3RV2031-4WA10	10	3RV2031-4WA10	10
3RW4037	3RV2031-4JA10	10	3RV2031-4JA10	5
3RW4038	3RV2031-4KA10	10	3RV2031-4KA10	5
3RW4046	3RV2041-4RA10	11	3RV2041-4YA10	5
3RW4047	3RV2041-4MA10	11	3RV2041-4MA10	5

Note:

The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller motor starter protectors/circuit breakers than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

Basic Performance Soft Starters

3RW40 soft starters > General data

Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection

Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

Basic Performance Soft Starters

3RW40 soft starters > General data

Motor feeders according to IEC with 3NE8 / 3NE4 / 3NE3 / 3NC fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$

Note:

For general recommendations for constructing motor feeders
with soft starters, see page 7/9.

Soft starters	gG class fuse for systems up to 600 V	aR class fuse			Cylindrical fuses	Line contactor (optional)		
		for systems up to 600 V	for systems up to 600 V	for systems up to 600 V	for systems up to 480 V	for systems up to 400 V	for systems up to 480 V	for systems up to 600 V
Q11	F1	F3	F3	F3	F3	Q21	Q21	Q21
Type								
Type of coordination "2"	Inline circuit							
3RW4024	3NA3820-6	--	3NE4101	3NE8015-1	3NC2240	3RT2025	3RT2025/ 3RT2018 (in size S00)	3 RT 2025
3RW4026	3NA3822-6	--	3NE4102	3NE8017-1	3NC2263	3 RT2026	3 3RT2027	3 3T2037
3RW4027	3NA3824-6	--	3NE4118	3NE8018-1	3NC2280	3RT2027	3RT2028	3 RT2037
3RW4028	3NA3824-6	--	3NE4118	3NE8020-1	3NC2280	3RT2028	3RT2035	3 RT2037
3RW4036	3NA3130-6	--	3NE4120	3NE8020-1	3NC2280	3RT2036	3RT2036	3RT2038
3RW4037	3NA3132-6	--	3NE4121	3NE8021-1	--	3RT2037	3RT2037	3RT2046
3RW4038	3NA3132-6	3NE3221	--	3NE8022-1	--	3RT2038	3RT2038	3RT2046
3RW4046	3NA3136-6	3 NE3222	--	3NE8022-1	--	3RT2045	3RT2045	3RT2047
3RW4047	3NA3136-6	3NE3224	--	3NE8024-1	--	3RT2047	3 RT2047	3RT1054

Note:
The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3RV2 motor starter protectors can also be used, possibly with reduced short-circuit breaking capacity (see page 7/87). In these cases, optional line contactors can be dispensed with.

Basic Performance Soft Starters

3RW40 soft starters > Inline circuit IE3/IE4 ready

Selection and ordering data

For normal starting (CLASS 10)

3 RW ambient temperature $40{ }^{\circ} \mathrm{C}$								Size	SD ${ }^{1)}$	Article No.	Price	PU	PS*
Rated values of three-phase motors											per PU	(UNIT, SET, M)	
Operational current I_{e}	Rating at operational voltage U_{e}			Rating at operational voltage U_{e}									
	230 V	400 V	500 V	200 V	230 V	460 V	575 V						
A	kW	kW	kW	hp	hp	hp	hp		d				
Rated operational voltage $U_{e} 200 \ldots 480 \mathrm{~V}$													
12.5	3	5.5	--	3	3	7.5	--	SO	2	3RW4024- \square BB $\square 4$		1	1 unit
25	5.5	11	--	7.5	7.5	15	--	S0	2	3RW4026-口ВВ $\square 4$		1	1 unit
32	7.5	15	--	10	10	20	--	S0	2	3RW4027- \square BB $\square 4$		1	1 unit
38	11	18.5	--	10	10	25	--	S0	2	3RW4028- \square BB $\square 4$		1	1 unit
45	11	22	--	10	15	30	--	S2	2	3RW4036- \square BB $\square 4$		1	1 unit
63	18.5	30	--	20	20	40	--	S2	2	3RW4037- \square BB $\square 4$		1	1 unit
72	22	37	--	20	25	50	--	S2	2	3RW4038- \square BB $\square 4$		1	1 unit
80	22	45	--	25	30	60	--	S3	2	3RW4046- \square BB $\square 4$		1	1 unit
106	30	55	--	30	40	75	--	S3	2	3RW4047- \square BB $\square 4$		1	1 unit
Rated operational voltage Ue $400 \ldots 600 \mathrm{~V}$													
12.5	--	5.5	7.5	--	--	7.5	10	S0	5	3RW4024- \square BB $\square 5$		1	1 unit
25	--	11	15	--	--	15	20	S0	5	3RW4026-■BB $\square 5$		1	1 unit
32	--	15	18.5	--	--	20	30	S0	5	3RW4027- \square BB $\square 5$		1	1 unit
38	--	18.5	22	--	--	25	30	S0	5	3RW4028-■BB $\square 5$		1	1 unit
45	--	22	30	--	--	30	40	S2	5	3RW4036- \square BB $\square 5$		1	1 unit
63	--	30	37	--	--	40	60	S2	5	3RW4037- \square BB $\square 5$		1	1 unit
72	--	37	45	--	--	50	60	S2	5	3RW4038-■BB $\square 5$		1	1 unit
80	--	45	55	--	--	60	75	S3	5	3RW4046- \square BB $\square 5$		1	1 unit
106	--	55	75	--	--	75	100	S3	5	3RW4047-■BB口5		1	1 unit

Article No. supplement for connection types

- Screw terminals
- Spring-loaded terminals ${ }^{2}$

Control supply voltage

- 24 V AC/DC
- 110 ... 230 V AC/DC

1) Soft starter $U_{\mathrm{e}} 200$ to 480 V with screw terminals Standard delivery time SD = 1 day (d).
2) Main connection from size S2: screw terminals

Note:
For the constraints for the motor outputs specified here, see page 7/7

Basic Performance Soft Starters

3RW40 soft starters＞Inline circuit IE3／IE4 ready

For normal starting（CLASS 10）

3RW402．

3RW403．

3RW404．

3 RW ambient temperature $40{ }^{\circ} \mathrm{C}$								Size	$S D^{1)}$	Article No．	Price per PU		PS＊
Rated valu three－phas	ef motors												
Opera－ tional current $/ \mathrm{e}$	Rating at operational voltage U_{e}			Rating at operational voltage U_{e}									
	230 V	400 V	500 V	200 V	230 V	460 V	575 V						
A	kW	kW	kW	hp	hp	hp	hp		d				
Rated operational voltage $U_{\mathrm{e}} 200 \ldots 480 \mathrm{~V}$ ， with thermistor motor protection， rated control supply voltage $U_{S} 24 \mathrm{~V}$ AC／DC													
12.5	3	5.5	－－	3	3	7.5	－－	S0	5	3RW4024－ロTB04		1	1 unit
25	5.5	11	－－	7.5	7.5	15	－－	SO	5	3RW4026－■TB04		1	1 unit
32	7.5	15	－－	10	10	20	－－	SO	5	3RW4027－■TB04		1	1 unit
38	11	18.5	－－	10	10	25	－－	S0	5	3RW4028－■TB04		1	1 unit
45	11	22	－－	10	15	30	－－	S2	5	3RW4036－口TB04		1	1 unit
63	18.5	30	－－	20	20	40	－－	S2	5	3RW4037－■TB04		1	1 unit
72	22	37	－－	20	25	50	－－	S2	5	3RW4038－■TB04		1	1 unit
80	22	45	－－	25	30	60	－－	S3	5	3RW4046－■TB04		1	1 unit
106	30	55	－－	30	40	75	－－	S3	5	3RW4047－■TB04		1	1 unit
Rated operational voltage $U_{e} 400 \ldots 600 \mathrm{~V}$ ， with thermistor motor protection， rated control supply voltage $U_{s} 24 \mathrm{~V}$ AC／DC													
12.5	－－	5.5	7.5	－－	－－	7.5	10	S0	5	3RW4024－ロTB05		1	1 unit
25	－－	11	15	－－	－－	15	20	SO	5	3RW4026－■TB05		1	1 unit
32	－－	15	18.5	－－	－－	20	30	SO	5	3RW4027－■TB05		1	1 unit
38	－－	18.5	22	－－	－－	25	30	SO	5	3RW4028－■TB05		1	1 unit
45	－－	22	30	－－	－－	30	40	S2	5	3RW4036－口TB05		1	1 unit
63	－－	30	37	－－	－－	40	60	S2	5	3RW4037－■TB05		1	1 unit
72	－－	37	45	－－	－－	50	60	S2	5	3RW4038－■TB05		1	1 unit
80	－－	45	55	－－	－－	60	75	S3	5	3RW4046－■TB05		1	1 unit
106	－－	55	75	－－	－－	75	100	S3	5	3RW4047－■TB05		1	1 unit

Article No．supplement for connection types

－Screw terminals
－Spring－loaded terminals ${ }^{2)}$
1）Soft starter $U_{e} 200$ to 480 V with screw terminals： Standard delivery time SD＝ 1 day（d）．
2）Main connection from size S2：screw terminals．
Note：
For the constraints for the motor outputs specified here， see page 7／7

Soft Starters

Basic Performance Soft Starters

3RW40 soft starters > Accessories

Selection and ordering data

Soft Starters

Basic Performance Soft Starters
3RW40 soft starters > Accessories

1) $P C$ labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH

Basic Performance Soft Starters

Overview

More information

Homepage, see www.siemens.com/softstarter

Industry Mall, see www.siemens.com/product?3RW
TIA Selection Tool Cloud (TST Cloud), see
https://www.siemens.com/tstcloud/?node=3rw30

Simulation Tool for Soft Starters (STS), see page 7/7 or https://support.industry.siemens.com/cs/ww/en/view/101494917
SIRIUS Soft Starter ES (TIA Portal), see page 7/7

The SIRIUS 3RW30 Basic Performance soft starters are suitable for soft starting of three-phase asynchronous motors.
Thanks to two-phase control, not only is the current kept at minimum values in all three phases throughout the entire starting time, but disturbing direct current components are also eliminated. This not only enables the two-phase starting of motors from 2 to $75 \mathrm{HP} @ 480 \mathrm{~V}$ but also avoids the current and torque peaks which occur e.g. with wye-delta starters.

3RW30 Basic Performance soft starters with accessories (see page 7/103)

Soft Starters

Basic Performance Soft Starters

3RW30 soft starters > General data

Benefits

Product characteristics / function

Small and compact design

Parameterization using potentiometers

Integrated in the SIRIUS modular system

Performance features / benefits

Space-saving, clearly arranged control panel layout

Simple and fast commissioning

Link modules to motor starter protectors

Minimum power loss and optimized motor control by avoiding DC components

Technical specifications

More information

Equipment Manual "SIRIUS 3RW30/3RW40 Soft Starters", see
Catalog LV 10, see www.siemens.com/lowvoltage/lv10
https://support.industry.siemens.com/cs/ww/en/view/38752095
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16213/faq

[^58] in the chapter "Configuring"

Basic Performance Soft Starters

3RW30 soft starters > General data

Type Terminal	Terminal	3RW301., 3RW302.			3RW303., 3RW304.	
Control electronics						
Rated values Rated control supply voltage A1/A2 - Tolerance	$\begin{aligned} & \text { V } \\ & \% \end{aligned}$	$\begin{array}{r} 24 \\ 20 \end{array}$	$\begin{aligned} & 110 \ldots 230 \\ & -15 /+10 \end{aligned}$		$\begin{aligned} & 110 \ldots 230 \\ & -15 /+10 \end{aligned}$	
Rated frequency - Tolerance	$\begin{aligned} & \mathrm{Hz} \\ & \% \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & \pm 10 \end{aligned}$				
Type		3RW301.	3RW302.	3RW303.		3RW304.
Power electronics						
Rated operational voltage Tolerance	$\begin{aligned} & \text { V AC } \\ & \% \end{aligned}$	$\begin{aligned} & 200 \ldots 480 \\ & -15 /+10 \\ & \hline \end{aligned}$				
Rated frequency Tolerance	$\begin{aligned} & \mathrm{Hz} \\ & \% \end{aligned}$	$\begin{gathered} 50 / 60 \\ 10 \end{gathered}$				
Uninterrupted duty at $40^{\circ} \mathrm{C}\left(\%\right.$ of $\left.I_{\mathrm{e}}\right)$	\%	115				
Minimum load (\% of I_{e})	\%	10 (at least 1 A)				
Maximum cable length between soft starter and motor	m	300				
Type		3RW3013	3RW3014	3RW3016	3RW3017	3RW3018
Power electronics						
Load rating with rated operational current I_{e} - According to IEC and UL/CSA ${ }^{11}$, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$	A	3.6/3.3/3	6.5/6/5.5	9/8/7	12.5/12/11	17.6/17/14
Power loss - In operation after completed starting with uninterrupted rated operational current $\left(40^{\circ} \mathrm{C}\right)$ approx. - During starting with $300 \% I_{\mathrm{M}}\left(40^{\circ} \mathrm{C}\right)$	W W	$\begin{aligned} & 0.25 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 52 \end{aligned}$	$\begin{aligned} & 1 \\ & 80 \end{aligned}$	$\begin{aligned} & 2 \\ & 80 \end{aligned}$	$\begin{aligned} & 4 \\ & 116 \end{aligned}$
Permissible rated motor current and starts per hour - For normal starting (CLASS 10) at $40 / 50{ }^{\circ} \mathrm{C}$ - Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 3 s - Starts per hour ${ }^{3}$) - Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 4 s - Starts per hour ${ }^{3}$)	A 1/h A 1/h	$\begin{aligned} & 3.6 / 3.3 \\ & 200 / 150 \\ & 3.6 / 3.3 \\ & 150 / 100 \end{aligned}$	$\begin{aligned} & 6.5 / 6.0 \\ & 87 / 60 \\ & 6.5 / 6.0 \\ & 64 / 46 \end{aligned}$	9/8 50/50 9/8 35/35	$\begin{aligned} & 12.5 / 12.0 \\ & 85 / 70 \\ & 12.5 / 12.0 \\ & 62 / 47 \end{aligned}$	$\begin{aligned} & 17.6 / 17.0 \\ & 62 / 46 \\ & 17.6 / 17.0 \\ & 45 / 32 \end{aligned}$

1) Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required.
2) At $300 \% I_{M}, T_{\mathrm{U}}=40 / 50^{\circ} \mathrm{C}$
3) For intermittent duty S 4 with ON period $=30 \%, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$, stand-alone installation vertical. The quoted switching frequencies do not apply for automatic mode

Type		3RW3026	3RW3027	3RW3028
Power electronics				
Load rating with rated operational current I_{e} - According to IEC and UL/CSA ${ }^{11}$, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$	A	25.3/23/21	32.2/29/26	38/34/31
Power loss - In operation after completed starting with uninterrupted rated operational current ($40^{\circ} \mathrm{C}$) approx. - During starting with $300 \% I_{M}\left(40^{\circ} \mathrm{C}\right)$	W W	$\begin{gathered} 8 \\ 188 \end{gathered}$	$\begin{gathered} 13 \\ 220 \end{gathered}$	$\begin{gathered} 19 \\ 256 \end{gathered}$
Permissible rated motor current and starts per hour - For normal starting (CLASS 10) at $40 / 50^{\circ} \mathrm{C}$ - Rated motor current $I_{\mathrm{M}}{ }^{2)}$, start-up time 3 s - Starts per hour ${ }^{3}$) - Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 4 s - Starts per hour ${ }^{3}$)	$\begin{aligned} & A \\ & 1 / h \\ & A \\ & 1 / h \end{aligned}$	$\begin{aligned} & 25 / 23 \\ & 23 / 23 \\ & 25 / 23 \\ & 15 / 15 \end{aligned}$	$\begin{aligned} & 32 / 29 \\ & 23 / 23 \\ & 32 / 29 \\ & 16 / 16 \end{aligned}$	$\begin{aligned} & 38 / 34 \\ & 19 / 19 \\ & 38 / 34 \\ & 12 / 12 \end{aligned}$

1) Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required.
2) For intermittent duty S 4 with ON period $=30 \%, T_{u}=40 / 50^{\circ} \mathrm{C}$, stand-alone
3) At $300 \% I_{\mathrm{M}}, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$. installation vertical. The quoted switching frequencies do not apply for automatic mode. Factors for permissible switching frequency with deviating mounting position, direct mounting, side-by-side mounting, see Equipment Manual in the chapter "Configuring".

Type		3RW3036	3RW3037	3RW3038	3RW3046	3RW3047
Power electronics						
Load rating with rated operational current I_{e} - According to IEC and UL/CSA ${ }^{11}$, individual mounting at $40 / 50 / 60^{\circ} \mathrm{C}, \mathrm{AC}-53 \mathrm{a}$	A	45/42/39	65/58/53	72/62.1/60	80/73/66	106/98/90
Power loss - In operation after completed starting with uninterrupted rated operational current ($40^{\circ} \mathrm{C}$) approx. - During starting with $300 \% I_{\mathrm{M}}\left(40^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 6 \\ & 316 \end{aligned}$	$\begin{gathered} 12 \\ 444 \end{gathered}$	$\begin{aligned} & 15 \\ & 500 \end{aligned}$	$\begin{gathered} 12 \\ 576 \end{gathered}$	$\begin{array}{r} 21 \\ 768 \end{array}$
Permissible rated motor current and starts per hour - For normal starting (CLASS 10) at $40 / 50^{\circ} \mathrm{C}$ - Rated motor current $I_{\mathrm{M}}{ }^{2)}$, start-up time 3 s - Starts per hour ${ }^{3}$) - Rated motor current $I_{\mathrm{M}}{ }^{2}$, start-up time 4 s - Starts per hour ${ }^{3}$)	A 1/h A 1/h	$\begin{aligned} & 45 / 42 \\ & 38 / 38 \\ & 45 / 42 \\ & 26 / 26 \end{aligned}$	$\begin{aligned} & 63 / 58 \\ & 23 / 23 \\ & 63 / 58 \\ & 15 / 15 \end{aligned}$	$\begin{aligned} & 72 / 62 \\ & 22 / 22 \\ & 72 / 62 \\ & 15 / 15 \end{aligned}$	$\begin{aligned} & 80 / 73 \\ & 22 / 22 \\ & 80 / 73 \\ & 15 / 15 \end{aligned}$	$\begin{gathered} 106 / 108 \\ 15 / 15 \\ 106 / 98 \\ 10 / 10 \end{gathered}$
1) Measurement at $60^{\circ} \mathrm{C}$ according to UL/CSA not required. 2) At $300 \% I_{M}, T_{\mathrm{u}}=40 / 50^{\circ} \mathrm{C}$.		For intermi installation automatic	duty S4 w ical. The q e.	N period = d switching	$\%, T_{u}=40$ quencies	C, stand-alone t apply for

Basic Performance Soft Starters

3RW30 soft starters > General data

| Type | | 3RW3003-1CB54 |
| :--- | :--- | :--- | :--- |
| Mechanics and environment | | |
| Mounting dimensions (W x H x D)
 •Screw terminals
 - Spring-loaded terminals | | |

1) The rated motor current (specified on the motor's name plate) should at least amount to the specified percentage of the SIRIUS soft starter unit's rated operational current I_{e}.
2) If this value is exceeded, problems with line capacities may arise, which can result in false firing.

Basic Performance Soft Starters

3RW30 soft starters > General data

Motor feeders according to IEC with 3RV2 motor starter protectors (without semiconductor protection)

Type of coordination "1", CLASS 10,
short-circuit breaking capacity I_{q} in kA, see table
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters	Motor starter pro for 400 V systems	
Q11	Q1	$I_{\text {q }}$
Type	Type	kA
Type of coordina- tion "1" 10 10	Inline circuit	
3RW3003	3RV2011-1EA10	50
3RW3013 3RW3014 3RW3016	$\begin{aligned} & \text { 3RV2011-1FA10 } \\ & \text { 3RV2011-1HA10 } \\ & \text { 3RV2011-1JA10 } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$
$\begin{aligned} & \text { 3RW3017 } \\ & \text { 3RW3018 } \end{aligned}$	$\begin{aligned} & \text { 3RV2011-1KA10 } \\ & \text { 3RV2021-4BA10 } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
3RW3026 3RW3027 3RW3028	$\begin{aligned} & \hline \text { 3RV2021-4DA10 } \\ & \text { 3RV2021-4EA10 } \\ & \text { 3RV2021-4FA10 } \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 55 \\ & 55 \\ & \hline \end{aligned}$
3RW3036 3RW3037 3RW3038	$\begin{aligned} & \text { 3RV2031-4WA10 } \\ & \text { 3RV2031-4JA10 } \\ & \text { 3RV2031-4KA10 } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$
3RW3046 3RW3047	3RV2041-4RA10 3RV2041-4MA10	$\begin{aligned} & 11 \\ & 11 \end{aligned}$

Note:
The specified short-circuit breaking capacities I_{q} in KA are covered by combination tests. Smaller motor starter protectors/circuit breakers than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

Basic Performance Soft Starters

3RW30 soft starters > General data

Motor feeders according to IEC with 3NA3 fuses

gG class full-range fuses for cable and line protection according to IEC 60269-2, without semiconductor protection
Type of coordination "1",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Soft starters Q11 Type	gG class fuse for systems up to 480 V F1 Type	Line contactor (optiona for systems up to 400 V Q21 Type	for systems up to 480 V Q21 Type
Type of coordina- cion "1"	Inline circuit		
3RW3003 ${ }^{\text {1) }}$	3NA3805 ${ }^{\text {2 }}$	3RT2015	3RT2015
3RW3013 3RW3014 3RW3016	3NA3803-6 3NA3805-6 3NA3807-6	$\begin{aligned} & \text { 3RT2015 } \\ & \text { 3RT2015 } \\ & \text { 3RT2016 } \end{aligned}$	$\begin{aligned} & \text { 3RT2015 } \\ & \text { 3RT2016 } \\ & \text { 3RT2017 } \end{aligned}$
$\begin{aligned} & \text { 3RW3017 } \\ & \text { 3RW3018 } \end{aligned}$	$\begin{aligned} & \text { 3NA3810-6 } \\ & \text { 3NA3814-6 } \end{aligned}$	$\begin{aligned} & \text { 3RT2018 } \\ & \text { 3RT2026 } \end{aligned}$	$\begin{aligned} & \text { 3RT2025 } \\ & \text { 3RT2026 } \end{aligned}$
3RW3026 3RW3027 3RW3028	3NA3822-6 3NA3824-6 3NA3824-6	$\begin{aligned} & \text { 3RT2026 } \\ & \text { 3RT2027 } \\ & \text { 3RT2028 } \end{aligned}$	$\begin{aligned} & \hline \text { 3RT2027 } \\ & \text { 3RT2028 } \\ & \text { 3RT2035 } \end{aligned}$
3RW3036 3RW3037 3RW3038	3NA3130-6 3NA3132-6 3NA3132-6	3RT2036 3RT2037 3RT2038	$\begin{aligned} & \hline \text { 3RT2036 } \\ & \text { 3RT2037 } \\ & \text { 3RT2038 } \end{aligned}$
3RW3046 3RW3047	3NA3136-6 3NA3136-6	$\begin{aligned} & \text { 3RT2045 } \\ & \text { 3RT2047 } \end{aligned}$	$\begin{aligned} & \text { 3RT2045 } \\ & \text { 3RT2047 } \end{aligned}$

${ }^{\text {1) }} I_{\mathrm{q}}=50 \mathrm{kA}$ at 400 V .
2) 3NA3805-1 (NHOO), 5SB261 (DIAZED), 5SE2201-6 (NEOZED),

Note:

The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.

Basic Performance Soft Starters

3RW30 soft starters > General data

Motor feeders according to IEC with 3NE1 SITOR fuses

gR class full-range fuses for semiconductor protection, cable and line protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$
Note:
For general recommendations for constructing motor feeders with soft starters, see page 7/9.

Basic Performance Soft Starters

3RW30 soft starters > General data

Motor feeders according to IEC with 3NE8 / 3NE4 / 3NE3 / 3NC fuses

aR class partial-range fuses for semiconductor protection
Type of coordination "2",
short-circuit breaking capacity $I_{\mathrm{q}}=65 \mathrm{kA}$

Note:

For general recommendations for constructing motor feeders
with soft starters, see page 7/9.

Soft starters	gG class fuse for systems up to 480 V	aR class fuse		for systems up to 480 V	Cylindrical fuses	Line contactor (optional)	
		for systems up to 480 V	for systems up to 480 V		for systems up to 480 V	for systems up to 400 V	for systems up to 480 V
Q11	F1	F3	F3	F3	F3	Q21	Q21
Type							
Type of coordination "2"	Inline circuit						
3RW3003 ${ }^{1)}$	3NA3805 ${ }^{\text {2 }}$	--	--	3NE8015-1	3NC1010	3RT2015	3RT2015
3RW3013	3NA3803-6	--	3NE4101	3NE8015-1	3NC2220	3RT2015	3RT2015
3RW3014	3NA3805-6	--	3NE4101	3NE8015-1	3NC2220	3RT2015	3RT2016
3RW3016	3NA3807-6	--	3NE4101	3NE8015-1	3NC2220	3RT2016	3 T2017
3RW3017 3RW3018	3NA3810-6 3NA3814-6	--	3NE4101 3NE4101	3NE8015-1 3NE8003-1	3NC2250 3NC2263	3RT2018 3RT2026	3RT2025 3RT2026
3RW3026	3NA3822-6	--	3NE4102	3NE8017-1	3NC2263	3RT2026	3 TT2027
3RW3027	3NA3824-6	--	3NE4118	3NE8018-1	3NC2280	3 T2027	3RT2028
3RW3028	3NA3824-6	--	3NE4118	3NE8020-1	3NC2280	3 T2028	3RT2035
3RW3036	3NA3130-6	--	3NE4120	3NE8020-1	3NC2280	3RT2036	3RT2036
3RW3037	3NA3132-6	--	3NE4121	3NE8021-1	--	3RT2037	3RT2037
3RW3038	3NA3132-6	3NE3221	--	3NE8022-1	--	3RT2038	3RT2038
3RW3046	3NA3136-6	3NE3222	--	3NE8022-1	--	3RT2045	3RT2045
3RW3047	3NA3136-6	3NE3224	--	3NE8024-1	--	3RT2047	3RT2047

1) $I_{\mathrm{Q}}=50 \mathrm{kA}$ at 400 V .
2) $3 \mathrm{NA} 3805-1$ (NH0O), 5 SB 261 (DIAZED)

Note:

The specified short-circuit breaking capacities I_{q} in kA are covered by combination tests. Smaller fuses than those specified can be used at any time as smaller ones trip more quickly in the event of a short circuit (unchanged short-circuit breaking capacity) and thus protect the soft starter in any case. The dimensioning of the short-circuit components must, however, be suitable for the connected three-phase motor and the line protection for the cables used.
For CLASS 10 applications, as an alternative to the gG class full-range fuses for cable and line protection 3NA3 (F1), 3RV2 motor starter protectors/circuit breakers can also be used, possibly with reduced short-circuit breaking capacity (see page 7/98). In these cases, optional line contactors can be dispensed with.

Basic Performance Soft Starters

3RW30 soft starters＞Inline circuit IE3／IE4 ready

Selection and ordering data

For simple starting conditions

3 RW ambient temperature $40{ }^{\circ} \mathrm{C}$								Size	SD ${ }^{1)}$	Article No．	Price	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊
Rated values of three－phase motors											per PU		
Opera－ tional current $/ \mathrm{e}$	Rating at operational voltage U_{e}			Rating at operational voltage U_{e}				d					
	230 V	400 V	500 V	200 V	230 V	460 V	575 V						
A	kW	kW	kW	hp	hp	hp	hp						
Rated operational voltage $U_{e} 200 \ldots 480 \mathrm{~V}$													
3.6	0.75	1.5	－－	0.5	0.75	2	－－	S00	2	3RW3013－■BB $\square 4$		1	1 unit
6.5	1.5	3	－－	1	1.5	3	－－	S00	2	3RW3014－ロBB $\square 4$		1	1 unit
9	2.2	4	－－	2	2	5	－－	S00	2	3RW3016－■BB口4		1	1 unit
12.5	3	5.5	－－	3	3	7.5	－－	S00	2	3RW3017－■BB $\square 4$		1	1 unit
17.6	4	7.5	－－	5	5	10	－－	S00	2	3RW3018－■BBD4		1	1 unit
25	5.5	11	－－	7.5	7.5	15	－－	S0	2	3RW3026－पBB $\square 4$		1	1 unit
32	7.5	15	－－	10	10	20	－－	S0	2	3RW3027－■BBD4		1	1 unit
38	11	18.5	－－	10	10	25	－－	S0	2	3RW3028－पBB $\square 4$		1	1 unit
45	11	22	－－	10	15	30	－－	S2	2	3RW3036－पBB口4		1	1 unit
63	18.5	30	－－	20	20	40	－－	S2	2	3RW3037－ロBB $\square 4$		1	1 unit
72	22	37	－－	20	25	50	－－	S2	2	3RW3038－■BB口4		1	1 unit
80	22	45	－－	25	30	60	－－	S3	2	3RW3046－पBB口4		1	1 unit
106	30	55	－－	30	40	75	－－	S3	2	3RW3047－■BB口4		1	1 unit

Article No．supplement for connection types

－Screw terminals
－Spring－loaded terminals ${ }^{2}$

Control supply voltage $\boldsymbol{U}_{\mathbf{s}}$
－ 24 V AC／DC 0 1
Soft starters for easy starting conditions and high switching frequency，
rated operational voltage $U_{e} 200 \ldots 400 \mathrm{~V}$ ，
rated control supply voltage $U_{S} 24 \ldots 230 \mathrm{~V}$ AC／DC

3	0.55	$\mathbf{1 . 1}$	--	A	0.5	$\mathbf{0 . 5}$	--	--	22.5 mm

－With screw terminals
－With spring－loaded terminals
1）Soft starter $U_{\mathrm{e}} 200$ to 480 V with screw terminals： Standard delivery time SD＝ 1 day（d）．
2）Main connection from size S2：screw terminals．
Note：
For the constraints for the motor outputs specified here，
see page 7／7

Basic Performance Soft Starters

3RW30 soft starters > Accessories

Selection and ordering data

Soft Starters

Basic Performance Soft Starters

3RW30 soft starters > Accessories

Link modules to motor starter protectors ${ }^{11}$

3RW301.	S00	S00
3RW302.	S0	S00/S0
3RW3036	S2	S2
3RW304.	S3	S3

3RA2921-1BA00

3RA2921-2GA00

1) Can be used in size SO up to 32 A .

Can be used in size S2 up to 65 A in combination with 3RA2932-1CA00
standard mounting rail adapter (specially for soft starters)
Can be used in size S3 only on mounting plate.

Version	Functionality Functions	Use	SD	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \end{array}$	PS*
			d			SET, M)	

Covers and push-in lugs (only for 3RW3003)

12	Sealable covers	For securing against unauthorized adjustment of setting knobs	For devices with 1 or 2 CO contacts	5	3RP1902	1	5 units
3RP1902	Push-in lugs for screw fixing	--	For devices with 1 or 2 CO contacts	5	3RP1903	1	10 units

Tools for opening spring-loaded terminals
in sizes S00 and S0

Screwdrivers
For all SIRIUS devices with spring-loaded terminals
Length approx. $200 \mathrm{~mm}, 3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, titanium gray/black, partially insulated

3RT2900-1SB20
Unit labeling plates ${ }^{1)}$
For SIRIUS devices
$20 \mathrm{~mm} \times 7 \mathrm{~mm}$, titanium gray

3RT2900-1SB20

1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH .

For 3RW55/3RW55 Failsafe

Basic Performance Soft Starters
For 3RW55/3RW55 Failsafe

Product designation	Manufacturer's Article No. of the soft starter	Type of product	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
d							
nts							
Cover for control cable duct	3RW55...-HA..	Titanium gray	-	3RW5950-0GD20		1	1 unit

Enclosure components							
4 -	Cover for control cable duct	3RW55..-.HA..	Titanium gray	-	3RW5950-0GD20	1	1 unit
3RW5950-0GD20							
		3RW55..-.HF..	Yellow NIEW	-	3RW5950-0GD30	1	1 unit
3RW5950-0GD30							
	Hinged cover	3RW55	With cutout for High Feature HMI module	-	3RW5950-0GL30	1	1 unit

Basic Performance Soft Starters

For 3RW55/3RW55 Failsafe

Basic Performance Soft Starters
For 3RW52

Basic Performance Soft Starters
For 3RW52

Basic Performance Soft Starters
For 3RW50 NEW

3RW Soft Starters

Overview

The family of 3RW40 and 3RW44 softstarters are available in stand alone enclosed control designs for smooth starting and stopping of standard NEMA design B three phase inductive motors, thus eliminating physical stresses to the system and load while minimizing starting current. These pre-engineered enclosed designs offer convenience and flexibility in and UL/CSA certified offering. Enclosed styles are available in combination and non-combination configurations through 600HP and system voltages of $200 \mathrm{~V}, 230 \mathrm{~V}, 480 \mathrm{~V}$, and 600 V .
The Class 73 offers either the 3RW40 or 3RW44 in a non-combination style offering. These non-combination styles come standard with a choice of Type 1, 3R, 12, 4 NEMA rated enclosure, a control transformer, Sirius softstarter with built-in overload and bypass, line side power terminal block, and a reset pushbutton. The enclosed offering can be powerfully matched with a wide variety of factory modified options such as pushbutton control, pilot lights, metering and other control options such as isolation contactors and emergency start bypass starters. 3RW44 enclosed styles are also available with optional through the door keypad and Profibus communication
The Class 74 offering includes all of the features of the Class 73 in a combination style design. Standard options are either a circuit breaker or fusible disconnect providing short circuit protection and soft starting in one package.

Application

The Class 73/74 product is a fully enclosed solid state reduced voltage starter designed for a wide variety of industrial applications. The enclosed softstarter offerings are ideal for new as well as existing applications where total motor controls is required.
Proper selection based on application data is made simple following these easy steps:

- Select proper RVSS by application
- Select the 3RW40 versus the 3RW44 using the application info provided in the open section of the catalog
- Select the rating chart for normal starting or sever duty starting
- Normal starting is rated at 350% of rated motor current IM for 10 seconds and based on starts per hour - representative of a class 20 application.
- Severe starting is rated at 350% of rated motor current Im for 20 seconds and based on starts per hour - representative of a Class 20 application
- Select model using Motor nameplate data
- Identify correct motor voltage column
- Select rate current or HP row
- Find ordering number under desired enclosure type column (e.g. NEMA 1)
- Select appropriate system voltage
- Select factory modification on page 6/40 ${ }^{1 \text {) }}$

Example:
3RW44, N12, CB disconnect, 460V, 200HP with a start/stop and red run light

Order No.
74MT34BFAP A1 FC

Product Nomenclature

Class 73 and 74 Enclosed Soft Starters

Soft Starters

3RW Soft Starters

3RW40 Size S0-S3 Non-Combo

3RW40 Enclosed features: - Available in NEMA 1,12,3R,4, and 4 stainless steel - Compact size - Built-in Bypass contactor - Voltage ramp up and ramp down - Current limit adjustment of 125-550\% - Internal overload class 10,15,or 20 - Internal self protection - Fault monitoring - Isolation Contactor	Ordering Information	
	Enclosed devices should be ordered by the FLA of the motor. - The 3RW40 is designed for normal starting applications. - For factory modifications see page 7/124. - For dimensional drawings see page 7/125. Class 73 non-combination starters include: - NEMA rated enclosure - 3RW40 Sirius softstarter with built-in OL and bypass - Control Circuit Transformer - Line side power terminal block - Reset button - Isolation Contactor	Ideal applications for 3RW40 enclosed softstarters - Fans - Pumps - Easy starting loads starting in less than 10 seconds Class 73 starters are built to UL and CSA standards

3RW40 for Standard Applications

Enclosed Non-Combination (Starter Only)

Rated Operating Current	MAX HP ${ }^{\text {(1) }}$				$\begin{aligned} & \mathrm{KW} \\ & 380 \mathrm{~V} \\ & \hline \end{aligned}$	Class 10 Light Duty (350\% * le for 10s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
11	3	3	7.5	-	6	3RW4024-1BB14	73AR3_BFA		73AR3_DFA		73AR3_0FA		73AR3_EFA		73AR3_WFA	
23	5	7.5	15	-	13	3RW4026-1BB14	73BR3_BFA		73BR3_DFA		73BR3_0FA		73BR3_EFA		73BR3_WFA	
29	7.5	10	20	-	16	3RW4027-1BB14	73CR3_BFA		73CR3_DFA		73CR3_0FA		73CR3_EFA		73CR3_WFA	
34	10	10	25	-	18	3RW4028-1BB14	73DR3_BFA		73DR3_DFA		73DR3_0FA		73DR3_EFA		73DR3_WFA	
42	10	15	30	-	23	3RW4036-1BB14	73ER3_BFA		73ER3_DFA		73ER3_OFA		73ER3_EFA		73ER3_WFA	
58	15	20	40	-	31	3RW4037-1BB14	73FR3_BFA		73FR3_DFA		73FR3_0FA		73FR3_EFA		73FR3_WFA	
62	20	20	40	-	33	3RW4038-1BB14	73GR3_BFA		73GR3_DFA		73GR3_OFA		73GR3_EFA		73GR3_WFA	
73	20	25	50	-	39	3RW4046-1BB14	73HR3_BFA		73HR3_DFA		73HR3_0FA		73HR3_EFA		73HR3_WFA	
98	30	30	75	-	52	3RW4047-1BB14	73JR3_BFA		73JR3_DFA		73JR3_0FA		73JR3_EFA		73JR3_WFA	
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460 V	4		4		4		4		4	

3RW40 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4 stainless steel
- Compact size
- Built-in bypass contactor
- Voltage ramp up and ramp down
- Current limit adjustment of 125-550\%
- Internal overload class 10, 15, or 20
- Internal self protection
- Fault monitoring

Ordering Information

- Enclosed devices should be ordered by the FLA of the motor.
- The 3RW40 is designed for normal starting applications (Class 10 applications).
- For factory modifications see page 7/124.
- For dimensional drawings see page 7/125.

Class 73 non-combination starters include:

- NEMA rated enclosure
- 3RW40 Sirius softstarter with built-in OL and bypass
- Control circuit transformer
- Line side power terminal block
- Reset button

Ideal applications for 3RW40 enclosed softstarters:

- Fans
- Pumps
- Building/construction machines
- Presses
- Escalators
- Transport systems
- Air conditioning systems
- Ventilators
- Assembly lines

Class 73 starters are built to UL and CSA standards.

For all technical information, please consult the 2006 Industrial Controls Catalog or contact your local sales support center.

3RW40 for Standard Applications

Enclosed Non-Combination (Starter Only)

$\begin{aligned} & \text { Rated } \\ & \text { Operating } \\ & \text { Current } \end{aligned}$	MAX HP(1)			$\begin{array}{\|l\|} \hline \mathrm{KW} \\ 380 \mathrm{~V} \\ \hline \end{array}$	Class 10 Light Duty (350\% * Im for 10s) ${ }^{2}$ (
	200 V	230 V	460 V 575 V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
117	30	40	75 -	56	3RW4055-6BB34	73AS3_BFA		73AS3_DFA		73AS3_0FA		73AS3_EFA		73AS3_WFA	
145	40	50	100 -	75	3RW4056-6BB34	73BS3_BFA		73BS3_DFA		73BS3_0FA		73BS3_EFA		73BS3_WFA	
205	60	75	150 -	112	3RW4073-6BB34	73CS3_BFA		73CS3_DFA		73CS3_0FA		73CS3_EFA		73CS3_WFA	
248	75	100	200 -	149	3RW4074-6BB34	73DS3_BFA		73DS3_DFA		73DS3_0FA		73DS3_EFA		73DS3_WFA	
315	100	125	$250-$	186	3RW4075-6BB34	73ES3_BFA		73ES3_DFA		73ES3_OFA		73ES3_EFA		73ES3_WFA	
385	125	150	300 -	224	3RW4076-6BB34	73FS3_BFA		73FS3_DFA		73FS3_0FA		73FS3_EFA		73FS3_WFA	
					200 V	6		6		6		6		6	
					230 V	2		2		2		2		2	
					380 V	3		3		3		3		3	
					460V	4		4		4		4		4	
117	-	-	$75 \quad 100$	-	3RW4055-6BB35	73AS35BFA		73AS35DFA		73AS350FA		73AS35EFA		73AS35WFA	
145	-	-	100150	-	3RW4056-6BB35	73BS35BFA		73BS35DFA		73BS350FA		73BS35EFA		73BS35WFA	
205	-	-	150200	-	3RW4073-6BB35	73CS35BFA		73CS35DFA		73CS350FA		73CS35EFA		73CS35WFA	
248	-	-	200250	-	3RW4074-6BB35	73DS35BFA		73DS35DFA		73DS350FA		73DS35EFA		73DS35WFA	
315	-	-	250300	-	3RW4075-6BB35	73ES35BFA		73ES35DFA		73ES350FA		73ES35EFA		73ES35WFA	
385	-	-	300400	-	3RW4076-6BB35	73FS35BFA		73FS35DFA		73FS350FA		73FS35EFA		73FS35WFA	

Enclosed Non-Combination (Starter Only)

Rated Operating Curent	MAXHP(1)			$\begin{array}{\|l\|} \hline \mathrm{KW} \\ 380 \mathrm{~V} \end{array}$	Class 20 Severe Duty (350\% * le for 20s)(2)										
	200 V	230 V	460 V 575 V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
112	30	40	75 -	56	3RW4055-6BB34	73AS3_BFA		73AS3_DFA		73AS3_OFA		73AS3_EFA		73AS3_WFA	
132	40	50	100 -	75	3RW4056-6BB34	73BS3_BFA		73BS3_DFA		73BS3_0FA		73BS3_EFA		73BS3_WFA	
185	60	60	125 -	93	3RW4073-6BB34	73CS3_BFA		73CS3_DFA		73CS3_OFA		73CS3_EFA		73CS3_WFA	
205	60	75	$150-$	112	3RW4074-6BB34	73DS3_BFA		73DS3_DFA		73DS3_OFA		73DS3_EFA		73DS3_WFA	
280	75	100	200 -	149	3RW4075-6BB34	73ES3_BFA		73ES3_DFA		73ES3_OFA		73ES3_EFA		73ES3_WFA	
340	100	125	$250-$	186	3RW4076-6BB34	73FS3_BFA		73FS3_DFA		73FS3_0FA		73FS3_EFA		73FS3_WFA	
					200 V	6		6		6		6		6	
					230 V	2		2		2		2		2	
					380 V	3		3		3		3		3	
					460 V	4		4		4		4		4	
112	-	-	$75 \quad 75$	-	3RW4055-6BB35	73AS35BFA		73AS35DFA		73AS350FA		73AS35EFA		73AS35WFA	
132	-	-	100125	-	3RW4056-6BB35	73BS35BFA		73BS35DFA		73BS350FA		73BS35EFA		73BS35WFA	
185	-	-	125150	-	3RW4073-6BB35	73CS35BFA		73CS35DFA		73CS350FA		73CS35EFA		73CS35WFA	
205	-	-	150200	-	3RW4074-6BB35	73DS35BFA		73DS35DFA		73DS350FA		73DS35EFA		73DS35WFA	
280	-	-	200250	-	3RW4075-6BB35	73ES35BFA		73ES35DFA		73ES350FA		73ES35EFA		73ES35WFA	
340	-	-	250300	-	3RW4076-6BB35	73FS35BFA		73FS35DFA		73FS350FA		73FS35EFA		73FS35WFA	

[^59](2) Starter selection is dependent on type of application. Im = FLA rating of motor.

Soft Starters

3RW Soft Starters

3RW40 - Size S0-S3 Circuit Breaker

3RW40 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4 stainless steel
- Compact size
- Built-in Bypass contactor
- Voltage ramp up and ramp down
- Current limit adjustment of 125-550\%
- Internal overload class 10, 15, or 20
- Internal self protection
- Fault monitoring
- Isolation Contactor

Ordering Information

- Enclosed devices should be ordered by the FLA of the motor.
- The 3RW40 is designed for normal starting applications.
- For factory modifications see page 7/124
- For dimensional drawings see page 7/125

Class 74 non-combination starters include:

- NEMA rated enclosure
- Circuit Breaker disconnect with shunt trip
- 3RW40 Sirius softstarter with built-in OL and bypass
- Control Circuit Transformer
- Isolation Contactor

Ideal applications for 3RW40 enclosed softstarters

- Fans
- Pumps
- Easy starting loads starting in less than 10 seconds

Class 74 starters are built to UL and CSA standards

3RW40 for Standard Applications

Enclosed Circuit Breaker Combination (Starter With Circuit Breaker Disconnect)

Rated Operating Current	MAX HP ${ }^{\text {(1) }}$				$\begin{aligned} & \mathrm{KW} \\ & 380 \mathrm{~V} \end{aligned}$	Class 10 Light Duty (350\% * le for 10s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
11	3	3	7.5	-	6	3RW4024-1BB14	74AR3_BFAP		74AR3_DFAP		74AR3_OFAP		74AR3_EFAP		74AR3_WFAP	
23	5	7.5	15	-	13	3RW4026-1BB14	74BR3_BFAP		74BR3_DFAP		74BR3_OFAP		74BR3_EFAP		74BR3_WFAP	
29	7.5	10	20	-	16	3RW4027-1BB14	74CR3_BFAP		74CR3_DFAP		74CR3_OFAP		74CR3_EFAP		74CR3_WFAP	
34	10	10	25	-	18	3RW4028-1BB14	74DR3_BFAP		74DR3_DFAP		74DR3_OFAP		74DR3_EFAP		74DR3_WFAP	
42	10	15	30	-	23	3RW4036-1BB14	74ER3_BFAP		74ER3_DFAP		74ER3_OFAP		74ER3_EFAP		74ER3_WFAP	
58	15	20	40	-	31	3RW4037-1BB14	74FR3_BFAP		74FR3_DFAP		74FR3_OFAP		74FR3_EFAP		74FR3_WFAP	
62	20	20	40	-	33	3RW4038-1BB14	74GR3_BFAP		74GR3_DFAP		74GR3_OFAP		74GR3_EFAP		74GR3_WFAP	
73	20	25	50	-	39	3RW4046-1BB14	74HR3_BFAP		74HR3_DFAP		74HR3_OFAP		74HR3_EFAP		74HR3_WFAP	
98	30	30	75	-	52	3RW4047-1BB14	74JR3_BFAP		74JR3_DFAP		74JR3_OFAP		74JR3_EFAP		74JR3_WFAP	
						200V	6		6		6		6		6	
						230V	2		2		2		2		2	
						380V	3		3		3		3		3	
						460V	4		4		4		4		4	

3RW40 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4 stainless stee
- Compact size
- Built-in bypass contactor
- Voltage ramp up and ramp down
- Current limit adjustment of 125-550\%
- Internal overload class 10, 15, or 20
- Internal self protection
- Fault monitoring

Ordering Information

- Enclosed devices should be ordered by the FLA of the motor.
- The 3RW40 is designed for normal starting applications (Class 10 applications).
- For factory modifications see page 7/124.
- For dimensional drawings see page 7/125.

Class 74 non-combination starters include:

- NEMA rated enclosure
- Circuit breaker disconnect with shunt trip
- 3RW40 Sirius softstarter with built-in OL and bypass
- Control circuit transformer

Ideal applications for 3RW40 enclosed softstarters:

- Fans
- Pumps
- Building/construction machines
- Presses
- Escalators
- Transport systems
- Air conditioning systems
- Ventilators
- Assembly lines

Class 74 starters are built to UL and CSA standards.

For all technical information, please consult the 2006 Industrial Controls Catalog or contact your local sales support center.

3RW40 for Standard Applications

Enclosed Circuit Breaker Combination (Starter with Circuit Breaker Disconnect)

Rated Operating Current	MAX HP ${ }^{\text {(1) }}$				$\begin{aligned} & \text { KW } \\ & 380 \mathrm{~V} \end{aligned}$	Class 10 Light Duty (350\% * Im for 10s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price $\$$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
117	30	40	75	-	56	3RW4055-6BB34	74AS3_BFAP		74AS3_DFAP		74AS3_OFAP		74AS3_EFAP		74AS3_WFAP	
145	40	50	100	-	75	3RW4056-6BB34	74BS3_BFAP		74BS3_DFAP		74BS3_OFAP		74BS3_EFAP		74BS3_WFAP	
205	60	75	150	-	112	3RW4073-6BB34	74CS3_BFAP		74CS3_DFAP		74CS3_OFAP		74CS3_EFAP			
248	75	100	200	-	149	3RW4074-6BB34	74DS3_BFAP		74DS3_DFAP		74DS3_OFAP		74DS3_EFAP			
315	100	125	250	-	186	3RW4075-6BB34	74ES3_BFAP		74ES3_DFAP		74ES3_0FAP		74ES3_EFAP			
385	125	150	300		224	3RW4076-6BB34	74FS3_BFAP		74FS3_DFAP		74FS3_0FAP		74FS3_EFAP			
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460V	4		4		4		4		4	
117	-	-	75		-	3RW4055-6BB35	74AS35BFAP		74AS35DFAP		74AS350FAP		74AS35EFAP		74AS35WFAP	
145	-	-	100	150	-	3RW4056-6BB35	74BS35BFAP		74BS35DFAP		74BS350FAP		74BS35EFAP		74BS35WFAP	
205	-	-	150	200	-	3RW4073-6BB35	74CS35BFAP		74CS35DFAP		74CS350FAP		74CS35EFAP			
248	-	-	200	250	-	3RW4074-6BB35	74DS35BFAP		74DS35DFAP		74DS350FAP		74DS35EFAP			
315	-	-	250		-	3RW4075-6BB35	74ES35BFAP		74ES35DFAP		74ES350FAP		74ES35EFAP			
385	-	-	300	400	-	3RW4076-6BB35	74FS35BFAP		74FS35DFAP		74FS350FAP		74FS35EFAP			

Enclosed Circuit Breaker Combination (Starter with Circuit Breaker Disconnect)

Rated Operating Current	MAX HP ${ }^{\text {(1) }}$				KW	Class 20 Severe Duty (350\% * le for 20s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
112	30	40	75	-	56	3RW4055-6BB34	74AS3_BFAP		74AS3_DFAP		74AS3_OFAP		74AS3_EFAP		74AS3_WFAP	
132	40	50	100	-	75	3RW4056-6BB34	74BS3_BFAP		74BS3_DFAP		74BS3_OFAP		74BS3_EFAP		74BS3_WFAP	
185	60	60	125	-	93	3RW4073-6BB34	74CS3_BFAP		74CS3_DFAP		74CS3_OFAP		74CS3_EFAP			
205	60	75	150		112	3RW4074-6BB34	74DS3_BFAP		74DS3_DFAP		74DS3_OFAP		74DS3_EFAP			
280	75	100	200	-	149	3RW4075-6BB34	74ES3_BFAP		74ES3_DFAP		74ES3_0FAP		74ES3_EFAP			
340	100	125	250		186	3RW4076-6BB34	74FS3_BFAP		74FS3_DFAP		74FS3_0FAP		74FS3_EFAP			
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460 V	4		4		4		4		4	
112	-	-	75		-	3RW4055-6BB35	74AS35BFAP		74AS35DFAP		74AS350FAP		74AS35EFAP		74AS35WFAP	
132	-	-	100	125	-	3RW4056-6BB35	74BS35BFAP		74BS35DFAP		74BS350FAP		74BS35EFAP		74BS35WFAP	
185	-	-	125		-	3RW4073-6BB35	74CS35BFAP		74CS35DFAP		74CS350FAP		74CS35EFAP			
205	-	-	150		-	3RW4074-6BB35	74DS35BFAP		74DS35DFAP		74DS350FAP		74DS35EFAP			
280	-	-	200		-	3RW4075-6BB35	74ES35BFAP		74ES35DFAP		74ES350FAP		74ES35EFAP			
340	-	-	250	300	-	3RW4076-6BB35	74FS35BFAP		74FS35DFAP		74FS350FAP		74FS35EFAP			

[^60]HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.

Soft Starters

3RW Soft Starters

3RW40 - Size S0-S3 Fusible

3RW40 Enclosed features: - Available in NEMA 1, 12, 3R, 4, and 4 stainless steel - Compact size - Built-in Bypass contactor - Voltage ramp up and ramp down - Current limit adjustment of 125 -550\% - Internal overload class 10,15,or 20 - Internal self protection - Fault monitoring - Isolation Contactor	Ordering Information	
	- Enclosed devices should be ordered by the FLA of the motor. - The 3RW40 is designed for normal starting applications. - For factory modifications see page 7/124. - For dimensional drawings see page 7/125. Class 73 non-combination starters include: - NEMA rated enclosure - Fusible Disconnect - 3RW40 Sirius softstarter with built-in OL and bypass - Control Circuit Transformer - Isolation Contactor	Ideal applications for 3RW40 enclosed softstarters - Fans - Pumps - Easy starting loads starting in less than 10 seconds Class 74 starters are built to UL and CSA standards

3RW40 for Standard Applications

Enclosed Fusible Combination (Starter With Fusible Disconnect)

Rated Operating Current	MAX HP ${ }^{(1)}$				$\begin{array}{\|l\|} \hline \mathrm{KW} \\ \mathrm{3BOV} \\ \hline \end{array}$	Class 10 Light Duty (350\% * le for 10s) ${ }^{(2)}$										
	200 V	230 V		575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
11	3	3	7.5	-	6	3RW4024-1BB14	74AR3_BFAF		74AR3_DFAF		74AR3_OFAF		74AR3_EFAF		74AR3_WFAF	
23	5	7.5	15	-	13	3RW4026-1BB14	74BR3_BFAF		74BR3_DFAF		74BR3_OFAF		74BR3_EFAF		74BR3_WFAF	
29	7.5	10	20	-	16	3RW4027-1BB14	74CR3_BFAF		74CR3_DFAF		74CR3_OFAF		74CR3_EFAF		74CR3_WFAF	
34	10	10	25	-	18	3RW4028-1BB14	74DR3_BFAF		74DR3_DFAF		74DR3_OFAF		74DR3_EFAF		74DR3_WFAF	
42	10	15	30	-	23	3RW4036-1BB14	74ER3_BFAF		74ER3_DFAF		74ER3_OFAF		74ER3_EFAF		74ER3_WFAF	
58	15	20	40	-	31	3RW4037-1BB14	74FR3_BFAF		74FR3_DFAF		74FR3_OFAF		74FR3_EFAF		74FR3_WFAF	
62	20	20	40	-	33	3RW4038-1BB14	74GR3_BFAF		74GR3_DFAF		74GR3_0FAF		74GR3_EFAF		74GR3_WFAF	
73	20	25	50	-	39	3RW4046-1BB14	74HR3_BFAF		74HR3_DFAF		74HR3_OFAF		74HR3_EFAF		74HR3_WFAF	
98	30	30		-	52	3RW4047-1BB14	74JR3_BFAF		74JR3_DFAF		74JR3_OFAF		74JR3_EFAF		74JR3_WFAF	
						200 V	6		6		6		6		6	
						230V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460V	4		4		4		4		4	

Ordering Information

- Enclosed devices should be ordered by the FLA of the motor
- The 3RW40 is designed for normal starting applications (Class 10 applications)
- For factory modifications see page 7/124
- For dimensional drawings see page 7/125

Class 74 combination starters include:
3RW40 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4
- NEMA rated enclosure
- Fusible disconnect
stainless steel
- Compact size
- Built-in bypass contactor
- Voltage ramp up and ramp down
- Current limit adjustment of 125-550\%
- Internal overload class 10, 15, or 20
- Internal self protection
- Fault monitoring

Ideal applications for 3RW40 enclosed softstarters:
. Fans

- Pumps
- Building/construction machines
- Presses
- Escalators
- Transport systems
- Air conditioning systems
- Ventilators
- Assembly lines

Class 74 starters are built to UL and CSA standards.

For all technical information, please consult the 2006 Industrial Controls Catalog or contact your local sales support center.

3RW40 for Standard Applications

Enclosed Fusible Combination (Starter with Fusible Disconnect)

Rated Operating Current	MAX HP ${ }^{\text {(1) }}$				$\begin{array}{\|l\|} \hline \text { KW } \\ 380 \mathrm{~V} \end{array}$	Class 10 Light Duty (350\% * Im for 10s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price S	NEMA 4	List Price S	NEMA 4/4X Stainless Steel	List Price \$
117	30	40	75	-	56	3RW4055-6BB34	74AS3_BFAF		74AS3_DFAF		74AS3_OFAF		74AS3_EFAF		74AS3_WFAF	
145	40	50	100	-	75	3RW4056-6BB34	74BS3_BFAF		74BS3_DFAF		74BS3_OFAF		74BS3_EFAF		74BS3_WFAF	
205	60	75	150	-	112	3RW4073-6BB34	74CS3_BFAF		74CS3_DFAF		74CS3_OFAF		74CS3_EFAF			
248	75	100	200	-	149	3RW4074-6BB34	74DS3_BFAF		74DS3_DFAF		74DS3_OFAF		74DS3_EFAF			
315	100	125	250	-	186	3RW4075-6BB34	74ES3_BFAF		74ES3_DFAF		74ES3_OFAF		74ES3_EFAF			
385	125	150	300	-	224	3RW4076-6BB34	74FS3_BFAF		74FS3_DFAF		74FS3_OFAF		74FS3_EFAF			
						200V	6		6		6		6		6	
						230V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460V	4		4		4		4		4	
117	-	-			-	3RW4055-6BB35	74AS35BFAF		74AS35DFAF		74AS350FAF		74AS35EFAF		74AS35WFAF	
145	-	-	100	150	-	3RW4056-6BB35	74BS35BFAF		74BS35DFAF		74BS350FAF		74BS35EFAF		74BS35WFAF	
205	-	-			-	3RW4073-6BB35	74CS35BFAF		74CS35DFAF		74CS350FAF		74CS35EFAF			
248	-	-			-	3RW4074-6BB35	74DS35BFAF		74DS35DFAF		74DS350FAF		74DS35EFAF			
315	-	-		300	-	3RW4075-6BB35	74ES35BFAF		74ES35DFAF		74ES350FAF		74ES35EFAF			
385	-	-			-	3RW4076-6BB35	74FS35BFAF		74FS35DFAF		74FS350FAF		74FS35EFAF			

Enclosed Fusible Combination (Starter with Fusible Disconnect)

Rated Operating Current	MAX HP ${ }^{(1)}$				$\begin{aligned} & \mathrm{KW} \\ & 380 \mathrm{~V} \end{aligned}$	Class 20 Severe Duty (350\% * Ie for 20s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price $\$$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
112	30	40	75	-	56	3RW4055-6BB34	74AS3_BFAF		74AS3_DFAF		74AS3_OFAF		74AS3_EFAF		74AS3_WFAF	
132	40	50	100	-	75	3RW4056-6BB34	74BS3_BFAF		74BS3_DFAF		74BS3_OFAF		74BS3_EFAF		74BS3_WFAF	
185	60	60	125	-	93	3RW4073-6BB34	74CS3_BFAF		74CS3_DFAF		74CS3_OFAF		74CS3_EFAF			
205	60	75	150	-	112	3RW4074-6BB34	74DS3_BFAF		74DS3_DFAF		74DS3_OFAF		74DS3_EFAF			
280	75	100	200	-	149	3RW4075-6BB34	74ES3_BFAF		74ES3_DFAF		74ES3_OFAF		74ES3_EFAF			
340	100	125	250	-	186	3RW4076-6BB34	74FS3_BFAF		74FS3_DFAF		74FS3_0FAF		74FS3_EFAF			
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460 V	4		4		4		4		4	
112	-	-		75	-	3RW4055-6BB35	74AS35BFAF		74AS35DFAF		74AS350FAF		74AS35EFAF		74AS35WFAF	
132	-	-	100	125	-	3RW4056-6BB35	74BS35BFAF		74BS35DFAF		74BS350FAF		74BS35EFAF		74BS35WFAF	
185	-	-	125		-	3RW4073-6BB35	74CS35BFAF		74CS35DFAF		74CS350FAF		74CS35EFAF			
205	-	-	150		-	3RW4074-6BB35	74DS35BFAF		74DS35DFAF		74DS350FAF		74DS35EFAF			
280	-	-	200		-	3RW4075-6BB35	74ES35BFAF		74ES35DFAF		74ES350FAF		74ES35EFAF			
340	-	-	250	300	-	3RW4076-6BB35	74FS35BFAF		74FS35DFAF		74FS350FAF		74FS35EFAF			

[^61] HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.

3RW44 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4 stainless steel
- Compact size
- Built-in bypass contactor
- Multiple starting/stopping techniques including torque control
- Internal overload class 5, 10, 15, 20, or 30
- Built-in graphical LCD keypad
- Internal self protection
- Fault monitoring
- 3 parameter sets
- Communication capable via opt. Profibus module
- Programmable inputs and outputs
- External keypad available

Ordering Information

Enclosed devices should be ordered by the FLA of the motor.

- The 3RW44 is designed for normal starting applications.
For factory modifications see page 7/124
- For dimensional drawings see page 7/125.

Class 73 non-combination starters include:

- NEMA rated enclosure
- 3RW44 Sirius softstarter with built-in OL and bypass
- Control circuit transformer
- Reset button

3RW44 For High Feature Applications

Enclosed Non-Combination (Starter Only)

Rated Operating Current	MAX HP ${ }^{(1)}$				$\begin{aligned} & \text { KW } \\ & 380 \mathrm{~V} \end{aligned}$	Class 10 Light Duty (350\% * Im for 10s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price S	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
26	7.5	7.5	15	-	12	3RW4422-1BC34	73AT3_BFA		73AT3_DFA		73AT3_0FA		73AT3_EFA		73AT3_WFA	
32	10	10	20	-	15	3RW4423-1BC34	73BT3_BFA		73BT3_DFA		73BT3_0FA		73BT3_EFA		73BT3_WFA	
42	10	15	25	-	19	3RW4424-1BC34	73CT3_BFA		73CT3_DFA		73CT3_0FA		73CT3_EFA		73CT3_WFA	
51	15	15	30	-	22	3RW4425-1BC34	73DT3_BFA		73DT3_DFA		73DT3_OFA		73DT3_EFA		73DT3_WFA	
68	20	25	50	-	37	3RW4426-1BC34	73ET3_BFA		73ET3_DFA		73ET3_0FA		73ET3_EFA		73ET3_WFA	
82	25	30	60	-	45	3RW4427-1BC34	73FT3_BFA		73FT3_DFA		73FT3_0FA		73FT3_EFA		73FT3_WFA	
100	30	30	75	-	56	3RW4434-6BC34	73GT3_BFA		73GT3_DFA		73GT3_0FA		73GT3_EFA		73GT3_WFA	
117	30	40	75	-	56	3RW4435-6BC34	73HT3_BFA		73HT3_DFA		73HT3_0FA		73HT3_EFA		73HT3_WFA	
145	40	50	100	-	75	3RW4436-6BC34	73JT3_BFA		73JT3_DFA		73JT3_0FA		73JT3_EFA		73JT3_WFA	
180	60	60	125	-	93	3RW4443-6BC34	73KT3_BFA		73KT3_DFA		73KT3_0FA		73KT3_EFA		73KT3_WFA	
215	60	75	150	-	112	3RW4444-6BC34	73LT3_BFA		73LT3_DFA		73LT3_0FA		73LT3_EFA		73LT3_WFA	
280	75	100	200	-	149	3RW4445-6BC34	73MT3_BFA		73MT3_DFA		73MT3_OFA		73MT3_EFA		73MT3_WFA	
315	100	125	250	-	186	3RW4446-6BC34	73NT3_BFA		73NT3_DFA		73NT3_0FA		73NT3_EFA		73NT3_WFA	
385	125	150	300	-	224	3RW4447-6BC34	73PT3_BFA		73PT3_DFA		73PT3_0FA		73PT3_EFA		73PT3_WFA	
494	150	200	400	-	298	3RW4453-6BC34	730T3_BFA		730T3_DFA		730T3_0FA		730T3_EFA			
551	150	200	450	-	336	3RW4454-6BC34	73RT3_BFA		73RT3_DFA		73RT3_0FA		73RT3_EFA			
615	200	250	500	-	373	3RW4455-6BC34	73ST3_BFA		73ST3_DFA		73ST3_0FA		73ST3_EFA			
693	200	250	550	-	410	3RW4456-6BC34	73TT3_BFA		73TT3_DFA		73TT3_0FA		73TT3_EFA			
780	200	250	600	-	447	3RW4457-6BC34	73WT3_BFA		73WT3_DFA		73WT3_0FA					
970	350	350	800	-	597	3RW4465-6BC34	73YT3_BFA				73YT3_0FA					
1076	350	400	900	-	972	3RW4466-6BC34	73ZT3_BFA				73ZT3_0FA					
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380V	3		3		3		3		3	
						460 V	4		4		4		4		4	
26	-	-	15	20	-	3RW4422-1BC35	73AT35BFA		73AT35DFA		73AT350FA		73AT35EFA		73AT35WFA	
32	-	-	20	25	-	3RW4423-1BC35	73BT35BFA		73BT35DFA		73BT350FA		73BT35EFA		73BT35WFA	
42	-	-	25	30	-	3RW4424-1BC35	73CT35BFA		73CT35DFA		73CT350FA		73CT35EFA		73CT35WFA	
51	-	-	30	40	-	3RW4425-1BC35	73DT35BFA		73DT35DFA		73DT350FA		73DT35EFA		73DT35WFA	
68	-	-	50	50	-	3RW4426-1BC35	73ET35BFA		73ET35DFA		73ET350FA		73ET35EFA		73ET35WFA	
82	-	-	60	75	-	3RW4427-1BC35	73FT35BFA		73FT35DFA		73FT350FA		73FT35EFA		73FT35WFA	
100	-	-	75	75	-	3RW4434-6BC35	73GT35BFA		73GT35DFA		73GT350FA		73GT35EFA		73GT35WFA	
117	-	-	75	100	-	3RW4435-6BC35	73HT35BFA		73HT35DFA		73HT350FA		73HT35EFA		73HT35WFA	
145	-	-	100	125	-	3RW4436-6BC35	73JT35BFA		73JT35DFA		73JT350FA		73JT35EFA		73JT35WFA	
180	-	-	125	150	-	3RW4443-6BC35	73KT35BFA		73KT35DFA		73KT350FA		73KT35EFA		73KT35WFA	
215	-	-	150	200	-	3RW4444-6BC35	73LT35BFA		73LT35DFA		73LT350FA		73LT35EFA		73LT35WFA	
280	-	-	200	250	-	3RW4445-6BC35	73MT35BFA		73MT35DFA		73MT350FA		73MT35EFA		73MT35WFA	
315	-	-	250	300	-	3RW4446-6BC35	73NT35BFA		73NT35DFA		73NT350FA		73NT35EFA		73NT35WFA	
385	-	-	300	400	-	3RW4447-6BC35	73PT35BFA		73PT35DFA		73PT350FA		73PT35EFA		73PT35WFA	
494	-	-	400	500	-	3RW4453-6BC35	730T35BFA		730T35DFA		730T350FA		730T35EFA			
551	-	-	450	600	-	3RW4454-6BC35	73RT35BFA		73RT35DFA		73RT350FA		73RT35EFA			
615	-	-	500	700	-	3RW4455-6BC35	73ST35BFA		73ST35DFA		73ST350FA		73ST35EFA			
693	-	-	550	750	-	3RW4456-6BC35	73TT35BFA		73TT35DFA		73TT350FA		73TT35EFA			
780	-	-	600	850	-	3RW4457-6BC35	73WT35BFA		73WT35DFA		73WT350FA		73WT35EFA			
970	-	-	800	1000		3RW4465-6BC35	73YT35BFA				73YT350FA					
1076	-	-	900	1100	-	3RW4466-6BC35	73ZT35BFA				73ZT350FA					

[^62](2) Starter selection is dependent on type of application. Im = FLA rating of motor.

HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.

3RW44 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4
stainless steel
- Compact size
- Built-in bypass contactor
- Multiple starting/stopping techniques including torque control
- Internal overload class 10,15 , or 20
- Built-in graphical LCD keypad
- Internal self protection
- Fault monitoring
- 3 parameter sets
- Communication capable via opt. Profibus module
- Programmable inputs and outputs
- External keypad available

Ordering Information

- Enclosed devices should be ordered by the FLA of the motor.
- The 3RW44 is designed for normal starting applications.
- For factory modifications see page 7/124.
- For dimensional drawings see page $7 / 125$.

Class 73 non-combination starters include:

- NEMA rated enclosure
- 3RW44 Sirius softstarter with built-in OL and bypass
- Control circuit transformer
- Line side power terminal block
- Reset button

Ideal applications for 3RW44 enclosed softstarters:

- Fans
- Pumps
- Conveying systems and lifts
- Hydraulics
- Machine tools
- Mills saws
- Crushers and grinders
- Mixers
- HVAC systems

The 3RW44 severe duty rating table should be applied for high inertia applications such rock crushers, chippers, screw compressors, ect.
Class 73 starters are built to UL and CSA standards.

3RW44 For High Feature Applications

Enclosed Non-Combination (Starter Only)

Rated	MAX HP ${ }^{(1)}$				$\begin{array}{\|l\|} \hline \text { KW } \\ 380 \mathrm{~V} \end{array}$	Class 20 Severe Duty (350\% * Im for 20s) ${ }^{(2)}$										
Operating Current	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
26	7.5	7.5	15	-	12	3RW4422-1BC34	73AT3_BFA		73AT3_DFA		73AT3_0FA		73AT3_EFA		73AT3_WFA	
32	10	10	20	-	15	3RW4423-1BC34	73BT3_BFA		73BT3_DFA		73BT3_0FA		73BT3_EFA		73BT3_WFA	
42	10	15	25	-	19	3RW4424-1BC34	73CT3_BFA		73CT3_DFA		73CT3_0FA		73CT3_EFA		73CT3_WFA	
51	15	15	30	-	22	3RW4425-1BC34	73DT3_BFA		73DT3_DFA		73DT3_0FA		73DT3_EFA		73DT3_WFA	
68	20	25	50	-	37	3RW4426-1BC34	73ET3_BFA		73ET3_DFA		73ET3_OFA		73ET3_EFA		73ET3_WFA	
82	25	30	60	-	45	3RW4427-1BC34	73FT3_BFA		73FT3_DFA		73FT3_OFA		73FT3_EFA		73FT3_WFA	
97	30	30	60	-	45	3RW4434-6BC34	73GT3_BFA		73GT3_DFA		73GT3_0FA		73GT3_EFA		73GT3_WFA	
113	30	40	75	-	56	3RW4435-6BC34	73HT3_BFA		73HT3_DFA		73HT3_0FA		73HT3_EFA		73HT3_WFA	
134	40	50	75	-	56	3RW4436-6BC34	73JT3_BFA		73JT3_DFA		73JT3_OFA		73JT3_EFA		73JT3_WFA	
175	50	60	100	-	75	3RW4443-6BC34	73KT3_BFA		73KT3_DFA		73KT3_0FA		73KT3_EFA		73KT3_WFA	
195	60	75	125	-	93	3RW4444-6BC34	73LT3_BFA		73LT3_DFA		73LT3_0FA		73LT3_EFA		73LT3_WFA	
243	75	75	150	-	112	3RW4445-6BC34	73MT3_BFA		73MT3_DFA		73MT3_OFA		73MT3_EFA		73MT3_WFA	
263	75	100	200	-	149	3RW4446-6BC34	73NT3_BFA		73NT3_DFA		73NT3_0FA		73NT3_EFA		73NT3_WFA	
326	100	125	250	-	186	3RW4447-6BC34	73PT3_BFA		73PT3_DFA		73PT3_0FA		73PT3_EFA		73PT3_WFA	
494	150	150	400	-	224	3RW4453-6BC34	730T3_BFA		730T3_DFA		730T3_0FA		730T3_EFA			
551	150	200	450	-	298	3RW4454-6BC34	73RT3_BFA		73RT3_DFA		73RT3_0FA		73RT3_EFA			
615	200	200	500	-	336	3RW4455-6BC34	73ST3_BFA		73ST3_DFA		73ST3_OFA		73ST3_EFA			
634	200	250	500	-	373	3RW4456-6BC34	73TT3_BFA		73TT3_DFA		73TT3_OFA		73TT3_EFA			
650	200	250	550	-	410	3RW4457-6BC34	73WT3_BFA		73WT3_DFA		73WT3_0FA		73WT3_EFA			
880	300	350	700	-	522	3RW4465-6BC34	73YT3_BFA				73YT3_0FA					
940	300	350	750	-	559	3RW4466-6BC34	73ZT3_BFA				73ZT3_OFA					
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380V	3		3		3		3		3	
						460V	4		4		4		4		4	
26	-	-	15	20	-	3RW4422-1BC35	73AT35BFA		73AT35DFA		73AT350FA		73AT35EFA		73AT35WFA	
32	-	-	20	25	-	3RW4423-1BC35	73BT35BFA		73BT35DFA		73BT350FA		73BT35EFA		73BT35WFA	
42	-	-	25	30	-	3RW4424-1BC35	73CT35BFA		73CT35DFA		73CT350FA		73CT35EFA		73CT35WFA	
51	-	-	30	40	-	3RW4425-1BC35	73DT35BFA		73DT35DFA		73DT350FA		73DT35EFA		73DT35WFA	
68	-	-	50	50	-	3RW4426-1BC35	73ET35BFA		73ET35DFA		73ET350FA		73ET35EFA		73ET35WFA	
82	-	-	60	75	-	3RW4427-1BC35	73FT35BFA		73FT35DFA		73FT350FA		73FT35EFA		73FT35WFA	
97	-	-	60	75	-	3RW4434-6BC35	73GT35BFA		73GT35DFA		73GT350FA		73GT35EFA		73GT35WFA	
113	-	-	75	100	-	3RW4435-6BC35	73HT35BFA		73HT35DFA		73HT350FA		73HT35EFA		73HT35WFA	
134	-	-	75	125	-	3RW4436-6BC35	73JT35BFA		73JT35DFA		73JT350FA		73JT35EFA		73JT35WFA	
175	-	-	100	150	-	3RW4443-6BC35	73KT35BFA		73KT35DFA		73KT350FA		73KT35EFA		73KT35WFA	
195	-	-	125	200	-	3RW4444-6BC35	73LT35BFA		73LT35DFA		73LT350FA		73LT35EFA		73LT35WFA	
243	-	-	150	200	-	3RW4445-6BC35	73MT35BFA		73MT35DFA		73MT350FA		73MT35EFA		73MT35WFA	
263	-	-	200	250	-	3RW4446-6BC35	73NT35BFA		73NT35DFA		73NT350FA		73NT35EFA		73NT35WFA	
326	-	-	250	300	-	3RW4447-6BC35	73PT35BFA		73PT35DFA		73PT350FA		73PT35EFA		73PT35WFA	
494	-	-	400	500	-	3RW4453-6BC35	730T35BFA		730T35DFA		730T350FA		730T35EFA			
551	-	-	450	550	-	3RW4454-6BC35	73RT35BFA		73RT35DFA		73RT350FA		73RT35EFA			
615	-	-	500	600	-	3RW4455-6BC35	73ST35BFA		73ST35DFA		73ST350FA		73ST35EFA			
693	-	-	500	650	-	3RW4456-6BC35	73TT35BFA		73TT35DFA		73TT350FA		73TT35EFA			
780	-	-	550	700	-	3RW4457-6BC35	73WT35BFA		73WT35DFA		73WT350FA		73WT35EFA			
880	-	-	700	850	-	3RW4465-6BC35	73YT35BFA				73YT350FA					
940	-	-	750	900	-	3RW4466-6BC35	73ZT35BFA				73ZT350FA					

[^63]

3RW44 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4 stainless stee
- Compact size
- Built-in bypass contactor
- Multiple starting/stopping techniques including torque control
- Internal overload class 5, 10, 15, 20, or 30
- Built-in graphical LCD keypad
- Internal self protection
- Fault monitoring
- 3 parameter sets
- Communication capable via opt. Profibus module
- Programmable inputs and outputs
- External keypad available

Ordering Information

Enclosed devices should be ordered by the FLA of the motor.

Ideal applications for 3RW44 enclosed

- The 3RW44 is designed for normal starting applications.
- For factory modifications see page $7 / 124$.
- For dimensional drawings see page $7 / 125$.
- For stocked versions see page 7/89.

Class 74 non-combination starters include:

- NEMA rated enclosure
- 3RW44 Sirius softstarter with built-in OL and bypass
- Circuit breaker with disconnect
- Control circuit transformer
- Reset button
softstarters:
- Fans
- Pumps
- Conveying systems and lifts
- Hydraulics
- Machine tools
- Mills saws
- Crushers and grinders
- Mixers
- HVAC systems

The 3RW44 severe duty rating table should be applied for high inertia applications such rock crushers, chippers, screw compressors, ect.
Class 74 starters are built to UL and CSA standards.

3RW44 For High Feature Applications

Enclosed Combination with Circuit Breaker Disconnect

Rated Operating Current	MAX HP ${ }^{\text {® }}$				$\begin{array}{\|l\|} \hline K W \\ 380 V \end{array}$	Class 10 Light Duty (350\% * Im for 10s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
26	7.5	7.5	15	-	12	3RW4422-1BC34	74AT3_BFAP		74AT3_DFAP		74AT3_OFAP		74AT3_EFAP		74AT3_WFAP	
32	10	10	20	-	15	3RW4423-1BC34	74BT3_BFAP		74BT3_DFAP		74BT3_0FAP		74BT3_EFAP		74BT3_WFAP	
42	10	15	25	-	19	3RW4424-1BC34	74CT3_BFAP		74CT3_DFAP		74CT3_0FAP		74CT3_EFAP		74CT3_WFAP	
51	15	15	30	-	22	3RW4425-1BC34	74DT3_BFAP		74DT3_DFAP		74DT3_OFAP		74DT3_EFAP		74DT3_WFAP	
68	20	25	50	-	37	3RW4426-1BC34	74ET3_BFAP		74ET3_DFAP		74ET3_OFAP		74ET3_EFAP		74ET3_WFAP	
82	25	30	60	-	45	3RW4427-1BC34	74FT3_BFAP		74FT3_DFAP		74FT3_OFAP		74FT3_EFAP		74FT3_WFAP	
100	30	30	75	-	56	3RW4434-6BC34	74GT3_BFAP		74GT3_DFAP		74GT3_OFAP		74GT3_EFAP		74GT3_WFAP	
117	30	40	75	-	56	3RW4435-6BC34	74HT3_BFAP		74HT3_DFAP		74HT3_0FAP		74HT3_EFAP		74HT3_WFAP	
145	40	50	100	-	75	3RW4436-6BC34	74JT3_BFAP		74JT3_DFAP		74JT3_OFAP		74JT3_EFAP		74JT3_WFAP	
180	60	60	125	-	93	3RW4443-6BC34	74KT3_BFAP		74KT3_DFAP		74KT3_0FAP		74KT3_EFAP			
215	60	75	150	-	112	3RW4444-6BC34	74LT3_BFAP		74LT3_DFAP		74LT3_0FAP		74LT3_EFAP			
280	75	100	200	-	149	3RW4445-6BC34	74MT3_BFAP		74MT3_DFAP		74MT3_OFAP		74MT3_EFAP			
315	100	125	250	-	186	3RW4446-6BC34	74NT3_BFAP		74NT3_DFAP		74NT3_OFAP		74NT3_EFAP			
385	125	150	300	-	224	3RW4447-6BC34	74PT3_BFAP		74PT3_DFAP		74PT3_0FAP		74PT3_EFAP			
494	150	200	400	-	298	3RW4453-6BC34	740T3_BFAT		740T3_DFAT		740T3_0FAT		740T3_EFAT			
551	150	200	450	-	336	3RW4454-6BC34	74RT3_BFAT		74RT3_DFAT		74RT3_0FAT		74RT3_EFAT			
615	200	250	500	-	373	3RW4455-6BC34	74ST3_BFAT		74ST3_DFAT		74ST3_0FAT		74ST3_EFAT			
693	200	250	550	-	410	3RW4456-6BC34	74TT3_BFAT		74TT3_DFAT		74TT3_OFAT		74TT3_EFAT			
780	200	250	600	-	447	3RW4457-6BC34	74WT3_BFAT		74WT3_DFAT		74WT3_0FAT		74WT3_EFAT			
970	350	350	800	-	597	3RW4465-6BC34	74YT3_BFAT				74YT3_0FAT					
1076	350	400	900	-	672	3RW4466-6BC34	74ZT3_BFAT				74ZT3_0FAT					
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460V	4		4		4		4		4	
26	-	-	15	20	-	3RW4422-1BC35	74AT35BFAP		74AT35DFAP		74AT350FAP		74AT35EFAP		74AT35WFAP	
32	-	-	20	25	-	3RW4423-1BC35	74BT35BFAP		74BT35DFAP		74BT350FAP		74BT35EFAP		74BT35WFAP	
42	-	-	25	30	-	3RW4424-1BC35	74СТ35BFAP		74CT35DFAP		74CT350FAP		74CT35EFAP		74CT35WFAP	
51	-	-	30	40	-	3RW4425-1BC35	74DT35BFAP		74DT35DFAP		74DT350FAP		74DT35EFAP		74DT35WFAP	
68	-	-	50	50	-	3RW4426-1BC35	74ET35BFAP		74ET35DFAP		74ET350FAP		74ET35EFAP		74ET35WFAP	
82	-	-	60	75	-	3RW4427-18C35	74FT35BFAP		74FT35DFAP		74FT350FAP		74FT35EFAP		74FT35WFAP	
100	-	-	75	75	-	3RW4434-6BC35	74GT35BFAP		74GT35DFAP		74GT350FAP		74GT35EFAP		74GT35WFAP	
117	-	-	75	100	-	3RW4435-6BC35	74HT35BFAP		74HT35DFAP		74HT350FAP		74HT35EFAP		74HT35WFAP	
145	-	-	100	125	-	3RW4436-6BC35	74JT35BFAP		74JT35DFAP		74JT350FAP		74JT35EFAP		74JT35WFAP	
180	-	-	125	150	-	3RW4443-6BC35	74KT35BFAP		74KT35DFAP		74KT350FAP		74KT35EFAP			
215	-	-	150	200	-	3RW4444-6BC35	74LT35BFAP		74LT35DFAP		74LT350FAP		74LT35EFAP			
280	-	-	200	250	-	3RW4445-6BC35	74MT35BFAP		74MT35DFAP		74MT350FAP		74MT35EFAP			
315	-	-	250	300	-	3RW4446-6BC35	74NT35BFAP		74NT35DFAP		74NT350FAP		74NT35EFAP			
385	-	-	300	400	-	3RW4447-6BC35	74PT35BFAP		74PT35DFAP		74PT350FAP		74PT35EFAP			
494	-	-	400	500	-	3RW4453-6BC35	740T35BFAT		740T35DFAT		740T350FAT		740T35EFAT			
551	-	-	450	600	-	3RW4454-6BC35	74RT35BFAT		74RT35DFAT		74RT350FAT		74RT35EFAT			
615	-	-	500	700	-	3RW4455-6BC35	74ST35BFAT		74ST35DFAT		74ST350FAT		74ST35EFAT			
693	-	-	550	750	-	3RW4456-6BC35	74TT35BFAT		74TT35DFAT		74TT350FAT		74TT35EFAT			
780	-	-	600	850	-	3RW4457-6BC35	74WT35BFAT		74WT35DFAT		74WT350FAT		74WT35EFAT			
970	-	-	800	1000	-	3RW4465-6BC35	74YT35BFAT				74YT350FAT					
1076	-	-	900	1100	-	3RW4466-6BC35	74ZT35BFAT				74ZT350FAT					

[^64] HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.

3RW44 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4 stainless steel
- Compact size
- Built-in bypass contactor
- Multiple starting/stopping techniques including torque control
- Internal overload class 5, 10, 15, 20, or 30
- Built-in graphical LCD keypad
- Internal self protection
- Fault monitoring
- 3 parameter sets
- Communication capable via opt. Profibus module
- Programmable inputs and outputs
- External keypad available

Ordering Information

Enclosed devices should be ordered by the FLA of the motor.

- The 3RW44 is designed for normal starting applications.
- For factory modifications see page 7/124
- For dimensional drawings see page 7/125.
- For stocked versions see page 7/89.

Class 74 non-combination starters include:

- NEMA rated enclosure
- 3RW44 Sirius softstarter with built-in OL and bypass
- Circuit breaker with disconnect
- Control circuit transformer
- Reset button

Ideal applications for 3RW44 enclosed softstarters:

- Fans
- Pumps
- Conveying systems and lifts
- Hydraulics
- Machine tools
- Mills saws
- Crushers and grinders
- Mixers
- HVAC systems

The 3RW44 severe duty rating table should be applied for high inertia applications such rock crushers, chippers, screw compressors, ect.
Class 74 starters are built to UL and CSA standards.

3RW44 For High Feature Applications

Enclosed Combination with Circuit Breaker Disconnect

	MAX HP ${ }^{(1)}$				$\begin{array}{\|l\|} \hline K W \\ 380 V \\ \hline \end{array}$	Class 20 Severe Duty (350\% * Im for 20s) ${ }^{(2)}$										
Operating Current	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
26	7.5	7.5	15	-	12	3RW4422-1BC34	74AT3_BFAP		74AT3_DFAP		74AT3_OFAP		74AT3_EFAP		74AT3_WFAP	
32	10	10	20	-	15	3RW4423-1BC34	74BT3_BFAP		74BT3_DFAP		74BT3_0FAP		74BT3_EFAP		74BT3_WFAP	
42	10	15	25	-	19	3RW4424-1BC34	74CT3_BFAP		74CT3_DFAP		74CT3_0FAP		74CT3_EFAP		74CT3_WFAP	
51	15	15	30	-	22	3RW4425-1BC34	74DT3_BFAP		74DT3_DFAP		74DT3_0FAP		74DT3_EFAP		74DT3_WFAP	
68	20	25	50	-	37	3RW4426-1BC34	74ET3_BFAP		74ET3_DFAP		74ET3_0FAP		74ET3_EFAP		74ET3_WFAP	
82	25	30	60	-	45	3RW4427-1BC34	74FT3_BFAP		74FT3_DFAP		74FT3_OFAP		74FT3_EFAP		74FT3_WFAP	
97	30	30	60	-	45	3RW4434-6BC34	74GT3_BFAP		74GT3_DFAP		74GT3_0FAP		74GT3_EFAP		74GT3_WFAP	
113	30	40	75	-	56	3RW4435-6BC34	74HT3_BFAP		74HT3_DFAP		74HT3_OFAP		74HT3_EFAP		74HT3_WFAP	
134	40	50	75	-	56	3RW4436-6BC34	74JT3_BFAP		74JT3_DFAP		74JT3_0FAP		74JT3_EFAP		74JT3_WFAP	
175	50	60	100	-	75	3RW4443-6BC34	74KT3_BFAP		74KT3_DFAP		74KT3_0FAP		74KT3_EFAP			
195	60	75	125	-	93	3RW4444-6BC34	74LT3_BFAP		74LT3_DFAP		74LT3_OFAP		74LT3_EFAP			
243	75	75	150	-	112	3RW4445-6BC34	74MT3_BFAP		74MT3_DFAP		74MT3_OFAP		74MT3_EFAP			
263	75	100	200	-	149	3RW4446-6BC34	74NT3_BFAP		74NT3_DFAP		74NT3_OFAP		74NT3_EFAP			
326	100	125	250	-	186	3RW4447-6BC34	74PT3_BFAP		74PT3_DFAP		74PT3_0FAP		74PT3_EFAP			
494	150	150	400	-	224	3RW4453-6BC34	740T3_BFAT		740T3_DFAT		740T3_0FAT		740T3_EFAT			
551	150	200	450	-	298	3RW4454-6BC34	74RT3_BFAT		74RT3_DFAT		74RT3_0FAT		74RT3_EFAT			
615	200	200	500	-	336	3RW4455-6BC34	74ST3_BFAT		74ST3_DFAT		74ST3_0FAT		74ST3_EFAT			
634	200	250	500	-	373	3RW4456-6BC34	74TT3_BFAT		74TT3_DFAT		74TT3_OFAT		74TT3_EFAT			
650	200	250	550	-	410	3RW4457-6BC34	74WT3_BFAT		74WT3_DFAT		74WT3_OFAT		74WT3_EFAT			
880	300	350	700	-	522	3RW4465-6BC34	74YT3_BFAT				74YT3_0FAT					
940	300	350	750	-	559	3RW4466-6BC34	74ZT3_BFAT				74ZT3_OFAT					
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460V	4		4		4		4		4	
26	-	-	15	20	-	3RW4422-1BC35	74AT35BFAP		74AT35DFAP		74AT350FAP		74AT35EFAP		74AT35WFAP	
32	-	-	20	25	-	3RW4423-1BC35	74BT35BFAP		74BT35DFAP		74BT350FAP		74BT35EFAP		74BT35WFAP	
42		-	25	30	-	3RW4424-1BC35	74CT35BFAP		74CT35DFAP		74CT350FAP		74CT35EFAP		74CT35WFAP	
51	-	-	30	40	-	3RW4425-1BC35	74DT35BFAP		74DT35DFAP		74DT350FAP		74DT35EFAP		74DT35WFAP	
68	-	-	50	50	-	3RW4426-1BC35	74ET35BFAP		74ET35DFAP		74ET350FAP		74ET35EFAP		74ET35WFAP	
82	-	-	60	75	-	3RW4427-1BC35	74FT35BFAP		74FT35DFAP		74FT350FAP		74FT35EFAP		74FT35WFAP	
97	-	-	60	75	-	3RW4434-6BC35	74GT35BFAP		74GT35DFAP		74GT350FAP		74GT35EFAP		74GT35WFAP	
113	-	-	75	100	-	3RW4435-6BC35	74HT35BFAP		74HT35DFAP		74HT350FAP		74HT35EFAP		74HT35WFAP	
134	-	-	75	125	-	3RW4436-6BC35	74JT35BFAP		74JT35DFAP		74JT350FAP		74JT35EFAP		74JT35WFAP	
175	-	-	100	150	-	3RW4443-6BC35	74KT35BFAP		74KT35DFAP		74KT350FAP		74KT35EFAP			
195	-	-	125	200	-	3RW4444-6BC35	74LT35BFAP		74LT35DFAP		74LT350FAP		74LT35EFAP			
243	-	-	150	200	-	3RW4445-6BC35	74MT35BFAP		74MT35DFAP		74MT350FAP		74MT35EFAP			
263	-	-	200	250	-	3RW4446-6BC35	74NT35BFAP		74NT35DFAP		74NT350FAP		74NT35EFAP			
326	-	-	250	300	-	3RW4447-6BC35	74PT35BFAP		74PT35DFAP		74PT350FAP		74PT35EFAP			
494	-	-	400	500	-	3RW4453-6BC35	740T35BFAT		740T35DFAT		740T350FAT		740T35EFAT			
551	-	-	450	550	-	3RW4454-6BC35	74RT35BFAT		74RT35DFAT		74RT350FAT		74RT35EFAT			
615	-	-	500	600	-	3RW4455-6BC35	74ST35BFAT		74ST35DFAT		74ST350FAT		74ST35EFAT			
693	-	-	500	650	-	3RW4456-6BC35	74TT35BFAT		74TT35DFAT		74TT350FAT		74TT35EFAT			
780	-	-	550	700	-	3RW4457-6BC35	74WT35BFAT		74WT35DFAT		74WT350FAT		74WT35EFAT			
880	-	-	700	850	-	3RW4465-6BC35	74YT35BFAT				74YT350FAT					
940	-	-	750	900	-	3RW4466-6BC35	74ZT35BFAT				74ZT350FAT					

[^65]

3RW44 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4 stainless steel
- Compact size
- Built-in bypass contactor
- Multiple starting/stopping techniques including torque control
- Internal overload class 5, 10, 15, 20, or 30
- Built-in graphical LCD keypad
- Internal self protection
- Fault monitoring
- 3 parameter sets
- Communication capable via opt. Profibus module
- Programmable inputs and outputs
- External keypad available

Ordering Information

Enclosed devices should be ordered by the FLA of the motor.

- The 3RW44 is designed for normal starting applications.
- For factory modifications see page $7 / 124$.
- For dimensional drawings see page 7/125.

Class 74 non-combination starters include:

- NEMA rated enclosure
- 3RW44 Sirius softstarter with built-in OL and bypass
- Fusible disconnect
- Control circuit transformer
- Reset button

Ideal applications for 3RW44 enclosed softstarters:

- Fans
- Pumps
- Conveying systems and lifts
- Hydraulics
- Machine tools
- Mills saws
- Crushers and grinders
- Mixers
- HVAC systems

The 3RW44 severe duty rating table should be applied for high inertia applications such rock crushers, chippers, screw compressors, ect.
Class 74 starters are built to UL and CSA standards.

For all technical information, please consult the 2006 Industrial Controls Catalog or contact your local sales support center.

3RW44 For High Feature Applications

Enclosed Combination with Fusible Disconnect

	MAX HP ${ }^{(1)}$				$\begin{array}{\|l\|} \hline \text { KW } \\ 380 \mathrm{~V} \end{array}$	Class 10 Light Duty ${ }^{(2)}$ (350\% * Im for 10s)										
Operating Current	200V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price \$	NEMA 4	List Price \$	NEMA 4/4X Stainless Steel	List Price \$
26	7.5	7.5	15	-	12	3RW4422-1BC34	74AT3_BFAF		74AT3_DFAF		74AT3_0FAF		74AT3_EFAF		74AT3_WFAF	
32	10	10	20	-	15	3RW4423-1BC34	74BT3_BFAF		74BT3_DFAF		74BT3_OFAF		74BT3_EFAF		74BT3_WFAF	
42	10	15	25	-	19	3RW4424-1BC34	74CT3_BFAF		74CT3_DFAF		74CT3_OFAF		74CT3_EFAF		74CT3_WFAF	
51	15	15	30	-	22	3RW4425-1BC34	74DT3_BFAF		74DT3_DFAF		74DT3_0FAF		74DT3_EFAF		74DT3_WFAF	
68	20	25	50	-	37	3RW4426-1BC34	74ET3_BFAF		74ET3_DFAF		74ET3_OFAF		74ET3_EFAF		74ET3_WFAF	
82	25	30	60	-	45	3RW4427-1BC34	74FT3_BFAF		74FT3_DFAF		74FT3_OFAF		74FT3_EFAF		74FT3_WFAF	
100	30	30	75	-	56	3RW4434-6BC34	74GT3_BFAF		74GT3_DFAF		74GT3_OFAF		74GT3_EFAF		74GT3_WFAF	
117	30	40	75	-	56	3RW4435-6BC34	74HT3_BFAF		74HT3_DFAF		74HT3_0FAF		74HT3_EFAF		74HT3_WFAF	
145	40	50	100	-	75	3RW4436-6BC34	74JT3_BFAF		74JT3_DFAF		74JT3_OFAF		74JT3_EFAF		74JT3_WFAF	
180	60	60	125		93	3RW4443-6BC34	74KT3_BFAF		74KT3_DFAF		74KT3_OFAF		74KT3_EFAF			
215	60	75	150	-	112	3RW4444-6BC34	74LT3_BFAF		74LT3_DFAF		74LT3_OFAF		74LT3_EFAF			
280	75	100	200	-	149	3RW4445-6BC34	74MT3_BFAF		74MT3_DFAF		74MT3_OFAF		74MT3_EFAF			
315	100	125	250	-	186	3RW4446-6BC34	74NT3_BFAF		74NT3_DFAF		74NT3_OFAF		74NT3_EFAF			
385	125	150	300	-	224	3RW4447-6BC34	74PT3_BFAF		74PT3_DFAF		74PT3_0FAF		74PT3_EFAF			
494	150	200	400	-	298	3RW4453-6BC34	740T3_BFAF				740T3_0FAF					
551	150	200	450	-	336	3RW4454-6BC34	74RT3_BFAF				74RT3_0FAF					
615	200	250	500	-	373	3RW4455-6BC34	74ST3_BFAF				74ST3_OFAF					
693	200	250	550	-		3RW4456-6BC34	74TT3_BFAF				74TT3_OFAF					
780	200	250	600	-	447	3RW4457-6BC34	74WT3_BFAF				74WT3_OFAF					
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460 V	4		4		4		4		4	
26	-	-		20	-	3RW4422-1BC35	74AT35BFAF		74AT35DFAF		74AT350FAF		74AT35EFAF		74AT35WFAF	
32	-	-		25	-	3RW4423-1BC35	74BT35BFAF		74BT35DFAF		74BT350FAF		74BT35EFAF		74BT35WFAF	
42	-	-		30	-	3RW4424-1BC35	74CT35BFAF		74CT35DFAF		74CT350FAF		74CT35EFAF		74CT35WFAF	
51	-	-		40	-	3RW4425-1BC35	74DT35BFAF		74DT35DFAF		74DT350FAF		74DT35EFAF		74DT35WFAF	
68	-	-		50	-	3RW4426-1BC35	74ET35BFAF		74ET35DFAF		74ET350FAF		74ET35EFAF		74ET35WFAF	
82	-	-	60	75	-	3RW4427-1BC35	74FT35BFAF		74FT35DFAF		74FT350FAF		74FT35EFAF		74FT35WFAF	
100	-	-	75	75	-	3RW4434-6BC35	74GT35BFAF		74GT35DFAF		74GT350FAF		74GT35EFAF		74GT35WFAF	
117	-	-	75	100	-	3RW4435-6BC35	74HT35BFAF		74HT35DFAF		74HT350FAF		74HT35EFAF		74HT35WFAF	
145	-	-	100	125	-	3RW4436-6BC35	74JT35BFAF		74JT35DFAF		74JT350FAF		74JT35EFAF		74JT35WFAF	
180	-	-	125	150	-	3RW4443-6BC35	74KT35BFAF		74KT35DFAF		74KT350FAF		74KT35EFAF			
215	-	-	150	200	-	3RW4444-6BC35	74LT35BFAF		74LT35DFAF		74LT350FAF		74LT35EFAF			
280	-	-	200	250	-	3RW4445-6BC35	74MT35BFAF		74MT35DFAF		74MT350FAF		74MT35EFAF			
315	-	-	250	300	-	3RW4446-6BC35	74NT35BFAF		74NT35DFAF		74NT350FAF		74NT35EFAF			
385	-	-	300	400	-	3RW4447-6BC35	74PT35BFAF		74PT35DFAF		74PT350FAF		74PT35EFAF			
494	-	-	400	500	-	3RW4453-6BC35	740T35BFAF				740T350FAF					
551	-	-	450	600	-	3RW4454-6BC35	74RT35BFAF				74RT350FAF					
615	-	-	500	700	-	3RW4455-6BC35	74ST35BFAF				74ST350FAF					
693	-	-	550	750	-	3RW4456-6BC35	74TT35BFAF				74TT350FAF					
780	-	-	600	850	-	3RW4457-6BC35	74WT35BFAF				74WT350FAF					

[^66]

3RW44 Enclosed features:

- Available in NEMA 1, 12, 3R, 4, and 4 stainless steel
- Compact size
- Built-in bypass contactor
- Multiple starting/stopping techniques including torque control
- Internal overload class 5, 10, 15, 20, or 30
- Built-in graphical LCD keypad
- Internal self protection
- Fault monitoring
- 3 parameter sets
- Communication capable via opt. Profibus module
- Programmable inputs and outputs
- External keypad available

Ordering Information

Enclosed devices should be ordered by the FLA of the motor.

- The 3RW44 is designed for normal starting applications.
- For factory modifications see page 7/124.
- For dimensional drawings see page 7/125.

Class 74 non-combination starters include:

- NEMA rated enclosure
- 3RW44 Sirius softstarter with built-in OL and bypass
- Fusible disconnect
- Control circuit transformer
- Reset button

Ideal applications for 3RW44 enclosed softstarters:

- Fans
- Pumps
- Conveying systems and lifts
- Hydraulics
- Machine tools
- Mills saws
- Crushers and grinders
- Mixers
- HVAC systems

The 3RW44 severe duty rating table should be applied for high inertia applications such rock crushers, chippers, screw compressors, ect.
Class 74 starters are built to UL and CSA standards.

For all technical information, please consult the 2006 Industrial Controls Catalog or contact your local sales support center.

3RW44 For High Feature Applications

Enclosed Combination with Fusible Disconnect

Rated Operating Current	MAX HP ${ }^{\text {(1) }}$				$\begin{aligned} & \text { KW } \\ & 380 \mathrm{~V} \end{aligned}$	Class 20 Severe Duty (350\% * Im for 20s) ${ }^{(2)}$										
	200 V	230 V	460 V	575V		OPEN Style (Starter Only)	NEMA 1	List Price \$	NEMA 3R	List Price \$	NEMA 12	List Price $\$$	NEMA 4	List Price \$	NEMA 4/4X Stainless Stee	List Price \$
26	7.5	7.5	15	-	12	3RW4422-1BC34	74AT3_BFAF		74AT3_DFAF		74AT3_0FAF		74AT3_EFAF		74AT3_WFAF	
32	10	10	20	-	15	3RW4423-1BC34	74BT3_BFAF		74BT3_DFAF		74BT3_0FAF		74BT3_EFAF		74BT3_WFAF	
42	10	15	25	-	19	3RW4424-1BC34	74CT3_BFAF		74CT3_DFAF		74CT3_OFAF		74CT3_EFAF		74CT3_WFAF	
51	15	15	30	-	22	3RW4425-1BC34	74DT3_BFAF		74DT3_DFAF		74DT3_OFAF		74DT3_EFAF		74DT3_WFAF	
68	20	25	50	-	37	3RW4426-1BC34	74ET3_BFAF		74ET3_DFAF		74ET3_OFAF		74ET3_EFAF		74ET3_WFAF	
82	25	30	60	-	45	3RW4427-1BC34	74FT3_BFAF		74FT3_DFAF		74FT3_OFAF		74FT3_EFAF		74FT3_WFAF	
97	30	30	60	-	45	3RW4434-6BC34	74GT3_BFAF		74GT3_DFAF		74GT3_OFAF		74GT3_EFAF		74GT3_WFAF	
113	30	40	75	-	56	3RW4435-6BC34	74HT3_BFAF		74HT3_DFAF		74HT3_OFAF		74HT3_EFAF		74HT3_WFAF	
134	40	50	75	-	56	3RW4436-6BC34	74JT3_BFAF		74JT3_DFAF		74JT3_OFAF		74JT3_EFAF		74JT3_WFAF	
175	50	60	100	-	75	3RW4443-6BC34	74KT3_BFAF		74KT3_DFAF		74KT3_OFAF		74KT3_EFAF			
195	60	75	125	-	93	3RW4444-6BC34	74LT3_BFAF		74LT3_DFAF		74LT3_OFAF		74LT3_EFAF			
243	75	75	150	-	112	3RW4445-6BC34	74MT3_BFAF		74MT3_DFAF		74MT3_OFAF		74MT3_EFAF			
263	75	100	200	-	149	3RW4446-6BC34	74NT3_BFAF		74NT3_DFAF		74NT3_0FAF		74NT3_EFAF			
326	100	125	250	-	186	3RW4447-6BC34	74PT3_BFAF		74PT3_DFAF		74PT3_OFAF		74PT3_EFAF			
494	150	150	400	-	298	3RW4453-6BC34	740T3_BFAF				740T3_OFAF					
551	150	200	450	-	336	3RW4454-6BC34	74RT3_BFAF				74RT3_OFAF					
615	200	200	500	-	373	3RW4455-6BC34	74ST3_BFAF				74ST3_OFAF					
634	200	250	500	-	373	3RW4456-6BC34	74TT3_BFAF				74TT3_OFAF					
650	200	250	550	-	373	3RW4457-6BC34	74WT3_BFAF				74WT3_OFAF					
						200 V	6		6		6		6		6	
						230 V	2		2		2		2		2	
						380 V	3		3		3		3		3	
						460V	4		4		4		4		4	
26	-	-		20	-	3RW4422-1BC35	74AT35BFAF		74AT35DFAF		74AT350FAF		74AT35EFAF		74AT35WFAF	
32	-	-		25	-	3RW4423-1BC35	74BT35BFAF		74BT35DFAF		74BT350FAF		74BT35EFAF		74BT35WFAF	
42	-	-		30	-	3RW4424-1BC35	74CT35BFAF		74CT35DFAF		74CT350FAF		74CT35EFAF		74CT35WFAF	
51	-	-		40	-	3RW4425-1BC35	74DT35BFAF		74DT35DFAF		74DT350FAF		74DT35EFAF		74DT35WFAF	
68	-	-		50	-	3RW4426-1BC35	74ET35BFAF		74ET35DFAF		74ET350FAF		74ET35EFAF		74ET35WFAF	
82	-	-	60	75	-	3RW4427-1BC35	74FT35BFAF		74FT35DFAF		74FT350FAF		74FT35EFAF		74FT35WFAF	
97	-	-	60	75	-	3RW4434-6BC35	74GT35BFAF		74GT35DFAF		74GT350FAF		74GT35EFAF		74GT35WFAF	
113	-	-	75	100	-	3RW4435-6BC35	74HT35BFAF		74HT35DFAF		74HT350FAF		74HT35EFAF		74HT35WFAF	
134	-	-	75	125	-	3RW4436-6BC35	74JT35BFAF		74JT35DFAF		74JT350FAF		74JT35EFAF		74JT35WFAF	
175	-	-	100	150	-	3RW4443-6BC35	74KT35BFAF		74KT35DFAF		74KT350FAF		74KT35EFAF			
195	-	-	125	200	-	3RW4444-6BC35	74LT35BFAF		74LT35DFAF		74LT350FAF		74LT35EFAF			
243	-	-	150	200	-	3RW4445-6BC35	74MT35BFAF		74MT35DFAF		74MT350FAF		74MT35EFAF			
263	-	-	200	250	-	3RW4446-6BC35	74NT35BFAF		74NT35DFAF		74NT350FAF		74NT35EFAF			
326	-	-	250	300	-	3RW4447-6BC35	74PT35BFAF		74PT35DFAF		74PT350FAF		74PT35EFAF			
494	-	-	400	500	-	3RW4453-6BC35	740T35BFAF				740T350FAF					
551	-	-	450	550	-	3RW4454-6BC35	74RT35BFAF				74RT350FAF					
615	-	-	500	600	-	3RW4455-6BC35	74ST35BFAF				74ST350FAF					
693	-	-	550	650	-	3RW4456-6BC35	74TT35BFAF				74TT350FAF					
780	-	-	600	700	-	3RW4457-6BC35	74WT35BFAF				74WT350FAF					

[^67]
Soft Starters

Factory Modifications

Modification Available modifications in STANDARD enclosure	3RW Version	Enclosed Style	Enclosure NEMA Type	Mod Suffix
Push Buttons				
Start/Stop	3RW40/44	73/74	ALL	A1
Emergency Stop	3RW40/44	73/74	ALL	ES
Selector Switches				
Hand-Off-Auto	3RW40/44	73/74	ALL	A3
Hand-Off-Auto w/ start pushbutton	3RW40/44	73/74	ALL	S3
Off-On	3RW40/44	73/74	ALL	A4
Pilot Light				
Red 'On'	3RW40/44	73/74	ALL	FA
Green 'On'	3RW40/44	73/74	ALL	FB
Red 'Run'	3RW40/44	73/74	ALL	FC
Green 'Run'	3RW40/44	73/74	ALL	FD
LED Bulb Upgrade ${ }^{(4}$	3RW40/44	73/74	ALL	FE
Red 'Off'	3RW40/44	73/74	ALL	FJ
Green 'Off'	3RW40/44	73/74	ALL	FK
Amber 'Fault'	3RW40/44	73/74	ALL	FL
White 'Control Power On'	3RW40/44	73/74	ALL	FW
Red, 'On' Push-to-Test	3RW40/44	73/74	ALL	FS
Green 'On' Push-to-Test	3RW40/44	73/74	ALL	FT
Green 'Off' Push-to-Test	3RW40/44	73/74	ALL	FU
Custom pilot light (state color and nameplate text)	3RW40/44	73/74	ALL	FZ
Through the Door Metering				
External keypad for 3RW44	3RW44	73/74	1,12	K1
Elapse time meter	3RW40/44	73/74	1,12 (120V)	M5
Control Options				
Profibus Communication Module (installed-connection cable not supplied)	3RW44	73/74	ALL	P1
Profinet Communication Module (installed-connection cable not supplied)	3RW44	73/74	ALL	P2
Ground Lug - 1 Conductor	3RW40/44	73/74	ALL	L10
Alarm Package (horn, light, relay \& push button)	3RW40/44	73/74	1,3R,12	M7
Electronic 8 function timing relay (.05s - 100h) 24V/100-127V supplied mounted and unwired	3RW40/44	73/74	ALL	TR
Control Relay supplied mounted and unwired (4 pole max)	3RW40/44	73/74	ALL	R04
				R22
				R40
Circuit Breaker Shunt Trip (included std in 3RW40 versions)	3RW44	74	ALL	L6
Function identification plate w/ marking as specified	3RW40/44	73/74	ALL	N1
Service Entrance Labeled	3RW40/44	74	ALL	N3
Terminal Block 3 point	3RW40/44	73/74	ALL	TC3
Terminal Block 6 point	3RW40/44	73/74	ALL	TC6
Terminal Block 9 point	3RW40/44	73/74	ALL	TC9
Terminal Block 12 point	3RW40/44	73/74	ALL	TC12

Emergency HP Rated Bypass Starter	3RW Version	Enclosure Class	NEMA Type	Mod Suffix
	$3 R W 401(2)$	$73 / 74$	$1 / 12 / 3 R / 4$	A12

Available Modifications Requiring the MODIFIED OPTIONS Box Size (to be used with the selections ending in GA*)	3RW Version	Class	Enclosure NEMA Type	Mod Suffix
Isolation Contactor ${ }^{3}$	$3 R W 40 / 44$	$73 / 74$	$1 / 12 / 3 R / 4$	IC
100 VA Extra CPT Capacity	$3 R W 40 / 44$	$73 / 74$	ALL	CA
Space Heater (120V separate control)	$3 R W 40 / 44$	$73 / 74$	ALL	SH
Space Heater w/ T-stat (120V separate control)	$3 R W 40 / 44$	$73 / 74$	ALL	ST
Lightning Arrestor	$3 R W 40 / 44$	$73 / 74$	ALL	L

(1) (A) For sizes 73YT \& 73ZT, mods IC \& A12 are available individually or together; (B) For sizes 74YT \& 74ZT (combination wlCB), mods IC \& A12 are only available individually (NOT together); (C) For sizes 74YT \& 74ZT (combination w fusible disc), mods IC \& A12 are NOT available individually or together.
(2) An isolation contactor is included with the emergency HP rated bypass starter for version 3RW40 soft starters.
(3) Isolation contactor IC is included as standard with version 3RW40 model R (4th character of the cat. no.) soft starters.
(4) Pilot lights are transformer type as standard. For LED type bulbs, order suffix FE in addition to the standard device suffix(es). For example, to order red "ON" and green "OFF" pilot lights with LED bulbs, order FA, FK and FE.

Dimensions are in inches and are for reference only (not for construction). Certain styles may deviate from values indicated.

Non-Combination Class 73

N1, N3R, N12, N4 Standard Enclosure

	Amps	A	\mathbf{B}	\mathbf{C}
3RW40new	$11-73$	25	18	13
	98	36	23	10
	$117-145$	36	18	15
	$205-315$	36	22	20
	385	54	36	20
36 44	$26-68$	26	12.5	15
	$82-117$	36	18	15
	$145-215$	36	22	20
	$280-385$	54	36	20
	$494-780$	90	40	20
	$970-1076$	90	50	20

N4X Stainless Steel Standard Enclosure

	Amps	A	B	C
3RW40new	$11-98$	55	29	11
3 RW40	117	36	18	15
	$145-205 A$	36	22	20
	$248-385$	54	36	20
3 BW44	$26-51$	26	12.5	15
	$68-82$	36	18	15
	$100-117$	36	22	20
	$145-385$	54	36	20

N1, N3R, N12, N4 Modified Enclosure

	Amps	A	B	C
3RW40	$117-385$	56	36	20
3RW44	$26-51$	36	22	20
	$68-385$	54	36	20

N4X Stainless Steel Modified Enclosure

	Amps	A	B	C
3RW40	$117-385$	54	36	20
3RW44	$26-51$	36	22	20
	$68-385$	54	36	20

Combination Type Class 74
N1, N3R, N12, N4 Standard Enclosure

	Amps	\mathbf{A}	\mathbf{B}	\mathbf{C}
3RW40new	$11-73$	36	20	11
	98	46	20	10
	117	50	25	20
	$145-205$	66	25	20
	$248-315$	90	30	20
	385	90	40	20
	$26-68$	36	23	15
	$82-117$	50	25	20
	$145-215$	66	25	20
	280	90	30	20
	$315-384$	90	40	20
	494	90	40	20
	$551-780$	90	$40 \odot$	20
	$970-1076$	90	50	20

N1, N12 Fusible

	Amps	A	B	C
3RW44	$494-780$	90	50	20

N4X Stainless Steel Standard Enclosure

	Amps	A	B	C
3RW4Onew	$11-98$	55	29	11
3RW40	$117-145$	54	36	20
	$205-300$	90	40	20
	$26-42$	36	23	15
	$51-100$	50	25	20
	$117-145$	54	36	20
	$180-385$	90	40	20

N1, N3R, N12, N4 Modified Enclosure

	Amps	A	B	C
	$117-248$	76	30	20
	315	90	30	20
	385	90	40	20
3 RW44	$26-215$	76	30	20
	280	90	30	20
	$315-385$	90	40	20

N4X Stainless Steel Modified Enclosure

	Amps	A	B	C
3RW40	$117-145$	76	30	20
3RW44	$26-145$	76	30	20

Solid-State Relays and Contactors

contents

Introduction 8/2
Solid-state switching devices
General data 8/3
Solid-state switching devices for resistive loads
Solid-state relays
3RF21 solid-state relays, single-phase, 22.5 mm 8/8
3RF20 solid-state relays, single-phase, 45 mm 8/9
3RF22 solid-state relays, three-phase, 45 mm 8/10
Solid-state contactors
General data 8/11
3RF23 solid-state contactors, single-phase 8/12
3RF24 solid-state contactors, 3-phase 8/14
Solid-state switching devices for switching motors
Solid-state contactors
General data 8/15
3RF34 solid-state contactors, 3-phase 8/16
3RF34 solid-state reversing contactors, 3-phase 8/17
3RF29 Function modules
$\begin{array}{ll}\text { Assignment of modules } & 8 / 18\end{array}$
Converters 8/23
Load monitoring 8/24
Heating current monitoring 8/25
Power controllers 8/26
Power control regulators 8/27
Technical data
Solid-state relays
3RF21 solid-state relays, single-phase, 22.5 mm 8/29
3RF20 solid-state relays, single-phase, 45 mm 8/32
3RF22 solid-state relays, three-phase, 45 mm 8/34
Solid-state contactors
3RF23 solid-state contactors, single-phase 8/36
3RF24 solid-state contactors, three-phase 8/39
3RF34 solid-state contactors, three-phase 8/41
3RF29 Function modules
Converters, load monitors, power controller, heating current monitors 8/46
Power control regulators 8/48
Thermal data 8/48
Dimensions 8/62
Wiring diagrams 8/71

Overview

Nomenclature Guide

3RF2	0	20	-	1	A	A	0	2
SIRIUS SC	Type	Rating		Terminal Type	Switching	Control Phases	Coil Type	Power Voltage
	$\begin{aligned} & 0=45 \mathrm{~mm} \text { Relay } \\ & 1=22.5 \mathrm{~mm} \text { Relay } \\ & 2=3 \text {-phase } 45 \mathrm{~mm} \text { Relay } \\ & 3=\text { Contactor } \\ & 4=3 \text {-phase Contactor } \\ & 9=\text { Function Module } \end{aligned}$			$\begin{aligned} & 1=\text { Screw } \\ & 2=\text { Spring } \\ & 3=\text { Ring Tounge } \end{aligned}$	$\begin{aligned} & \text { A }=\text { Zero Point } \\ & \text { B }=\text { Instantaneous } \\ & C=\text { Low Noise } \\ & D=\text { Short Circuit } \end{aligned}$	$\begin{aligned} & A=1 \text {-phase } \\ & B=2 \text {-phase } \\ & C=3 \text {-phase } \end{aligned}$	$\begin{aligned} & 0=24 \mathrm{VDC} \\ & 2=110-230 \text { VAC } \\ & 4=4-30 \text { VDC } \\ & 5=230 \text { VAC } \end{aligned}$	$\begin{aligned} & 2=24-230 \mathrm{VAC} \\ & 4=230-460 \mathrm{VAC} \\ & 5=48-600 \mathrm{VAC} \\ & 6=400-600 \mathrm{VAC} \end{aligned}$

Note: This is only a guide to decode the model number. All possible combinations of these are not produced. Character of " 3 " in position four indicates Sirius Innovations

Overview

SIRIUS 3RF2 solid-state switching devices

Solid-state switching devices for resistive loads

- Solid-state relays
- Solid-state contactors
- Function modules

Solid-state switching devices for switching motors

- Solid-state contactors
- Solid state reversing contactors

The most reliable solution for any application

Compared to electro mechanical contactors, our SIRIUS 3RF2 solid-state switching devices stand out due to their considerably longer service life. Thanks to the high product quality, their switching is extremely precise, reliable and, above all, insusceptible to faults. With its variable connection methods and a wide spread of control voltages, the SIRIUS 3RF2 family is universally applicable. Depending on the individual requirements of the application, our modular switchgear can also be quite easily expanded by the addition of standardized function modules.

Semiconductor relays

SIRIUS SC semiconductor relays are suitable for surface mounting on existing cooling surfaces. Installation is quick and easy, involving just two screws. Depending on the nature of the heat sink, the capacity reaches up to 88 A on resistive loads. The 3RF21 semiconductor relays can be expanded with various function modules to adapt them to individual applications.

The semiconductor relays are available in 2 different widths:

- 3RF21 semiconductor relay with a width of 22.5 mm
- 3RF20 and 3RF22 semiconductor relay with a width of 45 mm

Both variants are only available in the "zero-point switching" version. This standard version is ideally suited for operation with resistive loads.

Selecting semiconductor relays

When selecting semiconductor relays, in addition to information about the power system, the load and the ambient conditions it is also necessary to know details of the planned design. The semiconductor relays can only conform to their specific technical specifications if they are mounted with appropriate care on an adequately dimensioned heat sink. The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select the relay design and choose a semiconductor relay with higher rated current than the load requires
- Determine the thermal resistance of the proposed heat sink
- Check the correct relay size with the aid of the diagram

Solid-state contactors for switching motors

The solid-state contactors for switching motors are intended for frequently switching on and off three-phase current operating mechanisms up to 5 HP and reversing up to 3 HP . The

3RF24

3RF34 (Motor)

3RF29
devices are constructed with complete insulation and can be mounted directly to 3RV2 MSPs and SIRIUS overload relays, resulting in a very simple integration into motor feeders.

These three-phase solid-state contactors are equipped with a two-phase control which is particularly suitable for typical motor current circuits without connecting to the neutral conductor.

Important features:

- Insulated enclosure with integrated heat sink
- Degree of protection IP20
- Integrated mounting foot to snap on a standard mounting rail or for assembly onto a support plate
- Variety of connection methods
- Plug-in control connection
- Display via LEDs

Selecting solid-state contactors

The solid-state contactors are selected on the basis of details of the network, the load and the ambient conditions. As the solid-state contactors are already equipped with an optimally matched heat sink, the selection process is considerably simpler than that for solid-state relays.
The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select a solid-state contactor with the same or higher rated current than the load
- Testing the maximum permissible switching frequency based on the characteristic curves. To do this, the starting current, the starting time and the motor load in the operating phase must be known.
- If the permissible switching frequency is below the desired frequency, it is possible to achieve an increase by overdimensioning the motor.

Benefits

- Devices with integrated heat sink, "ready to use"
- Compact and space-saving design
- Reversing contactors with integrated interlocking

Application

Standards and approvals

- IEC 60947-4-3
- UL 508, CSA for North America ${ }^{1)}$
- CE marking for Europe
- C-Tick approval for Australia
${ }^{1)}$ Please note: For reversing motor applications use overvoltage protection device Type 3TX7462-3L; max. cut-off-voltage 6000 V ; min. energy handling capability 100 J

General data

Type	Solid-state relays			Solid-state contactors		Function modules					
	1-phase		3-phase	1-phase	3-phase	Converter			Heating	Power	
	22.5 mm	45 mm	45 mm				Basic	Extended	current monitoring	controllers	regulators
Usage											
Simple use of existing solid-state relays	\square	\checkmark	\square	\square	\square	--	--	--	--	--	--
Complete device "Ready to use"	\square	\square	\square	\checkmark	\checkmark	--	--	--	--	--	--
Space-saving	\checkmark	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	--	--	--	--
Can be extended with modular function modules	\checkmark	--	\checkmark	\checkmark	\checkmark	--	--	--	--	--	--
Frequent switching and monitoring of loads and solid-state relays/solid-state contactors	--	--	--	--	--	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Monitoring of up to 6 partial loads	--	--	--	--	--	--	\checkmark	--	\checkmark	\checkmark	--
Monitoring of more than 6 partial loads	--	--	--	--	--	--	--	\checkmark	--	--	--
Control of the heating power through an analog input	--	--	--	--	--	\checkmark	--	--	--	\checkmark	\checkmark
Power control	--	--	--	--	--	--	--	-- -	--	--	\checkmark
Startup											
Easy setting of setpoints with "Teach" button	--	--	--	--	--	--	\checkmark	\checkmark	--	\checkmark	\checkmark
"Remote Teach" input for setting setpoints	--	--	--	--	--	--	--	--	\checkmark	--	--
Mounting											
Mounting onto mounting rails or mounting plates	--	--	--	\checkmark	\checkmark	--	--	--	--	--	--
Can be snapped directly onto a solid-state relay or contactor	--	--	--	--	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
For use with "Coolplate" heat sink	\checkmark	\checkmark	\checkmark	--	--	--	--	-- -	--	--	--
Cable routing											
Connection of load circuit as for controls	\checkmark	--	\checkmark	\checkmark	\checkmark	--	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Connection of load circuit from	--	\checkmark	--	--	--	--	--	--	--	--	--

\checkmark Function is available

- Function is possible

Note: Permissible for use at altitudes of more than 2500 m above sea level with the following derating for 3RF2 Devices:
Site altitude 2500 m above sea level:
-Reduction of rated insulation voltage to $0,93 \times \mathrm{U}_{\mathrm{i}}$
-Reduction of load current to $0,93 \times \mathrm{I}_{\mathrm{e}}$
Site altitude 3000 m above sea level:
-Reduction of rated insulation voltage to $0,88 \times U_{i}$
-Reduction of load current to $0,9 \times I_{e}$
Site altitude 4000 m above sea level:

- Reduction of rated insulation voltage to $0,79 \times \mathrm{U}_{\mathrm{i}}$
-Reduction of load current to $0,8 \times \mathrm{I}_{\mathrm{e}}$
Site altitude 5000 m above sea level:
-Reduction of rated insulation voltage to $0,75 \times U_{i}$
-Reduction of load current to $0,7 \times \mathrm{I}_{\mathrm{e}}$
These ratings apply to a maximum ambient temperature of $40^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

Benefits

- Considerable space savings thanks to a width of only 22.5 mm
- Variety of connection techniques: screw connection, springtype connection or ring terminal end, makes for easy terminations
- Flexible for a wide range of applications with function modules for retrofitting
- Possibility of fuseless short-circuit resistant design

Advantages:

- Saves time and costs with easy wiring, simple installation and fast commissioning
- Extremely long life, low maintenance, rugged and reliable
- Space-saving and safe thanks to side-by-side mounting up to an ambient temperature of $+60^{\circ} \mathrm{C}$
- Modular design: standardized function modules and heat sinks can be used in conjunction with 22.5 mm style semiconductor relays to satisfy unique application requirements
- Vibration-resistant and shock-resistant spring-loaded terminal connection system provides a superior connection even under tough conditions

Area of application

Applications

Solid-state relays

SIRIUS solid-state relays are suitable for surface mounting on existing cooling surfaces. Installation is quick and easy, involving just two screws. The special technology of the power semiconductor ensures there is excellent thermal contact with the heat sink. Depending on the nature of the heat sink, the capacity reaches up to 88 A on resistive loads.
The solid-state relays are available in three different versions:

- 3RF21 single-phase solid-state relay with a width of 22.5 mm
- 3RF20 single-phase solid-state relay with a width of 45 mm
- 3RF22 three-phase solid-state relay with a width of 45 mm

The 3RF21 and 3RF22 solid-state relays can be expanded with various function modules to adapt them to individual applications.

Solid-state contactors

The complete units consist of a solid-state relay plus optimized heat sink, and are therefore ready to use. They offer defined rated currents to make selection as easy as possible. Depending on the version, current intensities of up to 88 A are achieved. Like all of our solid-state switching devices, one of their particular advantages is their compact and space-saving design.

With their insulated mounting foot they can easily be snapped onto a standard mounting rail, or they can be mounted on carrier plates with fixing screws. This insulation enables them to be used in circuits with protective extra-low voltage (PELV) or safety extra-low voltage (SELV) in building engineering. For other applications, such as for extended personal safety, the heat sink can be grounded through a screw terminal.
The solid-state contactors are available in two different versions:

- 3RF23 single-phase solid-state contactors
- 3RF24 three-phase solid-state contactors

3RF22 three-phase solid-state relay with a width of 45 mm

With its compact design, which stays the same even at currents of up to 55 A, the 3RF22 solid-state relay is the ultimate in spacesaving construction, at a width of 45 mm . Installation on cooling surfaces is quick and easy, involving just two screws. The logical connection arrangement, with the power infeed from above and connection of the load from below, ensures tidy installation in the control cabinet.

3RF24 three-phase solid-state contactors

The compact design enables small compact units with currents up to 50 A . All special features of the solid-state relays for saving time and space are effective here too.

Example plastic machine industry:

Thanks to their high switching endurance, SIRIUS SC semiconductor switching devices are ideally suited for use in the control of electroheat. This is because the more precise the temperature regulation process has to be, the higher the switching frequency needs to be. The accurate regulation of electroheat is used for example in many processes in the plastic machine industry:

- Band heaters heat the extrudate to the correct temperature in plastic extruders
- Heat emitters heat plastic blanks to the correct temperature
- Heat drums dry plastic granules
- Heating channels keep molds at the correct temperature in order to manufacture different plastic parts without defects.
The powerful SIRIUS SC semiconductor relays and contactors can be used to control several heating loads at the same time. By using a load monitoring module the individual partial loads can easily be monitored, and in the event of a failure a signal is generated which can be sent to the controller.
Protecting the semiconductor relays and semiconductor contactors with 5 SY supplemental protectors.
Short-circuit protection and line protection with 5 SY supplemental protectors is easy to achieve with SIRIUS SC semiconductor relays and semiconductor contactors in comparison with designing load feeders with fuses. A special version of the semiconductor contactors can be protected against damage in the case of a short-circuit with 5 SY supplementary protector with type B tripping characteristic. This allows the low-cost and simple design of fuseless load feeders with full protection of the switching device.

Design

There is no typical design of a load feeder with semiconductor relays or semiconductor contactors; instead, the great variety of connection systems and control voltages offers universal application opportunities. SIRIUS SC semiconductor relays and semiconductor contactors can be installed in fuseless or fused feeders, as required.

There are special versions with which it is even possible to achieve short-circuit strength in a fuseless design.

Mounting regulations

Functions

Connection

All SIRIUS SC semiconductor switching devices are characterized by the great variety of connection methods. You can choose between the following connection techniques:

SIGUT connection system (screw)

The SIGUT connection system is the standard among industrial switching devices. Open terminals and a plus-minus screw are just two features of this technology. Two conductors of up to $6 \mathrm{~mm}^{21)}$ can be connected in just one terminal. As a result, loads of up to 50 A can be connected.
Spring-loaded connection system
This innovative technology holds the conductor without screw connection. This means that very high vibration resistance is achieved. Two conductors of up to $2.5 \mathrm{~mm}^{21}$) can be connected to each terminal. As a result, loads of up to 20 A can be dealt with.
Ring terminal end connection
The ring terminal end connection is equipped with an M5 screw. Ring terminal ends of up to $25 \mathrm{~mm}^{2}$ can be connected. In this way it is possible to connect conductors with up to 88 A safely. Additional finger safety can be provided with a special cover.

Switching types

In order to guarantee an optimized control method for different loads, the functionality of our semiconductor switching devices can be adapted accordingly.
The "zero-point switching" method is ideal for resistive loads, i.e. where the power semiconductor is activated at zero voltage.

For inductive loads, on the other hand, for example in the case of valves, it is better to go with "instantaneous switching". By distributing the ON point over the entire sine curve of the mains voltage, disturbances are reduced to a minimum.
A special "low noise" version is available due to a special control, this special version can be used in public networks up to 16A without any additional measures such as interference suppressor filters. As a result, it conforms to limit value curve class B according to EN 60947-4-3 in terms of emitted interference.

Function

Two-phase controlled version

In many three-phase applications there is no need of a threephase controller. Loads in a delta circuit or wye circuit, which have no connection to the neutral conductor, can be safely switched on and off using only two phases.

Nevertheless, the 3RF22 and 3RF24 three-phase solid-state switching devices provide the possibility of connecting all three phases to the switching device, with the middle phase looped directly through the device. Thanks to the lower power loss compared to a three-phase controlled device it is possible for the mounted accessories to be more compact.

Three-phase controlled version

This version is used in three-phase applications which have to switch all phases on and off for system reasons or in the case of loads in a wye circuit with connection to the neutral conductor.

Performance characteristics

The performance of the semiconductor switching devices are substantially determined by the type of power semiconductors used and the internal design. In the case of the SIRIUS SC semiconductor contactors and semiconductor relays, only thyristors are used instead of less powerful Triacs.
Two of the most important features of thyristors are the blocking voltage and the maximum load integral:

Blocking voltage

Thyristors with a high blocking voltage can also be operated without difficulty in power systems with high interference voltages. Separate protective measures, such as a protective circuit with a varistor, are not necessary in most cases.

With SIRIUS SC, for example, thyristors with 800 V blocking voltage are fitted for operation in power systems up to 230 V . Thyristors with up to 1600 V are used for power systems with higher voltages.

Maximum load integral

One of the purposes of specifying the maximum load integral $(R t)$ is to determine the rating of the short-circuit protection. Only a large power semiconductor with a correspondingly high Rt value can be given appropriate protection against destruction from a short-circuit by means of a protective device matched to the application. However, SIRIUS SC is also characterized by the optimum matching of the thyristors ($R t$ value) with the rated currents. The rated currents specified on the devices in conformance with EN 60947-4-3 were confirmed by extensive testing.

1) For mm^{2} to AWG conversion see page $19 / 21$ of Industrial Controls catalog.

Selection and ordering data

Inscription labels for 3RF2 series

(tame $=20$ units

1) PC labeling systems for individual inscription of unit labeling plates are available from: murrplastik Systemtechnik GmbH

Integration

Notes on integration in the load feeders

The SIRIUS solid-state switching devices are very easy to integrate into the load feeders thanks to their industrial connection method and design.

Particular attention must however be paid to the circumstances of the installation and ambient conditions, as the performance of the solid-state switching devices is largely dependent on these. Depending on the version, certain restrictions must be observed. Detailed information, for example in relation to solidstate contactors about the minimum spacing and to solid-state relays about the choice of heat sink, is given in the technical specifications (see Technical Information LV 1 T or our Mall) and the product data sheets.
Despite the rugged power semiconductors that are used, solidstate switching devices respond more sensitively to shortcircuits in the load feeder. Consequently, special precautions have to be taken against destruction, depending on the type of design.
Siemens generally recommends using SITOR semiconductor protection fuses. These fuses also provide protection against destruction in the event of a short-circuit even when the solidstate contactors and solid-state relays are fully utilized.

Alternatively, if there is lower loading, protection can also be provided by standard fuses or miniature circuit breakers. This protection is achieved by overdimensioning the solid-state switching devices accordingly. The technical specifications and the product data sheets contain details both about the solid-state fuse protection itself and about use of the devices with conventional protection equipment.
Semiconductor motor and reversing contactors can be easily combined with the 3RV motor starter protectors and 3RB2 overload relay from the SIRIUS modular system. Thus, fuseless and fuse motor feeders can be designed easily and in a spacesaving manner.
The solid-state switching devices for resistive loads are suitable for interference-free operation in industrial networks without further measures. If they are used in public networks, it may be necessary for conducted interference to be reduced by means of filters. This does not include the special solid-state contactors of type 3RF23..-.CA.. "Low Noise". These comply with the class B limit values up to a rated current of 16 A . If other versions are used, and at currents of over 16 A, standard filters can be used in order to comply with the limit values. The decisive factors when it comes to selecting the filters are essentially the current loading and the other parameters (operational voltage, design type, etc.) in the load feeder.
Suitable filters can be ordered from EPCOS AG.
You can find more information on the Internet at:
http://www.epcos.com

Selection and ordering data

Other rated control supply voltages on request.

1) The type current provides information about the performance of the semiconductor relay. The actual permitted operational current I_{e} can be smaller depending on the connection method and cooling conditions.
2) Please note that this version can only be used for a rated current of up to 50 A and a conductor cross section of $10 \mathrm{~mm}^{2}$.
3) Please note that this version can only be used for a rated current of up to 20 A and a conductor cross section of $2.5 \mathrm{~mm}^{2}$. See page 19/21 of Industrial controls catalog for mm^{2} to AWG conversion chart.
4) 50 A version with 24 AC/DC control - 3RF21 50-2AA14.

Note: See page 19/21 of Industrial Controls catalog for mm^{2} to AWG conversion chart.

Solid-State Relays

45 mm semiconductor relays

Fused design with semiconductor protection

 (similar to type of coordination " 2 ") ${ }^{1)}$The semiconductor protection for the SIRIUS SC control gear can be used with different protective devices. This allows protection by means of LV HRC fuses of operational class gL/gG or supplementary protectors. The table on page 7/21 lists the maximum permissible fuses for each SIRIUS SC controlgear.

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems.
For protective devices with operational class gL/gG and for SITOR full range fuses 3NE1, the minimum cross-sections for the conductor to be connected must be taken into account.

Selection and ordering data

3RF20 20-1AA02

Type current 1)	Maxi able curre 115	um a power nt and 230	iev- r type $J_{e}=$ 400 V	Screw connection ${ }^{2)}$	Spring-loaded connection ${ }^{3)}$	Ring cable connection	Std. Pack Qty	Weight per pack approx.
A	kW	kW	kW	Order No.	Order No.	Order No.		kg
Zero-point switching, rated operational voltage $U_{e}=24 \mathrm{~V}$ to 230 V								
20	2.3	4.6	-	3RF20 20-1AA $\square 2$	-	-	1 unit	0.085
30	3.5	6.9	-	3RF20 30-1AA $\square 2$	-	-	1 unit	0.085
50	5.8	11.5	-	3RF20 50-1AA $\square 2$	-	-	1 unit	0.085
70	8.1	16.1	-	3RF20 70-1AA $\square 2$	-	-	1 unit	0.085
88	10.4	20.7	-	3RF20 90-1AA $\square 2$	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 460 V								
20	-	4.6	8	3RF20 20-1AA $\square 4$	-	-	1 unit	0.085
30	$-$	6.9	12	3RF20 30-1AAD4	-	-	1 unit	0.085
50	-	11.5	20	3RF20 50-1AA 4	-	-	1 unit	0.085
70	-	16.1	28	3RF20 70-1AA $\square 4$	-	-	1 unit	0.085
88	-	20.7	36	3RF20 90-1AA $\square 4$	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=24 \mathrm{~V}$ to 230 V , control DC $4 . .30 \mathrm{~V}$								
20	-	-	-	3RF20 20-1AA42	-	-	1 unit	0.085
30	-	-	-	3RF20 30-1 AA42	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 600 V , control DC $4 \ldots 30 \mathrm{~V}$								
20	-	4.6	8	3RF20 20-1AA45	-	-	1 unit	0.085
50	-	11.5	20	3RF20 50-1AA45	-	-	1 unit	0.085
70	-	16.1	28	3RF20 70-1AA45	-	-	1 unit	0.085
90	-	20.7	36	3RF20 90-1AA45	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 600 V , blocking voltage 1600 V								
30	-	-	12	3RF20 30-1AA $\square 6$	-	-	1 unit	0.085
50	-	-	20	3RF20 50-1AA $\square 6$	-	-	1 unit	0.085
70	-	-	28	3RF20 70-1AA $\square 6$	-	-	1 unit	0.085
88	-	-	36	3RF20 90-1AA $\square 6$	-	-	1 unit	0.085
Zero-point switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 460 V , control DC $4 \ldots 30 \mathrm{~V}$ switching								
50	-	-		3RF20 50-1AA44	-	-	1 unit	0.085
Instantancous switching, rated operational voltage $U_{e}=48 \mathrm{~V}$ to 460 V , control 24 V DC acc. to EN 61131-2								
30	-	-	-	3RF20 30-1BA04	-	-	1 unit	0.085
Order No. extension for rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$								
DC 24 V acc. to EN 61131-2 AC 110 V... 230 V				$\begin{aligned} & 0 \\ & 2 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 2 \end{aligned}$		

Other rated control supply voltages on request.

1) The type current provides information about the performance of the semiconductor relay. The actual permitted operational current I_{e} can be smaller depending on the connection method and cooling conditions.
2) Please note that this version can only be used for a rated current of up to 50 A and a conductor cross section of $10 \mathrm{~mm}^{2}$.
3) Screw terminals and spring terminals (control current side).

Note: For mm^{2} to AWG conversion chart see Industrial Controls catalog page 15/9.

Solid-State Relays

3RF22 solid-state relays, 3 -phase, 45 mm

Selection and ordering data

Selecting solid-state relays

When selecting solid-state relays, in addition to information about the power system, the load and the ambient conditions it is also necessary to know details of the planned design. The solid-state relays can only conform to their specific technical specifications if they are mounted with appropriate care on an adequately dimensioned heat sink. The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select the relay design and choose a solid-state relay with higher rated current than the load
- Determine the thermal resistance of the proposed heat sink
- Check the correct relay size with the aid of the diagrams.

	Type current ${ }^{1}$)	Rated control supply voltage	Screw terminal ${ }^{\text {2) }}$	Weight per pack approx.
	A	V	Order No.	kg
Zero-point switching Rated operational voltage $U_{e} 48 \mathrm{~V} \ldots 600 \mathrm{~V}$				
	Two-phase 30 55	4 ... 30 V DC	3RF22 30-1AB $\square 5$ 3RF22 55-1ABロ5	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$
	Three-phase 30 55	$4 \ldots 30 \vee D C$	3RF22 30-1AC $\square 5$ 3RF22 55-1AC口5	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$
3RF22 30-1AB45		$\begin{aligned} & 110 \mathrm{~V} \text { AC } \\ & 4 \ldots 30 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	
	Type current ${ }^{1)}$	Rated control supply voltage	Spring-loaded terminals ${ }^{3}$	Weight per pack approx.
	A	V	Order No.	kg
Zero-point switching Rated operational voltage $\boldsymbol{U}_{\mathrm{e}} 48 \mathrm{~V} \ldots 600 \mathrm{~V}$				
	Two-phase 30 55	$4 \ldots 30 \mathrm{~V}$ DC	3RF22 30-2AB45 3RF22 55-2AB45	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$
	Three-phase 30 55	4 ... 30 V DC	3RF22 30-2AC45 3RF22 55-2AC45	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$

	Type current ${ }^{1}$)	Rated control supply voltage	Ring terminal end connection	Weight per pack approx
	A	V	Order No.	kg
Zero-poin Rated ope	$\text { e } U_{e} 48 \mathrm{~V} \ldots 6$			
	$\begin{aligned} & \text { Two-phase } \\ & 30 \\ & 55 \end{aligned}$	$4 \ldots 30$ V DC	3RF22 30-3AB45 3RF22 55-3AB45	$\begin{aligned} & 0.150 \\ & 0.150 \end{aligned}$
	Three-phase			
.	30	$4 \ldots 30 \mathrm{~V}$ DC	3RF22 30-3AC45	0.150
	55		3RF22 55-3AC45	0.150

1) The type current provides information about the performance of the solid-state relay.
The actual permitted rated operational current I_{e} can be smaller depending on the connection method and cooling conditions.
2) Please note that the version with an M4 screw terminal can only be used for a rated current of up to approx. 50 A and a conductor cross-section of $10 \mathrm{~mm}^{2}$.
3) Please note that this version can only be used for a rated current of up to approx. 20 A and a conductor cross-section of $2.5 \mathrm{~mm}^{2}$.

Overview

Solid-state contactors

The complete units consist of a solid-state relay plus optimized heat sink, and are therefore ready to use. They offer defined rated currents to make selection as easy as possible. Depending on the version, current strengths of up to 88 A are achieved. Like all of our solid-state switching devices, one of their particular advantages is their compact and space-saving design.
With their insulated mounting foot they can easily be snapped onto a standard mounting rail, or they can be mounted on support plates with fixing screws. This insulation enables them to be used in circuits with protective extra-low voltage (PELV) or safety extra-low voltage (SELV) in building management systems. For other applications, such as for extended personal safety, the heat sink can be grounded through a screw terminal.
The solid-state contactors are available in 2 different versions:

- 3RF23 single-phase solid-state contactors,
- 3RF24 three -phase solid-state contactors

Single-phase versions

The 3RF23 solid-state contactors can be expanded with various function modules to adapt them to individual applications.

Version for resistive loads, "zero-point switching"

This standard version is often used for switching space heaters on and off.

Version for inductive loads, "instantaneous switching"

In this version the solid-state contactor is specifically matched to inductive loads. Whether it is a matter of frequent actuation of the valves in a filling plant or starting and stopping small operating mechanisms in packet distribution systems, operation is carried out safely and noiselessly.

Special "Low noise" version

Thanks to a special control circuit, this special version can be used in public networks up to 16 A without any additional measures such as interference suppressor filters. As a result it conforms to limit value curve class B according to EN 60947-4-3 in terms of emitted interference.

Special "Short-circuit-proof" version

Skillful matching of the power semiconductor with the performance capacity of the solid-state contactor means that "shortcircuit strength" can be achieved with a standard miniature circuit breaker. In combination with a B-type MCB or a conventional line protection fuse, the result is a short-circuit resistant feeder.
In order to achieve problem-free short-circuit protection by means of miniature circuit breakers, however, certain boundary conditions must be observed. As the magnitude and duration of the short-circuit current are determined not only by the short-circuit breaking response of the miniature circuit breaker but also the properties of the wiring system, such as the internal resistance of the input to the network and damping by controls and cables, particular attention must also be paid to these parameters. The necessary cable lengths are therefore shown for the main factor, the line resistance, in the table above right.
The following miniature circuit breakers with a type B tripping characteristic and 10 kA or 6 kA breaking capacity protect the 3RF23..-.DA.. solid-state contactors in the event of short-circuits on the load and the specified conductor cross-sections and lengths:

Rated current of the miniature circuit breaker	Example Type ${ }^{1)}$	Max. conductor cross-section	Minimum cable length from contactor to load
6 A	5SY4106-6	$1 \mathrm{~mm}^{2}$	5 m
10 A	5SY4110-6	$1.5 \mathrm{~mm}^{2}$	8 m
16 A	5SY4116-6	$1.5 \mathrm{~mm}^{2}$	12 m
		$2.5 \mathrm{~mm}^{2}$	20 m
20 A	5SY4120-6	$2.5 \mathrm{~mm}^{2}$	20 m
25 A	5SY4125-6	$2.5 \mathrm{~mm}^{2}$	26 m

1) The miniature circuit breakers can be used up to a maximum rated voltage of 480 V !

The setup and installation above can also be used for the solidstate relays with a $I^{2} t$ value of at least $6600 A^{2} \mathrm{~s}$.

Three-phase versions

The three-phase solid-state contactors for resistive loads up to 50 A are available with

- two-phase control (suitable in particular for circuits without connection to the neutral conductor) and
- three-phase control (suitable for star circuits with connection to the neutral conductor or for applications in which the system requires all phases to be switched).
The converter function module can be snapped onto both versions for the simple power control of AC loads by means of analog signals.
- Check the correct contactor size with the aid of the rated current diagram, taking account of the design conditions.

Solid-State Switching Devices

Solid-State Relays

SIRIUS SC semiconductor contactors - single phase selection

Selection and ordering data

Selecting solid-state contactors
The semiconductor contactors are selected on the basis of details of the power system, the load and the ambient conditions. As the semiconductor contactors are already equipped with an optimally matched heat sink, the selection process is considerably simpler than that for semiconductor relays.

The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select a semiconductor contactor with the same or higher rated current than the load
- Check the correct contactor size with the aid of the rated current diagram, taking account of the design conditions

Order No. extension for

rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$
DC 24 V acc. to EN 61131-2
0
2
Other rated control supply voltages on request.

1) The type current provides information about the performance of the semiconductor contactor. The actual permitted operational current I_{e} can be smaller depending on the connection method and start-up conditions. Derating acc. to curves from page $8 / 50,8 / 51,8 / 52$.
2) $110 \ldots 230 \mathrm{AC}$ control voltage .

Solid-State Contactors

SIRIUS SC semiconductor contactors - single phase selection

1) The type current provides information about the performance of the semiconductor contactor. The actual permitted operational current I_{e} can be smaller depending on the connection method and start-up conditions. Derating acc. to curves from page 8/50, 8/51, 8/52.

Other rated control supply voltages on request.
2) $4 \ldots 30 \mathrm{DC}$ control voltage

Accessories

Terminal cover for 3RF21 semiconductor relays and 3RF23 semiconductor contactors with ring terminal end (after simple adaptation, this terminal cover can also be used for

Order No.	Std. Pack Qty	Weight per pack approx.

kg

3RF29 00-3PA88 10 units 0.010

Solid-State Contactors

3RF24 solid-state contactors, 3-phase

Selection and ordering data

	Type current ${ }^{1)}$ $I_{\text {max }}$	Rated control supply voltage U_{s}	DT	Screw terminals	(1)	Std. Pack Qty	Weight per pack approx.
	A	V		Order No.	List Price \$ per PU		kg
Zero-point switching Rated operational voltage $U_{e} 48$ V ... 600 V							
e eel	$\begin{aligned} & \text { Two-phase } \\ & 10.5 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ed } \\ & 4 \ldots 30 \text { DC } \end{aligned}$	A B B B B B	3RF24 10-1AB45 3RF24 20-1AB45 3RF24 30-1AB45 3RF24 40-1AB45 3RF24 50-1AB45		1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.320 \\ & 0.400 \\ & 0.540 \\ & 0.800 \\ & 1.100 \end{aligned}$
	$\begin{aligned} & \hline 10.5 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & \hline \end{aligned}$	110 AC	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF24 10-1AB35 } \\ & \text { 3RF24 20-1AB35 } \\ & \text { 3RF24 30-1AB35 } \\ & \text { 3RF24 40-1AB35 } \\ & \text { 3RF24 50-1AB35 } \end{aligned}$		1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & \hline 0.320 \\ & 0.400 \\ & 0.540 \\ & 0.800 \\ & 1.100 \\ & \hline \end{aligned}$
	$\begin{aligned} & \hline 10.5 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$230 \mathrm{AC}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 3RF24 10-1AB55 } \\ & \text { 3RF24 20-1AB55 } \\ & \text { 3RF24 30-1AB55 } \\ & \text { 3RF24 40-1AB55 } \\ & \text { 3RF24 50-1AB55 } \end{aligned}$		1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.320 \\ & 0.400 \\ & 0.540 \\ & 0.800 \\ & 1.100 \end{aligned}$
	$\begin{aligned} & \text { Three-phase } \\ & 10.5 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	lled $4 \ldots 30 \text { DC }$	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	3RF24 10-1AC45 3RF24 20-1AC45 3RF24 30-1AC45 3RF24 40-1AC45 3RF24 50-1AC45		1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.320 \\ & 0.540 \\ & 0.800 \\ & 1.100 \\ & 1.850 \end{aligned}$
	$\begin{aligned} & \hline 10.5 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & \hline \end{aligned}$	110 AC	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF24 10-1AC35 } \\ & \text { 3RF24 20-1AC35 } \\ & \text { 3RF24 30-1AC35 } \\ & \text { 3RF24 40-1AC35 } \\ & \text { 3RF24 50-1AC35 } \end{aligned}$		1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.320 \\ & 0.540 \\ & 0.800 \\ & 1.100 \\ & 1.850 \\ & \hline \end{aligned}$
F24 10-	$\begin{aligned} & \hline 10.5 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$230 \mathrm{AC}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { 3RF24 10-1AC55 } \\ & \text { 3RF24 20-1AC55 } \\ & \text { 3RF24 30-1AC55 } \\ & \text { 3RF24 40-1AC55 } \\ & \text { 3RF24 50-1AC55 } \end{aligned}$		1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.320 \\ & 0.540 \\ & 0.800 \\ & 1.100 \\ & 1.850 \end{aligned}$
				Spring-loaded terminals	0		
Zero-point switching • Integrated heat sink, rated operational voltage $U_{e} 48 \ldots 600$ V AC							
	Two-phase 10 20	$4 \ldots 30 \text { DC }$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF2410-2AB45 } \\ & \text { 3RF2420-2AB45 } \end{aligned}$		$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	
	$\begin{aligned} & \hline 10 \\ & 20 \end{aligned}$	230 AC	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline \text { 3RF2410-2AB55 } \\ & \text { 3RF2420-2AB55 } \end{aligned}$		1 unit 1 unit	
	Three-phase $\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { led } \\ & 4 \text {... } 30 \text { DC } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RF2410-2AC45 } \\ & \text { 3RF2420-2AC45 } \end{aligned}$		$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	
3RF2410-2AB45	$\begin{aligned} & \hline 10 \\ & 20 \end{aligned}$	230 AC	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RF2410-2AC55 } \\ & \text { 3RF2420-2AC55 } \end{aligned}$		1 unit 1 unit	
				Ring terminal lug connection	(3)		
Zero-point switching • Integrated heat sink, rated operational voltage $U_{e} 48 \ldots 600$ V AC							
	Two-phase controlled						
	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 4 \ldots 30 \mathrm{DC} \\ & 230 \mathrm{AC} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RF2450-3AB45 3RF2450-3AB55		1 unit 1 unit	
	Three-phase 50 50	$\begin{aligned} & \text { led } \\ & 4 \ldots 30 \mathrm{DC} \\ & 230 \mathrm{AC} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RF2450-3AC45 3RF2450-3AC55		1 unit 1 unit	

[^68]
Solid-State Contactors for Switching Motors

General data

Overview

Solid-state contactor for direct-on-line starting
The solid-state contactors for switching motors are intended for frequently switching on and off three-phase current operating mechanisms up to 7.5 kW and reversing up to 3.0 kW . The devices are constructed with complete insulation and can be mounted directly on SIRIUS motor starter protectors, overload relays and current monitoring relays, resulting in a very simple integration into motor feeders.
These three-phase solid-state contactors are equipped with a two-phase control which is particularly suitable for typical motor current circuits without connecting to the neutral conductor. Important features:

- Insulated enclosure with integrated heat sink
- Degree of protection IP20
- Integrated mounting foot to snap on a standard mounting rail or for assembly onto a support plate
- Variety of connection methods
- Plug-in control connection
- Display via LEDs
- Wide voltage range for AC control supply voltage

Switching functions

The solid-state contactors for switching motors are ""instantaneous switching" because this method is particularly suited for inductive loads. By distributing the ON point over the entire sine curve of the mains voltage, disturbances are reduced to a minimum

Selecting solid-state contactors

The solid-state contactors are selected on the basis of details of the network, the load and the ambient conditions.
The following procedure is recommended:

- Determine the rated current of the load and the mains voltage
- Select a solid-state contactor with the same or higher rated current than the load
- Testing the maximum permissible switching frequency based on the characteristic curves (see "Technical Information"). To do this, the starting current, the starting time and the motor loaded in the operating phase must be known.
- If the permissible switching frequency is under the desired frequency, it is possible to achieve an increase only by overdimensioning the motor and the solid-state contactor!

Benefits

- Units with integrated heat sink, "ready to use"
- Compact and space-saving design
- Reversing contactors with integrated interlocking

Application

Use in load feeders

There is no typical design of a load feeder with solid-state relays or solid-state contactors; instead, the great variety of connection methods and control voltages offers universal application opportunities. SIRIUS solid-state relays and solid-state contactors can be installed in fuseless or fused feeders, as required.

Standards and approvals

- IEC 60947-4-2
- UL 508, CSA for North America1)
- CE marking for Europe
- C-Tick approval for Australia
- CCC approval for China

[^69]
Solid-State Contactors for Switching Motors

3RF34 solid-state contactors, 3-phase

Selection and ordering data

Motor contactors • Instantaneous switching • Two-phase controlled

	Rated operational current I_{e} A	Rated HP at supply voltage							Rated control supply voltage U_{s}	DT	Spring-type terminals Configurator Order No.	$\begin{aligned} & 00 \\ & \square \\ & \square \\ & \text { non } \end{aligned}$	Std. Pack Qty
		Single Phase			Three Phase								
		115V	$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 460 / \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 575 / \\ & 600 \mathrm{~V} \end{aligned}$	V				
Rated operational voltage $U_{e}$$48 \text {... } 480 \text { V AC }$													
	$\begin{aligned} & 5.2 \\ & 9.2 \\ & 12.5 \\ & 16 \end{aligned}$	$1 / 10$ $1 / 4$ $1 / 3$ $1 / 3$	$\begin{aligned} & 1 / 4 \\ & 1 / 2 \\ & 1 / 2 \\ & 3 / 4 \end{aligned}$	$\begin{gathered} 1 / 4 \\ 3 / 4 \\ 3 / 4 \\ 1 \end{gathered}$	$\begin{array}{r} 1 / 2 \\ 11 / 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{r}3 / 4 \\ 2 \\ 2 \\ 2 \\ \hline\end{array}$	2 3 3 5	2 5 5 7	$24 \text { DC acc. to }$ IEC 61131-2	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	3RF34 05-2BB04 3RF34 10-2BB04 3RF34 12-2BB04 3RF34 16-2BB04		1 unit 1 unit 1 unit 1 unit
	5.2	1/10	1/4	1/4	1/2	3/4	2	2	$110 \ldots 230 \mathrm{AC}$	B	3RF34 05-2BB24		1 unit
万.	9.2	1/4	1/2	3/4	11/2	2	3	5		B	3RF34 10-2BB24		1 unit
18	12.5	1/3	1/2	3/4	2	2	3	5		B	3RF34 12-2BB24		1 unit
-	16	1/3	3/4	1	2	2	5	7		B	3RF34 16-2BB24		1 unit
3RF34 05-2BB													
Rated operational voltage U_{e} 48 ... 600 V AC, blocking voltage 1600 V													
5 5	5.2	1/10	1/4	1/4	1/2	3/4	2	2	24 DC acc. to	B	3RF34 05-2BB06		1 unit
	9.2	1/4	1/2	3/4	11/2	2	3	5	IEC 61131-2	B	3RF34 10-2BB06		1 unit
	12.5	1/3	1/2	3/4	2	2	3	5		B	3RF34 12-2BB06		1 unit
	16	1/3	3/4	1	2	2	5	7		B	3RF34 16-2BB06		1 unit
	5.2	1/10	1/4	1/4	1/2	3/4	2	2	110 ... 230 AC	B	3RF34 05-2BB26		1 unit
Q	9.2	1/4	1/2	3/4	11/2	2	3	5		B	3RF34 10-2BB26		1 unit
1	12.5	1/3	1/2	3/4	2	2	3	5		B	3RF34 12-2BB26		1 unit
	16	1/3	3/4	1	2	2	5	7		B	3RF34 16-2BB26		1 unit

Solid-State Contactors for Switching Motors

3RF34 solid-state - reversing contactors, 3-phase

Selection and ordering data

Reversing contactors • Instantaneous switching • Two-phase controlled

	Rated operational current I_{e}	Rated HP at supply voltage							Rated control supply voltage $U_{\text {s }}$	DT	Screw terminals Configurator		Std. Pack Qty
		Single Phase			Three Phase								
		115 V	$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 / \\ & 208 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230 / \\ & 240 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 460 / \\ & 480 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 575 / \\ & 600 \mathrm{~V} \end{aligned}$	V		Order No.		
Rated operational voltage $U_{e} 48 \ldots 480 \mathrm{~V}$ AC													
	$\begin{aligned} & 3.8 \\ & 5.4 \\ & 7.4 \end{aligned}$	$\begin{array}{r} 1 / 10 \\ 1 / 6 \\ 1 / 4 \end{array}$	$\begin{aligned} & 1 / 4 \\ & 1 / 3 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 3 \\ & 3 / 4 \end{aligned}$	$\begin{array}{r} 1 / 2 \\ 1 \\ 11 / 2 \end{array}$	$\begin{array}{r} 3 / 4 \\ 1 \\ 2 \end{array}$	2 3 3	$\begin{aligned} & 2 \\ & 5 \\ & 5 \end{aligned}$	24 DC acc. to IEC 61131-2	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	3RF34 03-1BD04 3RF34 05-1BD04 3RF34 10-1BD04		1 unit 1 unit 1 unit
${ }^{-}$		1/10	1/4	1/4	1/2	3/4	2	2	110.. 230 AC			3RF34 03-1BD	
	5.4	1/6	1/3	1/3	1	1	3	5		B	3RF34 05-1BD24		1 unit
cotm	7.4	1/4	1/2	3/4	11/2	2	3	5		B	3RF34 10-1BD24		1 unit
3RF34 10-1BD													

$\}_{4}^{\xi_{3}^{3}}$ For online configurator see www.siemens.com/sirius/configurators.

Accessories

	Price per PU	Std Pack Qty

1) PC labeling system for individual inscription of unit labeling plates available from: murrplastik Systemtechnik GmbH

3RF29 Function Modules

Selection Tables

Overview

Function modules for SIRIUS 3RF2 solid-state switching devices

A great variety of applications demand an expanded range of functionality. With our function modules, these requirements can be met really easily. The modules are mounted simply by clicking them into place; straight away the necessary connections are made with the solid-state relay or contactor. The plug-in connection to control the solid-state switching devices can simply remain in use.

The following function modules are available:

- Converters
- Load monitoring
- Heating current monitoring
- Power controllers
- Power regulators

With the exception of the converter, the function modules can be used only with single-phase solid-state switching devices.

Recommended assignment of the function modules to the 3RF21 single-phase solid-state relays

Type	Accessories					
	Converters	Load monitoring Basic	Extended ${ }^{1}$	Heating current ${ }^{1)}$ monitoring	Power controllers ${ }^{1}{ }^{\text {1 }}$	Power regulators ${ }^{1)}$
Type current $=20 \mathrm{~A}$						
$\begin{aligned} & \text { 3RF21 20-1A. } 02 \\ & \text { 3RF21 20-1A. } 04 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	3RF29 20-0GA13 3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-OKA13 3RF29 20-0KA16	3RF29 20-OHA13 3RF29 20-0HA16
$\begin{aligned} & \text { 3RF21 20-1A.22 } \\ & \text { 3RF21 20-1A. } 24 \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	---	3RF29 20-0GA33 3RF29 20-0GA36	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-1A.42 } \\ & \text { 3RF21 20-1A. } 45 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	3RF29 20-OKA13 3RF29 20-0KA16	3RF29 20-OHA13 3RF29 20-0HA16
3RF21 20-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
$\begin{aligned} & \hline \text { 3RF21 20-2A. } 02 \\ & \text { 3RF21 20-2A. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	--	--	--	--	--
$\begin{aligned} & \text { 3RF21 20-2A. } 22 \\ & \text { 3RF21 20-2A. } 24 \end{aligned}$	--	--	--	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-2A. } 42 \\ & \text { 3RF21 20-2A. } 45 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	--	--	--	--	--
$\begin{aligned} & \hline \text { 3RF21 20-3A.02 } \\ & \text { 3RF21 20-3A.04 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-OHA13 3RF29 20-0HA16
$\begin{aligned} & \hline \text { 3RF21 20-3A. } 22 \\ & \text { 3RF21 20-3A. } 24 \end{aligned}$	$\begin{aligned} & \text {-- } \\ & \text {-- } \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	--	$\begin{aligned} & \text { 3RF29 20-0KA13 } \\ & \text { 3RF29 20-0KA16 } \end{aligned}$	3RF29 20-OHA13 3RF29 20-OHA16
Type current $=30 \mathrm{~A}$						
3RF21 30-1A. 02 3RF21 30-1 A. 04 3RF21 30-1A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-0HA13 3RF29 50-0HA16 3RF29 50-0HA16
$\begin{aligned} & \text { 3RF21 30-1A. } 22 \\ & \text { 3RF21 30-1A. } 24 \\ & \text { 3RF21 30-1A. } 26 \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	--	--	3RF29 50-0HA33 3RF29 50-0НA36 3RF29 50-0HA36
$\begin{aligned} & \hline \text { 3RF21 30-1A.42 } \\ & \text { 3RF21 30-1A.45 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0FA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 50-0GA13 } \\ & \text { 3RF29 50-0GA16 } \end{aligned}$	3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16	$\begin{aligned} & \text { 3RF29 50-OHA13 } \\ & \text { 3RF29 50-0HA16 } \end{aligned}$
3RF21 30-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
Type current $=50 \mathrm{~A}$						
$\begin{aligned} & \text { 3RF21 50-1A. } 02 \\ & \text { 3RF21 50-1A.04 } \\ & \text { 3RF21 50-1A.06 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-OHA13 3RF29 50-OHA16 3RF29 50-0HA16
3RF21 50-1A. 22 3RF21 50-1A. 24 3RF21 50-1A. 26		$\begin{aligned} & -- \\ & \text {-- } \end{aligned}$	3RF29 50-0GA33 3RF29 50-0GA36 3RF29 50-0GA36	$\begin{gathered} -- \\ -- \\ \hline- \end{gathered}$		3RF29 50-OHA33 3RF29 50-0HA36 3RF29 50-0HA36
3RF21 50-1A.45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
$\begin{aligned} & \text { 3RF21 50-1B.04 } \\ & \text { 3RF21 50-1B. } 06 \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18	$\begin{aligned} & \text { 3RF29 20-0FA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-OKA16 3RF29 50-0KA16	3RF29 50-OHA16 3RF29 50-0HA16
3RF21 50-1B.22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF21 50-2A. 02 3RF21 50-2A. 04 3RF21 50-2A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	--	-- -- --	-- -- --	--
3RF21 50-2A. 14	3RF29 00-0EA18	--	--	--	--	--
3RF21 50-2A. 22	--	--	--	--	--	--
3RF21 50-2A. 24	--	--	--	--	--	--
3RF21 50-2A. 26	--	--	--	--	--	--
3RF21 50-3A. 02 3RF21 50-3A. 04 3RF21 50-3A. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	--	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16 3RF29 50-0KA16	3RF29 50-OHA13 3RF29 50-OHA16 3RF29 50-0HA16
3RF21 50-3A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF21 50-3A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 50-3A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36

1) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state relays (3RF21..-....4, -... 5 or -....6).

3RF29 Function Modules

Selection Tables

Type	Accessories					
	Converters	Load monitoring Basic	Extended ${ }^{1}{ }^{1}$	Heating current ${ }^{1}$) monitoring	Power controllers ${ }^{11}$	Power regulators ${ }^{1)}$
Type current = 70 A						
$\begin{aligned} & \text { 3RF21 70-1A.02 } \\ & \text { 3RF21 70-1A.04 } \\ & \text { 3RF21 70-1A. } 05 \\ & \text { 3RF21 70-1A. } 06 \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-OJA16 3RF29 32-0JA16 3RF29 32-0JA16	3RF29 50-0KA13 3RF29 50-0KA16 3RF29 50-0KA16 3RF29 50-0KA16	$\begin{aligned} & \text { 3RF29 50-OHA13 } \\ & \text { 3RF29 50-OHA16 } \\ & \text { 3RF29 50-0HA16 } \\ & \text { 3RF29 50-0HA16 } \end{aligned}$
3RF21 70-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0НA33
3RF21 70-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 70-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 70-1A.45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 70-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 70-1C. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
Type current $=90 \mathrm{~A}$						
$\begin{aligned} & \text { 3RF21 90-1A.02 } \\ & \text { 3RF21 90-1A.04 } \\ & \text { 3RF21 90-1A.06 } \end{aligned}$	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 50-0GA13 3RF29 50-0GA16 3RF29 50-0GA16	3RF29 32-0JA16 3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 50-OKA13 } \\ & \text { 3RF29 50-0KA16 } \\ & \text { 3RF29 50-OKA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 50-OHA13 } \\ & \text { 3RF29 50-0HA16 } \\ & \text { 3RF29 50-OHA16 } \end{aligned}$
3RF21 90-1A. 22	--	--	3RF29 50-0GA33	--	--	3RF29 50-0HA33
3RF21 90-1A. 24	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 90-1A. 26	--	--	3RF29 50-0GA36	--	--	3RF29 50-0HA36
3RF21 90-1A. 45	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 90-1B. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 50-0GA16	3RF29 32-0JA16	3RF29 50-0KA16	3RF29 50-0HA16
3RF21 90-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 04	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 06	3RF29 00-0EA18	--	--	--	--	--
3RF21 90-2A. 22	--	--	--	--	--	--
3RF21 90-2A. 24	--	--	--	--	--	--
3RF21 90-2A. 26	--	--	--	--	--	--
3RF21 90-3A. 02	3RF29 00-0EA18	--	3RF29 90-0GA13	--	3RF29 50-0KA13	3RF29 90-0HA13
3RF21 90-3A.04	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16
3RF21 90-3A. 06	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16
3RF21 90-3A. 22	--	--	3RF29 90-0GA33	--	--	3RF29 90-0HA33
3RF21 90-3A. 24	--	--	3RF29 90-0GA36	--	--	3RF29 90-0HA36
3RF21 90-3A. 26	--	--	3RF29 90-0GA36	--	--	3RF29 90-0HA36
3RF21 90-3A. 44	3RF29 00-0EA18	--	3RF29 90-0GA16	3RF29 32-0JA16	3RF29 90-0KA16	3RF29 90-0HA16

1) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state relays (3RF21..-....4, -... 5 or -....6).
Recommended assignment of the function modules to the 3RF22 three-phase solid-state relays

Type	Accessories					
	Converters	Load monitoring Basic	Extended	Heating current monitoring	Power controllers	Power regulators
Type current up to 55 A						
3RF22 ..-1A...	3RF29 00-0EA18	--	--	--	--	--
3RF22 ..-2A...	3RF29 00-0EA18	--	--	--	--	--
3RF22 ..-3A...	3RF29 00-0EA18	--	--	--	--	--

Recommended assignment of the function modules to the 3RF23 single-phase solid-state contactors

) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state contactors (3RF23..-....4, -.... 5 or -....6).

Type	Accessories					
	Converters	Load monitoring Basic	Extended ${ }^{1)}$	Heating current ${ }^{1)}$ monitoring	Power controllers ${ }^{1}$	Power regulators ${ }^{1)}$
Type current $I_{\text {e }}=10.5 \mathrm{~A}$						
3RF23 10-1B. 02 3RF23 10-1B. 04 3RF23 10-1B. 06	3RF29 00-0EA18 3RF29 00-0EA18 3RF29 00-0EA18	3RF29 20-0FA08 3RF29 20-0FA08 3RF29 20-0FA08	3RF29 20-0GA13 3RF29 20-0GA16 3RF29 20-0GA16	3RF29 16-OJA13 3RF29 32-0JA16 3RF29 32-0JA16	3RF29 20-OKA13 3RF29 20-0KA16 3RF29 20-0KA16	3RF29 20-OHA13 3RF29 20-0HA16 3RF29 20-0HA16
3RF23 10-1B. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 10-1B. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 10-1B. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 10-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 10-2A. 04	3RF29 00-0EA18	--	--	-	--	--
3RF23 10-2A. 06	3RF29 00-0EA18	--	--	-	--	--
3RF23 10-2A. 22	--	--	--	--	--	--
3RF23 10-2A. 24	--	--	--	--	--	--
3RF23 10-2A. 26	--	--	--	--	--	--
3RF23 10-3A. 02	3RF29 00-0EA18	--	3RF29 20-0GA13	3RF29 16-0JA13	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 10-3A. 04	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 10-3A. 06	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 10-3A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 10-3A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 10-3A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0НA36
Type current $/{ }_{\mathrm{e}}=20 \mathrm{~A}$						
3RF23 20-1A. 02	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA13	R	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 20-1A. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1A. 06	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1A. 14	3RF29 00-0EA18	--	3RF29 20-0GA16	--	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
$\begin{aligned} & \text { 3RF23 20-1A. } 44 \\ & \text { 3RF23 20-1A.45 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-OEA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA16 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16 3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA16 } \\ & \text { 3RF29 20-OKA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA16 } \\ & \text { 3RF29 20-OHA16 } \end{aligned}$
3RF23 20-1B. 02	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA13	--	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 20-18. 04	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1B. 06	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-1B. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1B. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1B. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1B. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
$\begin{aligned} & \text { 3RF23 20-1C. } 02 \\ & \text { 3RF23 20-1C. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-OFA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-OKA16 } \end{aligned}$	3RF29 20-OHA13 3RF29 20-0HA16
3RF23 20-1C. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1C. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1C. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
$\begin{aligned} & \hline \text { 3RF23 20-1D. } 02 \\ & \text { 3RF23 20-1D. } 04 \end{aligned}$	$\begin{aligned} & \text { 3RF29 00-0EA18 } \\ & \text { 3RF29 00-0EA18 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OFA08 } \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	3RF29 32-0JA16	$\begin{aligned} & \text { 3RF29 20-OKA13 } \\ & \text { 3RF29 20-OKA16 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-OHA13 } \\ & \text { 3RF29 20-OHA16 } \end{aligned}$
3RF23 20-1D. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-1D. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-1D. 44	3RF29 00-0EA18	3RF29 20-0FA08	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-2A. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 04	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 06	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2A. 22	--	--	--	--	--	--
3RF23 20-2A. 24	--	--	--	--	--	--
3RF23 20-2A. 26	--	--	--	--	--	--
3RF23 20-2C. 02	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2C. 04	3RF29 00-0EA18	--	--	--	--	--
3RF23 20-2C. 22	--	--	--	--	--	--
3RF23 20-2C. 24	--	--	--	--	--	--
3RF23 20-2D. 22	--	--	--	--	--	--
3RF23 20-2D. 24	--	--	--	--	--	--
3RF23 20-3A. 02	3RF29 00-0EA18	--	3RF29 20-0GA13	--	3RF29 20-0KA13	3RF29 20-0HA13
3RF23 20-3A. 04	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-3A. 06	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16
3RF23 20-3A. 22	--	--	3RF29 20-0GA33	--	--	3RF29 20-0HA33
3RF23 20-3A. 24	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-3A. 26	--	--	3RF29 20-0GA36	--	--	3RF29 20-0HA36
3RF23 20-3A.44	3RF29 00-0EA18	--	3RF29 20-0GA16	3RF29 32-0JA16	3RF29 20-0KA16	3RF29 20-0HA16

1) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state contactors (3RF23..-....4, -.... 5 or -....6).

3RF29 Function Modules

Selection Tables

1) For line voltages in the range from 110 to 230 V , the versions of the 3RF29..-0.A13 function modules can also be combined with more voltage-resistant versions of the solid-state contactors (3RF23..-....4, -.... 5 or -....6).

Recommended assignment of the function modules to the 3RF24 three-phase solid-state contactors

| Type | Accessories
 Converters | Load monitoring
 Basic | | Heating current
 monitoring | Power controllers |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Power regulators | Exted |
| :--- |

Function Modules

Converters

Overview

Converter for SIRIUS SC semiconductor switching devices
This module is used to convert analog drive signals, such as those output from many temperature controllers, for example, into a pulse-width-modulated digital signal. The connected semiconductor contactors and relays can therefore regulate the output of a load as a percentage.

Area of application

The device is used for conversion from an analog input signal to an on/off ratio. The module can only be used in conjunction with 3RF21 and 3RF23 single-phase solid-state switching devices or 3RF22 and 3RF24 three-phase devices. It can be used on versions with 24 V DC and 24 V AC/DC control supply voltage.

Functions

The analog value from a temperature controller is present at the $0-10 \mathrm{~V}$ terminals. This controls the on-to-off period, as a function of voltage. The period duration is predefined at one second. Conversion of the analog voltage is linear in the voltage range from 0.1 to 9.9 V . At voltages below 0.1 V the connected switching device is not activated, while at voltages above 9.9 V the connected switching device is always activated.

Note: The use of 1-pole solid-state switching devices with converters, power controllers or power regulators on AC loads in full-wave control mode is not recommended. Since the function modules do not synchronize with each other, this may lead to fluctuations in the heating power; optimum compensation can no longer be ensured, especially for setpoints $<50 \%$.

Technical specifications

Control input for converter and load monitoring

Type		3RF29 00-0EA18	3RF29 ..-OHA.
Analog input	V	$0 \ldots 10$	$0 \ldots 10$
Permissible range	V	$-1 \ldots 11$	$-1 \ldots 11$
Input resistance	$\mathrm{k} \Omega$	100	8
Period duration	S	1	1

Selection and ordering data

3RF29 00-0EA18

Function Modules

Load monitoring

Overview

Load monitoring for SIRIUS SC semiconductor switching devices

With the addition of the load monitoring module many faults can be quickly detected by monitoring a load circuit connected to the semiconductor switching device. Examples include the failure of load elements (up to 6 in the basic version or up to 12 in the extended version), alloyed power semiconductors, a lack of voltage or a break in a load circuit. A fault is indicated by one or more LEDs and reported to the controller via a PLC-compatible output.
The operating principle is based on monitoring of the current. This figure is continuously compared with the reference value stored once during commissioning by the simple press of a button. In order to detect the failure of one of several loads, the current decrease must be $1 / 6$ (in the basic version) or $1 / 12$ (in the extended version) of the reference value. In the event of a fault, a contact (NC) is actuated and one or more LEDs indicate the fault.

Area of application

The device is used for monitoring one or more loads (partial loads). The function module can only be used in conjunction with a 3RF21 semiconductor relay or a 3RF23 semiconductor contactor. The devices with spring-loaded connections in the load circuit are not suitable for use with load monitoring modules.

Design

Mounting

Simply snapping the load monitoring module onto the 3RF21 semiconductor relays or 3RF23 semiconductor contactors establishes the control connections to the semiconductor switching devices. Because of the special design, the straight-through transformer of the load monitoring module covers the lower main power connection. The cable to the load is simply pushed through and secured with the terminal screw.

Functions

The function module is activated when an "ON" signal is applied (IN terminal). The module constantly monitors the current level and compares this with the setpoint value.

Start-up

Pressing the "Teach" button switches the device on; the current through the semiconductor switching device is measured and is stored as the setpoint. During this process the two lower (red ${ }^{19}$) LEDs flash alternately; simultaneous maintained light from the 3 $\left(\right.$ red $\left.^{1}\right)$) LEDs indicates the conclusion of the teaching process.

The "Teach" button can also be used to switch on the connected semiconductor switching device briefly for test purposes. In this case the "ON" LED is switched on.

Partial load faults, "basic" load monitoring

If a decrease of at least $1 / 6$ of the stored setpoint value is detected, a fault is signaled. The fault is indicated via a "Fault" LED and by activation of the fault signaling output.

	OK	Fault			
LEDs		Partial load failure/ load short-circuit	Thyristor defect	Mains failure/ fuse rupture	
ON/OFF	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	-	$\boldsymbol{\checkmark}$	
Current flowing	$\boldsymbol{\sim}$	\boldsymbol{v}	$\boldsymbol{\checkmark}$	-	
Group fault	-	\boldsymbol{v}	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	

Function is available
Function not available

Partial load faults, "extended" load monitoring

Depending on the setting of the "response time" potentiometer, a decrease of at least $1 / 12$ of the stored setpoint value after a response time of between 100 ms and 3 s is signaled as a fault. The fault is indicated via a "Load" LED and by activation of the fault signaling output.
The potentiometer can also be used to determine the response behavior of the fault signaling output. When delay values are set in the left-hand half, the fault signal is stored. This can only be reset by switching on and off by means of the control supply voltage.
When settings are made on the right-hand side, the fault output is automatically reset after the deviation has been corrected.

Voltage compensation, "extended" load monitoring

In addition to the current, the load voltage is also monitored. This makes it possible to compensate for influences on the current strength resulting from voltage fluctuations.

Thyristor fault

If a current greater than the residual current of the switching device is measured in the deenergized state, the device triggers a thyristor fault after the set time delay. This means that the fault output is activated and the "Fault" ("Thyristor"1)) LED lights up.

Supply fault

If no current is measured in the energized state, the device triggers a supply fault after the set time delay. This means that the fault output is activated and the "Fault" ("Supply"1) LED lights up. 1) "Extended" load monitoring

Selection and ordering data

Rated operational current l_{e}	Rated operational voltage U_{e}	Rated control supply voltage U_{s} AC 110 V	Rated control supply voltage U_{s} AC/DC 24 V	Std. Pack Qty	Weight per pack approx	Rated control supply voltage U_{s} DC 24 V	Std. Pack Qty	Weight per pack approx
	V	Order No.	Order No.		kg	Order No.		kg
Basic load monitoring								
$\begin{aligned} & 6 \\ & 20 \end{aligned}$	-	-	-			$\begin{aligned} & \text { 3RF29 06-0FA08 }{ }^{1} \\ & \text { 3RF29 20-0FA08 } \end{aligned}$	1 unit	0.050
Extended load monitoring								
$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA33 } \\ & \text { 3RF29 20-0GA36 } \end{aligned}$	$\begin{aligned} & \text { 3RF29 20-0GA13 } \\ & \text { 3RF29 20-0GA16 } \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	-		
$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	3RF29 50-0GA33 3RF29 50-0GA36	3RF29 50-0GA13 3RF29 50-0GA16	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	-		
$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 400 \ldots 600 \end{aligned}$	3RF29 90-0GA33 3RF29 90-0GA36	3RF29 90-0GA13 3RF29 90-0GA16	1 unit 1 unit	$\begin{aligned} & 0.120 \\ & 0.120 \end{aligned}$	-		

[^70]
3RF29 Function Modules

Heating current monitoring

Overview

Heating current monitoring for 3RF2 single-phase solidstate switching devices
Many faults can be quickly detected by monitoring a load circuit connected to the solid-state switching device, as made possible with this module. Examples include the failure of up to 6 load elements, alloyed power semiconductors, a lack of voltage or a break in a load circuit. A fault is indicated by LEDs and reported to the controller by way of a relay output (NC contact).
The principle of operation is based on permanent monitoring of the current strength. This figure is continuously compared with the reference value stored once during start-up. In order to detect the failure of one of several loads, the current difference must be $1 / 6$ of the reference value. In the event of a fault, an output is actuated and the LEDs indicate the fault.
The heating current monitoring has a teach input and therefore differs from the load monitoring. This remote teaching function enables simple adjustment to changing loads without manual intervention.

Special versions: deviations from the standard version

3RF29 ..-OJA1.-1KK0

If the current is below 50% of the lower teach current during the teach routine, the device will go into "Standby" mode; the LOAD LED will flicker. The device thus detects a non-connected load, e. g. channels not required for tool heaters, and does not signal a fault. This mode can be reset by re-teaching.

Application

The device is used for monitoring one or more loads (partial loads). The function module can only be used in conjunction with a 3RF21 solid-state relay or a 3RF23 solid-state contactor. The devices with spring-loaded connections in the load circuit are not suitable.

Selection and ordering data

| | Rated operational
 current I_{e} | Rated operational
 voltage U_{e} | Order No. |
| :--- | :--- | :--- | :--- | :--- |

1) Supplied without control connector. The control connector can be purchased from from Wieland by quoting Article No. 8213 B/6VR (PCB connector).
$\left.\begin{array}{l|l|l|l} & \text { Version } & \text { Order No. } & \begin{array}{c}\text { Std. } \\ \text { Pack } \\ \text { Qty }\end{array} \\ \hline \text { Oper pack } \\ \text { approx. }\end{array}\right\}$
[^71]
3RF29 Function Modules

Power controllers

Overview

Power controllers for 3RF2 single-phase solid-state switching devices
The power controller is a function module for the autonomous power control of complex heating systems and inductive loads.

The following functions have been integrated:

- Power controller for adjusting the power of the connected load. Here, the setpoint value is set with a rotary knob on the module as a percentage with reference to the 100% power stored as a setpoint value.
- Inrush current limitation: With the aid of an adjustable voltage ramp, the inrush current is limited by means of phase control This is useful above all with loads such as lamps or infrared lamps which have an inrush transient current.
- Load circuit monitoring for detecting load failure, partial load faults, alloyed power semiconductors, lack of voltage or a break in the load circuit.

Special versions:
deviations from the standard version

3RF29 04-OKA13-0KC0

During the teaching process the connected solid-state relay or contactor is not activated; i. e. no current flow takes place. No current reference value is stored. No part-load monitoring!

3RF29 ..-OKA1.-OKT0

No part-load monitoring!

Application

The power controller can be used for:

- Complex heating systems
- Inductive loads
- Loads with temperature-dependent resistor
- Loads with ageing after long-time service
- Simple indirect control of temperature

The power controller can be used on the instantaneously switching 3RF21 and 3RF23 solid-state switching devices (singlephase). If only the full-wave operating mode is used, the power controller can also be used on the "zero-point switching" solidstate relays and contactors.

Power control

The power controller adjusts the power in the connected load by means of a solid-state switching device depending on the setpoint selection. It does not compensate for changes in the mains voltage or load resistance. The setpoint value can be predefined externally as a 0 to 10 V signal or internally by means of a potentiometer. Depending on the setting of the potentiometer $\left(t_{\mathrm{R}}\right)$, the control is carried out according to the principle of full-wave control or generalized phase control.

Full-wave control

In this operating mode the output is adjusted to the required setpoint value changing the on-to-off period. The period duration is predefined at one second.

Generalized phase control

In this operating mode the output is adjusted to the required set point value by changing the current flow angle. In order to observe the limit values of the conducted interference voltage for industrial networks, the load circuit must include a reactor with a rating of at least $200 \mu \mathrm{H}$.

Selection and ordering data

Function Modules

Power control regulators

Overview

Power controllers for SIRIUS SC semiconductor switching devices
This module provides similar functionality to a power control regulator.

The following functions are integrated:
Power control regulator with proportional-action control for adjusting the power of the connected load. Here, the setpoint is set with a rotary knob on the module as a percentage with reference to the 100% power stored as a setpoint. In this way the power is kept constant even in the event of voltage fluctuations or a change in load resistance.
Inrush current limitation: With the aid of an adjustable voltage ramp, the inrush current is limited by means of phase control. This is useful above all with loads such as lamps which have an inrush transient current.

Load circuit monitoring for detecting load failure, alloyed power semiconductors, lack of voltage or a break in the load circuit.

Area of application

The power controller adjusts the current in the connected load by means of a semiconductor switching device depending on a setpoint. This compensates for changes in the mains voltage or in the load resistance. The setpoint can be predefined externally as a 0 to 10 V signal or internally by means of a potentiometer. Depending on the setting of the potentiometer (t_{R}), the adjustment is carried out according to the principle of full-wave control or generalized phase control.

Full-wave control

In this operating mode the output is adjusted to the required setpoint by changing the on-to-off period. The period duration is predefined at one second.

Generalized phase control

In this operating mode the output is adjusted to the required setpoint by changing the current flow angle. In order to observe the limit values of the conducted interference voltage for industrial power systems, a choke rated at at least $200 \mu \mathrm{H}$ must be included in the load circuit.

Design

Mounting

Easy snapping onto the 3RF21 semiconductor relays or 3RF23 semiconductor contactors establishes the connections to the semiconductor switching devices. Because of the special design, the straight-through transformer of the power controller module covers the lower main power connection. The cable to the load is simply pushed through and secured with the terminal screw.

Functions

Start-up

Pressing the "Teach" button switches the device on; the current through the semiconductor switching device and the mains voltage are detected and stored. The resultant output is taken as the 100% output for the setpoint selection. During this process the two lower red LEDs flash alternately. Simultaneous maintained light from the three red LEDs indicates the completion of the "Teach" process.
The "Teach" button can also be used to switch on the connected semiconductor switching device briefly for test purposes. In this case the "ON" LED is switched on.

Setpoint selection

The setting on the setpoint potentiometer (P) determines how the setpoint selection is to be made:

External setpoint selection

At 0% the setpoint selection is set via an external $0-10 \mathrm{~V}$ analog signal (terminals $\mathrm{IN} / 0-10 \mathrm{~V}$). The device is switched on and off via the power supply (terminals A1 / A2).

Internal setpoint selection

Above 0% the setpoint is set using the potentiometer. To allow this, the potential at terminal A1 must additionally be applied at the IN terminal. After removal of the "ON" signal, the switching module is switched off.

Inrush current limitation

The ramp time (t_{R}) for a voltage ramp on switching on is set with the potentiometer for the purpose of inrush current limitation. If a time longer than 0 s is set, the device operates according to the phase-angle principle. If 0 s is set, there is no voltage ramp and the device operates according to the principle of full-wave control.

Load fault

If upon switching on with voltage applied the current flowing is not greater than the residual current of the switching device, the device triggers a load fault. The fault relay is activated and the "Load" LED lights up.

Thyristor fault

If a current greater than the residual current of the switching device is measured in the deenergized state, the device triggers a thyristor fault. The fault relay is activated and the "Thyristor" LED lights up.

Supply fault

If no current is measured in the energized state, the device triggers a supply fault. The fault relay is activated and the "Supply" LED lights up.

Selection and ordering data

3RF29 Function Modules

Power control regulators

Overview

Power control regulators for SIRIUS solid-state switching devices

The power control regulator is a function module for the autonomous power control regulation of complex heating systems and inductive loads, for the operation of loads with temperaturedependent resistors or long-term aging, and for simple indirect temperature control.
The power control regulator can be used on the 3RF21 and 3RF23 instantaneous switching solid-state switching devices (single-phase). If only the full-wave control mode is used, the power control regulator can also be used on the zero-pointswitching solid-state relays and contactors.

Application

The power control regulator sets the load current of the solidstate switching device depending on a setpoint value as a percentage. Changes in the mains voltage or in the load resistance are not compensated in this case. The modulation, the On/off ratio or the phase angle, remains unchanged in accordance with the setpoint. The autonomous power control regulation is performed between 0 and 100% of the setpoint value

Full-wave control

If the left potentiometer t_{R} is set to 0 s (= far left), the power control regulator works according to the principle of full-wave control. The power set, be it internal or external, is converted into a pulse-width-modulated digital signal. The power control regulator controls the On and Off time of the solid-state switching device within a fixed period duration of 1 s so that the specified power is applied to the load. The "ON" LED flashes in the same rhythm as the solid-state switching device switches on and off.

Generalized phase control

If the left potentiometer t_{R} is set to higher than 0 s , the power control regulator works according to the principle of generalized phase control. With generalized phase control, a choke rated at at least $200 \mu \mathrm{H}$ must be included in the load circuit in order to observe the limit values of the conducted interference voltage for industrial networks.

Design

Mounting

Easy snapping onto the 3RF21 solid-state relays or 3RF23 solidstate contactors establishes the connections to the solid-state switching devices. Because of the special design, the straightthrough transformer of the function module covers the lower main power connection. The cable to the load is simply pushed through and secured with the terminal screw.

Function

Setpoint selection

The setpoint is selected either internally using the right-hand potentiometer P with $0 \ldots 100 \%$ on the module or externally through the analog input $0 \ldots 10 \mathrm{~V}$.
100 \% corresponds in full-wave control to permanently On and in generalized phase control to a conduction angle of 180° and hence maximum power.
When the setpoint is selected internally the module is controlled through the IN terminal. The terminal 10 then has no function.

Input characteristic curve
When the setpoint is selected externally (potentiometer P set far left $=0 \%$) the module is controlled by applying the analog voltage $0 \ldots 10 \mathrm{~V}$. $0 \ldots 10 \mathrm{~V}$ corresponds to $0 \ldots 100 \%$ power. Conversion of the voltage is linear between 0.1 and 9.9 V . Below 0.1 V the switching device remains off; at voltages above 9.9 V the power is always set to 100%.

Inrush current limitation

The ramp time (t_{R}) for a voltage ramp on switching on is set with the left potentiometer for the purpose of inrush current limitation. The set time refers to a power of 100%. If, for example, a ramp time of 10 s is set and the selected power is 60%, then a power of 60% is reached after approx. 6 s .

Line and thyristor monitoring

The power control regulator recognizes supply failures and thyristor faults. The faults are indicated by the LEDs on the module and the fault output is activated.

Solid-State Relays

3RF21 Solid-state relays - technical data

Overview

22.5 mm semiconductor relays

With its compact design, which stays the same even at currents of up to 88 A , the 3RF21 semiconductor relay is the ultimate in space-saving construction, at a width of 22.5 mm . The logical connection arrangement, with the power infeed from above and connection of the load from below, ensures clean installation in the control cabinet.

Technical specifications

Solid-State Switching Devices

Solid-State Relays

3RF21 Solid-state - technical data

The heat transfer of the solid-state relays has been considerably improved.
Please note the highlighted values when dimensioning the heat sink.

> The current $I_{\max }$ provides information about the performance of the solid-state relay. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and cooling conditions.

Note:
The required heat sinks for the corresponding load currents can be determined from the characteristic curves (see page 8/49). The minimum thickness values for the mounting surface must be observed.

Type	Rated impulse withstand capacity $\mathbf{I}_{\text {tsm }}$	$\mathbf{I}^{\mathbf{2} \boldsymbol{t} \text { value }}$
	A	$\mathrm{A}^{2} \mathrm{~s}$
Main circuit		
3RF21 20-.....	200	200
3RF21 30-..A.2	300	450
3RF21 30-..A.4	300	450
3RF21 30-..A.5	300	450
3RF21 30-..A.6	400	800
3RF21 50-....	600	1800
3RF21 70-..A.2	1200	7200
3RF21 70-...4	1200	7200
3RF21 70-..5	1200	7200
3RF21 70-..A.6	1150	6600
3RF21 90-....	1150	6600

Type		3RF21 ..-.... 2	3RF21 ..-... 4	3RF21 ..-... 5	3RF21 ..-... 6
Main circuit					
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ - Operating range - Rated frequency	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \mathrm{Hz} \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \\ & 20 \ldots 253 \\ & 50 / 60 \pm 10 \% \end{aligned}$	$\begin{aligned} & 48 \ldots 460 \\ & 40 \ldots 506 \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 \ldots 660 \end{aligned}$	$\begin{aligned} & 48 \ldots 600 \\ & 40 \ldots 660 \end{aligned}$
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	600			
Blocking voltage	V	800	1200		1600
Rage of voltage rise	$\mathrm{V} / \mu \mathrm{S}$	1000			

Type		3RF21 ..-...0.	3RF21 ..-... 1.		3RF21 ..-... 2.	3RF21 ..-...4.
Control circuit						
Method of operation		DC operation	AC/DC operation		AC operation	DC operation
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	V	24 acc. to EN 61131-2	24 AC	24 DC	110... 230	$4 \ldots 30$
Rated frequency of the control supply voltage	Hz	--	$\begin{aligned} & 50 / 60 \\ & \pm 10 \% \\ & \hline \end{aligned}$	--	50/60 ± 10 \%	--
Control supply voltage, max.	V	30	26.5 AC	30 DC	253	30
Typical actuating current	mA	20 / Low Power: 6.5 ${ }^{1 \text { 1 }}$	20	20	15	20
Response voltage	V	15	14 AC	15 DC	90	4
Drop-out voltage	V	5	5 AC	5 DC	40	1
Operating times						
- ON-delay	ms	$\begin{aligned} & 1+\max . \text { one } \\ & \text { half-wave }^{2)} \end{aligned}$	$10+m a$ half-wav		$\begin{aligned} & 40+\max _{\text {. one }} \text { one } \\ & \text { half-wave }^{2)} \end{aligned}$	1 + max. one half-wave ${ }^{2)}$
- OFF-delay	ms	$1+$ max. one half-wave	$\begin{aligned} & 15+\text { ma } \\ & \text { half-wav } \end{aligned}$		40 + max. one half-wave	1 + max. one half-wave

[^72]
Solid-State Relays

3RF21 solid-state relays - technical data

Fused version with semiconductor protection (similar to type of coordination "2")1)

The semiconductor protection for the SIRIUS controls can be used with different protective devices. This allows protection by means of LV HRC fuses of gG operational class or miniature circuit breakers. Siemens recommends the use of special SITOR semiconductor fuses. The table below lists the maximum permissible fuses for each SIRIUS control

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems.

For protective devices with gG operational class and for SITOR 3NE1 all-range fuses, the minimum cross-sections for the conductor to be connected must be taken into account.

Type	All-range fuses LV HRC design gR/SITOR 3NE1		Semiconductor fuses/partial-range fuses			
		Cylindrical design gR/NEOZED ${ }^{2)}$ SILIZED 5SE1	LV HRC design aR/SITOR 3NE8	Cylindrical design aR/SITOR $10 \mathrm{~mm} \times 38 \mathrm{~mm}$ 3NC1 0	aR/SITOR $14 \mathrm{~mm} \times 51 \mathrm{~mm}$ 3NC1 4	aR/SITOR $22 \mathrm{~mm} \times 58 \mathrm{~mm}$ 3NC2 2
$\begin{aligned} & \hline \text { 3RF21 20-... } \\ & \text { 3RF21 20-..4 } \\ & \text { 3RF21 20-...5 } \end{aligned}$	3NE1 814-0 3NE1 813-04) 3NE1 $813-0^{4)}$	5SE1 325 5SE1 320 5SE1 320	3NE8 015-1 3NE8 015-1 3NE8 015-1	$\begin{aligned} & \text { 3NC1 020 } \\ & \text { 3NC1 } 016^{4)} \\ & \text { 3NC1 } 016^{4)} \end{aligned}$	3NC1 420 3NC1 420 3NC1 420	$\begin{aligned} & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF21 30-...2 } \\ & \text { 3RF21 30-..4 } \\ & \text { 3RF21 30-...5) } \\ & \text { 3RF21 30-... } 6 \end{aligned}$	$\begin{aligned} & \text { 3NE1 815-04) } \\ & \text { 3NE1 815-0 } \\ & \text { 3NE1 815-04) } \\ & \text { 3NE1 } 815-0^{4)} \end{aligned}$	5SE1 335 5SE1 3254) 5SE1 3254)	$\begin{aligned} & \text { 3NE8 003-1 } \\ & \text { 3NE8 003-1 } \\ & \text { 3NE8 003-1 } \\ & \text { 3NE8 003-1 } \end{aligned}$	3NC1 032 3NC1 0254) 3NC1 0254) 3NC1 032	3NC1 432 3NC1 430 3NC1 430 3NC1 432	$\begin{aligned} & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF21 50-...2 } \\ & \text { 3RF21 50...4 } \\ & \text { 3RF21 50-...5 }{ }^{3} \\ & \text { 3RF21 50-... } \end{aligned}$	3NE1 817-0 3NE1 802-04) 3NE1 802-04) 3NE1 803-0 ${ }^{4)}$	5SE1 350 5SE1 3354) 5SE1 $335^{4)}$ --	3NE8 017-1 3NE8 017-1 3NE8 017-1 3NE8 017-1	$\begin{aligned} & -- \\ & -- \\ & -- \end{aligned}$	3NC1 450 3NC1 450 3NC1 450 3NC1 450	$\begin{aligned} & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \end{aligned}$
3RF21 70-... $\mathbf{2}^{5)}$ 3RF21 70...4 $4^{5)}$ 3RF21 70 $-\ldots 5^{35) 5)}$ 3RF21 70.$- .6^{5)}$	3NE1 820-0 3NE1 020-2 3NE1 020-2 3NE1 020-2	$\begin{aligned} & \text { 5SE1 } 363^{4)} \\ & \text { 5SE1 } 363^{4)} \\ & -- \end{aligned}$	$\begin{aligned} & \text { 3NE8 020-1 } \\ & \text { 3NE8 020-1 } \\ & \text { 3NE8 020-1 } \\ & \text { 3NE8 020-1 } \end{aligned}$	$\begin{gathered} -- \\ -- \\ -- \\ \hline- \end{gathered}$		$\begin{aligned} & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$
	3NE1 021-2 3NE1 021-2 3NE1 021-2 3NE1 817-04)	-- -- --	3NE8 021-1 3NE8 021-1 3NE8 021-1 3NE8 021-1	-- -- --	-- -- --	$\begin{aligned} & \text { 3NC2 200 } \\ & \text { 3NC2 } 280^{4)} \\ & \text { 3NC2 2804) } \\ & \text { 3NC2 } 280^{4)} \end{aligned}$

Type	Cable and line protection fuses				
	LV HRC design ${ }^{4}$	Cylindrical design ${ }^{4}$			DIAZED ${ }^{4}$
	gG	gG	gG	gG	quick
	3NA2	$\begin{aligned} & 10 \mathrm{~mm} \times 38 \mathrm{~mm} \\ & \text { 3NW6 } 0 \end{aligned}$	$\begin{aligned} & 14 \mathrm{~mm} \times 51 \mathrm{~mm} \\ & \text { 3NW6 } 1 \end{aligned}$	$22 \mathrm{~mm} \times 58 \mathrm{~mm}$ 3NW6 2	5SB
3RF21 20-... 2	3NA2 803	3NW6 000-1	3NW6 101-1	--	5SB1 41
3RF21 20-... 4	3NA2 801		3NW6 101-1	--	5SB1 41
3RF21 20-....5 ${ }^{3)}$	3NA2 801	--	3NW6 101-1	--	5SB1 41
3RF21 30-...2	3NA2 803	--	3NW6 103-1	--	5SB1 71
3RF21 30-... 4	3NA2 803	--	3NW6 101-1	--	5SB171
3RF21 30-....5 ${ }^{3}$)	3NA2 803	--	3NW6 101-1	--	5SB1 71
3RF21 30-... 6	3NA2 803-6	--	--	--	--
3RF21 50-... 2	3NA2 810	--	3NW6 107-1	3NW6 207-1	5SB3 11
3RF21 50-... 4	3NA2 807	--	--	3NW6 205-1	5SB3 11
3RF21 50-....5 ${ }^{3)}$	3NA2 807	--	--	3NW6 205-1	5SB3 11
3RF21 50-... 6	3NA2 807-6	--	--	--	--
3RF21 70-...2 ${ }^{5}$	3NA2 817	--	--	3NW6 217-1	
3RF21 70-...4 ${ }^{5}$	3NA2 812	--	--	3NW6 212-1	5SB3 31
3RF21 70-...5 $5^{315)}$	3NA2 812	--	--	3NW6 212-1	--
3RF21 70-...6 ${ }^{5}$	3NA2 812-6	--	--	--	--
3RF21 90-...2 ${ }^{5 \text {) }}$	3NA2 817	--	--	3NW6 217-1	--
3RF21 90-...4 ${ }^{5}$	3NA2 812	--	--	3NW6 212-1	--
3RF21 90-....53)5)	3NA2 812	--	--	3NW6 212-1	--
3RF21 90-...6 ${ }^{5}$	3NA2 812-6	--	--	---	--

Suitable fuse holders, fuse bases and controls can be found in
Catalog LV 1, Chapter 19.

[^73]
Solid-State Switching Devices

Solid-State Relays

3RF20 Solid-state relays - technical data

Overview

45 mm semiconductor relays

The semiconductor relays with a width of 45 mm provide for connection of the power supply lead and the load from above. This makes it easy to retrofit existing semiconductor relays. The connection of the control cable also saves space in much the same way as the 22.5 mm design, as it is simply plugged on.

Technical specifications

Type		3RF20			
General data					
Ambient temperature during operation, derating at $40^{\circ} \mathrm{C}$ when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \\ & \hline \end{aligned}$			
Site altitude	m	0... 1000; derating from 1000			
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11			
Vibration resistance acc. to IEC 60068-2-6	g	2			
Degree of protection		IP20			
Electromagnetic compatibility (EMC) Emitted interference - Conducted interference voltage IEC acc. to 60947-4-3 - Emitted, high-frequency interference voltage acc. to IEC 60947-4-3		Class A for industrial applications Class A for industrial applications			
Noise immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Contact discharge 4; air discharge 8; behavior criterion2			
Connection, main contacts, screw connection					
- Conductor cross-sections - Solid - Finely stranded with end sleeve - Solid or stranded, AWG cables - Terminal screw - Tightening torque	mm^{2} mm^{2} AWG Nm lb.in	$\begin{aligned} & 2 \times(1.5 \ldots 2.5)^{1)}, 2 \times(2.5 \ldots 6)^{1)} \\ & \left.2 \times(1 \ldots 2.5)^{1}\right), 2 \times(2.5 \ldots 6)^{1)}, 1 \times 10 \\ & 2 \times(14 \ldots .10) \end{aligned}$			
Connection, auxiliary/control contacts, screw connection Conductor cross-section Insulation stripping length Terminal screw - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm} \\ & \\ & \mathrm{Nm} \\ & \mathrm{lb} . \mathrm{in} \end{aligned}$	$1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.0) ;$ AWG $20 \ldots 12$7M 3$0.5 \ldots 0.6$$4.5 \ldots 5.3$			
Type		3RF20 .0-1AA. 2	3RF20 .0-1AA. 4	3RF20..-.... 5	3RF20 .0-1AA. 6
Main circuit					
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$ - Tolerance - Rated frequency	$\begin{aligned} & V \\ & \% \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \\ & -15 /+10 \\ & 50 / 60 \end{aligned}$	$48 \ldots 460$	$48 \ldots 600$	$400 \ldots 600$
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$	V	600			
Blocking voltage	V	800	1200	1200	1600
Rage of voltage rise	V/us	1000			

Solid-State Relays

3RF20 Solid-state relays - technical data

The heat transfer of the solid-state relays has been considerably improved.
Please note the highlighted values when dimensioning the heat sink.

Type	$\begin{aligned} & \boldsymbol{I}_{\max }{ }^{\mathbf{1}} \\ & \text { at } R_{\text {thha }} / T_{\mathrm{U}}=40^{\circ} \mathrm{C} \end{aligned}$		I_{e} acc. to IEC 60947-4-3 at $R_{\text {thnal }} / T_{\mathrm{u}}=40^{\circ} \mathrm{C}$		I_{e} acc. to UL/CSA at $R_{\text {thna }} / T_{\mathrm{u}}=50^{\circ} \mathrm{C}$		Power loss at $I_{\text {max }}$ W	Minimum load current A	Off-state currentmA
	A	K/W	A	K/W	A	K/W			
Main circuit									
3RF2020-1.A..	20	2.00	20	1.70	20	1.30	28.6	0.1	10
3RF2030-1.A..	30	1.45	30	1.45	30	1.25	44.2	0.5	10
3RF2050-1.A..	50	0.85	50	0.85	50	0.70	66	0.5	10
3RF2070-1.A..	70	0.50	50	1.15	50	1.00	94	0.5	10
3RF2090-1.A..	88	0.55	50	1.40	50	1.00	118	0.5	10

1) The current $I_{\text {max }}$ provides information about the performance of the solid-state relay. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and cooling conditions.

Note:
The required heat sinks for the corresponding load currents can be determined from the characteristic curves (see page 8/49). The minimum thickness values for the mounting surface must be observed.

	Rated impulse withstand capacity $I_{\text {tsm }}$	$1^{2} t$ value				
Type	A	$A^{2} \mathrm{~S}$				
Main circuit						
3RF20 20-1AA..	200	200				
3RF20 30-1AA. 2	300	450				
3RF20 30-1AA. 4	300	450				
3RF20 30-1AA. 6	400	800				
3RF20 50-1AA..	600	1800				
3RF20 70-1AA. 2	1200	7200				
3RF20 70-1AA. 4	1200	7200				
3RF20 70-1AA. 6	1150	6600				
3RF20 90-1AA..	1150	6600				
Type				3RF20 .0-1AA0.	3RF20 .0-1AA4.	3RF20 .0-1AA2.
Control circuit						
Method of operat				DC operation	DC operation	AC operation
Rated control sup	voltage $U_{\text {s }}$		V	24 acc. to EN 61131-2	4 ... 30V DC	110 ... 230
Max. rated contro	Itage		V	30	30	253
Rated control cur	t at U_{s}		mA	20	20	15
Rated frequency	he control supply voltage		Hz	-	-	50/60
Response voltag current			$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \\ & >2 \end{aligned}$	$\begin{aligned} & 4 \\ & >2 \end{aligned}$	$\begin{aligned} & 90 \\ & 2 \end{aligned}$
Drop-out voltage			V	5	1	40
Operating times closing time opening time			ms	$1+$ max. one half wave $1+$ max. one half wave	$1+$ max. one half wave $1+$ max. one half wave	$40+$ max. one half wave 40 + max. one half wave

Order No.	All-range fuse LV design gR/SITOR 3NE1	Semiconductor protection fuse Cylindrical design			Cable and line protection fuse				
						Cylindrical			DIAZED quick
		$10 \times 38 \mathrm{~mm}$ aR/SITOR 3NC1 0	$14 \times 51 \mathrm{~mm}$ aR/SITOR 3NC1 4	$22 \times 58 \mathrm{~mm}$ aR/SITOR 3NC2 2	gL/gG/3NA	$\begin{aligned} & 10 \times 38 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	$14 \times 51 \mathrm{~mm}$ gL/gG 3NW	$\begin{aligned} & 22 \times 58 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	5S
Fused design with semiconductor protection									
$\begin{aligned} & \text { 3RF20 20-1 AA. } 2 \\ & \text { 3RF20 20-1AA. } 4 \end{aligned}$	$\begin{aligned} & \text { 3NE1 814-0 } \\ & \text { 3NE1 813-0 } \end{aligned}$	$\begin{aligned} & \text { 3NC1 } 020 \\ & \text { 3NC1 } 016 \end{aligned}$	$\begin{aligned} & 3 N C 1420 \\ & \text { 3NC1 } 420 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \end{aligned}$	$\begin{aligned} & \text { 3NA2 } 803 \\ & \text { 3NA2 } 801 \end{aligned}$	3NW6 001-1	3NW6 101-1 3NW6 101-1		$\begin{aligned} & \text { 5SB1 } 71 \\ & \text { 5SB1 } 41 \end{aligned}$
3RF20 30-1AA. 2 3RF20 30-1AA. 4 3RF20 30-1AA. 6	3NE1 815-0 3NE1 815-0 3NE1 815-0	$\begin{aligned} & \text { 3NC1 032 } \\ & \text { 3NC1 025 } \\ & \text { 3NC1 032 } \end{aligned}$	3NC1 432 3NC1 432 3NC1 432	$\begin{aligned} & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \end{aligned}$	3NA2 803 3NA2 803 3NA2 803-6	-	3NW6 103-1 3NW6 101-1	-	$\begin{aligned} & \text { 5SB3 } 11 \\ & \text { 5SB1 } 71 \end{aligned}$
$\begin{aligned} & \text { 3RF20 50-1AA. } 2 \\ & \text { 3RF20 50-1AA. } 4 \\ & \text { 3RF20 50-1AA. } 6 \end{aligned}$	3NE1 817-0 3NE1 802-0 3NE1 803-0	-	$\begin{aligned} & \text { 3NC1 } 450 \\ & \text { 3NC1 } 450 \\ & \text { 3NC1 } 450 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NA2 } 810 \\ & \text { 3NA2 } 807 \\ & \text { 3NA2 807-6 } \\ & \hline \end{aligned}$	-	3NW6 107-1	3NW6 207-1 3NW6 205-1	$\begin{aligned} & \text { 5SB3 } 21 \\ & \text { 5SB3 } 11 \end{aligned}$
3RF20 70-1AA. $\mathbf{2}^{2}$ 3RF20 70-1AA. 4 3RF20 70-1AA. 6	3NE1 820-0 3NE1 020-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	-	3NW6 217-1 3NW6 212-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$
3RF20 90-1AA. 2^{2} 3RF20 90-1AA. 4 3RF20 90-1AA. 6	3NE1 021-2 3NE1 O21-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 200 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	-	3NW6 217-1 3NW6 212-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$

1) Type of coordination "2" acc. to EN 60947-4-1:

In the event of a short-circuit, the control gear in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.
2) These versions can also be protected against short-circuit with miniature circuit-breakers as described on page 7/11.

Solid-State Switching Devices

Solid-State Relays

3RF22 Solid-state relays - technical data

Overview

45 mm solid-state relays
The 3RF22 solid-state relays with a width of 45 mm provide space advantages over solutions with single-phase versions. The logical connection arrangement, with the power infeed from above and connection of the load from below, ensures tidy installation in the control cabinet.

Important features:

- LED indicators
- Variety of connection techniques
- Plug-in control connection
- Degree of protection IP20
- Zero-point switching,
- Two or three-phase controlled

Technical specifications

Type		3RF22 ..-1....	3RF22 ..-2....	3RF22 ..-3....
General data				
Ambient temperature - During operation, derating from $40^{\circ} \mathrm{C}$ - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \\ & \hline \end{aligned}$		
Site altitude	m	0 ... 1000; > 1000 ask Technical As	ssistance	
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11		
Vibration resistance acc. to IEC 60068-2-6	g	2		
Degree of protection		IP20		IP00
Insulation strength at $50 / 60 \mathrm{~Hz}$ (main/control circuit to ground)	V rms	4000		
Electromagnetic compatibility (EMC) - Emitted interference - Conducted interference voltage acc. to IEC 60947-4-3 - Emitted, high-frequency interference voltage acc. to IEC 60947-4-3 - Interference immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Class A for industrial applications Class A for industrial applications Contact discharge 4; air discharge 0.15 ... 80; $140 \mathrm{~dB} \mu \mathrm{~V}$; behavior crit $2 / 5.0 \mathrm{kHz}$; behavior criterion 1 Conductor - ground 2; conductor	8; behavior criterion 2 terion 1 - conductor 1; behavior criter	
Connection technique		Screw terminal	Spring-loaded connection	Ring terminal end connection
Main contact connection - Conductor cross-section - Solid - Finely stranded with end sleeve - Finely stranded without end sleeve - Solid or stranded, AWG conductors - Stripped length - Terminal screw - Tightening torque, $\varnothing 5 \ldots 6 \mathrm{~mm}, \mathrm{PZ} 2$ - Cable lug - acc. to DIN 46234 - acc. to JIS C 2805	mm^{2} mm^{2} mm^{2} mm Nm lb.in	$\begin{aligned} & 2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6) \\ & 2 \times(1 \ldots 2.5), 2 \times(2.5 \ldots 6), 1 \times 10 \\ & --2 \times(\text { AWG } 14 \ldots 10) \\ & 10 \\ & \text { M4 } \\ & 2 \ldots 2.5 \\ & 18 \ldots 22 \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 2.5) \\ & 2 \times(0.5 \ldots 1.5) \\ & 2 \times(0.5 \ldots .5) \\ & 2 \times(\text { AWG } 18 \ldots 14) \\ & 10 \\ & -- \\ & \\ & -- \end{aligned}$	$\begin{aligned} & \text {-- } \\ & -- \\ & -- \\ & -- \\ & \text { M5 } \\ & 2.5 \ldots 2 \\ & 18 \ldots 22 \\ & \text { 5-2.5 ... 5-25 } \\ & \text { R } 2-5 \ldots 14-5 \\ & \hline \end{aligned}$
Connection, auxiliary/control contacts - Conductor cross-section, with or without end sleeve - Stripped length - Terminal screw - Tightening torque, Ø 3.5, PZ 1	mm AWG mm Nm lb.in	$\begin{aligned} & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.0) \\ & 20 \ldots 12 \\ & 7 \\ & \text { M3 } \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$	$\begin{aligned} & 0.5 \ldots 2.5 \\ & 20 \ldots 12 \\ & 10 \\ & --\quad \end{aligned}$	$\begin{aligned} & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.0) \\ & 20 \ldots 12 \\ & 7 \\ & \text { M3 } \\ & 0.5 \ldots 0.6 \\ & 4.5 \ldots 5.3 \end{aligned}$

1) These products were built as Class A devices. The use of these devices in residential areas could result in radio interference. In this case the may be required to introduce additional damping measures.

Solid-State Relays

3RF22 Solid-state relays - technical data

Type		3RF22 ..-.AB. 5	3RF22 ...-AC. 5
Main circuit			
Controlled phases		Two-phase	Three-phase
Rated operational voltage U_{e}	V	$48 . . .600$	$48 . . .600$
- Operating range	V	40 ... 660	$40 . . .660$
- Rated frequency	Hz	$50 / 60 \pm 10$ \%	$50 / 60 \pm 10 \%$
Rated insulation voltage U_{i}	V	600	600
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6	6
Blocking voltage	V	1200	1200
Rage of voltage rise	V/us	1.000	1.000

The heat transfer of the solid-state relays has been considerably improved.
Please note the highlighted values when dimensioning the heat sink.

Type	$\begin{aligned} & \boldsymbol{I}_{\max }^{\mathbf{1}} \\ & \text { at } R_{\text {thha }} / T_{\mathrm{u}}=40^{\circ} \mathrm{C} \end{aligned}$		I_{e} acc. to IEC 60947-4-3 at $R_{\text {thha }} / T_{\mathrm{U}}=40^{\circ} \mathrm{C}$		I_{e} acc. to UL/CSA at $R_{\text {thha }} / T_{\mathrm{u}}=50^{\circ} \mathrm{C}$		Power loss at $I_{\text {max }}$ W	Minimum load current A	Max. off-state current mA
	A	K/W	A	K/W	A	K/W			
Main circuit									
$\begin{aligned} & \text { 3RF2230-1 AB.. } \\ & \text { 3RF2230-2AB.. } \\ & \text { 3RF2230-3AB.. } \end{aligned}$	30	0.80	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.80 \\ & 1.36 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.65 \\ & 1.15 \\ & 0.65 \\ & \hline \end{aligned}$	81	0.5	10
$\begin{aligned} & \hline \text { 3RF2255-1AB.. } \\ & \text { 3RF2255-2AB.. } \\ & \text { 3RF2255-3AB.. } \end{aligned}$	55	0.25	$\begin{aligned} & 50 \\ & 20 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.35 \\ & 1.83 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & 1.58 \\ & 0.15 \\ & \hline \end{aligned}$	151	0.5	10
$\begin{aligned} & \text { 3RF2230-1AC.. } \\ & \text { 3RF2230-2AC.. } \\ & \text { 3RF2230-3AC.. } \end{aligned}$	30	0.45	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.86 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.72 \\ & 0.35 \\ & \hline \end{aligned}$	122	0.5	10
$\begin{aligned} & \hline \text { 3RF2255-1AC.. } \\ & \text { 3RF2255-2AC.. } \\ & \text { 3RF2255-3AC.. } \end{aligned}$	55	0.14	$\begin{aligned} & 50 \\ & 20 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 1.19 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 50 \\ & 20 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 1.02 \\ & 0.10 \end{aligned}$	226	0.5	10

1) The current $I_{\max }$ provides information about the performance of the
solid-state relay. The actual permitted rated operational current I_{e} can be
smaller depending on the connection method and cooling conditions.

Note:
The required heat sinks for the corresponding load currents can be determined from the characteristic curves (see page 8/49, "More information"). The minimum thickness values for the mounting surface must be observed.

Type	Rated impulse withstand capacity $I_{\text {tsm }}$	I^{2} t value
	A	$\mathrm{A}^{2} \mathrm{~s}$
Main circuit		
3RF22 30-...5	300	450
3RF22 55-...5	600	1800

Type		3RF22..-.A.3.	3RF22..-.A.4.
Control circuit Method of operation	V	110	DC operation
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	Hz	$50 / 60 \varnothing 10 \%$	$4 \ldots 30$
Rated frequency of the control supply voltage	V	121	--
Control supply voltage, max.	mA	15	30
Typical actuating current	V	90	30
Response voltage	V	<40	4
Drop-out voltage	ms	$40+$ max. one half-wave	1
Operating times - ON-delay - OFF-delay	ms	$40+$ max. one half-wave	$1+$ max. one half-wave

Solid-State Switching Devices

Solid-State Contactors

3RF23 Solid-state contactors- technical data

Technical specifications

Order No. 3RF23 ..-.A... 3RF23 ..-.B... 3RF23 ..-C... 3RF23 ..-.D...

General data
Ambient temperature

during operation, derating at $40^{\circ} \mathrm{C}$ when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -55 \ldots+80 \end{aligned}$		
Site altitude	m	0 ... 1000; derating from 1000		
Shock resistance acc. to IEC 60068-2-27	g / ms	15/11		
Vibration resistance acc. to IEC 60068-2-6	g	2		
Degree of protection		IP20		
Electromagnetic compatibility (EMC)				
Emitted interference acc. to IEC 60947-4-3 - Conducted interference voltage - Emitted high-frequency interference voltage		Class A for industrial applications	Class A for industrial applications; Class B for residential/business commercial areas up to 16 A, AC51 Low Noise	Class A for industrial applications
Noise immunity - Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3) - Induced RF fields acc. to IEC 61000-4-6 - Burst acc. to IEC 61000-4-4 - Surge acc. to IEC 61000-4-5	kV MHz kV kV	Contact discharge 4; air discharge 0.15 ... 80; $140 \mathrm{~dB} \mu \mathrm{~V}$; behavior crit 2/5.0 kHz; behavior criterion 1 Conductor - ground 2; conductor -	8; behavior criterio rion 1 conductor 1; beha	$\text { n } 2$ ior criterion 2

Type		3RF23 ..-1....	3RF23 ..-2....	3RF23 ..-3....
General data				
Connection technique		Screw connection	Spring-loaded connection	Ring cable connection
Main contact connectionConductor cross-section				
Solid	mm^{2}	$2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6)$	$2 \times(0.5 \ldots 2.5)$	-
Finely stranded with end sleeve	mm^{2}	$2 \times(1.5 \ldots 2.5), 2 \times(2.5 \ldots 6), 1 \times 10$	$2 \times(0.5 \ldots 1.5)$	-
Finely stranded without end sleeves	mm^{2}		$2 \times(0.5 \ldots 2.5)$	-
Solid or stranded AWG conductors	AWG	$2 \times(14 \ldots 10)$	$2 \times(18 . . .14)$	-
Insulation stripping length	mm	10	10	-
Terminal screw		M 4	-	M 5
- Tightening torque	Nm	$2 . . .2 .5$	-	$2 . . .2 .5$
- Tightening torque	lb.in	7 ... 10.3	-	7 ... 10.3
Cable lug				
- DIN		-	-	$\begin{aligned} & \text { DIN 46234 } \\ & -5-2.5,-5-6,-5-10,-5-16,-5-25 \end{aligned}$
- JIS		-	-	JIS C 2805 R 2-5, 5.5-5, 8-5, 14-5
Auxiliary/control contact connections				
Conductor cross-section	mm^{2}	$1 \times(0.5 \ldots 2.5) ; 2 \times(0.5 \ldots 1.0)$	$0.5 \ldots 2.5$	1x (0.5 ... 2.5); $2 \times(0.5 \ldots 1.0)$
	AWG	$20 \ldots 12$	$20 . . .12$	$20 . .12$
Insulation stripping length	mm	7	10	7
Terminal screw		M 3	-	M 3
- Tightening torque	Nm.	$0.5 \ldots . .6$	-	$0.5 \ldots 0.6$
	lb.in	4.5 ... 5.3	-	4.5 ... 5.3

Solid-State Contactors

3RF23 Solid-state contactors - technical data

Technical specifications

Type	Type current AC-51/performance capacity ${ }^{1}$)			Power loss at $I_{\text {max }}$	Minimum load current	Off-state current	Rated peak withstand current $I_{\text {tsm }}$	$I^{2} t$ value
	at $I_{\text {max }}$ at $40^{\circ} \mathrm{C}$	Acc. to IEC 60947-4-3 at $40^{\circ} \mathrm{C}$	Acc. to UL/CSA at $50^{\circ} \mathrm{C}$					
	A	A	A	W	A	mA	A	$A^{2} \mathrm{~S}$
Main circuit								
$\begin{aligned} & \text { 3RF2310-.AA. } 2 \\ & \text { 3RF2310-.AA. } 4 \\ & \text { 3RF2310-.AA. } 5 \end{aligned}$	10.5	7.5	9.6	11	0.1	10	200	200
3RF2310-.AA. 6							400	800
$\begin{aligned} & \text { 3RF2320-.AA. } 2 \\ & \text { 3RF2320-.AA. } 4 \\ & \text { 3RF2320-.AA. } 5 \\ & \text { 3RF2320-.AA. } 6 \end{aligned}$	20	13.2	17.6	20	0.5	10	600	1800
$\begin{aligned} & \text { 3RF2320-.CA. } 2 \\ & \text { 3RF2320-.CA. } 4 \end{aligned}$						25	600	1800
$\begin{aligned} & \text { 3RF2320-.DA. } 2 \\ & \text { 3RF2320-.DA. } 4 \end{aligned}$						10	1150	6600
$\begin{aligned} & \text { 3RF2330-.AA. } 2 \\ & \text { 3RF2330-.AA. } 4 \\ & \text { 3RF2330-.AA. } 5 \\ & \text { 3RF2330-.AA. } 6 \end{aligned}$	30	22	27	33	0.5	10	600	1800
3RF2330-.CA. 2						25	600	1800
3RF2330-.DA. 4		18.5	26	33	0.5	10	1150	6600
$\begin{aligned} & \text { 3RF2340-.AA. } 2 \\ & \text { 3RF2340-.AA. } 4 \\ & \text { 3RF2340-.AA. } 5 \end{aligned}$	40	33	36	44	0.5	10	1200	7200
3RF2340-.AA. 6							1150	6600
$\begin{aligned} & \text { 3RF2350-.AA. } 2 \\ & \text { 3RF2350-.AA. } 4 \\ & \text { 3RF2350-.AA. } 5 \\ & \text { 3RF2350-.AA. } 6 \end{aligned}$	50	36	45	54	0.5	10	1150	6600
$\begin{aligned} & \text { 3RF2370-.AA. } 2 \\ & \text { 3RF2370-.AA. } 4 \\ & \text { 3RF2370-.AA. } 5 \\ & \text { 3RF2370-.AA. } 6 \end{aligned}$	70	70	62	83	0.5	10	1150	6600

1) The type current provides information about the performance of the solid-
state contactor. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and installation conditions.

Type	Type current AC-51/ performance capacity ${ }^{1)}$			Type current AC-15/ performance capacity ${ }^{1)}$		Power loss at $I_{\text {max }}$	Minimum load current	Off-state current	Rated peak withstand current $I_{\text {tsm }}$	$\boldsymbol{I}^{\mathbf{2}} \boldsymbol{t}$ value
	at $I_{\text {max }}$ at $40^{\circ} \mathrm{C}$	Acc. to IEC 60947-4-3 at $40^{\circ} \mathrm{C}$	Acc. to UL/CSA at $50^{\circ} \mathrm{C}$	$\begin{aligned} & 10 \times I_{\mathrm{e}} \\ & \text { for } \\ & 60 \mathrm{~ms} \end{aligned}$	Parameters					
	A	A	A	A		W	A	mA	A	$A^{2} \mathrm{~S}$
Main circuit										
$\begin{aligned} & \text { 3RF2310-.BA. } 2 \\ & \text { 3RF2310-.BA. } 4 \end{aligned}$	10.5	7.5	9.6	6	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	11	0.1	10	200	200
3RF2310-.BA. 6									400	800
3RF2320-.BA. 2 3RF2320-BA. 4 3RF2320-.BA. 6	20	13.2	17.6	12	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	20	0.5	10	600	1800
3RF2330-.BA. 2 3RF2330-BA. 4 3RF2330-.BA. 6	30	22	27	15	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	33	0.5	10	600	1800
$\begin{aligned} & \hline \text { 3RF2340-.BA. } 2 \\ & \text { 3RF2340-.BA. } 4 \end{aligned}$	40	33	36	20	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	44	0.5	10	1200	7200
3RF2340-.BA. 6									1150	6600
3RF2350-BA. 2 3RF2350-.BA. 4 3RF2350-BA. 6	50	36	45	25	$\begin{aligned} & 1200 \text { 1/h } \\ & 50 \% \text { ON period } \end{aligned}$	54	0.5	10	1150	6600
$\begin{aligned} & \hline \text { 3RF2370-.BA. } 2 \\ & \text { 3RF2370-.BA. } 4 \\ & \text { 3RF2370-.BA. } 6 \end{aligned}$	70	70	62	27.5	$\begin{aligned} & 12001 / \mathrm{h} \\ & 50 \% \text { ON period } \end{aligned}$	83	0.5	10	1150	6600

1) The type current provides information about the performance of the solidstate contactor. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and installation conditions.

Solid-State Contactors

3RF23 Solid-state contactors - technical data

Fused design with semiconductor protection

 (similar to type of coordination "2") ${ }^{1)}$The semiconductor protection for the SIRIUS SC controlgear can be used with different protective devices. This allows protection by means of LV HRC fuses of operational class gL/gG or supplementary protectors. Siemens recommends the use of special SITOR semiconductor fuses. The table below lists the maximum permissible fuses for each SIRIUS SC control gear.

If a fuse is used with a higher rated current than specified, semiconductor protection is no longer guaranteed. However, smaller fuses with a lower rated current for the load can be used without problems.
For protective devices with operational class gL/gG and for SITOR full range fuses 3NE1, the minimum cross-sections for the conductor to be connected must be taken into account.

Order No.	All-range fuse LV HRC design gR/SITOR 3NE1	Semiconductor protection fuse Cylindrical design			Cable and line protection fuse				
		$10 \times 38 \mathrm{~mm}$ aR/SITOR 3NC1 0	$14 \times 51 \mathrm{~mm}$ aR/SITOR 3NC1 4	$22 \times 58 \mathrm{~mm}$ aR/SITOR 3NC2 2	design gL/gG 3NA	$\begin{aligned} & 10 \times 38 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	$14 \times 51 \mathrm{~mm}$ gL/gG 3NW	$\begin{aligned} & 22 \times 58 \mathrm{~mm} \\ & \mathrm{gL} / \mathrm{gG} 3 \mathrm{NW} \end{aligned}$	
$\begin{aligned} & \text { 3RF23 1.-.... } \\ & \text { 3RF23 } 14 \\ & \text { 3RF23 } 1 .-\ldots .6 \end{aligned}$	3NE1 813-0 3NE1 813-0 3NE1 813-0	$\begin{aligned} & \text { 3NC1 } 010 \\ & \text { 3NC1 010 } \\ & \text { 3NC1 } 010 \end{aligned}$	$\begin{aligned} & \text { 3NC1 } 410 \\ & \text { 3NC1 } 410 \\ & \text { 3NC1 } 410 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \\ & \text { 3NC2 } 220 \end{aligned}$	3NA2 803 3NA2 801 3NA2 803-6	3NW6 001-1 3NW6 001-1	3NW6 101-1 3NW6 101-1		$\begin{aligned} & \text { 5SB1 } 41 \\ & \text { 5SB1 } 41 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 2.-.... } \\ & \text { 3RF23 } 2 .-. .4 \\ & \text { 3RF23 2.-... } 6 \end{aligned}$	3NE1 814-0 3NE1 814-0 3NE1 814-0	$\begin{aligned} & \text { 3NC1 020 } \\ & \text { 3NC1 020 } \\ & \text { 3NC1 020 } \end{aligned}$	$\begin{aligned} & \text { 3NC1 } 420 \\ & \text { 3NC1 } 420 \\ & \text { 3NC1 } 420 \end{aligned}$	3NC2 220 3NC2 220 3NC2 220	3NA2 807 3NA2 807 3NA2 807-6	3NW6 007-1 3NW6 005-1	3NW6 107-1 3NW6 105-1 -	3NW6 207-1 3NW6 205-1	$\begin{aligned} & \text { 5SB1 } 71 \\ & \text { 5SB1 } 71 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 3.-....2 } \\ & \text { 3RF23 } 3 .-. .4 \\ & \text { 3RF23 } 3 .-\ldots .6 \end{aligned}$	3NE1 803-0 3NE1 803-0 3NE1 803-0	$\begin{aligned} & \text { 3NC1 032 } \\ & \text { 3NC1 032 } \\ & \text { 3NC1 032 } \end{aligned}$	$\begin{aligned} & \text { 3NC1 } 432 \\ & \text { 3NC1 } 432 \\ & \text { 3NC1 } 432 \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \\ & \text { 3NC2 } 232 \end{aligned}$	3NA2 810 3NA2 807 3NA2 807-6	-	3NW6 107-1 3NW6 105-1 -	3NW6 207-1 3NW6 205-1	$\begin{aligned} & \text { 5SB3 } 11 \\ & \text { 5SB3 } 11 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 4.-.... } \\ & \text { 3RF23 } 4 .-. .4 \\ & \text { 3RF23 4.-... } 6 \end{aligned}$	$\begin{aligned} & \text { 3NE1 802-0 } \\ & \text { 3NE1 802-0 } \\ & \text { 3NE1 802-0 } \end{aligned}$	-	$\begin{aligned} & \text { 3NC1 } 440 \\ & \text { 3NC1 } 440 \\ & \text { 3NC1 } 440 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 240 \\ & \text { 3NC2 } 240 \\ & \text { 3NC2 } 240 \\ & \hline \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6		3NW6 117-1 3NW6 112-1	3NW6 217-1 3NW6 212-1	$\begin{aligned} & \text { 5SB3 } 21 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 5.-.... } 2 \\ & \text { 3RF23 5.-.. } 4 \\ & \text { 3RF23 5.-... } 6 \end{aligned}$	3NE1 817-0 3NE1 817-0 3NE1 817-0	-	$\begin{aligned} & \text { 3NC1 } 450 \\ & \text { 3NC1 } 450 \\ & \text { 3NC1 } 450 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \text { 3NC2 } 250 \\ & \hline \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-	3NW6 117-1	3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 21 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 7.-.... } 2 \\ & \text { 3RF23 7.... } 4 \\ & \text { 3RF23 7.-... } 6 \end{aligned}$	3NE1 820-0 3NE1 020-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-		3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$
$\begin{aligned} & \hline \text { 3RF23 9.-....2 } \\ & \text { 3RF23 9.... } 4 \\ & \text { 3RF23 9.-... } 6 \end{aligned}$	3NE1 021-2 3NE1 021-2 3NE1 020-2	-	-	$\begin{aligned} & \text { 3NC2 } 200 \\ & \text { 3NC2 } 280 \\ & \text { 3NC2 } 280 \end{aligned}$	3NA2 817 3NA2 812 3NA2 812-6	-		3NW6 217-1 3NW6 210-1	$\begin{aligned} & \text { 5SB3 } 31 \\ & \text { 5SB3 } 21 \end{aligned}$

1) Type of coordination "2" acc. to EN 60947-4-1:

In the event of a short-circuit, the controlgear in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.

Solid-State Contactors

3RF24 Solid-state contactors - technical data

Overview

The complete units consist of a solid-state relay plus optimized heat sink, and are therefore ready to use. They offer defined rated currents to make selection as easy as possible. Depending on the version, current intensities of up to 50 A are achieved. Like all of our solid-state switching devices, one of their particular advantages is their compact and space-saving design. With their insulated mounting foot they can easily be snapped onto a standard mounting rail, or they can be mounted on carrier plates with fixing screws. This insulation enables them to be used in
circuits with protective extra-low voltage (PELV) or safety extra-low voltage (SELV) in building engineering. For other applications, such as for extended personal safety, the heat sink can be grounded through a screw terminal.

Version for resistive loads, "zero-point switching"
This standard version is often used for switching space heaters on and off.

Technical specifications

1) These products were built as Class A devices. The use of these devices in residential areas could result in radio interference. In this case the may be required to introduce additional damping measures.

Solid-State Switching Devices

Solid-State Contactors

3RF24 Solid-state contactors - technical data

Type		3RF24AB. 5	3RF24AC. 5
Controlled phases		Two-phase	Three-phase
Rated operational voltage U_{e}	V	$48 . . .600$	$48 . . .600$
- Operating range	V	$40 . . .660$	$40 . . .660$
- Rated frequency	Hz	$50 / 60 \pm 10 \%$	$50 / 60 \pm 10 \%$
Rated insulation voltage U_{i}	V	600	600
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6	6
Blocking voltage	V	1200	1200
Rage of voltage rise	V/us	1000	1000

Type	Type current/	Rated operational current $I_{\text {e }}$		Power loss at $I_{\text {AC-51 }}$	Minimum load current	Max. off-state current	Rated peak withstand current $I_{\text {tsm }}$	$I^{2} t$ value
	$I_{\text {AC-51 }}$ at $40^{\circ} \mathrm{C}$	Acc. to IEC 60947-4-3 at $40^{\circ} \mathrm{C}$	Acc. to UL/CSA at $50^{\circ} \mathrm{C}$					
	A	A	A	W	A	mA	A	$A^{2} \mathrm{~S}$
Main circuit								
3RF2410-.AB. 5	10.5	7	7	23	0.1	10	200	200
3RF2420-.AB. 5	22	15	15	44	0.5	10	600	1800
3RF2430-.AB. 5	30	22	22	61	0.5	10	1200	7200
3RF2440-.AB. 5	40	30	30	80	0.5	10	1150	6600
3RF2450-.AB. 5	50	38	38	107	0.5	10	1150	6600
3RF2410-.AC. 5	10.5	7	7	31	0.5	10	300	450
3RF2420-.AC. 5	22	15	15	66	0.5	10	600	1800
3RF2430-.AC. 5	30	22	22	91	0.5	10	1200	7200
3RF2440-.AC. 5	40	30	30	121	0.5	10	1150	6600
3RF2450-.AC. 5	50	38	38	160	0.5	10	1150	6600

1) The type current provides information about the performance of the solidstate contactor. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and installation conditions.

Type		3RF24 ..-... 4.	3RF24 ..-...5.
Control circuit			
Method of operation		DC operation	AC operation
Rated control supply voltage $\boldsymbol{U}_{\text {s }}$	V	4 ... 30	$190 \ldots 230$
Rated frequency of the control supply voltage	Hz	--	$50 / 60 \pm 10 \%$
Actuating voltage, max. - For actuating current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 253 \\ & 6 \end{aligned}$
Response voltage - For tripping current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4 \\ & >3 \end{aligned}$	$\begin{gathered} 180 \\ >2 \\ \hline \end{gathered}$
Drop-out voltage	V	< 1	< 40
Operating times - ON-delay - OFF delay	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$1+$ max. one half-wave $1+$ max. one half-wave	40 + max. one half-wave 40 + max. one half-wave

Solid-State Contactors

3RF34 Solid-state contactors - technical data

Technical specifications

General technical specifications

Ambient temperature

- During operation, derating from $40^{\circ} \mathrm{C} \quad{ }^{\circ} \mathrm{C} \quad-25 \ldots+60$
- During storage ${ }^{\circ} \mathrm{C} \quad-55 \ldots+80$

Installation altitude	m	$0 \ldots 1000$; derating from 1000 on request
Shock resistance		

Shock resistance acc. to IEC 60068-2-27 g/ms $\quad 15 / 11$

Vibration resistance acc. to IEC 60068-2-6	g	2
Degree of protection	IP20	

Insulation strength at $50 / 60 \mathrm{~Hz} \quad$ V rms 4000
(main/control circuit to floor)
Electromagnetic compatibility (EMC)

- Emitted interference according to IEC 60947-4-2
- Conducted interference voltage
- Emitted, high-frequency interference voltage
- Interference immunity
- Electrostatic discharge
according to IEC 61000-4-2
(corresponds to degree of severity 3)
- Induced RF fields
according to IEC 61000-4-6
Contact discharge: 4; Air discharge: 8;
Behavior criterion 2

Mz $0.15 \ldots 80$

- Burst acc. to IEC 61000-4-4
- Surge according to IEC 61000-4-5²)

	Class A for industrial applications Class A for industrial applications
kV	Contact discharge: 4; Air discharge: 8; Behavior criterion 2
MHz	$0.15 \ldots 80 ;$ $140 \mathrm{~dB} \mu \mathrm{~V}$; behavior criterion 1
kV	2; at 5 kHz ; behavior criterion 2 KV Conductor - Ground: 2; Conductor - Conductor: 1; Behavior criterion 2

Connection type

Operating devices
(i) Screw terminals $\bigcirc \bigcirc$ Spring-type terminals

Conductor cross-sections, main contacts

- Solid
$\mathrm{mm}^{2} \quad 2 \times(1.5 \ldots 2.5)^{3}, 2 \times(2.5 \ldots 6)^{3}$
$\mathrm{mm}^{2} 2 \times(1 \ldots 2.5)^{3)} ; 2 \times(2.5 \ldots 6)^{3)} ; 1 \times 10$
mm^{2}
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid or stranded
$2 \times($ AWG $14 \ldots$ 10)
$2 \times(0.5 \ldots 2.5)$
Conductor cross-sections, auxiliary/control contacts
- With/without end sleeve
$\mathrm{mm}^{2} 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.0)$
0.5 ... 2.5
- AWG cables, solid or stranded
AWG 20 ... 12

AWG 20 ... 12

1) These products were built as Class A devices. The use of these devices in residential areas could result in radio interference. In this case these may be required to introduce additional interference suppression measures.
2) The following applies for reversing contactors: To maintain the values, a 3TX7 462-3L surge suppressor should be used between the phases L1 and L3 as close as possible to the reversing contactor.
${ }^{3)}$ If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

Solid-State Switching Devices

Solid-State Contactors

3RF34 Solid-state contactors - technical data

Overview

These two-phase controlled, instantaneous switching solid-state contactors in the insulting enclosure are offered in 45 mm width to 5.2 A - and in 90 mm width to 16 A . This means that it is possible to operate motors up to 7.5 kW .

Technical specifications

$\begin{aligned} & \text { Type } \\ & \hline \text { Fuseless design } \\ & \text { with 3RV2 motor starter protector, CLASS } 10 \end{aligned}$		3RF34 05-.BB..	3RF34 10-.BB..	3RF34 12-.BB..	3RF34 16-.BB..
Rated operational current $I_{\text {AC-53 }}{ }^{1)}$ according to IEC 60947-4-2 - At $40^{\circ} \mathrm{C}$ - UL/CSA, at $50^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5.2(4.5) \\ & 4.6(4.0) \\ & 4.2(3.5) \end{aligned}$	$\begin{aligned} & 9.2 \\ & 8.4 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \\ & 12.5 \end{aligned}$
Power loss at $I_{\text {AC-53 }}$ - At $40^{\circ} \mathrm{C}$	W	10 (8)	16	22	28
Short-circuit protection with type of coordination "1" at an operational voltage of U_{e} to 440 V - Motor starter protector, type - Current I	kA	3RV20 11-1GA10 50	$\begin{aligned} & \text { 3RV20 11-1JA10 } \\ & 5 \end{aligned}$	3RV20 11-1KA10 5	$\begin{aligned} & \text { 3RV20 11-4AA10 } \\ & 3 \end{aligned}$

1) The reduced values in brackets apply to a directly mounted circuit breaker and simultaneous butt-mounting.

Type		3RF34 05-.BB. 4 3RF34 05-.BB. 6 3RF34 10-.BB..			3RF34 12-.BB. 4 3RF34 12-.BB. 6		3RF34 16-.BB..
Fused design with directly connected 3RB3 overload relay							
Rated operational current $I_{\text {AC-53 }}$ according to IEC 60947-4-2 - At $40^{\circ} \mathrm{C}$ - UL/CSA, at $50^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4 \\ & 3.6 \\ & 3.2 \end{aligned}$		$\begin{aligned} & 7.8 \\ & 7 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & 7.6 \end{aligned}$		$\begin{aligned} & 11 \\ & 10 \\ & 9 \end{aligned}$
Power loss at $I_{\mathrm{AC}-53}$ - At $40^{\circ} \mathrm{C}$	W	7		13	16		18
Minimum load current	A	0.1		0.5			
Max. off-state current	mA	10					
Rated peak withstand current $I_{\text {tsm }}$	A	200	600	600	1200	1150	1150
$I^{2} t$ value	$A^{2} \mathrm{~s}$	200	1800	1800	7200	6600	6600

Type		3RF34 ..-.BB. 4	3RF34 ..-.BB. 6
Main circuit			
Controlled phases		2-phase	2-phase
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$	V AC	48 ... 480	48 ... 600
- Operating range	$V A C$	40 ... 506	40 ... 660
- Rated frequency	Hz	50/60 ± 10 \%	50/60 ± 10 \%
Rated insulation voltage U_{i}	V	600	600
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6	6
Blocking voltage	V	1200	1600
Rage of voltage rise	V/ $/ \mathrm{s}$	1000	1000

Solid-State Contactors

3RF34 Solid-state contactors - technical data

Type		3RF34 ...-BB0.	3RF34 ..-.BB2.
Control circuits	V	24 acc. to IEC $61131-2$	AC operation
Method of operation	Hz	--	$110 \ldots 230$
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	V	30	$50 / 60 \pm 10 \%$
Rated frequency of the control supply voltage	mA	20	253
Control supply voltage, max.	V	15	15
Typical actuating current	V	5	90
Response voltage	ms	1	<40
Drop-out voltage	ms	$1+$ max. one half-wave	5
Operating times - ON-delay - OFF-delay			$30+$ max. one half-wave

Circuit diagrams

DC control supply voltage

AC control supply voltage

Solid-State Contactors

3RF34 Solid-state reversing contactors - technical data

Overview

The integration of four conducting paths to a reverse switch, combined in one enclosure makes this device a particularly compact solution. Compared to conventional systems, for which two contactors are required, it is possible to save up to 50%
width with the three-phase reversing contactors. Devices with 45 mm width cover motors up to 2.2 kW - and those with 90 mm width up to 3 kW .

Technical specifications

Type Fuseless design with 3RV2 motor starter protector, CLASS 10		3RF34 03-.BD. 4	3RF34 05-.BD. 4	3RF34 10-.BD. 4
Rated operational current $I_{\text {AC- } 53}{ }^{1)}$ according to IEC 60947-4-2 - At $40^{\circ} \mathrm{C}$ - UL/CSA, at $50^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$	A A A	$\begin{aligned} & 3.8(3.4) \\ & 3.5(3.1) \\ & 3.2(2.8) \end{aligned}$	$\begin{aligned} & 5.4(4.8) \\ & 5 \quad(4.3) \\ & 4.6(3.8) \end{aligned}$	$\begin{aligned} & 7.4 \\ & 6.8 \\ & 6.2 \end{aligned}$
Power loss at $I_{\mathrm{AC}-53}$ - At $40^{\circ} \mathrm{C}$	W	7 (6)	9 (8)	13
Short-circuit protection with type of coordination "1" at an operational voltage of U_{e} to 440 V - Motor starter protector, type - Current I_{q}	kA	$\begin{aligned} & \text { 3RV20 11-1FA10 } \\ & 50 \end{aligned}$	$\begin{aligned} & \text { 3RV20 11-1GA10 } \\ & 50 \end{aligned}$	3RV20 11-1JA10 10

1) The reduced values in brackets apply to a directly mounted circuit breaker and simultaneous butt-mounting.

Type		3RF34 03-.BD. 4	3RF34 05-.BD. 4	3RF34 10-.BD. 4
Fused design with directly connected 3RB3 overload relay				
Rated operational current $I_{\text {AC-53 }}$ according to IEC 60947-4-2 - At $40^{\circ} \mathrm{C}$ - UL/CSA, at $50^{\circ} \mathrm{C}$ - At $60^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 6.8 \\ & 6.2 \end{aligned}$
Power loss at $I_{\text {AC-53 }}$ - At $40^{\circ} \mathrm{C}$	W	6	8	16
Minimum load current	A	0.5		
Max. off-state current	mA	10		
Rated peak withstand current $I_{\text {tsm }}$	A	200	600	
$I^{2} t$ value	$A^{2} \mathrm{~S}$	200	1800	
Type		3RF34 ..-.BD. 4		
Main circuit				
Controlled phases		2-phase		
Rated operational voltage $\boldsymbol{U}{ }^{1 \text { I) }}$ - Operating range - Rated frequency	$\begin{aligned} & \text { V AC } \\ & \text { V AC } \\ & \mathrm{Hz} \end{aligned}$	$48 \ldots 480$ $40 \ldots 506$ $50 / 60 \pm 10 \%$		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	600		
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6		
Blocking voltage	V	1200		
Rage of voltage rise	V/us	1000		

1) To reduce the risk of a phase short circuit due to overvoltage, we recommend using a varistor type 3TX7 462-3L between the phases L1 and L3 and as close as possible to the switchgear.
We recommend a design with semiconductor protection as short-circuit protection.

Solid-State Switching Devices

Solid-State Contactors

3RF34 Solid-state reversing contactors - technical data

Type		3RF34 ..-. BD0.	3RF34 ..-.BD2.
Control circuits			
Method of operation		DC operation	AC operation
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$	V	24 acc. to IEC 61131-2	110 ... 230
Rated frequency of the control supply voltage	Hz	--	50/60 ± 10 \%
Control supply voltage, maximum	V	30	253
Typical actuating current	mA	15	10
Response voltage	V	15	90
Drop-out voltage	V	5	< 40
Operating times ${ }^{1)}$ - ON-delay - OFF-delay - Interlocking time	ms ms ms	$\begin{aligned} & 5 \\ & 5+\text { max. one half-wave } \\ & 60 \ldots 100 \end{aligned}$	$\begin{aligned} & 20 \\ & 10+\text { max. one half-wave } \\ & 50 \ldots 100 \end{aligned}$

1) Caution! Risk of phase short circuit in automatic mode.

The control inputs must not be actuated until after a delay time of 40 ms after the main voltage is applied

Circuit diagrams

DC control supply voltage

AC control supply voltage

Solid-State Switching Devices

Function Modules

General and technical data

Overview

Function modules for SIRIUS SC solid-state switching devices The following function modules are available:

A great variety of applications demand an expanded range of functionality. With our function modules, these requirements can be met really easily. The modules are mounted simply by clicking them into place; straight away the necessary connections are made with the solid-state relay or contactor. The plug-in connection to control the solid-state switching devices can simply remain in use.

- Converter
- Load monitoring
- Heating current monitoring
- Power control regulators
- Power controller

Technical specifications

Type Dimensions (W x H x D)		3RF29..-0EA.. $22.5 \times 84 \times 38$	3RF29..-0FA.. $22.5 \times 102 \times 39$	3RF29..-0GA. $45 \times 112 \times 44$	3RF29..-OHA. $45 \times 112 \times 44$	3RF29..-0JA.. $45 \times 112 \times 44$	3RF29..-0KA. $45 \times 112 \times 44$
Dimensions (W x H x D)	mm		$22.5 \times 102 \times 39$	$45 \times 112 \times 44$			

General data

Ambient temperature

- During operation, derating from $40^{\circ} \mathrm{C}$

During storage

- During storage ${ }^{\circ} \mathrm{C} \quad-25 \ldots+60$
Installation altitude m 0... 1 000; derating from 1000
Shock resistance acc. to IEC 60068-2-27 $\quad \mathrm{g} / \mathrm{ms} \quad 15 / 11$
Vibration resistance acc. to IEC 60068-2-6 $\quad g \quad 2$

Degree of protection
IP20

Electromagnetic compatibility (EMC)

- Emitted interference
- Conducted interference voltage acc. to IEC 60947-4-3
- Emitted, high-frequency interference voltage acc. to IEC 60947-4-3
- Interference immunity
- Electrostatic discharge acc. to IEC 61000-4-2 (corresponds to degree of severity 3)
- Induced RF fields according to IEC 61000-4-6
- Burst acc. to IEC 61000-4-4
- Surge acc. to IEC 61000-4-5

Connection type

Auxiliary/control contacts

- Conductor cross-section
- Stripped length
- Terminal screw
- Tightening torque

Connection type
Converters

- Diameter

Class A for industrial applications ${ }^{1)}$
Class B for residential, business and commercial applications
kV Contact discharge 4; air discharge 8; behavior criterion 2
$\mathrm{MHz} \quad 0.15 \ldots 80 ; 140 \mathrm{dBXV}$; behavior criterion 1
$2 \mathrm{kV} / 5.0 \mathrm{kHz}$; behavior criterion 2
Conductor - ground 2; conductor - conductor 1; behavior criterion 2
${ }^{\text {1) }}$ Note limitations for power controller and power regulator function modules. These modules were built as Class A devices. The use of these devices in residential areas could result in lead in radio interference. In this case it may be required to introduce additional interference suppression measures.

Type		3RF29..-0EA18	3RF29..-0FA08	3RF29..-0GA. 3	3RF29..-0GA. 6
Main circuit					
Rated operational voltage U_{e} - Operating range - Rated frequency	$\begin{aligned} & \text { VAC } \\ & \text { VAC } \\ & \mathrm{Hz} \end{aligned}$	$\begin{aligned} & --1) \\ & --- \\ & \text {-- } \end{aligned}$		$\begin{aligned} & 110 \ldots 230 \\ & 93.5 \ldots 253 \\ & 50 / 60 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 \ldots 660 \end{aligned}$
Rated insulation voltage U_{i}	V	--		600	
Voltage measuring - Measuring range	V	--		93.5 ... 253	$340 \ldots 660$
Mains voltage, fluctuation compensation	\%	--		20	

1) Versions are independent of the main circuit.

Type		$\begin{aligned} & \text { 3RF29..-0HA. } 3 \\ & \text { 3RF29..-0KA. } 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RF29..-0HA. } 6 \\ & \text { 3RF29..-OKA. } 6 \end{aligned}$	3RF29.-0JA. 3	3RF29.-0JA. 6
Main circuit					
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$ - Operating range - Rated frequency	$\begin{aligned} & \text { VAC } \\ & \text { VAC } \\ & \mathrm{Hz} \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 93.5 \ldots 253 \\ & 50 / 60 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 \ldots 660 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & 93.5 \ldots 253 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & 340 \ldots 660 \end{aligned}$
Rated insulation voltage U_{i}	V	600			
Voltage measuring - Measuring range	V	93.5 ... 253	340 ... 660	93.5 ... 253	340 ... 660
Mains voltage, fluctuation compensation	\%	20			

3RF29 Function Modules

General and technical data

Technical specifications

Type Control circuit		3RF29..-...0.	3RF29..-... 1.	3RF29..-...3.
Method of operation		DC operation	AC/DC operation	AC operation
Rated control supply voltage $\boldsymbol{U}_{\mathbf{s}}$ Rated actuating current	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 24 \\ & 15 \end{aligned}$		110
Rated frequency of the control supply voltage Hz		--	50/60	
Actuating voltage, max.	V	30		121
Rated actuating current At maximum voltage	mA	15		
Response voltage - For operating current	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 15 \\ & 2 \end{aligned}$		90
Drop-out voltage	V	5		15

Type		3RF2906-0FA08	3RF2920-0FA08	3RF2920-0GA..	3RF2950-0GA..	3RF2990-0GA..
Current measurement						
Rated operational current I_{e}	A	6	20		50	90
Current measurement - Teach range - Measuring range - Minimum partial load current	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.25 \ldots .6 \\ & 0 \ldots . \ldots 6 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.65 \ldots 20 \\ & 0 \ldots .22 \\ & 0.65 \end{aligned}$	$0.56 \ldots 20$	$\begin{aligned} & 1.62 \ldots 50 \\ & 0 \ldots 55 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.93 \ldots 90 \\ & 0 \ldots .99 \\ & 2.9 \end{aligned}$
Number of partial loads		$1 . . .6$		1... 12		

Type		3RF2920-0HA..	3RF2950-0HA..	3RF2990-0HA..	3RF2916-0JA..	3RF2932-0JA..
Current measurement						
Rated operational current $I_{\text {e }}$	A	20	50	90	16	32
Current measurement - Teach range - Measuring range - Minimum partial load current	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \ldots 20 \\ & 022 \\ & \text {-- } 22 \end{aligned}$	$\begin{aligned} & 10 \ldots 50 \\ & 0 . . .55 \end{aligned}$	$\begin{aligned} & 18 \ldots 90 \\ & 4 \ldots 99 \end{aligned}$	$\begin{aligned} & 0.42 \ldots 16 \\ & 0 \ldots 16 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 0.8 \ldots 32 \\ & 0 \ldots 32 \\ & 0.8 \end{aligned}$
Number of partial loads		--			$1 . . .6$	

Type		3RF2904-0KA..	3RF2920-0KA..	3RF2950-0KA..	3RF2990-0KA..
Current measurement					
Rated operational current I_{e}	A	4	20	50	90
Current measurement - Teach range - Measuring range - Minimum partial load current	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 0.15 \ldots 4 \\ & 0 \ldots .4 \\ & -- \end{aligned}$	$\begin{aligned} & 0.65 \ldots 20 \\ & 0 \ldots .22 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 1.6 \ldots 50 \\ & 0 \ldots 55 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 2.9 \ldots 90 \\ & 0 \ldots 99 \\ & 2.9 \end{aligned}$
Number of partial loads		--	$1 . . .6$		

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Characteristics

SIRIUS SC semiconductor relays
Dependence of the device current I_{e} on the ambient temperature T_{a} (Chart data for SIRIUS SC relays based on I max) SIRIUS SC semiconductor relay with 20 A type current (3RF21 20/3RF20 20) ${ }^{\text {1) }}$

SIRIUS SC semiconductor relay with 30 A type current (3RF21 30/3RF20 30)

SIRIUS SC semiconductor relay with 50 A type current (3RF21 50/3RF20 50)

1) Arrangement example for $I_{\mathrm{e}}=20 \mathrm{~A}$ and $T_{\mathrm{a}}=40 \mathrm{C}$:

The task is to find the thermal resistance $R_{\text {thha }}$ and the heat-sink overtemperature $d T_{\text {ha }}$. From the diagram on the left $->P_{\mathrm{M}}=28 \mathrm{~W}$, from the diagram on the right -> $R_{\text {thha }}=\mathbf{1 . 7} \mathrm{K} / \mathbf{W}$.

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Dependence of the device current l_{e} on the ambient temperature T_{a} (Chart data for SIRIUS SC relays based on I max) SIRIUS SC semiconductor relay with 70 A type current (3RF21 70/3RF20 70)

SIRIUS SC semiconductor relay with 88 A type current (3RF21 90/3RF20 90)

SIRIUS SC semiconductor contactors

Derating curves
SIRIUS SC semiconductor contactor with 10 A type current (3RF23 10)

Semiconductor Relays and Contactors, Function Modules

Project planning aids

Derating curves

SIRIUS SC semiconductor contactor with 20 A type current (3RF23 20)

SIRIUS SC semiconductor contactor with 30 A type current (3RF23 30)

SIRIUS SC semiconductor contactor with 40 A type current (3RF23 40) ${ }^{1)}$

Ambient temperature T_{a} in ${ }^{\circ} \mathrm{C} \longrightarrow$
Device current I_{e} in A \longrightarrow

[^74]
Semiconductor Relays and Contactors, Function Modules

Project planning aids

Derating curves
SIRIUS SC semiconductor contactor with 50 A type current (3RF2350) ${ }^{\text {1) }}$

SIRIUS SC semiconductor contactor with 70 A type current (3RF23 70) ${ }^{\text {1) }}$

SIRIUS SC semiconductor contactor with 88 A type current (3RF23 90) ${ }^{1 \text { 1) }}$

[^75]
Solid-State Relays

3RF22 solid-state relays, 3-phase, 45 mm

Characteristic curves
Dependence of the device current I_{e} on the ambient temperature T_{a} (two-phase controlled)

Type current 30 A (3RF22 30-.AB..)

Solid-State Relays

Dependence of the device current I_{e} on the ambient temperature T_{a} (three-phase controlled)

Type current 30 A (3RF22 30-.AC..)

Type current 55 A (3RF22 55-.AC..)
Arrangement example
Given conditions: $I_{\mathrm{e}}=55 \mathrm{~A}$ and $T_{\mathrm{a}}=40 \mathrm{C}$.
The task is to find the thermal resistance $R_{\text {thha }}$ and the heat sink overtemperature $d T_{\text {ha }}$.
From the diagram on the left $\rightarrow P_{M}=227 \mathrm{~W}$,
from the diagram on the right $\rightarrow R_{\text {thha }}=0.09 \mathrm{~K} / \mathrm{W}$.

This results in:
$d T_{\text {ha }}=R_{\text {thha }} \times \mathrm{PM}=0.09 \mathrm{~K} / \mathrm{W} \times 227 \mathrm{~W}=20.4 \mathrm{~K}$.
At $d T_{\text {ha }}=20.4 \mathrm{~K}$ the heat sink must therefore have an $R_{\text {thha }}=0.09 \mathrm{~K} / \mathrm{W}$.

Solid-State Switching Devices

Solid-State Contactors

Characteristic curves

Derating curves, two-phase controlled

Type current 10.5 A (3RF24 10-.AB..)

Type current 20 A (3RF24 20-.AB..)

Type current 30 A (3RF24 30-.AB..)

Solid-State Contactors

Type current 40 A (3RF24 40-.AB..) ${ }^{1)}$

Type current $50 \mathrm{~A}(3 R F 24 \text { 50-. AB.. })^{1)}$
$\begin{array}{ll}\text { _ — } & I_{\max } \text { Thermal limit current for individual mounting } \\ I_{\max } \text { Thermal limit current for side-by-side mounting } \\ \text { — — - } & I_{\mathrm{IEC}} \text { Current acc. to IEC 947-4-3 for individual mounting } \\ I_{\mathrm{IEC}} \text { Current acc. to IEC 947-4-3 for side-by-side mounting }\end{array}$

1) Identical current/temperature curves for stand-alone and side-by-side installation.

Solid-State Switching Devices

Solid-State Contactors

Derating curves, three-phase controlled

Type current 10.5 A (3RF24 10-.AC..)

Type current 20 A (3RF24 20-.AC..)

1) Identical current/temperature curves for stand-alone and side-by-side installation

Type current 30 A (3RF24 30-.AC..) ${ }^{1)}$

1) Identical current/temperature curves for stand-alone and side-by-side installation.

Solid-State Contactors

Type current 40 A (3RF24 40-.AC.. $)^{1)}$

Type current 50 A (3RF24 50-.AC.. $)^{1)}$

Solid-State Switching Devices

Solid-State Contactors

Maximum permissible switching frequency depending on the starting time t_{a} and the ON period t_{ED}

For motors with a starting current of 4 - to 7.2 times the rated current and with a full load

For motors with a starting current of 4 - to 7.2 times the rated current and with a 60% load

For motors with a starting current of up to 4 times the rated current and with a full load

For motors with a starting current of up to 4 times the rated current and with a 60% load

Solid-State Switching Devices

Solid-State Contactors

3RF34 solid-state reversing contactors, 3-phase

Maximum permissible switching frequency depending on the starting time t_{a} and the ON period t_{ED}

For motors with a starting current of 4 - to 7.2 times the rated current and with a full load

For motors with a starting current of 4 - to 7.2 times the rated current and with a 60% load

For motors with a starting current of up to 4 times the rated current and with a full load

For motors with a starting current of up to 4 times the rated current and with a 60% load

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Dimensions

Dimension drawings

SIRIUS SC semiconductor relays
22.5 mm semiconductor relays

Screw connection 3RF21 .0-1AA.

Spring-loaded connection 3RF21 0-2AA. 3RF21 0-3AA

45 mm semiconductor relays
3RF20 .0-1AA.

Solid-State Relays

3RF22 solid-state relays, 3-phase, 45 mm

Dimensional drawings

Solid-state relays

Spring-loaded terminals

Screw terminal 3RF22 ..-1....

Spring-loaded terminals 3RF22 ..-2....

Ring terminal end connection 3RF22 ..-3....

Schematics

Two-phase controlled DC control supply voltage

Three-phase controlled DC control supply voltage

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Dimensions

Function modules for SIRIUS SC semiconductor switching devices

Basic load monitoring
3RF29 00-0FA08

Extended load monitoring

3RF29 .0-0GA..

Accessories for SIRIUS SC semiconductor switching devices
Terminal cover for SIRIUS semiconductor switching devices

Power controllers
3RF29 .0-0HA..

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Dimensions

SIRIUS SC semiconductor contactors
Semiconductor contactors with 10 A and 20 A type current

3RF23 10-..... 3RF23 20-.....
3RF23 10-1...
Spring-loaded connection 3RF23 10-2....
3RF2320-2....

Ring connection 3RF23 10-3... 3RF23 20-3....

Semiconductor contactors with 30 A type current

Screw connection
3RF23 30-1....

Ring connection 3RF23 30-3....

Semiconductor contactors with 40 A and 50 A type current

Screw connection 3RF23 40-1.... 3RF23 50-1....

Ring connection
3RF23 40-3....
3RF23 50-3....

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Dimensions

Semiconductor contactors with 70 A type current

Screw connection

3RF23 70-1....

Ring connection
3RF23 70-3....

Semiconductor contactors with 88 A type current
Ring connection
Screw connection
3RF23 90-1....

3RF23 90-3....

Solid-State Switching Devices

Solid-State Contactors

Dimensions

Dimensional drawings

Type current 10.5 A

Type current $20 \mathrm{~A} ; 30 \mathrm{~A}$ (2-phase controlled)

Solid-State Switching Devices

Solid-State Contactors

Dimensions

Type current 30 A (3-phase controlled); 40 A, 50 A

Schematics

Two-phase controlled
DC control supply voltage

Two-phase controlled AC control supply voltage

Three-phase controlled DC control supply voltage

Three-phase controlled
AC control supply voltage

Solid-State Switching Devices

Solid-State Contactors

Dimensions

Dimensional drawings

Screw terminals

Spring-loaded terminals

3RF24 1.-2....

Solid-State Switching Devices

Solid-State Contactors

Dimensions

Dimensional drawings

Screw terminals

Solid-State Switching Devices

Semiconductor Relays and Contactors, Function Modules

Wiring diagrams

Circuit diagrams

SIRIUS SC semiconductor relays

AC control version

SIRIUS SC semiconductor contactors
DC control version

AC control version

Function modules for SIRIUS SC semiconductor switching devices

1) Internal connection.
2) Straight-through transformer.

SIRIUS SC semiconductor relays
Typical circuit diagram

Semiconductor Relays and Contactors, Function Modules

Wiring diagrams
Function modules for SIRIUS SC semiconductor switching devices

Converters Typical circuit diagram

Extended load monitoring Typical circuit diagram

1) Internal connection.
2) Straight-through transformer.
3) PE/ground connection for semiconductor contactors according to installation regulations.
4) Connection of contact L / N to N conductor or a second phase according to the rated operational voltage of the function module.
5) In order to observe the limit values of the conducted interference voltage for generalized phase control, a choke rated at at least $200 \mu \mathrm{H}$ must be included in the load circuit.

Basic load monitoring Typical circuit diagram

Power controllers Typical circuit diagram

1) Internal connection to the solid state relay/contactor.
2) Straight-through
3) Make $\mathrm{PE} /$ ground connection according to installation regulations.
4) Connection of L / N contact with

- 3RF29 ..-0GA. 3 load monitoring on neutral conductor N (e.g. 230 V), 3RF29 ..-0GA. 6 load monitoring on a second phase (e.g. 400V).

5) Voltage detection not electically isolated ($3 \mathrm{M} \Omega$ per path).
6) Grounding of connection L- is recommended.
7) A200 $\mu \mathrm{H}$ choke must be used when operating with leading-edge phase in order to observe the limit values of the conducted interference voltage according to Class A.

Solid-State Contactors

3RF24 solid-state contactors, 3-phase

Schematics

Two-phase controlled,
DC control supply voltage

Two-phase controlled,
AC control supply voltage

Sample schematic

Notes

NEMA \& General Purpose Controls

contents

Product Overview 9/3
Manual Control
Fractional HP Starters, Class SMF 9/4-9/5
Switches, Class MMS and MRS 9/6-9/7
Starters and Switches, Class 11-3RV 9/8-9/9
NEMA Control
Catalog Numbering System 9/10
Non-Combination Starters Features and Benefits 9/11-9/12
Non-Reversing Starters, Class 14 9/13-9/14
Combination Starters Features and Benefits 9/15
Combination Starters, Class 17 and 18 9/16-9/21
Reversing Starters, Class 22 9/22
Combination Reversing Starters, Class 25 and 26 9/23-9/24
Two Speed Starters Features and Benefits 9/25
Two Speed Starters, Class 30 9/26-9/27
Combination Two Speed Starters, Class 32 9/28-9/31
Reduced Voltage Control
Reduced Voltage Features and Benefits 9/32
Auto Transformer Starters, Class 36 and 37 9/33-9/36
Part Winding Starters, Class 36 and 37 9/37-9/40
Wye Delta Open Transition, Class 36 and 37 9/41-9/44
Wye Delta Closed Transition, Class 36 and 37 9/45-9/48
Heavy Duty Contactors
Non-Reversing Contactors, Class 40 9/49-9/50
Vacuum Contactors, 9/49
Reversing Contactors, Class 43 9/51
Cross reference for Class 14 and Class 22 NEMA Starters 9/52-9/58
Overload Relays
Class 3UB8, 48, 958 and 3RB20 9/59-9/63
Duplex Controllers
Features and Benefits 9/64
Non Combination, Class 83 9/65
Combination, Class 84 9/66-9/67
Pump Control Panels
Slim Line NEMA Controller for the Agricultural industry, Class 82 9/68-9/71
Class 87 and 88 Features and Benefits 9/72-9/73
Full-Voltage Type, Class 87 9/74
Vacuum Starter Type, Class 87 9/75
Reduced-Voltage Type, Class 88 9/76-9/77
Lighting Control
Electrically Held Contactors, Class LE 9/79-9/84
Electrically Held Contactors, Class LC 9/85-9/89
Mechanically Held Contactors, Class CLM 9/90-9/92
Control Power Transformers
Domestic and International (UL, CSA, CE) Class MT, MTG 9/93-9/97
Modifications and Drawings

Field Modification Kits	$9 / 98-9 / 108$
Enclosure Kits	$9 / 109-9 / 113$
Factory Modifications	$9 / 114-9 / 118$
Dimensions	$9 / 126-9 / 154$
Wiring Diagrams	$9 / 155-9 / 175$

Replacement Parts9/119
NEMA Coils and Contact Kits 9/120-9/121
Coil VA Ratings and Overload Relays 9/122
Lighting Contactor Parts and Kits 9/123

NEMA \& General Purpose Controls

Controls Express

Starters at the speed you need

Siemens NEMA starters, pump panels and lighting contactors are known for their dependability and ruggedness, and now they are delivered faster than ever before through Controls Express.

Controls Express puts our most popular products in your hands faster, because we stock more products across our entire product line. Our Class 14 NEMA starters, Class 87 pump panels, and LC \& LE lighting contactors are now available in stock for immediate or next day shipping. In addition, thousands of our open and enclosed starters can now be built-to-order and shipped in 1-3 days through Controls Express.

Siemens is committed to making your job easier by stocking more products, offering more configurations, expediting factory modifications, and delivering industry leading turnaround times on our most requested control products.

To quickly identify products that are part of Controls Express and therefore available in 3 days or less, applicable catalog numbers have a light blue background.
See the appropriate selection pages listed below.
Class 14 NEMA Starters see pages 9/13 \& 9/14
Class 17 NEMA Combination Starters see pages 9/16 \& 9/18. For quick ship versions with factory modifications see on-line at www.usa.siemens.com/controls-express

Class 18 NEMA Combination Starters see page 9/20.
Class 40 NEMA Contactors see page 9/49
Class 87 Pump Panels see pages 9/74

LE Lighting Contactors see page 9/81

LC Lighting Contactors see page 9/87 \& 9/88

Controls Express lead times apply to orders of up to 6 units of the Class 14, Class 87, LC, or LE. Please contact customer service at 1-866-663-7324 for lead times of larger order volumes.

For more information on Controls Express and a complete list of available products, please visit our website at www.usa.siemens.com/controls-express

Class SMF
Fractional Horsepower Manual Starters Page 9/4

Class 22
NEMA Reversing
Starters
Page 9/22

Class 40
NEMA Contactors and Vacuum Contactors

Page 9/49

Class MT, MTG
Control Power
Transformers
Page 9/93

Class MMS \& MRS
Fractional Horsepower Manual Switches Page 9/6

Class 25, 26
NEMA Combination Reversing Starters Page 9/23

Class 43
NEMA Reversing
Contactors
Page 9/51

Class 11
Manual Starters and Switches
Page 9/8

Class 30
NEMA Multi-Speed
Starters
Page 9/26

Class 48, 958, 3RB20
Overload Relays Page 9/59

Modifications and Drawings Page 9/98

Replacement Parts Page 9/119

Class 14
NEMA Starters
Page 9/13

Class 32
NEMA Combination Multi-Speed Starters Page 9/28

Class 17, 18
NEMA Combination
Starters Page 9/16

Class 36, 37
Reduced Voltage Electromechanical Starters Page 9/32

Class 82, 83, 84, 87, 88
Pump Controls Page 9/68

Class LE, LC, CLM
Lighting Contactors Page 9/79

Fractional HP Starters, Class SMF

General

Class SMF

Class SMF fractional horsepower starters provide overload protection as well as manual on-off control for small horsepower motors in a variety of industrial and commercial applications. Available in one or two pole versions, these devices are suitable for use with AC single phase motors up to 1 HP . Two pole starters can also be used with DC motors up to $3 / 4 \mathrm{HP}$. Typical applications include fans, conveyors, pumps, and small machine tools.

Continuous Current Rating

16 amperes.

Overload Trip Assembly

Motor protection is provided by a Class SMFH heater element which must be installed before the starter will operate.

Two Speed Starters

Two speed manual starters are designed for control of small single phase AC motors having separate windings for high and low speed operation. Two toggle operated starters are used, with overload protection included for each motor winding. Surface mounting devices, and those with a gray flush plate, utilize a mechanical interlock which allows direct control of the motor by means of the toggle operators.

Enclosures

Class SMF, NEMA Type 1 surface mounting enclosures are sheet steel with a thermo-plastic wrap-around cover for convenience in wiring. The NEMA Type 1 enclosure is also available in an oversized version which allows more wiring space. A zinc alloy die casting is used for NEMA Type 4 enclosures.

Pilot Lights

Red or green neon pilot light units are available for flush mounting plates, NEMA Type 1 enclosures, and NEMA Type 4 enclosures. Pilot lights may be either factory or field installed. (For starters that contain a pilot light, a Red light is standard. For a Green pilot light add "G" to the end of the catalog number.)

Terminals

Binding head screw type terminals are suitable for \#10 or smaller copper wire, and are accessible from the front. All terminals are clearly marked.

Mounting

Open types without a pilot light fit standard single gang switch boxes, and can be used with any cover plate having a standard toggle cutout. Single-unit flush mounting types, including those with pilot lights, are suitable for wall mounting in a standard switch box or for machine cavity mounting without a box.

Operation

Available with toggle handle or with removable key type operator to discourage unauthorized operation.

Class SMF Starter in a NEMA Type 1 Enclosure with Pilot Light

Emergency Off Actuator

A toggle operator extender is available for Class SMF, NEMA Type 1 surface mounted units. The extender has a red vinyl button that provides a fast and easy method for locating and switching the device's toggle operator into the OFF position. The Emergency Off Actuator is available in kit form only for field installation.

Handle Guard/Lock-Off

An optional handle guard on Class SMF, NEMA Type 1 enclosed starters prevents accidental operation of the toggle operator and also allows the toggle operator to be padlocked in either the "ON" or "OFF" position. This handle guard can be factory installed on NEMA Type 1 enclosed starters and is also available in kit form for field installation on NEMA Type 1 surface and flush mounting enclosures. Standard NEMA Type 4 metallic enclosures include provisions for padlocking the device in the OFF position.

Fractional HP Starters with Melting Alloy Overload, Class SMF

Selection

Class SMF Starter in a NEMA Type 1 Enclosure with Pilot Light	Ordering Information	Horsepower Ratings			
	Heater Elements see page 9/119. Field Modification Kits see page 9/98. Dimensions see page 9/126. Wiring Diagrams see page $9 / 155$.	Volts	Maximum Horsepower		
			AC Single Phase		DC
			1-Pole	2-Pole	2-Pole
		115	1	1	3/4
		230	1	2	3/4
		277	1	1	-

Starter-Class SMF, Single Phase ${ }^{\text {© }}$

Type of Operator	No. of Poles	Starter Features ${ }^{(5)}$	Open Type		General Purpose Flush Mounting Open Starter with Flush Plate (No Enclosure Provided)						NEMA Type 1 General Purpose Enclosure, Surface Mounting				NEMA Type 3R, 4 \& 12 Watertight, Dust-tight Metallic Enclosure with Clear Cover		NEMA Type 4 Watertight, Dust-tight Metallic Enclosure		NEMA Type 3R, 7 \& 9 Div 1 and Div 2 Class I Groups B, C, D \& Class II Groups E, F, G Enclosures	
					Gray Flush Plate		Standard Stainless Steel Flush Plate		Jumbo Stainless Steel Flush Plate		Standard		Oversized							
			Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price\$ } \end{array}$	Catalog Number	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { List } \\ \text { Price } \end{array} \\ \hline \end{array}$	Catalog Number	List Price\$	Catalog Number	List Price $\$$	Catalog Number	List Price\$	Catalog Number	List Price $\$$						
Toggle	1	Standard	SMFF01		SMFFF1		SMFFS1		-	-	SMFFG1		SMFFGJ1		SMFFWN1		-	-	-	-
		Red Pilot Light	SMFF01P		SMFFF1P		SMFFS1P		SMFFSJ1P		SMFFG1P		SMFFGJIP				-	-	-	-
	2	Standard	SMFF02		SMFFF2		SMFFS2		-	-	SMFFG2		SMFFGJ2		SMFFWN2		-	-	-	-
		Red Pilot Light	SMFFO2P		SMFFF2P		SMFFS2P		SMFFSJ2P		SMFFG2P		SMFFGJ2P				-	-	-	-
Key	1	Standard	SMFF03		SMFFF3		SMFFS3		-	-	SMFFG3		SMFFGJ3		SMFFWN3		-	-	-	-
		Red Pilot Light	SMFF03P		SMFFF3P		SMFFS3P		SMFFSJ3P		SMFFG3P		SMFFGJ3P				-	-	-	-
	2	Standard	SMFF04		-	-	SMFFS4		-	-	SMFFG4		SMFFGJ4		SMFFWN4		-	-	-	-
		Red Pilot Light	SMFFO4P		SMFFF4P		SMFFS4P		SMFFSJ4P		SMFFG4P		SMFFGJ4P				-	-	-	-

Starter With Handle Guard/Lock-Off—Class SMF, Single Phase ${ }^{\text {® }}$

Toggle	1	Standard	-	-	(4)	-	(4)	-	(4)	-	SMFFG5		SMFFGJ5		-	-	SMFFW1 ${ }^{(2)}$	SMFFR1 ${ }^{\text {2 }}$	
		Red Pilot Light	-	-	(4)	-	(4)	-	(4)	-	SMFFG5P		SMFFGJ5P		-	-	SMFFW1P ${ }^{(2)}$	-	-
		(2) ${ }^{3 / 4}{ }^{\text {" }}$ NPT Outlets	-	-	(4)	-	(4)	-	(4)	-	-	-	-	-	-	-	SMFFW1H	SMFFR1H	
		(2) $3^{3 / 4}$ NPT Outlets and Red Pilot Light	-	-	(4)	-	(4)	-	(4)	-	-	-	-	-	-	-	SMFFW1PH	-	-
	2	Standard	-	-	(4)	-	(4)	-	(4)	-	-		SMFFGJ6		-	-	SMFFW2 ${ }^{\text {2 }}$	SMFFR2 ${ }^{2}$	
		Red Pilot Light	-	-	(4)	-	(4)	-	(4)	-	SMFFG6P		SMFFGJ6P		-	-	SMFFW2P ${ }^{(2)}$	-	-
		(2) $3^{3 / 4}$ NPT Outlets	-	-	(4)	-	(4)	-	(4)	-	-	-	-	-	-	-	SMFFW2H	SMFFR2H	
		$\begin{aligned} & \text { (2) }{ }^{3 / 44^{4}} \text { NPT Outlets } \\ & \text { and Red Pilot Light } \end{aligned}$	-	-	(4)	-	(4)	-	(4)	-	-	-	-	-	-	-	SMFFW2PH	-	-

One Starter in Duplex Enclosure-Class SMF, Single Phase ${ }^{\oplus}$

Type of Operator	Number of Poles	Starter Features ${ }^{(5)}$	General Purpose Flush Mounting Open Starter with Flush Plate - (No Enclosure Provided)				NEMA Type 1 General Purpose Enclosure Surface Mounting		Replacement Starters	
			Gray Flush Plate For Wall or Cavity Mounting		Stainless Steel Flush Plate for Wall or Cavity Mounting					
			Catalog Number	List Price \$						
Toggle	2	Standard	-	-	-	-	SMFFG02		-	-
Toggle		Red Pilot Light	-	-	-	-	SMFFG02P		-	-
Key	2	Red Pilot Light	-	-	-	-	SMFFG04P		-	-

Two Starters In Duplex Enclosure-Class SMF, Single Phase ${ }^{\text {® }}$

Toggle	2 Per Starter	Standard	SMFFF222	-	-	SMFFG222	-	-
		Red Pilot Light on Each Starter	SMFFF222P	-	-	SMFFG222P	-	-
Key	2 Per Starter	Red Pilot Light on Each Starter	SMFFF44P	SMFFS44P		SMFFG44P	-	-

Starter And "Auto-Off-Hand" SPDT Selector Switch (AC Only)-Class SMF, Single Phase ${ }^{\text {© }}$

Toggle	1	Standard	SMFFF71		-	-	SMFFG71	-	-
		Red Pilot Light	SMFFF71P		SMFFS71P		SMFFG71P	-	-
	2	Standard	-	-	-	-	SMFFG72	-	-
		Red Pilot Light	SMFFF72P		SMFFS72P		SMFFG72P	-	-
Key	2	Red Pilot Light	SMFFF74P		SMFFS74P		SMFFG74P	-	-

Two Speed Starters (AC Only)-Class SMF, Single Phase ${ }^{\text {® }}$

Toggle	1	Mechanical Interlock	SMFFF11		-	-	SMFFG11		SMFF01T	
		Mechanical Interlock and (2) Red Pilot Lights	SMFFF11P		-	-	SMFFG11P		SMFF01PT	
		Mechanical Interlock, HIGH-OFF-LOW Selector Switch and (2) Red Pilot Lights	-	-	-	-	-	-	SMFF01PT	
	2	Mechanical Interlock	SMFFF22		-	-	SMFFG22		-	-
		Mechanical Interlock and (2) Red Pilot Lights	SMFFF22P		-	-	SMFFG22P		SMFF02PT	
		Mechanical Interlock, HIGH-OFF-LOW Selector Switch and (2) Red Piloo Lights	-	-	SMFFS202P		-	-	SMFF02PT	

[^76]${ }^{(3)}$ Two heater elements required.
(5) For starters that contain a pilot light, a Red light is

[^77] the catalog number.

Fractional HP Switches, Class MMS, MRS

General

Class MMS, MRS

Class MMS and MRS motor starting switches provide manual "ON-OFF" control of single or three phase AC motors where overload protection is not required or is provided separately. Compact construction and a 600 volt rating make these switches suitable for a wide range of industrial and commercial uses. Typical applications include small machine tools, pumps, fans, conveyors and many other types of electrical machinery. They can also be used on non-motor loads such as resistance heating applications.

Continuous Current Rating

MMS \& MRS: 30 amperes at 250 volts max, 26.4 amperes at 277 volts, 20 amperes at 600 volts max, 30 amperes resistive at 600 volts max.

Two Speed-Class MRS

Two speed manual switches may be used with separate winding three phase or single phase AC motors where overload protection is not required or is provided separately. Two switches are employed to give "ON-OFF" control in each speed.

Reversing-Class MRS

Reversing manual switches provide a compact means of starting, stopping and reversing AC motors where overload protection is not required or is provided separately. They are suitable for use with three phase squirrel cage motors and for single phase motors which can be reversed by reconnecting motor leads. Two switches are used, one to connect the motor forward rotation and one for reverse.

Enclosures

Class MMS, MRS, NEMA Type 1 surface mounting enclosures are sheet steel with a thermo-plastic wrap-around cover for convenience in wiring.
The NEMA Type 1 enclosure is also available in an oversized version which allows more wiring space. A zinc alloy die casting is used for NEMA Type 4 enclosures.

Pilot Lights

Red or green neon pilot light units are available for flush mounting plates, NEMA Type 1 enclosures, and NEMA Type 4 enclosures. Pilot lights may be either factory or field installed. (For switches that contain a pilot light, a Red light is standard. For a Green pilot light add "G" to the end of the catalog number.)

Terminals

Binding head screw type terminals are suitable for \#10 or smaller copper wire, and are accessible from the front. All terminals are clearly marked.

Mounting

Open types without a pilot light fit standard single gang switch boxes, and can be used with any cover plate having a standard toggle cutout. Single-unit flush mounting types, including those with pilot lights, are suitable for wall mounting in a standard switch box or for machine cavity mounting without a box.

Operation

Available with toggle handle or with removable key type operator to discourage unauthorized operation.

Emergency Off Actuator

A toggle operator extender is available for Class MMS, MRS, NEMA Type 1 surface mounted units. The extender has a red vinyl button that provides a fast and easy method for locating and switching the device's toggle operator into the OFF position. The Emergency Off Actuator is available in kit form only for field installation.

Handle Guard/Lock-Off

An optional handle guard on Class MMS, MRS, NEMA Type 1 enclosed switches prevents accidental operation of the toggle operator and also allows the toggle operator to be padlocked in either the "ON" or "OFF" position. This handle guard is available in kit form for field installation on NEMA Type 1 surface and flush mounting enclosures. Standard NEMA Type 4 metallic enclosures include provisions for padlocking the device in the OFF position.

Switches ${ }^{\circledR}$, Class MMS, MRS

Selection

	Ordering Information	Horsepo	wer	tings						
4	Heater Elements not Required			Motor Typ	Maxi	num H		DC	tings	
		Device	Poles	AC	115 V	230 V	450-575V	90 V	115 V	230 V
	$\text { paae } 9 / 98$	Class MMS	2	Single Phase	2	2	3	1	2	11/2
5			3	3-Phase	2	$7^{1 / 2}$	10	1	2	11/2
	Dimensions see page 9/126.	Class MRS	2	Single Phase	2	2	3	1	2	11/2
- Lu	Wiring Diagrams see page 9/155.	Reversing	3	3-Phase	2	71/2	10	1	2	$11 / 2$
			2	Single Phase	2	2	3	1	2	$11 / 2$
Class MMS Switch in a		Two Speed	3	3-Phase, Constant or Variable Torque	2	71/2	10	1	2	11/2
NEMA Type 1 Enclosure			3	3-Phase, Constant Horsepower	2	$71 / 2$	10	1	2	11/2

Switch-Class MMS, Single Phase and 3-Phase

Type of Operator	No of Poles	Switch Features ${ }^{4}$	Open Type		General Purpose Flush Mounting Open Switch with Flush Plate (No Enclosure Provided)						NEMA Type 1 General Purpose Enclosure Surface Mounting				NEMA Type 3R, 4 \& 12 Watertight, Dust-tight Metallic Enclosurer with Clear Cover		NEMA Type $4{ }^{2}$ Watertight, Dust-tight Metallic Enclosure		NEMA Type 7 \& 9 Class I Groups Class II Groups E, F, G Enclosures	
					Gray Flush Plate		Standard Stainless Steel Flush Plate		Jumbo Stainless Steel Flush Plate		Standard		Oversized							
			Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price } \$ \\ \hline \end{array}$	Catalog Number	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { List } \\ \text { Price } \end{array} \\ \hline \end{array}$	Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \hline \text { Price } \$ \\ \hline \end{array}$	Catalog	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Catalog } \\ \text { Number } \end{array} \\ \hline \end{array}$	List Price	Catalog Number	List Price $\$$	Catalog Number	List Price $\$$	Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price } \end{array}$	Catalog Number	List Price\$
Toggle	2	Standard	MMSK01		MMSKF1		MMSKS1		-		MMSKG1		-		MMSKWN1		MMSKW1		MMSKR1	
		$\begin{array}{\|l\|} \hline \text { Red Pilot Light } \\ 115 \mathrm{~V} \text { AC } \end{array}$	MMSK01A ${ }^{3}$		MMSKF1A		MMSKS1A		-		MMSKG1A		MMSKGJ1A				MMSKW1A		-	
		$\begin{aligned} & \text { Red Pilot Light } \\ & 230 \mathrm{~V} \text { AC } \end{aligned}$	MMSK01B ${ }^{3}$		MMSKF1B		MMSKS1B		MMSKSJ1B		MMSKG1B		-				MMSKW1B		-	
	3	Standard	MMSK02		MMSKF2		MMSKS2		-		MMSKG2		MMSKGJ2		MMSKWN2		MMSKW2		MMSKR2	
		Red Pilot Light 208-240V AC	MMSK02B ${ }^{3}$		MMSKF2B		MMSKS2B		-		MMSKG2B		MMSKGJ2B				MMSKW2B		-	
		Red Pilot Light 440-600V AC	MMSK02C ${ }^{3}$		-		MMSKS2C		MMSKSJ2C		MMSKG2C		MMSKGJ2C				MMSKW2C		-	
Key	2	Standard	MMSK03		MMSKF3		MMSKS3		-		MMSKG3		MMSKGJ3		MMSKWN3		-		-	
		Red Pilot Light 115 V AC	-		MMSKF3A		MMSKS3A		MMSKSJ3A		MMSKG3A		MMSKGJ3A				-		-	
		Red Pilot Light 230V AC	MMSK03B		MMSKF3B		MMSKS3B		MMSKSJ3B		MMSKG3B		MMSKGJ3B				-		-	
	3	Standard	MMSK04		MMSKF4		MMSKS4		-		MMSKG4		MMSKGJ4		MMSKWN4		-		-	
		Red Pilot Light 208-240V AC	MMSK04B		MMSKF4B		MMSKS4B		MMSKSJ4B		MMSKG4B		MMSKGJ4B				-		-	
		Red Pilot Light 440-600V AC	MMSK04C		MMSKF4C		MMSKS4C		MMSKSJ4C		MMSKG4C		MMSKGJ4C				-		-	

Reversing Switch-Class MRS, Single Phase and 3-Phase

	Number of	Suitable	Switch Features ${ }^{(4)}$ (Inc	General Purpos Flush Mounting Open Switch wit (No Enclosure	Flush Plate Provided)	NEMA Type 1 General Purpo Enclosure Surfa	e Mounting	Replacement Class MRS	Switch
Operator	Poles	Motor Types	Mechanical Interlock)	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
Toggle	2	Single Phase 3-Lead Repulsion-Induction	Standard	MRSKF11		-		MRSK01T	
			Red Pilot Device-115V AC	MRSKF11A		-		MRSK01AT	
			Red Pilot Device-230V AC	MRSKF11B		MRSKG11B		MRSK01BT	
	3	3-Phase; Also Single Phase Capacitor, Split Phase, or 4-Lead Repulsion-Induction	Standard	MRSKF22		MRSKG22		-	
			Red Pilot Light-110-120V AC	MRSKF22A		MRSKG22A		MRSK02AT	
			Red Pilot Light-208-220V AC	MRSKF22B		-		MRSK02BT	
			Red Pilot Light-440-600V AC	MRSKF22C		MRSKG22C		MRSK02CT	

Two Speed Switch - Class MMS, Single Phase and 3-Phase

Type of Operator	Number of Poles	Suitable Motor Types	Switch Features ${ }^{(4)}$ (Including Mechanical Interlock)	General Purpose Flush Mounting Open Switch with Flush Plate (No Enclosure Provided)		NEMA Type 1 General Purpose Enclosure Surface Mounting		Replacement Switch Class MRS	
				Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
Toggle	2	Single Phase Two Winding (3-Lead)	Standard	MMSKF11		MMSKG11		MRSK01T	
			(2) Red Pilot Devices-115V AC	MMSKF11A		MMSKG11A		MRSK01AT	
			(2) Red Pilot Devices-230V AC	MMSKF11B		MMSKG11B		MRSK01BT	
	3	3-Phase Separate Winding (Wye-Connected)	Standard	MMSKF22		MMSKG22		MRSK02T	
			(2) Red Pilot Lights-208-240V AC	MMSKF22B		MMSKG22B		MRSK02BT	
			(2) Red Pilot Lights-440-600V AC	MMSKF22C		MMSKG22C		MRSK02CT	

[^78][^79][^80]
Now Available with the New 3RV2 Innovations MSP

Class 11-3RV

Class 11 across the line manual starters and switches provide control for machinery where remote start stop control is not required.
Class 11-3RV manual starters are used for single and poly-phase motors up to 20HP @ 575V. Starters have bimetallic heater elements to provide class 10 overcurrent protection. Each starter has a fourth bimetallic strip that reacts only to the ambient temperature inside the control panel. This ambient compensation helps prevent the starter from nuisance tripping when the panel temperature is higher than the ambient temperature of the motor.
A built-in differential trip bar causes the starter to trip faster on a phase loss condition to help reduce motor damage.
Magnetic trip elements in each starter take the device off line when it senses current of 13 times the maximum FLA dial setting.

Class 11-3RV switches provide control for inherently protected motors. Typical applications include metal and woodworking machinery, grinders, power saws, conveyors, fans, pumps, blowers, textile and packaging machinery, and paper cutters.
Each switch is provided with magnetic trip elements which take the device off line when it senses current of 13 times the maximum switch rating.
Class 11-3RV manual starters can be used as Type E self-protected manual combination starters (up to 22 amps) per UL508 or as components in Group Installation per NEC 430.53. When using the Class $11-3 R V$ as a manual combination starter upstream protection is not required.
Class 11-3RV controllers are available with low voltage protection which will automatically open the power poles when the voltage drops or the power is interrupted.
Controllers with the LVP option provide the OSHA requirements for protecting personnel from potential injury caused by the automatic start-up of machinery following a voltage drop or power interruption when low voltage protection is specified.

Class 11-3RV is available as Open style, or in NEMA 1.

Standard Features include:

- ON/OFF rotary handle with lockout and visible trip indication
- Adjustment dial for setting to motor FLA (Starters only)
- Low Voltage Protection (LVP) Option
- Short Circuit trip at 13 times the maximum setting of the FLA dial or rated current
- Ambient compensated up to $140^{\circ} \mathrm{F}$
- Phase loss sensitivity
- Test trip function
- LVP Option Meets OSHA Requirements
- UL Listed
- CSA Certified

Starters and Switches, Class 11-3RV

Selection

stemers	Ordering Information	Low Voltage Protection Coil Table
	No heaters required.	60 Hz Voltage Letter
	Field Modification Kits see page 17-100 Dimensions see page 17-130. Wiring Diagrams see page 17-157.	120 V $* \mathrm{~F}$ 208 V $* \mathrm{D}$ 240 V $* G$ 460 V $* \mathrm{H}$
	For applications requiring a low voltage protection coil see table at right.	*Add corresponding letter to end of base Class 11 catalog number for low voltage protection coil with List Price adder. Note: The LVP option for Open type 3RV is available from the factory, please order separately from the field modification kits on page 9/99. The coil voltage should correspond with the line voltage.
Class 11 Manual Motor Starter		

Manual Starter-Class 11 - 3RV

FLA Adjustment Range ${ }^{(1)}$	Max HP						Enclosure			
	Single Phase HP Ratings		3-Phase HP Ratings				Open Type		NEMA 1 General Purpose	
	115V	230V	200V	230V	460V	575V	Catalog No.	List Price \$	Catalog No.	List Price \$
0.11-0.16	-	-	-	-	-	-	3RV2011-0AA10 ${ }^{(2)}$		11AD3B	
0.14-0.2	-	-	-	-	-	-	3RV2011-0BA10 ${ }^{2}$		11BD3B	
0.18-0.25	-	-	-	-	-	-	3RV2011-0CA10 ${ }^{2}$		11CD3B	
0.22-0.32	-	-	-	-	-	-	3RV2011-0DA10 ${ }^{(2)}$		11DD3B	
0.28-0.4	-	-	-	-	-	-	3RV2011-0EA10 ${ }^{2}$		11ED3B	
0.35-0.5	-	-	-	-	-	-	3RV2011-0FA10 ${ }^{(2)}$		11FD3B	
0.45-0.63	-	-	-	-	-	-	3RV2021-0GA10 ${ }^{(2)}$		11GD3B	
0.55-0.8	-	-	-	-	-	1/2	3RV2021-0HA10 ${ }^{2}$		11HD3B	
0.7-1	-	-	-	-	1/2	1/2	3RV2021-0JA10 ${ }^{(2)}$		11JD3B	
0.9-1.25	-	-	-	-	3/4	3/4	3RV2021-0KA10 ${ }^{(2)}$		11KD3B	
1.1-1.6	-	1/10	-	-	3/4	1	3RV2021-1AA10 ${ }^{(3)}$		11LD3B	
1.4-2	-	1/8	-	-	1	$11 / 2$	3RV2021-1BA10 ${ }^{(2)}$		11MD3B	
1.8-2.5	-	1/6	1/2	1/2	$11 / 2$	$11 / 2$	3RV2021-1CA10 ${ }^{2}$		11ND3B	
2.2-3.2	1/10	1/4	3/4	3/4	$11 / 2$	2	3RV2021-1DA10 ${ }^{(3)}$		11PD3B	
2.8-4	1/8	1/3	3/4	1	2	3	3RV2021-1EA10 ${ }^{(2)}$		110D3B	
3.5-5	1/6	1/2	1	1	3	3	3RV2021-1FA10 ${ }^{(2)}$		11RD3B	
4.5-6.3	1/4	3/4	$11 / 2$	$11 / 2$	5	5	3RV2021-1GA10 ${ }^{(3)}$		11SD3B	
5.5-8	1/3	1	2	2	5	5	3RV2021-1HA10 ${ }^{(3)}$		11TD3B	
7-10	1/2	$11 / 2$	3	3	$71 / 2$	10	3RV2021-1JA10 ${ }^{(2)}$		11UD3B	
9-12.5	1/2	2	3	3	$71 / 2$	10	3RV2021-1KA10 ${ }^{\text {® }}$		11VD3B	
11-16	1	3	5	5	10	$15^{(3)}$	3RV2021-4AA10 ${ }^{(2)}$		11WD3B	
14-20	$11 / 2$	3	5	$71 / 2$	15	$20^{(3)}$	3RV2021-4BA10 ${ }^{(3)}$		11XD3B	
17-22	2	3	$71 / 2$	$71 / 2$	15	$20^{(3)}$	3RV2021-4CA10 ${ }^{(2)}$		11YD3B	
20-25	$2^{(3)}$	$5^{(3)}$	$71 / 2^{(3)}$	$71 / 2^{(3)}$	$15^{(3)}$	20^{3}	3RV2021-4DA10 ${ }^{(3)}$		11ZD3B	

Manual Switch-Class 11-3RV

Rated Current ${ }^{(1)}$	Max HP						Enclosure			
	Single Phase HP Ratings		3-Phase HP Ratings				Open Type		NEMA 1 General Purpose	
	115V	230V	200V	230V	460V	575V	Catalog No.	List Price \$	Catalog No.	List Price \$
1	-	-	-	-	$1 / 2^{\text {® }}$	$1 / 2^{\text {® }}$	3RV2321-0JC10 ${ }^{\text {® }}$		111D3B	
5	${ }^{1 / 8}{ }^{(3)}$	$12^{(3)}$	$1^{(3)}$	$1^{(3)}$	$3^{\text {® }}$	$3^{\text {® }}$	3RV2321-1FC10 ${ }^{\text {® }}$		112D3B	
10	$1 / 2^{(3)}$	$1{ }^{1 / 3}{ }^{3}$	$3^{\text {® }}$	$3^{(3)}$	$71 / 2^{3}$	$10^{(3)}$	3RV2321-1JC10 ${ }^{\text {® }}$		113D3B	
20	$1{ }^{1 / 2^{3}}$	$3^{(3)}$	$5^{(3)}$	$71 / 2^{(3)}$	$15^{\text {® }}$	$20^{\text {® }}$	3RV2321-4BC10 ${ }^{\text {® }}$		114D3B	
25	2^{3}	$5^{\text {® }}$	$71 /{ }^{(3)}$	$71 /{ }^{(3)}$	15^{3}	$20^{(3)}$	3RV2321-4DC10 ${ }^{\text {2 }}$		115D3B	

[^81][^82]
Catalog Numbering System

General

(1) Single phase solid-state OLR available on Class 14

Starters only.
(2) Not available on sizes 5-8.
(3) For Class 37 only.
(4) Not available on sizes 7 and 8.

Features and Benefit

Solid State Starter Class 14

Standard Features

Size 00-4 magnetic starters include the following standard features:

- Rugged Industrial Design
- Half Sizes for Cost and Space Savings
- Dual Voltage, Dual Frequency Coils
- Solid State Overload Protection
- Wide Range of Accessories
- Easy Coil Access
- Overload Test Feature
- Straight Thru Wiring
- Gravity Dropout
- Large Silver Cadmium Contacts
- UL listed file \#E14900 (class 14, 22, 30, 40 \& 43)
- CSA certified file \#LR 6535 (class 14, 22, 30, 40 \& 43)

Application

Heavy Duty starters are designed for across the line starting of single phase and polyphase motors.
These controls are available in NEMA Sizes 00 through 8. In addition to the usual NEMA Starter Sizes, Siemens offers three exclusive Half Sizes; $13 / 4$, $21 / 2$ and $31 / 2$. These integral sizes offer the same rugged, industrial construction as our NEMA Sizes and ensure efficient operating performance. Half Sizes provide a real cost savings by cutting down on over capacity when NEMA Sizes exceed the motor ratings. All Siemens Heavy Duty controls, including our popular Half Sizes comply with applicable NEMA and UL tests.

All starters are supplied with a NO holding interlock that in conjunction with an appropriate pilot device will provide low voltage protection or release.
NEMA starters are ideal for applications requiring dependability and durability. Typical applications include use with machine tools, air conditioning equipment, material handling equipment, compressors, hoists and various production and industrial equipment as well as in demanding automotive applications.
Starters are available as an open type or in NEMA 1, 12/3/3R, 4 (painted), 4/4X (stainless), and 4X (fiberglass) enclosures.

Gravity Dropout

For added reliability, the gravity dropout of the armature and contacts is assisted by stainless steel springs which help provide quick, precise opening of the contacts.

45 Degree, Wedge Action Contacts

The 45 degree, wedge action contacts reduce tracking and provide faster arc quenching. The resulting self-cleaning and reduced contact bounce mean cooler operation and longer life for the large silver cadmium oxide contacts.

Terminal Design

Control terminals are self-rising pressure type.

Molded Coil

Magnetic coils are carefully wound and then sealed in epoxy. Encapsulation helps seal out moisture, promotes heat transfer and resists electrical, mechanical and thermal stresses.

Dual Voltage/Frequency Coil

Starters are available with dual voltage, dual frequency coils. They are designed to operate on either 50 or 60 Hertz.

Molded Stationary Contact Block

Thermoset materials resist arc tracking and the stresses of heat and severe impact.

Field Modification Kits

All starters can be modified in the field with a complete range of accessories. These include pushbuttons, selector switches, pilot lights, auxiliary contacts and surge suppressors.

Auxiliary Equipment

- NEMA starters are available with built-in START-STOP push buttons for 3-wire control or a HAND-OFF-AUTO selector switch for 2-wire control
- Field modifications such as auxiliary contacts, pilot lights, push buttons, selector switches, and fuse blocks are available to meet particular application requirements
- Normally opened or normally closed auxiliary power pole kits are available for Sizes 00 through $13 / 4$
- Transformers can be ordered as either factory or field modifications. In some cases these may require a larger enclosure
- A full line of replacement parts are available including contact kits, coils, and overload relays

Size 5 \& 6 Starters Additional Features

- Solid State Overload (3RB type) Standard
- Latest technology in arc quenching to extend contactor life
- Wide variety of enclosures in all starter configurations

Size 7 \& 8 Starters Additional Features

- New Compact Design
- Can be mounted in any position
- Same coil voltage is AC or DC

ESP200 ${ }^{\text {m" }}$ starters combine the rugged NEMA contactors with a state of the art solid state overload that provides phase loss, phase unbalance ground fault protection. It offers the user greater motor protection and extended life in heavy duty applications. The ESP200 ${ }^{\text {mo }}$ ultimately results in a cost savings to the user.

ESP200"' Solid State Overload Relays

Standard features provide Improved Starter Performance:

- True phase loss protection; trips within 3 seconds
- Phase unbalanced prevents motor running inefficiently
- Ground fault trip when selected
- Selectable trip class $5,10,20$ or 30
- Reset trip can be selected Auto/ Manual restart
- Easy to select and use, Dip Switch selectable
- Overload is self powered, no need for external power source

Half Size Starters

Half-Size starters feature all the rugged performance characteristics of our NEMA rated starter sizes, but are fractionally sized to more closely match your exact motor rating. As a result, significant economic savings are made possible without sacrificing the reliability you expect from a heavy duty starter.
These additional starter sizes have the reserve capacity to handle occasional plugging and jogging applications without derating. Superior operating performance in heavy duty applications is assured by the large current carrying parts, not by derating the device.
Exclusive "half-sizes" save potentially hundreds, even thousands of dollars per project.
Using the table below, simply match the specific size starter to the horsepower rating of your motor. Every half-size starter saves you money—up to 31%.
All "half-sizes" comply to applicable NEMA and UL standards.

ESP200 ${ }^{\circ}$ FLA Adjustment Dial-Set the adjustment dial on the overload to the FLA of the motor.

DIP Switch Settings

Adjust DIP switch settings to the Trip Class desired 5, 10, 20, or 30.

- Set Phase Unbalance ON or OFF
- Set Phase Loss ON or OFF
- Set Reset to Manual or Automatic
- Set Ground Fault ON or OFF

Savings for Siemens "Half-Size" Starters in NEMA 1 Enclosures, FVNR

Motor Size		Starter Size	Half Size	List Price \$	"Half-Size" Savings Over Next Full Size
$\mathbf{2 3 0 V}$	$\mathbf{4 6 0 V}$	1	-		-
$71 / 2$	10	-	$13 / 4$		31%
10	15	2	-	-	
15	25	-	$21 / 2$	20%	
20	30	3	-		-
30	50	-	$31 / 2$	13%	
40	75	-	-		-
50	100	4			

Standard Auxiliary Contacts			
Type	Size (3rd Character)	Configuration	Internal / External
	B Thru E	1N.O.	Internal
	All FVNR		
 Contactors	L Thru J M	1N.O.	External
	N Thru P	2N.O., 2N.C.	External
	1N.O., 1N.C.	External	

Solid State Overload with Auto/Manual Reset, Class 14

Selection

Ordering Information

Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.
Field Modification Kits see page 9/100
Factory Modifications see page 9/114.
Dimensions see pages 9/129 open and 9/141 enclosed.
Wiring Diagrams see page 9/156.
Replacement Parts see page 9/120

Coil Table	
60 Hz Voltage	Letter
24	J
120	F
$110-120 / 220-240^{\circ}$	A
$200-208$	D
$220-240$	G
277	L
$220-240 / 440-4800^{\circ}$	C
$440-480$	H
$575-600$	E
For other voltages and frequencies,	
see Factory Modifications page $9 / 114$.	

Open Type \& Standard Width Enclosure, 3-Phase, 3-Pole

Max Hp				$\begin{aligned} & \text { NEMA } \\ & \text { Size } \end{aligned}$	$\begin{array}{\|l\|l} \text { Half } \\ \text { Size } \end{array}$	Overload		Enclosure									
						Amp Range	Frame	$\begin{aligned} & \hline \text { Open Type } \\ & \text { Standard Auxiliary } \\ & \text { Contacts® } \end{aligned}$		NEMA 1 General Purpose				NEMA 4X Fiberglass Corrosion Resistant Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{array}{\|l\|l} 200 \\ \text { Volts } \end{array}$	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 460 \\ \text { Volts } \end{array}$	$\left\lvert\, \begin{array}{\|l\|l\|} \hline 575 \\ \text { Volts } \end{array}\right.$					Catalog Number	$\begin{array}{\|l} \text { List } \\ \text { Price } \$ \end{array}$	Catalog Number	$\begin{aligned} & \text { List } \\ & \text { Price } \$ \end{aligned}$	Catalog Number	$\begin{array}{\|l} \hline \text { List } \\ \text { Price \$ } \end{array}$	Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price \$ } \\ \hline \end{array}$	Catalog Number	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { List } \\ \text { Price \$ } \end{array} \\ \hline \end{array}$
1/6	1/6	1/2	1/2	00	-	0.25-1	A	14BUA32A*		14BUA32B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
1/2	3/4	11/2	2	00	-	0.75-3.4	A	14BUB32A*		14BUB32B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
11/2	1/2	2	-	00	-	3-12	A1	14BUC32A*		14BUC32B*		Use Size 0	-	Use Size 0	-	Use Size 0	
1/6	1/8	1/3	1/2	0	-	0.25-1	A	14CUA32A*		14CUA32B*		14CUA32@*		14CUA32F*		14CUA320*	
1/2	3/4	11/2	2	0	-	0.75-3.4	A	14CUB32A*		14CUB32B*		14CUB32@*		14CUB32F*		14CUB320*	
2	2	5	5	0	-	3-12	A1	14CUC32A*		14CUC32B*		14CUC32@*		14CUC32F*		14CUC320*	
3	3	-	-	0	-	5.5-22	A1	14CUD32A*		14CUD32B*		14CUD32@*		14CUD32F*		14CUD320*	
1/6	1/8	1/2	1/2	1	-	0.25-1	A	14DUA32A*		14DUA32B*		14DUA32@*		14DUA32F*		14DUA320*	
1/2	3/4	11/2	2	1	-	0.75-3.4	A	14DUB32A*		14DUB32B*		14DUB32@*		14DUB32F*		14DUB320*	
2	2	5	5	1	-	3-12	A1	14DUC32A*		14DUC32B*		14DUC32@*		14DUC32F*		14DUC320*	
3	3	10	10	1	-	5.5-22	A1	14DUD32A*		14DUD32B*		14DUD32@*		14DUD32F*		14DUD320*	
71/2	71/2	-	-	1	-	10-40	A1	14DUE32A*		14DUE32B*		14DUE32@*		14DUE32F*		14DUE320*	
10	10	15	15	-	13/4	10-40	A1	14EUE32A*		14EUE32B*		14EUE32@*		14EUE32F*		14EUE320*	
10	15	25	25	2	-	13-52	B	14FUF32A*		14FUF32B*		14FUF32@*		14FUF32F*		14FUF320*	
15	20	30	30	-	21/2	25-100	B	14GUG32A*		14GUG32B*		14GUG32@*		14GUG32F*		14GUG320*	
25	30	50	50	3	-	25-100	B	14HUG32A*		14HUG32B*		14HUG32@*		14HUG32F*		14HUG320*	
30	40	75	75	-	31/2	50-200	B	141UH32A*		141UH32B*		141UH32@*		141UH32F*		141UH320*	
40	50	100	100	4	-	50-200	B	14JUH32A*		14JUH32B*		14JUH32@*		14JUH32F*		14JUH320*	
75	100	200	200	5	-	55-250	-	14LPU32A*		14LPU32B*		-	-	-	-	14LPU320*	
150	200	400	400	0	-	160-630	-	14MPX32A*		14MPX32B*		-	-	-	-	14MPX320*	
-	300	600	600	$7^{* *}$	-	400-1220	A1+CT	14NUN32A*		14NUN32B*		-	-	-	-	14NUN320*	
-	450	900	900	8 8-	-	400-1220	A1+CT	14PUN32A*		14PUN32B*		-	-	-	-	14PUN320*	

Open Type \& Standard Width Enclosure, Single Phase, 2-Pole(2)

Max Hp		$\begin{array}{\|l} \text { NEMA } \\ \text { Size } \\ \hline \end{array}$	Overload		Enclosure									
$\begin{array}{\|l\|} \hline 115 \\ \text { Volts } \\ \hline \end{array}$	$\begin{array}{\|l\|l} 208 / \\ 230 \\ \text { Volts } \end{array}$		Amp Range	$\begin{aligned} & \text { Frame } \\ & \text { Size } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Open Type } \\ \text { Standard Auxiliary } \\ \text { Contacts } \end{array}$		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight,Corrosion Resistant@ $=$ Wor 304 Stainless Steel@ $=$ X for 316 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
					Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog	List Price \$	Catalog Number	List Price	Catalog Number	List Price \$
1/6	1/4	0	0.75-3.4	A	14CUB12A*		14CUB12B*		14CUB12@*		14CUB12F*		14CUB120*	
1/4	1/2	0	3-12	A1	14CUC12A*		14CUC12B*		14CUC12@*		14CUC12F*		14CUC120*	
1	2	0	5.5-22	A1	14CUD12A*		14CUD12B*		14CUD12@*		14CUD12F*		14CUD120*	
1/6	1/4	1	0.75-3.4	A	14DUB12A*		14DUB12B*		14DUB12@*		14DUB12F*		14DUB120*	
1/4	1/2	1	3-12	A1	14DUC12A*		14DUC12B*		14DUC12@*		14DUC12F*		14DUC120*	
1	2	1	5.5-22	A1	14DUD12A*		14DUD12B*		14DUD12@*		14DUD12F*		14DUD120*	
3	71/2	2	25-100	B	14FUG12A*		14FUG12B*		14FUG12@*		14FUG12F*		14FUG120*	
7\%/	15		25-100	B	14HUG12A*		14HUG12B*		14HUG12@*		14HUG12F*		14HUG120*	

Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).
(1) Dual voltage coils not available in size 5-8 starters.
(2) Coils D, F, or G will be wired for incoming voltage. J coil will be wired for separate source. Coils E, H, and L do not apply to single phase starters.
(3) F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC

H coil $150-500 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC
(4) Only available F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC
(5) To receive a single phase starter in an extra wide enclosure order an enclosure kit from pg 9/109 and the open style starter from pg 9/13 as separate items.

Solid State Overload with Auto/Manual Reset, Class 14

Selection

	Ordering Information	Coil Table	
	Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.	60Hz Voltage	Letter
		24	J
	Field Modification Kits see page 9/114.	120	F
		110-120/220-240	A
	Factory Modifications see page 9/114.	200-208	D
	Dimensions see page 9/141.	220-240	G
	Wiring Diagrams see page 9/156.	277	L
		220-240/440-480	C
	Replacement Parts see page 9/120.	$440-480$	H E
		see Factory Modifi	ge 9/114.

Extra Wide Enclosure, 3-Phase, 3-Pole

Max Hp				NEMA Size	Half	Overload		Enclosure					
						Amp Range	Frame Size	NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant @ = X for 316 Stainless Stee		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
200 Volts	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	460 Volts	$\begin{aligned} & 575 \\ & \text { Volts } \\ & \hline \end{aligned}$					Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
1/6	\%/8	1/3	1/2	00	-	0.25-1	A	14BUA82B*		Use Size 0	-	Use Size 0	-
1/2	3/4	11/2	2	00	-	0.75-3.4	A	14BUB82B*		Use Size 0	-	Use Size 0	-
1/2	11/2	2	-	00	-	3-12	A1	14BUC82B*		Use Size 0	-	Use Size 0	-
1/6	1/8	1/3	1/2	0	-	0.25-1	A	14CUA82B*		14CUA82@*		14CUA820*	
1/2	3/4	11/2	2	0	-	0.75-3.4	A	14CUB82B*		14CUB82@*		14CUB820*	
2	2	5	5	0	-	3-12	A1	14CUC82B*		14CUC82@*		14CUC820*	
3	3	-	-	0	-	5.5-22	A1	14CUD82B*		14CUD82@*		14CUD820*	
1/6	1/6	1/3	1/2	1	-	0.25-1	A	14DUA82B*		14DUA82@*		14DUA820*	
1/2	3/4	11/2	2	1	-	0.75-3.4	A	14DUB82B*		14DUB82@*		14DUB820*	
2	2	5	5	1	-	3-12	A1	14DUC82B*		14DUC82@*		14DUC820*	
3	3	10	10	1	-	5.5-22	A1	14DUD82B*		14DUD82@*		14DUD820*	
71/2	71/2	-	-	1	-	10-40	A1	14DUE82B*		14DUE82@*		14DUE820*	
10	10	15	15	-	13/4	10-40	A1	14EUE82B*		14EUE82@*		14EUE820*	
10	15	25	25	2	-	13-52	B	14FUF82B*		14FUF82@*		14FUF820*	
15	20	30	30	-	21/2	25-100	B	14GUG82B*		14GUG82@*		14GUG820*	
25	30	50	50	3	-	25-100	B	14HUG82B*		14HUG82@*		14HUG820*	
30	40	75	75	-	$31 / 2$	50-200	B	141UH82B*		14IUH82@*		14IUH820*	

Combination Starter Features

Combination starters include the following features:

- Manufactured with Cold Forming "TOX" Process
- Solid State Overloads Standard on Sizes 5-8
- Easy to Install
- Wide Range of Enclosure Types Available
- Heavy Duty Quarter Turns
- 100kA Short Circuit Current Rating when Protected with Class R Fuses to 600 V or MCP to 480 V
- Visible Blade Disconnect
- Industrial Type Disconnect Handle
- UL listed file \#E185287 (class 17, 18, 25, 26 \& 32)
- CSA certified file \#LR 6535 (class 17, 18, 25, 26 \& 32)

Application

A combination starter meets National Electrical Code requirements for:

1. A means of providing short circuit motor protection with fused or breaker disconnection of line voltage.
2. A means of safeguarding personnel from contact with live parts and from accidental starting of machinery by disconnecting the motor and the controller.
3. A motor controller with overload protection.
Prewired combination starters eliminate the cost of wiring between separate disconnect and starter. Factory testing assures field performance. Combination starters also provide a more compact and attractive installation than separate units.

Enclosure Types

Combination starters are available in NEMA 1, 12/3/3R/4 (painted), 4/4X
(stainless), and 4X fiberglass enclosures. Enclosures protect personnel from contact with live parts and depending upon the construction, protect the control in varying degrees from physical damage and harmful atmospheres. All enclosures are supplied with corrosion resistant finishes.

Heavy Duty Disconnect Switches

The disconnect switch that goes the distance in durability, performance and reliability has the following advantages:

- Visible blades for the highest level of safety
- Double break switching action to reduce arcing, increase lifetime and eliminate the "electric hinge"
- More rugged positive action switch
- Oversized lugs are standard
- Line side shield to help guard personnel from contact with live parts
- Higher horsepower rating for design E high efficiency motors
- UL listed for Ilsco, Burndy and T\&B crimp type lugs
- The 200A switch accepts up to 300 MCM versus 250 MCM wire size
Its rugged construction - with a high fault withstand rating of 100kA at 600 VAC when fused with class R rated fuses - meets the most stringent industry standards set forth by the automotive, petro-chemical, and pulp and paper industries. UL recognized and CSA certified, our disconnect switches are available either non-fusible or fusible with class R and class J fuse clips.

Enclosure Kits for NEMA Combination Starters Description

You can assemble a non-stocked combination starter per your unanticipated needs in minutes. Say, for example, your customer needs a fusible combination starter that you don't have in stock. You need in now, but don't sweat it.

Simply start with the enclosure kit which has the handle preinstalled. You install the required starter and fusible disconnect, connect the power wire and you are finished. Within minutes, you have the required combination starter in your hands. No more waiting on the factory. You need it, you got it!

What Is In It For You!

. Reduce Lead-time - What used to take days to get now takes minutes

- Reduced Inventory - Instead of stocking scores of various combination starters, simply stock a few enclosure kits, disconnect kits, circuit breaker kits and open starters. With these basic "building blocks" you virtually have hundreds of products on-hand
- Quality - The same high level of quality you have been accustomed to with our products will also be found in these new enclosure kits
- UL Listed - By correctly following the instructions included with the kits, the product you build is UL/CSA Listed
Refer to page 17-113 for more details.

Siemens Type ETI Circuit Breaker

The ETI circuit breaker is a device designed specifically for application in motor circuits. The ETI is a magnetic only protective device designed to provide protection against short circuit current.
The instantaneous-only type ETI circuit breaker employs adjustable magnetic trip settings to allow broader application ranges and a higher degree of motor short circuit protection.

Heavy Duty Starters

These combination starters use the same starters described in the heavy duty starter section of this catalog.

Non-Fusible with Solid State Overload, Class 17

Selection

	Ordering Information	Coil Table	
	Replace the (${ }^{*}$) with a letter from the coil table. Dual voltage coils are	60 Hz Voltage	Letter
	wired on high voltage unless specified on order.	24	J
	For Fusible Styles see page 9/18.	120	F
	Field Modification Kits see page $9 / 100$	110-120/220-240®	A
	Field Modification Kits see page 9/100.	200-208	D
	Factory Modifications see page 9/114.	220-240	G
	Dimensions see page 9/143.	277	L
		220-240/440-480®	C
	Wiring Diagrams see page 9/157.	440-480	H
	Replacement Parts see page 9/120.	575-600	E
		For other voltages see Factory Modific	$\begin{aligned} & \text { ncies, } \\ & \text { ge } 9 / 114 . \end{aligned}$

Standard Width Enclosure, 3 Phase, 3-Pole

Max Hp				NEMA Size	Half Size	Overload		Disc. Amp Range	Enclosure							
						Amp Range	Frame Size		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant @ = W for 304 Stainless Steel @ =X for 316 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
200 Volts	$\begin{array}{\|l} 230 \\ \text { Volts } \end{array}$	460 Volts	575 Volts						Catalog Number	List Price \$						
1/6	1/6	1/3	1/2	0	-	0.25-1	A	30	17CUA92B*		17CUA92@*		17CUA92F*		17CUA92N*	
1/2	3/4	11/2	2	0	-	0.75-3.4	A	30	17CUB92B*		17CUB92@*		17CUB92F*		17CUB92N*	
2	2	5	5	0	-	3-12	A1	30	17CUC92B*		17CUC92@*		17CUC92F*		17CUC92N*	
3	3	-	-	0	-	5.5-22	A1	30	17CUD92B*		17CUD92@*		17CUD92F*		17CUD92N*	
1/6	1/6	1/3	1/2	1	-	0.25-1	A	30	17DUA92B*		17DUA92@*		17DUA92F*		17DUA92N*	
1/2	3/4	11/2	2	1	-	0.75-3.4	A	30	17DUB92B*		17DUB92@*		17DUB92F*		17DUB92N*	
2	2	5	5	1	-	3-12	A1	30	17DUC92B*		17DUC92@*		17DUC92F*		17DUC92N*	
3	3	10	10	1	-	5.5-22	A1	30	17DUD92B*		17DUD92@*		17DUD92F*		17DUD92N*	
71/2	71/2	-	-	1	-	10-40	A1	60	17DUE92B*		17DUE92@*		17DUE92F*		17DUE92N*	
10	10	15	15	-	13/4	10-40	A1	60	17EUE92B*		17EUE92@*		17EUE92F*		17EUE92N*	
10	15	25	25	2	-	13-52	B	60	17FUF92B*		17FUF92@*		17FUF92F*		17FUF92N*	
15	20	30	30	-	21/2	25-100	B	$100{ }^{2}$	17GUG92B*		17GUG92@*		17GUG92F*		17GUG92N*	
203	254	50	50	3	-	25-100	B	100	17HUG92B*		17HUG92@*		17HUG92F*		17HUG92N*	
30	40	75	75	-	31/2	50-200	B	200	171UH92B*		171UH92@*		17IUH92F*		17IUH92N*	
40	50	100	100	4	-	50-200	B	200	17JUH92B*		17JUH92@*		17JUH92F*		17JUH92N*	
75	100	200	200	5	-	55-250	-	400®	17LPU92B*		-	-	-	-	17LPU92N*	
150	200	400	400	6	-	160-630	-	600	17MPX92B*		-	-	-	-	17MPX92N*	
-	300	600	600	$7{ }^{\text {® }}$	-	400-1220	A1+CT	1200	17NUN92B*		-	-	-	-	17NUN92N*	
-	450	900	900	$8{ }^{8}$	-	400-1220	A1+CT	1600	17PUN92B*		-	-	-	-	17PUN92N*	

(3) For 20 HP and 200A disconnect, order fusible cat. no page $9 / 18$.
(4) For 25 HP and 200A disconnect, order fusible cat. no. page 9/18.
(5) For 600A disconnect, order fusible cat. no. page 9/18.
(6) F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC, H coil $150-500 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC
(7) Only available

F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC

Non-Fusible with Solid State Overload, Class 17

Selection

	Ordering Information	Coil Table	
	Replace the (*) with a letter from the coil table. Dual voltage coils are	60 Hz Voltage	Letter
	wired on high voltage unless specified on order.	24	J
	For Fusible Styles see page 9/19.	120	F
		110-120/220-240®	A
	Factory Modifications see pac	200-208	D
	Factory Modifications see paqe 9/114.	$\begin{aligned} & 220-240 \\ & 277 \end{aligned}$	G
	Dimensions see paqe 9/143.	220-240/440-480®	C
	Wiring Diagrams see page 9/157.	440-480	H
	Replacement Parts see page 9/120.	575-600	E
		For other voltages see Factory Modific	ncies, ge $9 / 114$

Extra Wide Enclosure, 3-Phase, 3-Pole

Hp				NEMA Size	$\begin{array}{\|l\|l\|} \hline \text { Half } \\ \text { Size } \end{array}$	Overload		Disc. Amp Range	Enclosure					
						Amp Range	Frame Size		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant =W for 304 Stainless Stee @ = X for 316 Stainless Stee		$\begin{array}{\|l\|} \hline \text { NEMA 3/3R/4/12 } \\ \text { Watertight, Dust-tight, } \\ \text { Weatherproof } \end{array}$	
$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	460 Volts	575 Volts						Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
1/6	1/6	1/8	1/2	0	-	0.25-1	A	30	17CUA82B*		17CUA82@*		17CUA82N*	
1/2	3/4	11/2	2	0	-	0.75-3.4	A	30	17CUB82B*		17CUB82@*		17CUB82N*	
2	2	5	5	0	-	3-12	A1	30	17CUC82B*		17CUC82@*		17CUC82N*	
3	3		-	0	-	5.5-22	A1	30	17CUD82B*		17CUD82@*		17CUD82N*	
1/6	1/6	1/8	1/2	1	-	0.25-1	A	30	17DUA82B*		17DUA82@*		17DUA82N*	
1/2	3/4	1/2	2	1	-	0.75-3.4	A	30	17DUB82B*		17DUB82@*		17DUB82N*	
2	2	5	5	1	-	3-12	A1	30	17DUC82B*		17DUC82@*		17DUC82N*	
3	3	10	10	1	-	5.5-22	A1	30	17DUD82B*		17DUD82@*		17DUD82N*	
71/2	71/2	-	-	1	-	10-40	A1	60	17DUE82B*		17DUE82@*		17DUE82N*	
10	10	15	15	-	13/4	10-40	A1	60	17EUE82B*		17EUE82@*		17EUE82N*	
10	15	25	25	2	-	13-52	B	60	17FUF82B*		17FUF82@*		17FUF82N*	
15	20	30	30	-	21/2	25-100	B	$100{ }^{\text {® }}$	17GUG82B*		17GUG82@*		17GUG82N*	
$20{ }^{2}$	$25{ }^{3}$	50	50	3	-	25-100	B	100	17HUG82B*		17HUG82@*		17HUG82N*	

page 9/19.
(3) For 25 HP and 200A disconnect, order fusible cat. no.

Fusible with Solid State Overload, Class 17

Selection

	Ordering Information	Coil Table	
	Replace the (*) with a letter from the coil table. Dual voltage coils are	60Hz Voltage	Letter
	wired on high voltage unless specified on order.	24	J
	Field Modification Kits see page 9/100.	120	F
	Factory Modifications see page 9/114.	110-120/220-240 ${ }^{\text {² }}$	A
	Factory Modifications see page 9/114.	200-208	D
	Dimensions see page 9/143.	220-240	G
	Wiring Diagrams see page 9/157.	277	L
	Replacement Parts see page 9/120.	$\begin{aligned} & 220-240 / 440-480^{®} \\ & 440-480 \end{aligned}$	C
		575-600	E
		For other voltages see Factory Modific	ncies, ge $9 / 114$

Standard Width Enclosure, 3-Phase, 3-Pole ${ }^{\text {® }}$

Max Hp				$\begin{array}{\|l} \hline \text { NEMA } \\ \text { Size } \end{array}$	$\begin{array}{\|l} \hline \text { Half } \\ \text { Size } \end{array}$	Overload		Disc. Amp Range	Fuse Clip Amp/Volts	Enclosure							
$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 460 \\ \text { Volts } \end{array}$	575			Amp Range	Frame Size			NEMA 1 General Purpose		$\begin{aligned} & \text { NEMA 4/4X Stai } \\ & \text { Watertight, Dust-tig } \\ & \text { Corrosion Resistant } \\ & @==W \text { for } 304 \text { Stainl } \\ & @=\times \text { for } 316 \text { Stainl } \end{aligned}$	inless ight, less Steel less Stee	NEMA 4X Fibe Watertight, Dust-ti Corrosion Resista	rglass ight	NEMA 3/3R/4/1 Watertight, Dus Weatherproo	
										Catalog Number	List Price \$	Catalog Number	$\begin{array}{\|l} \text { List } \\ \text { Price S } \end{array}$	Catalog Number	$\begin{array}{\|l} \text { List } \\ \text { Price \$ } \end{array}$	Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \hline \text { Price \$ } \\ \hline \end{array}$
1/6	1/6		-	0	-	0.25-1	A	30	30A/250V	17CUA928*10		17CUA92@*10		17CUA92F*10		17CUA92N*10	
	-	1/8	1/2	0	-	0.25-1	A	30	30A/600V	17CUA92B*11		17CUA92@*11		17CUA92F*11		17CUA92N*11	
1/2	3/4			0	-	0.75-3.4	A	30	$30 \mathrm{~A} / 250 \mathrm{~V}$	17CUB928*10		17CUB92@*10		17CUB92F*10		17CUB92N*10	
		11/2	2	0	-	0.75-3.4	A	30	30A/600V	17CUB928*11		17CUB92@*11		17CUB92F*11		17CUB92N*11	
2	2			0	-	3-12	A1	30	30A/250V	17CUC92B*10		17CUC92@*10		17CUC92F*10		17CUC92N*10	
		5	5	0		3-12	A1	30	30A/600V	17CuC92B*11		17CUC92@*11		17CUC92F*11		17CUC92N*11	
3	3		-	0	-	5.5-22	A1	30	30A/250V	17CUD928*10		17CUD92@*10		17CUD92F*10		17CUD92N*10	
1/6	1/8		-	1	-	0.25-1	A	30	30A/250V	17DUA92B*10		17DUA92@*10		17DUA92F*10		17DUA92N*10	
		1/3	1/2	1	-	0.25-1	A	30	30A/600V	17DUA92B*11		17DUA92@*11		17DUA92F*11		17DUA92N*11	
1/2	3/4		-	1	-	0.75-3.4	A	30	30A/250V	17DUB92B*10		17DUB92@*10		17DUB92F*10		17DUB92N*10	
-		11/2	2	1	-	0.75-3.4	A	30	30A/600V	17DUB92B*11		17DUB92@*11		17DUB92F*11		17DUB92N*11	
2	2		-	1	-	3-12	A1	30	30A/250V	17DUC92B*10		17DUC92@*10		17DUC92F*10		17DUC92N*10	
-		5	5	1	-	3-12	A1	30	30A/600V	17DUC92B*11		17DUC92@*11		17DUC92F*11		17DUC92N*11	
3	3		-	1	-	5.5-22	A1	30	30A/250V	17DUD92B*10		17DUD92@*10		17DUD92F*10		17DUD92N*10	
-	-	10	10	1	-	5.5-22	A1	30	30A/600V	17DUD92B*11		17DUD92@*11		17DUD92F*11		17DUD92N*11	
71/2	71/2	-	-	1	-	10-40	A1	30	30A/250V	17DUE92B*10		17DUE92@*10		17DUE92F*10		17DUE92N*10	
71/2	71/2	-	-	1	-	10-40	A1	60	60A/250V	17DUE92B*12		17DUE92@*12		17DUE92F*12		17DUE92N*12	
	-	15	15	-	13/4	10-40	A1	60	60A/600V	17EUE92B*13		17EUE92@*13		17EUE92F*13		17EUE92N*13	
10	10	-	-	-	13/4	10-40	A1	60	60A/250V	17EUE92B*12		17EUE92@*12		17EUE92F*12		17EUE92N*12	
10	15		-	2	-	13-52	B	60	60A/250V	17FUF92B*12		17FUF92@*12		17FUF92F*12		17FUF92N*12	
	-	25	25	2	-	13-52	B	60	60A/600V	17FUF92B*13		17FUF92@*13		17FUF92F*13		17FUF92N*13	
	-	-	30	-	21/2	25-100	B	60	60A/600V	17GUG92B*13		17GUG92@*13		17GUG92F*13		17GUG92N*13	
	-	30		-	21/2	25-100	B	100	100A/600V	17GUG92B*15		17GUG92@*15		17GUG92F*15		17GUG92N*15	
15	20		-	-	21/2	25-100	B	100	100A/250V	17GUG92B*14		17GUG92@*14		17GUG92F*14		17GUG92N*14	
20	25	-	-	3	-	25-100	B	100	100A/250V	17HUG92B*14		17HUG92@*14		17HUG92F*14		17HUG92N*14	
	-	50	50	3	-	25-100	B	100	100A/600V	17HUG92B*15		17HUG92@*15		17HUG92F*15		17HUG92N*15	
25	30			3	-	25-100	B	200	200A/250V	17HUG92B*16		17HUG92@*16		17HUG92F*16		17HUG92N*16	
30	40	-	-	-	$31 / 2$	50-200	B	200	200A/250V	177UH92B**16		$1710 \mathrm{H92} @^{* 16}$		171UH92F*16		17UHYS2N*16	
		75	75		$31 / 2$	50-200		200	200A/600V	171UH92B*17		171UH92@*17		171UH92F*17		171UH92N*17	
40	50	$\overline{-}$	-	4	-	50-200	B	200	200A/250V	17JUH928*16		$17 \mathrm{JUH92@*16}$				${ }^{17 \mathrm{JUH} 92 \mathrm{~N} * 16}$	
	-	100	100		-	50-200	B	200	200A/600V	17JUH92B*17		17JUH92@*17		17JUH92F*17		17JUH92N*17	
75	100	-	-	5	-	55-250	-	400	400A/250V	17LPU92B*18		-	-	-	-	17LPU92N*18	
-	100	-	-	5	-	55-250	-	600	600A/250V®	17LPU92B*20		-	-	-	-	17LPU92N*20	
		-	125	5	-	55-250	-	200	200A/600V	17LPU92B*17		-	-	-	-	17LPU92N*17	
	-	200	200	5	-	55-250	-	400	400A/600V	17LPU92B*19					-	17LPU92N*19	
	-	200	-	5	-	55-250	-	600	600A/600V ${ }^{\text {a }}$	17LPU92B*21					-	17LPU92N*21	
150	200	-	-	6	-	160-630	-	600	600A/250V	17MPX92B*20		-	-	-	-	17MPX92N*20	
-	-	400	400	6	-	160-630	-	600	600A/600V	17MPX92B*21					-	17MPX92N*21	
	-	400	400	-	-	160-630	-	800	800A/600V	17MPX92B*23		-			-	17MPX92N*23	
-	-	600	600	$7{ }^{\text {7 }}$	-	400-1220	A1+CT	1200	1200A/600V	17NUN92B*24		-	-	-	-	17NUN92N*24	
-	-	900	900	8 89	-	400-1220	A1+CT	1600	1600A/600V	17PUN92B*25		-	-	-	-	17PUN92N*25	

(1) Dual voltage coils not available in starter sizes 5-8.
(2) Use Class J fuses only.
(5) Only available

F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC

Fusible with Solid State Overload, Class 17

Selection

		Coderàabyelnformation
\pm	Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.	60 Hz Voltage Letter
		24 J
		120 F
		110-120/220-240 A
	Field Modification Kits see page 9/100 Factory Modifications see page 9/114.	200-208 D
		220-240 G
		277 L
	Dimensions see page 9/143.	220-240/440-480 C
	Wiring Diagrams see page 9/157. Replacement Parts see page 9/120	440-480 H
		575-600 E
		For other voltages and frequencies, see Factory Modifications page 9/114

Extra Wide Enclosure, 3-Phase, 3-Pole

Max Hp				$\begin{aligned} & \text { NEMA } \\ & \text { Size } \\ & \hline \end{aligned}$	Half Size	Overload		Disc. Amp Range	Fuse Clip Amp/Volts	Enclosure					
						Amp Range	Frame Size			NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, @ = W for 304 Stainless Steel @ =X for 316 Stainless Steel		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
200 Volts	$\begin{array}{\|l} 230 \\ \text { Volts } \\ \hline \end{array}$	460 Volts	575 Volts							Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
1/6	1/6	-	-	0	-	0.25-1	A	30	30A/250V	17CUA82B*10		17CUA82@*10		17CUA82N*10	
-	-	1/3	1/2	0	-	0.25-1	A	30	30A/600V	17CUA82B*11		17CUA82@*11		17CUA82N*11	
1/2	3/4	-	-	0	-	0.75-3.4	A	30	30A/250V	17CUB82B*10		17CUB82@*10		17CUB82N*10	
-	-	11/2	2	0	-	0.75-3.4	A	30	30A/600V	17CUB82B*11		17CUB82@*11		17CUB82N*11	
2	2	-	-	0	-	3-12	A1	30	30A/250V	17CUC82B*10		17CUC82@*10		17CUC82N*10	
-	-	5	5	0	-	3-12	A1	30	30A/600V	17CUC82B*11		17CUC82@*11		17CUC82N*11	
3	3	-	-	0	-	5.5-22	A1	30	30A/250V	17CUD82B*10		17CUD82@*10		17CUD82N*10	
1/6	1/6	-	-	1	-	0.25-1	A	30	$30 \mathrm{~A} / 250 \mathrm{~V}$	17DUA82B*10		17DUA82@*10		17DUA82N*10	
-	-	1/3	1/2	1	-	0.25-1	A	30	30A/600V	17DUA82B*11		17DUA82@*11		17DUA82N*11	
1/2	3/4	-	-	1	-	0.75-3.4	A	30	30A/250V	17DUB82B*10		17DUB82@*10		17DUB82N*10	
-	-	11/2	2	1	-	0.75-3.4	A	30	30A/600V	17DUB82B*11		17DUB82@*11		17DUB82N*11	
2	2	-	-	1	-	3-12	A1	30	30A/250V	17DUC82B*10		17DUC82@*10		17DUC82N*10	
-	-	5	5	1	-	3-12	A1	30	30A/600V	17DUC82B*11		17DUC82@*11		17DUC82N*11	
3	3	-	-	1	-	5.5-22	A1	30	30A/250V	17DUD82B*10		17DUD82@*10		17DUD82N*10	
-	-	10	10	1	-	5.5-22	A1	30	30A/600V	17DUD82B*11		17DUD82@*11		17DUD82N*11	
5	5	-	-	1	-	10-40	A1	30	30A/250V	17DUE82B*10		17DUE82@*10		17DUE82N*10	
71/2	71/2	-	-	1	-	10-40	A1	60	60A/250V	17DUE82B*12		17DUE82@*12		17DUE82N*12	
-	-	15	15	-	13/4	10-40	A1	60	60A/600V	17EUE82B*13		17EUE82@*13		17EUE82N*13	
10	10	-	-	-	13/4	10-40	A1	60	60A/250V	17EUE82B*12		17EUE82@*12		17EUE82N*12	
10	15	-	-	2	-	13-52	B	60	60A/250V	17FUF82B*12		17FUF82@*12		17FUF82N*12	
-	-	25	25	2	-	13-52	B	60	60A/600V	17FUF82B*13		17FUF82@*13		17FUF82N*13	
-	-	-	30	-	21/2	25-100	B	60	60A/600V	17GUG82B*13		17GUG82@*13		17GUG82N*13	
-	-	30	-	-	21/2	25-100	B	100	100A/600V	17GUG82B*15		17GUG82@*15		17GUG82N*15	
15	20	-	-	-	21/2	25-100	B	100	100A/250V	17GUG82B*14		17GUG82@*14		17GUG82N*14	
20	25	-	-	3	-	25-100	B	100	100A/250V	17HUG82B*14		17HUG82@*14		17HUG82N*14	
-	-	50	50	3	-	25-100	B	100	100A/600V	17HUG82B*15		17HUG82@*15		17HUG82N*15	
25	30	-	-	3	-	25-100	B	200	200A/250V	17HUG82B*16		17HUG82@*16		17HUG82N*16	

MCP Type with Solid State Overload，Class 18

Selection

	Ordering Information	Coil Table	
	Replace the（＊）with a letter from the coil table．Dual voltage coils are wired on high voltage unless specified on order． Field Modification Kits see page 9／100． Factory Modifications see page 9／114． Dimensions see page 9／143． Wiring Diagrams see page $9 / 157$ ． Replacement Parts see page 9／120．	60Hz Voltage	Letter
		24	J
		120	F
		110－120／220－240®	A
		200－208	D
		220－240	G
		277	L
		220－240／440－480® $440-480$	C
		575－600	E
		For other voltages see Factory Modific	ncies， 9／114．

Standard Width Enclosure，3－Phase，3－Pole

Max Hp				NEMA Size	Half Size	Motor Circuit Interruter ETI Amps	Overload		Enclosure							
							Amp Range	Frame Size	NEMA 1 General Purpose		NEMA 4／4X Stainless Watertight，Dust－tight， Corrosion Resistant ＠＝W for 304 Stainless Steel ＠＝X for 316 Stainless Steel		NEMA 4X Fiberglass Watertight，Dust－tight Corrosion Resistant		NEMA 3／3R／4／12 Watertight，Dust－tight， Weatherproof	
200 Volts	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \\ \hline \end{array}$	460 Volts	575 Volts						Catalog Number	List Price \＄	Catalog Number	List Price \＄	Catalog Number	List Price \＄	Catalog Number	List Price \＄
1／2	1／2	1	1	0	－	3	0．75－3．4	A	18CUB92B＊		18CUB92＠＊		18CUB92F＊		18CUB92N＊	
2	2	5	5	0	－	10	3－12	A1	18CUC92B＊		18CUC92＠＊		18CUC92F＊		18CUC92N＊	
3	3	－	－	0	－	25	5．5－22	A1	18CUD92B＊		18CUD92＠＊		18CUD92F＊		18CUD92N＊	
1／2	1／2	1	1	1	－	3	0．75－3．4	A	18DUB92B＊		18DUB92＠＊		18DUB92F＊		18DUB92N＊	
2	2	5	5	1	－	10	3－12	A1	18DUC92B＊		18DUC92＠＊		18DUC92F＊		18DUC92N＊	
3	3	$71 / 2$	10	1	－	25	5．5－22	A1	18DUD92B＊		18DUD92＠＊		18DUD92F＊		18DUD92N＊	
$71 / 2$	$71 / 2$	10	－	1	－	30	10－40	A1	18DUE92B＊		18DUE92＠＊		18DUE92F＊		18DUE92N＊	
－	－	15	15	－	13／4	40	10－40	A1	18EUE92B＊		18EUE92＠＊		18EUE92F＊		18EUE92N＊	
10	15	25	25	2	－	50	13－52	B	18FUF92B＊		18FUF92＠＊		18FUF92F＊		18FUF92N＊	
15	20	30	30	－	21／2	100	25－100	B	18GUG92B＊		18GUG92＠＊		18GUG92F＊		18GUG92N＊	
25	30	50	50	3	－	125	25－100	B	18HUG92B＊		18HUG92＠＊		18HUG92F＊		18HUG92N＊	
30	40	75	75	－	$31 / 2$	125	50－200	B	181UH92B＊		18IUH92＠＊		18IUH92F＊		181UH92N＊	
40	50	100	100	4	－	150	50－200	B	18JUH92B＊		18JUH92＠＊		18JUH92F＊		18．JUH92N＊	
50	75	150	200	5	－	250	55－250	－	18LPT92B＊		－	－	－	－	18LPT92N＊	
75	100	200	－	5	－	400	55－250	－	18LPU92B＊		－	－	－	－	18LPU92N＊	
100	125	250	300	6	－	400	160－630	－	18MPW92B＊		－	－	－	－	18MPW92N＊	
150	200	400	400	6	－	600	160－630	－	18MPX92B＊		－	－	－	－	18MPX92N＊	
－	250	500	500	72	－	800	400－1220	A1＋CT	18NUV92B＊		－	－	－	－	18NUV92N＊	
－	300	600	600	72	－	1000	400－1220	A1＋CT	18NUY92B＊		－	－	－	－	18NUY92N＊	
－	400	800	800	$8{ }^{3}$	－	1200	400－1220	A1＋CT	18PUW92B＊		－	－	－	－	18PUW92N＊	
－	450	900	900	$8{ }^{3}$	－	1600	400－1220	A1＋CT	18PUZ92B＊		－	－	－	－	18PUZ92N＊	

（1）Dual voltage coils not available in starter sizes 5－8．

F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ ，or DC

MCP Type with Solid State Overload, Class 18

Selection

	Ordering Information	Coil Table	
	Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order. Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page 9/143. Wiring Diagrams see page 9/157. Replacement Parts see page 9/120.	60 Hz Voltage	Letter
		24	J
		120	F
		110-120/220-240	A
		200-208	D
		220-240	G
		277 $220-240 / 440-480$	${ }_{\text {L }}$
		$220-240 / 440-480$ $440-480$	C
		575-600	E
		For other voltages see Factory Modific	ncies, ge 9/114.

Extra Wide Enclosure, 3-Phase, 3-Pole

Max Hp				NEMASize	$\begin{array}{\|l} \hline \text { Half } \\ \text { Size } \\ \hline \end{array}$	Motor Circuit Interruter ETI Amps	Overload		Enclosure					
							Amp Range	Frame Size	NEMA 1 General Purpose		NEMA 4/4X StainlessWatertight, Dust-tight,Corosion Resistant$@=$ W for 304 Stainless Steel@ $=X$ f for 316 Stainless Steel		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	$\begin{array}{\|l\|l} 230 \\ \text { Volts } \end{array}$	$\left\lvert\, \begin{aligned} & 460 \\ & \text { Volts } \end{aligned}\right.$	$\begin{aligned} & 575 \\ & \text { Volts } \end{aligned}$						Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price \$ } \end{array}$	Catalog	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { Price } \end{array}$	Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price S } \end{array}$
1/2	1/2	1	1	0	-	3	0.75-3.4	A	18CUB82B*		18CUB82@*		18CUB82N*	
2	2	5	5	0	-	10	3-12	A1	18CUC82B*		18CUC82@*		18CUC82N*	
3	3	-	-	0	-	25	5.5-22	A1	18CUD82B*		18CUD82@*		18CUD82N*	
1/2	1/2	1	1	1	-	3	0.75-3.4	A	18DUB82B*		18DUB82@*		18DUB82N*	
2	2	5	5	1	-	10	3-12	A1	18DUC82B*		18DUC82@*		18DUC82N*	
3	3	71/2	10	1	-	25	5.5-22	A1	18DUD82B*		18DUD82@*		18DUD82N*	
71/2	71/2	10	-	1	-	30	10-40	A1	18DUE82B*		18DUE82@*		18DUE82N*	
-	-	15	15	-	13/4	40	10-40	A1	18EUE82B*		18EUE82@*		18EUE82N*	
10	15	25	25	2	-	50	13-52	B	18FUF82B*		18FUF82@*		18FUF82N*	
15	20	30	30	-	21/2	100	25-100	B	18GUG82B*		18GUG82@*		18GUG82N*	
25	30	50	50	3	-	125	25-100	B	18HUG82B*		18HUG82@*		18HUG82N*	

Solid State Overload, Class 22

Selection

Replace the (${ }^{*}$) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.
Field Modification Kits see page 9/100.
Factory Modifications see page 9/114.
Dimensions see page 9/130 open and 9/145 enclosed.
Wiring Diagrams see page 9/158.

Coil Table	
60 Hz Voltage	Letter
24	J
120	F
$110-120 / 220-240{ }^{\circ}$	D
$200-208$	G
$220-240$	L
277	C
$220-240 / 440-480{ }^{\circ}$	E
$40-480$	
$575-600$	
For other voltages and frequencies,	
see Factory Modifications page $9 / 114$.	

Open Type \& Standard Width Enclosure, 3-Phase, 3-Pole

Max Hp				$\begin{array}{\|l} \hline \text { NEMA } \\ \text { Size } \end{array}$	Half Size	Overload		Enclosure									
						Amp Range	$\begin{aligned} & \text { Frame } \\ & \text { Size } \\ & \hline \end{aligned}$	Open Type Standard Auxiliary Contacts ${ }^{(4)}$		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
200 Volts	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 460 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 575 \\ & \text { Volts } \end{aligned}$					Catalog Number	List Price \$								
1/6	1/6	1/3	1/2	00	-	0.25-1	A	22BUA32A*		22BUA32B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
1/2	3/4	11/2	2	00	-	0.75-3.4	A	22BUB32A*		22BUB32B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
11/2	11/2	2	-	00	-	3-12	A1	22BUC32A*		22BUC32B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
1/6	1/6	1/3	1/2	0	-	0.25-1	A	22CUA32A*		22CUA32B*		22CUA32W*		22CUA32F*		22CUA320*	
1/2	3/4	11/2	2	0	-	0.75-3.4	A	22CUB32A*		22CUB32B*		22CUB32W*		22CUB32F*		22CUB320*	
2	2	5	5	0	-	3-12	A1	22CUC32A*		22CUC32B*		22CUC32W*		22CUC32F*		22CUC320*	
3	3	-	-	0	-	5.5-22	A1	22CUD32A*		22CUD32B*		22CUD32W*		22CUD32F*		22CUD320*	
1/6	1/6	1/3	1/2	1	-	0.25-1	A	22DUA32A*		22DUA32B*		22DUA32W*		22DUA32F*		22DUA320*	
1/2	3/4	11/2	2	1	-	0.75-3.4	A	22DUB32A*		22DUB32B*		22DUB32W*		22DUB32F*		22DUB320*	
2	2	5	5	1	-	3-12	A1	22DUC32A*		22DUC32B*		22DUC32W*		22DUC32F*		22DUC320*	
3	3	10	10	1	-	5.5-22	A1	22DUD32A*		22DUD32B*		22DUD32W*		22DUD32F*		22DUD320*	
71/2	71/2	-	-	1	-	10-40	A1	22DUE32A*		22DUE32B*		22DUE32W*		22DUE32F*		22DUE320*	
10	10	15	15	-	$13 / 4$	10-40	A1	22EUE32A*		22EUE32B*		22EUE32W*		22EUE32F*		22EUE320*	
10	15	25	25	2	-	13-52	B	22FUF32A*		22FUF32B*		22FUF32W*		22FUF32F*		22FUF320*	
15	20	30	30	-	21/2	25-100	B	22GUG32A*		22GUG32B*		22GUG32W*		22GUG32F*		22GUG320*	
25	30	50	50	3	-	25-100	B	22HUG32A*		22HUG32B*		22HUG32W*		22HUG32F*		22HUG320*	
30	40	75	75	-	31/2	50-200	B	221UH32A*		221UH32B*		22IUH32W*		221UH32F*		221UH320*	
40	50	100	100	4	-	50-200	B	22JUH32A*		22JUH32B*		22JUH32W*		22JUH32F*		22JUH320*	
75	100	200	200	5	-	55-250	-	22LPU32A*		22LPU32B*		-	-	-	-	22LPU320*	
150	200	400	400	6	-	160-630	-	22MPX32A*		22MPX32B*		-	-	-	-	22MPX320*	
-	300	600	600	$7{ }^{2}$	-	400-1220	A1+CT	22NUN32A*		22NUN32B*		-	-	-	-	22NUN320*	
-	450	900	900	$8{ }^{3}$	-	400-1220	A1+CT	22PUN32A*		22PUN32B*		-	-	-	-	22PUN320*	

Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).
(1) Dual voltage coils not available in size 5-8 starters.

F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC
H coil $150-500 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC
(3) Only available

F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC

Non-fusible, Class 25

Selection

Ordering Information	Coil Table	
Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.	60 Hz Voltage	Letter
	24	J
Fuse clips see page 9/115.	120	F
Field Modification Kits see page 9/100.	110-120/220-240®	A
Factory Modifications see page 9/114.	200-208	D
	277	L
Dimensions see page 9/147.	220-240/440-480®	C
Wiring Diagrams see page 9/159.	440-480	H
Replacement Parts see page 9/120.	575-600	E
	For other voltages and frequencies, see Factory Modifications page 9/114.	

Standard Width Enclosure with Solid State Overload, 3-Phase, 3-Pole

Max Hp				NEMA Size	$\begin{aligned} & \text { Half } \\ & \text { Size } \\ & \hline \end{aligned}$	Overload		Disc. Amp Rating	Enclosure							
						Amp Range	FrameSize		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{array}{\|l\|} \hline 200 \\ \text { Volts } \end{array}$	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	460 Volts	575 Volts						Catalog Number	List Price \$						
1/6	1/6	1/3	1/2	0	-	0.25-1	A	30	25CUA92B*		25CUA92W*		25CUA92F*		25CUA92N*	
$1 / 2$	3/4	11/2	2	0	-	0.75-3.4	A	30	25CUB92B*		25CUB92W*		25CUB92F*		25CUB92N*	
2	2	5	5	0	-	3-12	A1	30	25CUC92B*		25CUC92W*		25CUC92F*		25CUC92N*	
3	3	-	-	0	-	5.5-22	A1	30	25CUD92B*		25CUD92W*		25CUD92F*		25CUD92N*	
1/6	1/6	1/3	1/2	1	-	0.25-1	A	30	25DUA92B*		25DUA92W*		25DUA92F*		25DUA92N*	
$1 / 2$	$3 / 4$	11/2	2	1	-	0.75-3.4	A	30	25DUB92B*		25DUB92W*		25DUB92F*		25DUB92N*	
2	2	5	5	1	-	3-12	A1	30	25DUC92B*		25DUC92W*		25DUC92F*		25DUC92N*	
3	3	10	10	1	-	5.5-22	A1	30	25DUD92B*		25DUD92W*		25DUD92F*		25DUD92N*	
71/2	71/2	-	-	1	-	10-40	A1	60	25DUE92B*		25DUE92W*		25DUE92F*		25DUE92N*	
10	10	15	15	-	13/4	10-40	A1	60	25EUE92B*		25EUE92W*		25EUE92F*		25EUE92N*	
10	15	25	25	2	-	13-52	B	60	25FUF92B*		25FUF92W*		25FUF92F*		25FUF92N*	
15	20	30	30	-	21/2	25-100	B	100	25GUG92B*		25GUG92W*		25GUG92F*		25GUG92N*	
20	25	50	50	3	-	25-100	B	100	25HUG92B*		25HUG92W*		25HUG92F*		25HUG92N*	
30	40	75	75	-	31/2	50-200	B	200	25IUH92B*		25IUH92W*		25IUH92F*		25IUH92N*	
40	50	100	100	4	-	50-200	B	200	25JUH92B*		25JUH92W*		25JUH92F*		25JUH92N*	
75	100	200	200	5	-	55-250	-	400	25LPU92B*		-	-	-	-	25LPU92N*	
150	200	400	400	6	-	160-630	-	600	25MPX92B*		-	-	-	-	25MPX92N*	
-	300	600	600	72	-	400-1220	A1+CT	1200	25NUN92B*		-	-	-	-	25NUN92N*	
-	450	900	900	$8{ }^{3}$	-	400-1220	A1+CT	1600	25PUN92B*		-	-	-	-	25PUN92N*	

H coil $150-500 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC
(3) Only available

MCP Type，Class 26

Selection

	Ordering Information	Coil Table	
	Replace the（＊）with a letter from the coil table．Dual voltage coils are	60 Hz Voltage	Letter
	wired on high voltage unless specified on order．	24	J
	Field Modification Kits see page 9／100．	120	F
	Factory Modifications see page 9／114．	110－120／220－240 ${ }^{\text {® }}$	A
	Dimensions see page 9／147	200－208	D
	Dimensions see page 9／147． Wiring Diagrams see page 9／159	$\begin{aligned} & 220-240 \\ & 277 \end{aligned}$	L
		220－240／440－480 ${ }^{\text {® }}$	C
	Replacement Parts see page 9／120．	440－480	H
		575－600	E
		For other voltages see Factory Modific	ncies， ge 9／114．

Standard Width Enclosure with Solid State Overload，3－Phase，3－Pole

Max Hp				NEMA Size	Half Size	Motor Circuit Interruter ETI Amps	Overload		Enclosure							
							Amp Range	Frame Size	NEMA 1 General Purpose		NEMA 4／4X Stainless Watertight，Dust－tight， Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight，Dust－tight Corrosion Resistant		NEMA 3／3R／4／12 Watertight，Dust－tight， Weatherproof	
200 Volts	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \\ \hline \end{array}$	460 Volts	575 Volts						Catalog Number	List Price \＄	Catalog Number	List Price \＄	Catalog Number	List Price \＄	Catalog Number	List Price \＄
1／2	1／2	1	1	0	－	3	0．75－3．4	A	26CUB92B＊		26CUB92W＊		26CUB92F＊		26CUB92N＊	
2	2	5	5	0	－	10	3－12	A1	26CUC92B＊		26CUC92W＊		26CUC92F＊		26CUC92N＊	
3	3	－	－	0	－	25	5．5－22	A1	26CUD92B＊		26CUD92W＊		26CUD92F＊		26CUD92N＊	
1／2	1／2	1	1	1	－	3	0．75－3．4	A	26DUB92B＊		26DUB92W＊		26DUB92F＊		26DUB92N＊	
2	2	5	5	1	－	10	3－12	A1	26DUC92B＊		26DUC92W＊		26DUC92F＊		26DUC92N＊	
3	3	71／2	10	1	－	25	5．5－22	A1	26DUD92B＊		26DUD92W＊		26DUD92F＊		26DUD92N＊	
71／2	71／2	10	－	1	－	30	10－40	A1	26DUE92B＊		26DUE92W＊		26DUE92F＊		26DUE92N＊	
－	－	15	15	－	13／4	40	10－40	A1	26EUE92B＊		26EUE92W＊		26EUE92F＊		26EUE92N＊	
10	15	25	25	2	－	50	13－52	B	26FUF92B＊		26FUF92W＊		26FUF92F＊		26FUF92N＊	
15	20	30	30	－	21／2	100	25－100	B	26GUG92B＊		26GUG92W＊		26GUG92F＊		26GUG92N＊	
25	30	50	50	3	－	125	25－100	B	26HUG92B＊		26HUG92W＊		26HUG92F＊		26HUG92N＊	
30	40	75	75	－	31／2	125	50－200	B	261UH92B＊		261UH92W＊		261UH92F＊		26IUH92N＊	
40	50	100	100	4	－	150	50－200	B	26JUH92B＊		26JUH92W＊		26JUH92F＊		26JUH92N＊	
50	75	150	200	5	－	250	55－250	－	26LPT92B＊		－	－	－	－	26LPT92N＊	
75	100	200	－	5	－	400	55－250	－	26LPU92B＊		－	－	－	－	26LPU92N＊	
100	125	250	300	6	－	400	160－630	－	26MPW92B＊		－	－	－	－	26MPW92N＊	
150	200	400	400	6	－	600	160－630	－	26MPX92B＊		－	－	－	－	26MPX92N＊	
－	250	500	500	7^{*}（2）	－	800	400－1220	A1＋CT	26NUV92B＊		－	－	－	－	26NUV92N＊	
－	300	600	600	$7{ }^{*}$（2）	－	1000	400－1220	A1＋CT	26NUY92B＊		－	－	－	－	26NUY92N＊	
－	400	800	800	$8{ }^{3}$	－	1200	400－1220	A1＋CT	26PUW92B＊		－	－	－	－	26PUW92N＊	
－	450	900	900	8 （3）	－	1600	400－1220	A1＋CT	26PUZ92B＊		－	－	－	－	26PUZ92N＊	

（1）Dual voltage coils not available in starter sizes 5－8．
（2）F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ ，or DC， H coil $150-500 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ ，or DC

F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$ ，or DC

General

Features

- Rugged Industrial Design
- Dual Voltage, Dual Frequency Coils
- Compact Design
- Snap-On Front Removable Auxiliary Contacts
- Electrical and Mechanical Interlocks
- Half Sizes - Space and Cost Savings
- Industrial Type Disconnect Operating Handle
- Visible Blade Disconnect Thru Size 4
- Adjustable Motor Circuit Protector
- 100,000 Amp Fault Protection with MCP or Class R Fuses
- Pilot Device Locations identified on All Enclosures
- UL Listed File \#E14900
- CSA Certified File \#LR6535

Applications

Multi-speed magnetic starters automatically reconnect multi-speed motor windings for the desired speed in response to a signal received from push button stations or other pilot devices.
These starters are available for two speed motors.
Consequent Pole multi-speed motors having two speeds on a single winding (consequent pole) require a starter which reconnects the motor leads to half the number of effective motor poles at the high speed point. In this type of motor, the low speed is one half the high speed.
Separate Windings motors having separate windings for each speed provide more varied speed combinations in that the low speed need not be one half the high speed.

Starters for separate winding motors consist of a starter unit for each speed.

Multi-speed motor starters are available for constant torque, variable torque and constant horsepower motors.
Constant Torque motors maintain constant torque at all speeds. Horsepower varies directly with speed. This type of motor is applicable to conveyors, mills and similar applications.

Variable Torque motors produce a torque characteristic which varies as the square of the speed. This type of motor is applicable to fans, blowers and centrifugal pumps.
Constant Horsepower motors maintain constant horsepower at all speeds and therefore torque varies inversely with speed. This type of motor is applicable where the same horsepower is required at all speeds.
The higher current required at low speed requires derating on starters for constant horsepower applications. This type of motor is applicable to metal working machines such as drills, lathes, mills, bending machines, punch presses, and power wrenches.

Operation

Magnetic starters for multi-speed applications select the desired speed in accordance with the pilot control.
The shock to machinery upon the reduction of speed is greater than when the speed is increased. Therefore, the pilot control should be wired so that the stop button must be depressed before dropping to a lower speed or time delays should be used for applications requiring full automatic operations. The multi-speed controls are available with the necessary interlocks or relays to provide this type of operation.
These controls may be modified for compelling or acceleration pilot control.
Selective Control permits the operator to start the motor at any speed and to change to a higher speed by merely pushing a button. To change to a lower speed it is necessary to first depress the stop button and to then press the proper speed button. Selective control is a function of the pilot control selected and requires no starter modifications.

Compelling Control requires that the motor always be started at the lower speed and that the push buttons be operated in speed sequence to go to the next higher speed. To change to a lower speed, the stop button must be depressed and then the push buttons operated in speed sequence until the desired speed is reached. Compelling control can be added from the factory modification section page 9/117.
Acceleration Control provides that the motor be accelerated automatically with timers by progressively energizing the controls from the push button station from the lowest to highest speed. To change to a lower speed the stop button is depressed and then it is necessary to proceed as if starting from rest. Acceleration control can be added from the factory modification section page 9/117.
Deceleration Control provides that the motor be decelerated automatically with a timer when going from high speed to low speed. The timer allows the motor to decelerate from high speed to a lower speed before automatically restarting the motor in low speed. Deceleration control can be added from the factory modification section page 9/117.

Constant or Variable Torque with Solid State Overload, Class 30

Selection

One Winding Consequent Pole, 3-Phase (Constant or Variable Torque)

Max Hp				NEMA Size	Half Size	Overload		Enclosure									
						Amp Range	Frame Size	Open Type Standard Auxiliary Contacts(2)		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{array}{\|l\|} \hline 200 \\ \text { Volts } \end{array}$	$\begin{array}{\|l} 230 \\ \text { Volts } \end{array}$	$\begin{array}{\|l} 460 \\ \text { Volts } \end{array}$	575 Volts					Catalog Number	List Price \$								
1/2	3/4	11/2	2	-	-	0.75-3.4	A	30CUB+32A2V*		30CUB+32B2V*		30CUBt32W2V*		30CUBt32F2V*		30CUBt3202V*	
2	2	5	5	0	-	3-12	A1	30CUC+32A2V*		30CUC+32B2V*		30CUC†32W2V*		30CUC+32F2V*		30CUC+3202V*	
3	3	-	- 0	O	-	5.5-22	A1	30CUD+32A2V*		30CUD+32B2V*		30CUDt32W2V*		30CUD+32F2V*		30CUD+3202V*	
1/2	3/4	11/2	11/2	1	-	0.75-3.4	A	30DUB+32A2V*		30DUBt32B2V*		30DUB+32W2V*		30DUBt32F2V*		30DUBt3202V*	
2	2	5	5	1	-	3-12	A1	30DUC+32A2V*		30DUC+32B2V*		30DUC+32W2V*		30DUC†32F2V*		30DUC†3202V*	
3	3	10	10	1	-	5.5-22	A1	30DUD+32A2V*		30DUD+32B2V*		30DUD+32W2V*		30DUD+32F2V*		30DUD+3202V*	
71/2	71/2	-	-	1	-	10-40	A1	30DUEt32A2V*		30DUET32B2V*		30DUE†32W2V*		30DUE†32F2V*		30DUE†3202V*	
10	10	15	15	-	13/4	10-40	A1	30EUEt32A2V*		30EUEt32B2V*		30EUE+32W2V*		30EUEt32F2V*		30EUE†3202V*	
10	15	25	25	2	-	13-52	B	30FUFt32A2V*		30FUFt32B2V*		30FUFt32W2V*		30FUFt32F2V*		30FUFt3202V*	
15	20	30	30	-	21/2	25-100	B	30GUG+32A2V*		30GUGt32B2V*		30GUG+32W2V*		30GUG+32F2V*		30GUG+3202V*	
25	30	50	50	3	-	25-100	B	30HUG+32A2V*		30HUGt32B2V*		30HUG+32W2V*		30HUG+32F2V*		30HUG+3202V*	
30	40	75	75	-	31/2	50-200	B	30IUH+32A2V*		30IUH+32B2V*		30IUHt32W2V*		30IUHt32F2V*		301UHt3202V*	
40	50	100	100	4	-	50-200	B	30JUH+32A2V*		30JUH+32B2V*		30JUHt32W2V*		30JUH†32F2V*		30JUH+3202V*	

Two Separate Windings, 3-Phase (Constant or Variable Torque)

Max Hp				NEMA Size	$\begin{aligned} & \text { Half } \\ & \text { Size } \\ & \hline \end{aligned}$	Overload		Enclosure									
						Amp Range	Frame Size	Open Type ${ }^{(2)}$ Standard Auxiliary Contacts		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel 316 Stainless Steel (Optional)		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
200 Volts	$\begin{array}{\|l\|} \hline 230 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|l} \hline 460 \\ \hline \text { Volts } \\ \hline \end{array}$	575 Volts					Catalog Number	List Price \$								
1/2	3/4	$11 / 2$	2	0	-	0.75-3.4	A	30CUB†32A1V*		30CUB†32B1V*		30CUB+32W1V*		30CUB†32F1V*		30CUB $\dagger 3201 V^{*}$	
2	2	5	5	0	-	3-12	A1	30CUC†32A1V*		30CUC†32B1V*		30CUC $+32 \mathrm{~W} 1 \mathrm{~V}^{*}$		30CUC†32F1V*		30CUC†3201V*	
3	3	-	-	0	-	5.5-22	A1	30CUDt32A1V*		30CUD+32B1V*		30CUD+32W1V*		30CUD+32F1V*		30CUD+3201V*	
1/2	3/4	11/2	11/2	1	-	0.75-3.4	A	30DUB+32A1V*		30DUB+32B1V*		30DUB+32W1V*		30DUBt32F1V*		30DUB+3201V*	
2	2	5	5	1	-	3-12	A1	30DUC+32A1V*		30DUC†32B1V*		30DUC+32W1V*		30DUC†32F1V*		30DUC+3201V*	
3	3	10	10	1	-	5.5-22	A1	30DUD+32A1V*		30DUD+32B1V*		30DUD+32W1V*		30DUDt32F1V*		30DUD+3201V*	
71/2	71/2	-	-	1	-	10-40	A1	30DUE†32A1V*		30DUE†32B1V*		30DUE†32W1V*		30DUE†32F1V*		30DUE†3201V*	
10	10	15	15	-	13/4	10-40	A1	30EUE†32A1V*		30EUE†32B1V*		30EUE+32W1V*		30EUE†32F1V*		30EUE†3201V*	
10	15	25	25	2	-	13-52	B	30FUFt32A1V*		30FUFt32B1V*		30FUFt32W1V*		30FUFt32F1V*		30FUFt3201V*	
15	20	30	30	-	21/2	25-100	B	30GUG+32A1V*		30GUG+32B1V*		30GUG+32W1V*		30GUG†32F1V*		30GUG+3201V*	
25	30	50	50	3	-	25-100	B	30HUG+32A1V*		30HUG+32B1V*		30HUG+32W1V*		30HUG†32F1V*		30HUG+3201V*	
30	40	75	75	-	31/2	50-200	B	30IUHt32A1V*		30IUH+32B1V*		30IUH+32W1V*		30IUHt32F1V*		301UH+3201V*	
40	50	100	100	4	-	50-200	B	30JUHt32A1V*		30JUHt32B1V*		30JUHt32W1V*		30JUHt32F1V*		30JUHt3201V*	

Note: All starter sizes carry one maximum Hp rating (per
the National Electric Code).
(1) If motor FLA are unknown, select overload on the basis that low speed FLA will be no greater than 50% of high speed FLA.
(2) Auxiliary contacts 30C-30E 4th pole built-in 30F-30J 2 NO \& 2 NC

Constant HP with Solid State Overload, Class 30

Selection

One Winding Consequent Pole, 3-Phase (Constant Horsepower)

Max Hp					$\begin{array}{\|l\|l} \text { Half } \\ \text { Size } \end{array}$	Enclosure									
200 Volts	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \\ \hline \end{array}$	460 Volts	575 Volts			Open Type Standard Auxiliary Contacts(2)		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
						Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
2	2	3	3	0	-	30CUtt32A2H*		30CUtt32B2H*		30CUtt32W2H*		30CUt+32F2H*		30CUt+3202H*	
5	5	71/2	71/2	1	-	30DUtt32A2H*		30DUt+32B2H*		30DUtt32W2H*		30DUt+32F2H*		30DUtt3202H*	
71/2	$71 / 2$	10	10	-	13/4	30EUt+32A2H*		30EUtt32B2H*		30EUtt32W2H*		30EUtt32F2H*		30EUt+3202H*	
71/2	10	20	20	2	-	30FUtt32A2H*		30FUtt32B2H*		30FUt+32W2H*		30FUt+32F2H*		30FUt+3202H*	
10	15	25	25	-	21/2	30GUtt32A2H*		30GUt+32B2H*		30GUtt32W2H*		30GUt+32F2H*		30GUtt3202H*	
20	25	40	40	3	-	30HUtt32A2H*		30HUt+32B2H*		30HUtt32W2H*		30HUt+32F2H*		30HUtt3202H*	
25	30	50	50	-	31/2	30IUtt32A2H*		30IUtt32B2H*		30IUt+32W2H*		30IUt+32F2H*		30IUt+3202H*	
30	40	75	75	4	-	30JUtt32A2H*		30JUtt32B2H*		30JUtt32W2H*		30JUtt32F2H*		30JUt+3202H*	

Two Separate Windings, 3-Phase (Constant Horsepower)

Max Hp				$\begin{array}{\|l} \text { NEMA } \\ \text { Size } \end{array}$	Half Size										
						Enclosure Open Type Standard Auxiliary Contacts(2)		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Stee		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		$\begin{aligned} & \text { NEMA 3/3R/4/12 } \\ & \text { Watertight, Dust-tight, } \\ & \text { Weatherproof } \end{aligned}$	
$\left\lvert\, \begin{aligned} & 200 \\ & \text { Volts } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 230 \\ & \text { Volts } \end{aligned}\right.$	460 Volts	$\begin{aligned} & 575 \\ & \text { Volts } \end{aligned}$			Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
2	2	3	3	-	-	30CUt+32A1H*		30CUH+32B1H*		30CUt+32W1H*		30CUH32F1H*		30CUt+3201H*	
5	5	71/2	71/2	1	-	30DUt+32A1H*		30DUt+32B1H*		30DUt+32W1H*		30DUt+32F1H*		30DUt+3201H*	
71/2	71/2	10	10	-	$13 / 4$	30EUH32A1H*		30EU+T32B1H*		30EUt+32W1H*		30EUt+32F1H*		30EUt+32014*	
71/2	10	20	20	2	-	30FUH+32A1H*		30FUt+32B14*		30FUt+32W1H*		30FUt+32F14*		30FUt+32014*	
10	15	25	25	-	21/2	30GUt+32A1H*		30GUt+32B14*		30GUt+32W1H*		30GUt+32F1H*		30GUt+3201H*	
20	25	40	40	3	-	30HUT+32A1H*		30HUt+32B1H*		30HUt+32W1H*		30HUT+32F1H*		30HUt+3201H*	
25	30	50	50	-	31/2	301Ut+32A1H*		301Ut+32B1H*		301Utt32W1H*		301Ut+32F1H*		301Ut+32014*	
30	40	75	75	4	-	30JUt+32A1H*		30JUt+32B1H*		30JUt+32W1H*		30JUt+32F1H*		30JUt+3201H*	

Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).
(1) First (\dagger) for high speed, second (\dagger) for low speed. Use motor nameplate information to select FLA. If motor FLA are unknown, select overload on the basis that low speed FLA will be no greater than 50% of high speed FLA.
(2) Auxiliary contacts

30C-30E 4th pole built-in 30F-30J 2 NO \& 2 NC

Non－Fusible，Constant or Variable Torque with Solid State Overload，Class 32

Selection

	Ordering Information	Coil Table		Low Speed FLA Table			
	Replace the（＊）with a letter from the coil table．Dual voltage coils are wired on high voltage unless specified on order． Replace the（ \dagger ）with the letter that corresponds to the correct low speed FLA in the FLA table．（2） Fuse clips see page 9／115． Field Modification Kits see page 9／100． Factory Modifications see page 9／114． Dimensions see page 9／149． Wiring Diagrams see page $9 / 160$ ． Replacement Parts see page 9／120．	60 Hz Voltage	Letter	Size	FLA	OLR Frame Size	\dagger
		24	J	0，1	0．25－1	A	A
		120	F	0，1	0．75－3．4	A	B
		110－120／220－240®	A	0，1	3－12	A1	C
		200－208	D	0，1	5．5－22	A1	D
		220－240	G	0－13／4	10－40	A1	E
		277	L	2－3	13－52	B	F
		220－240／440－480®	C	2－3	25－100	B	G
		440－480	H	$3^{1 / 2} 24$	50－200	B	H
		575－600					
		For other voltages see Factory Modific	encies， age 9／114				

One Winding Consequent Pole，3－Phase（Constant or Variable Torque）

Max Hp				NEMA Size	$\begin{array}{\|l} \hline \text { Half } \\ \text { Size } \\ \hline \end{array}$	Overload		Disc． Amp Range	Enclosure							
						Amp Range	Frame Size		NEMA 1 General Purpose		NEMA 4／4X Stainl Watertight，Dust－tight， Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberg Watertight，Dust－tigh Corrosion Resistant		NEMA 3／3R／4／12 Watertight，Dust－tight， Weatherproof	
200 Volts	$\begin{array}{\|l} 230 \\ \text { Volts } \\ \hline \end{array}$	460 Volts	575 Volts						Catalog Number	List Price \＄						
1／2	$3 / 4$	$11 / 2$	2	0	－	0．75－3．4	A	30	32CUBt92B2V2＊		32CUBt92W2V2＊		32CUBt92F2V2＊		32CUBt92N2V2＊	
2	2	5	5	0	－	3－12	A1	30	32CUC†92B2V2＊		32CUCt92W2V2＊		32CUCt92F2V2＊		32CUCt92N2V2＊	
3	3	－	－	0	－	5．5－22	A1	30	32CUDt92B2V2＊		32CUD＋92W2V2＊		32CUDt92F2V2＊		32CUDt92N2V2＊	
1／2	3／4	11／2	11／2	1	－	0．75－3．4	A	30	32DUB＋92B2V2＊		32DUB＋92W2V2＊		32DUBt92F2V2＊		32DUB＋92N2V2＊	
2	2	5	5	1	－	3－12	A1	30	32DUC＋92B2V2＊		32DUC＋92W2V2＊		32DUC＋92F2V2＊		32DUCt92N2V2＊	
3	3	10	10	1	－	5．5－22	A1	30	32DUDT92B2V2＊		32DUD＋92W2V2＊		32DUD＋92F2V2＊		32DUD＋92N2V2＊	
71／2	71／2	－	－	1	－	10－40	A1	60	32DUEt92B2V2＊		32DUEt92W2V2＊		32DUET92F2V2＊		32DUEt92N2V2＊	
10	10	15	15	－	13／4	10－40	A1	60	32EUEt92B2V2＊		32EUET92W2V2＊		32EUET92F2V2＊		32EUET92N2V2＊	
10	15	25	25	2	－	13－52	B	60	32FUFt92B2V2＊		32FUFt92W2V2＊		32FUFt92F2V2＊		32FUFt92N2V2＊	
15	20	30	30	－	21／2	25－100	B	100	32GUG＋92B2V2＊		32GUG＋92W2V2＊		32GUG＋92F2V2＊		32GUG＋92N2V2＊	
20	25	50	50	3	－	25－100	B	100	32HUG＋92B2V2＊		32HUG＋92W2V2＊		32HUG＋92F2V2＊		32HUG＋92N2V2＊	
30	40	75	75	－	31／2	50－200	B	200	32IUH＋92B2V2＊		32IUH＋92W2V2＊		32IUHt92F2V2＊		32IUH＋92N2V2＊	
40	50	100	100	4	－	50－200	B	200	32JUHt92B2V2＊		32JUH＋92W2V2＊		32JUH＋92F2V2＊		32JUH＋92N2V2＊	

Two Separate Windings，3－Phase（Constant or Variable Torque）

Max Hp				NEMA Size	HalfSize	Overload		Disc． Amp Range	Enclosure							
						Amp Range	Frame Size		NEMA 1 General Purpose		NEMA 4／4X Stainless Watertight，Dust－tight， Corrosion Resistant 304 Stainless Stee		NEMA 4X Fiberglass Watertight，Dust－tight Corrosion Resistant		NEMA 3／3R／4／12 Watertight，Dust－tight， Weatherproof	
$\begin{array}{\|l\|l} 200 \\ \text { Volts } \end{array}$	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	$\left\lvert\, \begin{aligned} & 460 \\ & \text { Volts } \end{aligned}\right.$	$\begin{aligned} & 575 \\ & \text { Volts } \end{aligned}$						Catalog Number	List Price \＄	Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price \$ } \end{array}$	Catalog Number	List Price \＄	Catalog Number	List Price \＄
1／2	3／4	11／2	2	0	－	0．75－3．4	A	30	32CUB＋92B1V2＊		32CUB＋92W1V2＊		32CUB＋92F1V2＊		32CUB＋92N1V2＊	
2	2	5	5	0	－	3－12	A1	30	32CUC＋92B1V2＊		32CUC＋92W1V2＊		32CUC＋92F1V2＊		32CUCT92N1V2＊	
3	3	－	－	0	－	5．5－22	A1	30	32CUD＋92B1V2＊		32CUD＋92W1V2＊		32CUD＋92F1V2＊		32CUDT92N1V2＊	
1／2	3／4	11／2	11／2	1	－	0．75－3．4	A	30	32DUB＋92B1V2＊		32DUB＋92W1V2＊		32DUB＋92F1V2＊		32DUBt92N1V2＊	
2	2	5	5	1	－	3－12	A1	30	32DUC＋92B1V2＊		32DUC＋92W1V2＊		32DUC＋92F1V2＊		32DUC＋92N1V2＊	
3	3	10	10	1	－	5．5－22	A1	30	32DUD＋92B1V2＊		32DUD＋92W1V2＊		32DUD＋92F1V2＊		32DUD＋92N1V2＊	
71／2	71／2	－	－	1	－	10－40	A1	60	32DUEt92B1V2＊		32DUET92W1V2＊		32DUE＋92F1V2＊		32DUE＋92N1V2＊	
10	10	15	15	－	13／4	10－40	A1	60	32EUE＋92B1V2＊		32EUE＋92W1V2＊		32EUET92F1V2＊		32EUE＋92N1V2＊	
10	15	25	25	2	－	13－52	B	60	32FUFt92B1V2＊		32FUFT92W1V2＊		32FUFT92F1V2＊		32FUF＋92N1V2＊	
15	20	30	30	－	21／2	25－100	B	100	32GUG＋92B1V2＊		32GUG＋92W1V2＊		32GUG＋92F1V2＊		32GUG＋92N1V2＊	
20	25	50	50	3	－	25－100	B	100	32HUG＋92B1V2＊		32HUG＋92W1V2＊		32HUG＋92F1V2＊		32HUG＋92N1V2＊	
30	40	75	75	－	31／2	50－200	B	200	321UH＋92B1V2＊		321UH＋92W1V2＊		32IUH＋92FIV2＊		32IUH＋92N1V2＊	
40	50	100	100	4	－	50－200	B	200	32JUH＋92B1V2＊		32JUH＋92W1V2＊		32JUH＋92F1V2＊		32JUH＋92N1V2＊	

Note：All starter sizes carry one maximum Hp rating（per the National Electric Code）．
（1）Dual voltage coils not available in modified starters．
（2）If motor FLA are unknown，select overload on the basis that low speed FLA will be no greater than 50% of high speed FLA．

Non-Fusible, Constant Horsepower with Solid State Overload, Class 32

Selection

	Ordering Information	Coil Table	High/Low Speed FLA Table ${ }^{\text {® }}$			
	Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.	60 Hz Voltage Letter	Size	FLA	OLR Frame Size	\dagger
		24 J	0,1	0.25-1	A	A
		120 F	0,1	0.75-3.4	A	B
		110-120/220-240 ${ }^{\text {© }}$ A	0,1	3-12	A1	C
	Replace the (\dagger) with the letter that	200-208 D	0,1	5.5-22	A1	D
	corresponds to the correct FLA in the	220-240 G	0-13/4	10-40	A1	E
	High/Low Speed FLA Table.2 ${ }^{\text {2 }}$	277 L	2-3	13-52	B	F
	Fuse clips see paqe 9/115.	220-240/440-480® C	2-3	25-100	B	G
	Field Modification Kits see page 9/100	575-600 E	31/2-4	50-200	B	H
	Field Modification Kits see page 9/100 Factory Modifications see page 9/114.					
	Dimensions see pace $9 / 149$. Wiring Diagrams see page 9/160. Replacement Parts see page 9/120.	For other voltages and frequencies see Factory Modifications page 9/114.	* First (\dagger) for high speed, second (\dagger) for low speed. Use motor nameplate to select FLA. If motor FLA are unknown, select overload on the bases that the low speed FLA will be no greater than 50% of high speed FLA.			

One Winding Consequent Pole, 3-Phase (Constant Horsepower)

Max Hp						Overload			Enclosure							
									NEMA 1 General Purpose		$\begin{array}{\|l\|} \hline \text { NEMA 4/4X Stainl } \\ \text { Watertight, Dust-tight, } \\ \text { Corrosion Resistant, } \\ \text { 304 Stainless Steel } \end{array}$		NEMA 4X Fiberg Watertight, Dust-tigh Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dus Weatherproof	
$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	$\left\lvert\, \begin{aligned} & 460 \\ & \text { Volts } \end{aligned}\right.$	$\begin{array}{\|l\|l} 575 \\ \hline & \text { Volts } \end{array}$	$\begin{aligned} & \text { NEMA } \\ & \text { Size } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Half } \\ \text { Size } \\ \hline \end{array}$	$\begin{aligned} & \text { Amp } \\ & \text { Range } \end{aligned}$	$\begin{array}{\|l} \text { Frame } \\ \text { Size } \end{array}$	Amp Range	Catalog	$\begin{aligned} & \begin{array}{l} \text { List } \\ \text { Price § } \end{array} \end{aligned}$	Catalog	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price \$ } \end{array}$	Catalog	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price \$ } \end{array}$	$\begin{array}{\|l} \begin{array}{l} \text { Catalog } \\ \text { Number } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { List } \\ \text { Price \$ } \\ \hline \end{array}$
2	2	3	3	0	-	-	-	30	32CUt+92B2H2*		32CUt+92W2H2*	4054.00	32Cut+92F2H2*		32CUt+92N2H2*	
5	5	71/2	71/2	1	-	-	-	30	32DUt+92B2H2*		32DUt+92W2H2*	4173.00	32DUt+92F2H2*		32DUt+92N2H2*	
7/2	71/2	10	10	-	13/4	-	-	60	32EUt+92B2H2*		32EUt+92W2H2*	4873.00	32EUt+92F2H2*		32EUt+92N2H2*	
71/2	10	20	20	2	-	-	-	60	32FUt+92B2H2*		32FUtt92W2H2*	6146.00	32FUt+92F2H2*		32FUt+92N2H2*	
10	15	25	25	-	21/2	-	-	100	32GUt+92B2H2*		32GUt+92W2H2*	7219.00	32GUt+92F2H2*		32GUtt92N2H2*	
20	25	40	40	3	-	-	-	100	32HUH+92B2H2*		32HUt+92W2H2*	9321.00	32HU+t92F2H2*		32HUt+92N2H2*	
25	30	50	50	-	31/2	-	-	200	321Ut+92B2H2*		321Ut+92W2H2*	18079.00	321Ut+92F2H2*		321UTt92N2H2*	
30	40	75	75	4	-	-	-	200	32JUt192B2H2*		32JUtt92W2H2*	19263.00	32JUtt92F2H2*		32JUT+92N2H2*	

Two Separate Windings, 3-Phase (Constant Horsepower)

Max Hp				NEMA Size	Half Size	Overload		Disc. Amp Range	Enclosure							
200 Volts	$\begin{array}{\|l\|} 230 \\ \text { Volts } \end{array}$	460 Volts	575 Volts			Amp Range	FrameSize		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
									Catalog Number	List Price \$						
2	2	3	3	0	-	-	-	30	32CUt+92B1H2*		32CUtt92W1H2*		32CUtt92F1H2*		32CUtt92N1H2*	
5	5	$71 / 2$	$71 / 2$	1	-	-	-	30	32DUt+92B1H2*		32DUtt92W1H2*		32DUt+92F1H2*		32DUt+92N1H2*	
71/2	71/2	10	10	-	13/4	-	-	60	32EUt+92B1H2*		32EUtt92W1H2*		32EUt+92F1H2*		32EUtT92N1H2*	
71/2	10	20	20	2	-	-	-	60	32FUtt92B1H2*		32FUtt92W1H2*		32FUt+92F1H2*		32FUtt92N1H2*	
10	15	25	25	-	21/2	-	-	100	32GUt+92B1H2*		32GUt192W1H2*		32GUtt92F1H2*		32GUt+92N1H2*	
20	25	40	40	3	-	-	-	100	32HUt+92B1H2*		32HUtt92W1H2*		32HUt+92F1H2*		32HUt+92N1H2*	
25	30	50	50	-	$31 / 2$	-	-	200	32IUt+92B1H2*		32IUt+92W1H2*		32IUtT92F1H2*		32IUtt92N1H2*	
30	40	75	75	4	-	-	-	200	32JUt192B1H2*		32JUtt92W1H2*		32JUtt92F1H2*		32JUtt92N1H2*	

Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).
(1) Dual voltage coils not available in modified starters.
(2) First \dagger for high speed, second \dagger for low speed. Use motor nameplate information to select FLA. If motor FLA are unknown, select overload on the basis that low speed FLA will be no greater than 50% of high speed FLA.

MCP Type, Constant or Variable Torque with Solid State Overload, Class 32

One Winding Consequent Pole, 3-Phase (Constant or Variable Torque)

Max Hp				NEMA Size	Half Size	Motor Circuit Interruter ETI Amps	Overload		Enclosure							
									NEMA 1 General Purpose		NEMA 4/4X StainI Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberg Watertight, Dust-tigh Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{array}{\|l} 200 \\ \text { Volts } \end{array}$	$\begin{array}{\|l} 230 \\ \text { Volts } \end{array}$	460 Volts	575 Volts				Amp Range	Frame Size	Catalog Number	List Price \$						
1/2	3/4	11/2	2	0	-	3	0.75-3.4	A	32CUBt92B2V*		32CUBt92W2V*		32CUBt92F2V*		32CUBt92N2V*	
2	2	5	5	0	-	10	3-12	A1	32CUC+92B2V*		32CUCt92W2V*		32CUC+92F2V*		32CUC+92N2V*	
3	3	-	-	0	-	25	5.5-22	A1	32CUDt92B2V*		32CUDt92W2V*		32CUDt92F2V*		32CUDt92N2V*	
1/2	3/4	11/2	11/2	1	-	3	0.75-3.4	A	32DUBt92B2V*		32DUBt92W2V*		32DUB+92F2V*		32DUB+92N2V*	
2	2	5	5	1	-	10	3-12	A1	32DUC+92B2V*		32DUC+92W2V*		32DUCt92F2V*		32DUC+92N2V*	
3	3	10	10	1	-	25	5.5-22	A1	32DUDt92B2V*		32DUD+92W2V*		32DUD+92F2V*		32DUDT92N2V*	
71/2	71/2	-	-	1	-	30	10-40	A1	32DUET92B2V*		32DUEt92W2V*		32DUET92F2V*		32DUEt92N2V*	
-	-	15	15	-	13/4	40	10-40	A1	32EUEt92B2V*		32EUEt92W2V*		32EUET92F2V*		32EUET92N2V*	
10	15	25	25	2	-	50	13-52	B	32FUFt92B2V*		32FUFt92W2V*		32FUFt92F2V*		32FUFt92N2V*	
15	20	30	30	-	21/2	100	25-100	B	32GUGt92B2V*		32GUG+92W2V*		32GUGt92F2V*		32GUG+92N2V*	
25	30	50	50	3	-	125	25-100	B	32HUGt92B2V*		32HUG+92W2V*		32HUG+92F2V*		32HUG+92N2V*	
30	40	75	75	-	31/2	125	50-200	B	32IUH+92B2V*		32IUH+92W2V*		32IUHt92F2V*		32IUH+92N2V*	
40	50	100	100	4	-	150	50-200	B	32JUH+92B2V*		32JUH+92W2V*		32JUH+92F2V*		32JUHt92N2V*	

Two Separate Windings, 3-Phase (Constant or Variable Torque)

Max Hp				NEMA Size	$\begin{array}{\|l} \hline \text { Half } \\ \text { Size } \end{array}$	Motor Circuit Interruter ETI Amps	Overload		Enclosure							
							Amp Range	$\begin{array}{\|l} \text { Frame } \\ \text { Size } \\ \hline \end{array}$	NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant ,		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{array}{\|l\|l} \hline 200 \\ \text { Volts } \end{array}$	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \end{array}$	$\begin{array}{\|l\|} \hline 460 \\ \text { Volts } \end{array}$	575 Volts						Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
$1 / 2$	$\begin{aligned} & 3 / 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 / 1 / 2 \\ & 5 \\ & - \end{aligned}$	2	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \end{array}$	$-$	$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & 0.75-3.4 \\ & 3-12 \\ & 5.5-22 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	32CUBT92B1V* 32CuCt92B1V* 32CUDT92B1V*		32CUBt92W1V* 32CUCt92W1V* 32CUDT92W1V*		32CUBT92F1V* 32CUC+92F1V* 32CUDT92F1V*		32CUBT92N1V* 32CUCt92N1V* 32CUDT92N1V*	
1/2	3/4	1/2	1/2	1	-	3	0.75-3.4	A	32DUBT92B1V*		32DUBt92W1V*		32DUBT92F1V*		32DUB+92N1V*	
2	2	5	5	1	-	10	3-12	A1	32DUCT92B1V***********)		32DUC+92W1V*		32DuCt92F1V**		32DUC+92N1V********	
3	3	10	10	1	-	25	5.5-22	A1	32DUDT92B1V*		32DUDt92W1V*		32DUDT92F1V*		32DUD+92N1V*	
71/2	71/2	-	-	1	-	30	10-40	A1	32DUET92B1V*		32DUEt92W1V*		32DUET92F1V*		32DUET92N1V*	
-	-	15	15	-	13/4	40	10-40	A1	32EUEt92B1V*		32EUET92W1V*		32EUET92F1V*		32EUEt92N1V*	
10	15	25	25	2	-	50	13-52	B	32FUFt92B1V*		32FUFt92W1V*		32FUFT92F1V*		32FUFT92N1V*	
15	20	30	30	-	21/2	100	25-100	B	32GUGT92B1V*		32GUG+92W1V*		32GUGT92F1V*		32GUGT92N1V*	
25	30	50	50	3	-	125	25-100	B	32HUG 9 92B1V*		32HUG+92W1V*		32HUGT92F1V*		32HUG+92N1V*	
30	40	75	75	-	31/2	125	50-200	B	$321 \mathrm{HH} 92 \mathrm{B1V}$ *		321UH+92W1V*		321UH+92F1V*		321UHH92N1V*	
40	50	100	100	4	-	150	50-200	B	32JUH+92B1V*		32JUH+92W1V*		32JUH+92F1V*		32JUH+92N1V*	

Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).
(1) Dual voltage coils not available in modified starters.
(2) If motor FLA are unknown, select overload on the basis that low speed FLA will be no greater than 50% of high speed FLA.

MCP Type, Constant Horsepower with Solid State Overload, Class 32

Selection

Ordering Information

Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.
Replace the (\dagger) with the letter that corresponds to the correct FLA in the High/Low Speed FLA table.(2)
Field Modification Kits see page 9/100.
Factory Modifications see page 9/114.
Dimensions see page $9 / 149$.
Wiring Diagrams see page 9/160.
Replacement Parts see page 9/120.

Coil Table	High/	Speed	LA Table	
60Hz Voltage Letter	Size	FLA	OLR Frame Size	\dagger
24	0,1	0.25-1	A	A
120	0,1	0.75-3.4	A	B
110-120/220-240®	0,1	3-12	A1	C
200-208	0,1	5.5-22	A1	D
220-240	0-13/4	10-40	A1	E
277	2-3	13-52	B	F
220-240/440-480 ${ }^{\text {® }}$	2-3	25-100	B	G
440-480	$3^{1 / 2-4}$	50-200	B	H
575-600	* First (\dagger) for high speed, second (\dagger) for low speed. Use motor nameplate to select FLA. If motor FLA are unknown, select overload on the bases that the low speed FLA will be no greater than 50% of high speed FLA.			
For other voltages and frequencies see Factory Modifications page 9/114				

One Winding Consequent Pole, 3-Phase (Constant Horsepower)

Max Hp				NEMA Size	Half Size	Motor Circuit Interruter ETI Amps	Overload		Enclosure							
							Amp Range	Frame Size	NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{array}{\|l\|} \hline 200 \\ \text { Volts } \end{array}$	$\begin{array}{\|l\|l} 230 \\ \text { Volts } \\ \hline \end{array}$	460 Volts	575 Volts						Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
2	2	3	3	0	-	10	-	A or A1	32CUtt92B2H*		32CUt+92W2H*		32CUt+92F2H*		32CUtt92N2H*	
5	5	71/2	71/2	1	-	25	-	A or A1	32DUtt92B2H*		32DUtt92W2H*		32DUt+92F2H*		32DUtt92N2H*	
71/2	71/2	10	10	-	13/4	40	-	A1	32EUt+92B2H*		32EUtt92W2H*		32EUtt92F2H*		32EUt+92N2H*	
71/2	10	20	20	2	-	50	-	B	32FUt192B2H*		32FUtt92W2H*		32FUt+92F2H*		32FUt+92N2H*	
10	15	25	25	-	21/2	100	-	B	32GUtt92B2H*		32GUtt92W2H*		32GUt+92F2H*		32GUt+92N2H*	
20	25	40	40	3	-	100	-	B	32HUtt92B2H*		32HUtt92W2H*		32HUt+92F2H*		32HUtt92N2H*	
25	30	50	50	-	31/2	125	-	B	32IUtt92B2H*		32IUtt92W2H*		32IUtt92F2H*		32IUtt92N2H*	
30	40	75	75	4	-	150	-	B	32JUtt92B2H*		32JUtt92W2H*		32JUtt92F2H*		32JUtt92N2H*	

Two Separate Windings, 3-Phase (Constant Horsepower)

Max Hp				NEMA Size	Half Size	Motor Circuit Interruter ETI Amps	Overload		Enclosure							
									NEMA 1 General Purpose		NEMA 4/4X Stain Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberg Watertight, Dust-tigh Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tigh Weatherproof	
$\begin{array}{\|l\|} \hline 200 \\ \text { Volts } \end{array}$	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \\ \hline \end{array}$	460 Volts	575 Volts				Amp Range	Frame Size	Catalog Number	List Price \$						
2	2	3	3	0	-	10	-	A or A1	32CUtt92B1H*		32CUtt92W1H*		32CUtt92F1H*		32CUtt92N1H*	
5	5	71/2	71/2	1	-	25	-	A or A1	32DUtt92B1H*		32DUt+92W1H*		32DUt+92F1H*		32DUt+92N1H*	
71/2	71/2	10	10	-	13/4	40	-	A1	32EUt+92B1H*		32EUtt92W1H*		32EUtt92F1H*		32EUtt92N1H*	
71/2	10	20	20	2	-	50	-	B	32FUtt92B1H*		32FUtt92W1H*		32FUt+92F1H*		32FUt+92N1H*	
10	15	25	25	-	21/2	100	-	B	32GUtt92B1H*		32GUt+92W1H*		32GUt+92F1H*		32GUt+92N1H*	
20	25	40	40	3	-	100	-	B	32HUt+92B1H*		32HUt+92W1H*		32HUt+92F1H*		32HUt+92N1H*	
25	30	50	50	-	31/2	125	-	B	32IUt+92B1H*		32IUt+92W1H*		32IUtt92F1H*		32IUtt92N1H*	
30	40	75	75	4	-	150	-	B	32JUt+92B1H*		32JUtt92W1H*		32.JUtt92F1H*		32.JUtt92N1H*	

Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).
(1) Dual voltage coils not available in modified starters.
(2) First \dagger for high speed, second \dagger for low speed. Use motor nameplate information to select FLA. If motor FLA are unknown, select overload on the basis that low speed FLA will be no greater than 50% of high speed FLA.

Siemens manufactures the three commonly used electromechanical reduced voltage starters. Each one is designed for specific application requirements and consists of auto transformer, wye-delta and partwinding starters.

Auto Transformer Starter

- Maximum torque per amp
- Three coil auto transformer for balanced starting currents
- 50,65 and 80% voltage taps
- Closed circuit transition
- Adjustable starting time
- Solid-state OLR overload as standard
- CPT supplied as standard
- Wide range of factory modifications

The reduced voltage starter:

- Reduces inrush current
- Provides smoother acceleration of the load
- Reduces starting torque
- Reduces stresses on mechanical linkages

Wye-Delta Starter

- Lowest starting torque
- Closed or open circuit transition
- Adjustable starting time
- Solid-state OLR overload as standard
- CPT supplied as standard
- Wide range of factory modifications

Combination and non-combination reduced voltage starter sizes range from 0 to 6 including Siemens exclusive motormatched half-sizes. Enclosure types include 1, 3R/12, 4 painted and 4/4X stainless steel. UL listed file \#E14900 (class 36); file \#E185287 (class 37). CSA certified file \#LR 6535 (class $36 \& 37$).

Part-Winding Starter

- Simplest design - most economical
- Adjustable starting time
- Solid-state OLR overload as standard
- CPT supplied as standard
- Wide range of factory modifications

Various Methods of Electro-Mechanical Reduced Voltage Motor Starting - A General Comparison

	Autotransformer	Part-Winding	Wye-Delta
Characteristic	$\mathbf{5 0 \%} \quad$$\mathbf{6 5 \%} \quad \mathbf{8 0 \%}$ Tap Tap Tap	2 step	
Starting current drawn from line as \% of that which would be drawn upon full voltage starting	$25 \% \quad 42 \% \quad 64 \%$	65%	33%
Starting current drawn by the motor	$50 \% \quad 65 \% \quad 80 \%$	65%	58%
Starting torque developed as \% of that which would be developed on full voltage starting	$25 \% \quad 42 \% \quad 64 \%$ Increases slightly with speed	40%	33%
Smoothness of acceleration	First in order of Smoothness	Third in order of Smoothness	Second in order of Smoothness
Allowable accelerating times (typical)	15 seconds at 200HP max. or 30 seconds on 200HP based on NEMA medium duty transformers	5 seconds max. Limited by motor design	$5-60$ seconds Limited by motor design
Starting current and torque and adjustments	Adjustable within limits of various taps	Fixed	Fixed

Auto Transformer with Solid State Overload, Class 36 \& 37

Selection

	Ordering Information	Coil and Control Voltage
	Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page 9/150. Wiring Diagrams see paae 9/163. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24VAC voltage (CPT not supplied), change the 9 th character to " J".

NEMA 1 General Purpose Enclosures

Motor Voltage	$\begin{array}{\|l\|} \hline \mathrm{Max}^{2} \\ \mathrm{Hp} \\ \hline \end{array}$		Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	10	(13/4)	10-40	A1	36EUET6BD		60	37EUET6BDD		60A/250V	37EUET6BDF		50	37EUET6BDP	
	10	2	13-52	B	36FUFT6BD		60	37FUFT6BDD		60A/250V	37FUFT6BDF		50	37FUFT6BDP	
	15	(21/2)	25-100	B	36GUGT6BD		100	37GUGT6BDD		100A/250V	37GUGT6BDF		100	37GUGT6BDP	
	25	3	25-100	B	36HUGT6BD		100	37HUGT6BDD		100A/250V	37HUGT6BDF		100	37HUGT6BDP	
	30	(3112)	50-200	B	36IUHT6BD		200	37IUHT6BDD		200A/250V	37IUHT6BDF		125	37IUHT6BDP	
	40	4	50-200	B	36JUHT6BD		200	37JUHT6BDD		200A/250V	37JUHT6BDF		150	37JUHT6BDP	
	50	5	55-250	-			-						250	37LPST6BDP	
	75	5	55-250	-	36LPUT6BD		400	37LPUT6BDD		400A/250V	37LPUT6BDF		400	37LPUT6BDP	
	150	6	160-630	-	36MPXT6BD		600	37MPXT6BDD		600A/250V	37MPXT6BDF		600	37MPXT6BDP	
230	10	(13/4)	10-40	A1	36EUET2BG		60	37EUET2BGD		60A/250V	37EUET2BGF		50	37EUET2BGP	
	15	2	13-52	B	36FUFT2BG		60	37FUFT2BGD		60A/250V	37FUFT2BGF		50	37FUFT2BGP	
	20	(21/2)	25-100	B	36GUGT2BG		100	37GUGT2BGD		100A/250V	37GUGT2BGF		100	37GUGT2BGP	
	30	3	25-100	B	36HUGT2BG		100	37HUGT2BGD		100A/250V	37HUGT2BGF		100	37HUGT2BGP	
	40	(31/2)	50-200	B	36IUHT2BG		200	37IUHT2BGD		200A/250V	37IUHT2BGF		125	37IUHT2BGP	
	50	4	50-200	B	36JUHT2BG		200	37JUHT2BGD		200A/250V	37JUHT2BGF		150	37JUHT2BGP	
	75	5	55-250	-			-						250	37LPST2BGP	
	100	5	55-250	-	36LPUT2BG		400	37LPUT2BGD		400A/250V	37LPUT2BGF		400	37LPUT2BGP	
	200	6	160-630	-	36MPXT2BG		600	37MPXT2BGD		600A/250V	37MPXT2BGF		600	37MPXT2BGP	
460	15	(13/4)	10-40	A1	36EUET4BH		60	37EUET4BHD		60A/600V	37EUET4BHF		50	37EUET4BHP	
	25	2	13-52	B	36FUFT4BH		60	37FUFT4BHD		60A/600V	37FUFT4BHF		50	37FUFT4BHP	
	30	(21⁄2)	13-52	B	36GUGT4BH		100	37GUGT4BHD		100A/600V	37GUGT4BHF		100	37GUGT4BHP	
	50	3	25-100	B	36HUGT4BH		100	37HUGT4BHD		100A/600V	37HUGT4BHF		100	37HUGT4BHP	
	75	(31/2)	50-200	B	36IUHT4BH		200	37IUHT4BHD		200A/600V	37IUHT4BHF		125	37IUHT4BHP	
	100	4	50-200	B	36JUHT4BH		200	37JUHT4BHD		200A/600V	37JUHT4BHF		150	37JUHT4BHP	
	150	5	55-250	-			-						250	37LPST4BHP	
	200	5	55-250	-	36LPUT4BH		400	37LPUT4BHD		400A/600V	37LPUT4BHF		400	37LPUT4BHP	
	400	6	160-630	-	36MPXT4BH		600	37MPXT4BHD		600A/600V	37MPXT4BHF		600	37MPXT4BHP	
575	15	(13/4)	10-40	A1	36EUET5BE		60	37EUET5BED		60A/600V	37EUET5BEF		50	37EUET5BEP	
	25	2	13-52	B	36FUFT5BE		60	37FUFT5BED		60A/600V	37FUFT5BEF		50	37FUFT5BEP	
	30	(21/2)	13-52	B	36GUGT5BE		100	37GUGT5BED		100A/600V	37GUGT5BEF		100	37GUGT5BEP	
	50	3	25-100	B	36HUGT5BE		100	37HUGT5BED		100A/600V	37HUGT5BEF		100	37HUGT5BEP	
	75	(31/2)	50-200	B	36IUHT5BE		200	37IUHT5BED		200A/600V	37IUHT5BEF		125	37IUHT5BEP	
	100	4	50-200	B	36JUHT5BE		200	37JUHT5BED		200A/600V	37JUHT5BEF		150	37JUHT5BEP	
	150	5	55-250	-			-						250	37LPST5BEP	
	200	5	55-250	-	36LPUT5BE		400	37LPUT5BED		400A/600V	37LPUT5BEF		400	37LPUT5BEP	
	400	6	160-630	-	36MPXT5BE		600	37MPXT5BED		600A/600V	37MPXT5BEF		600	37MPXT5BEP	

Selection

	Ordering Information	Coil and Control Voltage
	Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page 9/150. Wiring Diagrams see page 9/163. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24 VAC voltage (CPT not supplied), change the 9th character to " J ".

NEMA 4 Painted Enclosures

Motor Voltage	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Max } \\ \mathrm{Hp} \end{array} \\ \hline \end{array}$	NEMA Size(1/2 Size)	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	10	(13/4)	10-40	A1	36EUET6ED		60	37EUET6EDD		60A/250V	37EUET6EDF		50	37EUET6EDP	
	10	2	13-52	B	36FUFT6ED		60	37FUFT6EDD		60A/250V	37FUFT6EDF		50	37FUFT6EDP	
	15	(21/2)	25-100	B	36GUGT6ED		100	37GUGT6EDD		100A/250V	37GUGT6EDF		100	37GUGT6EDP	
	25	3	25-100	B	36HUGT6ED		100	37HUGT6EDD		100A/250V	37HUGT6EDF		100	37HUGT6EDP	
	30	(3112)	50-200	B	36IUHT6ED		200	37IUHT6EDD		200A/250V	37IUHT6EDF		125	37IUHT6EDP	
	40	4	50-200	B	36JUHT6ED		200	37JUHT6EDD		200A/250V	37JUHT6EDF		150	37JUHT6EDP	
	50	5	55-250	-			-						250	37LPST6EDP	
	75	5	55-250	-	36LPUT6ED		400	37LPUT6EDD		400A/250V	37LPUT6EDF		400	37LPUT6EDP	
	150	6	160-630	-	36MPXT6ED		600	37MPXT6EDD		600A/250V	37MPXT6EDF		600	37MPXT6EDP	
230	10	(13/4)	10-40	A1	36EUET2EG		60	37EUET2EGD		60A/250V	37EUET2EGF		50	37EUET2EGP	
	15	2	13-52	B	36FUFT2EG		60	37FUFT2EGD		60A/250V	37FUFT2EGF		50	37FUFT2EGP	
	20	(21⁄2)	25-100	B	36GUGT2EG		100	37GUGT2EGD		100A/250V	37GUGT2EGF		100	37GUGT2EGP	
	30	3	25-100	B	36HUGT2EG		100	37HUGT2EGD		100A/250V	37HUGT2EGF		100	37HUGT2EGP	
	40	(31/2)	50-200	B	36IUHT2EG		200	37IUHT2EGD		200A/250V	37IUHT2EGF		125	37IUHT2EGP	
	50	4	50-200	B	36JUHT2EG		200	37JUHT2EGD		200A/250V	37JUHT2EGF		150	37JUHT2EGP	
	75	5	55-250	-			-						250	37LPST2EGP	
	100	5	55-250	-	36LPUT2EG		400	37LPUT2EGD		400A/250V	37LPUT2EGF		400	37LPUT2EGP	
	200	6	160-630	-	36MPXT2EG		600	37MPXT2EGD		600A/250V	37MPXT2EGF		600	37MPXT2EGP	
460	15	(13/4)	10-40	A1	36EUET4EH		60	37EUET4EHD		60A/600V	37EUET4EHF		50	37EUET4EHP	
	25	2	13-52	B	36FUFT4EH		60	37FUFT4EHD		60A/600V	37FUFT4EHF		50	37FUFT4EHP	
	30	(21⁄2)	13-52	B	36GUGT4EH		100	37GUGT4EHD		100A/600V	37GUGT4EHF		100	37GUGT4EHP	
	50	3	25-100	B	36HUGT4EH		100	37HUGT4EHD		100A/600V	37HUGT4EHF		100	37HUGT4EHP	
	75	(31/2)	50-200	B	36IUHT4EH		200	37IUHT4EHD		200A/600V	37IUHT4EHF		125	37IUHT4EHP	
	100	4	50-200	B	36JUHT4EH		200	37JUHT4EHD		200A/600V	37JUHT4EHF		150	37JUHT4EHP	
	150	5	55-250	-			-						250	37LPST4EHP	
	200	5	55-250	-	36LPUT4EH		400	37LPUT4EHD		400A/600V	37LPUT4EHF		400	37LPUT4EHP	
	400	6	160-630	-	36MPXT4EH		600	37MPXT4EHD		600A/600V	37MPXT4EHF		600	37MPXT4EHP	
575	15	(13/4)	10-40	A1	36EUET5EE		60	37EUET5EED		60A/600V	37EUET5EEF		50	37EUET5EEP	
	25	2	13-52	B	36FUFT5EE		60	37FUFT5EED		60A/600V	37FUFT5EEF		50	37FUFT5EEP	
	30	(21⁄2)	13-52	B	36GUGT5EE		100	37GUGT5EED		100A/600V	37GUGT5EEF		100	37GUGT5EEP	
	50	3	25-100	B	36HUGT5EE		100	37HUGT5EED		100A/600V	37HUGT5EEF		100	37HUGT5EEP	
	75	(31/2)	50-200	B	36IUHT5EE		200	37IUHT5EED		200A/600V	37IUHT5EEF		125	37IUHT5EEP	
	100	4	50-200	B	36JUHT5EE		200	37JUHT5EED		200A/600V	37JUHT5EEF		150	37JUHT5EEP	
	150	5	55-250	-			-						250	37LPST5EEP	
	200	5	55-250	-	36LPUT5EE		400	37LPUT5EED		400A/600V	37LPUT5EEF		400	37LPUT5EEP	
	400		160-630	-	36MPXT5EE		600	37MPXT5EED		600A/600V	37MPXT5EEF		600	37MPXT5EEP	

Auto Transformer with Solid State Overload, Class 36 \& 37

Selection

	Ordering Information	Coil and Control Voltage
	Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page 9/150. Wiring Diagrams see page 9/163. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24 VAC voltage (CPT not supplied), change the 9th character to " J ".

NEMA 4/4X Stainless Steel Enclosures

Motor Voltage	$\begin{array}{\|l\|} \hline \operatorname{Max} \\ \mathrm{Hp} \\ \hline \end{array}$	NEMA Size (1/2 Size)	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	$\begin{array}{\|l\|l\|} \hline \text { Fuse Clip } \\ \text { Amp/Volt } \\ \text { Rating } \end{array}$	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	10	(134)	10-40	A1	36EUET6WD		60	37EUET6WDD		60A/250V	37EUET6WDF		50	37EUET6WDP	
	10	2	13-52	B	36FUFT6WD		60	37FUFT6WDD		60A/250V	37FUFT6WDF		50	37FUFT6WDP	
	15	(21/2)	25-100	B	36GUGT6WD		100	37GUGT6WDD		100A/250V	37GUGT6WDF		100	37GUGT6WDP	
	25	3	25-100	B	36HUGT6WD		100	37HUGT6WDD		100A/250V	37HUGT6WDF		100	37HUGT6WDP	
	30	(31/2)	50-200	B	36IUHT6WD		200	371UHT6WDD		200A/250V	371UHT6WDF		125	37IUHT6WDP	
	40	4	50-200	B	36JUHT6WD		200	37JUHT6WDD		200A/250V	37JUHT6WDF		150	37JUHT6WDP	
230	10	(134)	10-40	A1	36EUET2WG		60	37EUET2WGD		60A/250V	37EUET2WGF		50	37EUET2WGP	
	15	2	13-52	B	36FUFT2WG		60	37FUFT2WGD		60A/250V	37FUFT2WGF		50	37FUFT2WGP	
	20	(21/2)	25-100	B	36GUGT2WG		100	37GUGT2WGD		100A/250V	37GUGT2WGF		100	37GUGT2WGP	
	30	3	25-100	B	36HUGT2WG		100	37HUGT2WGD		100A/250V	37HUGT2WGF		100	37HUGT2WGP	
	40	(31/2)	50-200	B	36IUHT2WG		200	37IUHT2WGD		200A/250V	37UHT2WGF		125	37IUHT2WGP	
	50	4	50-200	B	36JUHT2WG		200	37JUHT2WGD		200A/250V	37JUHT2WGF		150	37JUHT2WGP	
460	15	(134)	10-40	A1	36EUET4WH		60	37EUET4WHD		60A/600V	37EUET4WHF		50	37EUET4WHP	
	25	2	13-52	B	36FUFT4WH		60	37FUFT4WHD		60A/600V	37FUFT4WHF		50	37FUFT4WHP	
	30	(21/2)	13-52	B	36GUGT4WH		100	37GUGT4WHD		100A/600V	37GUGT4WHF		100	37GUGT4WHP	
	50	了	25-100	B	36HUGT4WH		100	37HUGT4WHD		100A/600V	37HUGT4WHF		100	37HUGT4WHP	
	75	(31/2)	50-200	B	36IUHT4WH		200	37IUHT4WHD		200A/600V	371UHT4WHF		125	371UHT4WHP	
	100	4	50-200	B	36JUHT4WH		200	37JUHT4WHD		200A/600V	37JUHT4WHF		150	37JUHT4WHP	
575	15	(134)	10-40	A1	36EUET5WE		60	37EUET5WED		60A/600V	37EUET5WEF		50	37EUET5WEP	
	25	2	13-52	B	36FUFT5WE		60	37FUFT5WED		60A/600V	37FUFT5WEF		50	37FUFT5WEP	
	30	(21/2)	13-52	B	36GUGT5WE		100	37GUGT5WED		100A/600V	37GUGT5WEF		100	37GUGT5WEP	
	50	3	25-100	B	36HUGT5WE		100	37HUGT5WED		100A/600V	37HUGT5WEF		100	37HUGT5WEP	
	75	(31/2)	50-200	B	36IUHT5WE		200	371UHT5WED		200A/600V	37luHT5WEF		125	37IUHT5WEP	
	100	4	50-200	B	36JUHT5WE		200	37JUHT5WED		200A/600V	37JUHT5WEF		150	37JUHT5WEP	

Auto Transformer with Solid State Overload, Class 36 \& 37

Selection

	Ordering Information	Coil and Control Voltage
	Field Modification Kits see paqe 9/100. Factory Modifications see page 9/114. Dimensions see page 9/150. Wiring Diagrams see page 9/163. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24 VAC voltage (CPT not supplied), change the 9th character to "J".

NEMA 12, NEMA 3/3R

GENERAL PURPOSE 9

Motor Voltage	$\begin{array}{\|l\|l\|} \hline \mathrm{Max}^{\mathrm{Hax}} \\ \hline \end{array}$	NEMA Size (1/2 Size)	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Break		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { List } \\ \text { Price \$ } \end{array} \\ \hline \end{array}$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	10	(13/4)	10-40	A1	36EUET6ND		60	37EUET6NDD		60A/250V	37EUET6NDF		50	37EUET6NDP	
	10	2	13-52	B	36FUFT6ND		60	37FUFT6NDD		60A/250V	37FUFT6NDF		50	37FUFT6NDP	
	15	(21/2)	25-100	B	36GUGT6ND		100	37GUGT6NDD		100A/250V	37GUGT6NDF		100	37GUGTGNDP	
	25	3	25-100	B	36HUGT6ND		100	37HUGT6NDD		100A/250V	37HUGT6NDF		100	37HUGT6NDP	
	30	(31/2)	50-200	B	36IUHT6ND		200	37luHt6NDD		200A/250V	371uHt6NDF		125	371UHT6NDP	
	40	4	50-200	B	36JUHT6ND		200	37JUHT6NDD		200A/250V	37JUHT6NDF		150	37JUHT6NDP	
	50	5	55-250	-			-						250	37LPST6NDP	
	75	5	55-250	-	36LPUT6ND		400	37LPUT6NDD		400A/250V	37LPUT6NDF		400	37LPUT6NDP	
	150	6	160-630	-	36MPXT6ND		600	37MPXT6NDD		600A/250V	37MPXT6NDF		600	37MPXT6NDP	
230	10	(134)	10-40	A1	36EUET2NG		60	37EUET2NGD		60A/250V	37EUET2NGF		50	37EUET2NGP	
	15	2	13-52	B	36FUFT2NG		60	37FUFT2NGD		60A/250V	37FUFT2NGF		50	37FUFT2NGP	
	20	(21/2)	25-100	B	36GUGT2NG		100	37GUGT2NGD		100A/250V	37GUGT2NGF		100	37GUGT2NGP	
	30	3	25-100	B	36HUGT2NG		100	37HUGT2NGD		100A/250V	37HUGT2NGF		100	37HUGT2NGP	
	40	(31/2)	50-200	B	36IUHT2NG		200	37IUHT2NGD		200A/250V	371UHT2NGF		125	37IUHT2NGP	
	50	4	50-200	B	36JUHT2NG		200	37JUHT2NGD		200A/250V	37JUHT2NGF		150	37JUHT2NGP	
	75	5	55-250	-			-						250	37LPST2NGP	
	100	5	55-250	-	36LPUT2NG		400	37LPUT2NGD		400A/250V	37LPUT2NGF		400	37LPUT2NGP	
	200	6	160-630	-	36MPXT2NG		600	37MPXT2NGD		600A/250V	37MPXT2NGF		600	37MPXT2NGP	
460	15	(13/4)	10-40	A1	36EUET4NH		60	37EUET4NHD		60A/600V	37EUET4NHF		50	37EUET4NHP	
	25	2	13-52	B	36FUFT4NH		60	37FUFT4NHD		60A/600V	37FUFT4NHF		50	37FUFT4NHP	
	30	(21/2)	13-52	B	36GUGT4NH		100	37GUGT4NHD		100A/600V	37GUGT4NHF		100	37GUGT4NHP	
	50	3	25-100	B	36HUGT4NH		100	37HUGT4NHD		100A/600V	37HUGT4NHF		100	37HUGT4NHP	
	75	(31/2)	50-200	B	361UHT4NH		200	37IUHT4NHD		200A/600V	37IUHT4NHF		125	37IUHT4NHP	
	100	4	50-200	B	36JUHT4NH		200	37JUHT4NHD		200A/600V	37JUHT4NHF		150	37JUHT4NHP	
	150	5	55-250	-			-						250	37LPST4NHP	
	200	5	55-250	-	36LPUT4NH		400	37LPUT4NHD		400A/600V	37LPUT4NHF		400	37LPUT4NHP	
	400	6	160-630	-	36MPXT4NH		600	37MPXT4NHD		600A/600V	37MPXT4NHF		600	37MPXT4NHP	
575	15	(134)	10-40	A1	36EUET5NE		60	37EUET5NED		60A/600V	37EUET5NEF		50	37EUET5NEP	
	25	2	13-52	B	36FUFT5NE		60	37FUFT5NED		60A/600V	37FUFT5NEF		50	37FUFT5NEP	
	30	(21/2)	13-52	B	36GUGT5NE		100	37GUGT5NED		100A/600V	37GUGT5NEF		100	37GUGT5NEP	
	50	3	25-100	B	36HUGT5NE		100	37HUGT5NED		100A/600V	37HUGT5NEF		100	37HUGT5NEP	
	75	(31/2)	50-200	B	36IUHT5NE		200	37IUHT5NED		200A/600V	371uHT5NEF		125	37IUHT5NEP	
	100	4	50-200	B	36JUHT5NE		200	37JUHT5NED		200A/600V	37JUHT5NEF		150	37JUHT5NEP	
	150	5	55-250	-			-						250	37LPSTSNEP	
	200	5	55-250	-	36LPuT5NE		400	37LPUT5NED		400A/600V	37LPut5NeF		400	37LPUTSNEP	
	400	6	160-630	-	36MPXT5NE		600	37MPXTENED		600A/600V	37MPXT5NEF		600	37MPXT5NEP	

Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).

2 Step Part Winding with Solid State Overload, Class 36 \& 37

Selection

NEMA 1 General Purpose Enclosures

Motor Voltage	$\begin{array}{\|l\|l\|} \hline \text { Max } \\ \mathrm{Hp} \\ \hline \end{array}$	NEMA Size (1/2 Size)	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	$\begin{array}{\|l} \text { Frame } \\ \text { Size } \\ \hline \end{array}$	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	71/2	0	5.5-22	A1	36CUDP6BD		60	37CUDP6BDD		60A/250V	37CUDP6BDF		30	37CUDP6BDP	
	10	1	5.5-22	A1	36DUDP6BD		60	37DUDP6BDD		60A/250V	37DUDP6BDF		50	37DUDP6BDP	
	15	(13/4)	10-40	A1	36EUEP6BD		100	37EUEP6BDD		100A/250V	37EUEP6BDF		100	37EUEP6BDP	
	20	2	13-52	B	36FUFP6BD		100	37FUFP6BDD		100A/250V	37FUFP6BDF		100	37FUFP6BDP	
	30	($21 / 2)$	25-100	B	36GUGP6BD		200	37GUGP6BDD		200A/250V	37GUGP6BDF		125	37GUGP6BDP	
	40	3	25-100	B	36HUGP6BD		200	37HUGP6BDD		200A/250V	37HUGP6BDF		150	37HUGP6BDP	
	50	(31/2)	50-200	B	36IUHP6BD		200	37IUHP6BDD		200A/250V	37IUHP6BDF		250	37IUHP6BDP	
	75	4	50-200	B	36JUHP6BD		400	37JUHP6BDD		400A/250V	37JUHP6BDF		400	37JUHP6BDP	
	100	5	55-250	-			-						600	37LPSP6BDP	
	150	5	55-250	-	36LPUP6BD		600	37LPUP6BDD		600A/250V	37LPUP6BDF		600	37LPUP6BDP	
230	71/2	0	5.5-22	A1	36CUDP2BG		60	37CUDP2BGD		60A/250V	37CUDP2BGF		30	37CUDP2BGP	
	10	1	5.5-22	A1	36DUDP2BG		60	37DUDP2BGD		60A/250V	37DUDP2BGF		50	37DUDP2BGP	
	20	(11/2)	10-40	A1	36EUEP2BG		100	37EUEP2BGD		100A/250V	37EUEP2BGF		100	37EUEP2BGP	
	25	2	13-52	B	36FUFP2BG		100	37FUFP2BGD		100A/250V	37FUFP2BGF		100	37FUFP2BGP	
	30	($21 / 2)$	25-100	B	36GUGP2BG		200	37GUGP2BGD		200A/250V	37GUGP2BGF		100	37GUGP2BGP	
	50	3	25-100	B	36HUGP2BG		200	37HUGP2BGD		200A/250V	37HUGP2BGF		150	37HUGP2BGP	
	60	(31/2)	50-200	B	36IUHP2BG		200	37IUHP2BGD		200A/250V	37IUHP2BGF		250	37IUHP2BGP	
	75	4	50-200	B	36JUHP2BG		400	37JUHP2BGD		400A/250V	37JUHP2BGF		250	37JUHP2BGP	
	125	5	55-250	-			-						400	37LPSP2BGP	
	150	5	55-250	-	36LPUP2BG		600	37LPUP2BGD		600A/250V	37LPUP2BGF		600	37LPUP2BGP	
	300	6	160-630	-	36MPXP2BG		1200	37MPXP2BGD		1200A/250V	37MPXP2BGF		1200	37MPXP2BGP	
460	10	0	5.5-22	A1	36CUDP4BH		30	37CUDP4BHD		30A/600V	37CUDP4BHF		30	37CUDP4BHP	
	15	1	5.5-22	A1	36DUDP4BH		60	37DUDP4BHD		60A/600V	37DUDP4BHF		30	37DUDP4BHP	
	30	(13/4)	10-40	A1	36EUEP4BH		60	37EUEP4BHD		60A/600V	37EUEP4BHF		50	37EUEP4BHP	
	40	2	13-52	B	36FUFP4BH		100	37FUFP4BHD		100A/600V	37FUFP4BHF		100	37FUFP4BHP	
	60	($21 / 2)$	25-100	B	36GUGP4BH		200	37GUGP4BHD		200A/600V	37GUGP4BHF		100	37GUGP4BHP	
	75	3	25-100	B	36HUGP4BH		200	37HUGP4BHD		200A/600V	37HUGP4BHF		125	37HUGP4BHP	
	100	(3112)	50-200	B	36IUHP4BH		200	37IUHP4BHD		200A/600V	37IUHP4BHF		150	37IUHP4BHP	
	150	4	50-200	B	36JUHP4BH		400	37JUHP4BHD		400A/600V	37JUHP4BHF		250	37JUHP4BHP	
	250	5	55-250	-			-						400	37LPSP4BHP	
	350	5	55-250	-	36LPUP4BH		600	37LPUP4BHD		600A/600V	37LPUP4BHF		600	37LPUP4BHP	
	600	6	160-630	-	36MPXP4BH		1200	37MPXP4BHD		1200A/600V	37MPXP4BHF		1200	37MPXP4BHP	
575	10	0	5.5-22	A1	36CUDP5BE		30	37CUDP5BED		30A/600V	37CUDP5BEF		30	37CUDP5BEP	
	15	1	5.5-22	A1	36DUDP5BE		60	37DUDP5BED		60A/600V	37DUDP5BEF		30	37DUDP5BEP	
	30	(13/4)	10-40	A1	36EUEP5BE		60	37EUEP5BED		60A/600V	37EUEP5BEF		50	37EUEP5BEP	
	40	2	13-52	B	36FUFP5BE		60	37FUFP5BED		60A/600V	37FUFP5BEF		50	37FUFP5BEP	
	60	(21/2)	25-100	B	36GUGP5BE		100	37GUGP5BED		100A/600V	37GUGP5BEF		100	37GUGP5BEP	
	75	3	25-100	B	36HUGP5BE		200	37HUGP5BED		200A/600V	37HUGP5BEF		125	37HUGP5BEP	
	100	(31/2)	50-200	B	36IUHP5BE		400	37IUHP5BED		400A/600V	37IUHP5BEF		150	37IUHP5BEP	
	150	4	50-200	B	36JUHP5BE		400	37JUHP5BED		400A/600V	37JUHP5BEF		250	37JUHP5BEP	
	250	5	55-250	-			-	-		400A/600V	37LPSP5BEF		-		
	350	5	55-250	-	36LPUP5BE		600	37LPUP5BED		600A/600V	37LPUP5BEF		400	37LPUP5BEP	
	600	6	160-630	-	36MPXP5BE		1200	37MPXP5BED		1200A/600V	37MPXP5BEF		1200	37MPXP5BEP	

Reduced Voltage Heavy Duty Starters

2 Step Part Winding with Solid State Overload, Class 36 \& 37

Selection

	Ordering Information	Coil and Control Voltage
	Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page page $9 / 150$. Wiring Diagrams see page 9/162. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24VAC voltage (CPT not supplied), change the 9th character to "J".

NEMA 4 Painted Enclosures

Motor Voltage	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Max } \\ \mathrm{Hp} \end{array} \\ \hline \end{array}$		Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	$71 / 2$ 10 15 20 30 40 50 75 100 150	$\begin{aligned} & \hline 0 \\ & 1 \\ & (13 / 4) \\ & 2 \\ & (21 / 2) \\ & 3 \\ & (31 / 2) \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 5.5-22 \\ 5.5-22 \\ 10-40 \\ 13-52 \\ 25-100 \\ 25-100 \\ 50-200 \\ 50-200 \\ 55-250 \\ 55-250 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B } \\ & \hline- \\ & \hline \end{aligned}$	36CUDP6ED 36DUDP6ED 36EUEP6ED 36FUFP6ED 36GUGP6ED 36HUGP6ED 36IUHP6ED 36JUHP6ED - 36LPUP6ED		60 60 100 100 200 200 200 400 - 600	37CUDP6EDD 37DUDP6EDD 37EUEP6EDD 37FUFP6EDD 37GUGP6EDD 37HUGP6EDD 37IUHP6EDD 37JUHP6EDD 37LPUP6EDD		$60 \mathrm{~A} / 250 \mathrm{~V}$ $60 \mathrm{~A} / 250 \mathrm{~V}$ $100 \mathrm{~A} / 250 \mathrm{~V}$ $100 \mathrm{~A} / 250 \mathrm{~V}$ $200 \mathrm{~A} / 250 \mathrm{~V}$ $200 \mathrm{~A} / 250 \mathrm{~V}$ $200 \mathrm{~A} / 250 \mathrm{~V}$ $400 \mathrm{~A} / 250 \mathrm{~V}$ - $600 \mathrm{~A} / 250 \mathrm{~V}$	37CUDP6EDF 37DUDP6EDF 37EUEP6EDF 37FUFP6EDF 37GUGP6EDF 37HUGP6EDF 37IUHP6EDF 37JUHP6EDF 37LPUP6EDF		30 50 100 100 125 150 250 400 600 600	37CUDP6EDP 37DUDP6EDP 37EUEP6EDP 37FUFP6EDP 37GUGP6EDP 37HUGP6EDP 37IUHP6EDP 37JUHP6EDP 37LPSP6EDP 37LPUP6EDP	
230	$\begin{aligned} & \hline 71 / 2 \\ & 10 \\ & 20 \\ & 25 \\ & 30 \\ & 50 \\ & 60 \\ & 75 \\ & 125 \\ & 150 \\ & 300 \end{aligned}$	0 1 $(11 / 2)$ 2 $(21 / 2)$ 3 $(31 / 2)$ 4 5 5 5 6	$\begin{array}{\|l} \hline 5.5-22 \\ 5.5-22 \\ 10-40 \\ 13-52 \\ 25-100 \\ 25-100 \\ 50-200 \\ 50-200 \\ 55-250 \\ 55-250 \\ 160-630 \end{array}$	A1 A1 A1 B B B B B - -	36CUDP2EG 36DUDP2EG 36EUEP2EG 36FUFP2EG $36 G U G P 2 E G$ $36 H U G P 2 E G$ $36 I U H P 2 E G$ $36 J U H P 2 E G$ - $36 L P U P 2 E G$ $36 M P X P 2 E G$		60 60 100 100 200 200 200 400 - 600 1200	37CUDP2EGD 37DUDP2EGD 37EUEP2EGD 37FUFP2EGD 37GUGP2EGD 37HUGP2EGD 37IUHP2EGD 37JUHP2EGD 37LPUP2EGD 37MPXP2EGD		$60 \mathrm{~A} / 250 \mathrm{~V}$ $60 \mathrm{~A} / 250 \mathrm{~V}$ $100 \mathrm{~A} / 250 \mathrm{~V}$ $100 \mathrm{~A} / 250 \mathrm{~V}$ $200 \mathrm{~A} / 250 \mathrm{~V}$ $200 \mathrm{~A} / 250 \mathrm{~V}$ $200 \mathrm{~A} / 250 \mathrm{~V}$ $400 \mathrm{~A} / 250 \mathrm{~V}$ - $600 \mathrm{~A} / 250 \mathrm{~V}$ $1200 \mathrm{~A} / 250 \mathrm{~V}$	37CUDP2EGF 37DUDP2EGF 37EUEP2EGF 37FUFP2EGF 37GUGP2EGF 37HUGP2EGF 37IUHP2EGF 37JUHP2EGF - 37LPUP2EGF 37MPXP2EGF		30 50 100 100 100 150 250 250 400 600 1200	37CUDP2EGP 37DUDP2EGP 37EUEP2EGP 37FUFP2EGP 37GUGP2EGP 37HUGP2EGP 37IUHP2EGP 37JUHP2EGP 37LPSP2EGP 37LPUP2EGP 37MPXP2EGP	
460	10 15 30 40 60 75 100 150 250 350 600	0 1 $(13 / 4)$ 2 $\left(2^{1 / 2}\right)$ 3 $(31 / 2)$ 4 5 5 6	$\begin{array}{\|l} \hline 5.5-22 \\ 5.5-22 \\ 10-40 \\ 13-52 \\ 25-100 \\ 25-100 \\ 50-200 \\ 50-200 \\ 55-250 \\ 55-250 \\ 160-630 \\ \hline \end{array}$	A1 A1 A1 B B B B B - -	36CUDP4EH 36DUDP4EH 36EUEP4EH 36FUFP4EH $36 G U G P 4 E H$ $36 H U G P 4 E H$ $36 I U H P 4 E H$ 36JUHP4EH - 36LPUP4EH 36MPXP4EH		30 60 60 100 200 200 200 400 - 600 1200	37CUDP4EHD 37DUDP4EHD 37EUEP4EHD 37FUFP4EHD 37GUGP4EHD 37HUGP4EHD 37IUHP4EHD 37JUHP4EHD 37LPUP4EHD 37MPXP4EHD		$30 \mathrm{~A} / 600 \mathrm{~V}$ $60 \mathrm{~A} / 600 \mathrm{~V}$ $60 \mathrm{~A} / 600 \mathrm{~V}$ $100 \mathrm{~A} / 600 \mathrm{~V}$ $200 \mathrm{~A} / 600 \mathrm{~V}$ $200 \mathrm{~A} / 600 \mathrm{~V}$ $200 \mathrm{~A} / 600 \mathrm{~V}$ $400 \mathrm{~A} / 600 \mathrm{~V}$ - $600 \mathrm{~A} / 600 \mathrm{~V}$ $1200 \mathrm{~A} / 600 \mathrm{~V}$	37CUDP4EHF 37DUDP4EHF 37EUEP4EHF 37FUFP4EHF 37GUGP4EHF 37HUGP4EHF 37IUHP4EHF 37JUHP4EHF 37LPUP4EHF 37MPXP4EHF		30 30 50 100 100 125 150 250 400 600 1200	37CUDP4EHP 37DUDP4EHP 37EUEP4EHP 37FUFP4EHP 37GUGP4EHP 37HUGP4EHP 37IUHP4EHP 37JUHP4EHP 37LPSP4EHP 37LPUP4EHP 37MPXP4EHP	
575	10 15 30 40 60 75 100 150 250 350 600	$\begin{aligned} & \hline 0 \\ & 1 \\ & (13 / 4) \\ & 2 \\ & (21 / 2) \\ & 3 \\ & (31 / 2) \\ & 4 \\ & 5 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 5.5-22 \\ 5.5-22 \\ 10-40 \\ 13-52 \\ 25-100 \\ 25-100 \\ 50-200 \\ 50-200 \\ 55-250 \\ 55-250 \\ 160-630 \end{array}$	A1 A1 A1 B B B B B - -	36CUDP5EE 36DUDP5EE 36EUEP5EE $36 F U F P 5 E E$ $36 G U G P 5 E E$ $36 H U G P 5 E E$ $36 I U H P 5 E E$ $36 J U H P 5 E E$ - $36 L P U P 5 E E$ $36 M P X P 5 E E$		30 60 60 60 100 200 400 400 - 600 1200	37CUDP5EED 37DUDP5EED 37EUEP5EED 37FUFP5EED 37GUGP5EED 37HUGP5EED 37IUHP5EED 37JUHP5EED - 37LPUP5EED 37MPXP5EED		30A/600V 60A/600V 60A/600V 60A/600V 100A/600V 200A/600V 400A/600V 400A/600V 400A/600V 600A/600V 1200A/600V	37CUDP5EEF 37DUDP5EEF 37EUEP5EEF 37FUFP5EEF 37GUGP5EEF 37HUGP5EEF 37IUHP5EEF 37JUHP5EEF 37LPSP5EEF 37LPUP5EEF 37MPXP5EEF		$\begin{array}{\|l} \hline 30 \\ 30 \\ 50 \\ 50 \\ 100 \\ 125 \\ 150 \\ 250 \\ \hline- \\ 400 \\ 1200 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { 37CUDP5EEP } \\ & \text { 37DUDP5EEP } \\ & \text { 37EUEP5EEP } \\ & \text { 37FUFP5EEP } \\ & \text { 37GUGP5EEP } \\ & \text { 37HUGP5EEP } \\ & \text { 37IUHP5EEP } \\ & \text { 37JUHP5EEP } \\ & - \\ & \text { 37LPUP5EEP } \\ & \text { 37MPXP5EEP } \end{aligned}$	

2 Step Part Winding with Solid State Overload, Class 36 \& 37

Selection

	Ordering Information	Coil and Control Voltage
	Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page page $9 / 150$. Wiring Diagrams see page 9/162. Replacement Parts see paqe 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24VAC voltage (CPT not supplied), change the 9th character to " J ".

NEMA 4/4X Stainless Steel Enclosures

Motor Voltage	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Max } \\ \mathrm{Hp} \end{array} \\ \hline \end{array}$	NEMA Size (1/2 Size)	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect		Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	$\begin{aligned} & \text { Disc. } \\ & \text { Amp } \\ & \text { Rating } \end{aligned}$	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	Circuit Breaker Amps	Catalog Number	List Price \$
200	71/2	0	5.5-22	A1	36CUDP6WD		60	37CUDP6WDD		60A/250V	37CUDP6WDF	30	37CUDP6WDP	
	10	1	5.5-22	A1	36DUDP6WD		60	37DUDP6WDD		60A/250V	37DUDP6WDF	50	37DUDP6WDP	
	15	(134)	10-40	A1	36EUEPGWD		100	37EUEP6WDD		100A/250V	37EUEP6WDF	100	37EUEP6WDP	
	20	2	13-52	B	36FUFP6WD		100	37FUFP6WDD		100A/250V	37FUFP6WDF	100	37FUFP6WDP	
	30	(21/2)	25-100	B	36GUGP6WD		200	37GUGP6WDD		200A/250V	37GUGP6WDF	125	37GUGP6WDP	
	40	3	25-100	B	36HUGP6WD		200	37HUGP6WDD		200A/250V	37HUGP6WDF	150	37HUGP6WDP	
	50	(31/2)	50-200	B	361UHP6WD		200	371UHP6WDD		200A/250V	371UHP6WDF	250	371UHP6WDP	
	75	4	50-200	B	36JUHP6WD		400	37JUHPGWDD		400A/250V	37JUHP6WDF	400	37JUHP6WDP	
230	71/2	0	5.5-22	A1	36CUDP2WG		60	37CUDP2WGD		60A/250V	37CUDP2WGF	30	37CUDP2WGP	
	10	1	5.5-22	A1	36DUDP2WG		60	37DUDP2WGD		60A/250V	37DUDP2WGF	50	37DUDP2WGP	
	20	(11/2)	10-40	A1	36EUEP2WG		100	37EUEP2WGD		100A/250V	37EUEP2WGF	100	37EUEP2WGP	
	25	2	13-52	B	36FUFP2WG		100	37FUFP2WGD		100A/250V	37FUFP2WGF	100	37FUFP2WGP	
	30	(21/2)	25-100	B	36GUGP2WG		200	37GUGP2WGD		200A/250V	37GUGP2WGF	100	37GUGP2WGP	
	50	3	25-100	B	36HUGP2WG		200	37HUGP2WGD		200A/250V	37HUGP2WGF	150	37HUGP2WGP	
	60	(31/2)	50-200	B	36IUHP2WG		200	37IUHP2WGD		200A/250V	371UHP2WGF	250	37IUHP2WGP	
	75	4	50-200	B	36JUHP2WG		400	37JUHP2WGD		400A/250V	37JUHP2WGF	250	37JUHP2WGP	
460	10	0	5.5-22	A1	36CUDP4WH		30	37CUDP4WHD		30A/600V	37CUDP4WHF	30	37CUDP4WHP	
	15	1	5.5-22	A1	36DUDP4WH		60	37DUDP4WHD		60A/600V	37DUDP4WHF	30	37DUDP4WHP	
	30	(13/4)	10-40	A1	36EUEP4WH		60	37EUEP4WHD		60A/600V	37EUEP4WHF	50	37EUEP4WHP	
	40	2	13-52	B	36FUFP4WH		100	37FUFP4WHD		100A/600V	37FUFP4WHF	100	37FUFP4WHP	
	60	(21/2)	25-100	B	36GUGP4WH		200	37GUGP4WHD		200A/600V	37GUGP4WHF	100	37GUGP4WHP	
	75	3	25-100	B	36HUGP4WH		200	37HUGP4WHD		200A/600V	37HUGP4WHF	125	37HUGP4WHP	
	100	(31/2)	50-200	B	36IUHP4WH		200	371UHP4WHD		200A/600V	371UHP4WHF	150	371UHP4WHP	
	150	4	50-200	B	36JUHP4WH		400	37JUHP4WHD		400A/600V	37JUHP4WHF	250	37JUHP4WHP	
575	10	0	5.5-22	A1	36CUDP5WE		30	37CUDP5WED		30A/600V	37CUDP5WEF	30	37CUDP5WEP	
	15	1	5.5-22	A1	36DUDP5WE		60	37DUDP5WED		60A/600V	37DUDP5WEF	30	37DUDP5WEP	
	30	(134)	10-40	A1	36EUEP5WE		60	37EUEP5WED		60A/600V	37EUEP5WEF	50	37EUEP5WEP	
	40	2	13-52	B	36FUFP5WE		60	37FUFP5WED		60A/600V	37FUFP5WEF	50	37FUFP5WEP	
	60	(21/2)	25-100	B	36GUGP5WE		100	37GUGP5WED		100A/600V	37GUGP5WEF	100	37GUGP5WEP	
	75	3	25-100	B	36HUGP5WE		200	37HUGP5WED		200A/600V	37HUGP5WEF	125	37HUGP5WEP	
	100	(31/2)	50-200	B	36IUHP5WE		400	371UHP5WED		400A/600V	371UHP5WEF	150	371UHP5WEP	
	150	4	50-200	B	36JUHP5WE		400	37JUHP5WED		400A/600V	37JUHP5WEF	250	37JUHP5WEP	

2 Step Part Winding with Solid State Overload, Class 36 \& 37

	Ordering Information	Coil and Control Voltage
	Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page page $9 / 150$. Wiring Diagrams see page 9/162. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24 VAC voltage (CPT not supplied), change the 9th character to " J ".

NEMA 12, NEMA 3/3R

NEMA 1 General Purpose Enclosures

Wye Delta, Open Transition with Solid State Overload, Class 36 \& 37

Selection

	Ordering Information	Coil and Control Voltage
	Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page 9/150. Wiring Diagrams see page 9/164. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24VAC voltage (CPT not supplied), change the 9th character to " J ".

NEMA 4 Painted Enclosures

Motor Voltage	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Max } \\ \mathrm{Hp} \end{array} \\ \hline \end{array}$	NEMA Size (1/2 Size)	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	$\begin{aligned} & \text { Frame } \\ & \text { Size } \\ & \hline \end{aligned}$	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	$\begin{array}{\|l} \hline \text { Fuse Clip } \\ \text { Amp/Volt } \\ \text { Rating } \\ \hline \end{array}$	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	10	1	10-40	A1	36DUE06ED		60	37DUE06EDD		60A/250V	37DUE06EDF		50	37DUE06EDP	
	15	(13/4)	10-40	A1	36EUE06ED		100	37EUE06EDD		100A/250V	37EUE06EDF		100	37EUE06EDP	
	20	2	13-52	B	36FUF06ED		100	37FUF06EDD		100A/250V	37FUF06EDF		100	37FUF06EDP	
	30	(21⁄2)	25-100	B	36GUG06ED		200	37GUG06EDD		200A/250V	37GUG06EDF		125	37GUG06EDP	
	40	3	25-100	B	36HUG06ED		200	37HUG06EDD		200A/250V	37HUG06EDF		150	37HUG06EDP	
	50	(3112)	50-200	B	36IUH06ED		200	37IUH06EDD		200A/250V	37IUH06EDF		250	371UH06EDP	
	60	4	50-200	B	36JUH06ED		400	37JUH06EDD		400A/250V	37JUH06EDF		250	37JUH06EDP	
	75	5	55-250	-	36LPS06ED		400	37LPS06EDD		400A/250V	37LPS06EDF		400	37LPS06EDP	
	150	5	55-250	-	36LPU06ED		600	37LPU06EDD		600A/250V	37LPU06EDF		600	37LPU06EDP	
	300	6	160-630	-	36MPX06ED		1200	37MPX06EDD		1200A/250V	37MPX06EDF		1200	37MPX06EDP	
230	10	1	10-40	A1	36DUE02EG		60	37DUE02EGD		60A/250V	37DUE02EGF		50	37DUE02EGP	
	15	(13/4)	10-40	A1	36EUE02EG		60	37EUE02EGD		60A/250V	37EUE02EGF		50	37EUE02EGP	
	25	2	13-52	B	36FUF02EG		100	37FUF02EGD		100A/250V	37FUF02EGF		100	37FUF02EGP	
	30	(21/2)	25-100	B	36GUG02EG		200	37GUG02EGD		200A/250V	37GUG02EGF		100	37GUG02EGP	
	50	3	25-100	B	36HUG02EG		200	37HUG02EGD		200A/250V	37HUG02EGF		150	37HUG02EGP	
	60	(31/2)	50-200	B	36IUH02EG		200	37IUH02EGD		200A/250V	37IUH02EGF		250	37IUHO2EGP	
	75	4	50-200	B	36JUH02EG		400	37JUH02EGD		400A/250V	37JUH02EGF		250	37JUH02EGP	
	100	5	55-250	-	36LPS02EG		400	37LPS02EGD		400A/250V	37LPS02EGF		400	37LPS02EGP	
	150	5	55-250	-	36LPU02EG		600	37LPU02EGD		600A/250V	37LPU02EGF		600	37LPU02EGP	
	350	6	160-630	-	36MPX02EG		1200	37MPX02EGD		$1200 \mathrm{~A} / 250 \mathrm{~V}$	37MPX02EGF		1200	37MPX02EGP	
460	15	1	5.5-22	A1	36DUD04EH		30	37DUD04EHD		$30 \mathrm{~A} / 600 \mathrm{~V}$	37DUD04EHF		30	37DUD04EHP	
	30	(13/4)	10-40	A1	36EUE04EH		60	37EUE04EHD		60A/600V	37EUE04EHF		50	37EUE04EHP	
	40	2	13-52	B	36FUF04EH		100	37FUF04EHD		100A/600V	37FUF04EHF		100	37FUF04EHP	
	60	(21/2)	25-100	B	36GUG04EH		200	37GUG04EHD		200A/600V	37GUG04EHF		100	37GUGO4EHP	
	75	3	25-100	B	36HUG04EH		200	37HUG04EHD		200A/600V	37HUG04EHF		125	37HUG04EHP	
	100	(31/2)	50-200	B	36IUHO4EH		200	37IUHO4EHD		200A/600V	37IUHO4EHF		150	37IUHO4EHP	
	150	4	50-200	B	36JUH04EH		400	37JUH04EHD		400A/600V	37JUH04EHF		250	37JUH04EHP	
	200	5	55-250	-	36LPS04EH		400	37LPSO4EHD		400A/600V	37LPSO4EHF		400	37LPSO4EHP	
	300	5	55-250	-	36LPU04EH		600	37LPU04EHD		600A/600V	37LPU04EHF		600	37LPU04EHP	
	700	6	160-630	-	36MPX04EH		1600	37MPX04EHD		1600A/600V	37MPX04EHF		1200	37MPX04EHP	
575	15		5.5-22		36DUD05EE			37DUD05EED		30A/600V	37DUD05EEF			37DUD05EEP	
	30	(13/4)	10-40	A1	36EUE05EE		60	37EUE05EED		60A/600V	37EUE05EEF		50	37EUE05EEP	
	40	2	13-52	B	36FUF05EE		100	37FUF05EED		100A/600V	37FUF05EEF		50	37FUF05EEP	
	60	(21/2)	25-100	B	36GUG05EE		100	37GUG05EED		100A/600V	37GUG05EEF		100	37GUG05EEP	
	75	3	25-100	B	36HUG05EE		200	37HUGO5EED		200A/600V	37HUG05EEF		125	37HUG05EEP	
	100	(31/2)	50-200	B	36IUH05EE		200	37IUH05EED		200A/600V	37IUH05EEF		150	37IUH05EEP	
	150	4	50-200	B	36JUH05EE		400	37JUH05EED		400A/600V	37JUH05EEF		250	37JUH05EEP	
	200	5	55-250	-	36LPS05EE		400	37LPSO5EED		400A/600V	37LPS05EEF		250	37LPS05EEP	
	300	5	55-250	-	36LPU05EE		600	37LPU05EED		600A/600V	37LPU05EEF		400	37LPU05EEP	
	700	6	160-630	-	37MPX05EF		1600	37MPX05EED		1600A/600V	37MPX05EEF		1600	37MPX05EEP	

Wye Delta, Open Transition with Solid State Overload, Class 36 \& 37

Selection

NEMA 4/4X Stainless Steel Enclosures

Motor Voltage	$\begin{array}{\|l} \hline \begin{array}{l} \text { Max } \\ \mathrm{Hp} \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \text { NEMA } \\ \text { Size } \\ \text { (1/2 Size) } \\ \hline \end{array}$	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	$\begin{array}{\|l} \text { Frame } \\ \text { Size } \\ \hline \end{array}$	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	10	1	10-40	A1	36DUE06WD		60	37DUE06WDD		60A/250V	37DUE06WDF		50	37DUE06WDP	
	15	(13/4)	10-40	A1	36EUE06WD		100	37EUE06WDD		100A/250V	37EUE06WDF		100	37EUE06WDP	
	20	2	13-52	B	36FUF06WD		100	37FUF06WDD		100A/250V	37FUF06WDF		100	37FUF06WDP	
	30	($21 / 2)$	25-100	B	36GUG06WD		200	37GUG06WDD		200A/250V	37GUG06WDF		125	37GUG06WDP	
	40	3	25-100	B	36HUG06WD		200	37HUG06WDD		200A/250V	37HUG06WDF		150	37HUG06WDP	
	50	(31/2)	50-200	B	36IUH06WD		200	37IUH06WDD		200A/250V	37IUH06WDF		250	37IUH06WDP	
	60	4	50-200	B	36JUH06WD		400	37JUH06WDD		400A/250V	37JUH06WDF		250	37JUH06WDP	
230	10	1	10-40	A1	36DUE02WG		60	37DUE02WGD		60A/250V	37DUE02WGF		50	37DUE02WGP	
	15	(13/4)	10-40	A1	36EUE02WG		60	37EUEO2WGD		60A/250V	37EUE02WGF		50	37EUE02WGP	
	25	2	13-52	B	36FUF02WG		100	37FUF02WGD		100A/250V	37FUF02WGF		100	37FUF02WGP	
	30	($21 / 2)$	25-100	B	36GUG02WG		200	37GUG02WGD		200A/250V	37GUG02WGF		100	37GUG02WGP	
	50	3	25-100	B	36HUG02WG		200	37HUG02WGD		200A/250V	37HUG02WGF		150	37HUG02WGP	
	60	(31/2)	50-200	B	36IUH02WG		200	37IUHO2WGD		200A/250V	371UH02WGF		250	37IUHO2WGP	
	75	4	50-200	B	36JUH02WG		400	37JUH02WGD		400A/250V	37JUH02WGF		250	37JUH02WGP	
460	15	1	5.5-22	A1	36DUD04WH		30	37DUD04WHD		30A/600V	37DUD04WHF		30	37DUD04WHP	
	30	(13/4)	10-40	A1	36EUE04WH		60	37EUE04WHD		60A/600V	37EUE04WHF		50	37EUE04WHP	
	40	2	13-52	B	36FUF04WH		100	37FUFO4WHD		100A/600V	37FUF04WHF		100	37FUF04WHP	
	60	($2^{1 / 2}$)	25-100	B	36GUG04WH		200	37GUG04WHD		200A/600V	37GUG04WHF		100	37GUG04WHP	
	75	3	25-100	B	36HUG04WH		200	37HUG04WHD		200A/600V	37HUG04WHF		125	37HUG04WHP	
	100	(31/2)	50-200	B	36IUH04WH		200	37IUH04WHD		200A/600V	37IUH04WHF		150	37IUH04WHP	
	150	4	50-200	B	36JUH04WH		400	37JUH04WHD		400A/600V	37JUH04WHF		250	37JUH04WHP	
575	15		5.5-22	A1	36DUD05WE		30	37DUD05WED		30A/600V	37DUD05WEF		30	37DUD05WEP	
	30	(13/4)	10-40	A1	36EUE05WE		60	37EUE05WED		60A/600V	37EUE05WEF		50	37EUE05WEP	
	40	2	13-52	B	36FUF05WE		100	37FUF05WED		100A/600V	37FUF05WEF		50	37FUF05WEP	
	60	($2^{1 / 2}$)	25-100	B	36GUG05WE		100	37GUG05WED		100A/600V	37GUG05WEF		100	37GUG05WEP	
	75	3	25-100	B	36HUG05WE		200	37HUG05WED		200A/600V	37HUG05WEF		125	37HUGO5WEP	
	100	(31/2)	50-200	B	36IUH05WE		200	371UH05WED		200A/600V	37IUH05WEF		150	37IUH05WEP	
	150	4	50-200	B	36JUH05WE		400	37JUH05WED		400A/600V	37JUH05WEF		250	37JUH05WEP	

Wye Delta, Open Transition with Solid State Overload, Class 36 \& 37

Selection

NEMA 12, NEMA 3/3R

Wye Delta, Closed Transition with Solid State Overload, Class 36 \& 37

Selection

Ordering Information	Coil and Control Voltage
Field Modification Kits see page 9/100 Factory Modifications see page 9/114. Dimensions see page 9/150. Wiring Diagrams see page $9 / 165$. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24VAC voltage (CPT not supplied), change the 9th character to " J ".

NEMA 1 General Purpose Enclosures

Motor Voltage	$\begin{array}{\|l\|} \hline \begin{array}{\|l\|} \mathrm{Max} \\ \mathrm{Hp} \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { NEMA } \\ \text { Size } \\ \text { (1/2 Size) } \\ \hline \end{array}$	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$		Catalog Number	List Price \$
200	10	1	10-40	A1	36DUEC6BD		60	37DUEC6BDD		60A/250V	37DUEC6BDF		50	37DUEC6BDP	
	15	(13/4)	10-40	A1	36EUEC6BD		100	37EUEC6BDD		100A/250V	37EUEC6BDF		100	37EUEC6BDP	
	20	2	13-52	B	36FUFC6BD		100	37FUFC6BDD		100A/250V	37FUFC6BDF		100	37FUFC6BDP	
	30	($211 / 2$)	25-100	B	36GUGC6BD		200	37GUGC6BDD		200A/250V	37GUGC6BDF		125	37GUGC6BDP	
	40	3	25-100	B	36HUGC6BD		200	37HUGC6BDD		200A/250V	37HUGC6BDF		150	37HUGC6BDP	
	50	(31/2)	50-200	B	36IUHC6BD		200	37IUHC6BDD		200A/250V	37IUHC6BDF		250	37IUHC6BDP	
	60	4	50-200	B	36JUHC6BD		400	37JUHC6BDD		400A/250V	37JUHC6BDF		250	37JUHC6BDP	
	75	5	55-250	-	36LPSC6BD		400	37LPSC6BDD		400A/250V	37LPSC6BDF		400	37LPSC6BDP	
	150	5	55-250	-	36LPUC6BD		600	37LPUC6BDD		600A/250V	37LPUC6BDF		600	37LPUC6BDP	
	300	6	160-630	-	36MPXC6BD		1200	37MPXC6BDD		1200A/250V	37MPXC6BDF		1200	37MPXC6BDP	
230	10	1	10-40	A1	36DUEC2BG		60	37DUEC2BGD		60A/250V	37DUEC2BGF		50	37DUEC2BGP	
	15	(13/4)	10-40	A1	36EUEC2BG		60	37EUEC2BGD		60A/250V	37EUEC2BGF		50	37EUEC2BGP	
	25	2	13-52	B	36FUFC2BG		100	37FUFC2BGD		100A/250V	37FUFC2BGF		100	37FUFC2BGP	
	30	(21⁄2)	25-100	B	36GUGC2BG		200	37GUGC2BGD		200A/250V	37GUGC2BGF		100	37GUGC2BGP	
	50	3	25-100	B	36HUGC2BG		200	37HUGC2BGD		200A/250V	37HUGC2BGF		150	37HUGC2BGP	
	60	(31⁄2)	50-200	B	36IUHC2BG		200	37IUHC2BGD		200A/250V	37IUHC2BGF		250	37IUHC2BGP	
	75	4	50-200	B	36JUHC2BG		400	37JUHC2BGD		400A/250V	37JUHC2BGF		250	37JUHC2BGP	
	100	5	55-250	-	36LPSC2BG		400	37LPSC2BGD		400A/250V	37LPSC2BGF		400	37LPSC2BGP	
	150	5	55-250	-	36LPUC2BG		600	37LPUC2BGD		600A/250V	37LPUC2BGF		600	37LPUC2BGP	
	350	6	160-630	-	36MPXC2BG		1200	37MPXC2BGD		1200A/250V	37MPXC2BGF		1200	37MPXC2BGP	
460	15	1	5.5-22	A1	36DUDC4BH		30	37DUDC4BHD		30A/600V	37DUDC4BHF		30	37DUDC4BHP	
	30	(13/4)	10-40	A1	36EUEC4BH		60	37EUEC4BHD		60A/600V	37EUEC4BHF		50	37EUEC4BHP	
	40	2	13-52	B	36FUFC4BH		100	37FUFC4BHD		100A/600V	37FUFC4BHF		100	37FUFC4BHP	
	60	(212)	25-100	B	36GUGC4BH		200	37GUGC4BHD		200A/600V	37GUGC4BHF		100	37GUGC4BHP	
	75	3	25-100	B	36HUGC4BH		200	37HUGC4BHD		200A/600V	37HUGC4BHF		125	37HUGC4BHP	
	100	(31/2)	50-200	B	36IUHC4BH		200	37IUHC4BHD		200A/600V	37IUHC4BHF		150	37IUHC4BHP	
	150	4	50-200	B	36JUHC4BH		400	37JUHC4BHD		400A/600V	37JUHC4BHF		250	37JUHC4BHP	
	200	5	55-250	-	36LPSC4BH		400	37LPSC4BHD		400A/600V	37LPSC4BHF		400	37LPSC4BHP	
	300	5	55-250	-	36LPUC4BH		600	37LPUC4BHD		600A/600V	37LPUC4BHF		600	37LPUC4BHP	
	700	6	160-630	-	36MPXC4BH		1600	37MPXC4BHD		1600A/600V	37MPXC4BHF		1200	37MPXC4BHP	
575	15	1	5.5-22	A1	36DUDC5BE		30	37DUDC5BED		30A/600V	37DUDC5BEF		30	37DUDC5BEP	
	30	(13/4)	10-40	A1	36EUEC5BE		60	37EUEC5BED		60A/600V	37EUEC5BEF		50	37EUEC5BEP	
	40	2	13-52	B	36FUFC5BE		100	37FUFC5BED		100A/600V	37FUFC5BEF		50	37FUFC5BEP	
	60	(21⁄2)	25-100	B	36GUGC5BE		100	37GUGC5BED		100A/600V	37GUGC5BEF		100	37GUGC5BEP	
	75	3	25-100	B	36HUGC5BE		200	37HUGC5BED		200A/600V	37HUGC5BEF		125	37HUGC5BEP	
	100	(31⁄2)	50-200	B	36IUHC5BE		200	37IUHC5BED		200A/600V	37IUHC5BEF		150	37IUHC5BEP	
	150	4	50-200	B	36JUHC5BE		400	37JUHC5BED		400A/600V	37JUHC5BEF		250	37JUHC5BEP	
	200	5	55-250	-	36LPSC5BE		400	37LPSC5BED		400A/600V	37LPSC5BEF		250	37LPSC5BEP	
	300	5	55-250	-	36LPUC5BE		600	37LPUC5BED		600A/600V	37LPUC5BEF		400	37LPUC5BEP	
	700	6	160-630	-	37MPXC5BF		1600	37MPXC5BED		1600A/600V	37MPXC5BEF		1600	37MPXC5BEP	

Wye Delta, Closed Transition with Solid State Overload, Class 36 \& 37

Selection

Ordering Information

Field Modification Kits see page 9/100.
Factory Modifications see page 9/114.
Dimensions see page $9 / 150$.
Wiring Diagrams see page $9 / 165$.
Replacement Parts see page 9/120.

Coil and Control Voltage

The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24 VAC voltage (CPT not supplied), change the 9th character to " J ".

NEMA 4 Painted Enclosures

Motor Voltage	$\begin{array}{\|l\|} \hline \text { Max } \\ \mathrm{Hp} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { NEMA } \\ \text { Size } \\ \text { (1/2 Size) } \\ \hline \end{array}$	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	10	1	10-40	A1	36DUEC6ED		60	37DUEC6EDD		60A/250V	37DUEC6EDF		50	37DUEC6EDP	
	15	(13/4)	10-40	A1	36EUEC6ED		100	37EUEC6EDD		100A/250V	37EUEC6EDF		100	37EUEC6EDP	
	20	2	13-52	B	36FUFC6ED		100	37FUFC6EDD		100A/250V	37FUFC6EDF		100	37FUFC6EDP	
	30	(212/2)	25-100	B	36GUGC6ED		200	37GUGC6EDD		200A/250V	37GUGC6EDF		125	37GUGC6EDP	
	40	3	25-100	B	36HUGC6ED		200	37HUGC6EDD		200A/250V	37HUGC6EDF		150	37HUGC6EDP	
	50	(31/2)	50-200	B	36IUHC6ED		200	37IUHC6EDD		200A/250V	37IUHC6EDF		250	37IUHC6EDP	
	60	4	50-200	B	36JUHC6ED		400	37JUHC6EDD		400A/250V	37JUHC6EDF		250	37JUHC6EDP	
	75	5	55-250	-	36LPSC6ED		400	37LPSC6EDD		400A/250V	37LPSC6EDF		400	37LPSC6EDP	
	150	5	55-250	-	36LPUC6ED		600	37LPUC6EDD		600A/250V	37LPUC6EDF		600	37LPUC6EDP	
	300	6	160-630	-	36MPXC6ED		1200	37MPXC6EDD		1200A/250V	37MPXC6EDF		1200	37MPXC6EDP	
230	10	1	10-40	A1	36DUEC2EG		60	37DUEC2EGD		60A/250V	37DUEC2EGF		50	37DUEC2EGP	
	15	(13/4)	10-40	A1	36EUEC2EG		60	37EUEC2EGD		60A/250V	37EUEC2EGF		50	37EUEC2EGP	
	25	2	13-52	B	36FUFC2EG		100	37FUFC2EGD		100A/250V	37FUFC2EGF		100	37FUFC2EGP	
	30	($21 / 2)$	25-100	B	36GUGC2EG		200	37GUGC2EGD		200A/250V	37GUGC2EGF		100	37GUGC2EGP	
	50	3	25-100	B	36HUGC2EG		200	37HUGC2EGD		200A/250V	37HUGC2EGF		150	37HUGC2EGP	
	60	(3112)	50-200	B	36IUHC2EG		200	37IUHC2EGD		200A/250V	37IUHC2EGF		250	37IUHC2EGP	
	75	4	50-200	B	36JUHC2EG		400	37JUHC2EGD		400A/250V	37JUHC2EGF		250	37JUHC2EGP	
	100	5	55-250	-	36LPSC2EG		400	37LPSC2EGD		400A/250V	37LPSC2EGF		400	37LPSC2EGP	
	150	5	55-250	-	36LPUC2EG		600	37LPUC2EGD		600A/250V	37LPUC2EGF		600	37LPUC2EGP	
	350	6	160-630	-	36MPXC2EG		1200	37MPXC2EGD		1200A/250V	37MPXC2EGF		1200	37MPXC2EGP	
460	15	1	5.5-22	A1	36DUDC4EH		30	37DUDC4EHD		30A/600V	37DUDC4EHF		30	37DUDC4EHP	
	30	(13/4)	10-40	A1	36EUEC4EH		60	37EUEC4EHD		60A/600V	37EUEC4EHF		50	37EUEC4EHP	
	40	2	13-52	B	36FUFC4EH		100	37FUFC4EHD		100A/600V	37FUFC4EHF		100	37FUFC4EHP	
	60	($21 / 2)$	25-100	B	36GUGC4EH		200	37GUGC4EHD		200A/600V	37GUGC4EHF		100	37GUGC4EHP	
	75	3	25-100	B	36HUGC4EH		200	37HUGC4EHD		200A/600V	37HUGC4EHF		125	37HUGC4EHP	
	100	(31/2)	50-200	B	36IUHC4EH		200	37IUHC4EHD		200A/600V	37IUHC4EHF		150	37IUHC4EHP	
	150	4	50-200	B	36JUHC4EH		400	37JUHC4EHD		400A/600V	37JUHC4EHF		250	37JUHC4EHP	
	200	5	55-250	-	36LPSC4EH		400	37LPSC4EHD		400A/600V	37LPSC4EHF		400	37LPSC4EHP	
	300	5	55-250	-	36LPUC4EH		600	37LPUC4EHD		600A/600V	37LPUC4EHF		600	37LPUC4EHP	
	700	6	160-630	-	36MPXC4EH		1600	37MPXC4EHD		1600A/600V	37MPXC4EHF		1200	37MPXC4EHP	
575	15	1	5.5-22	A1	36DUDC5EE		30	37DUDC5EED		30A/600V	37DUDC5EEF		30	37DUDC5EEP	
	30	(13/4)	10-40	A1	36EUEC5EE		60	37EUEC5EED		60A/600V	37EUEC5EEF		50	37EUEC5EEP	
	40	2	13-52	B	36FUFC5EE		100	37FUFC5EED		100A/600V	37FUFC5EEF		50	37FUFC5EEP	
	60	(212/2)	25-100	B	36GUGC5EE		100	37GUGC5EED		100A/600V	37GUGC5EEF		100	37GUGC5EEP	
	75	3	25-100	B	36HUGC5EE		200	37HUGC5EED		200A/600V	37HUGC5EEF		125	37HUGC5EEP	
	100	(3112)	50-200	B	36IUHC5EE		200	37IUHC5EED		200A/600V	37IUHC5EEF		150	37IUHC5EEP	
	150	4	50-200	B	36JUHC5EE		400	37JUHC5EED		400A/600V	37JUHC5EEF		250	37JUHC5EEP	
	200	5	55-250	-	36LPSC5EE		400	37LPSC5EED		400A/600V	37LPSC5EEF		250	37LPSC5EEP	
	300	5	55-250	-	36LPUC5EE		600	37LPUC5EED		600A/600V	37LPUC5EEF		400	37LPUC5EEP	
	700	6	160-630	-	37MPXC5EF		1600	37MPXC5EED		1600A/600V	37MPXC5EEF		1600	37MPXC5EEP	

Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).

Wye Delta, Closed Transition with Solid State Overload, Class 36 \& 37

Selection

Ordering Information	Coil and Control Voltage
Field Modification Kits see page 9/100. Factory Modifications see page 9/114. Dimensions see page 9/150. Wiring Diagrams see page 9/165. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24 VAC voltage (CPT not supplied), change the 9th character to " J "

NEMA 4/4X Stainless Steel Enclosures

Motor Voltage	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Max } \\ \mathrm{Hp} \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { NEMA } \\ \text { Size } \\ \text { (1/2 Size) }) \\ \hline \end{array}$	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	$\begin{array}{\|l\|} \hline \text { Circuit } \\ \text { Breaker } \\ \text { Amps } \\ \hline \end{array}$	Catalog Number	List Price \$
200	10	1	10-40	A1	36DUEC6WD		60	37DUEC6WDD		60A/250V	37DUEC6WDF		50	37DUEC6WDP	
	15	(13/4)	10-40	A1	36EUEC6WD		100	37EUEC6WDD		100A/250V	37EUEC6WDF		100	37EUEC6WDP	
	20	2	13-52	B	36FUFC6WD		100	37FUFC6WDD		100A/250V	37FUFC6WDF		100	37FUFC6WDP	
	30	($21 / 2$)	25-100	B	36GUGC6WD		200	37GUGC6WDD		200A/250V	37GUGC6WDF		125	37GUGC6WDP	
	40	3	25-100	B	36HUGC6WD		200	37HUGC6WDD		200A/250V	37HUGC6WDF		150	37HUGC6WDP	
	50	(31⁄2)	50-200	B	36IUHC6WD		200	37IUHC6WDD		200A/250V	37IUHC6WDF		250	37IUHC6WDP	
	60	4	50-200	B	36JUHC6WD		400	37JUHC6WDD		400A/250V	37JUHC6WDF		250	37JUHC6WDP	
230	10	1	10-40	A1	36DUEC2WG		60	37DUEC2WGD		60A/250V	37DUEC2WGF		50	37DUEC2WGP	
	15	(13/4)	10-40	A1	36EUEC2WG		60	37EUEC2WGD		60A/250V	37EUEC2WGF		50	37EUEC2WGP	
	25	2	13-52	B	36FUFC2WG		100	37FUFC2WGD		100A/250V	37FUFC2WGF		100	37FUFC2WGP	
	30	(21⁄2)	25-100	B	36GUGC2WG		200	37GUGC2WGD		200A/250V	37GUGC2WGF		100	37GUGC2WGP	
	50	3	25-100	B	36HUGC2WG		200	37HUGC2WGD		200A/250V	37HUGC2WGF		150	37HUGC2WGP	
	60	(3112)	50-200	B	36IUHC2WG		200	37IUHC2WGD		200A/250V	37IUHC2WGF		250	371UHC2WGP	
	75	4	50-200	B	36JUHC2WG		400	37JUHC2WGD		400A/250V	37JUHC2WGF		250	37JUHC2WGP	
460	15	1	5.5-22	A1	36DUDC4WH		30	37DUDC4WHD		30A/600V	37DUDC4WHF		30	37DUDC4WHP	
	30	(13/4)	10-40	A1	36EUEC4WH		60	37EUEC4WHD		60A/600V	37EUEC4WHF		50	37EUEC4WHP	
	40	2	13-52	B	36FUFC4WH		100	37FUFC4WHD		100A/600V	37FUFC4WHF		100	37FUFC4WHP	
	60	($211 / 2$)	25-100	B	36GUGC4WH		200	37GUGC4WHD		200A/600V	37GUGC4WHF		100	37GUGC4WHP	
	75	3	25-100	B	36HUGC4WH		200	37HUGC4WHD		200A/600V	37HUGC4WHF		125	37HUGC4WHP	
	100	(3112)	50-200	B	36IUHC4WH		200	37IUHC4WHD		200A/600V	37IUHC4WHF		150	371UHC4WHP	
	150	4	50-200	B	36JUHC4WH		400	37JUHC4WHD		400A/600V	37JUHC4WHF		250	37JUHC4WHP	
575	15	1	5.5-22	A1	36DUDC5WE		30	37DUDC5WED		30A/600V	37DUDC5WEF		30	37DUDC5WEP	
	30	(13/4)	10-40	A1	36EUEC5WE		60	37EUEC5WED		60A/600V	37EUEC5WEF		50	37EUEC5WEP	
	40	2	13-52	B	36FUFC5WE		100	37FUFC5WED		100A/600V	37FUFC5WEF		50	37FUFC5WEP	
	60	($211 / 2$)	25-100	B	36GUGC5WE		100	37GUGC5WED		100A/600V	37GUGC5WEF		100	37GUGC5WEP	
	75	3	25-100	B	36HUGC5WE		200	37HUGC5WED		200A/600V	37HUGC5WEF		125	37HUGC5WEP	
	100	(31⁄2)	50-200	B	36IUHC5WE		200	37IUHC5WED		200A/600V	37IUHC5WEF		150	37IUHC5WEP	
	150	4	50-200	B	36JUHC5WE		400	37JUHC5WED		400A/600V	37JUHC5WEF		250	37JUHC5WEP	

Reduced Voltage Heavy Duty Starters

Wye Delta, Closed Transition with Solid State Overload, Class 36 \& 37

Ordering Information	Coil and Control Voltage
Field Modification Kits see page 9/100. Factory Modifications see page 9/114 Dimensions see page 9/150. Wiring Diagrams see page $9 / 165$. Replacement Parts see page 9/120.	The coil voltage will always match the motor voltage. As standard, a CPT is supplied and 120 V control voltage is utilized. To change to 120 V voltage (CPT not supplied), change the 9th character to " F ". To change to 24VAC voltage (CPT not supplied), change the 9th character to " J ".

NEMA 12, NEMA 3/3R

Motor Voltage	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Max } \\ \mathrm{Hp} \end{array} \\ \hline \end{array}$	NEMA Size (1/2 Size)	Overload Relay		Non-Combination		Combination Non-Fusible Disconnect			Combination Fusible Disconnect			Combination Circit Breaker		
			Amp Range	Frame Size	Catalog Number	List Price \$	Disc. Amp Rating	Catalog Number	List Price \$	Fuse Clip Amp/Volt Rating	Catalog Number	List Price \$	Circuit Breaker Amps	Catalog Number	List Price \$
200	10	1	10-40	A1	36DUEC6ND		60	37DUEC6NDD		60A/250V	37DUEC6NDF		50	37DUEC6NDP	
	15	(13/4)	10-40	A1	36EUEC6ND		100	37EUEC6NDD		100A/250V	37EUEC6NDF		100	37EUEC6NDP	
	20	2	13-52	B	36FUFC6ND		100	37FUFC6NDD		100A/250V	37FUFC6NDF		100	37FUFC6NDP	
	30	(21⁄2)	25-100	B	36GUGC6ND		200	37GUGC6NDD		200A/250V	37GUGC6NDF		125	37GUGC6NDP	
	40	3	25-100	B	36HUGC6ND		200	37HUGC6NDD		200A/250V	37HUGC6NDF		150	37HUGC6NDP	
	50	(3112)	50-200	B	36IUHC6ND		200	37IUHC6NDD		200A/250V	37IUHC6NDF		250	37IUHC6NDP	
	60	4	50-200	B	36JUHC6ND		400	37JUHC6NDD		400A/250V	37JUHC6NDF		250	37JUHC6NDP	
	75	5	55-250	-	36LPSC6ND		400	37LPSC6NDD		400A/250V	37LPSC6NDF		400	37LPSC6NDP	
	150	5	55-250	-	36LPUC6ND		600	37LPUC6NDD		600A/250V	37LPUC6NDF		600	37LPUC6NDP	
	300	6	160-630	-	36MPXC6ND		1200	37MPXC6NDD		1200A/250V	37MPXC6NDF		1200	37MPXC6NDP	
230	10	1	10-40	A1	36DUEC2NG		60	37DUEC2NGD		60A/250V	37DUEC2NGF		50	37DUEC2NGP	
	15	(13/4)	10-40	A1	36EUEC2NG		60	37EUEC2NGD		60A/250V	37EUEC2NGF		50	37EUEC2NGP	
	25	2	13-52	B	36FUFC2NG		100	37FUFC2NGD		100A/250V	37FUFC2NGF		100	37FUFC2NGP	
	30	(2112)	25-100	B	36GUGC2NG		200	37GUGC2NGD		200A/250V	37GUGC2NGF		100	37GUGC2NGP	
	50	3	25-100	B	36HUGC2NG		200	37HUGC2NGD		200A/250V	37HUGC2NGF		150	37HUGC2NGP	
	60	(3112)	50-200	B	36IUHC2NG		200	37IUHC2NGD		200A/250V	37IUHC2NGF		250	37IUHC2NGP	
	75	4	50-200	B	36JUHC2NG		400	37JUHC2NGD		400A/250V	37JUHC2NGF		250	37JUHC2NGP	
	100	5	55-250	-	36LPSC2NG		400	37LPSC2NGD		400A/250V	37LPSC2NGF		400	37LPSC2NGP	
	150	5	55-250	-	36LPUC2NG		600	37LPUC2NGD		600A/250V	37LPUC2NGF		600	37LPUC2NGP	
	350	6	160-630	-	36MPXC2NG		1200	37MPXC2NGD		1200A/250V	37MPXC2NGF		1200	37MPXC2NGP	
460	15	1	5.5-22	A1	36DUDC4NH		30	37DUDC4NHD		30A/600V	37DUDC4NHF		30	37DUDC4NHP	
	30	(13/4)	10-40	A1	36EUEC4NH		60	37EUEC4NHD		60A/600V	37EUEC4NHF		50	37EUEC4NHP	
	40	2	13-52	B	36FUFC4NH		100	37FUFC4NHD		100A/600V	37FUFC4NHF		100	37FUFC4NHP	
	60	(21⁄2)	25-100	B	36GUGC4NH		200	37GUGC4NHD		200A/600V	37GUGC4NHF		100	37GUGC4NHP	
	75	3	25-100	B	36HUGC4NH		200	37HUGC4NHD		200A/600V	37HUGC4NHF		125	37HUGC4NHP	
	100	(3112)	50-200	B	36IUHC4NH		200	37IUHC4NHD		200A/600V	37IUHC4NHF		150	37IUHC4NHP	
	150	4	50-200	B	36JUHC4NH		400	37JUHC4NHD		400A/600V	37JUHC4NHF		250	37JUHC4NHP	
	200	5	55-250	-	36LPSC4NH		400	37LPSC4NHD		400A/600V	37LPSC4NHF		400	37LPSC4NHP	
	300	5	55-250	-	36LPUC4NH		600	37LPUC4NHD		600A/600V	37LPUC4NHF		600	37LPUC4NHP	
	700	6	160-630	-	36MPXC4NH		1600	37MPXC4NHD		1600A/600V	37MPXC4NHF		1200	37MPXC4NHP	
575	15	1	5.5-22	A1	36DUDC5NE		30	37DUDC5NED		30A/600V	37DUDC5NEF		30	37DUDC5NEP	
	30	(13/4)	10-40	A1	36EUEC5NE		60	37EUEC5NED		60A/600V	37EUEC5NEF		50	37EUEC5NEP	
	40	2	13-52	B	36FUFC5NE		100	37FUFC5NED		100A/600V	37FUFC5NEF		50	37FUFC5NEP	
	60	(2112)	25-100	B	36GUGC5NE		100	37GUGC5NED		100A/600V	37GUGC5NEF		100	37GUGC5NEP	
	75	3	25-100	B	36HUGC5NE		200	37HUGC5NED		200A/600V	37HUGC5NEF		125	37HUGC5NEP	
	100	(3112)	50-200	B	36IUHC5NE		200	37IUHC5NED		200A/600V	37IUHC5NEF		150	37IUHC5NEP	
	150	4	50-200	B	36JUHC5NE		400	37JUHC5NED		400A/600V	37JUHC5NEF		250	37JUHC5NEP	
	200	5	55-250	-	36LPSC5NE		400	37LPSC5NED		400A/600V	37LPSC5NEF		250	37LPSC5NEP	
	300	5	55-250	-	36LPUC5NE		600	37LPUC5NED		600A/600V	37LPUC5NEF		400	37LPUC5NEP	
	700	6	160-630	-	37MPXC5NF		1600	37MPXC5NED		1600A/600V	37MPXC5NEF		1600	37MPXC5NEP	

[^83]the National Electric Code).

Heavy Duty Contactors

3-Phase, Class 40

Selection

Ordering Information
Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.
Field Modification Kits see page 9/100.
Factory Modifications see page 9/114.
Dimensions see pages 9/131 open and 9/141 enclosed.
Wiring Diagrams see page 9/166.
Replacement Parts see page 9/120.

Coil Table

60 Hz Voltage Letter

24
120
110-120/220-240 ${ }^{(1)}$
200-208
220-240
277
220-240/440-480¹
440-480
575-600
For other voltages and frequencies,
see Factory Modifications page 9/114.

Open Type \& Standard Width Enclosure, 3-Phase, 3-Pole

Max Hp				Contactor Amp Rating	NEMA Size	Half Size	Enclosure									
							Open Type ${ }^{\text {(}}$		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \end{array}$	460 Volts	575 Volts				Catalog Number	List Price \$	Catalog Number	List Price $\$$	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
$11 / 2$	11/2	2	2	9	00	-	40BP32A*		40BP32B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
3	3	5	5	18	0	-	40СP32A*		40CP32B*		40CP32W*		40CP32F*		40CP320*	
$71 / 2$	71/2	10	10	27	1	-	40DP32A*		40DP32B*		40DP32W*		40DP32F*		40DP320*	
10	10	15	15	40	-	13/4	40EP32A*		40EP32B*		40EP32W*		40EP32F*		40EP320*	
10	15	25	25	45	2	-	40FP32A*		40FP32B*		40FP32W*		40FP32F*		40FP320*	
15	20	30	30	60	-	21/2	40GP32A*		40GP32B*		40GP32W*		40GP32F*		40GP320*	
25	30	50	50	90	3	-	40HP32A*		40HP32B*		40HP32W*		40HP32F*		40HP320*	
30	40	75	75	115	-	$31 / 2$	40IP32A*		401P32B*		40IP32W*		40IP32F*		401P320*	
40	50	100	100	135	4	-	40JG32A*		40JG32B*		40JG32W*		40JG32F*		40JG320*	
75	100	200	200	270	5	-	40LP32A*		40LP32B*		-	-	-	-	40LP320*	
150	200	400	400	540	6	-	40MP32A*		40MP32B*		-	-	-	-	40MP320*	
-	300	600	600	810	7 (2)	-	40NH32A*		40NH32B*		-	-	-	-	40NH320*	
-	450	900	900	1215	83 (5)	-	40PH32A*		40PH32B*		-	-	-	-	40PH320*	

Extra Wide Enclosure, 3-Phase, 3-Pole

Max Hp				Contactor Amp Rating	NEMA Size	Half Size	Enclosure					
							NEMA 1^{4} General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight Corrosion Resistant 304 Stainless Steel		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \end{array}$	460 Volts	$\begin{array}{\|l\|} 575 \\ \text { Volts } \end{array}$				Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
$11 / 2$	$11 / 2$	2	2	9	00	-	40BP82B*		Use Size 0	-	Use Size 0	-
3	3	5	5	18	0	-	40CP82B*		40CP82W*		40CP820*	
$71 / 2$	$71 / 2$	10	10	27	1	-	40DP82B*		40DP82W*		40DP820*	
10	10	15	15	40	-	$1^{3 / 4}$	40EP82B*		40EP82W*		40EP820*	
10	15	25	25	45	2	-	40FP82B*		40FP82W*		40FP820*	
15	20	30	30	60	-	21/2	40GP82B*		40GP82W*		40GP820*	
25	30	50	50	90	3	-	40HP82B*		40HP82W*		40HP820*	
30	40	75	75	115	-	$3^{1 / 2}$	401P82B*		401P82W*		401P820*	
40	50	100	100	135	4	-	40JG82B*		40JG82W*		40JG820*	

Note: Hp's shown above are based on the overload amp range for the FLA's (per the National Electric Code) of typical industrial motors. All starter sizes carry one maximum Hp rating.
(1) Dual voltage coils not available in size 5-8 starters.
(2) Only available

F coil $100-250 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC H coil $150-500 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC (3) Only available

F coil100-250V AC $50 / 60 \mathrm{~Hz}$, or DC

Heavy Duty Contactors

Single Phase, 4-Pole \& Vacuum, Class 40

Selection

	Ordering Information	Coil Table	
	Replace the (*) with a letter from the coil table.	60Hz Voltage	Letter
	Dual voltage coils are wired on high voltage unless specified on order.		J
	Field Modification Kits see paqe 9/100.	110-120/220-240®	A
	Factory Modifications see page 9/114.	200-208	D
3",	Dimensions see pages 9/131 open and	277	L
	9/141 enclosed.	220-240/440-480®	C
1 rumas contio	Wiring Diagrams see page 9/166.	440-480	H
		575-600	E
	Replacement Parts see page 9/120.	For other voltages see Factory Modific	ncies, ge $9 / 114$

Open Type \& Standard Width Enclosure, Single Phase, 2-Pole ${ }^{\text {(23 }}$

Max Hp		Contactor Amp Rating	NEMA Size	Half Size	Enclosure									
	208/				Open Type ${ }^{\text {(}}$		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight Corrosion Resistant		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
115 Volts	$\begin{array}{\|l\|} 230 \\ \text { Volts } \end{array}$				$\begin{aligned} & \text { Catalog } \\ & \text { Number } \end{aligned}$	List Price \$	Catalog Number	List Price \$						
1/3	1	9	00	-	40BP12A*		40BP12B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
1	2	18	0	-	40CP12A*		40CP12B*		40CP12W*		40CP12F*		40CP120*	
2	3	27	1	-	40DP12A*		40DP12B*		40DP12W*		40DP12F*		40DP120*	
3	5	35	1 P	-	40EP12A*		40EP12B*		40EP12W*		40EP12F*		40EP120*	
3	71/2	45	2	-	40FP12A*		40FP12B*		40FP12W*		40FP12F*		40FP120*	
5	10	60	-	21/2	40GP12A*		40GP12B*		40GP12W*		40GP12F*		40GP120*	
$71 / 2$	15	90	3	-	40HP12A*		40HP12B*		40HP12W*		40HP12F*		40HP120*	

Open Type \& Standard Width Enclosure, 4-Pole

Max Hp				Cont- actor Amp Rating	NEMA Size	Half Size	Enclosure									
							Open Type		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight Corrosion Resistant		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{array}{\|l\|} \hline 200 \\ \text { Volts } \end{array}$	$\begin{array}{\|l\|l} 230 \\ \text { Volts } \end{array}$	460 Volts	575 Volts				Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	$\begin{array}{\|l} \hline \text { List } \\ \text { Price \$ } \end{array}$	Catalog Number	List Price \$	Catalog Number	$\begin{array}{\|l\|} \hline \text { List } \\ \text { Price \$ } \end{array}$
1/3	11/2	2	2	9	00	-	40BP22A*		40BP22B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
2	3	5	5	18	0	-	40СР22A*		40CP22B*		40CP22W*		40CP22F*		40CP220*	
3	$71 / 2$	10	10	27	1	-	40DP22A*		40DP22B*		40DP22W*		40DP22F*		40DP220*	
5	10	15	15	40	-	$13 / 4$	40EP22A*		40EP22B*		40EP22W*		40EP22F*		40EP220*	

Vacuum Contactors, 3-Phase, 3-Pole ${ }^{\text {© }}$

	Max Hp				Contactor Amp Rating	NEMA Size	Open Type	
	200V	230V	460V	575V			Catalog Number	List Price \$
	40	50	100	100	135	4	-	
	$\begin{aligned} & 75 \\ & 150 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & 270 \\ & 540 \end{aligned}$	5 6	40LV32A* 40MV32A*	

Note: Hp's shown above are based on the overload amp range for the FLA's (per the National Electric Code) of typical industrial motors. All starter sizes carry one maximum Hp rating.
(1) Dual voltage coils not available for vacuum contactors. Refer to Page 9/114 for a complete list of available coil voltages.
(2) To order single phase contactor in an extra wide enclosure, order the enclosure kit from Page 9/109 and the open style contactor as separate items.
(3) Coils D, F, or G will be wired for incoming voltage. J coil will be wired for separate source. Coils E,H, and L do not apply to single phase starters. (4) 1 NO Auxiliary

Reversing Heavy Duty Contactors

Class 43

Selection

Open Type \& Standard Width Enclosure, 3-Phase, 3-Pole

Max Hp				Cont- actor Amp Rating	NEMA Size	Half Size	Enclosure									
							Open Type ${ }^{\text {(}}$		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight Corrosion Resistant 304 Stainless Steel		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	$\begin{array}{\|l\|} \hline 460 \\ \text { Volts } \\ \hline \end{array}$	$\begin{aligned} & 575 \\ & \text { Volts } \end{aligned}$				Catalog Number	List Price \$								
1/2	1/2	2	2	9	00	-	43BP32A*		43BP32B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
3	3	5	5	18	0	-	43CP32A*		43CP32B*		43CP32W*		43CP32F*		43CP320*	
$71 / 2$	71/2	10	10	27	1	-	43DP32A*		43DP32B*		43DP32W*		43DP32F*		43DP320*	
10	10	15	15	40	-	13/4	43EP32A*		43EP32B*		43EP32W*		43EP32F*		43EP320*	
10	15	25	25	45	2	-	43FP32A*		43FP32B*		43FP32W*		43FP32F*		43FP320*	
15	20	30	30	60	-	21/2	43GP32A*		43GP32B*		43GP32W*		43GP32F*		43GP320*	
25	30	50	50	90	3	-	43HP32A*		43HP32B*		43HP32W*		43HP32F*		43HP320*	
30	40	75	75	115	-	$31 / 2$	43IP32A*		431P32B*		43IP32W*		431P32F*		431P320*	
40	50	100	100	135	4	-	43JG32A*		43JG32B*		43JG32W*		43JG32F*		43JG320*	
75	100	200	200	270	5	-	43LP32A*		43LP32B*		-	-	-	-	43LP320*	
100	200	400	400	540	6	-	43MP32A*		43MP32B*		-	-	-	-	43MP320*	
-	300	600	600	810	$7{ }^{3}$	-	43NH32A*		43NH32B*		-	-	-	-	43NH320*	
-	450	900	900	1215	84	-	43PH32A*		-	-		-	-	-	-	-

Open Type \& Standard Width Enclosure, Single Phase, 3-Wire, 2-Pole ${ }^{\text {(2) }}$

Max Hp		Contactor Amp Rating	NEMA Size	Enclosure									
	208/			Open Type		NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight Corrosion Resistant		NEMA 4X Fiberglass Watertight, Dust-tight Corrosion Resistant		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof	
115 Volts	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \end{array}$			Catalog Number	List Price \$								
1/3	1	9	00	43BP12A*		43BP12B*		Use Size 0	-	Use Size 0	-	Use Size 0	-
1	2	18	0	43CP12A*		43CP12B*		43CP12W*		43CP12F*		43CP120*	
2	3	27	1	43DP12A*		43DP12B*		43DP12W*		43DP12F*		43DP120*	
3	5	35	1P	43EP12A*		43EP12B*		43EP12W*		43EP12F*		43EP120*	

Note: Hp's shown above are based on the overload amp range for the FLA's (per the National Electric Code) of typical industrial motors. All starter sizes carry one maximum Hp rating.
(1) Dual voltage coils not available in size 5-8 starters.
(2) Coils D, F, or G will be wired for incoming voltage. J coil will be wired for separate source. Coils E, H, and L do not apply to single phase starters
3) Only available

F coil $100-250$ V AC $50 / 60 \mathrm{~Hz}$, or DC
H coil $150-500 \mathrm{~V}$ AC $50 / 60 \mathrm{~Hz}$, or DC
(4) Only available

F coil $100-250$ V AC $50 / 60 \mathrm{~Hz}$, or DC
(5) Auxiliary contacts

43B-43E 4th pole built-in
43F-43J 2 NO \& 2 NC

Conversion Table

The tables below list the obsolete order numbers with the corresponding new equivalent order numbers.

Please note this cross is intended as a recommendation only (not all products are exact matches). Check the specifications of the suggested equivalents to ensure they meet your needs.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14BP32BA81	14BUA32BA	14CP320E81	14CUA320E
14BP32BC81	14BUA32BC	14CP320F81	14CUA320F
14BP32BD81	14BUA32BD	14CP320G81	14CUA320G
14BP32BE81	14BUA32BE	14CP320H81	14CUA320H
14BP32BF81	14BUA32BF	14CP320J81	14CUA320J
14BP32BG81	14BUA32BG	14CP320S81	14CUA320S
14BP32BH81	14BUA32BH	14CP32BA81	14CUA32BA
14BP32BJ81	14BUA32BJ	14 CP 32 CC 81	14CUA32BC
14BP32BS81	14BUA32BS	14CP32BD81	14CUA32BD
14BP82BA81	14BUA82BA	14CP32BE81	14CUA32BE
14BP82BC81	14BUA82BC	14CP32BF81	14CUA32BF
14BP82BD81	14BUA82BD	14CP32BG81	14CUA32BG
14BP82BF81	14BUA82BF	14CP32BH81	14CUA32BH
14BP82BG81	14BUA82BG	14CP32BJ81	14CUA32BJ
14BP82BH81	14BUA82BH	14CP32BS81	14CUA32BS
14BP82BJ81	14BUA82BJ	14CP32FA81	14CUA32FA
14BP82BS81	14BUA82BS	14CP32FC81	14CUA32FC
14BP32BA81	14BUB32BA	14CP32FD81	14CUA32FD
14BP32BC81	14BUB32BC	14CP32FF81	14CUA32FF
14BP32BD81	14BUB32BD	14CP32FG81	14CUA32FG
14BP32BE81	14BUB32BE	14CP32FH81	14CUA32FH
14BP32BF81	14BUB32BF	14CP32FJ81	14CUA32FJ
14BP32BG81	14BUB32BG	14CP32FS81	14CUA32FS
14BP32BH81	14BUB32BH	14CP32WA81	14CUA32WA
14BP32BJ81	14BUB32BJ	14CP32WC81	14CUA32WC
14BP32BS81	14BUB32BS	14CP32WD81	14CUA32WD
14BP82BA81	14BUB82BA	14CP32WF81	14CUA32WF
14BP82BC81	14BUB82BC	14CP32WG81	14CUA32WG
14BP82BD81	14BUB82BD	14CP32WH81	14CUA32WH
14BP82BF81	14BUB82BF	14CP32WJ81	14CUA32WJ
14BP82BG81	14BUB82BG	14CP32WS81	14CUA32WS
14BP82BH81	14BUB82BH	14CP32XA81	14CUA32XA
14BP82BJ81	14BUB82BJ	14CP32XC81	14CUA32XC
14BP82BS81	14BUB82BS	14CP32XD81	14CUA32XD
14BP32BA81	14BUC32BA	14CP32XF81	14CUA32XF
14BP32BC81	14BUC32BC	14CP32XG81	14CUA32XG
14BP32BD81	14BUC32BD	14CP32XH81	14CUA32XH
14BP32BE81	14BUC32BE	14CP32XJ81	14CUA32XJ
14BP32BF81	14BUC32BF	14CP32XS81	14CUA32XS
14BP32BG81	14BUC32BG	14CP820A81	14CUA820A
14BP32BH81	14BUC32BH	14CP820C81	14CUA820C
14BP32BJ81	14BUC32BJ	14CP820D81	14CUA820D
14BP32BS81	14BUC32BS	14CP820F81	14CUA820F
14BP82BA81	14BUC82BA	14CP820G81	14CUA820G
14BP82BC81	14BUC82BC	14 CP 820 H 81	14 CUA 220 H
14BP82BD81	14BUC82BD	14CP820J81	14CUA820J
14BP82BF81	14BUC82BF	14 CP 820 S81	14CUA820S
14BP82BG81	14BUC82BG	14CP82BA81	14CUA82BA
14BP82BH81	14BUC82BH	14CP82BC81	14CUA82BC
14BP82BJ81	14BUC82BJ	14CP82BD81	14CUA82BD
14BP82BS81	14BUC82BS	14CP82BF81	14CUA82BF
14CP320A81	14CUA320A	14CP82BG81	14CUA82BG
14CP320C81	14CUA320C	14CP82BH81	14CUA82BH
14CP320D81	14CUA320D	14CP82BJ81	14CUA82BJ

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14CP82BS81	14CUA82BS	14CP32BC81	14CUB32BC
14CP82WA81	14CUA82WA	14CP32BD81	14CUB32BD
14CP82WC81	14CUA82WC	14CP32BE81	14CUB32BE
14CP82WD81	14 CUA 82 WD	14CP32BF81	14CUB32BF
14CP82WF81	14CUA82WF	14CP32BG81	14CUB32BG
14CP82WG81	14CUA82WG	14CP32BH81	14CUB32BH
14CP82WH81	14CUA82WH	14CP32BJ81	14CUB32BJ
14CP82WJ81	14CUA82WJ	14CP32BS81	14CUB32BS
14CP82WS81	14CUA82WS	14CP32FA81	14CUB32FA
14CP120A81	14CUB120A	14CP32FC81	14CUB32FC
14CP120C81	14CUB120C	14CP32FD81	14CUB32FD
14CP120D81	14CUB120D	14CP32FF81	14CUB32FF
14CP120F81	14CUB120F	14CP32FG81	14CUB32FG
14CP120G81	14CUB120G	14CP32FH81	14CUB32FH
14CP120J81	14CUB120J	14CP32FJ81	14CUB32FJ
14CP120S81	14CUB120S	14CP32FS81	14CUB32FS
14CP12BA81	14CUB12BA	14CP32WA81	14CUB32WA
14 CP 12 BC 81	14CUB12BC	14CP32WC81	14CUB32WC
14CP12BD81	14CUB12BD	14CP32WD81	14CUB32WD
14CP12BF81	14CUB12BF	14CP32WF81	14CUB32WF
14CP12BG81	14CUB12BG	14CP32WG81	14CUB32WG
14CP12BJ81	14CUB12BJ	14CP32WH81	14CUB32WH
14CP12BS81	14CUB12BS	14CP32WJ81	14CUB32WJ
14CP12FA81	14CUB12FA	14CP32WS81	14CUB32WS
14CP12FC81	14CUB12FC	14CP32XA81	14CUB32XA
14CP12FD81	14CUB12FD	14CP32XC81	14CUB32XC
14CP12FF81	14CUB12FF	14CP32XD81	14CUB32XD
14CP12FG81	14CUB12FG	14CP32XF81	14CUB32XF
14CP12FJ81	14CUB12FJ	14CP32XG81	14CUB32XG
14CP12FS81	14CUB12FS	14CP32XH81	14CUB32XH
14CP12WA81	14CUB12WA	14CP32XJ81	14CUB32XJ
14CP12WC81	14CUB12WC	14CP32XS81	14CUB32XS
14CP12WD81	14CUB12WD	14CP820A81	14CUB820A
14CP12WF81	14CUB12WF	14CP820C81	14CUB820C
14CP12WG81	14CUB12WG	14CP820D81	14CUB820D
14CP12WJ81	14CUB12WJ	14CP820F81	14CUB820F
14CP12WS81	14CUB12WS	14CP820G81	14CUB820G
14CP12XA81	14CUB12XA	14 CP 820 H 81	14CUB820H
14CP12XC81	14CUB12XC	14CP820J81	14CUB820J
14CP12XD81	14CUB12XD	14CP820S81	14CUB820S
14CP12XF81	14CUB12XF	14CP82BA81	14CUB82BA
14CP12XG81	14CUB12XG	14CP82BC81	14CUB82BC
14CP12XJ81	14CUB12XJ	14CP82BD81	14CUB82BD
14CP12XS81	14CUB12XS	14CP82BF81	14CUB82BF
14CP320A81	14CUB320A	14CP82BG81	14CUB82BG
14CP320C81	14CUB320C	14CP82BH81	14CUB82BH
14CP320D81	14CUB320D	14CP82BJ81	14CUB82BJ
14CP320E81	14CUB320E	14CP82BS81	14CUB82BS
14CP320F81	14CUB320F	14CP82WA81	14CUB82WA
14CP320G81	14CUB320G	14CP82WC81	14CUB82WC
14CP320H81	14CUB320H	14CP82WD81	14CUB82WD
14CP320J81	14CUB320J	14CP82WF81	14CUB82WF
14CP320S81	14CUB320S	14CP82WG81	14CUB82WG
14CP32BA81	14CUB32BA	14CP82WH81	14CUB82WH

Conversion Table

The tables below list the obsolete order numbers with the corresponding new equivalent order numbers.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14CP82WJ81	14CUB82WJ	14CP32BS81	14CUC32BS
14CP82WS81	14CUB82WS	14CP32FA81	14CUC32FA
14CP120A81	14CUC120A	14CP32FC81	14CUC32FC
14CP120C81	14CUC120C	14CP32FD81	14CUC32FD
14CP120D81	14CUC120D	14CP32FF81	14CUC32FF
14CP120F81	14CUC120F	14CP32FG81	14CUC32FG
14CP120G81	14CUC120G	14CP32FH81	14CUC32FH
14CP120J81	14CUC120J	14CP32FJ81	14CUC32FJ
14CP120S81	14CUC120S	14CP32FS81	14CUC32FS
14CP12BA81	14CUC12BA	14CP32WA81	14CUC32WA
14CP12BC81	14CUC12BC	14CP32WC81	14CUC32WC
14CP12BD81	14CUC12BD	14CP32WD81	14CUC32WD
14CP12BF81	14CUC12BF	14CP32WF81	14CUC32WF
14CP12BG81	14CUC12BG	14CP32WG81	14CUC32WG
14CP12BJ81	14CUC12BJ	14CP32WH81	14CUC32WH
14CP12BS81	14CUC12BS	14CP32WJ81	14CUC32WJ
14CP12FA81	14CUC12FA	14CP32WS81	14CUC32WS
14CP12FC81	14CUC12FC	14CP32XA81	14CUC32XA
14CP12FD81	14CUC12FD	14CP32XC81	14CUC32XC
14CP12FF81	14CUC12FF	14CP32XD81	14CUC32XD
14CP12FG81	14CUC12FG	14CP32XF81	14CUC32XF
14CP12FJ81	14CUC12FJ	14CP32XG81	14CUC32XG
14CP12FS81	14CUC12FS	14CP32XH81	14CUC32XH
14CP12WA81	14CUC12WA	14CP32XJ81	14CUC32XJ
14CP12WC81	14CUC12WC	14CP32XS81	14CUC32XS
14CP12WD81	14CUC12WD	14CP820A81	14CUC820A
14CP12WF81	14CUC12WF	14CP820C81	14CUC820C
14CP12WG81	14CUC12WG	14CP820D81	14CUC820D
14CP12WJ81	14CUC12WJ	14CP820F81	14CUC820F
14CP12WS81	14CUC12WS	14CP820G81	14CUC820G
14CP12XA81	14CUC12XA	14 CP 820 H 81	$14 \mathrm{CUC820H}$
14CP12XC81	14CUC12XC	14CP820J81	14CUC820J
14CP12XD81	14CUC12XD	14CP820S81	14CUC820S
14CP12XF81	14CUC12XF	14CP82BA81	14CUC82BA
14CP12XG81	14CUC12XG	14CP82BC81	14CUC82BC
14CP12XJ81	14CUC12XJ	14CP82BD81	14CUC82BD
14CP12XS81	14CUC12XS	14CP82BF81	14CUC82BF
14CP320A81	14CUC320A	14CP82BG81	14CUC82BG
14CP320C81	14CUC320C	14CP82BH81	14CUC82BH
14CP320D81	14CUC320D	14CP82BJ81	14CUC82BJ
14CP320E81	14CUC320E	14CP82BS81	14CUC82BS
14CP320F81	14CUC320F	14CP82WA81	14CUC82WA
14CP320G81	14CUC320G	14CP82WC81	14CUC82WC
14CP320H81	14 CUC 320 H	14CP82WD81	14CUC82WD
14CP320J81	14CUC320J	14CP82WF81	14CUC82WF
14CP320S81	14CUC320S	14CP82WG81	14CUC82WG
14CP32BA81	14CUC32BA	14CP82WH81	14CUC82WH
14CP32BC81	14CUC32BC	14CP82WJ81	14CUC82WJ
14CP32BD81	14CUC32BD	14CP82WS81	14CUC82WS
14CP32BE81	14CUC32BE	14CP120A81	14CUD120A
14CP32BF81	14CUC32BF	14CP120C81	14CUD120C
14CP32BG81	14CUC32BG	14CP120D81	14CUD120D
14CP32BH81	14CUC32BH	14CP120F81	14CUD120F
14CP32BJ81	14CUC32BJ	14CP120G81	14CUD120G

Please note this cross is intended as a recommendation only (not all products are exact matches). Check the specifications of the suggested equivalents to ensure they meet your needs.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14CP120J81	14CUD120J	14CP32FJ81	14CUD32FJ
14CP120S81	14CUD120S	14CP32FS81	14CUD32FS
14CP12BA81	14CUD12BA	14CP32WA81	14CUD32WA
14CP12BC81	14CUD12BC	14CP32WC81	14CUD32WC
14CP12BD81	14CUD12BD	14CP32WD81	14CUD32WD
14CP12BF81	14CUD12BF	14CP32WF81	14CUD32WF
14CP12BG81	14CUD12BG	14CP32WG81	14CUD32WG
14CP12BJ81	14CUD12BJ	14CP32WH81	14CUD32WH
14CP12BS81	14CUD12BS	14CP32WJ81	14CUD32WJ
14CP12FA81	14CUD12FA	14CP32WS81	14CUD32WS
14CP12FC81	14CUD12FC	14CP32XA81	14CUD32XA
14CP12FD81	14CUD12FD	14CP32XC81	14CUD32XC
14CP12FF81	14CUD12FF	14CP32XD81	14CUD32XD
14CP12FG81	14CUD12FG	14CP32XF81	14CUD32XF
14CP12FJ81	14CUD12FJ	14CP32XG81	14CUD32XG
14CP12FS81	14CUD12FS	14CP32XH81	14CUD32XH
14CP12WA81	14CUD12WA	14CP32XJ81	14CUD32XJ
14CP12WC81	14CUD12WC	14CP32XS81	14CUD32XS
14CP12WD81	14CUD12WD	14CP820A81	14CUD820A
14CP12WF81	14CUD12WF	14CP820C81	14CUD820C
14CP12WG81	14CUD12WG	14CP820D81	14CUD820D
14CP12WJ81	14CUD12WJ	14CP820F81	14CUD820F
14CP12WS81	14CUD12WS	14CP820G81	14CUD820G
14CP12XA81	14CUD12XA	14CP820H81	14CUD820H
14CP12XC81	14CUD12XC	14CP820J81	14CUD820J
14CP12XD81	14CUD12XD	14CP820S81	14CUD820S
14CP12XF81	14CUD12XF	14CP82BA81	14CUD82BA
14CP12XG81	14CUD12XG	14CP82BC81	14CUD82BC
14CP12XJ81	14CUD12XJ	14CP82BD81	14CUD82BD
14CP12XS81	14CUD12XS	14CP82BF81	14CUD82BF
14CP320A81	14CUD320A	14CP82BG81	14CUD82BG
14CP320C81	14CUD320C	14CP82BH81	14CUD82BH
14CP320D81	14CUD320D	14CP82BJ81	14CUD82BJ
14CP320E81	14CUD320E	14CP82BS81	14CUD82BS
14CP320F81	14CUD320F	14CP82WA81	14CUD82WA
14CP320G81	14CUD320G	14CP82WC81	14CUD82WC
14CP320H81	14CUD320H	14CP82WD81	14CUD82WD
14CP320J81	14CUD320J	14CP82WF81	14CUD82WF
14CP320S81	14CUD320S	14CP82WG81	14CUD82WG
14CP32BA81	14CUD32BA	14CP82WH81	14CUD82WH
14СР32BC81	14CUD32BC	14CP82WJ81	14CUD82WJ
14CP32BD81	14CUD32BD	14CP82WS81	14CUD82WS
14CP32BE81	14CUD32BE	14DP320A81	14DUA320A
14CP32BF81	14CUD32BF	14DP320C81	14DUA320C
14CP32BG81	14CUD32BG	14DP320D81	14DUA320D
14CP32BH81	14CUD32BH	14DP320F81	14DUA320F
14CP32BJ81	14CUD32BJ	14DP320G81	14DUA320G
14CP32BS81	14CUD32BS	14DP320H81	14DUA320H
14CP32FA81	14CUD32FA	14DP320J81	14DUA320J
14CP32FC81	14CUD32FC	14DP320S81	14DUA320S
14CP32FD81	14CUD32FD	14DP32BA81	14DUA32BA
14CP32FF81	14CUD32FF	14DP32BC81	14DUA32BC
14CP32FG81	14CUD32FG	14DP32BD81	14DUA32BD
14CP32FH81	14CUD32FH	14DP32BE81	14DUA32BE

Conversion Table

The tables below list the obsolete order numbers with the corresponding new equivalent order numbers.

Please note this cross is intended as a recommendation only (not all products are exact matches). Check the specifications of the suggested equivalents to ensure they meet your needs.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14DP32BF81	14DUA32BF	14DP120A81	14DUB120A
14DP32BG81	14DUA32BG	14DP120C81	14DUB120C
14DP32BH81	14DUA32BH	14DP120D81	14DUB120D
14DP32BJ81	14DUA32BJ	14DP120F81	14DUB120F
14DP32BS81	14DUA32BS	14DP120G81	14DUB120G
14DP32FA81	14DUA32FA	14DP120J81	14DUB120J
14DP32FC81	14DUA32FC	14DP120S81	14DUB120S
14DP32FD81	14DUA32FD	14DP12BA81	14DUB12BA
14DP32FE81	14DUA32FE	14DP12BC81	14DUB12BC
14DP32FF81	14DUA32FF	14DP12BD81	14DUB12BD
14DP32FG81	14DUA32FG	14DP12BF81	14DUB12BF
14DP32FH81	14DUA32FH	14DP12BG81	14DUB12BG
14DP32FJ81	14DUA32FJ	14DP12BJ81	14DUB12BJ
14DP32FS81	14DUA32FS	14DP12BS81	14DUB12BS
14DP32WA81	14DUA32WA	14DP12FA81	14DUB12FA
14DP32WC81	14DUA32WC	14DP12FC81	14DUB12FC
14DP32WD81	14DUA32WD	14DP12FD81	14DUB12FD
14DP32WF81	14DUA32WF	14DP12FF81	14DUB12FF
14DP32WG81	14DUA32WG	14DP12FG81	14DUB12FG
14DP32WH81	14DUA32WH	14DP12FJ81	14DUB12FJ
14DP32WJ81	14DUA32WJ	14DP12FS81	14DUB12FS
14DP32WS81	14DUA32WS	14DP12WA81	14DUB12WA
14DP32XA81	14DUA32XA	14DP12WC81	14DUB12WC
14DP32XC81	14DUA32XC	14DP12WD81	14DUB12WD
14DP32XD81	14DUA32XD	14DP12WF81	14DUB12WF
14DP32XF81	14DUA32XF	14DP12WG81	14DUB12WG
14DP32XG81	14DUA32XG	14DP12WJ81	14DUB12WJ
14DP32XH81	14DUA32XH	14DP12WS81	14DUB12WS
14DP32XJ81	14DUA32XJ	14DP12XA81	14DUB12XA
14DP32XS81	14DUA32XS	14DP12XC81	14DUB12XC
14DP820A81	14DUA820A	14DP12XD81	14DUB12XD
14DP820C81	14DUA820C	14DP12XF81	14DUB12XF
14DP820D81	14DUA820D	14DP12XG81	14DUB12XG
14DP820F81	14DUA820F	14DP12XJ81	14DUB12XJ
14DP820G81	14DUA820G	14DP12XS81	14DUB12XS
14DP820H81	14DUA820H	14DP320A81	14DUB320A
14DP820J81	14DUA820J	14DP320C81	14DUB320C
14DP820S81	14DUA820S	14DP320D81	14DUB320D
14DP82BA81	14DUA82BA	14DP320F81	14DUB320F
14DP82BC81	14DUA82BC	14DP320G81	14DUB320G
14DP82BD81	14DUA82BD	14DP320H81	14DUB320H
14DP82BF81	14DUA82BF	14DP320J81	14DUB320J
14DP82BG81	14DUA82BG	14DP320S81	14DUB320S
14DP82BH81	14DUA82BH	14DP32BA81	14DUB32BA
14DP82BJ81	14DUA82BJ	14DP32BC81	14DUB32BC
14DP82BS81	14DUA82BS	14DP32BD81	14DUB32BD
14DP82WA81	14DUA82WA	14DP32BE81	14DUB32BE
14DP82WC81	14DUA82WC	14DP32BF81	14DUB32BF
14DP82WD81	14DUA82WD	14DP32BG81	14DUB32BG
14DP82WF81	14DUA82WF	14DP32BH81	14DUB32BH
14DP82WG81	14DUA82WG	14DP32BJ81	14DUB32BJ
14DP82WH81	14DUA82WH	14DP32BS81	14DUB32BS
14DP82WJ81	14DUA82WJ	14DP32FA81	14DUB32FA
14DP82WS81	14DUA82WS	14DP32FC81	14DUB32FC

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14DP32FD81	14DUB32FD	14DP12BA81	14DUC12BA
14DP32FE81	14DUB32FE	14DP12BC81	14DUC12BC
14DP32FF81	14DUB32FF	14DP12BD81	14DUC12BD
14DP32FG81	14DUB32FG	14DP12BF81	14DUC12BF
14DP32FH81	14DUB32FH	14DP12BG81	14DUC12BG
14DP32FJ81	14DUB32FJ	14DP12BJ81	14DUC12BJ
14DP32FS81	14DUB32FS	14DP12BS81	14DUC12BS
14DP32WA81	14DUB32WA	14DP12FA81	14DUC12FA
14DP32WC81	14DUB32WC	14DP12FC81	14DUC12FC
14DP32WD81	14DUB32WD	14DP12FD81	14DUC12FD
14DP32WF81	14DUB32WF	14DP12FF81	14DUC12FF
14DP32WG81	14DUB32WG	14DP12FG81	14DUC12FG
14DP32WH81	14DUB32WH	14DP12FJ81	14DUC12FJ
14DP32WJ81	14DUB32WJ	14DP12FS81	14DUC12FS
14DP32WS81	14DUB32WS	14DP12WA81	14DUC12WA
14DP32XA81	14DUB32XA	14DP12WC81	14DUC12WC
14DP32XC81	14DUB32XC	14DP12WD81	14DUC12WD
14DP32XD81	14DUB32XD	14DP12WF81	14DUC12WF
14DP32XF81	14DUB32XF	14DP12WG81	14DUC12WG
14DP32XG81	14DUB32XG	14DP12WJ81	14DUC12WJ
14DP32XH81	14DUB32XH	14DP12WS81	14DUC12WS
14DP32XJ81	14DUB32XJ	14DP12XA81	14DUC12XA
14DP32XS81	14DUB32XS	14DP12XC81	14DUC12XC
14DP820A81	14DUB820A	14DP12XD81	14DUC12XD
14DP820C81	14DUB820C	14DP12XF81	14DUC12XF
14DP820D81	14DUB820D	14DP12XG81	14DUC12XG
14DP820F81	14DUB820F	14DP12XJ81	14DUC12XJ
14DP820G81	14DUB820G	14DP12XS81	14DUC12XS
14DP820H81	14DUB820H	14DP320A81	14DUC320A
14DP820J81	14DUB820J	14DP320C81	14DUC320C
14DP820S81	14DUB820S	14DP320D81	14DUC320D
14DP82BA81	14DUB82BA	14DP320F81	14DUC320F
14DP82BC81	14DUB82BC	14DP320G81	14DUC320G
14DP82BD81	14DUB82BD	14DP320H81	14DUC320H
14DP82BF81	14DUB82BF	14DP320J81	14DUC320J
14DP82BG81	14DUB82BG	14DP320S81	14DUC320S
14DP82BH81	14DUB82BH	14DP32BA81	14DUC32BA
14DP82BJ81	14DUB82BJ	14DP32BC81	14DUC32BC
14DP82BS81	14DUB82BS	14DP32BD81	14DUC32BD
14DP82WA81	14DUB82WA	14DP32BE81	14DUC32BE
14DP82WC81	14DUB82WC	14DP32BF81	14DUC32BF
14DP82WD81	14DUB82WD	14DP32BG81	14DUC32BG
14DP82WF81	14DUB82WF	14DP32BH81	14DUC32BH
14DP82WG81	14DUB82WG	14DP32BJ81	14DUC32BJ
14DP82WH81	14DUB82WH	14DP32BS81	14DUC32BS
14DP82WJ81	14DUB82WJ	14DP32FA81	14DUC32FA
14DP82WS81	14DUB82WS	14DP32FC81	14DUC32FC
14DP120A81	14DUC120A	14DP32FD81	14DUC32FD
14DP120C81	14DUC120C	14DP32FE81	14DUC32FE
14DP120D81	14DUC120D	14DP32FF81	14DUC32FF
14DP120F81	14DUC120F	14DP32FG81	14DUC32FG
14DP120G81	14DUC120G	14DP32FH81	14DUC32FH
14DP120J81	14DUC120J	14DP32FJ81	14DUC32FJ
14DP120S81	14DUC120S	14DP32FS81	14DUC32FS

Conversion Table

The tables below list the obsolete order numbers with the corresponding new equivalent order numbers.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14DP32WA81	14DUC32WA	14DP12FA81	14DUD12FA
14DP32WC81	14DUC32WC	14DP12FC81	14DUD12FC
14DP32WD81	14DUC32WD	14DP12FD81	14DUD12FD
14DP32WF81	14DUC32WF	14DP12FF81	14DUD12FF
14DP32WG81	14DUC32WG	14DP12FG81	14DUD12FG
14DP32WH81	14DUC32WH	14DP12FJ81	14DUD12FJ
14DP32WJ81	14DUC32WJ	14DP12FS81	14DUD12FS
14DP32WS81	14DUC32WS	14DP12WA81	14DUD12WA
14DP32XA81	14DUC32XA	14DP12WC81	14DUD12WC
14DP32XC81	14DUC32XC	14DP12WD81	14DUD12WD
14DP32XD81	14DUC32XD	14DP12WF81	14DUD12WF
14DP32XF81	14DUC32XF	14DP12WG81	14DUD12WG
14DP32XG81	14DUC32XG	14DP12WJ81	14DUD12WJ
14DP32XH81	14DUC32XH	14DP12WS81	14DUD12WS
14DP32XJ81	14DUC32XJ	14DP12XA81	14DUD12XA
14DP32XS81	14DUC32XS	14DP12XC81	14DUD12XC
14DP820A81	14DUC820A	14DP12XD81	14DUD12XD
14DP820C81	14DUC820C	14DP12XF81	14DUD12XF
14DP820D81	14DUC820D	14DP12XG81	14DUD12XG
14DP820F81	14DUC820F	14DP12XJ81	14DUD12XJ
14DP820G81	14DUC820G	14DP12XS81	14DUD12XS
14DP820H81	$14 \mathrm{DUC820H}$	14DP320A81	14DUD320A
14DP820J81	14DUC820J	14DP320C81	14DUD320C
14DP820S81	14DUC820S	14DP320D81	14DUD320D
14DP82BA81	14DUC82BA	14DP320F81	14DUD320F
14DP82BC81	14DUC82BC	14DP320G81	14DUD320G
14DP82BD81	14DUC82BD	14DP320H81	14DUD320H
14DP82BF81	14DUC82BF	14DP320J81	14DUD320J
14DP82BG81	14DUC82BG	14DP320S81	14DUD320S
14DP82BH81	14DUC82BH	14DP32BA81	14DUD32BA
14DP82BJ81	14DUC82BJ	14DP32BC81	14DUD32BC
14DP82BS81	14DUC82BS	14DP32BD81	14DUD32BD
14DP82WA81	14DUC82WA	14DP32BE81	14DUD32BE
14DP82WC81	14DUC82WC	14DP32BF81	14DUD32BF
14DP82WD81	14DUC82WD	14DP32BG81	14DUD32BG
14DP82WF81	14DUC82WF	14DP32BH81	14DUD32BH
14DP82WG81	14DUC82WG	14DP32BJ81	14DUD32BJ
14DP82WH81	14DUC82WH	14DP32BS81	14DUD32BS
14DP82WJ81	14DUC82WJ	14DP32FA81	14DUD32FA
14DP82WS81	14DUC82WS	14DP32FC81	14DUD32FC
14DP120A81	14DUD120A	14DP32FD81	14DUD32FD
14DP120C81	14DUD120C	14DP32FE81	14DUD32FE
14DP120D81	14DUD120D	14DP32FF81	14DUD32FF
14DP120F81	14DUD120F	14DP32FG81	14DUD32FG
14DP120G81	14DUD120G	14DP32FH81	14DUD32FH
14DP120J81	14DUD120J	14DP32FJ81	14DUD32FJ
14DP120S81	14DUD120S	14DP32FS81	14DUD32FS
14DP12BA81	14DUD12BA	14DP32WA81	14DUD32WA
14DP12BC81	14DUD12BC	14DP32WC81	14DUD32WC
14DP12BD81	14DUD12BD	14DP32WD81	14DUD32WD
14DP12BF81	14DUD12BF	14DP32WF81	14DUD32WF
14DP12BG81	14DUD12BG	14DP32WG81	14DUD32WG
14DP12BJ81	14DUD12BJ	14DP32WH81	14DUD32WH
14DP12BS81	14DUD12BS	14DP32WJ81	14DUD32WJ

Please note this cross is intended as a recommendation only (not all products are exact matches). Check the specifications of the suggested equivalents to ensure they meet your needs.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14DP32WS81	14DUD32WS	14DP32FF81	14DUE32FF
14DP32XA81	14DUD32XA	14DP32FG81	14DUE32FG
14DP32XC81	14DUD32XC	14DP32FH81	14DUE32FH
14DP32XD81	14DUD32XD	14DP32FJ81	14DUE32FJ
14DP32XF81	14DUD32XF	14DP32FS81	14DUE32FS
14DP32XG81	14DUD32XG	14DP32WA81	14DUE32WA
14DP32XH81	14DUD32XH	14DP32WC81	14DUE32WC
14DP32XJ81	14DUD32XJ	14DP32WD81	14DUE32WD
14DP32XS81	14DUD32XS	14DP32WF81	14DUE32WF
14DP820A81	14DUD820A	14DP32WG81	14DUE32WG
14DP820C81	14DUD820C	14DP32WH81	14DUE32WH
14DP820D81	14DUD820D	14DP32WJ81	14DUE32WJ
14DP820F81	14DUD820F	14DP32WS81	14DUE32WS
14DP820G81	14DUD820G	14DP32XA81	14DUE32XA
14DP820H81	14DUD820H	14DP32XC81	14DUE32XC
14DP820J81	14DUD820J	14DP32XD81	14DUE32XD
14DP820S81	14DUD820S	14DP32XF81	14DUE32XF
14DP82BA81	14DUD82BA	14DP32XG81	14DUE32XG
14DP82BC81	14DUD82BC	14DP32XH81	14DUE32XH
14DP82BD81	14DUD82BD	14DP32XJ81	14DUE32XJ
14DP82BF81	14DUD82BF	14DP32XS81	14DUE32XS
14DP82BG81	14DUD82BG	14DP820A81	14DUE820A
14DP82BH81	14DUD82BH	14DP820C81	14DUE820C
14DP82BJ81	14DUD82BJ	14DP820D81	14DUE820D
14DP82BS81	14DUD82BS	14DP820F81	14DUE820F
14DP82WA81	14DUD82WA	14DP820G81	14DUE820G
14DP82WC81	14DUD82WC	14DP820H81	14DUE820H
14DP82WD81	14DUD82WD	14DP820J81	14DUE820J
14DP82WF81	14DUD82WF	14DP820S81	14DUE820S
14DP82WG81	14DUD82WG	14DP82BA81	14DUE82BA
14DP82WH81	14DUD82WH	14DP82BC81	14DUE82BC
14DP82WJ81	14DUD82WJ	14DP82BD81	14DUE82BD
14DP82WS81	14DUD82WS	14DP82BF81	14DUE82BF
14DP320A81	14DUE320A	14DP82BG81	14DUE82BG
14DP320C81	14DUE320C	14DP82BH81	14DUE82BH
14DP320D81	14DUE320D	14DP82BJ81	14DUE82BJ
14DP320F81	14DUE320F	14DP82BS81	14DUE82BS
14DP320G81	14DUE320G	14DP82WA81	14DUE82WA
14DP320H81	14DUE320H	14DP82WC81	14DUE82WC
14DP320J81	14DUE320J	14DP82WD81	14DUE82WD
14DP320S81	14DUE320S	14DP82WF81	14DUE82WF
14DP32BA81	14DUE32BA	14DP82WG81	14DUE82WG
14DP32BC81	14DUE32BC	14DP82WH81	14DUE82WH
14DP32BD81	14DUE32BD	14DP82WJ81	14DUE82WJ
14DP32BE81	14DUE32BE	14DP82WS81	14DUE82WS
14DP32BF81	14DUE32BF	14EP320A81	14EUE320A
14DP32BG81	14DUE32BG	14EP320C81	14EUE320C
14DP32BH81	14DUE32BH	14EP320D81	14EUE320D
14DP32BJ81	14DUE32BJ	14EP320E81	14EUE320E
14DP32BS81	14DUE32BS	14EP320F81	14EUE320F
14DP32FA81	14DUE32FA	14EP320G81	14EUE320G
14DP32FC81	14DUE32FC	14EP320H81	14EUE320H
14DP32FD81	14DUE32FD	14EP320J81	14EUE320J
14DP32FE81	14DUE32FE	14EP320S81	14EUE320S

Conversion Table

The tables below list the obsolete order numbers with the corresponding new equivalent order numbers.

Please note this cross is intended as a recommendation only (not all products are exact matches). Check the specifications of the suggested equivalents to ensure they meet your needs.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14EP32BA81	14EUE32BA	14EP82WG81	14EUE82WG
14EP32BC81	14EUE32BC	14EP82WH81	14EUE82WH
14EP32BD81	14EUE32BD	14EP82WJ81	14EUE82WJ
14EP32BE81	14EUE32BE	14EP82WS81	14EUE82WS
14EP32BF81	14EUE32BF	14FP320A81	14FUF320A
14EP32BG81	14EUE32BG	14FP320C81	14FUF320C
14EP32BH81	14EUE32BH	14FP320D81	14FUF320D
14EP32BJ81	14EUE32BJ	14FP320F81	14FUF320F
14EP32BS81	14EUE32BS	14FP320G81	14FUF320G
14EP32FA81	14EUE32FA	14FP320H81	14FUF320H
14EP32FC81	14EUE32FC	14FP320J81	14FUF320J
14EP32FD81	14EUE32FD	14FP320S81	14FUF320S
14EP32FF81	14EUE32FF	14FP32BA81	14FUF32BA
14EP32FG81	14EUE32FG	14FP32BC81	14FUF32BC
14EP32FH81	14EUE32FH	14FP32BD81	14FUF32BD
14EP32FJ81	14EUE32FJ	14FP32BE81	14FUF32BE
14EP32FS81	14EUE32FS	14FP32BF81	14FUF32BF
14EP32WA81	14EUE32WA	14FP32BG81	14FUF32BG
14EP32WC81	14EUE32WC	14FP32BH81	14FUF32BH
14EP32WD81	14EUE32WD	14FP32BJ81	14FUF32BJ
14EP32WE81	14EUE32WE	14FP32BS81	14FUF32BS
14EP32WF81	14EUE32WF	14FP32FA81	14FUF32FA
14EP32WG81	14EUE32WG	14FP32FC81	14FUF32FC
14EP32WH81	14EUE32WH	14FP32FD81	14FUF32FD
14EP32WJ81	14EUE32WJ	14FP32FF81	14FUF32FF
14EP32WS81	14EUE32WS	14FP32FG81	14FUF32FG
14EP32XA81	14EUE32XA	14FP32FH81	14FUF32FH
14EP32XC81	14EUE32XC	14FP32FJ81	14FUF32FJ
14EP32XD81	14EUE32XD	14FP32FS81	14FUF32FS
14EP32XF81	14EUE32XF	14FP32WA81	14FUF32WA
14EP32XG81	14EUE32XG	14FP32WC81	14FUF32WC
14EP32XH81	14EUE32XH	14FP32WD81	14FUF32WD
14EP32XJ81	14EUE32XJ	14FP32WE81	14FUF32WE
14EP32XS81	14EUE32XS	14FP32WF81	14FUF32WF
14EP820A81	14EUE820A	14FP32WG81	14FUF32WG
14EP820C81	14EUE820C	14FP32WH81	14FUF32WH
14EP820D81	14EUE820D	14FP32WJ81	14FUF32WJ
14EP820F81	14EUE820F	14FP32WS81	14FUF32WS
14EP820G81	14EUE820G	14FP32XA81	14FUF32XA
14EP820H81	14EUE820H	14FP32XC81	14FUF32XC
14EP820J81	14EUE820J	14FP32XD81	14FUF32XD
14EP820S81	14EUE820S	14FP32XF81	14FUF32XF
14EP82BA81	14EUE82BA	14FP32XG81	14FUF32XG
14EP82BC81	14EUE82BC	14FP32XH81	14FUF32XH
14EP82BD81	14EUE82BD	14FP32XJ81	14FUF32XJ
14EP82BF81	14EUE82BF	14FP32XS81	14FUF32XS
14EP82BG81	14EUE82BG	14FP820A81	14FUF820A
14EP82BH81	14EUE82BH	14FP820C81	14FUF820C
14EP82BJ81	14EUE82BJ	14FP820D81	14FUF820D
14EP82BS81	14EUE82BS	14FP820F81	14FUF820F
14EP82WA81	14EUE82WA	14FP820G81	14FUF820G
14EP82WC81	14EUE82WC	14FP820H81	14FUF820H
14EP82WD81	14EUE82WD	14FP820J81	14FUF820J
14EP82WF81	14EUE82WF	14FP820S81	14FUF820S

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 14	
14FP82BA81	14FUF82BA	14HP320F81	14HUG320F
14FP82BC81	14FUF82BC	14HP320G81	14HUG320G
14FP82BD81	14FUF82BD	14HP320H81	14HUG320H
14FP82BF81	14FUF82BF	14HP320J81	14HUG320J
14FP82BG81	14FUF82BG	14HP320S81	14HUG320S
14FP82BH81	14FUF82BH	14HP32BA81	14HUG32BA
14FP82BJ81	14FUF82BJ	14HP32BC81	14HUG32BC
14FP82BS81	14FUF82BS	14HP32BD81	14HUG32BD
14FP82WA81	14FUF82WA	14HP32BE81	14HUG32BE
14FP82WC81	14FUF82WC	14HP32BF81	14HUG32BF
14FP82WD81	14FUF82WD	14HP32BG81	14HUG32BG
14FP82WF81	14FUF82WF	14HP32BH81	14HUG32BH
14FP82WG81	14FUF82WG	14HP32BJ81	14HUG32BJ
14FP82WH81	14FUF82WH	14HP32BS81	14HUG32BS
14FP82WJ81	14FUF82WJ	14HP32FA81	14HUG32FA
14FP82WS81	14FUF82WS	14HP32FC81	14HUG32FC
14FP120A81	14FUG120A	14HP32FD81	14HUG32FD
14FP120C81	14FUG120C	14HP32FF81	14HUG32FF
14FP120D81	14FUG120D	14HP32FG81	14HUG32FG
14FP120F81	14FUG120F	14HP32FH81	14HUG32FH
14FP120G81	14FUG120G	14HP32FJ81	14HUG32FJ
14FP120J81	14FUG120J	14HP32FS81	14HUG32FS
14FP120S81	14FUG120S	14HP32WA81	14HUG32WA
14FP12BA81	14FUG12BA	14HP32WC81	14HUG32WC
14FP12BC81	14FUG12BC	14HP32WD81	14HUG32WD
14FP12BD81	14FUG12BD	14HP32WF81	14HUG32WF
14FP12BF81	14FUG12BF	14HP32WG81	14HUG32WG
14FP12BG81	14FUG12BG	14HP32WH81	14HUG32WH
14FP12BJ81	14FUG12BJ	14HP32WJ81	14HUG32WJ
14FP12BS81	14FUG12BS	14HP32WS81	14HUG32WS
14FP12FA81	14FUG12FA	14HP32XA81	14HUG32XA
14FP12FC81	14FUG12FC	14HP32XC81	14HUG32XC
14FP12FD81	14FUG12FD	14HP32XD81	14HUG32XD
14FP12FF81	14FUG12FF	14HP32XF81	14HUG32XF
14FP12FG81	14FUG12FG	14HP32XG81	14HUG32XG
14FP12FJ81	14FUG12FJ	14HP32XH81	14HUG32XH
14FP12FS81	14FUG12FS	14HP32XJ81	14HUG32XJ
14FP12WA81	14FUG12WA	14HP32XS81	14HUG32XS
14FP12WC81	14FUG12WC	14HP820A81	14HUG820A
14FP12WD81	14FUG12WD	14HP820C81	14HUG820C
14FP12WF81	14FUG12WF	14HP820D81	14HUG820D
14FP12WG81	14FUG12WG	14HP820F81	14HUG820F
14FP12WJ81	14FUG12WJ	14HP820G81	14HUG820G
14FP12WS81	14FUG12WS	14HP820H81	14HUG820H
14FP12XA81	14FUG12XA	14HP820J81	14HUG820J
14FP12XC81	14FUG12XC	14HP820S81	14HUG820S
14FP12XD81	14FUG12XD	14HP82BA81	14HUG82BA
14FP12XF81	14FUG12XF	14HP82BC81	14HUG82BC
14FP12XG81	14FUG12XG	14HP82BD81	14HUG82BD
14FP12XJ81	14FUG12XJ	14HP82BF81	14HUG82BF
14FP12XS81	14FUG12XS	14HP82BG81	14HUG82BG
14HP320A81	14HUG320A	14HP82BH81	14HUG82BH
14HP320C81	14HUG320C	14HP82BJ81	14HUG82BJ
14HP320D81	14HUG320D	14HP82BS81	14HUG82BS

Conversion Table

The tables below list the obsolete order numbers with the corresponding new equivalent order numbers.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 14		CLASS 22	
14HP82WA81	14HUG82WA	22BP32BF81	22BUA32BF
14HP82WC81	14HUG82WC	22BP32BF81	22BUB32BF
14HP82WD81	14HUG82WD	22BP32BF81	22BUC32BF
14HP82WF81	14HUG82WF	22BP32BG81	22BUA32BG
14HP82WG81	14HUG82WG	22BP32BG81	22BUB32BG
14HP82WH81	14HUG82WH	22BP32BG81	22BUC32BG
14HP82WJ81	14HUG82WJ	22BP32BH81	22BUA32BH
14HP82WS81	14HUG82WS	22BP32BH81	22BUB32BH
14JG320A81	14JUH320A	22BP32BH81	22BUC32BH
14JG320C81	14JUH320C	22BP32BJ81	22BUA32BJ
14JG320D81	14 JUH 320 D	22BP32BJ81	22BUB32BJ
14JG320F81	14JUH320F	22BP32BJ81	22BUC32BJ
14JG320G81	14JUH320G	22CP320A81	22CUA320A
14JG320H81	14 JUH 320 H	22CP320A81	22CUB320A
14JG320J81	14JUH320J	22CP320A81	22CUC320A
14JG32BA81	14JUH32BA	22CP320A81	22CUD320A
14JG32BC81	14JUH32BC	22CP320C81	22CUA320C
14JG32BD81	14 JUH 32 BD	22CP320C81	22CUB320C
14JG32BE81	14JUH32BE	22CP320C81	22CUC320C
14JG32BF81	14JUH32BF	22CP320C81	22CUD320C
14JG32BG81	14JUH32BG	22CP320D81	22CUA320D
14JG32BH81	14 JUH 32 BH	22CP320D81	22CUB320D
14JG32BJ81	14JUH32BJ	22CP320D81	22CUC320D
14JG32FA81	14JUH32FA	22CP320D81	22CUD320D
14JG32FC81	14JUH32FC	22CP320F81	22CUA320F
14JG32FD81	14JUH32FD	22CP320F81	22CUB320F
14JG32FF81	14JUH32FF	22CP320F81	22CUC320F
14JG32FG81	14JUH32FG	22CP320F81	22CUD320F
14JG32FH81	14JUH32FH	22CP320G81	22CUA320G
14JG32FJ81	14JUH32FJ	22CP320G81	22CUB320G
14JG32WA81	14JUH32WA	22CP320G81	22CUC320G
14JG32WC81	14JUH32WC	22CP320G81	22CUD320G
14JG32WD81	14JUH32WD	22CP320H81	22CUA320H
14JG32WF81	14JUH32WF	22CP320H81	22CUB320H
14JG32WG81	14JUH32WG	22CP320H81	$22 \mathrm{CUC320H}$
14JG32WH81	14JUH32WH	22CP320H81	22CUD320H
14JG32WJ81	14JUH32WJ	22CP320J81	22CUA320J
14JG32XA81	14JUH32XA	22CP320J81	22CUB320J
14JG32XC81	14JUH32XC	22CP320J81	22CUC320J
14JG32XD81	14JUH32XD	22CP320J81	22CUD320J
14JG32XF81	14JUH32XF	22CP32BA81	22CUA32BA
14JG32XG81	14JUH32XG	22CP32BA81	22CUB32BA
14JG32XH81	14JUH32XH	22CP32BA81	22CUC32BA
14JG32XJ81	14JUH32XJ	22CP32BA81	22CUD32BA
CLASS 22		22CP32BC81	22CUA32BC
22BP32BA81	22BUA32BA	22CP32BC81	22CUB32BC
22BP32BA81	22BUB32BA	22CP32BC81	22CUC32BC
22BP32BA81	22BUC32BA	22CP32BC81	22CUD32BC
22BP32BC81	22BUA32BC	22CP32BD81	22CUA32BD
22BP32BC81	22BUB32BC	22CP32BD81	22CUB32BD
22BP32BC81	22BUC32BC	22CP32BD81	22CUC32BD
22BP32BD81	22BUA32BD	22CP32BD81	22CUD32BD
22BP32BD81	22BUB32BD	22CP32BF81	22CUA32BF
22BP32BD81	22BUC32BD	22CP32BF81	22CUB32BF

Please note this cross is intended as a recommendation only (not all products are exact matches). Check the specifications of the suggested equivalents to ensure they meet your needs.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 22		CLASS 22	
22CP32BF81	22CUC32BF	22CP32WF81	22CUA32WF
22CP32BF81	22CUD32BF	22CP32WF81	22CUB32WF
22CP32BG81	22CUA32BG	22CP32WF81	22CUC32WF
22CP32BG81	22CUB32BG	22CP32WF81	22CUD32WF
22CP32BG81	22CUC32BG	22CP32WG81	22CUA32WG
22CP32BG81	22CUD32BG	22CP32WG81	22CUB32WG
22CP32BH81	22CUA32BH	22CP32WG81	22CUC32WG
22CP32BH81	22CUB32BH	22CP32WG81	22CUD32WG
22CP32BH81	22CUC32BH	22CP32WH81	22CUA32WH
22CP32BH81	22CUD32BH	22CP32WH81	22 CUB 32 WH
22CP32BJ81	22CUA32BJ	22CP32WH81	22CUC32WH
22CP32BJ81	22CUB32BJ	22CP32WH81	22CUD32WH
22CP32BJ81	22CUC32BJ	22CP32WJ81	22CUA32WJ
22CP32BJ81	22CUD32BJ	22CP32WJ81	22CUB32WJ
22CP32FA81	22CUA32FA	22CP32WJ81	22CUC32WJ
22CP32FA81	22CUB32FA	22CP32WJ81	22CUD32WJ
22CP32FA81	22CUC32FA	22DP320A81	22DUA320A
22CP32FA81	22CUD32FA	22DP320A81	22DUB320A
22CP32FC81	22CUA32FC	22DP320A81	22DUC320A
22CP32FC81	22CUB32FC	22DP320A81	22DUD320A
22CP32FC81	22CUC32FC	22DP320A81	22DUE320A
22CP32FC81	22CUD32FC	22DP320C81	22DUA320C
22CP32FD81	22CUA32FD	22DP320C81	22DUB320C
22CP32FD81	22CUB32FD	22DP320C81	22DUC320C
22CP32FD81	22CUC32FD	22DP320C81	22DUD320C
22CP32FD81	22CUD32FD	22DP320C81	22DUE320C
22CP32FF81	22CUA32FF	22DP320D81	22DUA320D
22CP32FF81	22CUB32FF	22DP320D81	22DUB320D
22CP32FF81	22CUC32FF	22DP320D81	22DUC320D
22CP32FF81	22CUD32FF	22DP320D81	22DUD320D
22CP32FG81	22CUA32FG	22DP320D81	22DUE320D
22CP32FG81	22CUB32FG	22DP320F81	22DUA320F
22CP32FG81	22CUC32FG	22DP320F81	22DUB320F
22CP32FG81	22CUD32FG	22DP320F81	22DUC320F
22CP32FH81	22CUA32FH	22DP320F81	22DUD320F
22CP32FH81	22CUB32FH	22DP320F81	22DUE320F
22CP32FH81	22CUC32FH	22DP320G81	22DUA320G
22CP32FH81	22CUD32FH	22DP320G81	22DUB320G
22CP32FJ81	22CUA32FJ	22DP320G81	22DUC320G
22CP32FJ81	22CUB32FJ	22DP320G81	22DUD320G
22CP32FJ81	22CUC32FJ	22DP320G81	22DUE320G
22CP32FJ81	22CUD32FJ	22DP320H81	22DUA320H
22CP32WA81	22CUA32WA	22DP320H81	22DUB320H
22CP32WA81	22CUB32WA	22DP320H81	22DUC320H
22CP32WA81	22CUC32WA	22DP320H81	22DUD320H
22CP32WA81	22CUD32WA	22DP320H81	22DUE320H
22CP32WC81	22CUA32WC	22DP320J81	22DUA320J
22CP32WC81	22CUB32WC	22DP320J81	22DUB320J
22CP32WC81	22CUC32WC	22DP320J81	22DUC320J
22CP32WC81	22CUD32WC	22DP320J81	22DUD320J
22CP32WD81	22CUA32WD	22DP320J81	22DUE320J
22CP32WD81	22CUB32WD	22DP32BA81	22DUA32BA
22CP32WD81	22CUC32WD	22DP32BA81	22DUB32BA
22CP32WD81	22CUD32WD	22DP32BA81	22DUC32BA

Conversion Table

The tables below list the obsolete order numbers with the corresponding new equivalent order numbers.

Please note this cross is intended as a recommendation only (not all products are exact matches). Check the specifications of the suggested equivalents to ensure they meet your needs.

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 22		CLASS 22	
22DP32BA81	22DUD32BA	22DP32FG81	22DUC32FG
22DP32BA81	22DUE32BA	22DP32FG81	22DUD32FG
22DP32BC81	22DUA32BC	22DP32FG81	22DUE32FG
22DP32BC81	22DUB32BC	22DP32FH81	22DUA32FH
22DP32BC81	22DUC32BC	22DP32FH81	22DUB32FH
22DP32BC81	22DUD32BC	22DP32FH81	22DUC32FH
22DP32BC81	22DUE32BC	22DP32FH81	22DUD32FH
22DP32BD81	22DUA32BD	22DP32FH81	22DUE32FH
22DP32BD81	22DUB32BD	22DP32FJ81	22DUA32FJ
22DP32BD81	22DUC32BD	22DP32FJ81	22DUB32FJ
22DP32BD81	22DUD32BD	22DP32FJ81	22DUC32FJ
22DP32BD81	22DUE32BD	22DP32FJ81	22DUD32FJ
22DP32BF81	22DUA32BF	22DP32FJ81	22DUE32FJ
22DP32BF81	22DUB32BF	22DP32WA81	22DUA32WA
22DP32BF81	22DUC32BF	22DP32WA81	22DUB32WA
22DP32BF81	22DUD32BF	22DP32WA81	22DUC32WA
22DP32BF81	22DUE32BF	22DP32WA81	22DUD32WA
22DP32BG81	22DUA32BG	22DP32WA81	22DUE32WA
22DP32BG81	22DUB32BG	22DP32WC81	22DUA32WC
22DP32BG81	22DUC32BG	22DP32WC81	22DUB32WC
22DP32BG81	22DUD32BG	22DP32WC81	22DUC32WC
22DP32BG81	22DUE32BG	22DP32WC81	22DUD32WC
22DP32BH81	22DUA32BH	22DP32WC81	22DUE32WC
22DP32BH81	22DUB32BH	22DP32WD81	22DUA32WD
22DP32BH81	22DUC32BH	22DP32WD81	22DUB32WD
22DP32BH81	22DUD32BH	22DP32WD81	22DUC32WD
22DP32BH81	22DUE32BH	22DP32WD81	22DUD32WD
22DP32BJ81	22DUA32BJ	22DP32WD81	22DUE32WD
22DP32BJ81	22DUB32BJ	22DP32WF81	22DUA32WF
22DP32BJ81	22DUC32BJ	22DP32WF81	22DUB32WF
22DP32BJ81	22DUD32BJ	22DP32WF81	22DUC32WF
22DP32BJ81	22DUE32BJ	22DP32WF81	22DUD32WF
22DP32FA81	22DUA32FA	22DP32WF81	22DUE32WF
22DP32FA81	22DUB32FA	22DP32WG81	22DUA32WG
22DP32FA81	22DUC32FA	22DP32WG81	22DUB32WG
22DP32FA81	22DUD32FA	22DP32WG81	22DUC32WG
22DP32FA81	22DUE32FA	22DP32WG81	22DUD32WG
22DP32FC81	22DUA32FC	22DP32WG81	22DUE32WG
22DP32FC81	22DUB32FC	22DP32WH81	22DUA32WH
22DP32FC81	22DUC32FC	22DP32WH81	22DUB32WH
22DP32FC81	22DUD32FC	22DP32WH81	22DUC32WH
22DP32FC81	22DUE32FC	22DP32WH81	22DUD32WH
22DP32FD81	22DUA32FD	22DP32WH81	22DUE32WH
22DP32FD81	22DUB32FD	22DP32WJ81	22DUA32WJ
22DP32FD81	22DUC32FD	22DP32WJ81	22DUB32WJ
22DP32FD81	22DUD32FD	22DP32WJ81	22DUC32WJ
22DP32FD81	22DUE32FD	22DP32WJ81	22DUD32WJ
22DP32FF81	22DUA32FF	22DP32WJ81	22DUE32WJ
22DP32FF81	22DUB32FF	22EP320A81	22EUE320A
22DP32FF81	22DUC32FF	22EP320F81	22EUE320F
22DP32FF81	22DUD32FF	22EP32BA81	22EUE32BA
22DP32FF81	22DUE32FF	22EP32BC81	22EUE32BC
22DP32FG81	22DUA32FG	22EP32BD81	22EUE32BD
22DP32FG81	22DUB32FG	22EP32BF81	22EUE32BF

Obsolete Order Number	New Equivalent Order Number	Obsolete Order Number	New Equivalent Order Number
CLASS 22		CLASS 22	
22EP32BG81	22EUE32BG	22HP32BE81	22HUG32BE
22EP32BH81	22EUE32BH	22HP32BF81	22HUG32BF
22EP32BJ81	22EUE32BJ	22HP32BG81	22HUG32BG
22EP32FA81	22EUE32FA	22HP32BH81	22HUG32BH
22EP32FC81	22EUE32FC	22HP32BJ81	22HUG32BJ
22EP32FD81	22EUE32FD	22HP32FA81	22HUG32FA
22EP32FF81	22EUE32FF	22HP32FC81	22HUG32FC
22EP32FG81	22EUE32FG	22HP32FD81	22HUG32FD
22EP32FH81	22EUE32FH	22HP32FF81	22HUG32FF
22EP32FJ81	22EUE32FJ	22HP32FG81	22HUG32FG
22EP32WA81	22EUE32WA	22HP32FH81	22HUG32FH
22EP32WC81	22EUE32WC	22HP32FJ81	22HUG32FJ
22EP32WD81	22EUE32WD	22HP32WA81	22HUG32WA
22EP32WF81	22EUE32WF	22HP32WC81	22HUG32WC
22EP32WG81	22EUE32WG	22HP32WD81	22HUG32WD
22EP32WH81	22EUE32WH	22HP32WF81	22HUG32WF
22FP320A81	22FUF320A	22HP32WG81	22HUG32WG
22FP320C81	22FUF320C	22HP32WH81	22HUG32WH
22FP320D81	22FUF320D	22HP32WJ81	22HUG32WJ
22FP320F81	22FUF320F	22JG320A81	22JUH320A
22FP320G81	22FUF320G	22JG320C81	22JUH320C
22FP320H81	22FUF320H	22JG320D81	22JUH320D
22FP320J81	22FUF320J	22JG320F81	22JUH320F
22FP32BA81	22FUF32BA	22JG320G81	22JUH320G
22FP32BC81	22FUF32BC	22JG320H81	22 JUH 320 H
22FP32BD81	22FUF32BD	22JG320J81	22JUH320J
22FP32BF81	22FUF32BF	22JG32BA81	22JUH32BA
22FP32BG81	22FUF32BG	22JG32BC81	22JUH32BC
22FP32BH81	22FUF32BH	22JG32BD81	22JUH32BD
22FP32BJ81	22FUF32BJ	22JG32BE81	22JUH32BE
22FP32FA81	22FUF32FA	22JG32BF81	22JUH32BF
22FP32FC81	22FUF32FC	22JG32BG81	22JUH32BG
22FP32FD81	22FUF32FD	22JG32BH81	22JUH32BH
22FP32FF81	22FUF32FF	22JG32BJ81	22JUH32BJ
22FP32FG81	22FUF32FG	22JG32FA81	22JUH32FA
22FP32FH81	22FUF32FH	22JG32FC81	22JUH32FC
22FP32FJ81	22FUF32FJ	22JG32FD81	22JUH32FD
22FP32WA81	22FUF32WA	22JG32FF81	22JUH32FF
22FP32WC81	22FUF32WC	22JG32FG81	22JUH32FG
22FP32WD81	22FUF32WD	22JG32FH81	22JUH32FH
22FP32WF81	22FUF32WF	22JG32FJ81	22JUH32FJ
22FP32WG81	22FUF32WG	22JG32WA81	22JUH32WA
22FP32WH81	22FUF32WH	22JG32WC81	22JUH32WC
22FP32WJ81	22FUF32WJ	22JG32WD81	22JUH32WD
22HP320A81	22HUG320A	22JG32WF81	22JUH32WF
22HP320C81	22HUG320C	22JG32WG81	22JUH32WG
22HP320D81	22HUG320D	22JG32WH81	22 JUH 32 WH
22HP320F81	22HUG320F	22JG32WJ81	22JUH32WJ
22HP320G81	22HUG320G		
22HP320H81	22HUG320H		
22HP320J81	22HUG320J		
22HP32BA81	22HUG32BA		
22HP32BC81	22HUG32BC		
22HP32BD81	22HUG32BD		

Catalog Numbering System

General

Overload Relays

Solid State ESP200, Class 48, 958 and 958L
General

Features	Benefits
- Trip Classes -5, 10, 20, or 30 Selectable by DIP-switches	- Field changeable reduces time and inventory. Suitable for light, normal and heavy starting conditions
- Phase Loss Protection - Trips in less than 3 Seconds	- Protects motor burn out and minimizes motor heating up
- Phase Unbalance - Trips based on Trip Class selected	- Minimizes temperature rise of the motor on a asymmetrical three-phase-system
- Ground Fault - Trips 60% of Motor Current	- Provides optimum system protection of motors against high-resistance short-circuits or ground faults due to moisture, condensation, damage of insulation or any other reason
- Trip Indicator - Visible	- Save time, faster to identify overload Trip
- Ambient Insensitive	- Prevents nuisance tripping
- No Heaters Required	- Saves cost and eliminates time for installation of heaters
- Self-Powered - No outside source required	- Reduce cost for external power supply
- FLA dial with wide Adjustment - $4: 1$ ratio	- Provides wide range, reduces inventory
- Self Protected in short circuit condition (when used with	- Unlike bimetal overloads, this eliminates replacement of the
proper fuses or motor starter protector)	

Applications

ESP200 Solid State Overloads

Designed for a wide variety of applications. The field selectable Trip Class 5, 10,20 or 30 can easily be set by 2 DIP switches. This eliminates the guess factor of an application requirements and provides reduced inventory for multiple applications. The inherent benefits of the ESP200 ultimately results in cost savings for the user.
ESP200 has a 4:1 current adjustment range with a fine adjustment dial labeled in full load amps. The heaterless overload minimizes the heat trapped in the enclosures, reduces cost for ventilation or cooling. Easily accessible Reset button, provides visible and audible indications to ensure the tripped overload is ready to re-start.
Designed to replace thermal, or ESP100 overload relays for any application. It has the same dimensions and footprint of the ESP100 overload relays. It can be directly coupled to the contactors or remotely mounted. In addition to the NEMA contactor applications, it also can be used with other types of controllers for applications requiring DP or IEC contactors. As a retrofit for other brands, it is used with a plate available for retrofitting competitive products.

958 or 958L Solid State Overload

958 ESP200 Special Use Solid State Overloads

This overload is specifically designed for special applications, to provide excellent protection of hermetically sealed and artificially cooled motors that require ambient insensitive and quick trip response times. Combined with a series lockout relay, it provides unsurpassed protection for hermetically sealed compressor motors in air conditioning applications. The combination of high trip speed, current adjustment, and ease of installation makes it suitable for these applications. The trip curves are customized to provide proper overload protection for these loads without causing nuisance tripping.
It has selectable manual or automatic reset mode, and provides ground fault selection to protect equipment from damage in case of a fault.

958L ESP200 Oil Field Solid State Overloads

Specifically designed for the oil market and the cycling loads experienced with these types of pumping applications. These overload relays provide protection for standard motors, oil well pump motors, multi-torque connections, and ultra-high slip motors.

Rotors can be damaged in less than 15 seconds during motor stall conditions if electrical power is not removed. To prevent damage during motor stall, the 958L solid state overload removes the power in 7 seconds at 250% lock rotor current. Therefore, the motor casing and the rotor will be protected from being damage saving the user money and time.

Overload Relays

Solid State Class 48, ESP200 and 3RB20

Selection

Solid State-Class 48

Current Adjustment Range	Phase	Frame Size	Catalog Number	MRPD/MLFB	List Price \$
0.25-1	3	"A"	48ATA3S00	3UB81134AB2	
0.75-3.4	3	"A"	48ATB3S00	3UB81134BB2	
3-12	3	"A1"	48ATC3S00	3UB81234CW2	
5.5-22	3	"A1"	48ATD3S00	3UB81234DW2	
10-40	3	"A1"	48ATE3S00	3UB81234EW2	
13-52	3	"B"	48BTF3S00	3UB81334FW2	
25-100	3	"B"	48BTG3S00	3UB81334GW2	
50-200	3	"B"	48BTH3S00	3UB81334HW2	
100-300	3	"A1" (2)	48ATJ3S00	3UB81234JW2	
133-400	3	"A1" (8)	48ATK3S00	3UB81234KW2	
200-600	3	"A1" (4)	48ATL3S00	3UB81234LW2	
250-750	3	"A1" (7)	48ATM3S00	3UB81234MW2	
400-1220	3	"A1" (5)	48ATN3S00	3UB81234NW2	
0.25-1	1	"A"	48ATA1S00	3UB88134AB2	
0.75-3.4	1	"A"	48ATB1S00	3UB88134BB2	
3-12	1	"A1"	48ATC1S00	3UB88234CW2	
5.5-22	1	"A1"	48ATD1S00	3UB88234DW2	
25-100	1	"B"	48BTG1S00	3UB88334GW2	

Solid State-3RB206③(6, 3-Phase, Manual/Auto Reset

| For Contactor Size | Setting Range Amps | Class 10
 Catalog Number | List Price \$ | Class 20
 Catalog Number |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | $55-250$ | 3RB2066-1GC2 | | List Price \$ |

Retrofit Plates for Contactors, Class 48

Replacement for Starter Sizes	ESP200 Overload Frame Size ${ }^{(1)}$	Retrofit Plate Suffix	Plate Kit Separate	Price Adder $\$$
Size 00- $13 / 4$	A or A1	1 P	49ASMP1	
Size $2,21 / 2$	B	2 P		
Size $3,31 / 2$	B	3 P	49ASMP2	
Size 4	B	4 P	49ASMP3	

(1) To determine frame size of replacement solid state overload, refer to retrofit plates table above
(2) Requires use of 300:5 Current Transformers-3 of 97CT005.
(3) Product Category: IEC.
(4) Requires use of 600:5 Current Transformers-3 of 97CT008
5) Requires use of 1200:5 Current Transformers-3 of 97CT012.
(6) Overload has busbar connections.
(7) Requires use of 750:5 Current Transformers-3 of 97CT009.
(8) Requires use of 400:5 Current Transformers-3 of 97CT006.

Overload Relays

Special Use Solid State Overloads, Class 958 and 958L

Selection

Ordering Information

Dimensions see page 9/133.

Current Transformers		
Rating	Catalog No .	List Price \$
150:5	97CT002	
200:5	97Ст003	
250:5	97CT004	
300:5	97CT005	
400:5	97Ст006	
600:5	97Ст008	
750:5	97Ст009	
1200:5	$97 \mathrm{CT012}$	

Solid State-Class 958 and 958L

Current Adjustment Range	Phase	Frame Size	Catalog Number	MRPD/MLFB	List Price \$
10-40	3	"A1"	958EB3SA	3UB85235EW2	
25-100	3	"B"	958GB3SA	3UB85335GW2	
50-200	3	"B"	958HB3SA	3UB85335HW2	
5.5-22	3	"A1"	958LDB3SA	3UB85236DW2	
10-40	3	"A1"	958LEB3SA	3UB85236EW2	
13-52	3	"B"	958LFB3SA	3UB85336FW2	
25-100	3	"B"	958LGB3SA	3UB85336GW2	
50-200	3	"B"	958LHB3SA	3UB85336HW2	

Time - Current - Characteristics CLASS 48

Time - Current - Characteristics CLASS 958, 958L

Trip - curve depending on unbalance CLASS 20

Features

- Heavy Duty NEMA Starters
- Solid State Overload Relays
- Fusible or MCP
- Heavy Duty Disconnect Handle
- Flexibility with Field Modifications
- Alternator Transfer on De-energization
- UL Listed for Outdoor Use
- UL Listed file \#E14900 (class 83); file \#E185287 (class 84)
- CSA certified file \#LR 6535 (class 83 \& 84)

Application

Duplex pump controls are designed to perform one or both of two distinct functions: duplexing and alternation. The duplexing function provides capacity for system peaking or above normal demand without having the full motor capacity spinning at all times. It also provides standby capacity for use when one of the motors or pumps is disabled. The duplexing function is also referred to as lead/lag or main/standby. When two pumps or compressors are controlled by a duplex controller, they are started in sequence as necessary to attain preset values of pressure, flow or liquid level.

Two field devices such as pressure switches or float switches provide electrical signals to the duplex controller. One remote device is set to initiate the starting of the lead motor. This motor is rated to handle normal system demand. The second motor is usually the same rating and is referred to as the lag motor. It is only energized when the system demand is greater than the capacity of the lead motor. The lag motor is started when the second remote device is signalling for more output than the lead motor can produce.
The alternation function reverses the lead and lag mode for the two motors in a duplex system. Upon alternation the first motor as described above becomes the lag motor and the second motor assumes the lead function. The alternation is usually programmed to occur at any time both pumps come to rest. The alternation function equalizes wear on the two machines and extends the life of seals and bearings.

Enclosure Types

Duplex controllers are available in NEMA 1, 12/3/3R, 4 (painted) and 4/4X (stainless) enclosures. Enclosures protect personnel from contact with live parts and depending upon the construction, protect the control in varying degrees from physical damage and harmful atmospheres. All enclosures are supplied with corrosion resistant finishes.

Heavy Duty Starters

These Duplex controllers use the same starters described in the heavy duty starter section of this catalog.

Siemens Type ETI Circuit Breaker

The ETI circuit breaker is a device designed specifically for application in motor circuits. The ETI is a magnetic only protective device designed to provide protection against short circuit current.
The instantaneous-only type ETI circuit breaker employs adjustable magnetic trip settings to allow broader application ranges and a higher degree of motor short circuit protection.

Features

Two control transformers may be provided for low voltage control to safeguard personnel from high voltage. One transformer is required for each starter to provide independent control circuits.
A Hand-Off-Auto selector switch for each starter may be mounted in the enclosure door or furnished separately for remote control. Test push buttons or pilot lights may also be installed on the enclosure.
Solid-state Overload Relays are supplied as standard.

Heavy Duty Disconnect Switches

The disconnect switch that goes the distance in durability, performance and reliability has the following advantages:

- Visible blades for the highest level of safety
- Double break switching action to reduce arcing, increase lifetime and eliminate the "electric hinge"
- More rugged positive action switch
- Oversized lugs are standard
- Line side shield to help guard personnel from contact with live parts
- Higher horsepower rating for design E high efficiency motors
- UL listed for Ilsco, Burndy and T\&B crimp type lugs
- The 200A switch accepts up to 300 MCM versus 250 MCM wire size
Its rugged construction - with a high fault withstand rating of 100 kA at 600 VAC when fused with class R rated fuses - meets the most stringent industry standards set forth by the automotive, petro-chemical, and pulp and paper industries. UL recognized and CSA certified, our disconnect switches are available either non-fusible or fusible with class R and class J fuse clips.

Non-Combination, Class 83

Selection

Non-Combination (with Solid-State Overload)

Max Hp				NEMA Size	$\begin{array}{\|l} \hline \text { Half } \\ \text { Size } \\ \hline \end{array}$	Overload		Enclosure							
						Amp Range	Frame Size	NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel		NEMA 4 Painted Watertight, Dust-tight		NEMA 12 NEMA 3/3R Industrial Use Weatherproof	
$\begin{array}{\|l} 200 \\ \text { Volts } \end{array}$	$\begin{array}{\|l} 230 \\ \text { Volts } \end{array}$	460 Volts	575 Volts					Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
1/6	1/6	1/3	1/2	0	-	0.25-1	A	83CUA92BF		83CUA92WF		83CUA92EF		83CUA920F	
1/2	$3 / 4$	11/2	2	0	-	0.75-3.4	A	83CUB92BF		83CUB92WF		83CUB92EF		83CUB920F	
2	2	5	5	0	-	3-12	A1	83CUC92BF		83CUC92WF		83CUC92EF		83CUC920F	
3	3	-	-	0	-	5.5-22	A1	83CUD92BF		83CUD92WF		83CUD92EF		83CUD920F	
1/6	1/6	1/3	1/2	1	-	0.25-1	A	83DUA92BF		83DUA92WF		83DUA92EF		83DUA920F	
1/2	3/4	11/2	2	1	-	0.75-3.4	A	83DUB92BF		83DUB92WF		83DUB92EF		83DUB920F	
2	2	5	5	1	-	3-12	A1	83DUC92BF		83DUC92WF		83DUC92EF		83DUC920F	
3	3	10	10	1	-	5.5-22	A1	83DUD92BF		83DUD92WF		83DUD92EF		83DUD920F	
71/2	71/2	-	-	1	-	10-40	A1	83DUE92BF		83DUE92WF		83DUE92EF		83DUE920F	
10	10	15	15	-	13/4	10-40	A1	83EUE92BF		83EUE92WF		83EUE92EF		83EUE920F	
10	15	25	25	2	-	13-52	B	83FUF92BF		83FUF92WF		83FUF92EF		83FUF920F	
15	20	30	30	-	21/2	25-100	B	83GUG92BF		83GUG92WF		83GUG92EF		83GUG920F	
25	30	50	50	3	-	25-100	B	83HUG92BF		83HUG92WF		83HUG92EF		83HUG920F	
30	40	75	75	-	31/2	50-200	B	83IUH92BF		83IUH92WF		83IUH92EF		831UH920F	
40	50	100	100	4	-	50-200	B	83JUH92BF		83JUH92WF		83JUH92EF		83JUH920F	

(1) Not available on standard alternator style (' 92 ' in the catalog number).

Combination Disconnect（Fusible \＆Non－Fusible），Class 84

Selection

Two Disconnect Switches with Solid－State Overload

Max Hp				$\begin{array}{\|l} \text { NEMA } \\ \text { Size } \end{array}$	$\begin{array}{\|l} \text { Half } \\ \text { Size } \\ \hline \end{array}$	Overload		Disc． Amp Range	Enclosure							
$\begin{array}{\|l} \hline 200 \\ \text { Volts } \\ \hline \end{array}$	$\begin{array}{\|l} 230 \\ \text { Volts } \\ \hline \end{array}$	460 Volts	575 Volts			Amp Range	Frame Size		NEMA 1 General Purpose		NEMA 4／4X Stainless Watertight，Dust－tight， Corrosion Resistant 304 Stainless Steel		NEMA 4 Painted Watertight，Dust－tight		NEMA 12 NEMA 3／3R Industrial Use Weatherproof	
									Catalog Number	List Price \＄	Catalog Number	List Price \＄	Catalog Number	List Price \＄	Catalog Number	List Price \＄
1／6	1／6	1／3	1／2	0	－	0．25－1	A	30	84CUA92BDF		84CUA92WDF		84CUA92EDF		84CUA920DF	
1／2	3／4	11／2	2	0	－	0．75－3．4	A	30	84CUB92BDF		84CUB92WDF		84CUB92EDF		84CUB920DF	
2	2	5	5	0	－	3－12	A1	30	84CUC92BDF		84CUC92WDF		84CUC92EDF		84CUC920DF	
3	3	－	－	0	－	5．5－22	A1	30	84CUD92BDF		84CUD92WDF		84CUD92EDF		84CUD920DF	
1／6	1／6	1／3	1／2	1	－	0．25－1	A	30	84DUA92BDF		84DUA92WDF		84DUA92EDF		84DUA920DF	
1／2	3／4	11／2	2	1	－	0．75－3．4	A	30	84DUB92BDF		84DUB92WDF		84DUB92EDF		84DUB920DF	
2	2	5	5	1	－	3－12	A1	30	84DUC92BDF		84DUC92WDF		84DUC92EDF		84DUC920DF	
3	3	10	10	1	－	5．5－22	A1	30	84DUD92BDF		84DUD92WDF		84DUD92EDF		84DUD920DF	
71／2	$71 / 2$	－	－	1	－	10－40	A1	30	84DUE92BDF		84DUE92WDF		84DUE92EDF		84DUE920DF	
10	10	15	15	－	13／4	10－40	A1	60	84EUE92BDF		84EUE92WDF		84EUE92EDF		84EUE920DF	
10	15	25	25	2	－	13－52	B	60	84FUF92BDF		84FUF92WDF		84FUF92EDF		84FUF920DF	
15	20	30	30	－	21／2	25－100	B	100	84GUG92BDF		84GUG92WDF		84GUG92EDF		84GUG920DF	
20	25	50	50	3	－	25－100	B	100	84HUG92BDF		84HUG92WDF		84HUG92EDF		84HUG920DF	
30	40	75	75	－	31／2	50－200	B	200	84IUH92BDF		84IUH92WDF		84IUH92EDF		84IUH920DF	
40	50	100	100	4	－	50－200	B	200	84JUH92BDF		84JUH92WDF		84JUH92EDF		84JUH920DF	

Note：Hp＇s shown above are based on the overload amp range for the FLA＇s（per the National Electric Code）of typical industrial motors．All starter sizes carry one maximum Hp rating．
（1）Not available on standard alternator style （＇ 92 ＇in the catalog number）．

Selection

2 Motor Circuit Protectors (with Solid-State Overload)

Max Hp				$\begin{array}{\|l} \text { NEMA } \\ \text { Size } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Half } \\ \text { Size } \end{array} \\ \hline \end{array}$	Overload		Motor Circuit Interrupter ETI \qquad	Enclosure							
									NEMA 1 General Purpose		NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant, 304 Stainless Steel,		NEMA 4 Painted Watertight, Dust-tight		NEMA 12 NEMA 3/3R Industrial Use, Weatherproof	
200 Volts	230 Volts	460 Volts	575 Volts			Amp Range	$\begin{array}{\|l\|l\|} \hline \text { Frame } \\ \text { Size } \end{array}$		Catalog Number	List Price \$						
1/6	1/6	$1 / 3$	1/2	0	-	0.25-1	A	3	84CUA92BMF		84CUA92WMF		84CUA92EMF		84CUA920MF	
1/2	3/4	11/2	2	0	-	0.75-3.4	A	3	84CUB92BMF		84CUB92WMF		84CUB92EMF		84CUB920MF	
2	2	5	5	0	-	3-12	A1	10	84CUC92BMF		84CUC92WMF		84CUC92EMF		84CUC920MF	
3	3	-	-	0	-	5.5-22	A1	25	84CUD92BMF		84CUD92WMF		84CUD92EMF		84CUD920MF	
1/6	1/6	1/3	1/2	1	-	0.25-1	A	3	84DUA92BMF		84DUA92WMF		84DUA92EMF		84DUA920MF	
1/2	3/4	11/2	2	1	-	0.75-3.4	A	3	84DUB92BMF		84DUB92WMF		84DUB92EMF		84DUB920MF	
2	2	5	5	1	-	3-12	A1	10	84DUC92BMF		84DUC92WMF		84DUC92EMF		84DUC920MF	
3	,	10	10	1	-	5.5-22	A1	25	84DUD92BMF		84DUD92WMF		84DUD92EMF		84DUD920MF	
71/2	71/2	-	-	1	-	10-40	A1	30	84DUE92BMF		84DUE92WMF		84DUE92EMF		84DUE920MF	
-	-	15	15	-	13/4	10-40	A1	40	84EUE92BMF		84EUE92WMF		84EUE92EMF		84EUE920MF	
10	15	25	25	2	-	13-52	B	50	84FUF92BMF		84FUF92WMF		84FUF92EMF		84FUF920MF	
15	20	30	30	-	21/2	25-100	B	100	84GUG92BMF		84GUG92WMF		84GUG92EMF		84GUG920MF	
20	25	50	50	3	-	25-100	B	100	84HUG92BMF		84HUG92WMF		84HUG92EMF		84HUG920MF	
30	40	75	75	-	31/2	50-200	B	125	84IUH92BMF		841UH92WMF		841UH92EMF		841UH920MF	
40	50	100	100	4	-	50-200	B	150	84JUH92BMF		84JUH92WMF		84JUH92EMF		84JUH920MF	

(1) Not available on standard alternator style (' 92 ' in the catalog number).

Pump Control Panels

Slim Line NEMA Pump Controller for the Agricultural industry, Class 82

General

Features

The Class 82 Slim Line NEMA Pump was designed specifically for the agricultural market. It is well suited for irrigation and similar pumping applications and is built to withstand the harsh elements of the outdoors

Typical applications include:

- Crop irrigation
- Sprinklers, misters and soakers
- Watering for livestock and other dairy applications
- Ground dewatering for excavation and construction sites

Why you should use the Class 82 Pump Panel

- Simplicity and its compact lightweight design makes this an attractive solution to your budgeting challenges.
- The contactor is NEMA rated to provide reliable motor control and protection expected in the most demanding applications
- The ESP200 solid-state overload relay has a protective coating on the circuit board which gives it superior protection against high humidity, condensation and corro-
 sive environments.
- Its size and weight is about half that of the Class 87 which increases the ease of installation.

Catalog Numbering System

Pump Control Panels

Slim Line NEMA Pump Controller for the Agricultural industry, Class 82

General

Product Selection

Max Hp Rating Motor Voltage		NEMA Size	Overload Relay Amp Range	Disc. Amp Rating	Fuse Clip Amp/ Volts	HOA \& Start Push Button		HOA \& Start Push Button (Extra wide Encl)	
230	460					Catalog Number	List Price \$	Catalog Number	List Price \$
-	1	1	0.75-3.4	30	30A/600V	82ADB6FB*		82BDB6FB* ${ }^{\text {(3) }}$	
-	5	1	3-12	30	30A/600V	82ADC6FB*		82BDC6FB* ${ }^{\text {(3) }}$	
-	10	1	5.5-22	30	30A/600V	82ADD6FB*		82BDD6FB** ${ }^{(3)}$	
-	10	1	10-40	30	30A/600V	-		82BDE6FB* ${ }^{(3)}$	
2	-	1	3-12	30	$30 \mathrm{~A} / 250 \mathrm{~V}$	82ADC6FA*		82BDC6FA* ${ }^{3}$	
3	-	1	5.5-22	30	30A/250V	82ADD6FA*		82BDD6FA* ${ }^{\text {(3) }}$	
$71 / 2$	-	1	10-40	30	30A/250V	82ADE6FA*		82BDE6FA* ${ }^{(3)}$	
-	25	2	13-52	60	60A/600V	82AFF6FD* ${ }^{(3)}$		-	
15	-	2	13-52	60	60A/250V	82AFF6FC* ${ }^{(3)}$		-	

Replace the (${ }^{*}$) with a letter from the coil table.
(3) Available in May 2017.

Accessories

	Description	Catalog Number	List Price
	$3 / 4$ " type 3R conduit hub	ECHS075	
	1 1" type 3R conduit hub	ECHS100	
	1 1/4" type 3R conduit hub Disconnect switch auxiliary contacts 2 NOO/2 NC DPDT (NEMA A600)	ECHS125	

[^84](2) H coil is not available with a 250 v disconnect

Slim Line NEMA Pump Controller for the Agricultural industry, Class 82

Selection

Class 82 Technical information

General Technical Data:

Weight	Size 1 (Standard Encl.) 23lbs. Size 1 (Extra Wide Encl.) 47lbs. Size 2 (Standard Encl.) 47lbs.
Height \times Width \times Depth	Size 1 (Standard Encl.) $26 \times 12 \times 5$ in. Size 1 (Extra Wide Encl.) $35 \times 17 \times 6 \mathrm{in}$. Size 2 (Standard Encl.) $35 \times 17 \times 6 \mathrm{in}$.
Maximum altitude	6560 ft .
Ambient (outside enclosure) storage temperature	$(-30 \text { to } 65)^{\circ} \mathrm{C} /(-22 \text { to } 149)^{\circ} \mathrm{F}$
Ambient (outside enclosure) operating temperature	$(-20 \text { to } 40)^{\circ} \mathrm{C} /(-4 \text { to } 104)^{\circ} \mathrm{F}$
Country of origin	Mexico
Horsepower Rating:	
See selection table above	See selection table above
Contactor:	
Number of NO main contacts	3
Amp rating	32A, 50A
Mechanical operating cycles	10,000,000
Internal / Standard Auxiliary Contact:	
Number of NC / NO auxiliary contacts	1NC / 1NO
NEMA contact rating designation	A600 AC / Q600 DC
Optional auxiliary contacts available	Yes
Coil:	
Voltage	$220 / 230 \mathrm{~V} 50 / 60 \mathrm{~Hz}, 460 \mathrm{~V} 60 \mathrm{~Hz}$, or $110 / 120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Apparent pull-in / holding power	$81 \mathrm{VA} / 10.5 \mathrm{VA}$
Normal coil operating limits (\% of rated voltage)	$80 \%-110 \%$ at 60 Hz
Pick-up time / Drop-out time	8-40 / 4-16 msec
Overload Relay:	
Current range	0.75-3.4 or 3-12 or 5.5-22 or 10-40 Amps or 13-52 Amps
Trip Class	Class 5 / 10 (factory set) / 20 / 30
Trip detection	Overload, phase failure, phase unbalance, ground fault
Phase failure sensitivity	Trip time after phase loss: < 3 sec
Repeat accuracy	Within 1\%
Reset options	Manual, automatic and remote
External reset	Yes
Test function	Electronics and manual actuation
Conformal coating on printed circuit board	Yes
Number of NC / NO auxiliary contacts	1NC /1NO
Rating of auxiliary contacts	B600 AC / R300 DC
Single contact isolation	600 V
Dual contact isolation	300 V differing polarity / 600 V common polarity

Slim Line NEMA Pump Controller for the Agricultural industry, Class 82

Technical

Class 82 Technical information

Disconnect Switch:	
Rating	30 A with $30 \mathrm{~A} / 600$ or $30 \mathrm{~A} / 250 \mathrm{~V}$ Class H fuse clips 60 A with $60 \mathrm{~A} / 600$ or $60 \mathrm{~A} / 250 \mathrm{~V}$ Class H fuse clips
Fuse type accepted	Class H, J or R
Enclosure:	
Type	NEMAType 3/3R enclosure
Rating	Weather proof for outdoor use
Standard Control Devices:	
Hand-Off-Auto selector switch	3SU1 30mm, round, metal with matte finish
Start push button	3SU1 30 mm , round, metal with matte finish
Mounting / Wiring:	
Mounting orientation	Vertical
Mounting type	Pole and surface
Disconnect line side connection type / torque	Box lug / 35 lb in (14-10); 40 lb in (8); 45 lb in ($6-4$) AWG
Disconnect line side solid and stranded conductors	$1 \times\left(14-2\right.$ AWG) $60 / 75^{\circ} \mathrm{C}$ AL or CU
Power terminal block connection type / torque	Screw / 24-32 lb - in
Power terminal block solid and stranded conductors	1x(18-2 AWG) $75^{\circ} \mathrm{C}$ CU
Control terminal block connection type / torque	Screw / 12-18 lb - in
Control terminal block solid and stranded conductors	1x(22-8 AWG) $75^{\circ} \mathrm{C} \mathrm{CU}$
Coil connection type / torque	Screw / 7-10 lb in
Coil solid and standed conductors	$2 \times\left(16-12\right.$ AWG) CU $60 / 75^{\circ} \mathrm{C}$
Main auxiliary contact connection type / torque	Screw / 7-10 lb in
Main auxiliary contact solid and stranded conductors	$2 x(20-16), 2 x(18-14) 75^{\circ} \mathrm{C} \mathrm{CU}$
OLR auxiliary contact connection type / torque	Screw / 7-10 lb in
OLR auxiliary contact solid and starnded conductors	2x(20-14 AWG) CU $60 / 75^{\circ} \mathrm{C}$
Short Circuit Current Rating:	
Fuses	10kA@600V (Class H or K); 85kA@600V (Class R or J)
Certificates / Approvals:	
cULus	UL (file no. E185287)
UL rated Service Entrance Equipment	ISO 9001 certification

Features

- Fully Gasketed NEMA 3R Rainproof Enclosures
- 100,000 Amp Interrupting Capacity with Class R Fuses
- Heavy Duty NEMA Starters
- Solid State Overload Relays
- Heavy Duty Disconnect Handle
- Available in Reduced Voltage Versions
- Bold Pilot Legend on Front
- Generous Accessory Space
- Copper Grounding Lug For Three \#6 Wires
- UL Listed for Outdoor Use and Service Equipment File \#E185287

Application

Heavy duty pump control panels are designed to withstand the most demanding environments. Typical applications include irrigation, agriculture, petrochemical, wastewater treatment and wherever motor control is challenged by harsh elements.
Installation is easy. Panels are factory wired to provide flexible control and protect against short circuits and overloads. Ample space is provided for field modifications and installation of accessories.

The pump control panels feature a full sized removable auxiliary panel for the mounting of accessories. The fusible version features fuse clips for full sized RK5 or compact class J fuses and accessory mounting space for the most commonly used accessories.
Class 87 pump panels become jockey pump panels with the addition of a pressure switch. The jockey pump's primary function is to maintain water pressure at a preset level and thus compensate for possible shortage of water in the pumping system. When the water pressure drops below the preset level, the pressure switch energizes the starter which in turn activates the jockey pump. The water pressure is then brought back up to the desired level. This insures the maintenance of proper water pressure at all times.

Features

Specified by Fortune 500 companies, Siemens NEMA starters offer prolonged service under severe duty conditions. NEMA rated, these starters utilize large silver cadmium oxide contacts and wide copper heat sinks to ensure rapid heat dissipation and maximum electrical life.

ESP200 solid state overload relay

Refer to the section on Class 48 overload relays for features and benefits. Pump panels are factory set at trip Class 10.

HOA and Start Pushbutton

Every pump panel comes with an HOA and a start pushbutton.

Half Size Starters

Siemens motor matched starters feature all the rugged performance characteristics of our NEMA rated starter sizes, but are fractionally sized to more closely match your exact motor rating. As a result, significant economic savings are made possible without sacrificing the reliability you expect from a heavy duty starter.
These additional starter sizes have the reserve capacity to handle occasional plugging and jogging without de-rating the device.
Siemens motor matched can save hundreds, even thousands of dollars per project.
Siemens motor matched starters comply with NEMA, UL and CSA standards.

Panels are predrilled for easy repositioning of the fuse trailer block to accommodate 250 and 600 volt fuses and full sized RK or compact J fuses. Circuit breakers are also available.

Heavy Duty Fusible
 Disconnect Switch

The disconnect switch has the following advantages:

- Visible blades for the highest level of safety
- Double Break Switching Action to reduce arcing, increase lifetime and eliminate the "electric hinge"
- Oversized lugs are standard
- Line side shield to help guard personnel from contact with live parts

Motor Circuit Protector

The motor circuit protector provides fast, accurate fault clearing that will minimize damage to the motor and control apparatus and protect branch circuit conductors. Continuous current ratings and adjustable trip ranges meet NEC requirements for full load and locked rotor currents. The adjustable instantaneous trip point can be set precisely to assure fault protection and eliminate nuisance tripping.

Removable Door

Enclosure door may be lifted off to make wiring easier.

Mounting Flanges

Convenient flanges at top and bottom of the enclosure provide easy mounting. They fit pole or flat surfaces using keyhole slots.

Quarter Turn Latches

Quarter turns are utilized to secure the door.

Wind Catches

A wind catch is provided to prevent the door from slamming shut (or open) due to high wind conditions.

Safety Disconnect Handle

Up to three padlocks can be used to lock the disconnect in the OFF position. Maintenance work can be performed without hazard to personnel.

External Reset

The overload relay may be quickly reset by means of a button on the front of the enclosure.

Ground Lugs

Insures proper connecting of ground wires and lightning arresters.

UL Listed

Assures proper construction throughout control panel.

Reduced Voltage

Available in part winding, wye delta and auto transformer types, these controls may be necessary where the power company limits the amount of current drawn from its lines, or where starting torque must be reduced.
Fully gasketed NEMA 3/12 weatherproof enclosures are supplied with Class 88 reduced voltage starters.
Part Winding Starters apply starting current in timed steps to minimize voltage fluctuations.
Auto Transformer Starters maintain a closed circuit during transition and eliminate voltage or current surges. They draw less current than part winding starters and are well suited for starting motors over 20 Hp .
Wye Delta starters and motors are used in areas where the power supply is inadequate to supply full starting current without objectionable voltage drop or for applications where low starting torque is required. Centrifugal pumps and similar apparatus requiring a low starting torque are typical applications. Both ends of all three windings of the wye delta motor are brought out so that they may be accessible for reconnecting from wye to delta.

Auxiliary Equipment

Pilot Lights are easily installed on the enclosure. Oil Tight and Heavy Duty, they meet NEMA A600 requirements.
Lightning Arresters protect the control panel from lightning induced surges.
Undervoltage and Phase Sensing Relays protect the pump against low voltage, voltage imbalance, loss of phase and phase reversal.
Anti-Backspin Timers prevent the motor from starting during motor/shaft backspin.

Class 87 NEMA Vacuum Starter Pump Control Panels

The Siemens vacuum starter pump controllers are designed for the harshest environments. Typical environments include chemical, petrochemical, waste water treatment and mining. Contaminations present in these severe environments are detrimental to conventional air-break contacts decreasing their life expectancy and reliability. The Siemens vacuum starter pump controllers are well suited for these environments because the contacts are contained in hermetically sealed contact tubes. This prevents contaminates in the atmosphere from affecting the operation of the contacts. Additionally, neither arcs nor arcing gases are produced which dramatically increases the electrical endurance of the contacts.

Pump Control Panels

Standard Pump Panel with Solid State Overload，Class 87

	Ordering Information Field Modification Kits see page 9／100． Factory Modifications see page 9／114． Dimensions see page 9／152． Wiring Diagrams see page 9／169． Replacement Parts see page 9／120． Sizes 1－4 will be supplied standard with a $240 / 480$ volt coil．To change the coil voltage，change the 8th character in the catalog number to the letter shown in the coil table． Sizes $5 \& 6$ will be supplied standard with a 480 volt coil．To change the coil voltage，change the 8th character in the catalog number to the letter shown in the coil table．	Coil Table	
		$\begin{aligned} & 60 \mathrm{~Hz} \text { Voltage } \\ & \hline 24 \\ & 120 \\ & 110-120 / 220-240 \\ & 200-208 \\ & 220-240 \\ & 220-240 / 440-480 \\ & 277 \\ & 440-480 \\ & 550-600 \end{aligned}$	Letter J F A® D G C

Fusible Disconnect

Max Hp				NEMA Size	Half Size	Overload		Disc． Amp Range	Fuse Clip Amp／Volts	Catalog Number	List Price \＄
$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 460 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 575 \\ & \text { Volts } \end{aligned}$			Amp Range	Frame Size				
－	－	1	1	1	－	0．75－3．4²	A	30	30A／600V	87DUB6FC	
－	－	5	5	1	－	3－12	A1	30	$30 \mathrm{~A} / 600 \mathrm{~V}$	87DUC6FC	
－	－	10	10	1	－	5．5－22	A1	30	30A／600V	87DUD6FC	
－	－	10	10	1	－	5．5－22	A1	60	60A／600V	87DUD60C	
－	－	15	15	－	13／4	10－40	A1	30	30A／600V	87EUE6FC	
－	－	15	15	－	13／4	10－40	A1	60	60A／600V	87EUE60C	
－	－	25	25	2	－	13－52	B	60	60A／600V	87FUF6FC	
－	－	25	25	2	－	13－52	B	100	100A／600V	87FUF60C	
－	－	30	30	－	21／2	25－100	B	60	60A／600V	87GUG6FC	
－	－	30	30	－	21／2	25－100	B	100	100A／600V	87GUG60C	
－	－	50	50	3	－	25－100	B	100	100A／600V	87HUG6FC	
－	－	50	50	3	－	25－100	B	200	200A／600V	87HUG60C	
－	－	75	75	－	31／2	50－200	B	200	200A／600V	87IUH6FC	
－	－	100	100	4	－	50－200	B	200	200A／600V	87JUH6FC	
－	－	200	200	5	－	55－250	－	400	400A／600V	87LPU6FH	
－	－	250	－	6	－	160－630	－	600	600A／600V	87MSW6FH	
2	2	－	－	1	－	3－12	A1	30	30A／250V	87DUC6LC	
3	3	－	－	1	－	5．5－22	A1	30	$30 \mathrm{~A} / 250 \mathrm{~V}$	87DUD6LC	
71／2	71／2	－	－	1	－	10－40	A1	30	30A／250V	87DUE6LC	
71／2	71／2	－	－	1	－	10－40	A1	60	60A／250V	87DUE6PC	
10	10	－	－	－	13／4	10－40	A1	60	60A／250V	87EUE6LC	
10	15	－	－	2	－	13－52	B	60	60A／250V	87FUF6LC	
10	15	－	－	2	－	13－52	B	100	100A／250V	87FUF6PC	
15	20	－	－	－	21／2	25－100	B	60	60A／250V	87GUG6LC	
15	20	－	－	－	21／2	25－100	B	100	100A／250V	87GUG6PC	
20	30	－	－	3	－	25－100	B	100	100A／250V	87HUG6LC	
25	30	－	－	3	－	25－100	B	200	200A／250V	87HUG6PC	
30	40	－	－	－	31／2	50－200	B	200	200A／250V	87IUH6LC	
40	50	－	－	4	－	50－200	B	200	200A／250V	87JUH6LC	
75	100	－	－	5	－	55－250	－	400	400A／250V	87LPU6LG	

Circuit Breaker

Max Hp				NEMA Size	Half Size	Overload		Motor Circuit Interrupter ETI Amps	Catalog Number	List Price
$\begin{array}{\|l\|} \hline 200 \\ \text { Volts } \end{array}$	$\begin{array}{\|l\|} \hline 230 \\ \text { Volts } \end{array}$	$\begin{aligned} & \hline 460 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \hline 575 \\ & \text { Volts } \end{aligned}$			Amp Range	Frame Size			
1／2	1／2	1	1	1	－	0．75－3．42	A	3	87DUB6MC	
2	2	5	5	1	－	3－12	A1	10	87DUC6MC	
3	3	10	10	1	－	5．5－22	A1	25	87DUD6MC	
71／2	71／2	10	－	1	－	10－40	A1	30	87DUE6MC	
－	－	15	15	－	13／4	10－40	A1	40	87EUE6MC	
10	15	25	25	2	－	13－52	B	50	87FUF6MC	
15	20	30	30	－	21／2	25－100	B	100	87GUG6MC	
25	30	50	50	3	－	25－100	B	100	87HUG6MC	
30	40	75	75	－	31／2	50－200	B	125	871UH6MC	
40	50	100	100	4	－	50－200	B	150	87JUH6MC	
50	75	150	200	5	－	55－250	－	250	87LPT6MH	
75	100	200	200	5	－	55－250	－	400	87LPU6MH	
100	125	250	300	6	－	160－630	－	400	87MSW6MH	
150	200	400	400	6	－	160－630	－	600	87MSX6MH	

Note：All starter sizes carry one maximum Hp rating（per
the National Electric Code）．
（1）Not available on Size 5 and larger．
（2）For an overload amp range of $0.25-1 \mathrm{~A}$ ，change the 5 th character from a＇B＇to an＇A＇．
（3）A version with coil code A is also stocked via Controls Express．

Vacuum Break and Oil Well Pump Control Panels, Class 87

Selection

Ordering Information	Coil Table	
Field Modification Kits see page 9/100.	60 Hz Voltage	
Factory Modifications see page 9/114.	Letter	
Dimensions see page 9/152.	24	J
Wiring Diagrams see page 9/169.	$200-208$	F
Replacement Parts see page 9/120.	$200-240$	D
Replace the $\left(^{*}\right)$ in the catalog number with a letter from the coil table.	G	
Refer to page 9/36 for information on the 958L OLR	$400-480$	L
		E

Vacuum Break Pump Control Panels (Vacuum Contactor with Trip Class 10 Solid-State Overload Relay)

Max Hp		NEMA Size	Overload Relay Range	Fusible Disconnect		Circuit Breaker	
480 Volts	575 Volts			Fuse Clip Amps/Volts	Catalog Number	MCI Amps	Catalog Number
100	100	4	50-200A ${ }^{\text {(1) }}$	200A/600V	87JCN6F*	250A	87JCN6M*
100	100	4	55-250A	200A/600V	87JCM6F*	250A	87JCM6M*
200	200	5	55-250A	400A/600V	87LCU6F*	400A	87LCT6M*
250	300	6	160-630A	-	-	400A	87MCW6M*
400	400	6	160-630A	-	-	600A	87MCX6M*

Oil Well Pump Control Panels (Open Air Contactor with 958L Solid-State Overload Relay)

Max Hp		NEMA Size	Overload Relay Range	Fusible Disconnect		Circuit Breaker	
480 Volts	575 Volts			Fuse Clip Amps/Volts	Catalog Number	MCI Amps	Catalog Number
25	25	2	13-52	60A/600V	87FPI6F*	50	87FPI6M*
50	50	3	25-100	100A/600V	87HPK6F*	100	87HPK6M*
100	100	4	50-200	200A/600V	87JPM6F*	150	87JPM6M*

Auto Transformer \＆Part winding（2 Step）with Solid State Overload，Class 88

Auto Transformer Type

Motor Voltage	$\begin{aligned} & \text { Max } \\ & \mathrm{Hp} \\ & \hline \end{aligned}$	Overload		NEMA Size	$\begin{array}{\|l\|l} \text { Half } \\ \text { Size } \end{array}$	Fusible Disconnect			Circuit Breaker		
		Amp Range	Frame Size			Fuse Clip Size Amps／Volts	Catalog Number	List Price \＄	Circuit Breaker Amps	Catalog Number	List Price \＄
230	15	13－52	B	2	－	60A／250V	88FUFT2FG		50	88FUFT2MG	
	20	25－100	B	－	$21 / 2$	100A／250V	88GUGT2FG		100	88GUGT2MG	
	30	25－100	B	3	－	100A／250V	88HUGT2FG		100	88HUGT2MG	
	40	50－200	B	－	$31 / 2$	200A／250V	88IUHT2FG		125	88IUHT2MG	
	50	50－200	B	4	－	200A／250V	88JUHT2FG		150	88JUHT2MG	
	75	55－250	－	5	－				250	88LPST2MG	
	100	55－250	－	5	－	400A／250V	88LPUT2FG		400	88LPUT2MG	
	200	160－630	－	6	－	－	－		600	88MSXT2MG	
460	25	13－52	B	2	－	60A／600V	88FUFT4FH		50	88FUFT4MH	
	30	25－100	B	－	$21 / 2$	60A／600V	88GUGT4FH		50	88GUGT4MH	
	50	25－100	B	3	－	100A／600V	88HUGT4FH		100	88HUGT4MH	
	75	50－200	B	－	$31 / 2$	200A／600V	88IUHT4FH		125	88IUHT4MH	
	100	50－200	B	4	－	200A／600V	88JUHT4FH		150	88JUHT4MH	
	150	55－250	－	5	－				250	88LPST4MH	
	200	55－250	－	5	－	400A／600V	88LPST4FH		400	88LPUT4MH	
	250	160－630	－	6	－	－	－		400	88MSVT4MH	
	400	160－630	－	6	－	600A／600V	88MSXT4FH		600	88MSXT4MH	

Part Winding 2 Step

Motor Voltage		$\begin{array}{\|l} \text { Max } \\ \mathrm{Hp} \\ \hline \end{array}$	Overload		$\begin{array}{\|l} \text { NEMA } \\ \text { Size } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Half } \\ \text { Size } \end{array}$	Fusible Disconnect			Circuit Breaker			
		Amp Range	Frame Size	Fuse Clip Size Amps／Volts			Catalog Number	List Price \＄	Circuit Breaker Amps	Catalog Number	List Price \＄		
	230		20	10－40	A1	－	13／4	100A／250V	88EUEP2FG		100	88EUEP2MG	
		25	13－52	B	2	－	100A／250V	88FUFP2FG		100	88FUFP2MG		
		40	25－100	B	－	21／2	200A／250V	88GUGP2FG		100	88GUGP2MG		
		50	25－100	B	3	－	200A／250V	88HUGP2FG		150	88HUGP2MG		
		60	50－200	B	－	$31 / 2$	200A／250V	88IUHP2FG		250	88IUHP2MG		
		75	50－200	B	4	－	400A／250V	88JUHP2FG		250	88JUHP2MG		
		125	55－250	－	5	－	－			400	88LPSP2MG		
		150	55－250	－	5	－	600A／250V	88LPUP2FG		600	88LPUP2MG		
	460	30	10－40	A1	－	13／4	100A／600V	88EUEP4FH		100	88EUEP4MH		
		40	13－52	B	2	－	100A／600V	88FUFP4FH		100	88FUFP4MH		
		60	25－100	B	－	21／2	200A／600V	88GUGP4FH		100	88GUGP4MH		
		75	25－100	B	3	－	200A／600V	88HUGP4FH		150	88HUGP4MH		
		100	50－200	B	－	$31 / 2$	200A／600V	88IUHP4FH		250	88IUHP4MH		
		150	50－200	B	4	－	400A／600V	88JUHP4FH		250	88JUHP4MH		
		250	55－250	－	5	－	－	－		400	88LPSP4MH		
		350	55－250	－	5	－	600A／600V	88LPUP4FH		600	88LPUP4MH		

Note：All starter sizes carry one maximum Hp rating（per the National Electric Code）．

Wye Delta with Solid State Overload, Class 88

Selection

Wye Delta

Motor Voltage	$\begin{array}{\|l\|l} \hline \operatorname{Max}^{\prime} \\ \hline \end{array}$	Overload		$\begin{array}{\|l\|l\|} \hline \text { NEMA } \\ \text { Size } \end{array}$	$\begin{array}{\|l} \hline \text { Half } \\ \text { Size } \\ \hline \end{array}$	Fuse Clip Size Amps/Volts	Motor Circuit Interruter ETI Amps	Open Transition				Closed Transition			
								Fusible Disconnect		Circuit Breaker		Fusible Disconnect		Circuit Breaker	
		Amp Range	Frame Size					Catalog Number	List Price \$						
200	10	10-40	A1	1	-	60A/250V	50	88DUE06FD		88DUE06MD		88DUEC6FD		88DUEC6MD	
	15	10-40	A1	-	13/4	100A/250V	100	88EUE06FD		88EUE06MD		88EUEC6FD		88EUEC6MD	
	20	13-52	B	2	-	100A/250V	100	88FUF06FD		88FUF06MD		88FUFC6FD		88FUFC6MD	
	30	25-100	B	-	21/2	200A/250V	125	88GUG06FD		88GUG06MD		88GUGC6FD		88GUGC6MD	
	40	25-100	B	3	-	200A/250V	150	88HUG06FD		88HUG06MD		88HUGC6FD		88HUGC6MD	
	50	50-200	B	-	31/2	200A/250V	250	88IUH06FD		88IUH06MD		88IUHC6FD		88IUHC6MD	
	60	50-200	B	4	-	400A/250V	250	88JUH06FD		88JUH06MD		88JUHC6FD		88JUHC6MD	
	75	55-250	-	5	-	400A/250V	400	88LPS06FD		88LPS06MD		88LPSC6FD		88LPSC6MD	
	150	55-250	-	5	-	600A/250V	600	88LPU06FD		88LPU06MD		88LPUC6FD		88LPUC6MD	
	300	160-630	-	6	-	-	800	-		88MSX06MD		-		88MSXC6MD	
230	10	10-40	A1	1	-	60A/250V	50	88DUE02FG		88DUE02MG		88DUEC2FG		88DUEC2MG	
	15	10-40	A1	-	13/4	60A/250V	50	88EUE02FG		88EUE02MG		88EUEC2FG		88EUEC2MG	
	25	13-52	B	2	-	100A/250V	100	88FUF02FG		88FUF02MG		88FUFC2FG		88FUFC2MG	
	30	25-100	B	-	21/2	200A/250V	100	88GUG02FG		88GUG02MG		88GUGC2FG		88GUGC2MG	
	50	25-100	B	3	-	200A/250V	150	88HUG02FG		88HUG02MG		88HUGC2FG		88HUGC2MG	
	60	50-200	B	-	31/2	200A/250V	250	88IUH02FG		88IUHO2MG		88IUHC2FG		88IUHC2MG	
	75	50-200	B	4	-	400A/250V	250	88JUH02FG		88JUH02MG		88JUHC2FG		88JUHC2MG	
	100	55-250	-	5	-	400A/250V	400	88LPS02FG		88LPS02MG		88LPSC2FG		88LPSC2MG	
	150	55-250	-	5	-	600A/250V	600	88LPU02FG		88LPU02MG		88LPUC2FG		88LPUC2MG	
	350	160-630	-	6	-	-	1200	-		88MSX02MG		-		88MSXC2MG	
460	15	5.5-22	A1	1	-	30A/600V	30	88DUD04FH		88DUD04MH		88DUDC4FH		88DUDC4MH	
	30	10-40	A1	-	13/4	60A/600V	50	88EUE04FH		88EUE04MH		88EUEC4FH		88EUEC4MH	
	40	13-52	B	2	-	100A/600V	100	88FUFO4FH		88FUFO4MH		88FUFC4FH		88FUFC4MH	
	60	25-100	B	-	21/2	200A/600V	100	88GUG04FH		88GUG04MH		88GUGC4FH		88GUGC4MH	
	75	25-100	B	3	-	200A/600V	125	88HUG04FH		88HUG04MH		88HUGC4FH		88HUGC4MH	
	100	50-200	B	-	31/2	200A/600V	150	88IUHO4FH		88IUHO4MH		88IUHC4FH		88IUHC4MH	
	150	50-200	B	4	-	400A/600V	250	88JUH04FH		88JUH04MH		88JUHC4FH		88JUHC4MH	
	200	55-250	-	5	-	400A/600V	400	88LPSO4FH		88LPSO4MH		88LPSC4FH		88LPSC4MH	
	300	55-250	-	5	-	600A/600V	600	88LPU04FH		88LPU04MH		88LPUC4FH		88LPUC4MH	
	700	160-630	-	6	-	-	1200	-		88MSX04MH		-		88MSXC4MH	
575	15	5.5-22	A1	1	-	30A/600V	30	88DUD05FE		88DUD05ME		88DUDC5FE		88DUDC5ME	
	30	10-40	A1	-	13/4	60A/600V	50	88EUE05FE		88EUE05ME		88EUEC5FE		88EUEC5ME	
	40	13-52	B	2	-	100A/600V	50	88FUF05FE		88FUF05ME		88FUFC5FE		88FUFC5ME	
	60	25-100	B	-	21/2	200A/600V	100	88GUG05FE		88GUG05ME		88GUGC5FE		88GUGC5ME	
	75	25-100	B	3	-	200A/600V	125	88HUG05FE		88HUG05ME		88HUGC5FE		88HUGC5ME	
	100	50-200	B	-	31/2	200A/600V	150	881UH05FE		88IUH05ME		88IUHC5FE		88IUHC5ME	
	150	50-200	B	4	-	400A/600V	250	88JUH05FE		88JUH05ME		88JUHC5FE		88JUHC5ME	
	200	55-250	-	5	-	400A/600V	400	88LPS05FE		88LPU05ME		88LPSC5FE		88LPSC5ME	
	300	55-250	-	5	-	600A/600V	400	88LPU05FE		88LPU05ME		88LPUC5FE		88LPUC5ME	
	700	160-630	-	6	-	-	1200	-		88MSX05ME		-		88MSXC5ME	

[^85]
Pump Control Panels

Notes

Electrically Held Lighting Contactors, Class LE

Features

Simplicity and compact lightweight design makes Class LE lighting contactors an attractive solution to your budgeting challenges.

- Used in applications where it is not critical that contacts remain closed if control power is lost
- Rated for tungsten lighting (incandescent filament), ballast lighting (fluorescent, HID, metal halide, mercury vapor, quartz halogen and sodium-lamp), resistive and general use loads
- Contacts are rated 20-400 amps at 600 volts
- 3 and 4 pole (up to 12 pole for 30 and 60 amp contactors)
- Most contactors have built-in auxiliary contacts for convenient 3-wire control
- Combination lighting contactors are UL Listed for Service Entrance
- Wide range of coil voltages from 24 to 600 VAC $50 / 60 \mathrm{~Hz}$
- Compact design allows for smaller panels and more wiring room
- Finger and back-of-hand safe terminals
- Panel and DIN rail mounting
- Full line of enclosures including NEMA 1, 3/3R, 4, 4/4X stainless steel and 12
- Available in combination form with choice of non-fusible disconnect, fusible disconnect or circuit breaker
- Full line of factory and field modifications

Electrically Held Lighting Contactors, Class LE

Features

Catalog Numbering System

Electrically Held Lighting Contactors, Class LE

Selection

Non-Combination Contactor

Max. Amp Rating	Number of Poles	Normally Closed Contacts	Normally Open Contacts	Enclosure Type			
				Open	1	3/3R/12	4/4X 304 S.S.
				Catalog Number			
20	3	0	3	LEN00B003***B	LEN01B003***B	LEN02B003***B	LEN04B003***B
	4	0	4	LEN00B004***B	LEN01B004***B	LEN02B004***B	LEN04B004***
30	3	0	3	LEN00C003***B	LEN01C003***B	LEN02C003***B	LEN04C003***B
	4	0	4	LEN00C004***B	LEN01C004***B	LEN02C004***B	LEN04C004***B
	6	0	6	LEN00C006***B	LEN01C006***B	LEN02C006***B	LEN04C006***B
	9	0	9	LEN00C009***B	LEN01C009***B	LEN02C009***B	LEN04C009***B
	12	0	12	LEN00C012***B	LEN01C012***B	LEN02C012***B	LEN04C012***B
60	3	0	3	LEN00D003***C	LEN01D003***C	LEN02D003***C	LEN04D003***C
	6	0	6	LEN00D006***C	LEN01D006***C	LEN02D006***C	LEN04D006***C
	9	0	9	LEN00D009***C	LEN01D009***C	LEN02D009***C	LEN04D009***C
	12	0	12	LEN00D012***C	LEN01D012***C	LEN02D012***C	LEN04D012***C
100	3	0	3	LEN00E003***C	LEN01E003***C	LEN02E003***C	LEN04E003***C
200	3	0	3	LEN00F003***A	LEN01F003***A	LEN02F003***A	LEN04F003***A
300	3	0	3	LEN00G003***A	LEN01G003***A	LEN02G003***A	LEN04G003***A
400	3	0	3	LEN00H003***A	LEN01H003***A	LEN02H003***A	LEN04H003***A

Lighting and Heating Control
Electrically Held Lighting Contactors, Class LE
Technical

Contactor	LEN00B003	LEN00B004	LEN00C003	LEN00C004
General technical data:				
Finger-safe (main circuit / control circuit)	yes / yes	yes / yes	yes / yes	yes / yes
Altitude (m)	2,000	2,000	2,000	2,000
Ambient storage temperature (${ }^{\circ} \mathrm{C}$)	-55 to 80	-55 to 80	-55 to 80	-55 to 80
Ambient operating temperature (${ }^{\circ} \mathrm{C}$)	0 to 40	0 to 40	0 to 40	0 to 40
Humidity (\% non-condensing)	10 to 95	10 to 95	10 to 95	10 to 95
Shock resistance at rectangular impulse (g/ms)	$6.7 / 5,4.2$ / 10	$6.7 / 5.4 .2$ / 10	7.5 / 5, 4.7 / 10	7.5 / 5, 4.7 / 10
Shock resistance at sine pulse (g/ms)	10.5 / 5, 6.6 / 10	10.5/5, 6.6/10	11.8/5, 7.4/10	11.8/5, 7.4/10
Mechanical operating cycles as operating time:				
of contactor	30,000,000	30,000,000	10,000,000	10,000,000
of contactor with additional aux contacts	10,000,000	10,000,000	10,000,000	10,000,000
Main circuit:				
Number of NC / N0 main contacts	ONC / 3N0	ONC / 4NO	ONC / 3NO	ONC / 4NO
Typical power loss per conductor (W)	0.7	0.7	0.9	0.9
Off-load operating frequency (cycles per hour)	10,000	10,000	5,000	5,000
Current ratings:				
Tungsten (poles per phase)	20A @277V 1p 1ph 20A @480V 2p 1ph 20A @480V 3p 3ph	20A @ 277 V 1p 1ph 20A @480V 2p 1ph 20A @ 480 V 3 p 3 ph	30A @277V 1p 1ph 30A @480V 2p 1ph 30A @480V 3p 3ph	30A @277V 1p 1ph 30A @480V 2p 1ph 30A @480V 3p 3ph
Ballast (poles per phase)	20A @ 347 V 1p 1ph 20A @600V 2p 1ph 20A @600V 3p 3ph	20A @347V 1p 1ph 20A @600V 2p 1ph 20A @600V 3p 3ph	30A @ 347V 1p 1ph 30A @600V 2p 1ph 30A @660V 3p 3ph	30A @ 347V 1p 1ph 30A @600V 2p 1ph 30A @600V 3p 3ph
General and resistive (poles per phase)	20A @600V 1p 1ph 20A @600V 2p 1ph 20A @600V 3p 3ph	20A @600V 1p 1ph 20A @600V 2p 1ph 20A @600V 3p 3ph	30A @600V 1p 1ph 30A @600V 2p 1ph 30A @600V 3p 3ph	30A @600V 1p 1ph 30A @600V 2p 1ph 30A @600V 3p 3ph
Coil ratings:				
Nominal voltage	2)	2)	2)	2)
Inrush / sealed power (VA)	31.7 / 4.8	31.7 / 4.8	87/9.4	$87 / 9.4$
Coil voltage tolerance factor	0.8-1.1	0.8-1.1	0.8-1.1	0.8-1.1
Internal/standard auxiliary contact:				
Number of NC / NO auxiliary contacts	ONC / 1N0	NA(1)	1NC / 1N0	1NC / 1N0
Rating	A600 / 0600	NA	A600 / 0600	A600 / 0600
Installation/mounting/dimensions:				
Mounting orientation	vertical	vertical	vertical	vertical
Type of mounting: screw / DIN rail	yes / yes	yes / yes	yes / yes	yes / yes
Height x Width x Depth (mm)	$57.5 \times 45 \times 73$	$57.5 \times 45 \times 73$	$85 \times 45 \times 97$	$85 \times 60 \times 97$
Minimum clearance to sides (mm)	0	0	0	0
Minimum clearance to earthed parts (mm)	6	6	6	6
Connection type / torque for main circuit terminals	screw / 7-10 lb in	screw / 7-10 lb in	screw / 18-22 lb in	screw / 18-22 lb in
Connection type / torque for control circuit terminals	screw / 7-10 lb in			
Solid and stranded conductors for main contacts (AWG)	$\begin{array}{\|l\|} \hline 2 \times(20-16), \\ 2 \times(18-14), 2 \times(12) \end{array}$	$\begin{array}{\|l\|} \hline 2 \times(20-16), \\ 2 \times(18-14), 2 \times(12) \\ \hline \end{array}$	$\begin{aligned} & 2 \times(6-12), \\ & 2 \times(14-8) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \times(6-12), \\ 2 \times(14-8) \\ \hline \end{array}$
Solid and stranded conductors for control circuit (AWG)	$\begin{aligned} & 2 \times(20-16), \\ & 2 x(18-14) \end{aligned}$	$\begin{array}{\|l} \hline 2 \times(20-16), \\ 2 \times(18-14) \end{array}$	$\begin{aligned} & 2 \times(20-16), \\ & 2 \times(18-14) \end{aligned}$	$\begin{aligned} & 2 \times(20-16), \\ & 2 \times(18-14), \end{aligned}$
Conductor type for main and control circuits	$75^{\circ} \mathrm{CCU}$	$75^{\circ} \mathrm{CCU}$	$75^{\circ} \mathrm{CCU}$	$75^{\circ} \mathrm{CCU}$
Short circuit current rating of main circuit:				
Short circuit current rating	5kA @ 600V	5kA @ 600V	5kA @ 600V	5kA @ 600V
Max fuse / circuit breaker (Amp)	$30 / 25$	$30 / 25$	60 / 40	60 / 40
Certificates:	cULus	cULus	cULus	cULus

(1) Must use an external (optional) auxiliary contact.
2) Refer to catalog selection tables for coil voltages.

Lighting and Heating Control

Electrically Held Lighting Contactors, Class LE

Technical

LEN00D003	LENOOE003	LEN00F003	LEN00G003	LENOOHOO3
no / yes				
2,000	2,000	2,000	2,000	2,000
-55 to 80				
0 to 40				
10 to 95				
11.8 / 5, 7.4/10	$6.7 / 5,4 / 10$	$8.5 / 5,4.2 / 10$	$8.5 / 5,4.2 / 10$	$8.5 / 5,4.2 / 10$
18.5 / 5, 10 / 10	10.6 / 5, 6.3 / 10	13.4/5, 6.5 / 10	13.4/5, 6.5 / 10	13.4/5, 6.5 / 10
Mechanical operating cycles as operating time:				
10,000,000	10,000,000	10,000,000	10,000,000	10,000,000
10,000,000	10,000,000	10,000,000	10,000,000	10,000,000
Main circuit:				
ONC / 3NO				
3.8	5.3	13	18	35
5,000	5,000	2,000	2,000	2,000
Current ratings:				
60A @277V 1p 1ph 60A @480V 2p 1ph 60A @480V 3p 3ph	100A @277V 1p 1ph 100A @480V 2p 1ph 100A @480V 3p 3ph	200A @ 277V 1p 1ph 200A @480V 2p 1ph 200A @480V 3p 3ph	300A @ 277V 1p 1ph 300A @480V 2p 1ph 300A @480V 3p 3ph	400A @ 277V 1p 1ph 400A @480V 2p 1ph 400A @480V 3p 3ph
60A @347V 1p 1ph 60A @600V 2p 1ph 60A @600V 3p 3ph	$\begin{aligned} & \text { 100A @347V 1p 1ph } \\ & \text { 100A @600V 2p 1ph } \\ & \text { 100A @600V 3p 3ph } \end{aligned}$	200A @600V 1p 1ph 200A @600V 2p 1ph 200A @600V 3p 3ph	$\begin{array}{\|l\|} \hline \text { 300A @600V 1p 1ph } \\ \text { 300A @600V 2p 1ph } \\ \text { 300A @600V 3p 3ph } \\ \hline \end{array}$	$\begin{aligned} & \text { 400A @600V 1p 1ph } \\ & \text { 400A @600V 2p 1ph } \\ & \text { 400A @600V 3p 3ph } \end{aligned}$
60A @347V 1p 1ph 60A @600V 2p 1ph 60A @600V 3p 3ph	$\begin{aligned} & \text { 100A @347V 1p 1ph } \\ & \text { 100A @600V 2p 1ph } \\ & \text { 100A @600V 3p 3ph } \end{aligned}$	200A @600V 1p 1ph 200A @600V 2p 1ph 200A @600V 3p 3ph	$\begin{array}{\|l\|} \hline \text { 300A @600V 1p 1ph } \\ \text { 300A @600V 2p 1ph } \\ \text { 300A @600V 3p 3ph } \\ \hline \end{array}$	400A@600V 1p 1ph 400A @600V 2p 1ph 400A @600V 3p 3ph
Coil ratings:				
2)	2)	2)	2)	2)
188/16.5	326 / 22	$300 / 5.8$	590 / 6.7	830 / 9.2
0.8-1.1	0.8-1.1	0.8-1.1	0.8-1.1	0.8-1.1
Internal/standard auxiliary contact:				
1NC / 1NO	1NC / 1NO	2NC / 2NO	2NC / 2NO	2NC / 2NO
A600 / P600	A600 / P600	A300 / 0300	A300 / 0300	A300 / 0300
Installation/mounting/dimensions:				
vertical	vertical	vertical	vertical	vertical
yes / yes	yes / yes	yes / no	yes / no	yes / no
$113 \times 55 \times 130$	$140 \times 70 \times 152$	$172 \times 120 \times 180$	$210 \times 145 \times 202$	$214 \times 160 \times 225$
6	6	10	10	10
6	6	10	10	10
screw / 26-39 lb in	screw / 26-39 lb in	screw / 90-110 lb in	screw / 180-195 lb in	screw / 180-195 lb in
screw / 7-10 lb in				
$\begin{aligned} & \hline 2 \times(18 \ldots 2), \\ & 1 \times(18 \ldots 1) \end{aligned}$	$\begin{array}{\|l} \hline 2 \times(18 \ldots 2), \\ 1 \times(18 \ldots . \end{array}$	$2 \mathrm{x}(6-3 / 0)$	2x(2/0-500MCM)	2x(2/0-500MCM)
$\begin{aligned} & 2 x(20 \ldots 16), \\ & 2 x(18 \ldots . \end{aligned}$	$\begin{aligned} & \hline 2 \times(18 \ldots 2), \\ & 1 \times(18 \ldots . \end{aligned}$	$2 \times(18-14)$	$2 \times(18-14)$	$2 \times(18-14)$
$75^{\circ} \mathrm{C}$ CU	$75^{\circ} \mathrm{C} C U$			
Short circuit current rating of main circuit:				
5kA @ 600V	10kA @ 600V	10kA @ 600V	18kA @ 600V	18kA @ 600V
100 / 80	200 / 125	400 / 250	600 / 400	800 / 500
cULus	cULus	cULus	cULus	cULus

Lighting and Heating Control
Electrically Held Lighting Contactors, Class LE
Selection

Combination Contactor

Disconnect Type	Max. Amp Rating	Number of NO Poles	Disc. Amp Rating	Disc Amp/ Fuse Clip Rating	Circuit Breaker Rating	Enclosure Type		
						1	3/3R/12, $4^{(2)}$	4/4X 304 S.S.
						Catalog Number		
Non-Fusible	20	3	30A	-	-	LEDB1B003***B	LEDB2B003***B	LEDB4B003***B
	30	3	30A	-	-	LEDB1C003***B	LEDB2C003***B	LEDB4C003***B
	60	3	60A	-	-	LEDD1D003***B	LEDD2D003***	LEDD4D003***B
	100	3	100A	-	-	LEDF1E003***B	LEDF2E003***B	LEDF4E003***B
	200	3	200A	-	-	LEDH1F003***A	LEDH2F003***A	LEDH4F003***A
	300	3	400A	-	-	LEDK1G003***A	LEDK2G003***A	LEDK4G003***A
Fusible	20	3	-	30A/250V	-	LEFA1B003***B	LEFA2B003***B	LEFA4B003***B
		3	-	$30 \mathrm{~A} / 600 \mathrm{~V}$	-	LEFB1B003***B	LEFB2B003***B	LEFB4B003***B
	30	3	-	$30 \mathrm{~A} / 250 \mathrm{~V}$	-	LEFA1C003***B	LEFA2C003***B	LEFA4C003***B
		3	-	30A/600V	-	LEFB1C003***B	LEFB2C003***B	LEFB4C003***B
	60	3	-	60A/250V	-	LEFC1D003***B	LEFC2D003***B	LEFC4D003***B
		3	-	60A/600V	-	LEFD1D003***B	LEFD2D003***B	LEFD4D003***B
	100	3	-	100A/250V	-	LEFE1E003***B	LEFE2E003***B	LEFE4E003***B
		3	-	100A/600V	-	LEFF1E003***B	LEFF2E003***B	LEFF4E003***B
	200	3	-	200A/250V	-	LEFG1F003***A	LEFG2F003***A	LEFG4F003***A
		3	-	200A/600V	-	LEFH1F003***A	LEFH2F003***A	LEFH4F003***A
	300	3	-	400A/250V	-	LEFJ1G003***A	LEFJ2G003***A	LEFJ4G003***A
		3	-	400A/600V	-	LEFK1G003***A	LEFK2G003***A	LEFK4G003***A
Circuit Breaker	20	3	-	-	20A	LEBT1B003***B	LEBT2B003***B	LEBT4B003***B
	30	3	-	-	30A	LEBV1C003***B	LEBV2C003***B	LEBV4C003***B
	60	3	-	-	60A	LEBY1D003***B	LEBY2D003***B	LEBY4D003***B
	100	3	-	-	100A	LEBZ1E003***B	LEBZ2E003***B	LEBZ4E003***B

[^86]Class LC lighting contactors deliver unprecedented versatility in application, simplicity in configuration and performance in operation. Ingenious design, rugged construction and a host
of truly useful features make them uniquely appealing to all those who use them.

- Used in all applications where either electrically or mechanically held contactors are specifically suited and also ideal for maximum flexibility and future expansion
- Rated for tungsten lighting (incandescent filament), ballast lighting (fluorescent, HID, metal halide, mercury vapor, quartz halogen and sodium-lamp), resistive and general use loads
- Contacts are rated up to 30 amps at 600 volts
- Up to 12 poles (maximum of 8 normally closed)
- Wide range of coil voltages from 24 to 600 VAC $50 / 60 \mathrm{~Hz}$
- Can be ordered as either electrically or mechanically held and can also be converted from electrically to mechanically held in the field with a simple conversion kit
- Modular design enables you to stock the building block components to assemble all configurations of both the electrically and mechanically held contactors thus dramatically reducing inventory
- Full line of enclosures including NEMA 1, 3/3R, 4, 4/4X stainless steel and 12
- Full line of factory and field modifications

Electrically Held Lighting Contactors, Class LC

Features

Catalog Numbering System

	LC EO		C				A
Controller Type E0 = Electrically Held (Convertible to MH)				4	4		
Enclosure Type \qquad 0 = Open 1 = NEMA 1 $2=$ NEMA 12/3R 4 = NEMA 4/4X Stainless Steel		,					
Contactor Rating (Amp) $\mathbf{C}=30$							
N.C. Poles $\begin{aligned} & 0=\text { None } \\ & \mathbf{1}=\text { One } \\ & \mathbf{2}=\text { Two } \\ & \mathbf{3}=\text { Three } \\ & \mathbf{4}=\text { Four } \\ & 5=\text { Five } \\ & \mathbf{6}=\text { Six } \\ & \mathbf{7}=\text { Seven } \\ & 8=\text { Eight } \end{aligned}$							
N.O. Poles $\begin{aligned} & \mathbf{0 0}=\text { None } \\ & \mathbf{0 1}=\text { One } \\ & \mathbf{0 2}=\text { Two } \\ & \mathbf{0 3}=\text { Three } \\ & \mathbf{0 4}=\text { Four } \\ & \mathbf{0 5}=\text { Five } \\ & \mathbf{0 6}=\text { Six } \\ & \mathbf{0 7}=\text { Seven } \\ & \mathbf{0 8}=\text { Eight } \\ & \mathbf{0 9}=\text { Nine } \\ & \mathbf{1 0}=\text { Ten } \\ & \mathbf{1 1}=\text { Eleven } \\ & \mathbf{1 2}=\text { Twelve } \end{aligned}$							
Coil Voltage $\begin{aligned} & \mathbf{0 2 4}=24 \mathrm{~V} 60 \mathrm{~Hz} / 20 \mathrm{~V} 50 \mathrm{~Hz} \\ & \mathbf{1 2 0}=115-120 \mathrm{~V} 60 \mathrm{~Hz} / 110 \mathrm{~V} 5 \mathrm{~Hz} \\ & \mathbf{2 0 8}=200-208 \mathrm{~V} 60 \mathrm{~Hz} \\ & \mathbf{2 4 0}=230-240 \mathrm{~V} 60 \mathrm{~Hz} / 220 \mathrm{~V} 50 \mathrm{~Hz} \\ & \mathbf{2 7 7}=277 \mathrm{~V} 60 \mathrm{~Hz} / 240 \mathrm{~V} 50 \mathrm{~Hz} \\ & \mathbf{3 4 7}=347 \mathrm{~V} 60 \mathrm{~Hz} \\ & \mathbf{4 8 0}=460-480 \mathrm{~V} 60 \mathrm{~Hz} / 440 \mathrm{~V} 50 \mathrm{~Hz} \\ & \mathbf{6 0 0}=575-600 \mathrm{~V} 60 \mathrm{~Hz} / 550 \mathrm{~V} 50 \mathrm{~Hz} \end{aligned}$							

Electrically Held Lighting Contactors, Class LC

Selection

Ordering Information

To order standard electrically held contactor, simply select catalog number from tables below.
To order mechanically held contactor, select catalog number from tables below and specify conversion module from factory modification section from page 9/117
To convert standard electrically held contactor to mechanically held in the field, select catalog number from tables below and select conversion module kit from field modification section on page 9/102.
Replace ${ }^{* * *}$ with a number from the coil table.
Field Modification Kits see page 9/100
Factory Modifications see page 9/114.
Dimensions see page 9/134 open,
page 9/153 enclosed.
Wiring Diagrams see page 9/170.
Replacement Parts see page 9/123.

Coil Table	
VAC 60Hz	
24	024
120	120
208	208
240	240
277	277
347	347
480	480
600	600

Replace the $\left({ }^{* * *)}\right.$ with a number from the coil table.

Non-Combination Contactor (30 Amp max.)

No. of Poles		Enclosure Type			
		Open	1	3/3R/12	4/4X 304 S.S.
N.C.	N.O.	Catalog Number			
2	0	LCE00C200***A	LCE01C200***A	LCE02C200***A	LCE04C200***A
3		LCE00C300***A	LCE01C300***A	LCE02C300***A	LCE04C300***A
4		LCE00C400***A	LCE01C400***A	LCE02C400***A	LCE04C400***A
5		LCE00C500***A	LCE01C500***A	LCE02C500***A	LCE04C500***A
6		LCE00C600***A	LCE01C600***A	LCE02C600***A	LCE04C600***A
7		LCE00C700***A	LCE01C700***A	LCE02C700***A	LCE04C700***A
8		LCE00C800***A	LCE01C800***A	LCE02C800***A	LCE04C800***A
1	1	LCE00C 101***A	LCE01C101***A	LCE02C101***A	LCE04C101***A
2		LCE00C201***A	LCE01C201***A	LCE02C201***A	LCE04C201***A
3		LCE00C301***A	LCE01C301***A	LCE02C301***A	LCE04C301***A
4		LCE00C401***A	LCE01C401***A	LCE02C401***A	LCE04C401***A
5		LCE00C501***A	LCE01C501***A	LCE02C501***A	LCE04C501***A
6		LCE00C601***A	LCE01C601***A	LCE02C601***A	LCE04C601***A
7		LCE00C701***A	LCE01C701***A	LCE02C701***A	LCE04C701***A
8		LCE00C801***A	LCE01C801***A	LCE02C801***A	LCE04C801***A
0	2	LCE00C002***A	LCE01C002***A	LCE02C002***A	LCE04C002***A
1		LCE00C102***A	LCE01C102***A	LCE02C102***A	LCE04C102***A
2		LCE00C202***A	LCE01C202***A	LCE02C202***A	LCE04C202***A
3		LCE00C302***A	LCE01C302***A	LCE02C302***A	LCE04C302***A
4		LCE00C402***A	LCE01C402***A	LCE02C402***A	LCE04C402***A
5		LCE00C502***A	LCE01C502***A	LCE02C502***A	LCE04C502***A
6		LCE00C602***A	LCE01C602***A	LCE02C602***A	LCE04C602***A
7		LCE00C702***A	LCE01C702***A	LCE02C702***A	LCE04C702***A
8		LCE00C802***A	LCE01C802***A	LCE02C802***A	LCE04C802***A
0	3	LCE00C003***A	LCE01C003***A	LCE02C003***A	LCE04C003***A
1		LCE00C103***A	LCE01C103***A	LCE02C103***A	LCE04C103***A
2		LCE00C203***A	LCE01C203***A	LCE02C203***A	LCE04C203***A
3		LCE00C303***A	LCE01C303***A	LCE02C303***A	LCE04C303***A
4		LCE00C403***A	LCE01C403***A	LCE02C403***A	LCE04C403***A
5		LCE00C503***A	LCE01C503***A	LCE02C503***A	LCE04C503***A
6		LCE00C603***A	LCE01C603***A	LCE02C603***A	LCE04C603***A
7		LCE00C703***A	LCE01C703***A	LCE02C703***A	LCE04C703***A
8		LCE00C803***A	LCE01C803***A	LCE02C803***A	LCE04C803***A

Lighting and Heating Control

Electrically Held Lighting Contactors, Class LC

Selection
Non-Combination Contactor (30 Amp max.)

GENERAL PURPOSE 9

No. of Poles		Enclosure Type			
		Open	1	3/3R/12	4/4X 304 S.S.
N.C.	N.O.	Catalog Number			
0	4	LCE00C004***A	LCE01C004***A	LCE02C004***A	LCE04C004***A
1		LCE00C104***A	LCE01C104***A	LCE02C104***A	LCE04C104***A
2		LCE00C204***A	LCE01C204***A	LCE02C204***A	LCE04C204***A
3		LCE00C304***A	LCE01C304***A	LCE02C304***A	LCE04C304***A
4		LCE00C404***A	LCE01C404***A	LCE02C404***A	LCE04C404***A
5		LCE00C504***A	LCE01C504***A	LCE02C504***A	LCE04C504***A
6		LCE00C604***A	LCE01C604***A	LCE02C604***A	LCE04C604***A
7		LCE00C704***A	LCE01C704***A	LCE02C704***A	LCE04C704***A
8		LCE00C804***A	LCE01C804***A	LCE02C804***A	LCE04C804***A
0	5	LCE00C005***A	LCE01C005***A	LCE02C005***A	LCE04C005***A
1		LCE00C105***A	LCE01C105***A	LCE02C105***A	LCE04C105***A
2		LCE00C205***A	LCE01C205***A	LCE02C205***A	LCE04C205***A
3		LCE00C305***A	LCE01C305***A	LCE02C305***A	LCE04C305***A
4		LCE00C405***A	LCE01C405***A	LCE02C405***A	LCE04C405***A
5		LCE00C505***A	LCE01C505***A	LCE02C505***A	LCE04C505***A
6		LCE00C605***A	LCE01C605***A	LCE02C605***A	LCE04C605***A
0	6	LCE00C006***A	LCE01C006***A	LCE02C006***A	LCE04C006***A
1		LCE00C106***A	LCE01C106***A	LCE02C106***A	LCE04C106***A
2		LCE00C206***A	LCE01C206***A	LCE02C206***A	LCE04C206***A
3		LCE00C306***A	LCE01C306***A	LCE02C306***A	LCE04C306***A
4		LCE00C406***A	LCE01C406***A	LCE02C406***A	LCE04C406***A
5		LCE00C506***A	LCE01C506***A	LCE02C506***A	LCE04C506***A
6		LCE00C606***A	LCE01C606***A	LCE02C606***A	LCE04C606***A
0	7	LCE00C007***A	LCE01C007***A	LCE02C007***A	LCE04C007***A
1		LCE00C107***A	LCE01C 107***A	LCE02C107***A	LCE04C107***A
2		LCE00C207***A	LCE01C207***A	LCE02C207***A	LCE04C207***A
3		LCE00C307***A	LCE01C307***A	LCE02C307***A	LCE04C307***A
4		LCE00C407***A	LCE01C407***A	LCE02C407***A	LCE04C407***A
0	8	LCE00C008***A	LCE01C008***A	LCE02C008***A	LCE04C008***A
1		LCE00C108***A	LCE01C108***A	LCE02C108***A	LCE04C108***A
2		LCE00C208***A	LCE01C208***A	LCE02C208***A	LCE04C208***A
3		LCE00C308***A	LCE01C308***A	LCE02C308***A	LCE04C308***A
4		LCE00C408***A	LCE01C408***A	LCE02C408***A	LCE04C408***A
0	9	LCE00C009***A	LCE01C009***A	LCE02C009***A	LCE04C009***A
1		LCE00C109***A	LCE01C109***A	LCE02C109***A	LCE04C109***A
2		LCE00C209***A	LCE01C209***A	LCE02C209***A	LCE04C209***A
0	10	LCE00C010***A	LCE01C010***A	LCE02C010***A	LCE04C010***A
1		LCE00C110***A	LCE01C110***A	LCE02C110***A	LCE04C110***A
2		LCE00C210***A	LCE01C210***A	LCE02C210***A	LCE04C210***A
0	11	LCE00C011***A	LCE01C011***A	LCE02C011***A	LCE04C011***A
0	12	LCE00C012***A	LCE01C012***A	LCE02C012***A	LCE04C012***A

Lighting and Heating Control

Electrically Held Lighting Contactors, Class LC

Technical

General technical data:	
Finger-safe (main circuit / control circuit)	yes / yes
Degree of pollution	3
Altitude (m)	2,000
Ambient storage temperature (${ }^{\circ} \mathrm{C}$)	-30 to 65
Ambient operating temperature (${ }^{\circ} \mathrm{C}$)	-25 to 40
Humidity (\% non-condensing)	no data
Shock resistance at rectangular impulse (g/ms)	no data
Shock resistance at sine pulse (g/ms)	no data
Rated impulse voltage resistance (kV)	no data
Rated insulation voltage (V)	600
Mechanical operating cycles as operating time:	
of contactor	100,000
of contactor with additional aux contacts	100,000
Main circuit:	
Number of main contacts	2-12 (maximum of 8 NC)
Typical power loss per conductor (W)	no data
Off-load operating frequency (cycles per hour)	60 for continued operation
Current ratings:	
Tungsten (poles per phase)	20A @277V 1p 1ph 20A @480V $2 p 1 p h$ 20A @480V $3 p 3 p h$
Ballast (poles per phase)	30A @347V 1p 1ph $30 A @ 600 V$ $2 p 1 p h$ $30 A @ 600 V$ $3 p 3 p h$
General and resistive (poles per phase)	30A @600V 1p 1ph 30 A @600V 2p 1ph 30 A @600V 3p 3ph
Coil ratings:	
Nominal voltage	(refer to coil voltage table)
Inrush / sealed power (VA)	248/28
Coil voltage tolerance factor	0.85-1.1
External/optional auxiliary contact:	
Number of NC / NO auxiliary contacts	2NC / 2NO max
Rating	A600, 24VDC, 24VAC
Installation/mounting/dimensions:	
Mounting orientation	vertical
Type of mounting: screw / DIN rail	yes / no
Height x Width x Depth (mm)	$188 \times 106 \times 98$
Minimum clearance to sides (mm)	12.7
Minimum clearance to earthed parts (mm)	12.7
Connection type / torque:	
Main contact terminals	screw / 35 lb in
Coil terminals	screw / 15 lb in
Auxiliary contact terminals	screw / 7-12 lb in
Control module terminals	screw / 5 lb in
Solid and stranded conductors (AWG):	
Main contact terminals	1x(14-8), \#8 solid or stranded $2 \times(14-8)$, \#8 stranded only
Coil terminals	$2 \times(18-14)$
Auxiliary contact terminals	2x(22-12)
Control module terminals	1x(22-12)
Conductor type for main / control circuits	$75^{\circ} \mathrm{CCU} / 60-75^{\circ} \mathrm{CU}$
Short circuit current rating of main circuit:	
Short circuit current rating	(see SCCR tables)
Certificates:	cUL

Coil voltages:
$24 \mathrm{~V} 60 \mathrm{~Hz} / 20 \mathrm{~V} 50 \mathrm{~Hz}$
$115-120 \mathrm{~V} 60 \mathrm{~Hz} / 110 \mathrm{~V} 50 \mathrm{~Hz}$
$200-208 \mathrm{~V} 60 \mathrm{~Hz}$
$230-240 \mathrm{~V} 60 \mathrm{~Hz} / 220 \mathrm{~V} 50 \mathrm{~Hz}$
$277 \mathrm{~V} 60 \mathrm{~Hz} / 240 \mathrm{~V} 50 \mathrm{~Hz}$
347 V 60 Hz
$460-480 \mathrm{~V} 60 \mathrm{~Hz} / 440 \mathrm{~V} 50 \mathrm{~Hz}$
$575-600 \mathrm{~V} 60 \mathrm{~Hz} / 550 \mathrm{~V} 50 \mathrm{~Hz}$

Short circuit current ratings with fuses:			
		Max. Device Rating (Amps)	SCCR (kA)
Molt.	Fuse	60	5
600	RK fuse	(

Short circuit current ratings with circuit breakers:			
Max. Volt.	Siemens Listed Circuit Breaker	Max. Device Rating (Amps)	SCCR (kA)
600	NGG3B04OL	40	5
480	HEG3B040L	40	5
480	ED63B04OL	40	5
480	NGG3B04OL	40	5

Conversion module:		
Input Volt. (AC)	Steady State Current @ Rated Volts (mA)	Max. VA
24	80	5
$115-120$	83	12
$200-277$	91	30

Conversion module:	
Min. pulse duration (3-wire module)	250 ms
Max. allowable leakage current	1.8 mA
EMI	$35 \mathrm{~V} / \mathrm{m}$
Surge transient peak	6 kV
Frequency range	$40-70 \mathrm{~Hz}$

Mechanically Latched Lighting and Heating Contactor

The CLM Lighting Contactors can be used with metal halide, mercury vapor, quartz halogen, tungsten and fluorescent lighting. They provide reliable and convenient lighting control in numerous applications, such as industrial plants, schools, hospitals, office buildings, shopping centers, airports, stadiums . . . literally everywhere lighting is required.
The CLMs are listed under UL 508 with no derating when used open or enclosed. Combination lighting contactors are listed for UL service entrance.
UL listed File \#E60310
CSA Certified File LR 6535

Type CLM 20 Amp Lighting Contactor Solid State Control Modules

The CLM 20 amp lighting contactor is an electromagnetically operated, mechanically latched three wire control contactor. The most commonly used method of control is a three position momentary contact switch with a center-off position. The controlling device must be able to make the coil inrush current but need not break it. The coil current is interrupted by the control contacts within the CLM contactor. Power for the control line may come from a separate source or directly from the line side of the CLM contactor. The CLM contactor can also be controlled by devices such as:

- Break-glass control stations
- Timers having single pole, double throw contacts
- Photo-electric cells© ${ }^{(}$
- Energy management systems ${ }^{\circledR}$
- Microprocessors® ${ }^{\circledR}$
- Occupancy sensors® ${ }^{\circledR}$

Control modules make it possible to use a controlling device that does not have enough current-carrying capacity to control the CLM contactor directly. Control modules are also used when
the control station is to be located at a distance greater than the allowable contactor line run.
Another use for control modules occurs when the controlling device is only available as a single pole single-throw contact necessitating a two wire control line.
Still another application for control modules is when start-stop three wire control is needed.
Control modules also can make it possible to operate the CLM coil from its own incoming line at one voltage while providing the control at a second, perhaps lower voltage.

Two Wire Control Module (Accessory 47)

The advantages of two wire controls are:

1. Control station can have lower ampacity rating.
2. Control station can be located an extended distance from the CLM contactor.
3. Control module can frequently be controlled directly from microprocessor.
4. Control devices can be two wire single pole, single-throw types.
5. Control voltage may be different than the CLM coil circuit and at a lower voltage level.
Note: If the control power to the solid state control module is lost while the module is energized the lighting contactor will open. If the line power to the lighting contactor is lost while the contactor is energized the contactor will not change state with return of line voltage. Power will be restored to the load if the control module is still energized. Control station should be the maintained type.

Three Wire Control Module (Accessory 48)

1. The accessory 48 consists of two relays with contacts appropriately interconnected which provides for an interlocking that prevents both relays from being energized simultaneously.
2. This module has similar characteristics to the two wire module (Accessory 47) except there is no change of switch contact position upon loss of control line power. Control stations should be the momentary type.

Stop-Start Control Module (Accessory 49)

Stop-start three wire maintained control is an arrangement used mostly when controlling motors, but can be used in lighting applications.
Any number of momentary contact control stations consisting of normally open start buttons and normally closed stop buttons can be used. Start buttons are connected in parallel and stop buttons in series.
Operation (Magnetic Latch)
A permanent magnet is built into the contactor structure of the 30A, 60A, 100A, and 200A contactors that will maintain the contactor in its energized state indefinitely without using control power. When energized, a DC current is applied that produces a magnetic field that reinforces the polarity of the permanent magnet, and the contactor pulls in immediately. The current to the coil is disconnected by the coil clearing interlock. In order to drop out the contactor, it is necessary to apply a field through the OFF coil in the reverse direction to the permanent magnet. This momentarily cancels the magnetic attraction and the contactor drops out. Coil and module failures are possible when used with solid state relays and PLC outputs. 24 -volt systems are ok to use, but 120 volts and above should be discouraged. If higher values cannot be avoided, an interposing relay should be used.

(Mechanically Latched)

The 300 \& 400A lighting and heating contactors operate using a latching mechanism.
Closing - When the "close" pushbutton is operated, the closing coil is energized, closing the contactor. As the contactor closes, the latch lever hooks over the latch pin to mechanically latch the contactor closed. The coil-clearing auxiliary contact de-energizes the closing coil.
Opening - When the "Trip" pushbutton is operated, the trip solenoid coil is energized, unhooking the latch lever from the latch pin, which allows the contactor to open. As the contactor opens, the coil-clearing auxiliary contact de-energizes the trip solenoid coil.

Mechanically and Magnetically Held Lighting Contactors, Class CLM

Selection

	Ordering Information	Coil Table	
	- Replace ${ }^{* * *}$ with a number from the coil table. - Field modification kits see page 9/100. - Factory modifications see page 9/114. - Dimensions see page 9/139 open page 9/153 enclosed. - Wiring Diagrams see page 9/173. - Replacement parts see page 9/123.	60 Hz Voltage	Number
		242	024
		120	120
		240	240
		277	277
		$\begin{aligned} & 480 \oplus \\ & 600 \oplus \end{aligned}$	480 600

Open and Non-combination Enclosed Contactors

Max Amp Rating	Number of Poles	Open Type ${ }^{(3)}$		Enclosure					
		Catalog Number	List Price \$	NEMA 1 General Purpose		NEMA 12 NEMA 3/3R Industrial UseWeatherproof		NEMA 4/4X Stainless Steel Watertight, Dust-tight, Corrosion Resistant 304 Stainless Steel	
				Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
20	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 6 \\ & 8 \\ & 10 \\ & 12 \end{aligned}$	see table below		CLM1B02*** CLM1B03*** CLM1B04*** CLM1B06*** CLM1B08*** CLM1B10*** CLM1B12***		CLM2B02*** CLM2B03*** CLM2B04** CLM2B06** CLM2B08** CLM2B10*** CLM2B12***		$\begin{aligned} & \hline \text { CLMSB02*** } \\ & \text { CLMSB03*** } \\ & \text { CLMSB04** } \\ & \text { CLMSB06*** } \\ & \text { CLMSB10*** } \\ & \text { CLMSB12*** } \\ & \hline \end{aligned}$	
30	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 8 \\ & 9 \\ & 10 \\ & 12 \end{aligned}$	CLMOCO2*** CLMOCO3*** CLMOCO4*** CLMOC05*** CLMOC06*** CLMOC08*** CLMOCO9*** CLMOC10*** CLMOC12***		CLM1C02*** CLM1C03*** CLM1C04*** CLM1C05*** CLM1C06*** CLM1C08*** CLM1C09*** CLM1C10*** CLM1C12***		$\begin{aligned} & \text { CLM2C02*** } \\ & \text { CLM2C03*** } \\ & \text { CLM2CO4*** } \\ & \text { CLM2C05*** } \\ & \text { CLM2C06*** } \\ & \text { CLM2C08*** } \\ & \text { CLM2C09*** } \\ & \text { CLM2C10*** } \\ & \text { CLM2C12*** } \end{aligned}$		CLMSCO2*** CLMSC03*** CLMSC04*** CLMSC05*** \qquad $-$ - \longrightarrow \qquad	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$
60	$\begin{aligned} & \hline 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 8 \\ & 9 \\ & 10 \\ & 12 \end{aligned}$	CLMOD02*** CLMOD03*** CLMODOD*** CLMODO6*** CLMOD08*** CLMOD09*** CLMOD10*** CLMOD12***		CLM1D02*** CLM1D03*** CLM1D04*** CLM1D05** CLM1D06** CLM1D08** CLM1D09** CLM1D10** CLM1D12***		CLM2D02*** CLM2D03*** CLM2D04*** CLM2D05*** CLM2D06*** CLM2D08*** CLM2D09*** CLM2D10*** CLM2D12***		CLMSD02*** CLMSD03*** CLMSD04*** CLMSD05*** - - - -	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$
100	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLMOEO2*** } \\ & \text { CLMOEO3** } \\ & \text { CLMOEO4** } \\ & \text { CLMOEO5*** } \end{aligned}$		CLM1E02*** CLM1E03*** CLM1E04*** CLM1E05***		$\begin{aligned} & \text { CLM2EO2*** } \\ & \text { CLM2E03*** } \\ & \text { CLM2E04*** } \\ & \text { CLM2E05*** } \end{aligned}$		$\begin{aligned} & \text { CLMSE02*** } \\ & \text { CLMSE03** } \\ & \text { CLMSE04** } \\ & \text { CLMSE05** } \end{aligned}$	
200	$\begin{aligned} & \hline 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { CLMOFO2*** } \\ & \text { CLMOFO3*** } \\ & \text { CLMOFO4*** } \\ & \text { CLMOFO5*** } \end{aligned}$		CLM1F02*** CLM1F03*** CLM1F04*** CLM1F05***		$\begin{aligned} & \text { CLM2FO2*** } \\ & \text { CLM2FO3** } \\ & \text { CLM2FO4** } \\ & \text { CLM2F05*** } \end{aligned}$		$\begin{aligned} & \text { CLMSFO2*** } \\ & \text { CLMSFO3*** } \\ & \text { CLMSFO4** } \\ & \text { CLMSFO5*** } \end{aligned}$	
300	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CLMOGO2*** } \\ & \text { CLMOGO3*** } \end{aligned}$		$\begin{aligned} & \text { CLM1G02*** } \\ & \text { CLM1G03*** } \end{aligned}$		$\begin{aligned} & \text { CLM2G02*** } \\ & \text { CLM2G03*** } \end{aligned}$		—	-
400	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { CLMOHO2*** } \\ & \text { CLMOHO3*** } \end{aligned}$		$\begin{aligned} & \text { CLM1H02*** } \\ & \text { CLM1H03*** } \end{aligned}$		$\begin{aligned} & \text { CLM2H02*** } \\ & \text { CLM2H03*** } \end{aligned}$		$1-$	-

Open 20 Amp Contactors

Max Amp Rating	Number of Poles ${ }^{(1)}$	110-120V Coil 50/60Hz		208-240V Coil 50/60Hz		265-277V Coil 50/60Hz	
		Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
20	2	CLM22031		CLM22061		CLM22071	
	3	CLM32031		CLM32061		CLM32071	
	4	CLM42031		CLM42061		CLM42071	
	6	CLM62031		CLM62061		CLM62071	
	8	CLM82031		CLM82061		CLM82071	
	10	CLM102031		CLM102061		CLM102071	
	12	CLM122031		CLM122061		CLM122071	

(1) Contactors with 2-6-poles will be assembled with all poles located in the top portion of the contactor. Contactors with 8-12-poles will be assembled with 6 -poles in the top portion and the remaining poles in the bottom portion of the contactor.
(2) 24 volt coils are not available on 20, 300 and 400 amp contactor sizes. For 24 volt control of 20 amp contactor select solid state control module.

Order mounting kit 49MCMPMA and the appropriate number of 2-5 pole contactors.
(4) 480 or 600 volt coils are not available on 20 amp contactors.

Lighting Control

Combination Mechanically and Magnetically Held Lighting Contactors, Class CM

Selection

Ordering Information

- Replace ${ }^{* * *}$ with a number from the coil table.
- Field modification kits see page $9 / 100$.
- Factory modifications see page $9 / 114$.
- Dimensions see page $9 / 153$.
- Wiring Diagrams see page $9 / 173$.
- Replacement parts see page $9 / 123$.

Coil Table	
60 Hz Voltage	Number
24^{\odot}	024
120	120
208	208
240	240
277	277
480	480
6000^{2}	600

Combination Lighting Contactors

Disconnect Type	Contactor Amp Rating	Number of NO Poles	Disc Amp Rating	Disc Amp/ Fuse Clip Rating	Circuit Breaker Rating	Enclosure					
						NEMA 1 General Purpose		NEMA 12, NEMA 3/3R NEMA 4 Painted (thru 100 amps) Industrial Use Weatherproof, Watertight, Dust-tight		NEMA 4/4X Stainless Steel Watertight, Dust-tight, Corrosion Resistant, 304 Stainless Steel	
						Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
Non-Fusible	20	3	30A	-	-	CMNB14***		CMNB24***		CMNBS4***	
	30	3	30A	-	-	CMNC14***		CMNC24***		CMNCS4***	
	60	3	60A	-	-	CMND15***		CMND25***		CMNDS5***	
	100	3	100A	-	-	CMNE16***		CMNE26***		CMNES6***	
	200	3	200A	-	-	CMNF17***		CMNF27***		CMNFS7***	
	300	3	400A	-	-	CMNG18***		CMNG28***		CMNGS8***	
Fusible	20	3	-	30A/250V	-	CMFB10***		CMFB20***		CMFBS0***	
		3	-	30A/600V	-	CMFB11***		CMFB21***		CMFBS1***	
	30	3	-	30A/250V	-	CMFC10***		CMFC20***		CMFCS ${ }^{* * *}$	
		3	-	30A/600V	-	CMFC11***		CMFC21***		CMFCS1***	
	60	3	-	60A/250V	-	CMFD12***		CMFD22***		CMFDS2***	
		3	-	60A/600V	-	CMFD13***		CMFD23***		CMFDS3***	
	100	3	-	100A/250V	-	CMFE14***		CMFE24***		CMFES4***	
		3	-	100A/600V	-	CMFE15***		CMFE25***		CMFES5***	
	200	3	-	200A/250V	-	CMFF16***		CMFF26***		CMFFS6***	
		3	-	200A/600V	-	CMFF17***		CMFF27**		CMFFS7***	
	300	3	-	400A/250V	-	CMFG18***		CMFG28***		CMFGS8***	
		3	-	400A/600V	-	CMFG19***		CMFG29***		CMFGS9***	
Circuit Breaker	20	3	-	-	20A	CMBB14***		CMBB24***		CMBBS4***	
	30	3	-	-	30A	CMBC15***		CMBC25***		CMBCS5***	
	60	3	-	-	60A	CMBD18***		CMBD28***		CMBDS8***	
	100	3	-	-	100A	CMBE18***		CMBE28***		CMBES8***	
	200	3	-	-	200A	CMBF10***		CMBF20***		CMBFS0***	
	300	3	-	-	300A	CMBG11***		CMBG21***		CMBGS1***	

Lighting \& Heating Contactor Ratings CLM

Maximum AC/DC Voltage and

Load Type	Amperes Continuous	Poles to Load	
		1 for 1-Phase	2 for 1-Phase 3 for 3-Phase
Tungsten	20	250V AC	250 V AC
Ballast	20	347V AC	600 V AC
General	30	347 V AC	600 V AC
General	20	125 V DC	250 V DC

Inrush Current Over Fuse Size (amps RMS) at AC Control Voltage 20A CLM

Amps	$\mathbf{1 2 0 V}$	$\mathbf{2 4 0 V}$	$\mathbf{2 7 7 V}$	$\mathbf{3 4 7 V}$	$\mathbf{4 8 0 V}$
Inrush	5.0	2.5	2.2	1.8	1.3
Fuse	2.0	1.0	1.0	0.75	0.5

[^87]| Contactor Ratings | | | |
| :--- | :--- | :--- | :---: |
| Load
 Type | Amperes
 Continuous | Max Volts
 Line to Line | Max Volts
 Line to Neutral |
| Tungsten | $30-400$ | 480 | 277 |
| Ballast | $30-400$ | 600 | 346 |
| Heating | $30-400$ | 600 | 346 |

AC Coil Data			
Contactor Amperes	No. Poles	Inrush VA	Dropout VA
20	$2-12$	625	6
30	$2-5$	410	40
60	$2-3$	410	40
60	$4-5$	600	40
$100 / 200$	$2-3$	900	200
$100 / 200$	$4-5$	1300	130
$300 / 400$	$2-3$	1600	550

[^88] contactors.

Class MT

General

Features

- Enclosed coils (50-5000VA); Completely encloses the transformer coils against moisture, dust, dirt and industrial contaminants for maximum protection in hostile and industrial environments.
- Fuse clips (most models). Factory mounted for integral fusing on the secondary side to save panel space, save wiring time and save the cost of buying an add-on fuse block or kit
- Integrally finger safe terminals. Between terminals and transformer, protect against electrical creepage. Up to 30% greater terminal contact area permits low-loss connections. Extra-deep barriers reduce the chance of shorts from frayed leads or careless wiring
- Terminals. Molded into the transformer, are difficult to break during wiring. A full quarter-inch of thread on the 8-32 terminal screws prevents stripping and pullout
- Jumpers supplied. Two jumper links are standard with all transformers which can be wired for dual primary voltages

Operation

Industrial control circuits and motor control loads typically require more current when they are initially energized than under normal operating conditions. This period of high current demand, referred to as inrush, may be as great as ten times the current required under steady state (normal) operating conditions, and can last up to 40 milliseconds. A transformer in a circuit subject to inrush will typically attempt to provide the load with the required current during the inrush period. However, it will be at the expense of the secondary voltage stability by allowing the voltage to the load to decrease as the current increases. This period of secondary voltage instability, resulting from increased current, can be of such magnitude that the transformer is unable to supply sufficient voltage to energize the load. The transformer must therefore be designed and constructed to accommodate the high inrush current, while maintaining secondary voltage stability. According to NEMA standards, the secondary voltage would typically be at 85% of the rated voltage.

Industrial Control Power Transformers are specifically designed and built to provide adequate voltage to the load while accommodating the high current levels present at inrush. These transformers deliver excellent secondary voltage regulation and meet or exceed the standards established by NEMA, ANSI, UL and cUL. Their rugged construction and excellent electrical characteristics ensure reliable operation of electromagnetic devices and trouble-free performance.

Specifications

- Laminations are built with silicon steel to minimize core losses and to increase optimum performance and efficiency
- Copper magnet wire of the highest quality assures efficient operation
- Factory mounted type "K" fuse clips are standard on all secondary transformers where possible
- Two jumper links are standard with all transformers which can be wired for dual primary voltages
- cUL Listed and CSA certified

Features

- Class MTG Industrial Control Transformers are 100\% certified for all domestic and International Applications
- The MTG line has full compliance with IEC Safety standards EN 61558
- CE Mark in accordance with requirements for EN 61558
- Meets IP-20 specifications per IEC 529 for finger-safe protection because all of our CPTs come standard with touchsafe terminals, both primary and secondary sides. There is no need to buy any terminal cover accessories.
- UL Listed
- Exceeds applicable requirements for control transformers as determined by NEMA and ANSI
- Insulation requirements is twice that of UL5085
- Available in 50 to 750 VA sizes, in all standard voltage combinations
- Class $130^{\circ} \mathrm{C}\left(226^{\circ} \mathrm{F}\right)$ insulation system. $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ temperature rise. (50-750VA typical)
- Class $180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$ insulation system. $120^{\circ} \mathrm{C}\left(248^{\circ} \mathrm{F}\right)$ temperature rise. (1000-5000VA typical)
- Primary and secondary fusing capability available as field installed kits for domestic or international fusing
- Integrally-molded terminals and barriers between terminals make breakage virtually impossible during wiring. The MTG transformer construction is the same as our high quality Class MT transformers

Optional Field Installed Fuse Clip Kits For Panel Mounting

- 2-Pole primary Class CC fuse block
- 1-Pole secondary midget fuse block for $13 / 32 \times 11 / 2$ fuses
- 2-Pole primary international type fuse blocks
- 1-Pole secondary international type fuse blocks

Touch safe terminals are standard on all CPTs

The Touch-Safe terminals are designed to comply with IEC 742 and IP 20 requirements. The international fuse block kits have inherent touch safe terminals and fuse clips.

Siemens Meets International Standards

CSA (Canadian Standards Association) was utilized as a Competent Body in reviewing, interpreting and properly complying with the requirements of IEC-742 to place a CE mark on its MTG Series product. As a National Certification Body, CSA also has the proper documentation and reports on file for MTG Series to utilize the CB Scheme ensuring acceptance throughout the world.

The standard Siemens MTG product is available with terminal covers which meets the requirements of IEC-529, IP20 degree of protection and meets the applicable requirements for covers per IEC-742.

IEC-742

The requirements for industrial control circuit transformers to be used in the European Common Market are identified by the International Electrotechnical Commission (IEC) and specified under IEC-742, Non-Short Circuit Proof Isolating Transformers, under the Low Voltage Directive 73/23/EEC. Manufacturers of control transformers indicate compliance with these requirements by placing a CE mark on the product.

- Winding to winding insulation requirements may be twice that for IEC-742 compared to UL506
- The electrical clearances between current carrying parts are one-third greater to comply with IEC-742 requirements for units up to 250VA with voltages up to 440 volts ac
- Transformers manufactured to IEC-742 requirements will have a minimum of 10% higher overload capacity than those manufactured only to UL506 requirements
While no requirement exists in IEC-742 for the electrical connections to be either finger safe or touch proof, the specification does state that IF a transformer is supplied with a cover to prevent incidental contact with current carrying parts, that cover must utilize two separate methods or places of securing it to the component, with neither being dependent upon the other. Additionally, one of these methods MUST require a tool to remove it.

IEC-529

The requirements for finger-safe or touch-proof electrical connections are identified by the International Electrotechnical Commission (IEC) under specification 529, Classification of Degrees of Protection Provided by Enclosures. These various degrees of protection are identified and differentiated by IP ratings.
The IP specification which most closely approximates protection to a human finger is IP20. This IP rating would be the most common degree of touch-proof connection for electrical components such as transformers.

EN 61558

The requirements for industrial control transformers to be used in the European Common Market are identified by the IEC and specified in EN 61 558, Safety of Power Control Transformers, under Low Voltage Directive 73/23/EEC. CE mark on the product indicates compliance.

Transformer Selection Process

Selecting a transformer for industrial control circuit applications requires knowledge of the following terms：
Inrush VA is the product of load volt－ age $(\mathrm{V}$ ）multiplied by the current（ A ）that is required during circuit start－up．It is calculated by adding the inrush VA requirements of all devices（contac－ tors，timers，relays，pilot lights，sole－ noids，etc．），which will be energized together．Inrush VA requirements are best obtained from the component manufacturer．
Sealed VA is the product of load voltage（V）multiplied by the current（A） that is required to operate the circuit after initial start－up or under normal operating conditions．It is calculated by adding the sealed VA requirements of all electrical components of the circuit that will be energized at any given time．Sealed VA requirements are best obtained from the component manufacturer．Sealed VA is also referred to as steady state VA．
Primary Voltage is the voltage avail－ able from the electrical distribution system and its operational frequency， which is connected to the transformer supply voltage terminals．
Secondary Voltage is the voltage required for load operation which is con－ nected to the transformer load voltage terminals．

Fuse Clip Kit KCCFPX2R

Primary Fuse Kit

In addition to factory installed second－ ary fusing，Siemens offers a primary fuse kit for class MT transformers size 50－750 VA for field installation．The primary fuse kit includes a 2－pole Class CC fuse block，instructions and all associated mounting and wiring hardware．Additionally，this fuse kit will fit most competitors＇units．To order this kit，use catalog number KCCFPX2R．The primary fuse kit， when installed，will add a maximum of 0.69 in ．（ 18 mm ）to the transformer＂A＂ dimension and 1.94 in ．$(49 \mathrm{~mm}$ ）to the ＂C＂dimension．

Once the circuit variables have been determined，transformer selection is a simple 5－step process as follows：
1．Determine the Application Inrush VA by using the following industry accepted formula： Application Inrush VA $=\sqrt{(\text { Inrush } V A)^{2}+(\text { Sealed } V A)^{2}}$
2．Refer to the Regulation Data Chart．If the primary voltage is basically stable and does not vary by more than 5% from nominal，the 90% secondary voltage column should be used．If the primary voltage varies between 5% and 10% of nominal， the 95% secondary voltage column should be used．
3．After determining the proper secondary voltage column，read down until a value equal to or greater than the Application Inrush VA is found．In no case should a figure less than the Application Inrush VA be used．
4．Read left to the Transformer VA Rating column to determine the proper transformer for this application．As a final check，make sure that the Transformer VA Rating is equal to or greater than the total sealed requirements．If not，select a transformer with a VA rating equal to or greater than the total sealed VA．
5．Refer to the following pages to determine the proper catalog number based on the transformer VA，and primary and secondary voltage requirements．

Regulation Data Chart

Transformer VA Ratings	Inrush VA At 20\％Power Factor		
	NEMA／IEC 95\％Sec Voltage	NEMA／IEC $\mathbf{9 0 \%} \mathbf{S e c}$ Voltage	NEMA／IEC $\mathbf{8 5 \%} \mathbf{S e c}$ Voltage
	$100 /-$	$130 /-$	$150 /-$
50	$170 / 190$	$200 / 220$	$240 / 270$
75	$310 / 350$	$410 / 460$	$540 / 600$
100	$370 / 410$	$540 / 600$	$730 / 810$
150	$780 / 860$	$930 / 1030$	$1150 / 1270$
200	$810 / 900$	$1150 / 1270$	$1450 / 1600$
250	$1400 / 1540$	$1900 / 2090$	$2300 / 2530$
300	$1900 / 2090$	$2700 / 2970$	$3850 / 4240$
350	$3100 / 3410$	$3650 / 4020$	$4800 / 5280$
500	$4000 / 4400$	$5300 / 5830$	$7000 / 7700$
750	$8300 / 9130$	$11000 / 12100$	$14000 / 15400$
$1000^{\text {® }}$	$15000 /-$	$21000 /-$	$27000 /-$
1000^{2}	$9000 /-$	$13000 /-$	$18500 /-$
1500	$10500 /-$	$15000 /-$	$205000 /-$
2000	$17000 /-$	$25500 /-$	$34000 /-$
3000	$24000 /-$	$36000 /-$	$47500 /-$
5000	$55000 /-$	$92500 /-$	$115000 /-$

To comply with NEMA standards，which require all magnetic devices to operate successfully at 85% of rated voltage，the 90% secondary voltage column is most often used in selecting a transformer．
（1）For units with Class $105^{\circ} \mathrm{C}$ insulation systems．
（2）For units with Class $180^{\circ} \mathrm{C}$ insulation systems．

Primary Fuse Kit Installation－Class MT Transformer with Primary Fuse Kit，KCCFPX2R

Industrial Control Power Transformers

Domestic, Class MT

Selection

	Ordering Information	Voltage Table		
	- Use the Voltage Table to determine the primary and secondary voltage required. - Field Modifications see page $9 / 108$. - Dimension and wiring diagrams are available in CAD and PDF format on SIOS. - All MT and MTG CPTs come standard with touch safe terminals.	Primary Volts $50 / 60 \mathrm{~Hz}$	Secondary Volts	Letter
		$240 \times 480,230 \times 460,220 \times 440$	120/115/110	A
		240×480	24	B
		120×240	24	C
		115×230	24	D
-		550/575/600	110/115/120	E
(20) (t)		208/277	120	F
隹 0		208/230/460	115	G
\cdots		230/460/575	95/115	H
		380/400/415	110×220	I
		208/230/460, 200/220/440,240/480	$24 \times 115,23 \times 110,25 \times 120$	J
		240/416/480/600, 230/400/460/575, 220/380/440/550, 208/500	99/120/130, 95/115/125, 91/110/120, 85/100/110	L
		240×480	120×240	M

VA Rating	Voltage Letter A		Voltage Letter B		Voltage Letter C		Voltage Letter D		Voltage Letter E		Voltage Letter F	
	Catalog No	List Price \$	Catalog $\mathrm{No}^{\text {a }}$	List Price \$	Catalog No	List Price \$						
50	MT0050A		MT0050B		MT0050C		MT0050D		MT0050E		MT0050F	
75	MT0075A		MT0075B		MT0075C		MT0075D		MT0075E		MT0075F	
100	MT0100A		MT0100B		MT0100C		MT0100D		MT0100E		MT0100F	
150	MT0150A		MT0150B		MT0150C		MT0150D		MT0150E		MT0150F	
200	MT0200A		MT0200B		MT0200C		MT0200D		MT0200E		MT0200F	
250	MT0250A		MT0250B		MT0250C		MT0250D		MT0250E		MT0250F	
300	MT0300A		MT0300B		MT0300C		MT0300D		MT0300E		MT0300F	
350	MT0350A		MT0350B		MT0350C		MT0350D		MT0350E		MT0350F	
500	MT0500A		MT0500B		MT0500C		MT0500D		MT0500E		MT0500F	
750	MT0750A		MT0750B		-	-	-	-	MT0750E		MT0750F	
1000	MT1000A		-	-	-	-	-	-	MT1000E		-	-
1500	MT1500A		-	-	-	-	-	-	-	-	-	-
2000	MT2000A		-	-	-	-	-	-	-	-	-	-
3000	MT3000A		-	-	-	-	-	-	-	-	-	-
5000	MT5000A		-	-	-	-	-	-	-	-	-	-

VA Rating	Voltage Letter G		Voltage Letter H		Voltage Letter I		Voltage Letter J		Voltage Letter L		Voltage Letter M	
	Catalog No	List Price \$										
50	MT0050G		MT0050H		MT00501		MT0050J		MT0050L		MT0050M	
75	MT0075G		MT0075H		MT0075		MT0075J		-	-	MT0075M	
100	MT0100G		MT0100H		MT01001		MT0100J		MT0100L		MT0100M	
150	MT0150G		MT0150H		MT01501		MT0150J		MT0150L		MT0150M	
200	MT0200G		MTO200H		MT02001		MT0200J		-	-	MT0200M	
250	MT0250G		MT0250H		MT02501		MT0250J		MT0250L		MT0250M	
300	MT0300G		MT0300H		MT03001		MT0300J		-	-	MT0300M	
350	MT0350G		MT0350H	-	MT03501		MT0350J		MT0350L		MT0350M	
500	MT0500G		MT0500H		MT05001		MT0500J		MT0500L		MT0500M	
750	MT0750G		MT0750H		MT07501		-	-	MT0750L		MT0750M	
1000	MT1000G		MT1000H		MT10001		-	-	-	-	MT1000M	
1500	MT1500G		MT1500H		MT15001		-	-	-	-	MT1500M	-
2000	MT2000G		MT2000H		MT20001		-	-	-	-	MT2000M	-
3000	MT3000G		MT3000H		MT30001		-	-	-	-	MT3000M	-
5000	MT5000G		MT5000H		-	-	-	-	-	-	MT5000M	-

International, Class MTG

Selection

Ordering Information	Voltage Table		
- Use the Voltage Table to determine	Primary Volts $50 / 60 \mathrm{~Hz}$	Secondary Volts	Letter
the primary and secondary voltage	$240 \times 480,230 \times 460,220 \times 440$	$120 / 115 / 110$	A
required.	240×480	24	B
- Field Modifications see page 9/108.	120×240	24	C
- Dimension and wiring diagrams are	$550 / 575 / 600$	$110 / 115 / 120$	I
available in CAD and PDF format on	$380 / 400 / 415$	110×220	J
SOS.	All MT and MTG CPTs come standard	$208 / 230 / 460,200 / 220 / 440,240 / 480$	$24 \times 115,23 \times 110,25 \times 120$
with touch safe terminals.	380	24	J

VA Rating	Voltage Letter A		Voltage Letter B		Voltage LetterC		Voltage Letter E		Voltage Letter I		Voltage Letter J		Voltage Letter P	
	Catalog No	ListPrice \$	Catalog No	ListPrice\$	Catalog No	ListPrice $\$$								
50	MTG0050A		MTG0050B		MTG0050C		MTG0050E		MTG00501		MTG0050J		MTG0050P	
75	MTG0075A		MTG0075B		MTG0075C		MTG0075E		MTG0075I		MTG0075J		MTG0075P	
100	MTG0100A		MTG0100B		MTG0100C		MTG0100E		MTG0100I		MTG0100J		MTG0100P	
150	MTG0150A		MTG0150B		MTG0150C		MTG0150E		MTG0150I		MTG0150J		MTG0150P	
200	MTG0200A		MTG0200B		MTG0200C		MTG0200E		MTG02001		MTG0200J		MTG0200P	
250	MTG0250A		MTG0250B		MTG0250C		MTG0250E		MTG02501		MTG0250J		MTG0250P	
300	MTG0300A		MTG0300B		MTG0300C		MTG0300E		MTG03001		MTG0300J		MTG0300P	
350	MTG0350A		MTG0350B		MTG0350C		MTG0350E		MTG03501		MTG0350J		MTG0350P	
500	MTG0500A		MTG0500B		MTG0500C		MTG0500E		MTG05001		MTG0500J		MTG0500P	
750	MTG0750A		MTG0750B		MTG0750C		MTG0750E		MTG0750I		MTG0750J		MTG0750P	
1000	MTG1000A		MTG1000B		MTG1000C	-	MTG1000E	-	MTG1000I	-	MTG1000J		-	-
1500	MTG1500A		-	-	-	-	MTG1500E	-	MTG1500I	-	-	-	-	-
2000	MTG2000A		-	-	-	-	MTG2000E	-	MTG20001	-	-	-	-	-
3000	MTG3000A		-	-	-	-	MTG3000E	-	MTG30001	-	-	-	-	-
5000	MTG5000A		-	-	-	-	MTG5000E	-	MTG50001	-	-	-	-	-

Field Modification Kits

Class SMF, MMS, MRS

Selection

Accessories-Class SMF

Description	Catalog Number	List Price \$
Handle Guard Kit with Padlock Provision	SMFFL1	
Emergency Off Actuator	SMFPB1	
Additional Key for Key Operated Devices	SMFFK1	

Pilot Light Kits-Class MMS, MRS ${ }^{(1)}$

Device	Voltage Rating	Red Pilot Light			Green Pilot Light	
		List Price \$	Catalog Number	List Price \$		
	$115-277 V$ AC	SMFPL10		SMFPL10G		

Enclosures-Class SMF

Enclosure Type	For Use With SMF	Catalog Number	List Price $\$$
Standard Size NEMA 1 General Purpose	F01, F01P, F02, F02P, F03, F03P, F04, F04P	SMFFE2	
Oversized NEMA Type 1 General Purpose	F01, F01P, F02, F02P, F03, F03P, F04, FO4P	SMFFE1	
NEMA 3R, 4, 12 Watertight Dust-tight	F01, F01P, F02, FO2P, F03, FO3P, F04, FO4P	SMF40BC2	

Nameplates-Class SMF

For Use On	Nameplate Marking	Without Pilot Light		With Pilot Light	
		Catalog Number	List Price \$	Catalog Number	List Price \$
Standard commercial switch box cover including stainless steel plates	None	SMFFN2		-	-
Stainless Steel Plate	None	SMFFSN3		SMFFSN4	
NEMA 1	None	SMFFN30		SMFFN40	
surface mounted enclosure	High	SMFFN31		SMFFN41	
	Low	SMFFN32		SMFFN42	

Accessories-Class MMS, MRS

Description	Catalog Number	List Price \$
Handle Guard Kit with Padlock Provision	SMFFL1	
Emergency Off Actuator	SMFPB1	
Additional Key for Key Operated Devices	SMFFK1	

Pilot Light Kits-Class MMS, MRS ${ }^{\text {(}}$

Device	Voltage Rating	Red Pilot Light		Green Pilot Light	
		Catalog Number	List Price \$	Catalog Number	List Price \$
Class MMS	110-120V AC	SMFPL11		SMFPL11G	
	208-277V AC	SMFPL12		SMFPL12G	
	440-600V AC	SMFPL13		SMFPL13G	

Enclosures-Class MMS

Enclosure Type	For Use With MMS	Catalog Number	List Price
Standard Size NEMA 1 General Purpose	K01, K01P, K01B, K02, K02A, K02B, K03, K03A, K03B, K04, K04A, K04B	MMSKE3	
Oversized NEMA Type 1 General Purpose	K01, K02B, K02C, K03, K03A, K03B, K04, K04B, K04C, K02	SMFKE1	
Jumbo NEMA Type 1 General Purpose	K01, K02B, K02C, K03, K03A, K03B, K04, K04B, K04C, K02	SMFKE2	
NEMA 3R, 4, 12 Watertight Dust-tight	K01, K02B, K02C, K03, K03A, K03B, K04, K04B, K04C	SMF40BC2	

Nameplates-Class MMS

For Use On	Nameplate Marking	Without Pilot Light		With Pilot Light	
		Catalog Number	List Price \$	Catalog Number	List Price \$
Standard commercial switch box cover including stainless steel plates	None	SMFFN1		-	-
NEMA 1	None	SMFFN10		SMFFN20	
surface mounted	High	SMFFN11		SMFFN21	
enclosure or	Low	SMFFN12		SMFFN22	
gray flush plate	Forward	SMFFN13		-	-
	Reverse	SMFFN14		SMFFN24	

Replacement Parts-Class SMF, MMS

Description	Catalog Number	List Price \$
Replacement Toggle Kits:Type FW and KW (NEMA 4 Metallic Enclosure)	SMFHW1	

Class 11-3RV

Selection

[^89](3) Product Category: PILO.

Pilot Devices

Selection

（1）To be used for replacement of switch only．Does not include relay or extra contact block on 30－400A CLM and CM Lighting Contactors．Class 49SB not available for these devices．

Pilot Lights

Selection

(1) To use as an OFF indicator, the contactor must have a normally closed (NC) auxiliary contact available for the circuit. Order separately as needed.
(2) Includes a nomally closed (NC) auxiliary contact for NEMA controller sizes 0-4.

3 Incandecsent lamps may be replaced with 52AE* LED lamps listed on this page.
(4) Class 83 and 84 requires a quantity of two pilot light kits.

Field Modification Kits

NEMA, Lighting and Heating Contactors, 20 Amp CLM, CMB, CMF, CMN

Selection
Solid State Control Module Kits For Lighting and Heating Contactors ${ }^{\text {(1) }}$

	CLM 20 Amp Contactor Kit Description	Accessory	Catalog Number	List Price \$	Accessory	Catalog Number	List Price \$	Accessory	Catalog Number	List Price \$
	120 V AC, $50 / 60 \mathrm{~Hz}$	47 (2-Wire Control) (2W)	CLM4379771		48 (3-Wire Control) (3W)	CLM4379781		49 (Start/Stop Control) (3WS)	CLM4379791	
	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC,} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$		CLM4379772			CLM4379782			CLM4379792	
	$\begin{aligned} & 240 / 277 \mathrm{~V} \mathrm{AC}, \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$		CLM4379773			CLM4379783			CLM4379793	

Protective Shielding for NEMA Products

Class 14, 22, 30, 40, 43

Contactor or Starter Size	$\mathbf{0 0 - 1} 3 / 4$	List Price \$	2-2 $1 / 2$	List Price \$	3-3 $1 / 2$	List Price \$	4
Contactor Shield Catalog Number	49PSC1		$49 P S C 2$		$49 P S C 3$		49PSC4
Starter Shield Catalog Number	49PSS1		$49 P S S 2$		$49 P S S 3$		$44 P S S 4$

Class 17, 25, 32, 87

Disconnect Size	Catalog Number	List Price \$
30A	49PSD5	
$60 \& 100 \mathrm{~A}$	49PSD6	
200 A	49PSD7	

Power Pole Kits	Class	Enclosure type	Contactor Size (Amp)	Description	Field Kit Catalog No.
	LC	Open, 1, 12, 4/4X	30	Single power pole Double power pole	$\begin{aligned} & \text { 49LCPP1A } \\ & \text { 49LCPP2A } \end{aligned}$
Electrically Held to Mechanically Held Conversion Modules	Class	Enclosure type	Contactor Size (Amp)	Description	Field Kit Catalog No.
	LC	Open, 1, 12, 4/4X	30	2-wire, 24VAC 2-wire, 110-120VAC 2-wire, 200-277VAC 3-wire, 24VAC 3-wire, 110-120VAC 3-wire, 200-277VAC	49LCCM1A 49LCCM2A 49LCCM3A 49LCCM4A 49LCCM5A 49LCCM6A

[^90]
NEMA, Reduced Voltage and Lighting

Selection

Starter/Contactor Auxiliary Contact Kits

Disconnect Auxiliary Switch Kits

Description		Class	Disconnect Amp or CB Rating	Type	Catalog Number	List Price \$
Non-fusible or Fusible Type	$\begin{aligned} & 84 \\ & 38 \end{aligned}$	17, 25, 32, 37, 83, 84, 87, 88, LED, LEF, CMN, CMF	30-200A	2 NO/2 NC DPDT (NEMA A600)	HA261234	
MCP	8	$\begin{aligned} & 18,26,32,37,83,84, \\ & 87,88, \text { LEB, CMB } \end{aligned}$	3A-125A	1 NO/1 NC 240V	A02ED62	
			250A	1 NO/1 NC 480V	A02FD64	
			400A-600A	(2) 1 NO/1 NC SPDT-480V	A02JLD64	

Control Power Transformer Kits ${ }^{(1)(3)}$

Description	Recommended Transformer Size		VA Rating	Catalog Number	List Price \$	Transformer Table		
	Control Size	Transformer VA				Primary Volts	Secondary Volts	Code
	00-21/2	45 or $50{ }^{(3)}$	45 VA	KT*050 ${ }^{(3)}$		120	24	1
	3-31/2	75	50 VA	KT*050P ${ }^{(3)}$		208	24	G
	4	150	100 VA	KT*100		208	120	H
	5-6	150	150 VA	KT*150		240/480	24	4
	7-8	300	200 VA	KT*200		240/480	120	8
	Lighting Control		300 VA	KT*300		277	24	5
			500 VA	KT*500		277	120	7
	$20 \mathrm{~A}, 2-12 \mathrm{P}$	150	Replace * with code from Transformer table. Kits used with NEMA 1 general purpose lift-off cover type require extra wide enclosure. Class 14 Sizes 0-21/2 Class 30 (2S2W) Sizes 0-21/2 Class 30 (2S1W) Sizes 0-13/4			600	24	6
	30A, 3P	100				600	120	9
	30A, 6 - 12P	200						
	60A, 3P	100						
	60A, 4-6P	150						
	60A, 8 - 12P	250						
	100/200A, 3P	200						
	100/200A, 5P	250						
Transformer 50/60HZ	300/400A, 3P	250						
	LC \& LE LC 30A, 2-12P	100						
	LE 20, 30, 60A, 3 \& 4P	45						
	LE 30A, 6P	45						
	LE 30A, 9-12P	100						
	LE 60A, 6-12P	150						
	LE 100, 200A, 3P	$\begin{aligned} & 100 \\ & 150 \end{aligned}$						

Field Modification Kits

ESP200 Accessories

Selection

Accessories

	Description				Catalog Number 49ASTC1 3UB89848	List Price \＄
		ESP200 Tamper Resistance C				
		ESP100／200 Mounting Plate	Frame Size	Controller Size		
			A or A1	00－13／4	49ASMP1	
			B	2－2 1／2	49ASMP2	
			B	3－4	49ASMP3	
		Mounting Kit			49ASMS1	
	(8)（	Universal Reset Operator 8 ＂for class 36,37 and 87 in NEMA 1,12 and $3 / 3 R$			49MARB	
		Overload Relay Reset Operator for Class 14，22， 30 and 83 non－combination starters in NEMA type 1， 12 and 4／4X enclosures			49MBRS	
		Overload Relay Reset Operator for Class 17，18，25，26， 32 and 84 combination starters in NEMA type 1 enclosures			49MBRS 1	
		Overload Relay Reset Operator for Class 17，18，25，26， 32 and 84 combination starters in NEMA type 12 and $4 / 4 \mathrm{X}$ enclosures			49MBRS2	
		Overload Relay Reset Operator with red button for any Class in NEMA type 1，3R，4／4X and 12 enclosures with a 30 mm hole			49MARSR	
－1		ESP200 Reset Extender			49ASRE	
山す 只 5o a を $\stackrel{y}{\text { ® }}$ 岂 U		Protective Boot Offers protection from ice and foreign substances from interfering with button operation． For use with 49MARSR reset．			52AABA	
		Current Transformer 300：5 use with 3UB81234JW2			97CT005	
		Current Transformer 400：5 use with 3UB81234KW2			97СТ006	
		Current Transformer 600：5 use with 3UB81234LW2			97СТ008	
		Current Transformer 750：5 use with 3UB81234MW2			97CT009	
		Current Transformer 1200：5 use with 3UB81234NW2			97CT012	

Field Modification Kits

NEMA Accessories

Selection

Miscellaneous Kits

Description			Class	Encl. Type	$\begin{aligned} & \hline \text { Controller } \\ & \text { Size } \end{aligned}$	Catalog Number	List Price \$
	Mechanical Interlock for Horizontally Mounted Contactors	Includes wire	14,40	Open	$\begin{aligned} & 00-1 \\ & 13 / 4 \\ & 2,21 / 2 \\ & 3,3^{1 / 2} \\ & 4 \\ & \hline \end{aligned}$	49CCF22H 49EEF22H 49GGF22H 49HHP22H 49JJG22H	
		Interlock Only	14, 40	Open	5,6	3RA1954-2A	
		Wire Kit Only			$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline \text { 3RA1963-2A } \\ & \text { 3RA1973-2A } \end{aligned}$	
		Base Plate Only				$\begin{aligned} & \text { 3RA1962-2A } \\ & \text { 3RA1972-2A } \\ & \hline \end{aligned}$	
		Mechanical Interlock	14,40	Open	17	49VM750H 49VM1650H	
7		Includes wire \& mounting plate	14,40	Open	$\begin{array}{\|l\|} \hline 00-1 \\ 13 / 4 \\ 2,21 / 2 \\ 3,31 / 2 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & \text { 49CCF22HP } \\ & \text { 49EEF22HP } \\ & \text { 49GGF22HP } \\ & \text { 49HHP22HP } \\ & \text { 49JJG22HP } \\ & \hline \end{aligned}$	
		Includes mounting plate (Different Frame Sizes)	14,40	Open	Left Right $2,21 / 2$ $3,31 / 2$ $3,31 / 2$ $2,21 / 2$	$\begin{array}{r} \text { 49L107944 } \\ \text { 49L107945 } \\ \hline \end{array}$	
	Surge Suppressor	Surge Suppressor for 120V AC coil. Limits transient voltage produced by the coil to 220% maximum peak line volts.	All but Class LC, LE, CLM	All	00-4 ${ }^{(1)}$	49D26344	
	Auxiliary Power Pole	NO 36A at 600V AC Max NC 25A at 600V AC Max	All but Class LC, LE, CLM	All	00-184	49SAFO 49SAFC	
	Main Contacts Lighting Contactors	Top or Bottom, 2-Pole Top, 3-Pole Top or Bottom, 4-Pole Top or Bottom, 6-Pole	CLM	All	20 Amps	CLM4097331 CLM4097332 CLM4097333 CLM4097334	
\int_{d}^{P}	Load Side Power Take Off Kit	Includes 3 power lugs for making extra connections to the load side of the contactor	All but Class LC, LE, CLM	All	00-13/4	49SAE	
θ_{6}	Lug Kit for Contactors Item Wire	For AL/CU Wire	14,40	All	$\begin{aligned} & \hline 2-21 / 2 \\ & 3-31 / 2 \\ & 4 \text { Line } 4 \text { Load } \end{aligned}$	$\begin{aligned} & \hline \text { 49SAAF }^{3} \\ & \text { 49SAAH }{ }^{3} \\ & \text { 75D35994002 }^{3} \\ & \hline \end{aligned}$	
	$\begin{array}{lr} \hline \text { 49SAAF } & 2 \\ \hline \text { 49SAAH } & 21 \\ \hline \end{array}$	For AL/CU Wire	14,40	All	5,6	3RT1966-4G ${ }^{(2)}$	
	75D35994001 250	Use CU Only	14,40	All		$\begin{aligned} & \hline \text { 49ZATK750-3 }{ }^{(2)} \\ & \text { 49ZATK1650-6 }{ }^{2} \end{aligned}$	
	Three Conductor Grou Kit Meets UL 508 and Standard 22.2 No 14-	2-14 AWG AL/CU Wire	All	All	All	75D28182001	
	Lightning Arrestor		All	All	All	49D45584002	
	Backspin Timer	On delay timer that reduces risk of starting into a backspin	87, 88	All	All	$\begin{aligned} & \text { 3RP2025-1A030 } \\ & \text { 3RP2025-1AP30 } \end{aligned}$	
	Hole Plug	Covers the hole that is typically used for the conduit hub	87	All	1-4	49D41149006	
	Hole Plug	Covers the hole in the enclosure door/cover normally filled by overload reset 49MBRS Hole plug is used for enclosed contactors.	$\begin{aligned} & \text { 40, 43, LC, LE, } \\ & \text { CLM \& CM } \end{aligned}$	1	All	49MZPB2	

Illustration	Description	Contactor	Wire Size	Catalog Number	List Price \$
3RT1966-4G	Lug Kit 1 Kit = 1 Terminal block. 1 kit necessary for each line and load.	NEMA size 4 (Vacuum) NEMA size 5 NEMA size 6	$2 / 0$ to 600 MCM , max. one 500MCM \& one 600MCM	3RT1966-4G	

(1) Surge Suppression for NEMA sizes 5-8 are supplied internal with the coil. For size 4 panel mount.
2) Only 3 lugs are suplied for line or load If lugs for line and load are required order 2 kits.
${ }^{3}$ Lug Kit for contactors include 3 lugs for line or load 75D35994001 for line side. 75D35994002 for load side.

Field Modification Kits

NEMA Accessories

Selection
Fused and Non-Fused Disconnect Switch Kits ${ }^{2}$

	Basic Switch Ampere Rating	Switch Catalog Number Non-Fused	List Price \$	Switch Catalog Number Fused	List Price \$	Kit Description	Load Base Catalog Number Class J	List Price \$	Load Base Catalog Number Class $\mathrm{H}^{(3)}$	List Price \$	Lug Wire Size
	30	HNB612		HFB21		30A, 250V	-	-	HBB21		\#14-2 AWG (Cu/Al)
				HFB612		30A, 600V	HBB612		HBB612		
	60	HNB623		HFB22		60A, 250V	-	-	HBB22		\#14-2 AWG (Cu/Al)
				HFB62		60A, 600V	HBB62		HBB62		
	100	HNB623		HFB63		100A, 250V	-	-	HBB63		\#14-1/0 AWG (Cu/Al)
						100A, 600V	HBB63				
	200	HNB64		HFB64		200A, 250V	-	-	HBB64		\#6-300 AWG (Cu/Al)
						200A, 600V	HBB64				

Class R Fuse Conversion Kits

	Catalog Number	Description	List Price \$
	HR21	$30 \mathrm{~A}, 240 \mathrm{~V}$	
	HR612	$30 \mathrm{~A}, 600 \mathrm{~V}$	
	HR612	$60 \mathrm{~A}, 240 \mathrm{~V}$	
	HR62	$60 \mathrm{~A}, 600 \mathrm{~V}$	
	HR63	$100 \mathrm{~A}, 240 / 600 \mathrm{~V}$	
	HR64	$200 \mathrm{~A}, 240 / 600 \mathrm{~V}$	

Metal Conduit Hubs

Description	Conduit Size	Class	Controller Size	Enclosure Type	Milbank Catalog No. ${ }^{(4)}$
θ	$1 "$	87	All	3R	A7514
	$11 / 2^{\prime \prime}$				A7516
	2"				A7517
	2 1/2"				A7518

(3) For Class R fuses order Class H kit from this table and the Class R conversion kit.
(4) Milbank catalog numbers are for reference only. Milbank conduit hubs are not sold by Siemens but can be purchased at a typical electrical hardware and supply distributor.

Field Modification Kits

NEMA, Overload Relays

Selection

Sirius 3RB20

Illustration	Description		For Overload Type	Catalog Number	List Price \$
Reset plunger with reset button Flexible reset	Reset mechanisms				
	Reset plunger Mounts directly to overload relay. Requires separate reset operator in enclosure door. Kit includes reset plunger, holder and funnel.		3RB206	3RU1900-1A	
	Flexible cable reset mechanism Requires a 6.5 mm hole in the enclosure with a maximum enclosure thickness of 8 mm .	Cable length 15.75 in (400 mm)	3RB206	3RU1900-1B	
		Cable length 23.62 in (600 mm)		3RU1900-1C	
	Covers Tamper resistant cover for current setting and manual/automatic reset button.		3RB206	3RB2984-0	

Competitive Retrofit Overload Plates

Manufacturer	NEMA Size	Plate Part Number	List Price \$
A-B	0,1	49D57090	
A-B	2	49D57161	
Sq. D	0,1	49D57091	

Electronic Coil System with Remaining Lifetime Indication and 24VDC PLC Output

Class	Size	Model Type	21-27V		96-127V		200-277V	
			Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
All	5	$\begin{aligned} & \hline P \\ & V \\ & \hline \end{aligned}$	-	-	$\begin{array}{\|l} \hline \text { 3RT1965-5PF31 } \\ \text { 3RT1966-5PF31 } \\ \hline \end{array}$		3RT1965-5PP31 3RT1966-5PP31	
All	6	P	-	-	3RT1975-5PF31 3RT1976-5PF31		3RT1975-5PP31 3RT1976-5PP31	

Field Modification Kits

Class MT, MTG

Fuse Blocks, Touch-Safe Terminal Covers

Catalog Number	Description	List Price \$
KCCF1G	SECONDARY FUSE BLOCK,1P,250V MAX	
KCCFBCK	SINGLE POLE FUSE BLOCK COVER KIT	
KCCFP2RG	2 Pole PRIMARY FUSE BLOCK,2P,600V MAX (block only)	
KCCFPX2R	2 Pole PRIMARY FUSE BLOCK KIT with wire Leads	
US2:49FCCPT	Secondary Fuse Clips, 2 per pack	
US2:49JUCPT	Terminal Jumpers	
US2:KCCSECFCVR	Touch safe cover for secondary fuse clips	
	3 pole fuse blk (2 pole primary and 1 pole secondary)	

International Fusing ${ }^{\text {© }}$
List Price \$
Description

[^91]
Non-Combination Enclosure Kits, Class 49

Selection

Non-Reversing Starters \& Contactors Class 14, 40

Size	NEMA 1 General Purpose (Clamshell)(1)(4)					NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant(2)(6)					NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof(2)(4)				
	Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)		
	Model C Enclosure		Model C Enclosure	Max		Model B Enclosure		Model B Enclosure	Max		Model B Enclosure		Model B Enclosure	x	
	Catalog Number	$\begin{array}{\|l\|} \text { List } \\ \text { Price } \end{array}$	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VA } \end{aligned}$	$\begin{array}{\|l} \text { List } \\ \text { Price } \$ \end{array}$	Catalog Number	List Price $\$$	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VAT } \end{aligned}$	List Price \$	Catalog Number	List Price \$	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VA } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Price } \$ \end{aligned}$
00-13/4	49EC14EB110705R		49EC14IB201208R	200		49EB14EW130806R		49EB22EW131306R			49EB14E0130806R		49EB22E0131306R		
2, $21 / 2$	49EC14GB140807R		49EC14IB201208R	200		49EB14GW160907R		49EB22GW161406R			49EB14G0160907R		49EB22G0161406R		
3,31/2	49EC14IB201208R		49EC14IB201208R	100		49EB14JW261408R		49EB14JW261408R			49EB14J0261408R		49EB14J0261408R		
3,31/2	-	-	49EC14JB251409R	250		-	-	-		-	-	-	-		-
4	49EC14JB251409R		49EC14JB251409R	300		49EB14JW261408R		49EB22JW302410R			49EB14J0261408R		49EB22J0302410R		

Reversing Starters \& Reversing Contactors Class 22, 43

Size	NEMA 1 General Purpose (Clamshell) (1)(4)					NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant(2)(5)					NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof(2)(4)				
	Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)		
	Model C Enclosure		Model C Enclosure	M		Model B Enclosure		Model B Enclosure	Max		Model B Enclosure		Model B Enclosure	x	
	Catalog Number	$\begin{aligned} & \text { List } \\ & \text { Price } \$ \end{aligned}$	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VAT } \end{aligned}$	List Price \$	Catalog Number	$\begin{array}{\|l\|l} \text { List } \\ \text { Price } \end{array}$	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VA } \end{aligned}$	List Price \$	Catalog Number	List Price \$	Catalog Number	$\begin{array}{\|l\|l\|} \hline \text { CPT } \\ \text { VA } \end{array}$	List Price \$
00-13/4	49EC14IB201208R		49EC14IB201208R	200		49EB22EW131306R		49EB22EW131306R			49EB22E0131306R		49EB22E0131306R		
2, 21/2	49EC14IB201208R		49EC14IB201208R	200		49EB22GW161406R		49EB22GW161406R			49EB22G0161406R		49EB22G0161406R		
3,31/2	49EC14JB251409R		49EC14JB251409R	250		49EB22IW261808R		49EB22JW302410R			49EB2210261808R		49EB22J0302410R		
4	49EC14JB251409R		49EC14JB251409R	300		49EB22JW302410R		49EB22JW302410R			49EB22J0302410R		49EB22J0302410R		

Two-Speed Two-Winding Starters Class 30

Size	NEMA 1					NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant(2)(5)					NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof(2)(4)				
	Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)		
	Model C Enclosure	List Price \$	Model C Enclosure	$\begin{aligned} & \text { Max } \\ & \text { CPT } \\ & \text { VA } \end{aligned}$	List Price \$	Model B Enclosure	List Price $\$$	Model B Enclosure	$\begin{aligned} & \text { Max } \\ & \text { CPT } \\ & \text { VA } \end{aligned}$	List Price \$	Model B Enclosure	List Price \$	Model B Enclosure	$\begin{array}{\|l\|l} \text { Max } \\ \text { CPT } \\ \text { VA } \end{array}$	List Price \$
	Catalog Number		Catalog Number			Catalog Number		Catalog Number			Catalog Number		Catalog Number		
0-1/4	49EC14IB201208R ${ }^{\text {(1) }}$		49EC14JB251409R ${ }^{(1)}$	200		49EB30EW131306R		49EB30GW161808R			49EB30E0131306R		49EB30G0161808R		
2, $\mathbf{2}^{1 / 2}$	49EC14IB201208R(1)		49EC14JB251409R	200		49EB30GW161406R		49EB30GW161808R			49EB30G0161406R		49EB30G0161808R		
3,31/2	49EC14JB251409R(1)		49EB22JB302410R ${ }^{2}$	300		49EB30IW261808R		49EB22JW302410R			49EB3010261808R		49EB22J0302410R		
4	49EC14JB251409R(1)		49EB22JB302410R ${ }^{(2)}$	300		49EB22JW302410R		49EB22JW302410R			49EB22J0302410R		49EB22J0302410R		

Two-Speed One-Winding Starters Class 30

Size	NEMA 1 General Purpose (Clamshell)(1)(3)					NEMA 4/4X Stainless Watertight, Dust-tight, Corrosion Resistant(2)(5)					NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof(2)(4)				
	Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)		
	Model C Enclosure		Model C Enclosure	x		Model B Enclosure		Model B Enclosure			Model B Enclosure		Model B Enclosure		
	Catalog Number	List Price \$	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VA } \end{aligned}$	List Price \$	Catalog Number	List Price \$	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VA } \end{aligned}$	List Price \$	Catalog Number	List Price \$	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VA } \end{aligned}$	List Price \$
0-13/4	49EC14IB201208R ${ }^{(1)}$		49EC14JB251409R ${ }^{\text {(1) }}$	200		49EB30EW131306R		49EB30GW161808R			49EB30E0131306R		49EB30G0161808R		
2, $21 / 2$	49EB30GB161808R ${ }^{2}$		49EB22JB302410R ${ }^{2}$	300		49EB30GW161808R		49EB22IW261808R			49EB30G0161808R		49EB2210261808R		
3,31/2	49EB30IB192208R ${ }^{\text {2 }}$		49EB22JB302410R ${ }^{(2)}$	300		49EB22JW302410R		49EB22JW302410R			49EB22J0302410R		49EB22J0302410R		
4	49EB22JB302410R ${ }^{(2)}$		49EB22JB302410R ${ }^{(2)}$	300		49EB22JW302410R		49EB22JW302410R			49EB22J0302410R		49EB22J0302410R		

Note: Dimensions...See appropriate Product Class
Outline Drawing beginning on page 17-143.
(1) Clamshell enclosure suitable for one operating device and two pilot lights. See Field Mods page 17-102.
(2) Hinged cover enclosures, except for 49EB14E0130806R, are suitable for one or more class 52 operating devices and one or more class 52 pilot lights. See Field Mods page 17-94.
(3) Install NEMA 1 hole plug cat. no. 3SB1902-0AR (included) when the cover OL reset is not needed.
(4) Install NEMA 12 hole plug cat. no. 52ABH6 (not included) when the cover OL reset is not needed (5) Install NEMA 4X stainless steel hole plug cat. no 52ABHS (not included) when the cover OL reset is not needed.

Lighting Enclosure Tables

Selection
Lighting Contactors Class LC and LE

Contactor	Type 1			Type 4/4X Stainless Steel ${ }^{(1)}$			NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof (2)(4)		
	Without CPT	With CPT	Max.	Without CPT	With CPT	Max.	Without CPT	With CPT	Max.
	Catalog Number	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VA } \end{aligned}$	Catalog Number	Catalog Number	$\begin{aligned} & \text { CPT } \\ & \text { VA } \end{aligned}$	Catalog Number	Catalog Number	$\begin{array}{\|l\|} \hline \text { CPT } \\ \text { VA } \\ \hline \end{array}$
LC 30A 2-12P	49EC14GB140807R	49EC14IB201208R	200	49EB22GW161406R	49EB30GW161808		49EB22G0161406R	49EB30GOB161808	
LE 20, 30A 3-4P	49EC14EB110705R	49EC14IB201208R	200	49EB22GW161406R	49EB22GW161406R		49EB22G0161406R	49EB22G0161406R	
LE 30A 6-9P	49EC14IB201208R	49EC14IB201208R	200	49ECLXXW161406	49EB14JW261408R		49ECLXX0161406	49EB14J0261408R	
LE 30A 12P	49EC14IB201208R	49EC14JB251409R	250	49ECLXXW161406	49EB14JW261408R		49ECLXX0161406	49EB14J0261408R	
LE 60A 3-6P	49EC14GB140807R	49EC14IB201208R	200	49EB22GW161406R	49EB22GW161406R		49EB22G0161406R	49EB22G0161406R	
LE 60A 9-12P	49EC14IB201208R	49EC14IB201209R	250	49ECLXXW161406	49EB14JW261408R		49ECLXX0161406	49EB14J0261408R	
LE 100A 3P	49EC14IB201208R	49EC14IB201208R	200	49EB14JW261408R	49EB14JW261408R		49EB14J0261408R	49EB14J0261408R	

Lighting \& Heating Contactors Class CLM

Size	Pole	NEMA 1 General Purpose (Clamshell)(1)(3)					NEMA 4/4X Stainless Watertight, Corrosion Resistant (2)(5)					NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof (2)(4)				
		Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)			Without CPT		With CPT (Extra Wide)		
		Model C/B Enclosure	List Price \$	Model C/B Enclosure	$\begin{aligned} & \text { Max } \\ & \text { CPT } \end{aligned}$	List Price \$	Model B Enclosure	$\begin{array}{\|l\|l\|l} \text { List } \\ \text { Price } \end{array}$	Model B Enclosure	$\begin{aligned} & \text { Max } \\ & \text { CPT } \end{aligned}$	List Price \$	Model B Enclosure	List Price \$	Model B Enclosure	$\begin{array}{\|l\|} \text { Max } \\ \text { CPT } \\ \hline \end{array}$	List Price \$
		Catalog Number		Catalog Number			Catalog Number		Catalog Number			Catalog Number		Catalog Number		
20A	2-12	49EC14GB140807R		49EC14IB201208R	200VA		49EB22GW161406R		49EB22GW161406R	-		49EB22G0161406R		49EB22G0161406R	-	
30A	2-5	49EC14EB110705R		49EC14IB201208R	200VA		49EB22GW161406R		49EB22GW161406R	-		49EB22G0161406R		49EB22G0161406R	-	
30A	6-12	49EB30GB161808R		49EB30GB161808R	200VA		49ECLXXW161406		49EB30GW161808R	-		49ECLXX0161406		49EB30G0161808R	-	
60A	2-5	49EC14GB140807R		49EC14IB201208R	200VA		-	-	-	-	-	-	-	-	-	-
60A	6-12	49EB30IB192208R		49EB30IB192208R	250VA		-	-	-	-	-	-	-	-	-	-
100A	2-5	49EC14IB201208R		49EC14IB201208R	200VA		-	-	-	-	-	-	-	-	-	-

(3) Install NEMA 1 hole plug cat. no. 3SB1902-0AR (included) when the cover OL reset is not needed.
(4) Install NEMA 12 hole plug cat. no. 52ABH6 (not included) when the cover OL reset is not needed
(5) Install NEMA 4X stainless steel hole plug cat. no. 52ABHS (not included) when the cover OL reset is not needed.

Features

- 100kA short circuit rating when protected with class R fuses to 600 V or MCP to 480 V and when installing listed components from the instruction guide
- Enclosure types available, NEMA 1, 12, 3/3R and painted NEMA 4. NEMA 12 field convertible to $3 / 3 R / 4$ with the appropriate conduit hub and drain hole
- Pre-Drilled mounting panels
- Heavy duty quarter turns
- Industrial type disconnect handle

Disconnect Type Enclosure Kit

- Used to assemble both non-fusible and fusible combination starters
- Accommodates Class 14 full voltage non-reversing (FVNR) NEMA starters 00-4 including Siemens exclusive half sizes
- Handle mechanism, power wire, mounting panel, reset assembly, and instruction guide included. Hardware for panel mounted devices and disconnect switch are not included

MCP Type Enclosure Kit

- Used to assemble combination starters with circuit breakers
- Accommodates Class 14 full voltage non-reversing (FVNR) NEMA starters 00-4 including Siemens exclusive half sizes
- Handle mechanism, power wire, mounting panel, reset assembly and instruction guide included. Circuit breaker not included however, mounting hardware for the circuit breaker is

How to Select the Required Kits to Assemble a Combination Starter

1. From the catalog, select a class 14 open type starter.
2. Based on the starter size, select the enclosure kit from table 1a for fusible or non-fusible combination starters or select from table 1b for combination starters with an MCP.
3. For a non-fusible combination starter, select the disconnect switch kit from table 2a. For a fusible combination starter, select the appropriate disconnect switch, fuse clip kit, and class R rejection kit from table 2 b (for H fusing, class R rejection kit not required). For combination starters with MCP, select the appropriate circuit breaker kit from table 3.

> Nomenclature for Combination Enclosure Kits

Selection

Table 1a - FVNR Combination Starter Kits for use with Disconnect Devices

Starter Size	Disc. Amp Rating	NEMA 1 General Purpose		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof		NEMA 4/4X Stainless Steel Watertight, Dust-tight, Corrosion Resistant	
		Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
0-2	60	49EC17BB241108R		49EC17BN241108R		49EC17BW241108R	
21/2-3	100	49EC17CB242008R		49EC17CN242008R		49EC17CW242008R	
$31 / 2-4$	200	49EC17FB362408R		49EC17FN362408R		49EC17FW362408R	

Table 1b. - FVNR Combination Starter Kits for use with MCP Devices

Starter Size	Max MCP Amps	NEMA 1 General Purpose		NEMA 3/3R/4/12 Watertight, Dust-tight, Weatherproof		NEMA 4/4X Stainless Steel Watertight, Dust-tight, Corrosion Resistant	
		Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	List Price \$
0-2	50	49EC18DB241108R		49EC18DN241108R		49EC18DW241108R	
21/2-3	125	49EC18DB242008R		49EC18DN242008R		49EC18DW242008R	
$31 / 2$	125	49EC18DB362408R		49EC18DN362408R		49EC18DW362408R	
4	150	49EC18EB362408R		49EC18EN362408R		49EC18EW362408R	

Table 2a - Non-Fusible Disconnect Kits

Disconnect Switch		
Switch Rating	Catalog Number	List Price \$
30 A	HNB612	
60 A	HNB623	
100 A	HNB623	
200 A	HNB64	

Table 2b - Fusible Disconnect Kits

Fuse Clip Ratings	Class	Disconnect Switch		Load Base for Fuse		Rejection Clips for Class R Fusing	
		Catalog Number	List Price \$	Catalog Number	List Price \$	Catalog Number	$\begin{aligned} & \text { List Price } \\ & \$ \\ & \hline \end{aligned}$
30A-250V	H	HFB21		HBB21		HR21	
30A-600V	H	HFB612		HBB612		HR612	
60A-250V	H	HFB22		HBB22		HR612	
60A-600V	H	HFB62		HBB62		HR62	
100A-250V	H	HFB63		HBB63		HR63	
100A-600V	H	HFB63		HBB63		HR63	
200A-250V	H	HFB64		HBB64		HR64	
200A-600V	H	HFB64		HBB64		HR64	

Table 3 - Circuit Breaker Kits

	MCP Type Used with Solid State Overload Relay		
Starter Size	Overload Amp Range	Motor Circuit Interrupter Amps	Circuit Breaker Kit
	$0.75-3.4$	3	ED63A003
0	$3-12$	10	ED63A010
	$5.5-22$	25	ED63A025
	$0.75-3.4$	3	ED63A003
1	$3-12$	10	ED63A010
	$5.5-22$	25	ED63A025
	$10-40$	30	ED63A030
$13 / 4$	$10-40$	40	ED63A040
2	$13-52$	50	ED63A050
$21 / 2$	$25-100$	100	ED63A100
3	$25-100$	100	ED63A100
$31 / 2$	$50-200$	125	ED63A125
4	$50-200$	150	FXD63A150L

Class 87 Pump Panel Enclosure Kits

Selection

Ordering Information

Replace the (*) with a letter from the coil table. Dual voltage coils are wired on high voltage unless specified on order.
Refer to Class 87 section of catalog for pump panel ratings and other details.
Handle mechanism, power wire, mounting panel, reset assembly and instruction guide are included with the enclosure kit.

Coil Table	
60 Hz Voltage	Letter
24	J
120	F
$110-120 / 220-240$	A
$200-208$	D
$220-240$	G
$220-240 / 440-480$	C®
277	L
$440-480$	H
$550-600$	E

Pump Panels with Solid-State Overload Relay Class 87

To Field Assemble This Pump Panel:	Order these components					
	Enclosure Catalog Number	Starter with Solid-State Overload Relay	Disconnect Switch	Fuse Load Base	Class R Rejection Clips	Motor Circuit Interrupter
87DUB6F*	49EB87GF242008	14DUB32A*	HFB612	HBB612	HR612	-
87DUC6F*	49EB87GF242008	14DUC32A*	HFB612	HBB612	HR612	-
87DUD6F*	49EB87GF242008	14DUD32A*	HFB612	HBB612	HR612	-
87DUD60*	49EB87GF242008	14DUD32A*	HFB62	HBB62	HR62	-
87EUE6F*	49EB87GF242008	14EUE32A*	HFB612	HBB612	HR612	-
87EUE60*	49EB87GF242008	14EUE32A*	HFB62	HBB62	HR62	-
87FUF6F*	49EB87GF242008	14FUF32A*	HFB62	HBB62	HR62	-
87FUF60*	49EB87GF242008	14FUF32A*	HFB63	HBB63	HR63	-
87GUG6F*	49EB87GF242008	14GUG32A*	HFB62	HBB62	HR62	-
87GUG60*	49EB87GF242008	14GUG32A*	HFB63	HBB63	HR63	-
87HUG6F*	49EB87JF362408	14HUG32A*	HFB63	HBB63	HR63	-
87HUG60*	49EB87JM362408	14HUG32A*	MCS620R	FCK620	SSRK34	-
87IUH6F*	49EB87JM362408	14IUH32A*	MCS620R	FCK620	SSRK34	-
87JUH6F*	49EB87JM362408	14JUH32A*	MCS620R	FCK620	SSRK34	-
87DUC6L*	49EB87GF242008	14DUC32A*	HFB21	HBB21	HR21	-
87DUD6L*	49EB87GF242008	14DUD32A*	HFB21	HBB21	HR21	-
87DUE6L*	49EB87GF242008	14DUE32A*	HFB21	HBB21	HR21	-
87DUE6P*	49EB87GF242008	14DUE32A*	HFB22	HBB22	HR612	-
87EUE6L*	49EB87GF242008	14EUE32A*	HFB22	HBB22	HR612	-
87FUF6L*	49EB87GF242008	14FUF32A*	HFB22	HBB22	HR612	-
87FUF6P*	49EB87GF242008	14FUF32A*	HFB63	HBB63	HR63	-
87GUG6L*	49EB87GF242008	14GUG32A*	HFB22	HBB22	HR612	-
87GUG6P*	49EB87GF242008	14GUG32A*	HFB63	HBB63	HR63	-
87HUG6L*	49EB87JF362408	14HUG32A*	HFB63	HBB63	HR63	-
87HUG6P*	49EB87JM362408	14HUG32A*	MCS620R	FCK620	SSRK34	-
87IUH6L*	49EB87JM362408	14IUH32A*	MCS620R	FCK620	SSRK34	-
87JUH6L*	49EB87JM362408	14JUH32A*	MCS620R	FCK620	SSRK34	-
87DUB6M*	49EB87GB242008	14DUB32A*	-	-	-	ED63A003
87DUC6M*	49EB87GB242008	14DUC32A*	-	-	-	ED63A010
87DUD6M*	49EB87GB242008	14DUD32A*	-	-	-	ED63A025
87DUE6M*	49EB87GB242008	14DUE32A*	-	-	-	ED63A030
87EUE6M*	49EB87GB242008	14EUE32A*	-	-	-	ED63A040
87FUF6M*	49EB87GB242008	14FUF32A*	-	-	-	ED63A050
87GUG6M*	49EB87GB242008	14GUG32A*	-	-	-	ED63A100
87HUG6M*	49EB87IB362408	14HUG32A*	-	-	-	ED63A100
87IUH6M*	49EB87IB362408	14IUH32A*	-	-	-	ED63A125
87JUH6M*	49EB87JB362408	14JUH32A*	-	-	-	FXD63A150L

[^92]Selection

Ordering Information

- All modifications will consist of Siemens standard components as available. Standard equipment dimensions and enclosure construction may not apply when certain modifications and special features are added.

Pilot Devices

Description	Modification	Class	Enclosure Type	Modification Code	List Price \$
Push Buttons	Start, Stop	14, 17, 18, 36, 37, 40, $83{ }^{3}$, $84{ }^{3}$, CLM, CM, LC, LE	All	A1	
	Forward, Reverse, Stop	22, 25, 26, 43	All	A2	
	High, Low, Stop	30, 32	All		
	E-Stop	$14,17,18,22,25,26,30,32,36,37,40,43$	All	ES	
Selector Switches	Hand-Off-Auto	14, 17, 18, 36, 37, 40, $83^{3}, 84^{3}$, LC, LE	All	A3	
		CM, CLM	All	A3	
	For 24 volt HOA control, 20 Amp contactor only	CM, CLM	1	EM	
	Off-On	$\begin{aligned} & 14,17,18,22,25,26,30,32,36,37,40,43, \\ & 83^{3}, 84^{3}, \text { CLM, CM, LC, LE } \end{aligned}$	All	A4	
	Auto-Off	14, 17, 18, 40, $83{ }^{3}$, $84{ }^{3}$, CM, CLM, LC, LE	All	A6	
	Forward-Off-Reverse	22, 25, 26, 43	All	A5	
	High-Off-Low	30, 32	All		
	Hand-Off-Auto (Keyed)	14, 17, 18, 36, 37, 40, $83^{3}, 84^{3}$, LC, LE, CLM, CM	All	A9	
	Auto-Off-Low-High	30, 32	All	A0	

Pilot Lights

Class	Enclosure Type	Lens Color \rightarrow	Red	Green	Red	Green	Red	Green	Amber	White	Red Push-To-Test	Green Push-To-Test	Green Push-To-Test	LED Bulb Upgrade
		Legend \rightarrow	On For/Rev Low/High	On For/Rev Low/High	Run	Run	Off	Off	Overload Relay Tripped	Control Power On	On For/Rev Low/High	On For/Rev Low/High	Off	
		Mod Code \rightarrow	FA	FB	FC	FD	FJ	FK	FL	FW	FS	FT	FU	$\mathbf{F E}^{(1)}$
14, 40, 17, 18, 36, 37, 87, 88, LC, LE, CLM, CM	All													
$\begin{array}{\|l} 22,25,26,30,32,43, \\ 83^{3}, 84^{3} \end{array}$	All													

Coil Options

Class 14, 17, 18, 22, 25, 26, 30, 32, 40, 43, 83 ${ }^{\oplus}, 84{ }^{\text {® }}, 87,88$					
Volts 60 HZ	Volts 50 HZ	Coil Letter Change	Controller Size - List Price \$		
			00-21/2	3, $3^{1 / 2}$	4
24	24	J			
120	110	F			
110-120/220-240	110/190-220	A			
200-208	-	D			
220-240	190-220	G			
277	240	L			
220-240/440-480	190-220/380-440	C			
440-480	380-440	H			
575-600	550	E			
DC Coil ${ }^{(2)}$	24 V	$\mathbf{S}^{\text {® }}$			
	48 V	U			
	125 V	V	.		
	250 V	W			

AC (50-60 HZ) or DC	Coil Letter Change	Controller Size 4 (Vacuum Only) Size $\mathbf{5}$ \& $\mathbf{6}$ (ALL)
$23-26 \mathrm{~V}$	\mathbf{J}	
$42-48 \mathrm{~V}$	\mathbf{U}	
$110-127 \mathrm{~V}$	\mathbf{F}	
$200-220 \mathrm{~V}$	\mathbf{D}	
$220-240 \mathrm{~V}$	\mathbf{G}	
$240-277 \mathrm{~V}$	\mathbf{L}	
$380-420 \mathrm{~V}$	\mathbf{K}	
$440-480 \mathrm{~V}$	\mathbf{H}	
$575-600 \mathrm{~V}$	\mathbf{E}	

(1) Pilot lights are transformer type as standard. For LED type bulbs, order suffix FE in addition to the standard device suffix(es). For example, to order red "ON" and green "OFF" pilot lights with LED bulbs, order FA, FK and FE.
(2) DC coils include 1 NC, late break aux. contact.

This aux. contact takes up one side of the starter (00-4 only).
(3) For Class 83 and 84 , two devices are included.
(4) For Class 83, 84 standard enclosure (92) alternating
relay available in 24 V or 120 V control only
(5) S coil is not available for size 4 contactors or starters.

Selection

Ordering Information	Transformer Table		
- Replace (*) with letter from Transformer Table.	Primary Volts	Seco Volts	Letter
	120	24	B
	208	24	S
	208	120	T
	240	24	J
	240	120	F
	277	24	N
	277	120	P
	380	110	U
	415	100	w
	480	240	R
	480/240	24	D
	480/240	120	A
	600 600	24 120	E

Control Power Transformers

Description	Modification Code	Product Class 3
Standard Capacity with 1-Secondary Fuse	B*	
Standard Capacity with 2-Primary and 1-Secondary Fuse	D*	All
100VA Extra Capacity with 2-Primary and 1-Secondary Fuse	C*	
150VA Extra Capacity with 2-Primary and 1-Secondary Fuse	C*1	

Factory Assembled Fuse Clips-Class 25, 32, $84{ }^{\circledR}$

Fuse Clip Amps	Volts	Modification Code
30	250	10
30	600	11
60	250	12
60	600	13
100	250	14
100	600	15
200	250	16
200	600	17
400	250	18
400	600	19
600	250	20
600	600	21
800	600	23
1200	600	24
1600	600	25

Note: Factory will furnish the same voltage coils as transformer secondary voltage (except with class $36,37)$.
(1) The standard control transformer supplied for starter sizes 0 through $2^{1 / 2}$ will be rated 45VA and have the appropriate secondary fuse. Primary fuses will not be supplied as standard. For primary fuse option select supplied as standard. For prim
appropriate suffix from table.

Selection
Additional Auxiliary Contacts

Class	NO Contacts	NC Contacts	Modication Code	Controller Size - List Price \$			
				00-13/4	2-4	5-6	7-8
$14,17,18,40,83^{3}, 83^{3}$	-	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	G01 G02			-	-
	1	-	G10			-	-
	1	1	G11				
	1	2	G12			-	-
	2	-	G20				-
	2	1	G21			-	-
	2	2	G22				-
	2	3	G23			-	-
	3	1	G31				-
	3	2	G32			-	-
	3	3	G33		-	-	-
	4	-	G40				-
	4	1	G41			-	-
	4	2	G42		-	-	-
	4	4	G44		-	-	-
	5	-	G50			-	-
	5	1	G51		-	-	-
	5	3	G53		-	-	-
	6	-	G60		-	-	-
	6	2	G62		-	-	-
	7	1	G71		-	-	-
	8	-	G80		-	-	-
$\begin{aligned} & 22,25,26,43 \text { \& } \\ & 30,32 \text { (2-winding) } \end{aligned}$	-	2	G02 ${ }^{\text {® }}$			-	-
	2	-	G20 ${ }^{(1)}$			-	-
	2	2	G22 ${ }^{(1)}$				-
	4	0	G40 ${ }^{\text {¹ }}$				-
	4	4	G44 ${ }^{\text {® }}$			-	-
	6	2	G62 ${ }^{(1)}$			-	-
	8	0	G80 ${ }^{(1)}$			-	-
$\begin{aligned} & 30,32 \\ & \text { (1-winding) } \end{aligned}$	0	2	G02 ${ }^{(1)}$	-		-	-
	2	-	G20 ${ }^{(1)}$	-		-	-
	2	2	G22 ${ }^{(1}$			-	-
	4	-	G40 ${ }^{(1)}$			-	-
	4	4	G44 ${ }^{(1)}$	-		-	-
	6	2	G62 ${ }^{\text {® }}$	-		-	-
	8	-	G80 ${ }^{(1}$	-		-	-
LE, CLM, CM	1	1	G11		-	-	-
LC	0	1	G01				
	1	0	G10				
	1	1	G11				
	0	2	G02				
	2	0	G20				
LE, CLM, CM	0	2	G02 ${ }^{(1)}$		-	-	-
	2	0	G20 ${ }^{(1)}$		-	-	-
	2	2	G22 ${ }^{(1)}$		-	-	-

		Modification Code	Controller Size - Price Deduction \$					
Description	Class		0,1	13/4-21/2	3	312, 4	5,6	7,8
Omit Overload Relay and Reset Button	17, 18, 25, 26	EX1						

[^93](2) Double the price addition for Class 30 and 32 .
(3) For class 83 and 84 contacts will be added to both starters. Price $\times 2$.

Selection

Control Options

Description	Class	Enclosure Type	Modification Code
Lighting Control Modules (does not include pilot devices)	CLM 20 Amp only	All	2W (2-wire control module) 3W (3-wire control module) 3WS (Start/Stop control module)
Surge Suppression for 120V AC Coil ${ }^{(2)}$	$14,17,18,22,25,26,30,32,36,37,83,84,87,88$	All	SS
Disconnect Switch Interlock $2 \mathrm{NO} / 2 \mathrm{NC}$ DPDT	17, 25, 32, 37, 84, CM, LE	All	GY
Motor Circuit Protector Interlock \quad NO/NC \quad SPDT	18, 26, 32, 37, 84, CM, LE	All	GY
Lightning Arrestor	All	All	L
Circuit Breaker Shunt Trip	18, 26, 32, 37, 84, 87, 88, CM, LE	All	L6
Circuit Breaker Undervoltage Trip	18, 26, 32, 37, 84, 87, 88, CM, LE	All	L7
Circuit Breaker Alarm Switch Trip	18, 26, 32, 37, 84, 87, 88, CM, LE	All	L8
Ground Lug - 3 Conductor	All	All	L10
Control Circuit Fuse and Holder (Transformer Primary Fusing)	All	All	F1 (1 fuse) F2 (2 fuses)
Control Circuit Circuit Breaker Internally Operated	All	All	F4
Space Heater (120V separate control)	All	All	SH
Space Heater with Thermostat (120V separate control)	All	All	ST
Surge Capacitor	87, 88	All	SC
Alarm Package (includes horn, light, relay \& push-button)	83, 84, 87, 88	All	M7
Backspin Protection	87, 88	All	T5
Blown Control Fuse Indicator Light	17, 25, 32, 37, 84, 87, 88, CM, LC, LE	All	L11
Minimum Run Timer 0.2 sec . - 3 mins.	87, 88	All	T6
Single Phase 120VAC Combination Starter	17, 18, 25, 26	All	SP1
Single Phase 240VAC Combination Starter	17, 18, 25, 26	All	SP2

Reversing Options

Description	Class	Modification Code
Reversing in one speed only 2 speed 1 winding Reversing in one speed only 2 speed 2 winding Reversing in both speeds 2 speed 1 winding Reversing in both speeds 2 speed 2 winding		R6 R7 R8 Reversing for Reduced Voltage

Motor Management with PROFIBUS DP Communications ${ }^{3}$

Description	Class	Enclosure Type	Modification Code
SIMOCODE pro C With 0.3-3A Current Module	14,17,18,22,25,26	All	MC1
SIMOCODE pro C With 2.4-25A Current Module			MC2
SIMOCODE pro C With 10-100A Current Module			MC3
SIMOCODE pro C With 20-200A Current Module			MC4
SIMOCODE pro C With 63-630A Current Module			MC5
SIMOCODE pro V With 0.3-3A Current/Voltage Module			MV1
SIMOCODE pro V With 2.4-25A Current/Voltage Module			MV2
SIMOCODE pro V With 10-100A Current/Voltage Module			MV3
SIMOCODE pro V With 20-200A Current/Voltage Module			MV4
SIMOCODE pro V With 63-630A Current/Voltage Module			MV5
Factory Parameterization of SIMOCODE			MM0

Electrically Held to Mechanically Held Conversion Modules
 internal with the coil.
(3) A CPT must also be ordered to power the motor man agement device. Motor management may be ordered with other product classes as specials.

Factory Modifications

Selection

Control Relays

Description	Class	Enclosure Type	Modification Code
4 NO			R40
Control Relay 4-Poles Max	All		R22
4 NC			R04
Under/Over Voltage, Phase Failure, Phase Sequence, Phase Unbalance			R1
Ground Fault Relay			R5
Electronic On Delay Relay (.15s-100h) 24V/120V	All		T1
Electronic On Delay Relay (.15s-100h) 24V/240V(1)			T2
Electronic Off Delay Relay (.15s-100s) 120V		All	T3
Electronic Off Delay Relay (.15s-100s) 240V1(T4
24 hour time clock 24 hour time clock with day omission 7 day time clock	LC, LE, CLM, CM		$\begin{aligned} & \text { T7 } \\ & \text { T8 } \\ & \text { T9 } \\ & \hline \end{aligned}$
Compelling Relay			A6
Acceleration Control	30,32		A7
Deceleration Control			A8

Meters-Mounted on Enclosure

Description	Class	Enclosure Type	Modification Code
Ammeter (includes a C.T. if necessary)	$\begin{aligned} & 14,17,18,22, \\ & 25,26,304,324, \\ & 36,37,40,43,83, \\ & 84,87,88 \end{aligned}$	1, 3, 4, 4X, 12	M1
Ammeter and Switch (3-Phase with 3 C.T.'s)		1,12	M2
Voltmeter		1, 3, 4, 4X, 12	M3
Voltmeter and Switch (3-Phase)		1,12	M4
Elapsed Time Meter ${ }^{(2)}$		1, 3, 4, 4X, 12	M5

Function Identification Plates

Description	Class	Modification Code
Function identification plate, with marking as specified	All	N1

Terminal Blocks

Description	Class	Modification Code
3 Point Terminal		TC3 3
6 Point Terminal	All	TC6 ${ }^{3}$
9 Point Terminal		TC9 3

Special Ratings

Description	Class	Modification Code
Service Entrance Rating Please note Class 87, 88, CM and LE (combination type) are UL Listed for Service Entrance as standard and thus does not need to be modified for such.	17,18, $25,26,32$,	N3

Drawings

Description	Class	Catalog Number
Approval/submittal and as-built drawings for factory modified product may be ordered. The drawing set includes an enclosure outline, a panel layout and a schematic. When entering the order, use the line item notes to reference a product and modifications or an existing order that the drawings are to be engineered for. Specify the contact information and an email address in the ship to address field. Attach any reference drawings to the order or forward to National Customer Support. Once completed, the drawing set will emailed.	All	CONTROLDRAWING

(3) For terminal point more than 9 terminals use additional suffixes. Max 3 suffixes can be selected
(4) Class 30 and 32 can be modified with only an elapsed time meter. No other meters apply to class 30 or 32 .

Heater Elements, Class SMF

General

	Ordering Information
Heater Elements Class SMF	1. Determine number of heater elements required from Table A. 2. Determine motor full load current and service factor. 3. If the motor and controller are in the same ambient temperature: a. For 1.15 to 1.25 senvice factor motors use 100% of motor full load current for heater element selection. b. For 1.0 service factor motors use 90% of motor full load current for heater element selection. c. Heater elements are class 20. 4. If the motor and controller are in different ambient temperatures multiply motor full load current by the multiplier in Table B. Use the resultant full load current for heater element selection. 5. Select proper heater element from table below. 6. All tables are based on the operation of the motor and controller in the same ambient temperature, $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less. Always be certain the correct heater element is installed in the starter before operating the motor.

Heater Catalog Number	Motor Full-Load Current (Amps)	List Price \$
SMFH01	$0.157-0.173$	
SMFH02	$0.174-0.192$	
SMFH03	$0.193-0.212$	
SMFH04	$0.213-0.235$	
SMFH05	$0.236-0.261$	
SMFH06	$0.262-0.289$	
SMFH07	$0.290-0.321$	
SMFH08	$0.322-0.355$	
SMFH09	$0.356-0.399$	
SMFH10	$0.41-0.44$	
SMFH11	$0.45-0.49$	
SMFH12	$0.50-0.53$	
SMFH13	$0.54-0.58$	
SMFH14	$0.59-0.65$	
SMFH15	$0.66-0.71$	
SMFH16	$0.72-0.78$	
SMFH17	$0.79-0.85$	
SMFH18	$0.86-0.96$	
SMFH19	$0.97-1.04$	
SMFH20	$1.05-1.16$	
SMFH21	$1.17-1.25$	
SMFH22	$1.30-1.39$	
SMFH23	$1.38-1.54$	
SMFH24	$1.48-1.63$	
SMFH25	$1.57-1.75$	
SMFH26	$1.66-1.86$	

Table A
Number of Heater Elements

Device	Number of Heater Elements	Notes
SMFF*1 SMFF*2 SMFF*3 SMFF*4 SMFF*5 SMFF*6	1	All single pole and two pole SMF starters require only 1 Heater Element.
$\begin{aligned} & \hline \text { SMFF*2 }^{\text {SMFF }} 44 \\ & \text { SM } \end{aligned}$	2	Duplex Unit. One Heater Element per starter.
$\begin{aligned} & \hline \text { SMFF*11 } \\ & \text { SMFF*22 } \end{aligned}$	2	Two Speed Starter. One Heater Element per speed.

Heater Catalog Number	Motor Full-Load Current (Amps)	List Price \$
SMFH27	$1.80-1.99$	
SMFH28	$1.96-2.15$	
SMFH29	$2.16-2.38$	
SMFH30	$2.39-2.75$	
SMFH31	$2.76-2.84$	
SMFH32	$2.85-3.06$	
SMFH33	$3.07-3.45$	
SMFH34	$3.46-3.70$	
SMFH35	$3.71-4.07$	
SMFH36	$4.08-4.32$	
SMFH37	$4.33-4.90$	
SMFH38	$4.91-5.35$	
SMFH39	$5.36-5.85$	
SMFH40	$5.86-6.41$	
SMFH41	$6.42-6.79$	
SMFH42	$6.80-7.57$	
SMFH43	$7.58-8.15$	
SMFH44	$8.16-8.98$	
SMFH45	$8.99-9.67$	
SMFH46	$9.68-9.95$	
SMFH47	$9.96-10.8$	
SMFH48	$10.9-12.1$	
SMFH49	$12.2-13.1$	
SMFH50	$13.2-13.9$	
SMFH51	$14.0-15.0$	
SMFH52	$15.1-16.0$	

Table B-Special Applications Heater Element Selection

Continuous Duty Motor Service Factor	Ambient Temperature of Motor		
	Same as Controller Ambient	Constant $10^{\circ} \mathrm{C}$ (18° F) Higher Than Controller Ambient	Constant $10^{\circ} \mathrm{C}$ (18° F) Lower Than Controller Ambient
	Full Load Current Multiplier		
1.15 to 1.25	1.0	0.9	1.05
1.0	0.9	0.8	0.95

Replacement Parts

Starters and Contactors - AC Coils

Selection

Ordering Information

4th character of starter or contactor catalog number indicates model.

AC Coils - For Class 14, 17, 18, 22, 25, 26, 30, 32, 36, 37, 40, 43, 83, 84, 87, 88

		Size	Model	Volts		Catalog Number	List Price \$
				60 Hz	50Hz		
		00-21/2	$\begin{aligned} & \text { P } \\ & \text { U (ESP200) } \end{aligned}$	$\begin{aligned} & 24 \\ & 120 \\ & 110-120 / 220-240 \\ & 208 \\ & 220-240 \\ & 277 \\ & 220-240 / 440-480 \\ & 440-480 \\ & 575-600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 24 \\ & 110 \\ & 110 / 190-220 \\ & \overline{190}-220 \\ & 240 \\ & 190-220 / 380-440 \\ & 380-440 \\ & 550 \\ & \hline \end{aligned}$	75D73070J 75D73070F 75D73070A 75D73070D 75D73070G 75D73070L 75D73070C 75D73070H 75D73070E	
		3, 31/2	$\begin{aligned} & \text { P } \\ & \text { U (ESP200) } \end{aligned}$	24 120 $110-120 / 220-240$ 208 $220-240$ 277 $220-240 / 440-480$ $440-480$ $575-600$	$\begin{aligned} & 24 \\ & 110 \\ & 110 / 190-220 \\ & \overline{190-220} \\ & 240 \\ & 190-220 / 380-440 \\ & 380-440 \\ & 550 \end{aligned}$	$\begin{aligned} & \text { 75D73251J } \\ & \text { 75D73251F } \\ & \text { 75D73251A } \\ & \text { 75D73251D } \\ & \text { 75D73251G } \\ & \text { 75D73251L } \\ & \text { 75D73251C } \\ & \text { 75D73251H } \\ & \text { 75D73251E } \end{aligned}$	
		4	G U (ESP200)	24 120 $120 / 220-240$ 208 $220-240$ 277 $220-240 / 440-480$ $440-480$ $575-600$	$\begin{aligned} & \hline 24 \\ & 110 \\ & 110 / 190-220 \\ & - \\ & 190-220 \\ & 240 \\ & 190-220 / 380-440 \\ & 380-440 \\ & 550 \end{aligned}$	$\begin{aligned} & \hline \text { 75D70131J } \\ & \text { 75D70131F } \\ & \text { 75D70131A } \\ & \text { 75D70131D } \\ & \text { 75D70131G } \\ & \text { 75D70131L } \\ & \text { 75D70131C } \\ & \text { 75D70131H } \\ & \text { 75D70131E } \\ & \hline \end{aligned}$	
		4, 5	V (Vacuum)	$\begin{aligned} & \hline 23-26 \\ & 110-127 \\ & 200-220 \\ & 220-240 \\ & 240-277 \\ & 380-420 \\ & 440-480 \\ & 575-600 \\ & \hline \end{aligned}$	$\begin{aligned} & 23-26 \\ & 110-127 \\ & 200-220 \\ & 220-240 \\ & 240-277 \\ & 380-420 \\ & 440-480 \\ & 575-600 \\ & \hline \end{aligned}$	3RT1966-5AB31 3RT1966-5AF31 3RT1966-5AM31 3RT1966-5AP31 3RT1966-5AU31 3RT1966-5AV31 3RT1966-5AR31 3RT1966-5AT31	
		5	P	$\begin{aligned} & \hline 23-26 \\ & 110-127 \\ & 200-220 \\ & 220-240 \\ & 240-277 \\ & 380-420 \\ & 440-480 \\ & 575-600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 23-26 \\ & 110-127 \\ & 200-220 \\ & 220-240 \\ & 240-277 \\ & 380-420 \\ & 440-480 \\ & 575-600 \\ & \hline \end{aligned}$	3RT1965-5AB31 3RT1965-5AF31 3RT1965-5AM31 3RT1965-5AP31 3RT1965-5AU31 3RT1965-5AV31 3RT1965-5AR31 3RT1965-5AT31	
		6	P V (Vacuum)	$\begin{aligned} & \hline 23-26 \\ & 110-127 \\ & 200-220 \\ & 220-240 \\ & 240-277 \\ & 380-420 \\ & 440-480 \\ & 575-600 \\ & \hline \end{aligned}$	$\begin{aligned} & 23-26 \\ & 110-127 \\ & 200-220 \\ & 220-240 \\ & 240-277 \\ & 380-420 \\ & 440-480 \\ & 575-600 \end{aligned}$	3RT1975-5AB31 3RT1975-5AF31 3RT1975-5AM31 3RT1975-5AP31 3RT1975-5AU31 3RT1975-5AV31 3RT1975-5AR31 3RT1975-5AT31	
		7	H	$\begin{aligned} & 100-250 \\ & 150-500 \end{aligned}$	$\begin{aligned} & 100-250 \\ & 150-500 \end{aligned}$	75ZAF750-70 75ZAF750-71	
		8	H	100-250	100-250	75ZAF1650-70®	

(1) Set of 2 coils. Recommend to change printed circuit
board when changing coils. 49ZP1650 see page 17-123.

Starters and Contactors - DC Coils, Late Break Aux Contacts, Rectifiers, Contact Kits

Selection

Ordering Information

4th character of starter or contactor catalog number indicates model.

- DC Coils for Size 00-4 require Late Break Interlock.

DC Coils - For Class 14, 17, 18, 22, 25, 26, 30, 32, 40, 43

	Size	Model	Volts DC	Catalog Number	List Price \$
	00-21/2	P U (ESP200)	$\begin{aligned} & 12 \\ & 24 \\ & 32 \\ & 48 \\ & 125 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 75D73070R } \\ & \text { 75D73070S } \\ & \text { 75D73070T } \\ & \text { 75D73070U } \\ & \text { 75D73070V } \\ & \text { 75D73070W } \end{aligned}$	
	$3,31 / 2$	P U (ESP200)	$\begin{aligned} & 12 \\ & 24 \\ & 32 \\ & 48 \\ & 125 \\ & 250 \\ & \hline \end{aligned}$	75D73251R 75D73251S 75D73251T 75D73251U 75D73251V 75D73251W	
	4	G U (ESP200)	$\begin{aligned} & 48 \\ & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & \hline \text { 75D70131U } \\ & \text { 75D70131V } \\ & \text { 75D70131W } \\ & \hline \end{aligned}$	
	4, 5	V (Vacuum)	$\begin{aligned} & \hline 23-26 \\ & 42-48 \\ & 110-127 \\ & 240-277 \end{aligned}$	3RT1966-5AB31 3RT1966-5AD31 3RT1966-5AF31 3RT1966-5AU31	

Note: For sizes 7 \& 8 contactors the AC coils are used for DC see page 17-118.

Late Break Auxiliary Contacts

	Control Size	Model	Catalog Number	List Price \$

Board for Size 8 Contactor

	Control Size	Model	Catalog Number	List Price
	8	H	49ZP1650	

Contact Kits - Single Pole Stationary and Movable Contacts, Contact Spring ${ }^{\text {(1) }}$

Description	Size	Number of Poles in Kit	Model (4th position in part number)	Catalog Number	List Price \$
8	$\begin{aligned} & \text { Internal Aux Contact }\left(00-1-\frac{3}{4}\right) \\ & 00 \\ & 0 \end{aligned}$		$\begin{aligned} & \hline P, U \\ & P, U \\ & P, U \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 75AF14 } \\ & \text { 75BF14 } \\ & \text { 75CF14 } \end{aligned}$	
	$\begin{aligned} & \hline 1 \\ & 13 / 4-1 \mathrm{P} \end{aligned}$	1	$\begin{aligned} & \hline P, U \\ & P, U \end{aligned}$	$\begin{aligned} & \hline 75 D F 14 \\ & \text { 75EF14 } \end{aligned}$	
	2	1	P, U	75FP14	
	21/2	1	P, U	75GP14	
8	$\begin{aligned} & 3 \\ & 31 / 2 \\ & \hline \end{aligned}$	1	$\begin{aligned} & P, U \\ & P, U \end{aligned}$	$\begin{aligned} & \hline 75 \mathrm{HF} 14 \\ & 75 I F 14 \end{aligned}$	
2^{3}	$\begin{aligned} & \hline 4 \\ & 4 \text { (Vacuum) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 3 \text { (Bottles) } \end{aligned}$	$\begin{aligned} & \text { G, T } \\ & \text { V, C } \end{aligned}$	$\begin{aligned} & \text { 75JG14 } \\ & \text { 3RT1964-6V } \end{aligned}$	
Class $14,17,18,22,25$, $26,30,32,36,37,40,43$,	$\begin{aligned} & 5 \\ & 5 \text { (Vacuum) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \\ 3 \text { (Bottles) } \\ \hline \end{array}$	$\begin{aligned} & P \\ & \mathrm{~V}, \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 3RT1966-6A } \\ & \text { 3RT1966-6V } \end{aligned}$	
83, 84, 87, 88	$\begin{aligned} & \hline 6 \\ & 6 \text { (Vacuum) } \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \\ 3 \text { (Bottles) } \end{array}$	$\begin{aligned} & \hline P \\ & \mathrm{~V}, \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { 3RT1976-6A } \\ & \text { 3RT1976-6V } \\ & \hline \end{aligned}$	
14, 40	7 7	3	H	49ZL750	

Armature and Magnet Kits

Size	Catalog Number	List Price \$
$00-21 / 2$	49AMSA2	
$3-31 / 2$	49AMSA3	
4	49AMSA4	

[^94]
Overload Relays, Lighting Contactors

Selection

Power Pole Kits

	Class	Enclosure type	Contactor Size (Amp)	Description	Catalog No.
				Single power pole Double power pole	49LCPP1A 49LCPP2A

Replacement Contact Kits

(0)	Class	Contactor Size (Amp)	Description	Catalog No.
	LC	30	NA	NA
-		20,30	NA	NA
	LE	$\begin{array}{\|l} \hline 60 \\ 100 \\ 200 \\ 300 \\ 400 \end{array}$	1 contact kit includes 3 moving and 6 fixed contacts.	3RT2937-6A 3RT1945-6A 3RT1956-6A 3RT1965-6A 3RT1975-6A

Lighting Contactors, Type LC, LE, CLM, CMF, CMN

Selection

Replacement Coil Kits

AC Coils 20 Amps ${ }^{(2)}$

	Type	Contactor Size	Number of Poles	$\begin{aligned} & 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 110 \mathrm{~V}, 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 240 \mathrm{~V}, 60 \mathrm{~Hz} \\ & 208 \mathrm{~V}, 50 \mathrm{~Hz} \end{aligned}$	$\begin{array}{\|l} \hline 277 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \end{array}$
CLM4097341	CLM	20 Amp	2-12	CLM4097341	CLM4097342	CLM4097343

AC Coils 30-400 Amps ${ }^{3}$

	Type	Contactor Size	Number of Poles	Catalog Number						
				24V AC	120V AC	208V AC	220/240V AC	277V AC	480V AC	600V AC
	CLM+C	30 Amp	$\begin{array}{\|l\|} \hline \text { 2-3-Pole } \\ \text { 4-Pole } \\ \text { 5-Pole } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { CLMC4C024 } \\ \text { CLMC4C024 } \\ \text { CLMC5C024 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { CLMC4C120 } \\ \text { CLMC4C120 } \\ \text { CLMC5C120 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { CLMC4C208 } \\ & \text { CLMC4C208 } \\ & \text { CLMC5C208 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CLMC4C240 } \\ \text { CLMC4C240 } \\ \text { CLMC5C240 } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { CLMC4C277 } \\ \text { CLMC4C271 } \\ \text { CLMC5C277 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { CLMC4C480 } \\ \text { CLMC4C480 } \\ \text { CLMC5C480 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { CLMC4C600 } \\ & \text { CLMC4C600 } \\ & \text { CLMC5C600 } \\ & \hline \end{aligned}$
	CLM + D	60 Amp	$\begin{aligned} & \hline \text { 2-3-Pole } \\ & \text { 4-Pole } \\ & \text { 5-Pole } \end{aligned}$	CLMD3C024 CLMD5C024 CLMD5C024	CLMD3C120 CLMD5C120 CLMD5C120	CLMD3C208 CLMD5C208 CLMD5C208	CLMD3C240 CLMD5C240 CLMD5C240	CLMD3C277 CLMD5C277 CLMD5C277	CLMD3C480 CLMD5C480 CLMD5C480	CLMD3C600 CLMD5C600 CLMD5C600
	CLM ${ }^{\text {L }}$	$\begin{aligned} & 100,200 \\ & \text { Amp } \end{aligned}$	$\begin{aligned} & \hline \text { 2-3-Pole } \\ & \text { 4-Pole } \\ & \text { 5-Pole } \end{aligned}$	CLME3CO24 CLME5CO24 CLME5C024	CLME3C120 CLME5C120 CLME5C120	CLME3C208 CLME5C208 CLME5C208	CLME3C240 CLME5C240 CLME5C240	CLME3C277 CLME5C277 CLME5C277	CLME3C480 CLME5C480 CLME5C480	CLME3C600 CLME5C600 CLME5C600
	CLM+G Latching Coil	300/400	2-3-Pole	-	CLMGL3C120	CLMGL3C208	CLMGL3C240	CLMGL3C277	CLMGL3C480	CLMGL3C600
CLMGU3C120	Unlatch Coil	Amp	2-3-Pole	-	CLMGU3C120	CLMGU3C208	CLMGU3C240	CLMGU3C277	CLMGU3C480	CLMGU3C600

(1) Product Category: IEC
(2) Coil kits for 20 amp CLM contactors include the coil clearing auxiliary contact.
(3) For 30-200 amp CLM contactors, in the event that either the coil or the control module fails, it is recommended that both be replaced.

Replacement Parts

Lighting Contactors, CLM, CMB, CMF \& CMN

Selection

Ordering Information

For CLM: 5th character of contactor catalog number indicates Frame Size.

- For CMB, CMF, CMN: 4th character of contactor catalog number indicates Frame Size.

Main Contacts 20 Amp Lighting Contactors

CLM4097334	Type	Contactor Size	Number of Poles	Location	Catalog Number	List Price \$
	CLM	20 Amp	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ 4 \\ 6 \end{array}$	Top or Bottom Top Top or Bottom Top or Bottom	CLM4097331 CLM4097332 CLM4097333 CLM4097334	

Main Contacts 30-400 Amp Lighting Contactors

Type	Frame Size	Contactor Size	Number of Poles	Catalog Number	List Price \$
CLM	C	30 Amp	$\begin{array}{\|l} \hline 2 \\ 3 \\ 4 \\ 5 \end{array}$	CLMCCK02 CLMCCK03 CLMCCK04 CLMCCK05	
	D	60 Amp	$\begin{array}{\|l} \hline 2 \\ 3 \\ 4 \\ 5 \end{array}$	CLMDCK02 CLMDCK03 CLMDCK04 CLMDCK05	
	E	100 Amp	$\begin{array}{\|l} \hline 2 \\ 3 \\ 4 \\ 5 \\ \hline \end{array}$	CLMECK02 CLMECK03 CLMECK04 CLMECK05	
	F	200 Amp	$\begin{array}{\|l} \hline 2 \\ 3 \\ 4 \\ 5 \\ \hline \end{array}$	CLMFCK02 CLMFCK03 CLMFCK04 CLMFCK05	
	G	300 Amp	$\begin{array}{\|l} \hline 2 \\ 3 \\ \hline \end{array}$	CLMGCK02 CLMGCK03	
	H	400 Amp	$\begin{array}{\|l} 2 \\ 3 \end{array}$	CLMHCK02 CLMHCK03	

Auxiliary Contact Blocks 20 Amp Lighting Contactors ${ }^{(2)}$

Type	Contactor Size	Contacts	Catalog Number	List Price $\boldsymbol{\$}$
CLM	20 Amp	1 Form C NO, NC Contact 2 Form C NO, NC Contacts	CLM4097291 CLM4097292	

Auxiliary Contact Blocks 30-400 Amp Lighting Contactors

		Type	Frame Size	Contactor Size	Contact Configuratio		Catalog Number	List Price \$
		CIM	$\mathrm{Cto} \mathrm{F}^{\text {(2) }}$	30-200 Amps	$\begin{array}{\|l\|} \hline 1 \mathrm{NO} \text { and } 1 \mathrm{NC} \\ 2 \mathrm{NC} \\ 2 \mathrm{NO} \\ 1 \text { Coil Clearing } \\ \mathrm{NO} \text { and } \mathrm{NC} \\ \hline \end{array}$		CLMFCAK11 CLMFCAK02 CLMFCAK20 CLMFCCK11	
CLMFCAK 11			G to $\mathrm{H}^{\text {® }}$	300-400 Amps	$\begin{aligned} & \hline 1 \mathrm{NO} \text { and } 1 \mathrm{NC} \\ & 2 \mathrm{NC} \\ & 2 \mathrm{NO} \\ & 1 \text { Coil Clearing } \\ & \text { NO and NC } \end{aligned}$		CLMHCAK11 CLMHCAKO2 CLMHCAK20 CLMHCCK11	
Control Module Rectifier ${ }^{(3)}$								
Type	Device		Contactor Size	Number of Poles		Catalog Number		List Price \$
CLM	CLM+C to CLM+F 30-200 Amps			All		CLMKCMR		

(1) Maximum 1 block per contactor.
(2) Maximum 2 blocks per contactor.
either the coil or the control module fails, it is recommended that both be replaced.
(3) For 30-200 amp CLM contactors, in the event that

Replacement Parts

Miscellaneous

Selection

Replacement Handle Assemblies and Disconnect Mechanisms

Enclosure Types 1, 3R, 4, 4X Stainless Steel \& 12

Class	Disconnect (Amps)	Enclosure Size	Handle Assembly Only		Handle Assembly and Disconnect Mechanism	
			Catalog Number	List Price \$	Catalog Number	List Price \$
17, 25, 32, 84, 87, CM, LE	30, 60 \& 100	All Standard and Extra-wide Sizes	75D73944015		75D68257103	
37, 88	30 \& 60		75D73944018		75068257048	
17, 25, 32, 84	200		75D73944015		75D68257105	
37, 88, CM, LE	200		75D73944015		75D68257063	
87	200		75D73944023		75D68257068	
17, 25, 37, 87, 88, CM, LE	400 \& 600		75 D 73944027		75D68257078	
Class	Motor Circuit Interrupter (Amps)	Enclosure Size	Handle Assembly Only		Handle Assembly and Disconnect Mechanism	
			Catalog Number	List Price \$	Catalog Number	List Price \$
18, 26, 32, CM, LE	3-125	$\begin{aligned} & \left(24^{\prime \prime} \mathrm{H} \times 11^{\prime \prime W} \times 8^{\prime \prime} \mathrm{D}\right), \\ & \left(24^{\prime \prime} \mathrm{H} \times 20^{\prime \prime} \mathrm{W} \times 8^{\prime \prime}\right) \end{aligned}$	75D73944025		75D68257080	
18, 26, 32	100-125	(36"H x 24 "W x 8"D)	75D73944025		$75 \mathrm{D68257073}$	
18, 26, 32	150 \& 250	All Standard Sizes	75D73944028		75D68257089	
18, 26, 37, 87, 88, CM	300-600		$75 \mathrm{D73944027}$		75D68257078	
87	3-125		75D73944025		$75 \mathrm{D68257080}$	
87	150		75D73944028		75D68257089	
87	250		$75 \mathrm{D73944011}$		75D68257077	
37, 88	30-125		75D73944025		75D68257073	
37, 84, 88, CM	150-250		$75 \mathrm{D73944011}$		$75 \mathrm{D68257077}$	
84	3-125		75D73944025		75D68257074	

Quarter Turn Assemblies

Description		Class		Enclosure Type	Catalog Number
			$1,3 / 3 R \& 12$	List Price \$	

Manual Control

Class SMF, MMS

Class SMF and MMS Open Type

Class SMF
(1)Types FO-1, 1P, 2, 2P (with toggle operator)

Class MMS
(1)Types KO-1, 1A, 1B, 2, 2B, 2C (with toggle operator)

NEMA Type 3R, 4 and 12

NEMA Type 4 Watertight Die Cast Zinc Enclosure

Dimensions in Inches (mm)								
A	B	C	D	E	F	G	H	I
3.00	2.75	1.13	0.25	3.75	4.69	4.25	4.56	0.78
(76)	(70)	(28)	(6)	(95)	(119)	(108)	(116)	(20)

Device	Class	Type
Fractional HP Starter	SMF	FW1, 1P, 2, 2P
Motor Starting Switch	MMS	KW1, 1A, 1B, 2, 2B, 2C

NEMA Type 1 General Purpose Surface Mounting Enclosures

NEMA Type 1B General Purpose Flush Mounting

Device	Type of Operator	Type			
			A	B	C
Class SMF Fractional HP Starter	Toggle	$\begin{aligned} & \text { FF1, 1P, 2, 2P } \\ & \text { FS1, 1P, 2, 2P } \end{aligned}$	$\begin{aligned} & 1.44 \\ & (37) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.75 \\ (70) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.50 \\ (114) \\ \hline \end{array}$
		FSJ1P, 2P	$\begin{aligned} & 1.44 \\ & (37) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.50 \\ \text { (89) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133) \\ \hline \end{array}$
	Key	$\begin{aligned} & \text { FF3, 3P, 4, 4P } \\ & \text { FS3, 3P, 4, 4P } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.44 \\ & (37) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.75 \\ (70) \\ \hline \end{array}$	$\begin{aligned} & \hline 4.50 \\ & (114) \\ & \hline \end{aligned}$
		FSJ3P, 4P	1.44 (37)	$\begin{array}{\|l\|} \hline 3.50 \\ (89) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 5.25 \\ (133) \\ \hline \end{array}$
Class MMS Motor Starting Switch	Toggle	$\begin{aligned} & \hline \text { KF1, 1A, 1B, 2, 2B, 2C } \\ & \text { KS1, 1A, 1B, 2, 2B, 2C } \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2.75 \\ (70) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.50 \\ (114) \\ \hline \end{array}$
		KSJ1A, 1B, 2B, 2 C	$\begin{aligned} & 1.75 \\ & (44) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 3.50 \\ (89) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133) \\ \hline \end{array}$
	Key	$\begin{aligned} & \text { KF3, 3A, 3B, 4, 4B, 4C } \\ & \text { KS3, 3A, 3B, 4, 4B, 4C } \end{aligned}$	$\begin{aligned} & 1.75 \\ & (44) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.75 \\ (70) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.50 \\ (114) \\ \hline \end{array}$
		KSJ3A, 3B, 4B, 4C	$\begin{aligned} & 1.75 \\ & (44) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 3.50 \\ (89) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133) \\ \hline \end{array}$

Standard Size-Class SMF and MMS Types FG \& KG (Single-Unit)

Oversized-Class SMF and MMS Types FGJ \& KGJ (Single-Unit)

Jumbo MMSKE2
1/2"-3/4" Knock-Out On Back and Sides

Note: Dimensions for reference, not for construction.
(1) Dimensions typical for key operator devices.

Manual Control

Class SMF, MMS

Dimensions

NEMA Type 7 and 9 Cast Aluminum Enclosure

NEMA Type 1 General Purpose Enclosure For Two Unit Devices

NEMA Type 1B General Purpose Flush Mounting For Two Unit Devices

Note: Dimensions for reference, not for construction. Dimensions are in inches (mm).

[^95](3) Dimensions include factory wired power connections
(4) Selector switch is on the left, extends 1.62 in . (41 mm)
from mounting surface.

Manual Control

Class 11-3RV
Dimensions

3RV102

Class 11 - NEMA 1 Enclosure

Note: Dimensions in inches (millimeters). Dimensions
for reference, not for construction. Contact Sales
Office for dimensions not listed

Solid State Overload, Class 14

Dimensions

Figure 1

Figure 3

Figure 4

Figure 2

Figure 5

Open Type Solid State Overload

Size	Figure	Outline Dimensions						Mounting Dimensions						Mounting Screw	Reset Dimensions				
		A	B	B1	B2	C	C1	D	D1	D2	E	E1	E2	G	J	K	L	M	M1
00-13/4	1	$\begin{array}{\|l\|} \hline 7.44 \\ (189) \\ \hline \end{array}$	$\begin{aligned} & \hline 3.50 \\ & (89) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.75 \\ & (146) \\ & \hline \end{aligned}$	-	$\begin{aligned} & 3.75 \\ & \text { (95) } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.50 \\ & (89) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.50 \\ & (165) \end{aligned}$	$\begin{aligned} & 2.00 \\ & (51) \end{aligned}$	$\begin{aligned} & 0.19 \\ & (5) \\ & \hline \end{aligned}$	$\begin{aligned} & 6.27 \\ & (159) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.00 \\ & (25) \\ & \hline \end{aligned}$	-	\#10	$\begin{aligned} & \hline 5.60 \\ & (142) \\ & \hline \end{aligned}$	-	$\begin{aligned} & 0.18 \\ & (5) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.23 \\ & (82) \end{aligned}$	$\begin{aligned} & 3.41 \\ & (87) \end{aligned}$
2-21/2	2	$\begin{array}{\|l} \hline 8.13 \\ (207) \end{array}$	$\begin{aligned} & \hline 3.50 \\ & (89) \end{aligned}$	$\begin{aligned} & \hline 5.75 \\ & (146) \end{aligned}$	$\begin{aligned} & \hline 4.60 \\ & \text { (117) } \end{aligned}$	$\begin{aligned} & \hline 4.00 \\ & (102) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.77 \\ & (96) \end{aligned}$	$\begin{aligned} & \hline 7.62 \\ & (194) \end{aligned}$	$\begin{aligned} & \hline 2.00 \\ & (51) \end{aligned}$	0.19 (5)	-	$\begin{aligned} & 1.00 \\ & (25) \\ & \hline \end{aligned}$	-	\#10	$\begin{aligned} & \hline 6.87 \\ & (174) \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & (12) \\ & \hline \end{aligned}$	0.18 (5)	$\begin{aligned} & \hline 3.88 \\ & (99) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.06 \\ & (103) \end{aligned}$
$3-31 / 2$	3	$\begin{array}{\|l\|} \hline 9.78 \\ (248) \end{array}$	$\begin{aligned} & \hline 4.50 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.75 \\ & (171) \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 5.19 \\ & (132) \end{aligned}$	$\begin{aligned} & \hline 4.66 \\ & (118) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.22 \\ & (234) \end{aligned}$	1.44 (37)	$\begin{aligned} & \hline 0.28 \\ & \text { (7) } \\ & \hline \end{aligned}$	-	0.72 (18)	-	$\begin{aligned} & \hline 0.25 \\ & \text { (6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.43 \\ & (214) \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & (12) \end{aligned}$	0.18 (5)	$\begin{aligned} & \hline 4.04 \\ & (103) \end{aligned}$	$\begin{aligned} & \hline 4.22 \\ & (107) \\ & \hline \end{aligned}$
4	4	$\begin{aligned} & 11.06 \\ & (281) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.50 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline 6.75 \\ & (171) \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 5.75 \\ & (146) \end{aligned}$	$\begin{aligned} & \hline 4.66 \\ & (118) \end{aligned}$	$\begin{aligned} & 10.34 \\ & (263) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.44 \\ & (37) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & (11) \end{aligned}$	-	$\begin{aligned} & 0.72 \\ & (18) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.72 \\ & (18) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & \text { (6) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.35 \\ & (237) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.48 \\ & (12) \end{aligned}$	0.18 (5)	$\begin{aligned} & \hline 4.04 \\ & (103) \end{aligned}$	$\begin{aligned} & \hline 4.22 \\ & (107) \\ & \hline \end{aligned}$
5	5	$\begin{array}{\|l\|} \hline 12.76 \\ (324) \\ \hline \end{array}$	$\begin{aligned} & \hline 5.71 \\ & (145) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.89 \\ & (175) \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 8.54 \\ & (217) \end{aligned}$	-	$\begin{aligned} & \hline 7.09 \\ & (180) \end{aligned}$	$\begin{aligned} & \hline 4.72 \\ & (120) \\ & \hline \end{aligned}$	-	-	-	-	$\begin{aligned} & 0.35 \\ & \text { (9) } \\ & \hline \end{aligned}$	-	-	-	-	-
6	6	$\begin{array}{\|l\|} \hline 13.03 \\ (331) \end{array}$	$\begin{aligned} & \hline 6.30 \\ & (160) \end{aligned}$	$\begin{aligned} & \hline 7.48 \\ & (190) \end{aligned}$	-	$\begin{aligned} & \hline 9.29 \\ & (236) \end{aligned}$	-	$\begin{aligned} & 7.09 \\ & (180) \end{aligned}$	$\begin{aligned} & 5.12 \\ & (130) \end{aligned}$	-	-	-	-	$\begin{aligned} & 0.35 \\ & \text { (9) } \\ & \hline \end{aligned}$	-	-	-	-	-

Reversing \＆Multispeed Heavy Duty Starters

Solid State Overload Class 22， 30

Dimensions

Class 22 Reversing \＆Class 302 Speed／2 Winding

Size	Figure	Outline Dimensions						Mounting Dimensions			Mounting Screw	Reset Dimensions					
		A	B	B1	B2	C	C1	D	D1	E	G	J	K	K1	L	M	M1
00－13／4	1	7.69	7.75	10.50	3.62	3.92	3.61	7.25	0.22	7.25	\＃10	5.77	1.25	4.75	0.18	3.58	3.40
$2-21 / 2$	2	8.94	8.25	10.50	3.62	4.17	3.98	8.50	0.22	7.25	\＃10	7.10	0.77	4.75	0.18	4.23	4.05
$3-31 / 2$	3	11.44	10.94	12.75	－	5.65	5.03	10.75	0.34	10.25	\＃10	9.18	1.64	6.00	0.18	4.69	4.51
4	4	11.91	10.94	12.75	－	6.22	5.12	11.22	0.34	10.25	0.25	9.53	0.65	6.00	0.18	4.68	4.50

Class 302 Speed／1 Winding

Size	Figure	Outline Dimensions						Mounting Dimensions			Mounting Screw	Reset Dimensions					
		A	B	B1	B2	C	C1	D	D1	E	G	J	K	K1	L	M	M1
00－13／4	1	7.69	7.75	10.50	3.62	3.92	3.61	7.25	0.22	7.25	\＃10	5.77	1.25	4.75	0.18	3.58	3.40
2－21／2	5	9.19	14.55	16.30	－	3.94	3.85	8.75	0.22	13.00	\＃10	7.33	0.77	5.75	0.18	4.23	4.05
$3-31 / 2$	6	11.44	16.94	18.75	－	5.65	5.07	10.75	0.34	16.25	\＃10	9.18	1.64	6.00	0.18	4.68	4.50
4	7	11.91	16.94	17.75	－	6.22	5.12	10.75	0.82	16.25	\＃10	9.06	1.64	6.00	0.18	4.68	4.50

Class 40

Dimensions

Full Voltage Open Type NEMA Contactor Size 00-8

Open Type

Size	3rd Character of Catalog No. ${ }^{1}$	Outline Dimensions						Mounting Dimensions			Mounting Screw G
		Fig	A	B	B1	B2	C	D	D1	E	
00-13/4	C, D, E	1	4.31 (110)	3.94 (100)	4.25 (108)	4.75 (121)	3.75 (70)	3.94 (100)	0.19 (5)	1.00 (25)	\#10
2-21/2	F,G	1	4.88 (124)	3.94 (100)	4.25 (108)	-	4.00 (102)	4.50 (114)	0.19 (5)	1.00 (25)	\#10
3-31/2	H, I	1	6.13 (156)	5.13 (130)	5.50 (140)	-	5.06 (129)	5.63 (143)	0.25 (6)	0.75 (19)	0.25 (6)
4	J	1	7.81 (198)	5.19 (132)	5.50 (140)	-	5.75 (146)	6.56 (167)	0.81 (21)	0.75 (19)	0.5 (13)
5	L	2	8.27 (210)	5.71 (145)	6.89 (175)	-	8.54 (217)	7.09 (180)	4.72 (120)	-	0.35 (9)
6	M	2	8.43 (214)	6.3 (160)	7.48 (190)	-	9.29 (236)	7.09 (180)	5.12 (130)	-	0.35 (9)
7	N	3	14.05 (357)	8.27 (210)	-	-	9.53 (242)	9.80 (249)	2.83 (72)	-	0.25 (6)
8	P	4	15.41 (392)	17.23 (438)	-	-	10.56 (268)	12.28 (312)	-	5.35 (136)	0.35 (9)

Figure 1

Figure 2

Open Type Horizontal Mounted

Size	Fig.	Outline Dimensions					Mounting Dimensions				Mouning Screw G
		A	B	B1	C	C1	D	D1	E	F	
00-13/4	1	7.69 (195)	7.75 (197)	9.25 (235)	3.88 (98)	-	7.25 (184)	0.25 (6)	3.63 (92)	-	\#10
2, $21 / 2$	1	8.94 (227)	7.75 (197)	9.25 (235)	4.56 (116)	-	8.5 (216)	0.25 (6)	3.63 (92)	-	\#10
$3-31 / 2$	1	11.44 (291)	10.94 (278)	11.50 (292)	5.19 (132)	-	10.75 (273)	0.38 (6)	5.13 (130)	-	0.25
4	1	8.50 (216)	10.94 (278)	11.50 (292)	6.25 (159)	-	7.81 (198)	0.38 (6)	5.13 (130)	-	0.25
5	2	18.07 (459)	14.20 (361)	-	9.44 (240)	-	17.20 (437)	-	9.61 (244)		-
6	2	11.61 (295)	18.88 (480)	9.45 (240)	10.85 (276)	7.44 (189)	10.44 (265)	10.71 (272)	17.72 (450)	1.18 (30)	-

Note: Dimensions for reference, not for construction.
Contact sales office for dimensions not listed.
Dimensions are in inches (mm).

Overload Relays \& Current Transformers

Solid State Overload

Dimensions

Dimensions "A" Frame-ESP200 Solid State Overload

Dimensions "A1" Frame-ESP200 Solid State Overload

Dimensions "B" Frame-ESP200 Solid State Overload

Current Transformers (all CT's have the same dimensions)

Overload (55-630 Amps), SIRIUS 3RB20

Dimensions	Frame Size A		Frame Size 11		Frame Size B	
	mm	in.	mm	in.	mm	in.
A	80	3.15	80	3.15	100.4	3.95
B	12.6	0.5	12.6	0.5	8.6	0.34
C	27.7	1.1	28	1.10	32.6	1.28
D	44.85	1.77	44.85	1.77	44.85	1.77
E	34.9	1.37	34.9	1.37	23.5	0.93
F	19.6	0.77	19.6	. 077	33.5	1.32
G	48.95	1.93	48.95	1.93	46.23	1.82
H	10.7	0.42	10.7	0.42	10.9	0.43
I	2.3	0.09	2.3	0.09	2.4	0.09
J	80	3.15	80	3.15	104.6	4.12
K	53.9	2.12	53.9	2.12	58.6	2.31
L	66.0	2.6	55.9	2.20	50	1.97
M	89.7	3.53	89.7	3.53	114	4.49
N	10.18	0.40	10.18	0.40	4.7	0.19
0	-	-	10.77	0.42	23.6	0.93
P	-	-	8.62	0.34	21.1	0.83
R	-	-	12.9	0.51	27.1	1.07
S	9.5	0.37	-	-	2.45	0.1
T	5.2	0.21	5.2	0.21	5.2	0.21

Class LC Open Contactors

Dimensions

Note:

1) Mounting Dimensions remain the same for 1 to 12 Poles
2) Line and Load terminals are inter-changeable
3) Up to 2 NO and 2NC auxiliary contacts can be added onto the base product
4) Same Power Pole can be configured as NO type or NC type

Open Contactors, Class LE

Dimensions

LENOOB (20A 3 Pole and 4 Pole)

LENOOC003 (30A 3 Pole)

LENOOC004 (30A 4 Pole)

Open Contactors, Class LE

Dimensions

LEN00D003 (60A 3 Pole)

LENOOE003 (100A 3 Pole)

LEN00C006 (30A 6 Pole)

LEN00D006 (60A 6 Pole)

Dimensions in inches.

Lighting \& Heating Contactors

Open Contactors, Class LE

Dimensions

LENOOC009 (30A 9 Pole)

LENOOD009 (60A 9 Pole)

LENOOC012 (30A 12 Pole)

LEN00D012 (60A 12 Pole)

Open Contactors, Class LE

Dimensions

LENOOF003 (200A 3 Pole)

LENO0G003 (300A 3 Pole)

LEN00H003 (400A 3 Pole)

Mechanically / Magnetically Held Lighting Contactors, Class CLM

Dimensions

CLM Contactor, 20 Amp

Figure 2

Open Type Lighting and Heating Contactors

Class	Figure Number	Amp Rating	Number of Poles	A	B	C	D	E	F	G
CLM	1	30	2-4	3.31 (84)	1.65 (42)	3.95 (100)	4.38 (111)	0.23 (6)	4.61 (117)	1.50 (38)
		30	5	4.19 (106)	2.09 (53)	3.95 (100)	4.38 (111)	0.23 (6)	4.61 (117)	1.50 (38)
	2	60	2,3	3.31 (84)	1.65 (42)	3.95 (100)	4.38 (111)	0.23 (6)	4.94 (125)	1.50 (38)
		60	4, 5	5.06 (129)	2.53 (64)	3.95 (100)	4.38 (111)	0.23 (6)	4.94 (125)	1.50 (38)
		100	2,3	4.62 (117)	2.31 (59)	6.00 (152)	6.62 (168)	0.38 (10)	6.75 (171)	1.88 (48)
		100	4, 5	7.25 (184)	3.62 (92)	6.00 (152)	6.62 (168)	0.38 (10)	6.75 (171)	1.88 (48)
		200	2, 3	4.62 (117)	2.31 (59)	6.00 (152)	6.62 (168)	0.38 (10)	6.75 (171)	1.88 (48)
		200	4,5	7.25 (184)	3.62 (92)	6.00 (152)	6.62 (168)	0.38 (10)	6.75 (171)	1.88 (48)
	3	30	6, 8	8.00 (196)	0.31 (8)	5.25 (129)	5.87 (144)	0.31 (8)	4.86 (119)	7.38 (181)
		30	9, 10, 12	11.75 (289)	0.31 (8)	5.25 (129)	5.87 (144)	0.31 (8)	4.86 (119)	11.13 (273)
		60	6	8.00 (196)	0.31 (8)	5.25 (129)	5.87 (144)	0.31 (8)	5.19 (127)	7.38 (181)
		60	8, 9, 10	11.75 (289)	0.31 (8)	5.25 (129)	5.87 (144)	0.31 (8)	5.19 (127)	11.13 (273)
		60	12	16.75 (410)	0.31 (8)	5.25 (129)	5.87 (144)	0.31 (8)	5.19 (127)	16.13 (395)

Mechanically Latched 300 and 400 Amps, Class CLM

Dimensions

CLM Contactors 300 Amp

CLM Contactors 400 Amp

[^96]Dimensions in inches (mm).

Figure 1

Figure 2

View is typical for bottom and top

Figure 4

Figure 5

Enclosure Type	Size	Fig. ${ }^{(2)}$	Outline Dimensions			Mounting		G ${ }^{1}$	Conduit Size					Approx. Ship Wt Lbs	Reference Drawing
			A	B	C	D	E		K1	K2	K3	K4	K5		
1 (Standard width for use with or without CPT)	$\begin{aligned} & \hline 00-13 / 4 \\ & \text { (w/o CPT) } \end{aligned}$	1	11.00	6.41	5.00	8.22	4.63	0.25	0.5	0.5-0.75	0.75-1	-	-	10	D68870
	$\begin{aligned} & \hline 2-2 ~ 1 / 2 \\ & \text { (w/o CPT) } \end{aligned}$	2	13.53	8.00	6.38	10.25	6.00	0.25	0.5-0.75	0.75-1	1-1.25	-	-	15	D68870
	3-3 1/2	3	19.13	11.38	7.69	15.63	8.25	0.25	0.5-0.75	1-1.25	1.5-2	-	-	26	D68870
	4	4	24.88	13.38	8.13	21.75	9.00	0.25	0.5-0.75	1.25-1.5	2-2.5	-	-	37	D68870
	5	5	48.00	24.00	12.00	49.56	22.50	0.38	2-3					135	
	6,7	5	48.00	24.00	12.00	49.56	22.50	0.38	2-2.5					150	
	8	5	60.00	38.00	16.00	61.56	36.50	0.38						275	
1 (Extra wide for use with CPT)	00-2 1/2	3	19.13	11.38	7.69	15.63	8.25	0.25	0.5-0.75	1-1.25	1.5-2	-	-	26	D68870
	3-3 1/2	4	24.88	13.38	8.13	21.75	9.00	0.25	0.5-0.75	1.25-1.5	2-2.5	-	-	37	D68870

Note: Dimensions are in inches.

Enclosure Type	Size	Fig．	Outline Dimensions			Mounting		G（1）	Conduit Size			Approx． Ship Wt Lbs	Reference Drawing
			A	B	C	D	E		K1	K2	K3		
4／4X Fiberglass （Standard width for use with or without CPT）	0－1 3／4	1	13.00	7.75	5.44	12.25	5.00	0.375	－	－	－	12	D41547
	2－2 1／2	1	16.00	8.13	6.06	15.25	5.00	0.375	－	－	－	18	D41547
	3－4	1	26.00	13.13	7.56	25.25	10.00	0.375	－	－	－	49	D41552
3／3R／4／12 （Standard width for use without CPT）	0－1 3／4	2	13.00	7.75	5.44	12.25	5.00	0.25	－	－	－	12	D41547
	2－2 1／2	2	16.00	8.13	6.06	15.25	5.00	0.25	－	－	－	18	D41547
	3－4	2	26.00	13.13	7.56	25.25	10.00	0.25	－	－	－	49	D41552
3／3R／4／12 （Extra wide for use with CPT）	0－1 3／4	2	13.00	12.63	5.38	12.25	10.00	0.25	－	－	－	30	D17150
	2－2 1／2	2	16.00	13.25	6.13	15.25	11.00	0.25	－	－	－	33	D17150
	3－3 1／2	2	24.00	20.00	8.00	25.56	18.50	0.375	－	－	－	49	D41552
	4	2	30.00	24.00	10.00	31.56	22.50	0.375	－	－	－	64	D17150
	5	3	48.00	24.00	12.00	49.56	22.50	0.375	－	－	－		D65608007
	6，7	3	48.00	24.00	12.00	49.56	22.50	0.375	－	－	－		D65608009
	8	3	60.00	38.00	16.00	61.56	36.50	0.375	－	－	－	275	D65632006
4／4X Stainless Steel （Standard width for use without CPT）	0－1 3／4	2	13.00	7.75	5.44	12.25	5.00	0.25	－	－	－	18	D41546
	2－2 1／2	2	16.00	8.13	6.06	15.25	5.00	0.25	－	－	－	36	D41546
	3－4	2	26.00	13.13	7.56	25.25	10.00	0.25	－	－	－	67	D41551
4／4X Stainless Steel （Extra wide for use with CPT）	0－1 3／4	2	13.00	12.63	5.38	12.25	10.00	0.25	－	－	－	30	D41917
	2－2 1／2	2	16.00	13.25	6.13	15.25	11.00	0.25	－	－	－	33	D42935
	3－3 1／2	2	24.00	20.00	8.00	25.56	18.50	0.375	－	－	－	64	D41551
	4	2	30.00	24.00	10.00	31.56	22.50	0.375	－	－	－	67	D43292
	5 （Painted）	3	48.00	24.00	12.00	49.56	22.50	0.375	－	－	－		D65608007
	6，7（Painted）	3	48.00	24.00	12.00	49.56	22.50	0.375	－	－	－		D65608009
	8	3	60.00	38.00	16.00	61.56	26.50	0.375	－	－	－	275	D65632006

Figure 3

Figure 2

Figure 4

Enclosure Type	Size	Fig.	Outline Dimensions			Mounting Dimensions				Approx. Ship Wt Lbs	Reference Drawing
			A	B	c	D	E	G	H		
1 (Standard width)	0-2	1	24.00	11.00	8.00	6.13	2.13	21.00	3.50	35	D68774001
	2 1/2, 3 (except 200A Disc.)	2	24.00	20.00	8.00	15.00	2.13	21.00	3.50	48	D68774002
	$\begin{array}{\|l\|} \hline 3 \text { (200A Disc.), } \\ 3 \text { 1/2, } 4 \\ \hline \end{array}$	3	36.00	24.00	8.00	14.00	5.00	33.50	5.00	101	D68774003
	5	4	72.16	20.00	11.03	71.00	16.00	-	-	250	D56032005
	6	4	60.00	38.00	12.00	36.50	0.75	61.56	-	275	D56032006
$\begin{array}{\|l\|} \hline 1 \\ \text { (Extra wide) } \end{array}$	0-2	2	24.00	20.00	8.00	15.00	2.13	21.00	3.50	48	D68774002
	21/2, 3	3	36.00	24.00	8.00	14.00	5.00	33.50	5.00	101	D68774003

Combination Heavy Duty Starters

Enclosed, Class 17, 18

Dimensions

Figure 1

Figure 4

Figure

Figure 2

Figure 3

Figure 5

Enclosure Type	Size	Fig.	Outline Dimensions			Mounting Dimensions				Approx. Ship Wt Lbs	Reference Drawing
			A	B	C	D	E	G	H		
$\begin{aligned} & \text { 3/3R/4/4X/12 } \\ & \text { (Standard width) } \end{aligned}$	0-2	1	24.00	11.00	8.00	6.00	2.50	25.75	26.75	35	D56033
	2 1/2, 3 (except 200A Disc.)	2	24.00	20.00	8.00	15.00	2.50	25.75	26.75	48	D56033
	$\begin{aligned} & \hline 3 \text { (200A Disc.), } \\ & 3 \text { 1/2, } 4 \end{aligned}$	3	36.00	24.00	8.00	12.00	6.00	37.75	38.75	101	D56033
	5 (Painted)	4	72.16	20.00	11.03	71.00	16.00	-	-	250	D56032005
	6 (Painted)	4	60.00	38.00	12.00	36.50	0.75	61.56	63.10	275	D56032006
3/3R/4/4X/12 (Extra wide)	0-2	2	24.00	20.00	8.00	15.00	2.50	25.75	26.75	48	D56033
	2 1/2, 3	3	36.00	24.00	8.00	12.00	6.00	37.75	38.75	101	D56033
4/4X Fiberglass (Standard width)	0-13/4	5	23.75	14.62	7.12	24.09	12.20	-	-	42	
	2-3 1/2	5	23.75	23.75	8.50	24.06	21.30	-	-	44	
	4	5	39.37	29.52	12.20	40.94	27.95	-	-	55	

[^97]Figure 1

Figure 2

Figure 3

View is typical for bottom and top

Enclosure Type	Size	Fig. ${ }^{(3)}$	Outline Dimensions			Mounting		G ${ }^{1}$	Conduit Size			K4	Approx. Ship Wt Lbs	Reference Drawing
			A	B	C	D	E		K1	K2	K3			
1 (Standard width for use with or without CPT)	00-2 1/2	1	19.12	11.38	7.69	15.62	8.25	0.25	0.5-1.25	1-1.25	1.5-2	-	30	D68870
	3-4	2	24.88	13.38	8.12	21.75	9.00	0.25	1.25-1.5	1.25-1.5	2-2.5	-	52	D68870
	5	3	48.00	24.00	12.00	49.56	22.50	0.38	1.25-1.5	1.25-1.5	0.5-0.75	1.25-1.5	135	D65608
	6,7	3	48.00	24.00	12.00	49.56	22.50	0.38	1.25-1.5	1.25-1.5	0.5-0.75	1.25-1.5	150	D65608013
4/4X Stainless Steel (Standard width for use without CPT)	0-1 3/4	3	12.00	12.00	6.00	12.75	8.00	0.38	-	-	-	-	30	D41917
	2-2 1/2	3	16.00	14.00	6.00	16.75	12.00	0.38	-	-	-	-	33	D42935
	$\begin{aligned} & \text { 3-3 1/2 } \\ & \text { (w/o CPT) } \end{aligned}$	3	24.00	20.00	8.00	25.56	18.50	0.38	-	-	-	-	53	D17423
	$\begin{array}{\|l\|} \hline 3-31 / 2 \\ (\mathrm{w} / \mathrm{CPT}), 4 \\ \hline \end{array}$	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	-	64	D43292
	52	3	48.00	24.00	12.00	49.56	22.50	0.38	-	-	-	-		D65608007
	6, ${ }^{(2)}$	3	48.00	24.00	12.00	49.56	22.50	0.38	-	-	-	-		65608009

(3) Enclosures shown in figures 1 and 2 have lift-off covers Enclosures shown in figure 3 have hinged covers.

Reversing Heavy Duty Starters \＆Contactors

Enclosed，Class 22， 43

Dimensions

Figure 5

Figure 6

Figure 7

View is typical for bottom and top

Enclosure Type	Size		Outline Dimensions			Mounting		G ${ }^{1}$	Conduit Size			Approx． Ship Wt Lbs	Reference Drawing
		Fig．	A	B	C	D	E		K1	K2	K3		
3／3R／4／12 （Standard width for use with or without CPT）	0－1 3／4	5	13.00	12.63	5.63	12.25	10.00	0.25	－	－	－	30	D17150
	2－2 1／2	5	16.00	13.25	6.13	15.25	11.00	0.25	－	－	－	33	D17150
	$\begin{array}{\|l\|} \hline 3-3 ~ 1 / 2 \\ \text { (w/o CPT) } \end{array}$	5	24.00	20.00	8.00	25.56	18.50	0.380	－	－	－	53	D17150
	$\begin{array}{\|l\|} \hline 3-4 \\ \text { (w/ CPT) } \\ \hline \end{array}$	5	30.00	24.00	10.00	31.56	22.50	0.380	－	－	－	64	D17150
	5	7	48.00	24.00	12.00	49.56	22.50	0.375	－	－	－		D65608007
	6	7	48.00	24.00	12.00	49.56	22.50	0.375	－	－	－		
4／4X Fiberglass （Standard width for use with or without CPT）	0－2 1／2	6	24.00	20.00	8.00	25.56	18.50	0.380	－	－	－	35	
	3－4	6	30.00	24.00	10.00	31.56	22.50	0.380	－	－	－	38	

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Enclosure Type	Size	Fig.	Outline Dimensions			Mounting Dimensions				Approx. Ship Wt Lbs	Reference Drawing
			A	B	C	D	E	G	H		
1 (Standard width)	0-2 1/2	1	24.00	20.00	8.00	15.00	2.13	21.00	3.50	60	D68774002
	3-4	2	36.00	24.00	8.00	14.00	5.00	33.50	5.00	121	D68774003
	5	3	72.16	20.00	11.03	71.00	16.00	-	-	250	D56032005
	6	3	72.10	40.20	18.10	78.00	18.00	-	-	275	D56032006
3/3R/4/4X/12 (Standard width)	0-2 1/2	5	24.00	20.00	8.00	15.00	3.50	25.75	26.75	63	D68774005
	3-4	5	36.00	24.00	8.00	14.00	6.00	37.75	38.75	124	D68774006
	5(Painted)	3	72.16	20.00	11.03	71.00	16.00	-	-	250	D56032005
	6(Painted)	3	72.10	40.20	18.10	78.00	18.00	-	-	275	D56032006

Enclosure Type	Size	Fig.	Outline Dimensions			Mounting		G(1)	Conduit Size			Approx. Ship Wt Lbs	Reference Drawing
			A	B	C	D	E		K1	K2	K3		
4/4X Fg	0-2 1/2	4	24.00	20.00	8.00	25.56	18.50	0.38	-	-	-	18	24-139-861-001
	3-4	4	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	28	24-139-861-003

Figure 1

Figure 1a

Figure 2

Figure 3

Figure 4

Starter Type (Enclosure Type)	Size	Fig. ${ }^{(2)}$	Outline Dimensions			Mounting		G(1)	Conduit Size			Approx. Ship Wt Lbs	Reference Drawing
			A	B	C	D	E		K1	K2	K3		
2 Speed 1 Winding (Type 1 for use with or without CPT)	0-1 3/4 w/o CPT	1	19.13	11.38	7.69	15.63	8.25	0.25	0.5-0.75	1.0-1.25	1.5-2	26	D68870
	0-1 3/4 w/ CPT	1a	24.88	13.38	8.13	21.75	9.00	0.25	0.5-0.75	1.25-1.5	2-2.5	52	D68870
	2-2 1/2	2	16.00	17.13	7.63	15.25	14.00	0.25	0.5-0.75	1.25-1.5	1.25-1.5	39	D42932001
	3-3 1/2	2	24.88	13.38	8.13	21.75	9.00	0.25	0.5-0.75	1.25-1.5	2-2.5	60	D72956002
	4	3	24.88	13.38	8.13	21.75	9.00	0.25	0.5-0.75	1.25-1.5	2-2.5	61	D43292001
2 Speed 1 Winding (Type 4/4X Stainless Steel for use with or without CPT)	0-1 3/4 w/o CPT	3	12.00	12.00	6.00	12.75	10.00	0.38	-	-	-	34	D41917000
	0-1 3/4 w/ CPT	3	16.00	16.00	8.00	17.60	14.50	0.38	-	-	-	47	
	2-2 1/2 w/o CPT	3	16.00	16.00	8.00	17.60	14.50	0.38	-	-	-	47	
	2-2 1/2 w/ CPT	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	55	
	3-3 1/2	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	61	D43292001
	4	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	61	D43292001
2 Speed 1 Winding (Type 3/3R/4/12 for use with or without CPT)	0-1 3/4 w/o CPT	3	13.00	12.63	5.38	12.25	10.00	0.25	-	-	-	34	
	0-1 3/4 w/ CPT	3	16.00	17.13	7.63	15.25	14.00	0.25	-	-	-	47	D17150010
	2-2 1/2 w/o CPT	3	16.00	17.13	7.63	15.25	14.00	0.25	-	-	-	47	D17150010
	2-2 1/2 w/ CPT	3	24.00	20.00	8.00	25.56	18.50	0.38	-	-	-	55	
	3-4	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	61	D19673000
2 Speed 1 Winding (Type 4/4X Fg. for use w/ or w/o CPT)	0-2 1/2	4	23.78	23.78	6.89	-	-	0.25	-	-	-	28	24139861003
	3-4	4	39.38	29.53	12.60	-	-	-	-	-	-		24139861004
2 Speed 2 Winding (Type 1 for use with or without CPT)	0-2 1/2 w/o CPT	1	19.13	11.38	7.69	15.63	8.25	0.25	0.5-0.75	1.0-1.25	1.5-2	30	D68870
	0-2 1/2 w/ CPT	1a	24.88	13.38	8.13	21.75	9.00	0.25	0.5-0.75	1.25-1.5	2-2.5	52	D68870
	3-4 w/o CPT	1a	24.88	13.38	8.13	21.75	9.00	0.25	0.5-0.75	1.25-1.5	2-2.5	52	D68870
2 Speed 2 Winding (Type 4/4X Stainless Steel for use with or without CPT)	0-1 3/4 w/o CPT	3	12.00	12.00	6.00	12.75	10.00	0.38	-	-	-	34	
	0-1 3/4 w/ CPT	3	16.00	16.00	8.00	17.60	14.50	0.38	-	-	-	41	
	2-2 1/2 w/o CPT	3	16.00	16.00	8.00	17.60	14.50	0.38	-	-	-	41	
	2-2 1/2 w/ CPT	3	16.00	16.00	8.00	17.60	14.50	0.38	-	-	-	41	
	3-3 1/2 w/o CPT	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	55	
	3-3 1/2 w/ CPT	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	61	D43292001
	4	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	61	D43292001
2 Speed 2 Winding (Type 3/3R/4/12 for use with or without CPT)	0-1 3/4 w/o CPT	3	13.00	12.63	5.38	12.25	10.00	0.25	-	-	-	34	
	0-1 3/4 w/ CPT	3	16.00	17.13	7.63	15.25	14.00	0.25	-	-	-	41	D17150010
	2-2 1/2 w/o CPT	3	16.00	13.25	6.13	15.25	11.00	0.25	-	-	-	41	
	2-2 1/2 w/ CPT	3	16.00	17.13	7.63	15.25	14.00	0.25	-	-	-	41	D17150010
	3-3 1/2 w/o CPT	3	24.00	20.00	8.00	25.56	18.50	0.38	-	-	-	55	
	3-4 w/CPT	3	30.00	24.00	10.00	31.56	22.50	0.38	-	-	-	61	D19673000
2 Speed 2 Winding (Type 4/4X Fg. for use w/ or w/o CPT)	0-2 1/2	4	23.78	23.78	6.89	-	-	0.25	-	-	-	28	24139861003
	3-4	4	39.38	29.53	12.60	-	-	-	-	-	-		24139861004

Figure 1

Figure 2

Figure 4
Figure 3

NEMA 1 Standard Width 0-4

Size	Figure	Outline Dimensions			Mounting Dimensions				Approx Ship Wt Lbs ($\mathbf{K g}$)	Ref Dwg
		A	B	C	D	E	G	H		
0-13/4 (1 Winding)	1	24 (610)	20 (508)	8 (203)	15.00 (381)	2.125 (54)	21.00 (533)	3.50 (90)	68 (31)	D68774
2-4 (1 Winding)	2	36 (914)	24 (610)	8 (203)	14.00 (356)	5.00 (127)	33.50 (851)	3.50 (90)	71 (32)	D68774
0-21/2, (2 Winding)	1	24 (610)	20 (508)	8 (203)	15.00 (381)	2.125 (54)	21.00 (533)	3.50 (90)	135 (61)	D68774
3-4 (2 Winding)	2	36 (914)	24 (610)	8 (203)	14.00 (356)	5.00 (127)	33.50 (851)	3.50 (90)	138 (63)	D68774

NEMA 12/3/3R/4 (Painted), 4/4X Stainless Standard Width 0-4

0-13/4	(1 Winding)	4	24 (610)	20 (508)	8 (203)	15.00 (381)	2.50 (64)	25.75 (654)	26.75 (680)	68 (31)	D68774
2-4	(1 Winding)	4	36 (914)	24 (610)	8 (203)	12 (305)	6.00 (152)	37.75 (959)	38.75 (984)	71 (32)	D68774
0-21/2.	(2 Winding)	4	24 (610)	20 (508)	8 (203)	15.00 (381)	2.50 (64)	25.75 (654)	26.75 (680)	135 (61)	D68774
3-4	(2 Winding)	4	36 (914)	24 (610)	8 (203)	12 (305)	6.00 (152)	37.75 (959)	38.75 (984)	138 (63)	D68774

Nema 4X Fiberglass 0-4

Size	Figure	Outline Dimensions			Mounting Dimensions		$\begin{array}{\|l\|} \hline \text { Mtg Screw } \\ \hline \mathbf{G} \\ \hline \end{array}$	Conduit Size			Approx Ship Wt Lbs (Kg)	Ref Dwg
		A	B	C	D	E		K1	K2	K3		
0-13/4	3	23.780 (604)	14.680 (373)	6.890 (175)	24.125 (613)	12.250 (311)	$1 / 4$	-	-	-	18 (8)	-
2-4	3	23.780 (604)	23.780 (604)	6.890 (175)	24.125 (613)	21.250 (540)	1/4	-	-	-	28 (13)	-

Note: Dimensions in inches (mm).
Dimensions for reference, not for construction.
Contact sales office for dimensions not listed.

Reduced Voltage Starters

Class 36, 37, 82
Dimensions

Figure 1

Figure 2

Class 36, 37, NEMA 1, 4, 4X, 12/3R, Combination and Non-combination

Enclosure Type	Size			Fig.	Outline Dimensions					Reference Drawing
	Auto Transformer	Part Winding \& Wye Delta								
	Disc. \& MCP Type	Disc. Type	MCP Type		A	B	C	D	E	
1, 4/4X \&	$13 / 4-21 / 2$	0-2	0-2 1/2	1	42.00	32.00	12.00	43.60	30.50	
12/3R	3-3 1/2	2 1/2-3 1/2	3-3 1/2	1	48.00	38.00	12.00	49.60	36.50	
	4	4	4	1	60.00	38.00	12.00	61.60	36.50	
	5,6	5,6	5,6	2	90.00	29.97	20.00	16.00	24.44	

Class 82 size 1

Class 82 Size 1 1/2, 2

Note: Dimensions are in inches.

Dimensions

Figure 1

Figure 2

Figure 3

Class 83 Non-Combination Type

Enclosure Type	Size	Fig.	Outline Dimensions			Mounting		G ${ }^{(1)}$	Conduit Size					Approx. Ship Wt Lbs	Reference Drawing
			A	B	C	D	E		K1	K2	K3	K4	K5		
1	0-1 3/4	1	20.00	20.00	6.00	21.60	18.50	0.38	-	-	-	-	-	20	
	2, $21 / 2$	1	24.00	20.00	8.00	25.60	18.50	0.38	-	-	-	-	-	57	
	3-4	1	30.00	24.00	10.00	31.60	22.50	0.38	-	-	-	-	-	93	
3/3R/4/12	0-1 3/4	2	20.00	20.00	6.00	21.60	18.50	0.38	-	-	-	-	-	20	
	2, $21 / 2$	2	24.00	20.00	8.00	25.60	18.50	0.38	-	-	-	-	-	57	
	3-4	2	30.00	24.00	10.00	31.60	22.50	0.38	-	-	-	-	-	93	
4X Stainless Steel	0-1 3/4	2	20.00	16.00	6.00	21.60	14.50	0.38	-	-	-	-	-	20	
	2, $21 / 2$	2	24.00	20.00	8.00	25.60	18.50	0.38	-	-	-	-	-	57	
	3-4	2	30.00	24.00	10.00	31.60	22.50	0.38	-	-	-	-	-	93	

Class 84 Combination Type

Enclosure Type	Size	Fig.	Outline Dimensions			Mounting		G ${ }^{1}$	Conduit Size					Approx. Ship Wt Lbs	Reference Drawing
			A	B	C	D	E		K1	K2	K3	K4	K5		
1, 12/3/3R/4	0-2	3	34.13	24.63	7.56	33.00	20.00	0.38	0.88-1.13	0.88-1.13	1.13-1.36	1.13-1.36	1.36-1.72	70	
	2 1/2-4	3	48.00	36.00	10.00	49.60	34.50	0.38	-	-	-	-	-	106	
4X Stainless Steel	0-2	3	36.00	24.00	10.00	37.60	22.50	0.38	-	-	-	-	-	70	
	$21 / 2-4$	3	48.00	36.00	12.00	49.60	34.50	0.38	-	-	-	-	-	106	

Pump Control Panels

Class 87， 88
Dimensions

Outline Drawings

Open air contacts

Size	Fig．	Outline Dimensions			Mounting Dimensions								Conduit Knockout			Hub	Reference Drawing
		A	B	C	D	E	F	G	H	1	J	K	L	M	N	P	
1－2 1／2	1	28.50	20.00	8.06	24.00	－	10.00	27.00	5.50	8.50	11.50	－	0．5－0．75	1．25－1	0．75－1	1.50	
3－4	1	40.50	24.00	8.09	36.00	－	12.00	39.00	8.44	11.94	15.44	－	1．97－2．47	0．88－1．13	－	2.50	
5	2	72.16	20.00	10.00	71.00	16.00	2.13	70.91	－	－	－	－	－	－	－	－	
6	2	60.00	38.00	16.00	61.60	36.50	0.75		－	－	－	－	－	－	－	－	

Vacuum contacts

Size	Fig．	Outline Dimensions			Mounting Dimensions								Conduit Knockout			Hub	Reference Drawing
		A	B	C	D	E	F	G	H	1	J	K	L	M	N	P	
4	2	55.97	24.38	9.69	54.81	20.25	2.13	54.72	26.19	－	－	27.44	－	－	－	－	
5	2	72.16	20.00	10.00	71.00	16.00	2.13	70.91	－	－	－	－	－	－	－	－	
6	2	60.00	38.00	16.00	61.60	36.50	0.75		－	－	－	－	－	－	－	－	

Reduced voltage

Size			Fig．	Outline Dimensions					Reference Drawing
Auto Transformer	Part Winding \＆Wye Delta								
Disc．\＆MCP Type	Disc．Type	MCP Type		A	B	C	D	E	
2－2 1／2	1－2	1－2 1／2	3	42.00	32.00	12.00	43.60	30.50	
3－3 1／2	2 1／2－3 1／2	3－3 1／2	3	48.00	38.00	12.00	49.60	36.50	
4	4	4	3	60.00	38.00	16.00	61.60	36.50	
5， 6	5，6	5， 6	4	90.00	30.00	20.00	16.00	24.44	

Enclosed Contactors, Class LC and LE

Dimensions

Figure 1

Figure 2

Figure 3

Class LC and LE Non-combo

Enclosure Type	Contactor Rating	Fig.	Outline Dimensions			Mounting ${ }^{(1)}$		Conduit Size					Reference Drawing
			A	B	C	D	E	K1	K2	K3	K4	K5	
1 without CPT	LE 20/30A 3-4P	1	10.97	6.41	5.03	8.22	4.62	0.5	0.50-0.75	0.75-1	-	-	
	LC 30A 2-12P, LE 60A 3P	1	13.53	7.97	6.38	10.25	6	0.50-0.75	0.75-1	1-1.25	-	-	
	LE 30/60A 6-12P, LE 100A 3P	1	19.12	11.38	7.69	15.62	8.25	0.50-0.75	1-1.25	1.5-2	-	-	
	LE 200-400A 3P	2	26	17.62	12.5	25.19	15.5	0.50-0.75	1.25-1.5	1.25-1.5	-	-	
$\begin{aligned} & 1 \\ & \text { with } \\ & \text { CPT } \end{aligned}$	LC 30A 2-12P, LE 20A 3-4P, LE 30A 3-9P, LE 60A 3-9P, LE 100A 3P	1	19.12	11.38	7.69	15.62	8.25	0.50-0.75	1-1.25	1.5-2	-	-	
	LE 30/60A 12P	1	24.88	13.38	8.12	21.75	9	0.50-0.75	1.25-1.5	2-2.5	-	-	
	LE 200-400A 3P	2	26	17.62	12.5	25.19	15.5	-	1.25-1.5	1.25-1.5	-	-	
3/3R/4/12 without CPT	$\begin{aligned} & \text { LE 20A 3-4P, LE 30/60A 3-9P, } \\ & \text { LC 30A 2-12P } \end{aligned}$	2	16	13.25	6.12	15.25	11	-	-	-	-	-	
	LE 30/60A 12P	2	26	13.12	7.56	25.25	10	-	-	-	-	-	
	LE 100A 3P	2	26	13.12	7.56	25.25	10	-	-	-	-	-	
	LE 200-400A 3P	2	26	17.62	12.5	25.19	15.5	-	-	-	-	-	
4/4X without CPT	LE 20A 3-4P, LE 30/60A 3-9P,LC 30A 2-12P	2	16	14	6.02	16.75	12	-	-	-	-	-	
	LE 30/60A, 12P	2	24	16	8.76	22.5	14.5	-	-	-	-	-	
	LE 100A 3P	2	24	16	8.76	22.5	14.5	-	-	-	-	-	
	LE 200-400A,3P	2	24	20	10	22.5	18.5	-	-	-	-	-	
3/3R/4/12 with CPT	LE 20A 3-4P, LE 30/60A 3-9P,LC 30A 2-12P	2	16	13.25	6.12	15.25	11	-	-	-	-	-	
	LE 30/60A, 12P	2	26	13.12	7.56	25.25	10	-	-	-	-	-	
	LE 100A 3P	2	26	13.12	7.56	25.25	10	-	-	-	-	-	
	LE 200-400A,3P	2	26	17.62	12.5	25.19	15.5	-	-	-	-	-	
4/4X with CPT	$\begin{aligned} & \text { LE 20A 3-4P, LE 30/60A } \\ & \text { 3-9P,LC 30A 2-12P } \end{aligned}$	2	16	14	6.02	16.75	12	-	-	-	-	-	
	LE 30/60A, 12P	2	24	16	8.76	22.5	14.5	-	-	-	-	-	
	LE 100A 3P	2	24	16	8.76	22.5	14.5	-	-	-	-	-	
	LE 200-400A,3P	2	24	20	10	22.5	18.5	-	-	-	-	-	

Class LE Combo

Enclosure Type	Type	Contactor Rating	Fig.	Outline Dimensions			Reference Drawing
				A	B	C	
$\begin{aligned} & 1,12 / 3 R \text { \& } \\ & 4 / 4 \mathrm{X} \text { with \& } \\ & \text { without CPT } \end{aligned}$	Fusible and Non-fusible Disconnect	20-60A	3	24	11	8	
		100A	3	24	20	8	
		200A	3	46	20	10	
		300A	3	76	22	13	
	Circuit Breaker	20-100A	3	24	11	8	

Figure 1

Figure 2

Figure 3

Class CLM Non-combo

Enclosure Type	Contactor Rating (Class CLM)	Fig.	Outline Dimensions			Mounting ${ }^{(1)}$		Conduit Size					Reference Drawing
			A	B	C	D	E	K1	K2	K3	K4	K5	
${ }^{1}$ without CPT	30-60A (2-5p)	1	10.97	6.41	5.03	8.22	4.62	0.5	0.50-0.75	0.75-1	-	-	
	20A (2-12p)	1	13.53	7.97	6.38	10.25	6.00	0.50-0.75	0.75-1	1-1.25	-	-	
	30-60A (6-12p)	2	16.00	17.12	7.62	15.25	14.00	0.50-0.75	1.25-1.5	1.25-1.5	-	-	
	100A (2-5p)	1	19.12	11.38	7.69	15.62	8.25	0.50-0.75	1-1.25	1.5-2	-	-	
	200A (2-5p)	1	24.88	13.38	8.12	21.75	9.00	0.50-0.75	1.25-1.5	2.5	-	-	
	300-400A (2-5p)	2	48.00	20.00	12.50	45.19	10.00	2.00-2.50	1.25-1.5	0.5-0.75	1.25-1.5	2-2.5	
1 with CPT	20A (2-12p), 30A (2-5p)	1	19.12	11.38	7.69	15.62	8.25	0.50-0.75	1-1.25	1.5-2	-	-	
	30-60A (6-12p)	2	16.00	17.12	7.62	15.25	14.00	0.50-0.75	1.25-1.5	1.25-1.5	-	-	
	100-200A (2-5p)	2	26.00	17.62	12.50	25.19	15.50	-	1.25-1.5	1.25-1.5	-	-	
	300-400A (2-5p)	2	48.00	20.00	12.50	45.19	10.00	2.00-2.50	1.25-1.5	0.5-0.75	1.25-1.5	2-2.5	
3/3R/4/12 without CPT	$\begin{aligned} & \text { 20A (2-12p), 30A (2-12p), } \\ & 60 A(2-10 p) \end{aligned}$	2	16.00	13.25	6.12	15.25	11.00	-	-	-	-	-	
	100A (2-5p)	2	16.00	13.00	9.50	15.12	11.00	-	-	-	-	-	
	60A (12p)	2	19.00	22.00	8.00	-	-	-	-	-	-	-	
	200A (2-5p)	2	26.00	17.62	12.50	23.19	15.50	-	-	-	-	-	
	300A -400A (3p)	2	48.00	20.00	12.50	49.00	10.00	-	-	-	-	-	
$3 / 3 \mathrm{R} / 4 / 12$ with CPT	20A (2-12p), 30A (2-5p)	2	16.00	13.25	6.12	15.25	11.00	-	-	-	-	-	
	30A (6-12p)	2	16.00	17.12	7.62	15.25	14.00	-	-	-	-	-	
	60-100A (2-5p)	2	16.00	13.00	9.50	15.12	11.00	-	-	-	-	-	
	60A (6-12p)	2	19.00	22.00	8.00	-	-	-	-	-	-	-	
	200A (3p)	2	26.00	17.62	12.50	25.19	15.50	-	-	-	-	-	
	300-400A (3p)	2	48.00	20.00	12.50	49.00	10.00	-	-	-	-	-	
4/4X without CPT	$\begin{aligned} & \text { 20A }(2-12 p), 30 A(2-12 p), \\ & 60 A(2-10 n) \end{aligned}$	2	16.00	14.00	6.02	16.75	12.00	-	-	-	-	-	
	100A (2-5p)	2	16.00	16.00	10.00	14.50	14.50	-	-	-	-	-	
	60A (12p)	2	19.00	22.00	8.00	-	-	-	-	-	-	-	
	200A (2-5p)	2	24.00	20.00	10.00	22.50	18.50	-	-	-	-	-	
	300A -400A (3p)	2	48.00	20.00	12.50	49.00	10.00	-	-	-	-	-	
$4 / 4 X$ with CPT	20A (2-12p), 30A (2-5p)	2	16.00	14.00	6.02	16.75	12.00	-	-	-	-	-	
	30A (6-12p)	2	16.00	20.00	8.00	14.50	18.50	-	-	-	-	-	
	60-100A (2-5p)	2	16.00	16.00	10.00	14.50	14.50	-	-	-	-	-	
	60A (6-12p)	2	24.00	20.00	8.00	22.50	18.50	-	-	-	-	-	
	200A (3p)	2	24.00	20.00	10.00	22.50	18.50	-	-	-	-	-	
	300-400A (3p)	2	48.00	20.00	12.50	49.00	10.00	-	-	-	-	-	

Class CM Combo

Enclosure Type	Type	Contactor		Outline Dimensions			Reference Drawing
		Rating	Fig.	A	B	C	
$1,12 / 3 R$ \& 4/4X with \& without CPT	Fusible and Non-fusible Disconnect	20-60A	3	24	11	8	
		100A	3	24	20	8	
		200A	3	46	20	10	
		300A	3	76	22	13	
	Circuit Breaker	20-100A	3	24	11	8	

Class 11-3RV

Signaling Contact
for Class 11-3RV

Typical Wiring Diagrams-Class SMF

Typical Wiring Diagrams-MMS

AC Reversing Manual Starter and Manual Motor Starting Switches

AC 2-Speed Manual Motor Starting Switches

3-Pole Reversing Switches

3-Phase and Single Phase Magnetic Starters

Three Phase Magnetic Starter with DC Coil, Sizes 00-4

Single Phase Magnetic Starter(1)

Solid State Overload 3-Phase Sizes 5-8

(1) Warning: The ESP200 Starter and Single Phase

Motor must be wired as shown above. For L1, L2 do not use the middle terminal or hole.
(2) Full Load Amps (FLA): Adjustment of the ESP200 solid state overload relay accommodates the single phase motor.

3-Phase

POWER WIRING: USE $75^{\circ} \mathrm{C}$ COPPER WURE ONLY.

SIZE	CT RATIO
5	$300: 5$
6	$600: 5$
7	$750: 5$
8	$1200: 5$

(1) Remove wire " C " if control transformer is used. For separate control voltage source, remove jumpers " A " and " B " and connect source to control fuse line terminals.
(2) Remove wire " C " if the contactor coil is to operate on a voltage other than line voltage or in a separate control source.

Reversing Heavy Duty Starters

Class 22
Wiring Diagrams

3-Phase Solid State Overload

3-Phase Reversing Magnetic Starter
Sizes 2-4

3-Phase Reversing Magnetic Starter with DC Coil, Sizes 00-1 $1 / 4$

3-Phase Reversing Magnetic Starter with DC Coil, Sizes 2-4

Class 30 \＆ 32 Non－Combination and Combination Starters

1 Winding Constant Horsepower Size 0－13／4

1 Winding Constant Horsepower Size 2－4

1 Winding Constant or Variable Torque Size 0－13／4

Note：For separate control voltage source，remove jumpers＂A＂and＂B＂and connect source to control fuse terminal．Remove jumper＂C＂if control transformer is used．

Class 30 \& 32 Non-Combination and Combination Starters

Wiring Diagrams

1 Winding Constant or Variable Torque Size 2-4

2 Winding Constant Horsepower \& 2 Winding Constant or Variable Torque Size 0-4

Note: For separate control voltage source, remove jumpers " A " and " B " and connect source to control fuse terminal. Remove jumper " C " if control transformer is used.

Part Winding

Reduced Voltage Starters \＆Pump Panels

Class 36，37， 88
Wiring Diagrams
Auto Transformer

Note E：
Remove jumper if thermal protection switch is provided

Wye Delta (Closed Transition)

3-Phase Magnetic Contactors and Reversing Contactors

Single Phase Magnetic Contactors and Reversing Contactors

Class 83, 84

Standard Duplex Pump Panel (92)

NDTES: SEPARATE IR CPT CONTROL VILTAGE SOURCE:
 c. TD USE THIS CONTRDLLER W/O SELECTIR SWITCHES, JUMPER BETWEEN THE FLLLDWING PAIRS a
 pISItIIN SELECTIR SWITCH IS BUILT IN.

Duplex Heavy Duty Controllers

Class 83, 84

Duplex Panel with Relay Alternation (93)

Duplex Panel with Lead Pump Transfer Switch (94)

Nates:
 C. TD USE THIS CINTRQLLER WII SELECTIR SWITCHES, JUMPER BETWEEN THE FQLLIWING PAIRS af

FACTDRY \square (R F [ELD MDDIF [CAT]DNS			

Wiring Diagrams

Class 82 Pump Panel

Standard Class 87 Pump Panel

Class LC and LE Electrically Held Contactors

LEN00B003 (20A 3 Pole)

LEN00F003 (200A 3 Pole)
LEN00G003 (300A 3 Pole)
LENOOH003 (400A 3 Pole)

LENOOB004 (20A 4 Pole)

LEN00C003 (30A 3 Pole)
LENOOD003 (60A 3 Pole)
LEN00E003 (100A 3 Pole)

LCEOOC (30A 2-12 Pole)

LEN00C004 (30A 4 Pole)

Class LC and LE Electrically Held Contactors

Wiring Diagrams

Mechanically Latched 20 Amp, Class CLM

Wiring Diagrams

Lighting and Heating Contactors

Mechanically Latched 30-400 Amps, Class CLM

Wiring Diagrams
Mechanically Latched, CLM 30-200 Amps ${ }^{\text {(1) }}$

Connection Diagram for Common/Separate Control with Momentary Pushbutton or ON-OFF Selector Switch CLMOC, CLMOD, CLMOE, and CLMOF

Connection for 2-Wire Control CLMOC CLMOD, CLMOE, and CLMOF

Connection for Hand/Off/Auto Control CLMOC, CLMOD, CLMOE, and CLMOF

Mechanically Latched Type CLM 300 and 400 Amp ${ }^{\text {(1) }}$

Connection Diagram for Common/Separate Control with Momentary Pushbutton or ON-OFF Selector Switch CLMOG and CLMOH

Connection for 2-Wire Control CLMOG and CLMOH

[^98]
(1) Includes secondary fuse clips on sizes $50-750 \mathrm{VA}$ (2) Includes secondary fuse clips on sizes $50-500 \mathrm{VA}$ (3) Secondary fuse clips are not included on MTG transformers.

Wiviase ${ }^{\text {Bagrams }}$

contents

Selection	10/2
Full Voltage Non-Reversing	
Full Voltage Metallic	10/4
Non - Combination	10/5
Circuit Breaker Combination	10/6
Fusible Switch Combination and	
Non-Fusible Starter	10/7
Full Voltage Reversing	
General	10/8
Non - Combination	10/9
Circuit Breaker Combination	10/10
Fusible Switch Combination and	
Non-Fusible Starter	10/11
Two Speed Starters	
General	10/12
Two Windings, Constant or Variable Torque	
Non - Combination	10/13
Circuit Breaker Combination	10/14
Fusible Switch Combination and	
Non-Fusible Starter	10/15
Single Winding, Constant or Variable Torque	
Non - Combination	10/16
Circuit Breaker Combination	10/17
Fusible Switch Combination and	
Non-Fusible Starter	10/18
Overload Relay Chart	10/19
Factory Modifications	
Selection	10/20
Field Modification Kits	10/25
SIRIUS Pre - Assembled Starter Packages	10/28
Dimensions	10/29

Siemens SIRIUS IEC Starters

The SIRIUS IEC Starter is the new generation of IEC HP rated magnetic starters, designed to meet and exceed today's market requirements for HP rated starters.
The new SIRIUS Starters take advantage of the reliability of the SIRIUS line of contactors and overload relays in addition to the new line of SIRIUS ACT 3SU 22 mm pilot devices as the standard control device.

As evident in the design and size, all efforts were put in place to offer a new line of starters that exceeds the performance of the previous generation.

The SIRIUS IEC Starters line also offers more price flexibility in the very competitive starters market.
SIRIUS Starters Features:

- CSA approved
- 100HP, 600V max
- Auxiliary contacts available
- Ambient $60^{\circ} \mathrm{C}$ on contactors
- Fast and simple 3-prong overload contactor connection: no coil extension required
- Standard primary and secondary fusing on control transformers
- Standard 22 mm SIRIUS ACT Control Devices

Selection

Catalogue Number Selection Guide						
Starter Series	Disconnect Type	Starter Type	Enclosure Type	Contactor Ref. Number	Coil Voltage	Overload Relay Setting Range
page 10/5-10/18						page 10/19-10/25
V SIRIUS IEC HP rated Starter N SIRIUS IEC NEMA rated Starter	1 Non-combination 2 Circuit breaker combination 3 Non-fusible type 4 Fusible combination	A FVNR B FVR N 2 S 1 W constant or variable torque R 2 S 1 W constant horse- power U 2 S 2 W constant horse- power W 2 S 2 W	B CSA type 1 EEMAC type 1 general purpose C CSA type 5 EEMAC type 12 dust tight industrial use D CSA type 4 EEMAC type 4 watertight F CSA type $4 x$ EEMAC type 4 x watertight corrosion resistant	15 3RT2015 16 3RT2016 17 $3 R T 2017$ 18 3RT2018 25 3RT2025 26 3RT2026 27 3RT2027 35 $3 R T 2035$ 36 $3 R T 2036$ 37 3RT2037 38 $3 R T 2038$ 45 $3 R T 2045$ 46 $3 R T 2046$ 47 3RT2047	C $24 \mathrm{~V} / 60 \mathrm{~Hz}$ $24 \mathrm{~V} / 50 \mathrm{~Hz}$ K $120 \mathrm{~V} / 60 \mathrm{~Hz}$ $110 \mathrm{~V} / 50 \mathrm{~Hz}$ M $208 \mathrm{~V} / 60 \mathrm{~Hz}$ P $240 \mathrm{~V} / 60 \mathrm{~Hz}$ $220 \mathrm{~V} / 50 \mathrm{~Hz}$ V $460 \mathrm{~V} / 60 \mathrm{~Hz}$ $380 \mathrm{~V} / 50 \mathrm{~Hz}$ T $600 \mathrm{~V} / 60 \mathrm{~Hz}$ Z Others Specify	$0 A$ to 4 M Standard Class 10 bimetal overload relay $2 R$ to $2 U$ Optional Class 20 electronic overload relay (for 3ph only) 00 Provision for field mounting of overload relay

Selection

Catalogue Number Selection Guide							
Power Line Voltage	Control Circuit	Additional Auxiliary Contacts	Pilot Devices				
			Operators		Indicators		
			Operators Type	Legend Plate(s)	Indicator type	Functions	Colour Choice
page 10/20		page 10/21	pages 10/21-10/22		page 10/22	page 10/23	
6 600 V Max. Distributor Stock 1 $120 \mathrm{~V} / 1 \mathrm{Ph} / 60 \mathrm{~Hz}$ 2 $208 \mathrm{~V} / 3 \mathrm{PH} / 60 \mathrm{~Hz}$ 3 $230 \mathrm{~V} / 3 \mathrm{PH} / 60 \mathrm{~Hz}$ 4 $460 \mathrm{~V} / 3 \mathrm{Ph} / 60 \mathrm{~Hz}$ 5 $575 \mathrm{~V} / 3 \mathrm{Ph} / 60 \mathrm{~Hz}$ 7 7 $230 \mathrm{~V} / 1 \mathrm{Ph} / 60 \mathrm{~Hz}$ 9 Other Specify	Separate control circuit, unfused N Separate control circuit, fused max 250V P Common control with one control fuse (for 120V 1 ph only) R Standard control transformer c/w 2 prim. \& 1 sec. 120 V fuse U Extra 50VA capacity Control Transformer W Extra 100VA capacity Control Transformer 9 Other Specify	$\begin{gathered} 0 \\ \text { None } \\ \text { E } \\ 4 \text { N.O. } \\ \text { F } \\ 1 \text { N.O. } 1 \text { N.C. } \\ J \\ 3 \text { N.O. }+1 \text { N.C. } \\ \text { K } \\ 2 \text { N.C. } \\ \text { L } \\ 2 \text { N.O. } \\ \text { M } \\ 2 \text { N.O. }+2 \text { N.C. } \\ 9 \\ \text { Other Specify } \end{gathered}$	0 none 1 or 2 1 push button extended head red 3 or 4 1 twist lock mushroom red 5 or 6 2 push buttons 1-red, 1-green 7 or 8 3 push buttons 1-red, 2-black A or B 2 pos. selector switch C or D 2 pos. selector switch spring return E or F 2 pos. selector switch key operated G or H 3 pos. selector switch J or K 3 pos. selector switch spring return L or M 3 pos. selector switch key operated N or P 3 pos. selector switch spring return key operated T or U 3 pos. selector switch and 2 push buttons START STOP for hand operation 9 Other Specify	0 none A EMERGENCY STOP B STOP C START STOP D ON OFF E to J 3 legend plates for 3 push button K to T 1 legend plate for 2 pos. selector switch 1 to 8 1 legend plate for 3 pos. selector switch X 3 legend plates for 3 pos. selector switch and START STOP push button	0 none 5 or 6 Full Voltage 120V LED c/w legend plate(s) 7 or 8 Full Voltage 24V LED c/w legend plate(s)	0 none 1 to 5 1 indicator for 1 function 6 to E 2 indicators for 2 functions F to R 3 indicators for 3 functions	0 none C to F Colour choice for 1 indicator 1 to 6 Colour choice for 2 indicators K to P Colour choice for 3 indicators

Selection

General

Description

Siemens full voltage non-reversing type starters are designed for full voltage across-the-line starting of single or 3-phase squirrel cage motors. They also can be used as the primary control of wound rotor motors.
Combined with short circuit protection, FVNR starters are also offered as combination starters.

- Fusible disconnect type complete with Form I, Class J fuse clips.
- Circuit breaker type or as Non-Fusible Controller.

FVNR starters are available up to 100HP, 600V AC, EEMAC type 1, 12, 4 or 4X sheet metal enclosed. They are an assembly of the proven 3RT contactors and the exclusive 3RU bimetal overload relays.

Catalogue Number:

HP Rated Starter

Non-Combination

Selection

| Standard Features | | Coil Voltage Codes |
| :--- | :--- | :---: | :---: | :---: |

The type numbers in the selection table specify a 120 V 60 Hz coil. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Non-Combination HP Rated													
Enclosed Amps	CSA MAXIMUM HP RATING						Contactor reference number	Aux ${ }^{\text {® }}$, Contacts supplied as standard per contactor		Enclosure Sheet Metal			
	1 phase		3 phase							CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115V	230 V	208V	230 V	460 V	575V		NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	11/2	2	3	5	15	1	-	V1AB15K..	Vo	V1AC15K..	S
	1/3	1	2	3	5	$7^{1 / 2}$	16	1	-	V1AB16K..		V1AC16K..	
	$1 / 2$	2	3	3	$71 / 2$	10	17	1	-	V1AB17K..		V1AC17K..	
35	1	2	3	5	10	10	18	1	-	V1AB18K..		V1AC18K..	
	1	3	5	5	10	15	25	3	3	V1AB25K..	V1	V1AC25K..	S
	2	3	5	$7^{1 / 2}$	15	20	26	3	3	V1AB26K..		V1AC26K..	
42	2	5	10	10	20	25	27	3	3	V1AB27K..	V1	V1AC27K..	S
	3	5	10	10	25	25	28	3	3	V1AB28K..		V1AC28K..	
55	3	$7^{1 / 2}$	10	15	30	40	35	3	3	V1AB35K..	V2	V1AC35K..	H2
60	3	10	15	15	40	50	36	3	3	V1AB36K..	V2	V1AC36K..	H2
80	5	10	20	20	50	50	37	3	3	V1AB37K..	V2	V1AC37K..	H2
90	5	15	20	25	50	60	38	3	3	V1AB38K..	V2	V1AC38K..	H2
105	$7^{1 / 2}$	15	25	30	60	60	45	3	3	V1AB45K..	V2	V1AC45K..	H2
115	10	-	30	30	75	75	46	3	3	V1AB46K..	V2	V1AC46K..	H2
125	10	-	30	40	75	100	47	3	3	V1AB47K..	V2	V1AC47K..	H2

NEMA rated available - contact your Siemens representative

(1) Some Aux contacts may be used for control options, where necessary

Circuit Breaker Combination

Selection

| Standard Features | | Coil Voltage Codes | |
| :--- | :--- | :--- | :---: | :---: |

The type numbers in the selection table specify a 120 V 60 Hz coil. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Circuit Breaker Combination© HP Rated													
Enclosed Amps	CSA MAXIMUM HP RATING						Contactor reference number	Aux, Contacts ${ }^{(2)}$ supplied as standard per contactor		Enclosure Sheet Metal			
	1 phase		3 phase							CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115 V	230 V	208V	230V	460 V	575V		NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	$1^{1 / 2}$	2	3	5	15	1	-	V2AB15K..	V2	V2AC15K..	H2
	1/3	1	2	3	5	$71 / 2$	16	1	-	V2AB16K..		V2AC16K..	
	1/2	2	3	3	$71 / 2$	10	17	1	-	V2AB17K..		V2AC17K..	
35	1	2	3	5	10	10	18	1	-	V2AB18K..		V2AC18K..	H2
	1	3	5	5	10	15	25	3	3	V2AB25K..	V2	V2AC25K..	
	2	3	5	$7^{1 / 2}$	15	20	26	3	3	V2AB26K..		V2AC26K..	
42	2	5	10	10	20	25	27	3	3	V2AB27K..	V2	V2AC27K..	H2
	3	5	10	10	25	25	28	3	3	V2AB28K..		V2AC28K..	
55	3	$7^{1 / 2}$	10	15	30	40	35	3	3	V2AB35K..	V2	V2AC35K..	H2
60	3	10	15	15	40	50	36	3	3	V2AB36K..	V2	V2AC36K..	H2
80	5	10	20	20	50	50	37	3	3	V2AB37K..	V2	V2AC37K..	H2
90	5	15	20	25	50	60	38	3	3	V2AB38K..	V2	V2AC38K..	H2
105	$71 / 2$	15	25	30	60	60	45	3	3	V2AB45K..	V4	V2AC45K..	H5
115	10	-	30	30	75	75	46	3	3	V2AB46K..	V4	V2AC46K..	H5
125	10	-	30	40	75	100	47	3	3	V2AB47K..	V4	V2AC47K..	H5

NEMA rated available - contact your Siemens representative

- Trip-setting position is 11 times motor full load current.
(2) Some aux contacts may be used for control options, where necessary.

Fusible Switch Combination and Non-Fusible Starter

Selection

| Standard Features | | |
| :--- | :---: | :---: | :---: | :---: |

The type numbers in the selection table specify a 120 V 60 Hz coil. If a different coil voltage is required, change the " K " (7 digit) as per Coil Suffix Table above.

Fusible Switch Combinations and Non-Fusible Starters HP Rated														
Enclosed Amps	CSA MAXIMUM HP RATING						$\begin{gathered} \text { FUSE } \\ \text { CLIPS } \\ \text { Type } \\ \text { IJ } \\ \text { Amps } \end{gathered}$	Contactor reference number	Aux, Contacts ${ }^{\text {(}}$ supplied as standard per contactor		Enclosure Sheet Metal			
	1 phase		3 phase								CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115 V	230 V	208V	230 V	460 V	575V			NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	$1^{1 / 2}$	2	3	5	$\begin{gathered} \hline \text { NONE } \\ 30 \end{gathered}$	15	1	-	V3AB15K.. V4AB15K..	V2	V3AC15K.. V4AC15K.	H2
	1/3	1	2	3	5	$7^{1 / 2}$	$\begin{gathered} \text { NONE } \\ 30 \end{gathered}$	16	1	-	V3AB16K.. V4AB16K..		V3AC16K.. V4AC16K..	
	1/2	2	3	3	$7^{1 / 2}$	10	$\begin{gathered} \text { NONE } \\ 30 \end{gathered}$	17	1	-	V3AB17K.. V4AB17K..		V3AC17K.. V4AC17K..	
	1	2	3	5	10	10	NONE 30	18	1	-	V3AB18K.. V4AB18K..		V3AC18K. V4AC18K.	H2
35	1	3	5	5	10	15	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	25	3	3	V3AB25K.. V4AB25K.. V4AB25K..	V2	V3AC25K.. V4AC25K.. V4AC25K..	
	2	3	5	$7^{1 / 2}$	15	20	NONE 30 60	26	3	3	V3AB26K.. V4AB26K.. V4AB26K..		V3AC26K.. V4AC26K. V4AC26K..	
42	2	5	10	10	20	25	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	27	3	3	V3AB27K.. V4AB27K.. V4AB27K..	V2	V3AC27K.. V4AC27K.. V4AC27K..	H2
	3	5	10	10	25	25	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	28	3	3	V3AB28K.. V4AB28K.. V4AB28K..		V3AC28K.. V4AC28K.. V4AC28K..	
55	3	$7^{1 / 2}$	10	15	30	40	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	35	3	3	V3AB35K.. V4AB35K.. V4AB35K..	V2	V3AC35K.. V4AC35K.. V4AC35K..	H2
60	3	10	15	15	40	50	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	36	3	3	V3AB36K.. V4AB36K.. V4AB36K.. V4AB36K..	V2	V3AC36K.. V4AC36K.. V4AC36K. V4AC36K..	H2
80	5	10	20	20	50	50	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	37	3	3	V3AB37K.. V4AB37K.. V4AB37K.. V4AB37K..	V2	V3AC37K.. V4AC37K.. V4AC37K.. V4AC37K..	H2
90	5	15	20	25	50	60	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	38	3	3	V3AB38K.. V4AB38K.. V4AB38K.. V4AB38K..	V2	V3AC38K.. V4AC38K. V4AC38K. V4AC38K.	H2
105	-	-	-	-	-	60	$\begin{gathered} \text { NONE } \\ 60 \\ 100 \\ \hline \end{gathered}$	45	3	3	V3AB45K.. V4AB45K.. V4AB45K..	V4	V3AC45K.. V4AC45K.. V4AC45K..	H5

NEMA rated available - contact your Siemens representative

(1) Some aux contacts may be used for control options, where necessary.

General

Description

Siemens full voltage reversing type starters are designed for full voltage across-the-line starting and reversing of single or 3 -phase squirrel cage motors. They also can be used as the primary control of wound rotor motors.
Combined with short circuit protection, FVR starters are also offered as combination starters:

- Fusible disconnect type complete with Form I, Class J fuse clips.
- Circuit breaker type or as Non-Fusible Controller.

FVR - starters are available up to 100HP, 600V AC in EEMAC
Type 1, 12, 4 or 4 X sheet metal enclosures.
FVR - starters are an assembly of the 3RA Reversing Contactor
including electrical and mechanical interlock and a 3RU bimetallic overload relay.

Catalogue No.:

Selection

Standard Features	Ordering Information Required	Coil Voltage Codes		
		ACV 60 Hz	ACV 50 Hz	$\begin{aligned} & \text { Coil } \\ & \text { Suffix } \end{aligned}$
- Mechanical and electrical interlock - $2 \mathrm{NO}+2 \mathrm{NC}$ contact block supplied per contactor - Class 10 bimetal overload relays including: - Manual or Automatic reset - - Phase Loss Protection - - Separate Trip and Alarm contact - All enclosures are designed to accept a standard sized control transformer - All enclosures have provisions for up to 4 pilot devices	- Select basic type nr. from table below - Add suffix for overload relay setting range from page 10/19 - Add suffix for factory modification from page 10/20-10/24	24 120 208 240 460 600 other volta are avai	20 110 - 220 380 - es and frequ ble upon req	C K M P V T Cies c

The type numbers in the selection table specify a 120 V 60 Hz coil. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Non-Combination HP Rated													
Enclosed Amps	CSA MAXIMUM HP RATING						Contactor reference number	Aux, Contacts ${ }^{\text {(1) }}$ supplied as standard per contactor		Enclosure Sheet Metal			
	1 phase		3 phase							CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115V	230 V	208V	230 V	460 V	575V		NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	$1^{1 / 2}$	2	3	5	15	2	3	V1BB15K..	V1	V1BC15K..	S
	1/3	1	2	3	5	71/2	16	2	3	V1BB16K..		V1BC16K..	
	1/2	2	3	3	$71 / 2$	10	17	2	3	V1BB17K..		V1BC17K..	
	1	2	3	5	10	10	18	2	3	V1BB18K..		V1BC18K..	
35	1	3	5	5	10	15	25	3	3	V1BB25K..	V1	V1BC25K..	S
	2	3	5	$71 / 2$	15	20	26	3	3	V1BB26K..		V1BC26K..	
42	2	5	10	10	20	25	27	3	3	V1BB27K..	V1	V1BC27K..	S
	3	5	10	10	25	25	28	3	3	V1BB28K..		V1BC28K..	
55	3	$71 / 2$	10	15	30	40	35	3	3	V1BB35K..	V2	V1BC35K..	H 2
60	3	10	15	15	40	50	36	3	3	V1BB36K..	V2	V1BC36K..	H2
80	5	10	20	20	50	50	37	3	3	V1BB37K..	V2	V1BC37K..	H2
90	5	15	20	25	50	60	38	3	3	V1BB38K..	V2	V1BC38K..	H2
105	$71 / 2$	15	25	30	60	60	45	3	3	V1BB45K..	V3	V1BC45K..	H3
115	10	-	30	30	75	75	46	3	3	V1BB46K..	V3	V1BC46K..	H3
125	10	-	30	40	75	100	47	3	3	V1BB47K..	V3	V1BC47K..	H3

NEMA rated available - contact your Siemens representative

Circuit Breaker Combination

Selection

| Standard Features | | |
| :--- | :---: | :---: | :---: |
| | Ordering Information Required | Coil Voltage Codes |

The type numbers in the selection table specify a 120 V 60 Hz coil. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Circuit Breaker Combination HP Rated													
Enclosed Amps	CSA MAXIMUM HP RATING						Contactor reference number	Aux, Contacts ${ }^{(1)}$ supplied as standard per contactor		Enclosure Sheet Metal			
	1 phase		3 phase							CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115 V	230 V	208V	230 V	460V	575V		NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	$1^{1 / 2}$	2	3	5	15	2	3	V2BB15K..	V3	V2BC15K..	H3
	1/3	1	2	3	5	$7^{1 / 2}$	16	2	3	V2BB16K..		V2BC16K..	
	1/2	2	3	3	$71 / 2$	10	17	2	3	V2BB17K..		V2BC17K..	
35	1	2	3	5	10	10	18	2	3	V2BB18K..		V2BC18K..	
	1	3	5	5	10	15	25	3	3	V2BB25K..	V3	V2BC25K..	H3
	2	3	5	$7^{1 / 2}$	15	20	26	3	3	V2BB26K..		V2BC26K..	
42	2	5	10	10	20	25	27	3	3	V2BB27K..	V3	V2BC27K..	H3
	3	5	10	10	25	25	28	3	3	V2BB28K..		V2BC28K..	
55	3	$71 / 2$	10	15	30	40	35	3	3	V2BB35K..	V3	V2BC35K..	H3
60	3	10	15	15	40	50	36	3	3	V2BB36K..	V3	V2BC36K..	H3
80	5	10	20	20	50	50	37	3	3	V2BB37K..	V3	V2BC37K..	H3
90	5	15	20	25	50	60	38	3	3	V2BB38K..	V3	V2BC38K..	H3
105	$71 / 2$	15	25	30	60	60	45	3	3	V2BB45K..	V4	V2BC45K..	H5
115	10	-	30	30	75	75	46	3	3	V2BB46K..	V4	V2BC46K..	H5
125	10	-	30	40	75	100	47	3	3	V2BB47K..	V4	V2BC47K..	H5

NEMA rated available - contact your Siemens representative

Fusible Switch Combination and Non-Fusible Starter

Selection

| Standard Features | | | |
| :--- | :--- | :--- | :---: | :---: | :---: |

The type numbers in the selection table specify a 120 V 60 Hz coil. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Enclosed Amps	CSA MAXIMUM HP RATING						FUSE CLIPS Type IJ Amps	Contactor reference number	Aux, Contacts ${ }^{(1)}$ supplied as standard per contactor		Enclosure Sheet Metal			
	1 phase		3 phase								CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115V	230 V	208V	230 V	460 V	575 V			NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	$1^{1 / 2}$	2	3	5	NONE 30	15	2	3	V3BB15K.. V4BB15K..	V3	V3BC15K.. V4BC15K..	H2
	1/3	1	2	3	5	$7^{1 / 2}$	NONE 30	16	2	3	V3BB16K.. V4BB16K..		V3BC16K.. V4BC16K..	
	1/2	2	3	3	$7^{1 / 2}$	10	NONE 30	17	2	3	V3BB17K.. V4BB17K..		V3BC17K.. V4BC17K..	
	1	2	3	5	10	10	NONE 30	18	2	3	V3BB18K.. V4BB18K..		V3BC18K.. V4BC18K..	
35	1	3	5	5	10	15	NONE 30 60	25	3	3	V3BB25K.. V4BB25K.. V4BB25K..	V3	V3BC25K.. V4BC25K.. V4BC25K..	H2
	2	3	5	$7^{1 / 2}$	15	20	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	26	3	3	V3BB26K.. V4BB26K.. V4BB26K..		V3BC26K.. V4BC26K.. V4BC26K..	
42	2	5	10	10	20	25	NONE 30 60	27	3	3	V3BB27K.. V4BB27K.. V4BB27K..	V3	V3BC27K.. V4BC27K.. V4BC27K..	H2
	3	5	10	10	25	25	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	28	3	3	V3BB28K.. V4BB28K.. V4BB28K..		V3BC28K.. V4BC28K.. V4BC28K..	H2
55	3	$7^{1 / 2}$	10	15	30	40	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	35	3	3	V3BB35K.. V4BB35K.. V4BB35K..	V3	V3BC35K.. V4BC35K.. V4BC35K..	H2
60	3	10	15	15	40	50	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	36	3	3	V3BB36K.. V4BB36K.. V4BB36K.. V4BB36K..	V3	V3BC36K.. V4BC36K.. V4BC36K.. V4BC36K..	H2
80	5	10	20	20	50	50	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	37	3	3	V3BB37K.. V4BB37K.. V4BB37K.. V4BB37K..	V3	V3BC37K.. V4BC37K.. V4BC37K.. V4BC37K..	H2
90	5	15	20	25	50	60	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	38	3	3	V3BB38K.. V4BB38K.. V4BB38K.. V4BB38K..	V3	V3BC38K.. V4BC38K.. V4BC38K.. V4BC38K..	H2
105	-	-	-	-	-	60	$\begin{gathered} \text { NONE } \\ 60 \\ 100 \end{gathered}$	45	3	3	V3BB45K.. V4BB45K.. V4BB45K..	V4	V3BC45K.. V4BC45K.. V4BC45K..	H5

NEMA rated available - contact your Siemens representative
(1) Some aux contacts may be used for control options and electrical interlock, where necessary.

General

Description

Full-voltage ac magnetic two speed controllers are designed to control reconnectable squirrel-cage induction motors for operation at two different constant speeds depending on the construction of the motor. These controllers are available in combination and noncombination types. The speed of an induction motor is a function of the supply frequency and the number of poles of the motor winding. To obtain different speeds with a fixed supply frequency, the number of magnetic poles of the motor must be changed. Characteristics at any speed are similar to those of a singlespeed motor. There are two basic methods of providing multiple-pole combinations:

Separate-Winding Motors

 have a separate winding for each speed. This motor construction is slightly more expensive, but the controller is relatively simple, and a wide variety of speeds can be selected. Separate winding motors with delta connected motor windings require one corner to be opened on each unused winding. Consequent-Pole Motors have a single winding for two speeds. Extra winding taps are brought out for reconnection for different number of stator poles. While the motor costs less, the controller is more complicated, and speed range is limited to a 2-to-1 ratio.
Torque Characteristics

Multi-speed motors are divided into three application groups: Constant Torque - HP output varies directly with speed, while torque remains constant. A constant-torque motor rated 100 HP at 1200 rpm delivers 50 HP at 600 rpm . This type is applicable to conveyors, mills, dough mixers, reciprocating pumps, and other similar loads.
Variable Torque - HP varies as a square of speed, while torque varies directly with speed. A variable-torque motor rated 100 HP at 1200 rpm delivers 25 HP at 600 rpm . This type is applicable to systems having fan or centrifugal pump characteristics.
Constant Horsepower - Motor delivers rated HP at all full-load speeds, while torque varies inversely to speed. This type is applicable to cutting tools, lathes, spindles, etc.

Selection and Ordering

Starter ratings are based on the maximum HP at the highest speed. Electrical interlocking is furnished on all multi-speed starters to preclude connecting more than one speed winding at the same time. Both mechanical and electrical interlocking is provided wherever there is a possibility of short circuiting of the line.

Standard wiring permits starting the motor on any speed. To change a running motor to a higher speed, operator presses the desired speed button. To change to a lower speed, operator must press "stop" button before selecting the lower speed; allowing time for the motor to slow down, this reduces shock on driven machinery and surges on the power system.

When control at various speeds is by means of two-wire control devices, such as limit, pressure or float switches, deceleration relays should be used,unless both the motor manufacturer and the machine manufacturer have been consulted.

Catalogue No.:

HP Rated Starter

| Standard Features | | |
| :--- | :---: | :---: | :---: | :---: |
| | Ordering Information Required | Coil Voltage Codes |

The type numbers in the selection table below specify 120 V 60 Hz coils. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Non-Combination HP Rated										For Constant Horsepower, 'W' is replaced with 'U'			
Enclosed Amps	CSA MAXIMUM HP RATING						Contactor reference number	Aux, Contacts ${ }^{(1)}$ supplied as standard per contactor		Enclosure Sheet Metal			
	1 phase		3 phase							CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115 V	230 V	208V	230 V	460 V	575 V		NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	$1^{1 / 2}$	2	3	5	15	3	2	V1WB15K..	V1	V1WC15K..	S
	1/3	1	2	3	5	71/2	16	3	2	V1WB16K..		V1WC16K..	
	1/2	2	3	3	$7^{1 / 2}$	10	17	3	2	V1WB17K..		V1WC17K..	
35	1	2	3	5	10	10	18	3	3	V1WB18K..	V1	V1WC18K..	S
	1	3	5	5	10	15	25	3	3	V1WB25K..	V2	V1WC25K..	H2
	2	3	5	$71 / 2$	15	20	26	3	3	V1WB26K..		V1WC26K..	
42	2	5	10	10	20	25	27	3	3	V1WB27K..	V2	V1WC27K..	H2
	3	5	10	10	25	25	28	3	3	V1WB28K..		V1WC28K..	
55	3	$7^{1 / 2}$	10	15	30	40	35	3	3	V1WB35K..	V2	V1WC35K..	H2
60	3	10	15	15	40	50	36	3	3	V1WB36K..	V2	V1WC36K..	H2
80	5	10	20	20	50	50	37	3	3	V1WB37K..	V2	V1WC37K..	H2
90	5	15	20	25	50	60	38	3	3	V1WB38K..	V2	V1WC38K..	H2
105	$7^{1 / 2}$	15	25	30	60	60	45	3	3	V1WB45K..	V3	V1WC45K..	H3
115	10	-	30	30	75	75	46	3	3	V1WB46K..	V3	V1WC46K..	H3
125	10	-	30	40	75	100	47	3	3	V1WB47K..	V3	V1WC47K..	H3

NEMA rated available - contact your Siemens representative

Standard Features	Ordering Information Required	Coil Voltage Codes		
		ACV 60 Hz	ACV 50 Hz	$\begin{aligned} & \text { Coil } \\ & \text { Suffix } \end{aligned}$
- $2 \mathrm{NO}+2 \mathrm{NC}$ contact block supplied per contactor - Class 10 bimetallic overload relays including: - Manual or Automatic reset - Phase Loss Protection - Separate Trip and Alarm contact - All enclosures are designed to accept a standard sized	- Select basic type nr. from table below - Add suffix for both overload relay setting range from page 10/19 - Add suffix for factory modification from page $10 / 20$ 10/24	$\begin{gathered} \hline 24 \\ 120 \\ 208 \\ 240 \\ 460 \\ 600 \end{gathered}$	$\begin{gathered} 20 \\ 110 \\ - \\ 230 \\ 380 \end{gathered}$	$\begin{aligned} & \hline C \\ & \mathrm{C} \\ & \mathrm{M} \\ & \mathrm{P} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
- All enclosures have provisions for up to 4 pilot devices		other voltages and frequencies are available upon request		

The type numbers in the selection table below specify 120 V 60 Hz coils. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Circuit Breaker Combination® HP Rated										For Constant Horsepower, 'W' is replaced with 'U'			
Enclosed Amps	CSA MAXIMUM HP RATING						Contactor reference number	Aux, Contacts ${ }^{(2)}$ supplied as standard per contactor		Enclosure Sheet Metal			
	1 phase		3 phase							CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115 V	230 V	208V	230 V	460 V	575V		NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	$1^{1 / 2}$	2	3	5	15	3	2	V2WB15K..	V3	V2WC15K..	H3
	1/3	1	2	3	5	$71 / 2$	16	3	2	V2WB16K..		V2WC16K..	
	1/2	2	3	3	$7^{1 / 2}$	10	17	3	2	V2WB17K..		V2WC17K..	
35	1	2	3	5	10	10	18	3	3	V2WB18K..		V2WC18K..	
	1	3	5	5	10	15	25	3	3	V2WB25K..	V3	V2WC25K..	H3
	2	3	5	$71 / 2$	15	20	26	3	3	V2WB26K..		V2WC26K..	
42	2	5	10	10	20	25	27	3	3	V2WB27K..	V3	V2WC27K..	H3
	3	5	10	10	25	25	28	3	3	V2WB28K..		V2WC28K..	
55	3	$7^{1 / 2}$	10	15	30	40	35	3	3	V2WB35K..	V3	V2WC35K..	H3
60	3	10	15	15	40	50	36	3	3	V2WB36K..	V3	V2WC36K..	H3
80	5	10	20	20	50	50	37	3	3	V2WB37K..	V3	V2WC37K..	H3
90	5	15	20	25	50	60	38	3	3	V2WB38K..	V3	V2WC38K..	H3
105	$71 / 2$	15	25	30	60	60	45	3	3	V2WB45K..	V4	V2WC45K..	H5
115	10	-	30	30	75	75	46	3	3	V2WB46K..	V4	V2WC46K..	H5
125	10	-	30	40	75	100	47	3	3	V2WB47K..	V4	V2WC47K..	H5

NEMA rated available - contact your Siemens representative
(1) Factory will automatically select the circuit breaker based on
standard or given motor full-load current and the following:
Continuous-current rating of a minimum 115% of motor full-load current.
Trip-setting position is 11 times motor full load current.
(2) Some aux contacts may be used for control options and electrical interlock, where necessary

Selection

| Standard Features | | Coil Voltage Codes |
| :--- | :--- | :--- | :---: | :---: | :---: |

The type numbers in the selection table below specify 120 V 60 Hz coils. If a different coil voltage is required, change the " K " (7 digit) as per Coil Suffix Table above.

Fusible Switch Combinations and Non-Fusible Starters HP Rated											For Constant Horsepower, 'W' is replaced with 'U Enclosure Sheet Metal			
Enclosed Amps	CSA MAXIMUM HP RATING						FUSE CLIPS Type IJ Amps	Contactor reference number	Aux, Contacts ${ }^{(1)}$ supplied as standard per contactor					
	1 phase		3 phase								CSA / EEMAC Type 1 General Purpose Enclosure		CSA Type 5 / EEMAC Type 12 Industrial Use	
	115 V	230 V	208V	230 V	460 V	575V			NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.
20	1/4	3/4	$1^{1 / 2}$	2	3	5	$\begin{gathered} \text { NONE } \\ 30 \end{gathered}$	15	3	2	V3WB15K.. V4WB15K..	V3	V3WC15K.. V4WC15K..	H3
	1/3	1	2	3	5	$7^{1 / 2}$	$\begin{gathered} \text { NONE } \\ 30 \end{gathered}$	16	3	2	V3WB16K.. V4WB16K..		V3WC16K.. V4WC16K..	
	1/2	2	3	3	$7^{1 / 2}$	10	NONE 30	17	3	2	V3WB17K. V4WB17K.		V3WC17K.. V4WC17K..	
	1	2	3	5	10	10	NONE 30	18	2	2	V3WB18K.. V4WB18K..		V3WC18K.. V4WC18K..	
35	1	3	5	5	10	15	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	25	2	2	V3WB25K.. V4WB25K.. V4WB25K.	V3	V3WC25K.. V4WC25K. V4WC25K.	H3
	2	3	5	$7^{1 / 2}$	15	20	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	26	2	2	V3WB26K. V4WB26K.. V4WB26K..		V3WC26K.. V4WC26K.. V4WC26K..	
42	2	5	10	10	20	25	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	27	2	2	V3WB27K.. V4WB27K.. V4WB27K.	V3	V3WC27K.. V4WC27K.. V4WC27K.	H3
	3	5	10	10	25	25	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	28	2	2	V3WB28K. V4WB28K.. V4WB28K..		V3WC28K.. V4WC28K. V4WC28K.	
55	3	$7^{1 / 2}$	10	15	30	40	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	35	2	2	V3WB35K.. V4BWB35K.. V4WB35K..	V3	V3WC35K.. V4WC35K. V4WC35K..	H3
60	3	10	15	15	40	50	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	36	2	2	V3WB36K.. V4WB36K.. V4WB36K. V4WB36K.	V3	V3WC36K.. V4WC36K.. V4WC36K. V4WC36K.	H3
80	5	10	20	20	50	50	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	37	2	2	V3WB37K.. V4WB37K.. V4WB37K.. V4WB37K.	V3	V3WC37K.. V4WC37K.. V4WC37K.. V4WC37K.	H3
90	5	15	20	25	50	60	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	38	2	2	V3WB38K.. V4WB38K. V4WB38K.. V4WB38K.	V3	V3WC38K.. V4WC38K.. V4WC38K.. V4WC38K..	H3
105	-	-	-	-	-	60	$\begin{gathered} \text { NONE } \\ 60 \\ 100 \end{gathered}$	45	2	2	V3AB45K.. V4AB45K.. V4AB45K..	V4	V3AC45K.. V4AC45K.. V4AC45K..	H5

NEMA rated available - contact your Siemens representative
(1) Some aux contacts may be used for control options and electrical interlock, where necessary.

Selection

Standard Features	Ordering Information Required	Coil Voltage Codes		
		ACV 60 Hz	ACV 50 Hz	Coil Suffix
- Mechanical and electrical interlock - $2 \mathrm{NO}+2 \mathrm{NC}$ contact block supplied per contactor - Class 10 bimetal overload relays including: - Manual or Automatic reset - Phase Loss Protection - Separate Trip and Alarm contact - All enclosures are designed to accept a standard sized control transformer - All enclosures have provisions for up to 4 pilot devices	- Select basic type nr. from table below - Add suffix for both overload relay setting range from page 10/19 - Add suffix for factory modification from page 10/20-10/24	$\begin{gathered} 24 \\ 120 \\ 208 \\ 240 \\ 460 \\ 600 \end{gathered}$ other volta are ava	$\begin{gathered} 20 \\ 110 \\ - \\ 220 \\ 380 \end{gathered}$ - ges and frequ able upon req	C K M P V T cies st

The type numbers in the selection table below specify 120 V 60 Hz coils. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Non-Combination HP Rated								For Constant Horsepower, 'N' is replaced with 'R'				
Enclosed Amps	3 phase				Contactor reference number	Aux, Contacts ${ }^{(1)}$ supplied as standard per contactor		Enclosure Sheet Metal				
					CSA / EEMAC Type 1 General Purpose Enclosure			CSA Type 5 / EEMAC Type 12 Industrial Use				
	208 V	230 V	460 V	575V		NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.	
20	$1^{1 / 2}$	2	3	5		15	2	3	V1NB15K..	V2	V1NC15K..	H2
	2	3	5	$71 / 2$	16	2	3	V1NB16K..	V1NC16K..			
	3	3	$7^{1 / 2}$	10	17	2	3	V1NB17K..	V1NC17K..			
	3	5	10	10	18	2	3	V1NB18K..	V1NC18K..			
35	5	5	10	15	25	3	3	V1NB25K..	V2	V1NC25K..	H2	
	5	$71 / 2$	15	20	26	3	3	V1NB26K..		V1NC26K..		
42	10	10	20	25	27	3	3	V1NB27K..	V2	V1NC27K..	H2	
	10	10	25	25	28	3	3	V1NB28K..		V1NC28K..		
55	10	15	30	40	35	3	3	V1NB35K..	V3	V1NC35K..	H3	
60	15	15	40	50	36	3	3	V1NB36K..	V3	V1NC36K..	H3	
80	20	20	50	50	37	3	3	V1NB37K..	V3	V1NC37K..	H3	
90	20	25	50	60	38	3	3	V1NB38K..	V3	V1NC38K..	H3	
105	25	30	60	60	45	3	3	V1NB45K..	V4	V1NC45K..	H5	
115	30	30	75	75	46	3	3	V1NB46K..	V4	V1NC46K..	H5	
125	30	-	75	100	47	3	3	V1NB47K..	V4	V1NC47K..	H5	

NEMA rated available - contact your Siemens representative

2S1W Constant or Variable Torque Typical Wiring Diagram
(1) Some aux contacts may be used for control options and electrical interlock, where necessary.

Selection

| Standard Features | | |
| :--- | :--- | :--- | :--- |
| | Ordering Information Required | Coil Voltage Codes |

The type numbers in the selection table below specify 120 V 60 Hz coils. If a different coil voltage is required, change the " K " (7 digit) as per Coil Suffix Table above.

Circuit Breaker Combination© HP Rated												
Enclosed Amps	3 phase				Contactor reference number	Aux, Contacts ${ }^{\text {(2 }}$ supplied as standard per contactor		Enclosure Sheet Metal				
					CSA / EEMAC Type 1 General Purpose Enclosure			CSA Type 5 / EEMAC Type 12 Industrial Use				
	208V	230 V	460 V	575 V		NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl Fig.	
20	$1^{1 / 2}$	2	3	5		15	2	3	V2NB15K..	V3	V2NC15K..	H3
	2	3	5	$7^{1 / 2}$	16	2	3	V2NB16K..	V2NC16K..			
	3	3	$7^{1 / 2}$	10	17	2	3	V2NB17K..	V2NC17K..			
	3	5	10	10	18	2	3	V2NB18K..	V2NC18K..			
35	5	5	10	15	25	3	3	V2NB25K..	V3	V2NC25K..	H3	
	5	$7^{1 / 2}$	15	20	26	3	3	V2NB26K..		V2NC26K..		
42	10	10	20	25	27	3	3	V2NB27K..	V3	V2NC27K..	H3	
	10	10	25	25	28	3	3	V2NB28K..		V2NC28K..		
55	10	15	30	40	35	3	3	V2NB35K..	V3	V2NC35K..	H3	
60	15	15	40	50	36	3	3	V2NB36K..	V3	V2NC36K..	H3	
80	20	20	50	50	37	3	3	V2NB37K..	V3	V2NC37K..	H3	
90	20	25	50	60	38	3	3	V2NB38K..	V3	V2NC38K..	H3	
105	25	30	60	60	45	3	3	V2NB45K..	V4	V2NC45K..	H5	
115	30	30	75	75	46	3	3	V2NB46K..	V4	V2NC46K..	H5	
125	30	-	75	100	47	3	3	V2NB47K..	V4	V2NC47K..	H5	

NEMA rated available - contact your Siemens representative

Selection

Standard Features	Ordering Information Required	Coil Voltage Codes		
		ACV 60 Hz	ACV 50 Hz	$\begin{aligned} & \text { Coil } \\ & \text { Suffix } \end{aligned}$
- Mechanical and electrical interlock - $2 \mathrm{NO}+2$ NC contact block supplied per contactor - Class 10 bimetallic overload relays including: - Manual or Automatic reset - Phase Loss Protection - Separate Trip and Alarm contact - All enclosures are designed to accept a standard sized control transformer - All enclosures have provisions for up to 4 pilot devices	- Select basic type nr. from table below - Add suffix for both overload relay setting range from page 10/19 - Add suffix for factory modification from page 10/20-10/24	$\begin{gathered} 24 \\ 120 \\ 208 \\ 240 \\ 460 \\ 600 \end{gathered}$ other volta are avai	$\begin{gathered} 20 \\ 110 \\ - \\ 220 \\ 380 \end{gathered}$ $-$ ges and frequ able upon req	

The type numbers in the selection table below specify 120 V 60 Hz coils. If a different coil voltage is required, change the "K" (7 digit) as per Coil Suffix Table above.

Enclosed Amps	3 phase				FUSE CLIPS Type IJ Amps	Contactor reference number	Aux, Contacts ${ }^{(1)}$ supplied as standard per contactor		Enclosure Sheet Metal				
					CSA / EEMAC Type 1 General Purpose Enclosure				CSA Type 5 / EEMAC Type 12 Industrial Use				
	200 V	230 V	460V	575 V			NO	NC	Catalogue Number	Encl. Fig.	Catalogue Number	Encl. Fig.	
20	$1^{1 / 2}$	2	3	5		NONE 30	15	2	3	V3NB15K.. V4NB15K..	V3	V3NC15K.. V4NC15K.	H3
	2	3	5	$7^{1 / 2}$	$\begin{gathered} \text { NONE } \\ 30 \end{gathered}$	16	2	3	V3NB16K.. V4NB16K..	V3NC16K.. V4NC16K..			
	3	3	$7^{1 / 2}$	10	$\begin{gathered} \text { NONE } \\ 30 \end{gathered}$	17	2	3	V3NB17K.. V4NB17K..	V3NC17K.. V4NC17K..			
	3	5	10	10	$\begin{gathered} \text { NONE } \\ 30 \end{gathered}$	18	2	3	V3NB18K.. V4NB18K..	V3NC18K.. V4NC18K..			
35	5	5	10	15	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	25	2	2	V3NB25K.. V4NB25K.. V4NB25K..	V3	V3NC25K.. V4NC25K.. V4NC25K..	H3	
	5	$7^{1 / 2}$	15	20	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	26	2	2	V3NB26K.. V4NB26K.. V4NB26K..		V3NC26K.. V4NC26K.. V4NC26K..		
42	10	10	20	25	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	27	2	2	V3NB27K.. V4NB27K.. V4NB27K..	V3	V3NC27K. V4NC27K. V4NC27K.	H3	
	10	10	25	25	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	28	2	2	V3NB28K.. V4NB28K.. V4NB28K..		V3NC28K.. V4NC28K.. V4NC28K..		
55	10	15	30	40	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \end{gathered}$	35	2	2	V3NB35K.. V4NB35K.. V4NB35K..	V3	V3NC35K.. V4NC35K.. V4NC35K..	H3	
60	15	15	40	50	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	36	2	2	V3NB36K.. V4NB36K.. V4NB36K.. V4NB36K..	V3	V3NC36K.. V4NC36K.. V4NC36K.. V4NC36K..	H3	
80	20	20	50	50	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \end{gathered}$	37	2	2	V3NB37K.. V4NB37K.. V4NB37K.. V4NB37K..	V3	V3NC37K.. V4NC37K.. V4NC37K.. V4NC37K..	H3	
90	20	25	50	60	$\begin{gathered} \text { NONE } \\ 30 \\ 60 \\ 100 \\ \hline \end{gathered}$	38	2	2	V3NB38K.. V4NB38K.. V4NB38K.. V4NB38K..	V3	V3NC38K.. V4NC38K.. V4NC38K.. V4NC38K..	H3	

NEMA rated available - contact your Siemens representative

Selection

Append to Catalogue Number V4AB15K			The overload relay calibration is based on a motor service factor (S.F.) of 1.15. If the service factor is 1.0 , multiply motor F.L.C. by 0.92 before making selection.					
Adjustment Range Amps	Contactor Reference in Type No. (5. and 6. digit)							
	15/16/17/18		25 / 26 / 27		35 / 36 / 37 / 38		45 / 46 / 47	
	Overload Type	Overload Suffix						
$\begin{aligned} & 0.11-0.16 \\ & 0.14-0.2 \\ & 0.18-0.25 \end{aligned}$	3RU2116 3RU2116 3RU2116	OA OB OC						
$\begin{aligned} & 0.22-0.32 \\ & 0.28-0.4 \\ & 0.35-0.5 \end{aligned}$	3RU2116 3RU2116 3RU2116	$\begin{aligned} & \text { OD } \\ & \text { OE } \\ & \text { OF } \end{aligned}$						
$\begin{aligned} & 0.45-0.63 \\ & 0.55-0.8 \\ & 0.7-1.0 \end{aligned}$	3RU2116 3RU2116 3RU2116	$\begin{aligned} & \text { OG } \\ & \text { OH } \\ & \text { OJ } \end{aligned}$						
$\begin{aligned} & 0.9-1.25 \\ & 1.1-1.6 \\ & 1.4-2 \end{aligned}$	3RU2116 3RU2116 3RU2116	$\begin{aligned} & 0 K \\ & 1 A \\ & 1 B \end{aligned}$						
$\begin{aligned} & 1.8-2.5 \\ & 2.2-3.2 \\ & 2.8-4 \end{aligned}$	3RU2116 3RU2116 3RU2116	$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \end{aligned}$	3RU2126 3RU2126 3RU2126	$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \end{aligned}$				
$\begin{aligned} & 3.5-5 \\ & 4.5-6.3 \\ & 5.5-8 \end{aligned}$	3RU2116 3RU2116 3RU2116	$\begin{aligned} & 1 \mathrm{~F} \\ & 1 \mathrm{G} \\ & 1 \mathrm{H} \end{aligned}$	3RU2126 3RU2126 3RU2126	$\begin{aligned} & 1 F \\ & 1 G \\ & 1 H \end{aligned}$	3RU2136	1H		
$\begin{aligned} & 7-10 \\ & 9-12.5 \end{aligned}$	3RU2116 3RU2116	$\begin{aligned} & 1 \mathrm{~J} \\ & 1 \mathrm{~K} \end{aligned}$	3RU2126 3RU2126	$\begin{aligned} & 1 \mathrm{~J} \\ & 1 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 3 R U 2136 \\ & 3 R U 2136 \end{aligned}$	$\begin{aligned} & 1 \mathrm{~J} \\ & 1 \mathrm{~K} \end{aligned}$		
11-16 14-20 17-22	3RU2116	4A	3RU2126 3RU2126 3RU2126	$\begin{aligned} & 4 A \\ & 4 B \\ & 4 C \end{aligned}$	3RU2136 3RU2136 3RU2136	$\begin{gathered} \text { 4A } \\ \text { 4B } \\ - \end{gathered}$		
$\begin{aligned} & 18-25 \\ & 20-25 \\ & 23-28 \\ & 22-32 \end{aligned}$			3RU2126 3RU2126 3RU2126 3RU2126	$\begin{aligned} & - \\ & 4 D \\ & 4 N \end{aligned}$	3RU2136 3RU2136 3RU2136 3RU2136	$\begin{aligned} & 4 \mathrm{D} \\ & - \\ & - \\ & 4 \mathrm{E} \end{aligned}$		
$\begin{aligned} & 27-32 \\ & 28-40 \\ & 30-36 \\ & 34-40 \end{aligned}$			3RU2126 3RU2126 3RU2126 3RU2126	4E 4P 4F	3RU2136 3RU2136 3RU2136 3RU2136	$\begin{aligned} & - \\ & 4 \mathrm{~F} \\ & - \\ & - \end{aligned}$	3RU2146 3RU2146 3RU2146 3RU2146	$\overline{4 F}$
$\begin{aligned} & 36-45 \\ & 36-50 \\ & 40-50 \end{aligned}$					3RU2136 3RU2136 3RU2136	$\begin{gathered} 4 \mathrm{G} \\ - \\ 4 \mathrm{H} \end{gathered}$	3RU2146 3RU2146 3RU2146	$\overline{4 \mathrm{H}}$
$\begin{aligned} & 47-57 \\ & 45-63 \\ & 54-65 \end{aligned}$					3RU2136 3RU2136 3RU2136	$\begin{gathered} 4 Q \\ - \\ 4 \mathrm{~J} \end{gathered}$	3RU2146 3RU2146 3RU2146	$\overline{4 \mathrm{~J}}$
$\begin{aligned} & 57-75 \\ & 62-73 \\ & 70-80 \end{aligned}$					3RU2136 3RU2136 3RU2136	4K 4R	3RU2146 3RU2146 3RU2146	$\begin{gathered} 4 \mathrm{~K} \\ - \\ - \end{gathered}$
$\begin{aligned} & 70-90 \\ & 80-100 \end{aligned}$							$\begin{aligned} & 3 R U 2146 \\ & \text { 3RU2146 } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~L} \\ & 4 \mathrm{M} \end{aligned}$

Other Options	Suffix
Provision only for field amounting of overload relay	00
Substitute bimetal overload relay with solid state type 3RB2, Class 20	$\square^{\text {(® }}$

Power Line Voltage and Control Circuit Options
Selection

Power Line Voltage Selection		Append to Catalogue Number i.e.: V4AB15K1E_ -						
		120 V	208V	230 V	460 V	575 V	600V Max.	Other
Single Phase, 60HZ (L1, N)	Suffix	1	-	-	-	-	-	-
Single Phase, 60Hz (L1, L2)		-	-	7	-	-	-	-
Three Phases, 60Hz (L1, L2, L3)		-	2	3	4	5	-	-
Three Phases, 600V Max, 60Hz(L1, L2, L3)		-	-	-	-	-	6	-
Specify voltage, frequency, No. of phase \& neutral if required		-	-	-	-	-	-	3

Note: Power line voltage is an important data to be known in order to provide a starter properly connected for single phase or three phase load.
Control Circuit Selection

Power Line Voltage Selection	Append to Catalogue Number i.e.: V4AB15K1E__	
	Contactor Reference No.	Suffix
Separate Control Circuit, Unfused	O	
Separate Control Circuit, Fused, 1 fuse max. 250V	N	
Common Control with 1 Control Fuse, max. 250V (for 120V control only)	P	
Control Circuit Transformer: Standard Capacity	R	
Control Circuit Transformer: Extra Capacity May require larger enclosure Consult Siemens	additional 50VA	
100VA	W	
Special transformer voltages Specify		

Circuit Breaker Combination, Constant or Variable Torque

Selection

Additional Auxiliary Contacts

Append to Catalogue Number ie: V4AB15K1E5R_			
		Suffix	
Std. auxiliary contacts as per starter selection table		0	Options available for FVNR type starters with contactor ref numbers:
Addition of:	2 N.O.	L	
			15/16/17/18
	2 N.C.	F	
	4 N.O.	K	Other configurations will
	3 N.O. + 1 N.C.	E J	come with additional 2 N.O. + 2 N.C. aux block
	2 N.O. + 2 N.C.	M	

Pilot Devices - Operators
Legend Plates are supplied as standard with Operators

Append to Catalogue Number i.e.: V4AB30K1E5R0_-					
Operator Description	First Suffix	EEMAC Enclosure Type	English Legend	Second Suffix	French Legend
None	0	$1 / 12$	-	-	

Pushbutton

1 pushbutton momentary	extended head red			$\begin{gathered} 1 / 12 \\ 4 \end{gathered}$	STOP	B	ARRET
twist lock maintained	mushroom red	1 N.C.	3 (4)	$\begin{gathered} 1 / 12 \\ 4 \end{gathered}$	EMERGENCY STOP	A	ARRET D'URGENCE
2 pushbuttons momentary	$\begin{aligned} & 1 \text { - red } \\ & 1 \text { - green } \end{aligned}$	$\begin{aligned} & 1 \text { N.C. } \\ & 1 \text { N.O. } \end{aligned}$	5 (6)	$1 / 12$	START STOP ON OFF	$\begin{aligned} & \text { C } \\ & \text { D } \end{aligned}$	MARCHE ARRET EN HORS
3 pushbuttons momentary	$\begin{aligned} & 1 \text { - red } \\ & 2 \text { - black each } \end{aligned}$	$\begin{aligned} & 1 \text { N.C. E } \\ & 1 \text { N.O. } \end{aligned}$	7 (8)	$\begin{gathered} 1 / 12 \\ 4 \end{gathered}$	FORWARD REVERSE STOP HIGH LOW STOP UP DOWN STOP FAST SLOW STOP OPEN CLOSE STOP	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~F} \\ & \mathrm{G} \\ & \mathrm{H} \\ & \mathrm{~J} \end{aligned}$	AVANT ARRIERE ARRET HAUTE BASSE ARRET EN HAUT EN BAS ARRET VITE LENTEMENT ARRET OUVRIR FERMER ARRET

Power Line Voltage and Control Circuit Options

Selection
Pilot Devices - Operators (continued)
Legend Plates are supplied as standard with Operators

Append to Catalogue Number i.e.: V4AB30K1E5R0						
Operator Description		$\begin{aligned} & \text { First } \\ & \text { Suffix }{ }^{(1)} \end{aligned}$	EEMAC Enclosure Type	English Legend	Second Suffix	French Legend
2-position selector switch						
2 position selector switch maintained 2 position selector switch spring return 2 position selector switch key operated maintained	$1 \text { N.O. }$ $1 \text { N.O. }$ $1 \text { N.O. }$	A (B) C (D) $E(F)$	$\begin{gathered} 1 / 12 \\ 4 \\ 1 / 12 \\ 4 \\ \\ 1 / 12 \\ 4 \end{gathered}$	STOP START OFF ON HAND AUTO FOR REV HIGH LOW UP DOWN FAST SLOW OPEN CLOSE LOCAL REMOTE	$\begin{aligned} & \mathrm{K} \\ & \mathrm{~L} \\ & \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{P} \\ & \mathrm{Q} \\ & \mathrm{R} \\ & \mathrm{~S} \\ & \mathrm{~T} \end{aligned}$	ARRET MARCHE HORS EN MAN AUTO AVANT ARRIERE HAUTE BASSE HAUT BAS VITE LENT OUVRIR FERMER LOCAL A DIST.
3-position selector switch						
3 position selector switch maintained 3 position selector switch 1 spring return from both sides 3 position selector switch key operated maintained 3 position selector switch key operated spring return from both sides	$2 \times 1 \text { N.O. }$	G (H) J (K) $\mathrm{L}(\mathrm{M})$ $N(P)$	$\begin{gathered} 1 / 12 \\ 4 \\ \\ 1 / 12 \\ 4 \\ \\ 1 / 12 \\ 4 \\ \\ \\ 1 / 12 \\ 4 \end{gathered}$	HAND OFF AUTO FOR OFF REV HIGH OFF LOW UP OFF DOWN FAST OFF SLOW OPEN OFF CLOSE LOCAL OFF REMOTE TEST OFF AUTO	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	MAN ARRET AUTO AVANT ARRET ARRIERE HAUTE ARRET BASSE HAUT ARRET BAS VITE ARRET LENT OUVRIR ARRET FERMER LOCAL HORS A DIST. ESSAI ARRET AUTO

2 pushbuttons \& 3-position selector switch

3 position selector switch maintained c/w START STOP pushbuttons momentary green	$\begin{array}{r} 2 \times 1 \text { N.O. } \\ 1 \text { N.C. } \\ 1 \text { N.O. } \end{array}$	T (U)	$\begin{gathered} 1 / 12 \\ 4 \end{gathered}$	HAND OFF AUTO for selector switch and START STOP fotpushbutton	X	MAN ARRET AUTO for selector switch and MARCHE ARRET for pushbuttons

Pilot Devices - Indicators

Append to Catalogue Number i.e.: V4AB15K1E5R05C		
Pilot Lights	First	Enclosure Type
Description	0	$1 / 4 / 12$
So Pilot Lights		
LED c/w legend plate(s)	5 (6)	$1 / 12$
120V extended lfie		

Pilot Device Options

Selection
Pilot Lights
Legend Plates and Lens Colours

Table A - One Pilot Light									
LEGEND PLATES			LEGEND COLOURS						
English	French		Red	Yellow	Green	Blue			Other Specify
```RUN ON OFF O/L TRIPPED READY Other Legend Plates Specify```	MARCHE   EN CIRCUIT ARRÊT SURCHARGE PRÊT	Suffix	$\begin{aligned} & 1 \mathrm{C} \\ & 2 \mathrm{C} \\ & 3 \mathrm{C} \\ & 4 \mathrm{C} \\ & 5 \mathrm{C} \\ & 9 \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 D \\ & \text { 2D } \\ & \text { 3D } \\ & \text { 4D } \\ & \text { 5D } \\ & 9 D \end{aligned}$	$\begin{aligned} & 1 \mathrm{E} \\ & 2 \mathrm{E} \\ & 3 \mathrm{E} \\ & - \\ & 5 \mathrm{E} \\ & 9 \mathrm{E} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & \text { 5F } \\ & 9 F \end{aligned}$			$\begin{aligned} & 19 \\ & 29 \\ & 39 \\ & 49 \\ & 59 \\ & 99 \end{aligned}$
Table B - Two Pilot Lights									
LEGEND PLATES			LEGEND COLOURS						
English	French		Red Red	Green Green	Red Yellow	Red Green	Green Red	Green Yellow	Other Specify
$\begin{aligned} & \text { RUN : OFF } \\ & \text { ON : OFF } \\ & \text { RUN : O/L TRIPPED } \\ & \text { ON : O/L TRIPPED } \\ & \text { FORWARD } \text { REVERSE } \\ & \text { FAST } \cdot \text { SLOW } \\ & \text { UP : DOWN } \\ & \text { HIGH : LOW } \\ & \text { Other Legend Plates Specify } \end{aligned}$	MARCHE - ARRÊT   EN CIRCUIT • ARRÊT   MARCHE • SURCHARGE   EN CIRCUIT • SURCHARGE   AVANT - ARRIERE   VITE • LENTEMENT   EN HAUT - EN BAS   HAUT •BAS	Suffix		$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & \text { B2 } \\ & \text { C2 } \\ & \text { D2 } \\ & \text { E2 } \\ & 92 \end{aligned}$	$\begin{gathered} - \\ - \\ 83 \\ \text { A3 } \\ - \\ - \\ - \\ - \\ 93 \end{gathered}$	64   74   -   B4   C4   D4   E4   94	$\begin{aligned} & 65 \\ & 75 \\ & 85 \\ & \text { A5 } \\ & \text { B5 } \\ & \text { C5 } \\ & \text { D5 } \\ & \text { E5 } \\ & 95 \end{aligned}$	$\begin{gathered} 86 \\ \text { A6 } \\ - \\ - \\ - \\ - \\ 96 \end{gathered}$	$\begin{aligned} & 69 \\ & 79 \\ & 89 \\ & \text { A9 } \\ & \text { B9 } \\ & \text { C9 } \\ & \text { D9 } \\ & \text { E9 } \\ & 99 \end{aligned}$
Table B - Three Pilot Lights									
LEGEND PLATES			LEGEND COLOURS						
English	French		Red   Red   Green	Green Green Red	Red Red Yellow	Green Green Yellow	Red Green Yellow	Green Red Yellow	Other Specify
```RUN • OFF : O/L TRIPPED ON • OFF • O/L TRIPPED FORWARD • REVERSE • OFF FAST •SLOW • OFF UP - DOWN • OFF HIGH - LOW • OFF FORWARD • REVERSE • O/L TRIPPED FAST • SLOW • O/L TRIPPED UP • DOWN • O/L TRIPPED HIGH • LOW • O/L TRIPPED Other Legend Plates Specify```	MARCHE • ARRÊT • SURCHARGE   EN CIRCUIT • ARRÊT • SURCHARGE   AVANT • ARRIERE • ARRÊT   VITE - LENTEMENT • ARRÊT   EN HAUT : EN BAS : ARRÊT   HAUT • BAS • ARRÊT   AVANT • ARRIERE • SURCHARGE   VITE - LENTEMENT • SURCHARGE   EN HAUT•EN BAS • SURCHARGE   HAUT - BAS•SURCHARGE	Suffix	-   HK   JK   KK   LK   -   -   -   9K	$\begin{gathered} - \\ - \\ \mathrm{HJ} \\ \mathrm{JJ} \\ \mathrm{KJ} \\ \mathrm{LJ} \\ \mathrm{MJ} \\ \mathrm{NJ} \\ \mathrm{PJ} \\ \mathrm{RJ} \\ 9 \mathrm{JJ} \end{gathered}$	$\begin{aligned} & -\overline{\mathrm{ML}} \\ & \mathrm{NL} \\ & \mathrm{PL} \\ & \mathrm{RL} \\ & 9 \mathrm{~L} \end{aligned}$		FN   GN   -   -   -   $\overline{\mathrm{MN}}$   NN   PN   RN   9 N	FP   GP   -   -   -   MP   NP   PP   RP   9P	F9   G9   H9   J9   K9   L9   M9   N9   P9   R9   99

Selection
Miscellaneous Options:
Specify by suffix and description as required.
Append to Catalogue No i.e.: V4AB15K1E5R05C165-Z _ _ _ _ _ _

Description	Suffix
Drip Shield available for hinged cover enclosures only (V2, V3, V4)	DS
Identification Name Plate Lamacoid 1-25 characters 25-50 characters	$\begin{aligned} & \text { N1 } \\ & \text { N2 } \end{aligned}$

Fuse Clips:

All Fusible Disconnect Combination
Starters are supplied with Form I, Class J fuse clips as standard.

Fuse Clip Size	
	Form IJ
30A	Suffix
60A PD (time-delay) 100A PJ (fast-acting)	

Terminal Blocks

Description	Suffix
Wired 1 point terminal	T1
Wired 2 point terminal	T2
Wired 3 point terminal	T3
Wired 4 point terminal	T4
Wired 5 point terminal	T5
Wired 6 point terminal	T6
Wired 7 point terminal	T7
Wired 8 point terminal	T8
Wired 9 point terminal	T9
Wired 10 point terminal	T0
Unwired 1 point terminal	A
Unwired 2 point terminal	B
Unwired 3 point terminal	C
Unwired 4 point terminal	D
Unwired 5 point terminal	E
Unwired 6 point terminal	F
Unwired 7 point terminal	G
Unwired 8 point terminal	H
Unwired 9 point terminal	J
Unwired 10 point terminal	K

(1) Option may require larger enclosure.

Consult Siemens.
(2) All requests must be accompanied by complete meter specifications. Availability may be limited.

Selection

Siemens SIRIUS

Pre-assembled starter packages are the simple way to order starters:

- 15HP, 600V max, non-combination
- Standard 1 NO contact on models with 15, 16 and 17 contact reference numbers and $1 \mathrm{NO}+1 \mathrm{NC}$ on models with 25 contact reference number
- Ambient $60^{\circ} \mathrm{C}$ on contactors
- Fast and simple 3-prong overload/ contactor connection: no coil extension required
- Standard primary and secondary fusing on control transformers
- Standard Plastic 22 mm SIRIUS ACT control and pilot devices ${ }^{\oplus}$

SIRIUS GOLD, SILVER AND BRONZE Starter Packages offer these standard features:

GOLD

- 50 VA 600/120V control transformer
- 3 pos. selector switch H.O.A.
- Pilot light 120 V red

SILVER

- 50 VA $600 / 120 \mathrm{~V}$ control transformer
- Start/Stop pushbuttons
- Pilot light 120 V red

BRONZE

- No control transformer
- No pilot devices

Siemens modular line of quality Motor Control Products meets and exceeds international standards and are built to serve global markets. Here's why choosing a pakage is the smarter way to select a starter:

Saves Time

No more lengthy navigating through product catalogues! GOLD, SILVER and BRONZE starters offer and easy 2 step approach to selecting your starter.

1. Select the starter based on

Horsepower (HP) and Line Voltage.
2. Select the appropriate overload relay.

Then it's ready to install. All this convenience is now available off your distributor's shelves.

Saves Money

This unique solution for the industry's most popular full voltage non-reversing starters is competitively priced compared to other custom-engineered starters.

Saves Hassle

Ease of selection. Off the shelf availability. Competitive pricing. It's easy to see why GOLD, SILVER and BRONZE pakages are the ideal solution. For serious performance and serious convenience, take a SIRIUS approach to starters.

Contactors and Contactor Assemblies (Gold, Silver and Bronze)

Selection
Non-Combination Starter Package
Selection EEMAC Type 1 Enclosed

Catalogue Number	Pilot Devices	Control Transformer w/ Primary and Secondary fuses	CSA Maximum HP Rating				Contactor Reference Number	Enclosure Reference Number
			3 phase					
			208V	240 V	480V	600V		
GOLD3R-5-600 GOLD3R-3-480 GOLD3R-2-240 GOLD3R-1.5-208	3 Position Selector Switch \& Pilot Light	Included 120V sec.	$1^{1 / 2}$	2	3	5	15	Vo
$\begin{aligned} & \text { GOLD3R-7.5-600 } \\ & \text { GOLD3R-5-480 } \\ & \text { GOLD3R-3-240 } \\ & \text { GOLD3R-2-208 } \end{aligned}$	3 Position Selector Switch \& Pilot Light	Included 120V sec.	2	3	5	$71 / 2$	16	Vo
GOLD3R-10-600 GOLD3R-7.5-480 GOLD3R-3-240 GOLD3R-3-208	3 Position Selector Switch \& Pilot Light	Included 120V sec.	3	3	$71 / 2$	10	17	Vo
$\begin{aligned} & \text { GOLD3R-15-600 } \\ & \text { GOLD3R-10-480 } \\ & \text { GOLD3R-5-240 } \\ & \text { GOLD3R-5-208 } \end{aligned}$	3 Position Selector Switch \& Pilot Light	Included 120V sec.	5	5	10	15	25	V1
SILVER3R-5-600 SILVER3R-3-480 SILVER3R-2-240 SILVER3R-1.5-208	Start/Stop Pushbuttons \& Pilot Light	Included 120V sec.	$1^{1 / 2}$	2	3	5	15	Vo
SILVER3R-7.5-600 SILVER3R-5-480 SILVER3R-3-240 SILVER3R-2-208	Start/Stop Pushbuttons \& Pilot Light	Included 120V sec.	2	3	5	$71 / 2$	16	Vo
SILVER3R-10-600 SILVER3R-7.5-480 SILVER3R-3-240 SILVER3R-3-208	Start/Stop Pushbuttons \& Pilot Light	Included 120V sec.	3	3	$71 / 2$	10	17	Vo
SILVER3R-15-600 SILVER3R-10-480 SILVER3R-5-240 SILVER3R-5-208	Start/Stop Pushbuttons \& Pilot Light	Included 120V sec.	5	5	10	15	25	V1
BRONZE3R-5-600 BRONZE3R-7.5-600 BRONZE3R-10-600 BRONZE3R-15-600	None	None	$\begin{gathered} 1^{1 / 2} \\ 2 \\ 3 \\ 5 \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & 5 \end{aligned}$	$\begin{gathered} 3 \\ 5 \\ 71 / 2 \\ 10 \end{gathered}$	$\begin{gathered} 5 \\ 71 / 2 \\ 10 \\ 15 \end{gathered}$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { V0 } \\ & \text { V0 } \\ & \text { V0 } \\ & \text { V1 } \end{aligned}$

Contactors and Contactor Assemblies (Gold, Silver and Bronze)

Selection
Overload Relay Selection Chart

FLA Adjustment Range Amps	Catalogue Number	
	15/16/17	25
0.11-0.16	3RU2116-OAB0	-
0.14-0.2	3RU2116-OBB0	-
0.18-0.25	3RU2116-0CB0	-
0.22-0.32	3RU2116-0DB0	-
0.28-0.4	3RU2116-0EB0	-
0.35-0.5	3RU2116-0FB0	-
0.45-0.63	3RU2116-0GB0	-
0.55-0.8	3RU2116-OHB0	-
0.7-1	3RU2116-OJBO	-
0.9-1.25	3RU2116-OKB0	-
1.1-1.6	3RU2116-1AB0	-
1.4-2	3RU2116-1BB0	-
1.8-2.5	3RU2116-1CB0	3RU2126-1CB0
2.2-3.2	3RU2116-1DB0	3RU2126-1DB0
2.8-4	3RU2116-1EB0	3RU2126-1EB0
3.5-5	3RU2116-1FBO	3RU2126-1FB0
4.5-6.3	3RU2116-1GB0	3RU2126-1GB0
5.5-8	3RU2116-1HB0	3RU2126-1HB0
7-10	3RU2116-1JB0	3RU2126-1JB0
9-12.5	3RU2116-1KB0	3RU2126-1KB0
11-16	-	3RU2126-4AB0

Selection

Pilot Devices - Suitable for Installation on BRONZE models

Pushbuttons			LEGEND PLATES		Catalogue Number
			English	French	
2 - pushbuttons momentary	$\begin{aligned} & 1 \text { - red, ext. } \\ & 1 \text { - green, flush } \end{aligned}$	$\begin{aligned} & 1 \mathrm{NC} \\ & 1 \mathrm{NO} \end{aligned}$	STOP START	ARRÊT MARCHE	VFMK50
Selector Switches					
2 - position maintained		black lever 1 NO	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	EN CIRCUIT ARRÊT	VFMKCO
3 - position maintained		black lever $2 \times 1 \mathrm{NO}$	HAND OFF AUTO	MAN ARRÊT AUTO	VFMKGO
Pilot Lights					
Full Voltage 120 V incandescent		c/w 2 lenses red \& green			VFMK01

Control Circuit Transformers c/w 2 - Primary and 1 Secondary Fuse

Rating at $\mathbf{6 0 ~ H z}$ VA	Catalogue Number			
	$\mathbf{2 0 8 / 1 2 0}$	$\mathbf{2 4 0 / 1 2 0}$	$\mathbf{4 8 0 / 1 2 0}$	$\mathbf{6 0 0 / 1 2 0}$
	VFMKT2050	VFMKT4050	VFMKT4050	VFMKT6050
100^{\oplus}	VFMKT2100	VFMKT4100	VFMKT4100	VFMKT6100

Dimensions

		Non-Combination Starter EEMAC Type 1 (Lift-Off Cover)											
		Figure 1		Width A	Height B	Depth C	Mfg.-Holes					No. of Holes	
				D			E	F	G	H			
			MM		161.70	244.7	146	110.3	174	-	25.7	-	
			INCH	6.37	9.64	5.75	4.34	6.85	-	1.01	-		
			MM	241.5	320.9	178.3	187.3	268.1	-	24	-		
Figure 1			INCH	9.51	12.64	7.02	7.38	10.55	-	0.95	-		

Non-Combination Starter EEMAC Type 12
$\begin{array}{llllllllll}\text { MM } & 254 & 304.8 & 203.2 & 203.2 & 323.85 & - & 93.53 & 25.46\end{array}$

S

Figure 3

		Non-Combination/Combination Starter EEMAC Type 12										
		H2	MM	254	610	209.6	165	648	127	12	44.5	3
			INCH	10	24	8.25	6.5	25.51	5	0.47	1.75	
			MM	400	640	209.6	311	678	200	12	44.5	
			INCH	15.75	25.2	8.25	12.24	26.69	7.87	0.47	1.75	
			MM	500	900	280	411	955.35	-	25	44.5	
Figure 4			INCH	19.69	35.43	11.02	16.18	37.61	-	0.98	1.75	

Notes

Push Button Units and Indicator Lights

contents

Section Overview

11/2-11/3
3SB2, 16mm Mounting Diameter Pilot Devices

Introduction	$11 / 4$
Technical Specifications	$11 / 5$
PCB Mounting Instructions	$11 / 6$
Complete Units	$11 / 7-11 / 8$
Pushbutton and Selector Switch Operators	$11 / 9$
Key-operated Switches and Indicator Lights	$11 / 10$
Holders, Lampholders and Contact Blocks with Tabs	$11 / 11$
Holders, Lampholders and Contact Blocks	$11 / 12$
with Solder Pins	$11 / 2$
Inserts, Legend Plates, and Accessories	$11 / 13-11 / 19$
Dimension Drawings	$11 / 20$

SIRIUS ACT 3SU Series

Introduction	$11 / 22-11 / 23$
General Data	$11 / 24-11 / 37$

Actuators and indicators, 22 mm , round, plastic, black

Complete Units	$11 / 39-11 / 45$
Compact Units	$11 / 46-11 / 47$
Actuating and Signaling Elements	$11 / 49-11 / 60$

Actuating and Signaling Elements $\quad 11 / 49-11 / 60$
Actuators and indicators, 22 mm , round, plastic
with metal front ring, matte
Complete Units
11/61-11/66
Compact Units
11/68-11/69
Actuating and Signaling Elements 11/70-11/81
Actuators and indicators, 22 mm , round, metal, shiny

Complete Units	$11 / 82-11 / 87$
Compact Units	$10 / 89-11 / 89$
Actuating and Signaling Elements	$11 / 90-11 / 100$

Actuators and indicators, flat, 30 mm , round, metal, matte
Actuating and Signaling Elements 11/101-11/103

Special locks	$11 / 104$
Customized Designs	$11 / 105-11 / 107$

Holders
Holders without module 11/108
Holders with module 11/109
$\begin{array}{lr}\text { Modules for actuators and indicators } & \\ \text { Contact modules } & 11 / 110\end{array}$

LED modules	$11 / 114$
AS.	

AS-Interface modules $11 / 116$
IO-Link modules 11/117

Electronic modules for ID key-operated switches 11/118
PROFINET modules 11/119

Enclosures

General data	$11 / 120$
Empty enclosures	$11 / 121$
Pushbuttons and indicator lights in the enclosure	$11 / 122$

Pushbuttons and indicator lights in the enclosure
for AS-Interface

Modules for enclosures	$11 / 129$
Two-hand operation consoles	$11 / 133$

Labels

Insert labels	$11 / 134$
Label holders for labeling plates	$11 / 137$
Labeling plates	$11 / 139$
Labeling plates for enclosures	$11 / 145$
Labels for laser printers	$11 / 148$
Other labels	$11 / 149$

SIRIUS ACT 3SU Series

Accessories	
Protection/access protection	$11 / 151$
Actuators	$11 / 155$
Enclosures	$11 / 158$
Miscellaneous accessories	$11 / 160$
Standards and approvals	$11 / 162-11 / 163$
3SE2, 3SE3 Foot Switches	
Introduction	$11 / 164$
Plastic and Metal Enclosures	$11 / 165$
SIRIUS Signal Columns	
Introduction	$11 / 166-11 / 167$
Technical Specifications	$11 / 168$
8WD42 signaling columns, 50 mm diameter	
and accessories	$11 / 169-11 / 170$
8WD44 signaling columns, 70 mm diameter	
and accessories	$11 / 171-11 / 174$
8WD53 beacons, 70 mm diameter	$11 / 176$
Dimensional Drawings	$11 / 177-11 / 179$

Class 52 30.5mm Mounting Diameter Pilot Devices

Introduction	11/180
Momentary Push Button, Non-Illuminated 11/18	11/181-11/182
2 \& 3 Position Push-Pull Mushroom Head Devices,	
2 \& 3 Position Push-Pull Mushroom Head Devices,	vices, 11/185-11/186
2 Position Twist-to-Release Mushroom Head Dev Non-Illuminated	Devices, $11 / 187$
2 Position Twist-to-Release Mushroom Head Dev Illuminated	Devices, $11 / 188$
Indicator Light 11/18	11/189-11/190
Push Button \& Push-to-Test, Illuminated 11/19	11/191-11/192
Push Button Mushroom Head Devices, Illuminated	nated 11/193
Selector Switches, Illuminated	11/194
Selector Switch Short \& Long Lever, Non-Illuminated	11/195-11/196
Keyed Selector Switch 11/19	11/197-11/198
Selector Push Button	11/200
Special Devices	11/201
Cam Selection Guide for Selector Switch, Keyed Selector Switch and Selector Pushbutton	111/202
Custom Selector Switch Designs	11/203
Accessories and Spare Parts 11/20	11/204-11/207
Dimensional Drawings 11/20	11/208-11/211
Break Glass and EPO Pushbutton Stations NEW	W 11/212
Class 52 30.5mm Enclosed Pushbutton Stations	
Assembled Enclosures with	
Standard Devices	11/213-11/214
P30 Empty Enclosures Only	11/215
Enclosure Legend Plates	11/216
Enclosure Dimensions	11/217
Technical Specifications	11/218

Control and Signaling Devices

Push Button Units and Indicator Lights

contents

16 mm mounting diameter, molded-plastic

3SB2	Page
Selection and ordering data - 3SB22 complete units - 3SB20 pushbuttons and lens	
assemblies	$11 / 7$
- 3SB2 holders, lampholders	$11 / 9$
and contact blocks	$11 / 11$
- 3SB29 inserts, legend plates,	
and accessories	$11 / 13$
Introduction	$11 / 4$
Technical specifications	$11 / 5$
Dimension drawings	$11 / 20$

22 mm mounting diameter, metal shiny

SIRIUS ACT - 3SU1
Page
Selection and ordering data

- Complete units

11/82

- Compact units 11/89
- Actuating and signaling Elements

11/90

- Accessories

11/108-11/118; 11/134-11/157

22 mm mounting diameter, plastic black

SIRIUS ACT - 3SU1

Page
Selection and ordering data

- Complete units

11/39

- Compact units 11/46
- Actuating and signaling Elements

11/49

- Accessories 11/108-11/118; 11/134-11/157

SIRIUS ACT - 3SU1

Page
Selection and ordering data

- Actuating and signaling Elements

11/101

- Accessories 11/129-11/132;

22 mm mounting diameter, plastic with metal matte front ring

SIRIUS 3SU1, plastic round Page
Selection and ordering data

- Complete units 11/61
- Compact units 11/68
- Actuating and signaling $11 / 70$
- Accessories 11/108-11/118;

11/134-11/157

22 mm enclosures and communication devices

SIRIUS ACT - 3SU1
Page
Selection and ordering data

- Empty enclosures

11/121

- Complete enclosure

11/122

- AS-Interface 11/126
- Accessories 11/129-11/132; 11/158-11/160
- Two-hand operation

11/133

Push Button Units and Indicator Lights

contents

SIRIUS signal columns, built-in signal beacons and foot switches

3SE2, 3SE3 Foot Switches Page
Selection and ordering data

- Plastic and metal enclosures

11/165
Lamp \& LED version, enclosure diameters 50 and 70 mm

- 8WD42 selection \& accessories

11/169

- 8WD44 selection \& accessories 10/115
- 8WD53 beacons

10/119

Introduction

11/166
Technical Specifications
11/168
Dimension drawings

30.5 mm heavy duty control stations, Type 4/4X/12/13 encl.

Class 52
Page
Selection and ordering data

- Class 52 assembled stations with standard offerings

11/211

- P30 enclosures only 11/214
- Custom station order form 11/214
- Legend plates 11/215

NEMA 30.5 mm mounting diameter, corrosion resistant, watertight \& oiltight

Class 52

Selection and ordering data

- Momentary Push Button, Non-Illuminated 11/181-11/182
- 2 \& 3 Position Push-Pull Mushroom Head Devices, Non-llluminated 11/183-11/184
- 2 \& 3 Position Push-Pull Mushroom Head Devices, Illuminated 11/185-11/186
- 2 Position Twist-to-Release Mushroom Head Devices, Non-llluminated 11/187
- 2 Position Twist-to-Release Mushroom Head Devices, Illuminated 11/188
- Indicator Light

11/189-11/190

Introduction	$10 / 143$
Technical Specifications	$10 / 178$
Dimension drawings	$10 / 169$

Class 52
Page
Selection and ordering data

- Push Button \& Push-to-Test, Illuminated

11/191-11/192

- Push Button Mushroom Head Devices, Illuminated 11/193
- Selector Switches, Illuminated

11/194

- Selector Switch Short \& Long Lever, Non-Illuminated 11/195-11/196
- Keyed Selector Switch 11/197-11/198
- Selector Push Button 11/200

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm
General data

Overview

The 3SB2 push buttons and indicator lights are provided for front plate mounting and rear connection with flat connectors. For use on printed circuit boards, contact blocks and lamp holders with solder pins are also available.

Standards

IEC 60947-1, EN 60947-1,
IEC 60947-5-1, EN 60947-5-1,
IEC 60947-5-5, EN 60947-5-5 for EMERGENCY-STOP mushroom push buttons.

Version with flat connector

A1 Button, flat
A2 Illuminated button, flat
A3 Screw lens for indicator light
B1 Insert label, for labeling
B2 Insert cap, for labeling
C1 Collar with extruded front ring
C2 Collar for indicator light
D Frame for rectangular design
E Wedge base lamp, W $2 \times 4.6 \mathrm{~d}$
F1 Holders
F2 Lampholder with holder
G Contact blocks (1 NO or 1 NC) for snapping onto the holder or onto the lampholder

For PCB mounting

For use on printed circuit boards, special contact blocks and lamp holders for soldering into the printed circuit board are available. For this purpose, the contact blocks and lamp holders are fitted with $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ solder pins of length 3.5 mm .

Connection methods

Application

The devices are climate-proof and suitable for marine applications.

Safety EMERGENCY-STOP push buttons according to ISO 13850

For controls according to IEC 60204-1 or EN 60204-1, the mushroom push buttons of the 3SB2 series are suitable for use as safety EMERGENCY-STOP push buttons.

Safety circuits

IEC 60947-5-1 and EN 60947-5-1 require positive opening, i.e. for the purposes of personal safety, the assured opening of NC contacts is expressly stipulated for the electrical equipment of machines in all safety circuits and marked according to IEC 60947-5-1 with the symbol Θ.
Category 4 according to EN 954-1 can be attained with the EMERGENCY-STOP mushroom push buttons if the corresponding failsafe evaluation units are selected and correctly installed, e.g. the 3TK28 safety relays or matching units from the ASIsafe, SIMATIC or SINUMERIK product ranges.

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

General data

Technical specifications

Type		3SB2
Contact blocks and lamp holders		
Standards		IEC 60947-5-1, EN 60947-5-1 IEC 60947-5-5, EN 60947-5-5
Rated insulation voltage U_{i}	V	250
Conventional thermal current $I_{\text {th }}$	A	10
Rated operational current I_{e} at rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ - Alternating current AC-12 $\text { - At } U_{e}=24 \ldots 230 \mathrm{~V}$		
- Alternating current AC-15 - At $U_{e}=24 \ldots 230 \mathrm{~V}$	A	4
- Direct current DC-12 - At $U_{e}=24 \mathrm{~V}$ - At $U_{\mathrm{e}}=60 \mathrm{~V}$ - At $U_{e}=110 \mathrm{~V}$ - At $U_{e}=230 \mathrm{~V}$	A A A A	$\begin{aligned} & 6 \\ & 5 \\ & 2.5 \\ & 1 \end{aligned}$
- Direct current DC-13 - At $U_{\mathrm{e}}=24 \mathrm{~V}$ - At $U_{e}=60 \mathrm{~V}$ - At $U_{e}=110 \mathrm{~V}$ - At $U_{e}=230 \mathrm{~V}$	A A A A	$\begin{aligned} & 3 \\ & 1.5 \\ & 0.7 \\ & 0.3 \\ & \hline \end{aligned}$
Contact stability		
Lamps - Bases - Rated voltage - Rated power, max.	$\begin{aligned} & \text { V } \\ & \text { W } \end{aligned}$	Wedge base W $2 \times 4.6 \mathrm{~d}$ $6,12,24,30,48,60$ 1
Short-circuit protection weld-free according to IEC 60947-5-1 - DIAZED fuse links, utilization category gG - Miniature circuit breaker with C characteristic according to IEC 60898		$\begin{aligned} & 10 \mathrm{~A} \text { TDz, } 16 \mathrm{~A} \mathrm{Dz} \\ & 10 \mathrm{~A} \end{aligned}$
Electrical endurance - For utilization category AC-15 with 3RT10 15 to 3RT10 26 contactors		10×10^{6} operating cycles
Mechanical endurance		10×10^{6} operating cycles
Degree of protection acc. to IEC 60529 - Connection of contact blocks and lamp holders behind the front panel - Contact chambers of the contact blocks behind the front panel		$\begin{aligned} & \text { IP00 } \\ & \text { IP40 } \end{aligned}$
Finger-safe according to IEC 61140 and BGV A3		With voltages $>50 \mathrm{~V}$ AC or 120 V DC, insulation sleeves must be fitted to the unassigned tab connections.
Data according to UL and CSA		
Rated voltage - Contact blocks - Indicator light (lamp with wedge base W2×4.6 d)	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 250 \mathrm{AC} \\ & 60 ; 1 \mathrm{~W} \end{aligned}$
Uninterrupted current	A	5
Switching capacity		B 300, R 300
Actuators and indicators		
Mechanical endurance - Push Buttons - Actuators, rotary or maintained - Illuminated push buttons		10×10^{6} operating cycles 3×10^{5} operating cycles 3×10^{6} operating cycles
Climatic withstand capability		Climate-proof; suitable for marine applications
Ambient temperature - During operation, non-illuminated devices and complete with LED - During operation, devices with incandescent lamp - During storage, transport	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+70 \\ & -25 \ldots+60 \\ & -40 \ldots+80 \end{aligned}$
Degree of protection acc. to IEC 60529 - Actuators and indicators - Actuators and indicators with protective cap		$\begin{aligned} & \text { IP65 } \\ & \text { IP67 } \end{aligned}$
Protective measures - For mounting in metal front plates and enclosures - For fitting into enclosures with total insulation		The actuators and lens assemblies must not be included in the protective measures. The protective measure "Total insulation" is retained.
Shock resistance acc. to IEC 60068-2-27 - Shock amplitude - Shock duration - Shock form	ms	$\begin{aligned} & \leq 50 \mathrm{~g} \\ & 11 \\ & \text { Half-sine } \end{aligned}$

More technical information see Reference manual
Half-sine
"Commanding and Signaling Devices".

Configuration

Design

Two design versions can be mounted:

- Round design: The 3SB2 push buttons and indicator lights are assembled with the modules - actuator, holder, contact block and lamp holder. Depending on the specific application, various versions can be assembled. Complete units are offered for the most commonly used applications.
- Square design: With square, black frames the round units can be given a square look. The frames are inserted underneath the round actuators. Further mounting is the same as for the round version.
Mounting and fixing:
Mounting dimensions according to EN 50007
(not applicable to EMERGENCY-STOP mushroom push buttons)

Minimum clearance
Round version
Square version without inscription label Round and square version with inscription label
For 2 selector switches with 3 switch positions, maintained, side by side

For mounting, the actuator or the lens assembly is inserted from the front into the hole in the front plate. Four small nubs ensure a secure fitting in the hole. The holder is plugged on from the back and snaps automatically into place. The module is fixed to the holder with 2 screws so that it is immune to vibrations.
One or two contact blocks can be mounted on the holder. They are inserted into the holder with slide slots and held down with two snap brackets.

Push button (flat) with holder and contact block
If a command point is fitted with an indicator light or illuminated push button, a lamp socket with lamp holder must be used instead of a holder. It is suitable for incandescent lamps or LEDs with bases of type W $2 \times 4.6 \mathrm{~d}$.

For PCB mounting

The command point comprises the actuator - e.g. 3SB2 push button, illuminated push button or indicator light - , which is mounted in the front plate, and a contact block and a lamp holder which are soldered to the PCB. For this purpose, the contact blocks and lamp holders are fitted with $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ solder pins of length 3.5 mm .
Mounting and fixing:

Mounting dimensions according to EN 50007.

The actuators are mounted in the same way as 3SB2 front plate mounting devices.
The contact blocks and lamp holders are plugged into the printed circuit board by means of their solder pins and can be flow-soldered. After soldering, the devices must be flush with the board and perpendicular to it. The printed circuit board must be supported on spacing bolts so that it cannot sag or bend more than 0.1 mm .

Illuminated push button with solder pin connection
To avoid bending the PCB when the control device is operated, sufficient spacing bolts must be provided as shown in the table below:

PCB thickness	Max. distance between spacing bolts
1.5 mm	80 mm
2.5 mm	150 mm
When using EMERGENCY-STOP push buttons	always 50 mm
These details are based on epoxy resin glass fiber mat.	

Solder pin spacing

3SB2, Mounting Diameter 16 mm

Complete units

Selection and ordering data

1) Inscription is possible by inserting a label.
2) For wedge base lamps see "Accessories", page 11/18.
3) The mushroom push button cannot be combined with 3SB29 02-0AB name plate or 3SB29 02-0AA single frame.
4) Positive opening according to IEC 60947-5-1, Appendix K.

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

Complete units

	Version	Color of screw lens	DT	Flat connectors	\bigcirc	PS
				Order No.		
	Indicator lights Lamp holder W2 $\times 4.6 \mathrm{~d}$ without lamp ${ }^{1)}$	Red Yellow Green White Clear		3SB22 04-6BC06 3SB22 04-6BD06 3SB22 04-6BE06 3SB22 04-6BG06 3SB22 04-6BH06		$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
Indicator light	Indicator lights Lamp holder W2 4.6 d with incandescent lamp 24 V	Red Yellow Green White Clear		3SB22 24-6BC06 3SB22 24-6BD06 3SB22 24-6BE06 3SB22 24-6BG06 3SB22 24-6BH06		1 unit 1 unit 1 unit 1 unit 1 unit

1) For wedge base lamps see "Accessories", page 11/18.

3SB2, Mounting Diameter 16 mm

Actuators and indicators

Selection and ordering data

1) Inscription is possible by inserting a label.
2) The mushroom push button cannot be combined with 3SB29 02-OAB name plate or 3SB29 02-OAA single frame.

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

Actuators and indicators

	Version	Lock No.	Key removal position	DT	Order No.	PS
Key-operated switches						
CES key-operated switch	CES key-operated switches with 2 keys, 2 switch positions Switching sequence O-I, 62° operating angle, maintained	SB2	$\begin{aligned} & \mathrm{O}+1 \\ & \mathrm{O} \end{aligned}$		$\begin{aligned} & \text { 3SB20 00-4LB01 } \\ & \text { 3SB20 00-4LA01 } \end{aligned}$	1 unit 1 unit
	CES key-operated switches with 2 keys, 2 switch positions Switching sequence O-I, 50° operating angle,momentary, spring return from right	SB2	0		3SB20 00-4MA01	1 unit
	CES key-operated switches with 2 keys, 3 switch positions Switching sequence I-O-II, $2 \times 62^{\circ}$ operating angle, maintained	SB2	$\begin{aligned} & \mathrm{I}+\mathrm{O}+\mathrm{II} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { 3SB20 00-4PB01 } \\ & \text { 3SB20 00-4PA01 } \end{aligned}$	1 unit 1 unit
	CES key-operated switches with 2 keys, 3 switch positions Switching sequence I-O-II, $2 \times 50^{\circ}$ operating angle, momentary, spring return from left and right	SB2	0		3SB20 00-4QA01	1 unit
	Version	Color of screw lens		DT	Order No.	PS
Indicator lights						
	Indicator lights with concentric rings (inscription by inserting a cap is not possible)	Red Yellow Green Blue White Clear			3SB20 01-6BC06 3SB20 01-6BD06 3SB20 01-6BE06 3SB20 01-6BF06 3SB20 01-6BG06 3SB20 01-6BH06	1 unit 1 unit 1 unit 1 unit 1 unit 1 unit
Indicator light	Indicator lights, smooth for inscription by inserting a cap ${ }^{1)}$	Red Yellow Green Blue Clear			$\begin{aligned} & \text { 3SB20 01-6CC06 } \\ & \text { 3SB20 01-6CD06 } \\ & \text { 3SB20 01-6CE06 } \\ & \text { 3SB20 01-6CF06 } \\ & \text { 3SB20 01-6CH06 } \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit

1) Insert caps, see "Accessories", page 11/15

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

Contact blocks and lampholders

Selection and ordering data

Version	Diagram	Operating travel Contact closed \square Contact open	DT	Flat connectors		PS
				Order No.		

解
flat connectors $2 \times 2.8-0.8 \mathrm{~mm}$ according to IEC 60760
Holders for fixing the actuator and the contact blocks

Holders for 2 contact blocks
3SB29 08-0AA
5 units
nscription with identification
number 1-2

Holder
Lamp holders with holder for fixing the actuator and the contact blocks

Lamp holders
W2 x 4.6 d

$\frac{\mathrm{X} 1}{(\mathrm{~L}+)}$		

Lamp holders
W2 x 4.6 d

- With 6 V incandescent lamp

3SB23 04-2A

- With 24 V incandescent lamp

NSDO_00003
3

3SB23 04-2F 1 unit

Voltage reducers ${ }^{1)}$	X 1	3SB24 04-3D	1 unit
For connecting the	\bigcirc		
3 SB29 08-1AE lamp (48 V) to 230	NSDO_0005a		

Voltage reducer
Contact blocks for fixing in the holder or lamp holder

Contact blocks with one contact ${ }^{2}$

1) Use fixpoint terminal according to IEC 60439-1.
${ }^{2)}$ For plug-in and insulation sleeves see "Accessories", page 11/19.
${ }^{3)}$ Positive opening according to IEC 60947-5-1, Appendix K.

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

Contact blocks and lamp holders

Version	Diagram	Operating travel \square Contact closed \square Contact open	DT	Solder pin connections	\square	PS
				Order No.		
lamp holders with solder pins						
Holders for contact block with solder pins For fixing the actuators in the front panel				3SB29 08-0AB		5 units
Lamp holders Wedge base W2 $\times 4.6 d^{1)}$	$\left.\bigotimes_{(\mathrm{L})}^{(\mathrm{L}+)}\right\|_{\mathrm{X} 2} ^{\mathrm{X} 1}$			3SB24 55-2A		1 unit

Holder
Contact blocks

Contact block with solder pins
$1 \mathrm{NO}+1 \mathrm{NC}$

$\Theta 2)$

Contact blocks and lamp holders, wedge base W $2 \times 4.6 \mathrm{~d}^{1)}$

Contact block and lamp holder with solder pins

1 NO

1 NC
Θ 2)

$1 \mathrm{NO}+1 \mathrm{NC}$
$\Theta^{2)}$

$1 \mathrm{NO}+1 \mathrm{NO}$

$1 N C+1 N C$
(3)

${ }^{1)}$ The lamp is not included in the scope of supply.

3SB2, Mounting Diameter 16 mm

Insert labels and insert caps

Overview

Clear push buttons, illuminated push buttons and indicator lights can be fitted with insert labels and caps for identification purposes.
The insert labels and insert caps are made of a milkytransparent plastic with black lettering; they can be fitted in any 90° angle.

Inscriptions

The inscriptions have upper case initial letters. Graphic symbols, including those not listed in the catalog, are according to ISO 7000 or IEC 60417.

For customized inscriptions see "Options", page 11/16.

Selection and ordering data

	Symbol No.	DT	Insert labels For push buttons and illuminated push buttons, flat	PS
			Order No.	
For self-inscription				
 Blank			3SB29 01-4AA	10 units
With inscription				
EinOn Start Stop Reset Test			$\begin{aligned} & \text { 3SB29 01-4EB } \\ & \text { 3SB29 01-4EK } \\ & \text { 3SB29 01-4EL } \\ & \text { 3SB29 01-4EM } \\ & \text { 3SB29 01-4EN } \end{aligned}$	10 units 10 units 10 units 10 units 10 units
$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 3SB29 01-4RA } \\ & \text { 3SB29 01-4RB } \\ & \text { 3SB29 01-4RC } \\ & \text { 3SB29 01-4RD } \\ & \text { 3SB29 01-4RE } \end{aligned}$	10 units 10 units 10 units 10 units 10 units
$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 3SB29 01-4RF } \\ & \text { 3SB29 01-4RG } \\ & \text { 3SB29 01-4RH } \\ & \text { 3SB29 01-4RJ } \\ & \text { 3SB29 01-4RK } \end{aligned}$	10 units 10 units 10 units 10 units 10 units
Graphic ON/OFF symbols				
O (Off)	$5008 \text { IEC }$		3SB29 01-4MB	$10 \text { units }$
I (On)	5007 IEC		3SB29 01-4MC	10 units
11 (On)	--		3SB29 01-4MD	10 units

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

Insert labels and insert caps

| | Inscription/Symbol
 Insert labels
 For push buttons and illuminated
 push buttons, flat |
| :--- | :--- | :--- | :--- |
| Order No. | |

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

Insert labels and insert caps

Push Button Units and Indicator Lights
3SB2，Mounting Diameter 16 mm
Insert labels and insert caps

Options

Customized inscriptions

Labels and caps can be inscribed with text and symbols not listed in the ordering data．Append the following codes to the Order No．：
－Text line in upper／lower case，always upper case for beginning of line（e．g．＂Lift＂）：KOY
－Text line in upper case（e．g．＂LIFT＂）：K1Y
－Text line in lower case（e．g．＂lift＂）：K2Y
－Text line in upper／lower case，all words begin with upper case letters（e．g．＂Lift＂）：K5Y
－Symbol with number according to ISO 7000 or IEC 60417： K3Y
－Any inscription or symbols according to order form supple－ ment：K9Y
When ordering，specify the required inscription in plain text in addition to the order number and order code．In the case of spe－ cial inscriptions with words in languages other than German， give the exact spelling and specify the language．

One line with up to 6 characters with 3 mm letter height is possi－ ble for the inscription（see ordering example 1）．
Symbols can also be ordered with numbers according to ISO 7000 or IEC 60417 （see ordering examples 2 and 3）．
For special symbols（order code K9Y），a CAD drawing in DXF format can be submitted．

Ordering example 1

3SB29 01－4AZ
K1Y
Z＝pump
Ordering example 2
3SB29 01－4AZ
K3Y
$Z=5008 \mathrm{IEC}$
Ordering example 3
3SB29 01－4AZ
K3Y
Z＝ 1118 ISO

3SB2, Mounting Diameter 16 mm

Name plates

Overview

The name plates consist of a black plastic label holder and an inscription label (silver with black print) for sticking in place.
Note mounting dimensions!

Inscriptions

The inscriptions (also special inscriptions) are lower case with upper case initial letters. Graphic symbols, including those not listed in the catalog, are according to ISO 7000 or IEC 60417.

Selection and ordering data

Options

Customized inscriptions

The labels can be inscribed with text and symbols not listed in the ordering data. Append the following codes to the Order No.:

- Text line(s) in upper/lower case, upper case always for beginning of line (e.g. "Lift off"): KOY
- Text line(s) in upper case (e.g. "LIFT OFF"): K1Y
- Text line(s) in lower case (e.g. "lift off"): K2Y
- Text line(s) in upper/lower case, all words begin with upper case letters (e.g. "Lift Off"): K5Y
- Symbol with number according to ISO 7000 or IEC 60417: K3Y
- Any inscription or symbols according to order form supplement: K9Y
When ordering, specify the required inscription in plain text in addition to the order number and order code. In the case of special inscriptions with words in languages other than German, give the exact spelling and specify the language.
Two lines of 11 characters are permitted with 4 mm letter height (1 line) or 3 mm (2-line).
Symbols can also be ordered with numbers according to ISO 7000 or IEC 60417 (see ordering example).
For special symbols (order code K9Y), a CAD drawing in DXF format can be submitted.

Ordering example

3SB29 01-2XZ
K3Y
Z = 1118 ISO

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

Mounting parts and components

Selection and ordering data

	Version	Lamp voltage	Color	DT	Order No.	PS			
Buttons and lenses ${ }^{1}$ V									
	Buttons, flat For push buttons		Black Red Yellow Green Blue White Clear		$\begin{aligned} & \text { 3SB29 10-0AB } \\ & \text { 3SB29 10-0AC } \\ & \text { 3SB29 10-0AD } \\ & \text { 3SB29 10-0AE } \\ & \text { 3SB29 10-0AF } \\ & \text { 3SB29 10-0AG } \\ & \text { 3SB29 10-0AH } \end{aligned}$	1 unit			
3SB29 10-0CF	Buttons, flat For illuminated push buttons		Red Yellow Green Blue White Clear		$\begin{aligned} & \text { 3SB29 10-0CC } \\ & \text { 3SB29 10-0CD } \\ & \text { 3SB29 10-0CE } \\ & \text { 3SB29 10-0CF } \\ & \text { 3SB29 10-0AG } \\ & \text { 3SB29 10-0AH } \end{aligned}$	1 unit 1 unit			
	Buttons, raised For push buttons		Black Red Yellow Clear		$\begin{aligned} & \text { 3SB29 10-0BB } \\ & \text { 3SB29 10-0BC } \\ & \text { 3SB29 10-0BD } \\ & \text { 3SB29 10-0BH } \end{aligned}$	1 unit 1 unit 1 unit 1 unit			
	Buttons, raised For illuminated push buttons		Red Yellow Clear		$\begin{aligned} & \text { 3SB29 10-0DC } \\ & \text { 3SB29 10-0DD } \\ & \text { 3SB29 10-0BH } \end{aligned}$	1 unit 1 unit 1 unit			
3SB29 10-1AD	Screw lenses With concentric rings		Red Yellow Green Blue White Clear		$\begin{aligned} & \text { 3SB29 10-1AC } \\ & \text { 3SB29 10-1AD } \\ & \text { 3SB29 10-1AE } \\ & \text { 3SB29 10-1AF } \\ & \text { 3SB29 10-1AG } \\ & \text { 3SB29 10-1AH } \end{aligned}$	1 unit 1 unit			
	Screw lenses Smooth, for inscription with insert cap		Red Yellow Green Blue Clear		$\begin{aligned} & \text { 3SB29 10-1BC } \\ & \text { 3SB29 10-1BD } \\ & \text { 3SB29 10-1BE } \\ & \text { 3SB29 10-1BF } \\ & \text { 3SB29 10-1BH } \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit			
Key for actuators									
3SB29 08-2AJ	Keys For CES key-operated switch, lock No. SB2				3SB29 08-2AJ	1 unit			
Lamps, wedge bases ${ }^{2 /}$									
3SB29 08-1AE	Incandescent lamps Wedge base W 2×4.6 d, 1.0 W	AC/DC 6 12 24 30 48 60	Clear		$\begin{aligned} & \text { 3SB29 08-1AA } \\ & \text { 3SB29 08-1AB } \\ & \text { 3SB29 08-1AC } \\ & \text { 3SB29 08-1AD } \\ & \text { 3SB29 08-1AE } \\ & \text { 3SB29 08-1AF } \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit 1 unit			
3SB39 01-1SB	LED lamps, super-bright Wedge base W $2 \times 4.6 \mathrm{~d}$	24 AC/DC	Red Yellow Green White Blue		$\begin{aligned} & \text { 3SB39 01-1SB } \\ & \text { 3SB39 01-1RB } \\ & \text { 3SB39 01-1TB } \\ & \text { 3SB39 01-1UB } \\ & \text { 3SB29 08-1BD } \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit			
3SB29 08-1BD		28 AC/DC	Red Yellow Green White Blue		$\begin{aligned} & \text { 3SB39 01-1SE } \\ & \text { 3SB39 01-1RE } \\ & \text { 3SB39 01-1TE } \\ & \text { 3SB39 01-1UE } \\ & \text { 3SB39 01-1VE } \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit			
$3 S B 2908-1 A B$	Lamp extractors For lamps with bases W $2 \times 4.6 \mathrm{~d}$				3SB29 08-2AB	1 unit			
${ }^{1)}$ Included in the scope of supply of actuators or indicator lights.									

Push Button Units and Indicator Lights

3SB2, Mounting Diameter 16 mm

Mounting parts and components

3SB2, Mounting Diameter 16 mm

Dimension drawings (mm)
Actuators

Pushbutton or illuminated pushbutton
with flat button

Pushbutton or illuminated pushbutton
with raised button

Indicator light
pushbutton

Selector switch

CES key-operated switch

* with key

Contact blocks with push-on connection

Pushbutton and contact block

with holder for frontplate mounting

3SB2, Mounting Diameter 16 mm

Dimension drawings (mm)

Contact blocks with soldering pins for use on printed circuit boards

Illuminated pushbutton unit

with contact block and lamp-
holder with solder pins

Solder pin spacing

Solder terminal $\varnothing 1.3^{+0.1}$

Length a of spacers: $\mathbf{a}=44^{-0.2}$
minus front plate thickness.
When using backing plates, the length \mathbf{a} is reduced by 0.8 mm .
To avoid bending of the PCB when the actuator is operated, sufficient spacers must be provided spaced as shown in the table below:

Maximum PCB thickness	Max. distance between spacers
1.5 mm	80 mm
2.5 mm	150 mm
When using	generally 50 mm
EMERGENCY-STOP	
actuators (These details are based on epoxy resin glass fibre mat.)	

Mounting dimensions

Minimum clearance
a
b

Round design 1919
Square design without 21
inscription plate
Round and square designs with 2132
inscription plates
For 2 selector switches and 321
switching positions, main-
tained contact, side by side

Accessories

Complete connector

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

SIRUS ACT 3SU Series

Overview

	3 UU18	3SU18
	Enclosures	Two-hand operation consoles
Enclosures		
Plastic Metal	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$
Actuators		
Pushbuttons Illuminated pushbuttons Mushroom pushbuttons EMERGENCY STOP mushroom pushbuttons Selector switches Key-operated switches		
Indicators		
Indicator lights Acoustic signaling devices	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \square \\ & \square \end{aligned}$
Contact modules		
Single-pole Two-pole	-	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$
Connections		
Screw terminals Spring-type terminals Plug-in connection AS-Interface	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \square \\ & \checkmark \end{aligned}$	\checkmark \square \square \square
\checkmark Standard -- Not available - Optional		

AS-Interface solutions

Pushbuttons and indicator lights of the SIRIUS ACT series can be connected to the AS-Interface communication system quickly and easily with the help of various solutions.
AS-Interface EMERGENCY STOP according to ISO 13850
Using special modules, EMERGENCY STOP devices according to ISO 13850 can be directly connected through the standard AS-Interface with safety-related communication (see page 11/116).

AS-Interface enclosures

Enclosures with standard fittings are listed in this catalog.
For customized enclosures, use the SIRIUS ACT Configurator to select the elements for equipping (see page 11/126).

PROFINET solutions

SIRIUS ACT devices will be equipped in future with a direct communication interface to PROFINET and PROFIsafe.

RFID authentication solutions

Groups of employees or individuals can be authenticated by means of the ID key-operated switch. Color-coded keys for easy distinction between users and flexible in application thanks to four function stages.

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

Overview

SIRIUS ACT pushbuttons and indicator lights

SIRIUS ACT - commanding and signaling

SIRIUS ACT is a modular system of pushbuttons and indicator lights for front plate mounting and rear-mounted electrical modules. Thanks to SIRIUS ACT with PROFINET,

Extensive portfolio

- Customized variants, e.g. special tumbler arrangements, labeling, equipped enclosures
- Communication-enabled thanks to direct interfacing to AS-Interface, IO-Link or PROFINET

Diverse possible applications

- National and international approvals
- Many trade approvals
- Short delivery times thanks to global availability

Standards

- IEC/EN 60947-1
- IEC/EN 60947-5-1
- IEC/EN 60947-5-5 for EMERGENCY STOP devices

More information

Homepage, see www.siemens.com/sirius-act
Industry Mall, see www.siemens.com/product?3SU1
Configurator, see www.siemens.com/sirius-act/configurator
Conversion tool, see www.siemens.com/sirius/conversion-tool
Manual, see https://support.industry.siemens.com/cs/ww/en/view/107542462
TIA Portal, see www.siemens.com/TIA
pushbuttons and indicator lights can be connected directly via PROFINET to the controller and HMI devices - including with safety functions. Engineering and commissioning are simplified no end by the TIA Portal.

Configurator

- Fast, simple selection by intuitive navigation through clearly-organized menus using drag \& drop
- Image preview of selected components
- Inscription of pushbuttons and labeling plates using the interactive inscription tool
- Once created, a configuration can be ordered as often as required using the customer-specific article number and the CIN (Configuration Identification Number)
- Everything at a glance: Product data sheets, certificates dimensional drawings, list prices, inscription tool

SIRUS ACT 3SU Series

General data

Benefits

Design

SIRIUS ACT is available in four design lines.

Ruggedness

- Degree of protection IP66, IP67, IP69 (IP69K)

P666	
6 = Protection against the ingress of dust	$6=$ Protection against powerful splashwater
IP67	
$6=$ Protection against the ingress of dust	7 = Protection against temporary immersion
IP69 (IP69K)	
$6=$ Protection against the ingress of dust	9/9K = Protection against water in high-pressure cleaning (approx. 80 bar) and high water jet temperatures (approx. $80^{\circ} \mathrm{C}$)

- Service life of 100000 hours thanks to use of LEDs
- Media resistance (chemicals) thanks to solid stainless steel and high-grade plastics
- Mechanical endurance of 10×10^{6} switching cycles
- Suitable for use in extreme environments
- Reliable, friction-locked fixing with just one screw
- Design stability according to use
- Simple geometry for mounting holes

Communication

- Direct connection of the enclosure to AS-Interface or IO-Link
- Direct connection in the control cabinet to PROFINET, IO-Link or AS-Interface
- Can be integrated easily via the TIA Portal

Easy handling

- Self-holding function of the actuator when mounting
- Twist prevention integrated into patented holder design
- Stackable contact modules
- Self-explanatory and fast installation using one hand
- Components can be mounted with holder removed
- No special tools required, simple size 2 screwdriver (cross-tip DIN ISO 87641PZD1, flat-head DIN ISO 2380-1 A/B 1×4.5) is sufficient

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

Versions

SIRIUS ACT is a modular system of pushbuttons and indicator lights with which customized variants can be configured flexibly.

One command point comprises:

- An actuating or signaling element in front of the control panel
- A holder for securing behind the control panel
- Up to six contact modules and/or one LED module (mounted onto the holder), single-pole contacts can be stacked
- A comprehensive range of accessories for inscription/marking

Complete units

Complete units made up of an actuating or signaling element, holder and contact modules and/or LED modules are offered for the most frequent application cases. The electrical parts are integrated and only have to be wired.

	Minimum clearance		
	a	b	c
	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{~ m m ~}$
22 mm, plastic with metal front ring, matte			
3-slot holder	30	40	$22.3^{+0.4}$
4-slot holder	40	40	$22.3^{+0.4}$
30 mm, metal, matte			
3-slot holder	40	45	$30.5^{+0.5}$

Compact units

Signaling devices, sensor switches, and pushbuttons with extended stroke are available as compact units. The electronic circuitry is already integrated in these devices, i.e. it is not necessary to snap on a contact or LED module.

Complete units	Pages
Plastic, black	$11 / 39$
Plastic with metal front ring, matte	$11 / 61$
Metal, shiny	$11 / 82$

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

Actuating and signaling elements

Actuating and signaling elements	Pages	Modules for front plate mounting		Pages
(1) Pushbuttons, illuminated pushbuttons	11/39	(14)	Contact modules	11/110
(2) Mushroom pushbuttons	11/41	(15)	LED modules	11/114
(3) Selector switches	11/42	(16)	AS-Interface modules	11/116
(4)(5)(6) Key-operated switches, potentiometers, indicator lights	11/43	Enclosures		Pages
(7) (8) EMERGENCY STOP mushroom pushbuttons, backing plates	11/41	(17)	Enclosures	11/120
(9)(10) ID key-operated switches, ID keys, electronic modules	11/59	Modules for base mounting		Pages
(11) Twin pushbuttons, label holders, labeling plates	11/51	(18)	Contact modules	11/129
(12) Label holders, labeling plates	11/134	(19)	LED modules	11/129
Holders and labels	Pages	(20)	IO-Link modules	11/132
(13) Holders	11/134	(21)	AS-Interface modules	11/132

System overview of SIRIUS ACT pushbuttons and indicator lights
from the plastic design line.
Pushbuttons and indicator lights available in 4 design lines.

Push Button Units and Indicator Lights

SIRIUS ACT DIGITALIZATION @ YOUR FINGERTIPS

General data

SIRIUS ACT with PROFINET

SIRIUS ACT with PROFINET connects pushbuttons and indicator lights directly via PROFINET to the controller and HMI devices - including with safety functions.

With this solution designed for the control panel, up to 21 SIRIUS ACT devices can be connected to the controller via PROFINET. Integration of the EMERGENCY STOP mushroom pushbutton (SIL 3, PL e) is possible via PROFIsafe.
Non SIRIUS ACT devices, e.g. position switches,
can additionally be connected via the open, digital/analog interfaces (DI, DQ, AI).

The system is entirely integrated into TIA Portal and does not require any further addressing apart from the IP address for PROFINET

Quick and easy installation with flat cables without special tools saves significantly on wiring outlay.

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

ID key-operated switches

Groups of employees or individuals can be authenticated by means of the ID key-operated switch. The ID key-operated switch is electronic and has four switch positions that are selected by keys with different codes. Using the four ID keys with different codes, it is possible to select 1 to 4 positions. The ID keys are color-coded (yellow, blue, red, green, white) so that they can be clearly differentiated at a glance and used flexibly thanks to four function levels.

RFID authentication solutions

Groups of employees or individuals can be authenticated by means of the ID key-operated switch. Color-coded keys for easy distinction between users.

Different versions of ID key-operated switches are available depending on the following features:

- Front ring material
- Conventional variant: $1+4$ non-isolated outputs
- Variant with IO-Link: Option of individual coding

Operation:
Insert ID key, turn key to select the position. Standard keys can also be used in conjunction with the electronic module for ID key-operated switches with IO-Link function. The white ID key is supplied without coding.
Note: ID Key Switches requires the use of a plastic holder only! Purchase 3SU1500-0AA10-0AA0 Holder Separately.

	3SU1000-4WS10-0AA0 Plastic, black	3SU1500-0AA10-0AA0 Holder, plastic	3SU1030-4WS10-0AA0 Plastic with metal front ring, matte	3SU1500-0AA10-0AA0 Holder, plastic
ID key-operated switches				
Number of switching positions	4		4	
Operating angle	45°		45°	
Operating principle	Latching		Latching	
Switch position for key removal	Key removal possible in all 4 positions		Key removal possible in all 4 positions	
Color	Black		Black	
Pages	11/59		11/80	
	3SU1400-1GC10-1AA0		3SU1400-1GD10-1AA0	
Electronic modules for ID key-operated switches				
Type of power supply	--		via IO-Link master	
Protocol is supported IO-Link protocol	--		IO-Link protocol	
Number of NO contacts	5		5	
IO-Link transfer rate	--		COM2 (38.4 kBaud)	
Pages	11/118		11/118	
	-			
	3SU1900-0FU60-0AA0		3SU1900-0FV40-0AA0 3SU1900-0FW30-0AA0 3SU1900-0FX20-0AA0 3SU1900-0FY50-0AAO	
ID keys				
Material	Plastic		Plastic	
Version of RFID coding	Individually coded, programmable several times		ID group 1 ID group 2 ID group 3 ID group 4	
Color	White		Green Yellow Red Blue	
Pages	11/157		11/157	

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

Article No．scheme

Device types

Actuating and signaling elements

Note：
The Article No．scheme shows an overview of product versions for better understanding of the logic behind the article numbers．

For your orders，please use the article numbers quoted in the selection and ordering data．

SIRUS ACT 3SU Series

General data

Complete units

Compact units

Product versions		Article number								
		3SU1	$\square \square$	ロ-	\square	$\square \square$	$\square \square$	\square	$\square \square$	
Device type	Compact units		2							
Material (front ring)	Plastic, black Metal, matte (front ring)/plastic, black (rosette, holder) Metal, shiny Metal, matte		$\begin{aligned} & \hline 0 \\ & 3 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$							
Illumination	Non-illuminated Illuminated/non-illuminated			$\begin{aligned} & 0 \\ & 1 \end{aligned}$						
Type of actuator/indicator	Pushbutton Sensor switch Potentiometers Indicator light/acoustic signaling device				$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 6 \\ & \hline \end{aligned}$					
Design of the actuator/ acoustic signaling device	e.g. $A=$ Flat					\square				
Function (voltage/resistance)	e.g. $B=24 \mathrm{VAC/DC}$					\square				
Color	e.g. $10=$ Black, $20=$ Red						$\square \square$			
Connection type	None Screw terminals M12 connection, 4-pin Spring-type terminals							0 1 2 3		
Module/holder equipment including contact material	e.g. A = Without module, without holder $B=1$ NO contact with holder $C=1 \mathrm{NC}$ contact with holder								\square	
Marking	e.g. $\mathrm{A}=$ None								\square	
Ambient condition	Standard ATEX Zone 21-22: Protection from dust ATEX Zone 1-2: Intrinsic safety									0 1 2

Example

Note:

The Article No. schemes show an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

Modules for actuators and indicators

Exam
Note:
The Article No. schemes show an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data

SIRUS ACT 3SU Series

General Data

Enclosures

Accessories

Note:
The Article No. schemes show an overview of product versions for better understanding of the logic behind the article numbers.
For your orders, please use the article numbers quoted in the selection and ordering data.

Application

Environmental conditions

The pushbuttons and indicator lights are climate-proof (KTW 24) and suitable for standard industrial applications and operation in marine applications.

Simple electrical equipment

Non-illuminated actuators, contact modules, enclosures and special accessories can be classified as simple electrical equipment according to IEC 60079-11. This means that they may be used in intrinsically safe circuits in potentially explosive atmospheres. An overview of the devices and atmospheres can be found in Confirmation No. 3287.01.

Safety EMERGENCY STOP pushbuttons according to ISO 13850

For controls according to IEC/EN 60204-1, the SIRIUS ACT mushroom pushbuttons are suitable for use as safety EMERGENCY STOP pushbuttons.

Safety circuits

The IEC/EN 60947-5-1 standard requires positive opening. This means that for the purpose of personal safety, the reliable opening of NC contacts in all safety circuits is expressly prescribed for the electrical equipment of machines and is designated according to IEC 60947-5-1 with the symbol (Θ).
Category 4 according to EN ISO 13849-1 can be attained with the EMERGENCY STOP mushroom pushbuttons if the corresponding fail-safe evaluation units are selected and correctly installed, e.g. the 3SK11 safety relays or the 3RK3 Modular Safety System (see see Section 13 Limit Switches and Safety) or matching units from the ASIsafe, SIMATIC or SINUMERIK product ranges.

The SIRIUS ACT pushbuttons and indicator lights can be connected to the AS-Interface communication system quickly and safely.
The following solutions are available:

- AS-Interface modules
- AS-Interface module in safety-related version for EMERGENCY STOP mushroom pushbutton
- Ready-fitted AS-Interface enclosures with 1 to 6 command points

IO-Link

The SIRIUS ACT pushbuttons and indicator lights can be connected to IO-Link quickly and safely. The connection is made via a special IO-Link module.

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General Data

Technical specifications

More information

Industry Mall, see www.siemens.com/product?3SU1

Configurator, see www.siemens.com/sirius-act/configurator
Conversion tool, see www.siemens.com/sirius/conversion-tool
Manual, see https://support.industry.siemens.com/cs/ww/en/view/107542462

Type		$\begin{aligned} & \text { 3SU1..0-.AA } \\ & \text { 3SU1..0-.JA } \end{aligned}$	$\begin{aligned} & \text { 3SU1..1-.AA } \\ & \text { 3SU1..1-.JA } \end{aligned}$	$\begin{aligned} & \text { 3SU1..0-.AB } \\ & \text { 3SU1..0-.BB } \\ & \text { 3SU1..0-.CB } \\ & \text { 3SU1..0-.DB } \\ & \text { 3SU1..0-.JB } \end{aligned}$	$\begin{aligned} & \text { 3SU1..1-.AB } \\ & \text { 3SU1..1-.BB } \\ & \text { 3SU1..1-.JB } \end{aligned}$
Product version		Pushbuttons			
Operating principle of the actuating element		Latching		Momentary contact	
Optional expansion of product by light source		No	Yes	No	Yes
Mechanical endurance (operating cycles) typical		500000		10000000	3000000
Switching frequency maximum	1/h	1800		3600	
Shock resistance according to IEC 60068-2-27		Half-sine wave $50 \mathrm{~g} / 11 \mathrm{~ms}$			
Vibration resistance according to IEC 60068-2-6		$10 \ldots 500 \mathrm{~Hz}: 5 \mathrm{~g}$			
Degree of protection		IP66, IP67, IP69 (IP69K)			
Environmental category during operation According to IEC 60721		3M6, 3S2, 3B2, 3C3, 3K6 (with a relative air humidity of $10 \ldots 95 \%$)			
Ambient temperature					
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$			
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$			

Type		$\begin{aligned} & \text { 3SU1.00-.AA } \\ & \text { 3SU1.00-.BA } \\ & \text { 3SU1.00-.CA } \\ & \text { 3SU1.30-.AA } \\ & \text { 3SU1.30-.BA } \\ & \text { 3SU1.50-.AA } \\ & \text { 3SU1.50-.BA } \\ & \text { 3SU1.50-.CA } \end{aligned}$	3SU1.50-.EA	$\begin{aligned} & \text { 3SU1.01-.AA } \\ & \text { 3SU1.01-.BA } \\ & \text { 3SU1.51-.AA } \\ & \text { 3SU1.51-.BA } \\ & \text { 3SU1.51-.CA } \end{aligned}$	$\begin{aligned} & \text { 3SU1.00-.AD } \\ & \text { 3SU1.00-.BD } \\ & \text { 3SU1.00-.CD } \\ & \text { 3SU1.30-.AD } \\ & \text { 3SU1.30-.BD } \\ & \text { 3SU1.50-.AD } \\ & \text { 3SU1.50.-BD } \\ & \text { 3SU1.50-.CD } \end{aligned}$	3SU1.50-.ED	$\begin{aligned} & \text { 3SU1.01-.AD } \\ & \text { 3SU1.01-.BD } \\ & \text { 3SU1.31-.AD } \\ & \text { 3SU1.31-.BD } \end{aligned}$
Product version		Mushroom pushbuttons					
Operating principle of the actuating element		Latching			Momentary contact		
Optional expansion of product by light source		No		Yes	No		Yes
Mechanical endurance (operating cycles) typical		500000	300000	500000	10000000	300000	3000000
Switching frequency maximum	1/h	1800			3600	1800	3600
Shock resistance according to IEC 60068-2-27		Half-sine wave $50 \mathrm{~g} / 11 \mathrm{~ms}$					
Vibration resistance according to IEC 60068-2-6		$10 \ldots 500 \mathrm{~Hz}: 5 \mathrm{~g}$					
Degree of protection		$\begin{aligned} & \text { IP66, IP67, IP69 } \\ & \text { (IP69K) } \end{aligned}$	$\begin{aligned} & \text { IP65, IP67, IP69 } \\ & \text { (IP69K) } \end{aligned}$	IP66, IP67, IP6	(IP69K)	$\begin{aligned} & \text { IP65, IP67, IP69 } \\ & \text { (IP69K) } \end{aligned}$	$\begin{aligned} & \text { IP66, IP67, IP69 } \\ & \text { (IP69K) } \end{aligned}$
Environmental category during operation According to IEC 60721		3M6, 3S2, 3B2, 3C3, 3K6 (with a relative air humidity of $10 \ldots 95 \%$)					
Ambient temperature							
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$					
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$					

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

Type		$\begin{aligned} & \text { 3SU1400- } \\ & \text {.AA10-1.A0 } \end{aligned}$	$\begin{aligned} & \text { 3SU1400- } \\ & \text { 1AA10-1GA0, } \\ & \text { 3SU1400- } \\ & \text { 1AA10-1RA0 } \end{aligned}$	$\begin{aligned} & \text { 3SU1400- } \\ & \text { 1AA10-1HAO } \end{aligned}$	$\begin{aligned} & \text { 3SU1400- } \\ & . A A 10-3 . A 0 \end{aligned}$	$\begin{aligned} & \text { 3SU1400- } \\ & \text { 1AA10-3HA0 } \end{aligned}$	$\begin{aligned} & \text { 3SU1400- } \\ & \text { 3AA10-5.A0 } \end{aligned}$
Product version		Contact modules					
Rated insulation voltage	V	500					
Pollution degree		3					
Impulse withstand voltage, rated value	kV	6					
Operational voltage type		AC/DC					
Operational voltage, rated value							
- At AC at 50 Hz	V	5... 500					
- At DC	V	5... 500					
Thermal current	A	10					

Operational current, rated value

- At AC-12
- At 24 V A 10
- At 230 V A 8
- At AC-15
- At 24 V A 6
- At 230 V A 6
- At 400 V A 3
- At 500 V A 1.4
- At DC-12
- At 24 V
- At 48 V

10
A 5
V A 2.5

- At 400 V A A 0.3
- At 500 V A 0.3
- At DC-13 A
- At 24 V
- At 48 V A 15

- At 110 V	A	0.7	0.6	0.7	0.6

- At 230 V
- At 400 V

A 0.3
At 500 V A 0.1

Contact reliability	One contact failure per 100 million switching operations (17 V, 5 mA$),$ one contact failure per 10 million switching operations (5 V, 1 mA)	
Mechanical endurance (operating cycles) typical	10000000	
Switching frequency maximum	$1 / \mathrm{s}$	3600
Fuse link version required for short-circuit protection of the auxiliary switch with type of coordination $\mathbf{1}$	$\mathrm{gG} / \mathrm{Dz} \mathrm{10} \mathrm{A}, \mathrm{quick-response} \mathrm{/} \mathrm{Dz} 10 \mathrm{~A}$	

type of coordination 1

Continuous current of miniature circuit breaker C characteristic	A	10
Vibration resistance according to IEC 60068-2-6		$10 \ldots 500 \mathrm{~Hz}: 5 \mathrm{~g}$
Shock resistance according to IEC 60068-2-27		Half-sine wave $50 \mathrm{~g} / 11 \mathrm{~ms}$
Climate class during operation according to IEC 60721		3M6, 3S2, 3B2, 3C3, 3K6 (with a relative air humidity of $10 \ldots 95 \%$, no condensation permitted in operation)
Ambient temperature		
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$

Degree of protection

- Of enclosure IP40
- Of the terminal IP20

Type of electrical connection		Screw terminals	(1)	Spring-type terminals	\bigcirc	Socket terminals (THT)
Type of connectable conductor cross-sections						
- Solid with end sleeve	mm^{2}	$2 \times(0.5 \ldots 0.75)$		--		
- Solid without end sleeve	mm^{2}	$2 \times(1.0 \ldots 1.5)$		$2 \times(0.25 \ldots 1.5)$		--
- Finely stranded with end sleeve	mm^{2}	$2 \times(0.5 \ldots 1.5)$		$2 \times(0.25 \ldots 0.75)$		--
- Finely stranded without end sleeve	mm^{2}	$2 \times(1.0 \ldots 1.5)$		$2 \times(0.25 \ldots 1.5)$		--
- For AWG cables		$2 \times(18 \ldots 14)$		$2 \times(24 \ldots 16)$		--

Push Button Units and Indicator Lights

SIRUS ACT 3SU Series

General data

Type		3SU1400-1LK10-1AA1 3SU1400-1LK10-3AA1	3SU1400-1LL10-1BA1 3SU1400-1LL10-3BA1
Product designation		Interface module	Fail-safe interface module
Operational voltage type		DC	
Supply voltage at DC rated value	V	24	
Current consumed, maximum	mA	150	
Product function at the interface 1 PROFINET IO-Device		Yes	
Type of interface Fast Ethernet interface		Yes	
Type of interface 1 RJ45 (Ethernet) interface		Yes	
Number of ports at the interface 1		1	
Number of modules per rack, maximum		20	
Number of digital outputs		0	1
Number of digital inputs		0	4
Software version required for STEP 7 in the TIA Portal		Integrated in the TIA Portal, version 14 SP1 or higher (HSP for V13 and V14)	
SIL response limit (subsystem) according to IEC 62061		--	SIL CL 3
Performance level (PL) according to EN ISO 13849-1		--	e
Ambient temperature			
- During operation	${ }^{\circ} \mathrm{C}$	60... -25	
- During storage	${ }^{\circ} \mathrm{C}$	80...-40	
Degree of protection		IP20	
Connectable conductor cross-section			
- Solid - With end sleeves	mm^{2}	$0.2 \ldots 2.5$	
- Finely stranded - With end sleeves - Without end sleeves	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$0.25 \ldots 2.5$ $0.2 \ldots 2.5$	

$\mathrm{mm}^{2} 0.2 \ldots 2.5$

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Complete Units

Pushbuttons

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm，Round，Plastic，Black－Complete Units

Pushbuttons

Supply voltage for light source		Color	Number of			SD	Screw terminals	（1）		PS＊
at $A C$	at DC		Contact modules	NO contacts	NC contacts					
V	V					d	Article No．	Price per PU		

Pushbuttons

Illuminated pushbuttons with flat button，momentary contact with integrated LED
230

Red	1	0	1	5	3SU1106－0AB20－1CAO		1	1 unit	
		1	1	3	3SU1106－0AB20－1FAO		1	1 unit	
Yellow	1	1	0	5	3SU1106－0AB30－1BAO		1	1 unit	
		1	1	5	3SU1106－0AB30－1FAO		1	1 unit	
Green	1	1	0	3	3SU1106－0AB40－1BAO		1	1 unit	
		1	1	3	3SU1106－0AB40－1FAO	1	1 unit		
Blue	1	1	0	5	3SU1106－0AB50－1BAO		1	1 unit	
		1	1	5	3SU1106－0AB50－1FA0		1	1 unit	
White	1	1	0	5	3SU1106－0AB60－1BAO		1	1 unit	
		1	1	5	3SU1106－0AB60－1FA0		1	1 unit	
Clear	1	1	0	5	3SU1106－0AB70－1BAO		1	1 unit	
		1	1	5	3SU1106－0AB70－1FA0		1	1 unit	
						Spring－type terminals	00		

Pushbuttons with flat button，momentary contact

3SU1102－0AB20－3CA0
Illuminated pushbuttons with flat button，momentary contact with integrated LED

24	24	Red	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	3SU1102－0AB20－3CA0 3SU1102－0AB20－3FA0	1 1	1 unit 1 unit
		Yellow	1	1 1	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	5 5	3SU1102－0AB30－3BA0 3SU1102－0AB30－3FA0	1 1	1 unit 1 unit
		Green	1	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	3 5	3SU1102－0AB40－3BA0 3SU1102－0AB40－3FA0	1 1	1 unit 1 unit
		Blue	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3SU1102-0AB50-3BA0 } \\ & \text { 3SU1102-0AB50-3FA0 } \end{aligned}$	1 1	1 unit 1 unit
		White	1	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	3 5	$3 S U 1102-0 A B 60-3 B A 0$ $3 S U 1102-0 A B 60-3 F A 0$	1 1	1 unit 1 unit
		Clear	1	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	5 5	3SU1102－0AB70－3BA0 3SU1102－0AB70－3FA0	1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
110	－－	Red	1	0 1	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	5 5	$\begin{aligned} & \text { 3SU1103-0AB20-3CAO } \\ & \text { 3SU1103-0AB20-3FA0 } \end{aligned}$	1 1	1 unit 1 unit
		Yellow	1	1	1	5	3SU1103－0AB30－3FA0	1	1 unit
		Green	1	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	5 5	$\begin{aligned} & \text { 3SU1103-0AB40-3BA0 } \\ & \text { 3SU1103-OAB40-3FA0 } \end{aligned}$	1 1	1 unit 1 unit
		Blue	1	1	1	5	3SU1103－0AB50－3FA0	1	1 unit
		White	1	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	5 5	$3 S U 1103-0 A B 60-3 B A 0$ 3SU1103－0AB60－3FA0	1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
		Clear	1	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	5 5	$\begin{aligned} & \text { 3SU1103-0AB70-3BAO } \\ & \text { 3SU1103-0AB70-3FAO } \end{aligned}$	1 1	1 unit 1 unit
230	－－	Red	1	0 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	5 5	$\begin{aligned} & \text { 3SU1106-0AB20-3CA0 } \\ & \text { 3SU1106-0AB20-3FA0 } \end{aligned}$	1 1	1 unit 1 unit
		Yellow	1	1	1	5	3SU1106－0AB30－3FA0	1	1 unit
		Green	1	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	5 5	$\begin{aligned} & \text { 3SU1106-0AB40-3BA0 } \\ & \text { 3SU1106-0AB40-3FA0 } \end{aligned}$	1 1	1 unit 1 unit
		Blue	1	1	1	5	3SU1106－0AB50－3FA0	1	1 unit
		White	1	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	5 5	$\begin{aligned} & \text { 3SU1106-0AB60-3BA0 } \\ & \text { 3SU1106-0AB60-3FA0 } \end{aligned}$	1 1	1 unit 1 unit
		Clear	1	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	5 5	3SU1106－0AB70－3BA0 3SU1106－0AB70－3FA0	1 1	1 unit 1 unit

3SU1 22 mm, Round, Plastic, Black - Complete Units

Mushroom pushbuttons / EMERGENCY STOP mushroom pushbuttons

Selection and ordering data

	Unlatching method	Number of Contact modules	NO contacts	NC contacts	SD	Screw terminals	(1)	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
					d	Article No.	Price per PU		
Mushroom pushbution									
-	With red mus	hroom, diam	eter 40 mm ,	atching					
-	Pull to unlatch	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3SU1100-1BA20-1CA0 } \\ & \text { 3SU1100-1BA20-1FA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
						Spring-type terminals	00		
	Pull to unlatch	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1100-1BA20-3CA0 } \\ & \text { 3SU1100-1BA20-3FA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit

Selection and ordering data

	Unlatching method	Number of			Marking		SD	Screw terminals	(1)		PS*
		Contact modules	NO contacts	NC contacts							
						d		Article No.	Price per PU		
EMERGENCY STOP mushroom pushbuttons, in accordance with ISO 13850 and IEC 60947-5-5											
With red mushroom, diameter 40 mm, with positive latching											1 unit
OT $-\mathrm{HA}_{4}<$	Pull to unlatch	1	0	1	NOT-HALT	Θ	5	3SU1100-1HA20-1CH0		1	
			1	1	EMERGENCY STOP	Θ	5			1	1 unit
			1	1	NOT-HALT	Θ	5	3SU1100-1HA20-1FH0		1	1 unit
	Rotate to unlatch	1	0	1	None	Θ	5	3SU1100-1HB20-1CF0		1	1 unit
			0	1	EMERGENCY STOP	Θ	5	3SU1100-1HB20-1CG0		1	1 unit
3SU1100-1HA20-1CH0			0	1	NOT-HALT	Θ	-	3SU1100-1HB20-1CH0		1	1 unit
HOT $-\mathrm{HA}_{4}+1$			0	2	EMERGENCY STOP	Θ	5	3SU1100-1HB20-1PG0		1	1 unit
			1	1	EMERGENCY STOP		5	3SU1100-1HB20-1FG0		1	1 unit
			1	1	NOT-HALT	Θ	-	3SU1100-1HB20-1FH0		1	1 unit
3SU1100-1HB20-1CH0	Rotate to unlatch	1						Spring-type terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$	11	1 unit 1 unit
			0	1	NOT-HALT	Θ	5	3SU1100-1HB20-3CH0 3SU1100-1HB20-3FH0			
			1	1	NOT-HALT	Θ	5				
$\mathrm{OT}-\mathrm{H}_{4}<$	With red mushroom, diameter 40 mm , with latching $\mathrm{N}_{\mathrm{N}=\mathrm{WV}}$									1	1 unit
	Rotate to unlatch	2	0	2	NOT-HALT		5	3SU1100-1LB20-1PH0			

Θ Positive opening according to IEC 60947-5-1, Annex K.
Can be used with 3SK11 safety relays or the 3RK3 Modular Safety System,
see Section 13 Limit Switches and Safety.
Certificate:

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Complete Units

Selector switches

Selection and ordering data

Selector switches

3SU1100-2BF60-1BA0
Short black actuator, 2 switch positions, can be illuminated

| Latching, 90° | White | 1 | 1 | 0 | $>$ | 3SU1100-2BF60-1BAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 2 | 1 | 1 | | 3SU1100-2BF60-1MAO | 1 unit | |
| | White | 1 | 1 | 0 | 5 | 3SU1103-2BF60-1BAO | | |
| 110 V | | | | | | | | |

Short black actuator, 3 switch positions, can be illuminated

Short black actuator, 2 switch positions, can be illuminated

Latching, 90°	White	1	1	0	5	3SU1100-2BF60-3BAO	1

Short black actuator, 3 switch positions, can be illuminated

3SU1 22 mm, Round, Plastic, Black - Complete Units

Key-operated switches

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Complete Units

Coordinate switches

Selection and ordering data

	Number of NO contacts (1 per direction)	Operating principle	Direction of actuation	SD	Screw terminals	(1)	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
				d	Article No.	Price per PU		
Coordinate switches								
Without mechanical interlock, 2 switch positions								
	2	Momentary contact	Horizontal Vertical	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1100-7AC10-1NA0 } \\ & \text { 3SU1100-7AD10-1NA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
		Latching	Horizontal Vertical	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$3 S U 1100-7 A A 10-1 N A 0$ $3 S U 1100-7 A B 10-1 N A 0$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
Without mechanical interlock, 4 switch positions								
	4	Momentary contact	Horizontal/Vertical	3	3SU1100-7AF10-1QA0		1	1 unit
		Latching	Horizontal/Vertical	5	3SU1100-7AE10-1QA0		1	1 unit
With mechanical interlock, 2 switch positions								
	2	Momentary contact	Horizontal Vertical	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SU1100-7BC10-1NA0 3SU1100-7BD10-1NA0		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
		Latching	Horizontal Vertical	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$3 S U 1100-7 B A 10-1 N A 0$ $3 S U 1100-7 B B 10-1 N A 0$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
With mechanical interlock, 4 switch positions								
Q !	4	Momentary contact	Horizontal/Vertical	5	3SU1100-7BF10-1QA0		1	1 unit
		Latching	Horizontal/Vertical	5	3SU1100-7BE10-1QA0		1	1 unit
3SU1100-7BF10-1QA0								

3SU1 22 mm, Round, Plastic, Black - Complete Units

Indicator lights

Selection and ordering data

	Operational voltage		Color		SD	Screw terminals	(1)	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	at AC, rated value	at DC, rated value	of actuating element	of light source					
	V	V			d	Article No.	Price per PU		
Indicator lights									
With smooth lens and integrated LED									
	24	24	Red	Red	\checkmark	3SU1102-6AA20-1AAO		1	1 unit
			Yellow	Yellow	\checkmark	3SU1102-6AA30-1AAO		1	1 unit
			Green	Green	-	3SU1102-6AA40-1AAO		1	1 unit
			Blue	Blue	-	3SU1102-6AA50-1AAO		1	1 unit
			White	White	-	3SU1102-6AA60-1AAO		1	1 unit
			Clear	White	-	3SU1102-6AA70-1AAO		1	1 unit
3SU1102-6AA30-1AA0									
3SU1106-6AA50-1AA0	110	--	Amber	Amber	5	3SU1103-6AA00-1AA0		1	1 unit
			Red	Red	-	3SU1103-6AA20-1AAO		1	1 unit
			Yellow	Yellow	-	3SU1103-6AA30-1AAO		1	1 unit
			Green	Green	-	3SU1103-6AA40-1AAO		1	1 unit
			Blue	Blue	3	3SU1103-6AA50-1AA0		1	1 unit
			White	White	-	3SU1103-6AA60-1AAO		1	1 unit
			Clear	White	3	3SU1103-6AA70-1AAO		1	1 unit
	230	--	Amber	Amber	5	3SU1106-6AA00-1AA0		1	1 unit
			Red	Red	-	3SU1106-6AA20-1AAO		1	1 unit
			Yellow	Yellow	-	3SU1106-6AA30-1AAO		1	1 unit
			Green	Green	-	3SU1106-6AA40-1AAO		1	1 unit
			Blue	Blue	3	3SU1106-6AA50-1AAO		1	1 unit
			White	White	-	3SU1106-6AA60-1AAO		1	1 unit
			Clear	White	3	3SU1106-6AA70-1AAO		1	1 unit
	24	24				Spring-type terminals	∞		
			Red	Red	3	3SU1102-6AA20-3AA0		1	1 unit
ค			Yellow	Yellow	5	3SU1102-6AA30-3AAO		1	1 unit
			Green	Green	3	3SU1102-6AA40-3AA0		1	1 unit
			Blue	Blue	5	3SU1102-6AA50-3AA0		1	1 unit
			White	White	3	3SU1102-6AA60-3AA0		1	1 unit
			Clear	White	5	3SU1102-6AA70-3AAO		1	1 unit
	110	--	Red	Red	5	3SU1103-6AA20-3AAO		1	1 unit
			Yellow	Yellow	5	3SU1103-6AA30-3AA0		1	1 unit
3SU1102-6AA40-3AA0			Green	Green	5	3SU1103-6AA40-3AA0		1	1 unit
-			Blue	Blue	5	3SU1103-6AA50-3AAO		1	1 unit
,			White	White	5	3SU1103-6AA60-3AA0		1	1 unit
			Clear	White	5	3SU1103-6AA70-3AA0		1	1 unit
	230	--	Red	Red	5	3SU1106-6AA20-3AA0		1	1 unit
			Yellow	Yellow	5	3SU1106-6AA30-3AAO		1	1 unit
			Green	Green	5	3SU1106-6AA40-3AA0		1	1 unit
			Blue	Blue	5	3SU1106-6AA50-3AAO		1	1 unit
3SU1106-6AA60-3AA0			White	White	5	3SU1106-6AA60-3AA0		1	1 unit
			Clear	White	5	3SU1106-6AA70-3AAO		1	1 unit

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Compact Units

Sensor switches / Potentiometers

Selection and ordering data

	Operational voltage				SD	Screw terminals	(1)		PS*
	at AC, rated value	at $D C$, rated value	of actuating element	of light source					
	V	V			d	Article No.	Price per PU		
Indicator lights NEW									
	24	24	Amber Red Yellow Green Blue White Clear	Amber Red Yellow Green Blue White Clear	$\begin{aligned} & 3 \\ & \\ & 8 \\ & 3 \\ & 8 \end{aligned}$	3SU1201-6AB00-1AAO 3SU1201-6AB20-1AAO 3SU1201-6AB30-1AAO 3SU1201-6AB40-1AAO 3SU1201-6AB50-1AAO 3SU1201-6AB60-1AAO 3SU1201-6AB70-1AAO		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	110	110	Amber Red Yellow Green Blue White Clear	Amber Red Yellow Green Blue White Clear	$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1201-6AC00-1AAO } \\ & \text { 3SU1201-6AC20-1AAO } \\ & \text { 3SU1201-6AC30-1AAO } \\ & \text { 3SU1201-6AC40-1AAO } \\ & \text { 3SU1201-6AC50-1AAO } \\ & \text { 3SU1201-6AC60-1AA0 } \\ & \text { 3SU1201-6AC70-1AA0 } \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	230	230	Amber Red Yellow Green Blue White Clear	Amber Red Yellow Green Blue White Clear	$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1201-6AF00-1AAO } \\ & \text { 3SU1201-6AF20-1AAO } \\ & \text { 3SU1201-6AF30-1AA0 } \\ & \text { 3SU1201-6AF40-1AAO } \\ & \text { 3SU1201-6AF50-1AA0 } \\ & \text { 3SU1201-6AF60-1AA0 } \\ & \text { 3SU1201-6AF70-1AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
Indicator lights with "traffic light" LED									
	$\begin{aligned} & 6 \ldots 24 \\ & 110 \\ & 230 \end{aligned}$	$6 \ldots 24$	Clear Clear Clear	Red/Yellow/ Green Red/Yellow/ Green Red/Yellow/ Green		$\begin{aligned} & \text { 3SU1201-6AG24-1AAO } \\ & \text { 3SU1201-6AC24-1AAO } \\ & \text { 3SU1201-6AF24-1AA0 } \end{aligned}$		1 1 1	1 unit 1 unit 1 unit

3SU1 22 mm, Round, Plastic, Black - Compact Units

Pushbuttons with extended stroke

Selection and ordering data

Selection and ordering data

Operating principle	Number of NO contacts	Number of NC contacts	Color	SD	M12 connector, 4-pin		$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
				d	Article No.	Price per PU		

Sensor switches

Whether integrated in the two-hand operation console or installed as a door opening contact, the capacitive sensor switch is suitable for many different applications in industrial environments.
The switch is actuated by simple contact with the hand or other part of the body (i.e. without the application of pressure). As a result, these switches are rugged, extremely durable and have the highest possible degree of protection IP66, IP67, IP69 (IP69K).
Without pressure $1 \quad$ Black $\quad>\quad$ 3SU1200-1SK10-2SA0 1 unit
3SU1200-1SK10-2SA0
Optional accessories

- "Protection for sensor switches", see page 11/153
- "Connectors for sensor switches, angled socket with screw terminal connection", see page 11/161.

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Compact Units

Pushbuttons with extended stroke

Selection and ordering data

	Version	Color	SD	Article No.	Price per PU		PS*
			d				
Pushbuttons with ex	ended stroke						
	For actuating relays, can only be combined plunger, no contact module or LED module	xtension d					
	Pushbuttons with flat button	Red Green	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SU1200-0EB20-0AAO 3SU1200-0EB40-0AAO		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	Pushbuttons with raised button	Black Red	5	3SU1200-0FB10-0AA0 3SU1200-0FB20-0AA0		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	Pushbuttons with flat transparent button for insertion of insert labels	Red Clear	i	$\begin{aligned} & \text { 3SU1201-0EB20-0AAO } \\ & \text { 3SU1201-0EB70-OAAO } \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	Mechanical reset kit - complete			3SU1200-0KB10-0AA0			
	Version Material	Color	SD	Article No.	Price per PU		PS*
			d				
Accessories							
	Extension plungers Plastic For compensation of the distance between the pushbutton and the unlatching button of an overload relay	Gray	-	3SU1900-0KG10-0AA0		1	1 unit

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Pushbuttons

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Pushbuttons

Push Button Units and Indicator Lights

3 SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Twin pushbuttons

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Mushroom pushbuttons

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

EMERGENCY STOP mushroom pushbuttons

Selection and ordering data

3SU1000-1HA20-0AAO

With pull-to-unlatch mechanism
With positive $40 \quad$ Red \quad 3SU1000-1HA20-0AA0 $\quad 1 \quad 1$ unit

With rotate-to-unlatch mechanism

With positive
latching,
2 positions

3SU1000-1GB20-0AA0

3SU1000-1HB20-0AA0

3SU1000-1JB20-0AA0

3SU1000-1LB20-0AA0
33.8

Red
.
Red

With rotate-to-unlatch mechanism, can be illuminated
2 positions

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

EMERGENCY STOP mushroom pushbuttons

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Selector switches

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Selector switches

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Key-operated switches

Selection and ordering data

Operating principle Make of lock	Switch position for key keys removal	Article No.

d
Key-operated switches

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Key-operated switches

Operating principle	Make of lock	Switch position for key removal	Number of keys	SD	Article No.	Price per PU		PS*

Key-operated switches

3 switch positions

Momentary contact, $2 \times 45^{\circ}$ (10:30/12/ 1:30 o'clock), reset from left + right	RONIS, SB30	0	2	-	3SU1000-4BM01-0AA0	1	1 unit
	$\text { O.M.R. } 73037$	O	2	5	3SU1000-4FM01-0AA0	1	1 unit
	O.M.R. 73034, black	O	2	5	3SU1000-4HM01-0AA0	1	1 unit
	CES, SSG10	O	2	-	3SU1000-5BM01-0AA0	1	1 unit
	BKS, S1	0	2	3	3SU1000-5PM01-0AA0	1	1 unit
	IKON, 360012K1	O	2	3	3SU1000-5XM01-0AA0	1	1 unit
$\begin{aligned} & \text { Latching, } 2 \times 45^{\circ} \\ & \text { (10:30/12/ } \\ & \text { 1:30 o'clock) } \\ & \text { । } \end{aligned}$	RONIS, SB30	O	2	3	3SU1000-4BL01-0AA0	1	1 unit
		I+O+II	2	-	3SU1000-4BL11-0AA0	1	1 unit
			2	5	3SU1000-4BL21-0AA0	1	1 unit
		II	2	3	3SU1000-4BL31-0AA0	1	1 unit
		I+II	2	3	3SU1000-4BL41-0AA0	1	1 unit
		$\mathrm{O}+1$	2	3	3SU1000-4BL51-0AAO	1	1 unit
	RONIS, 455	0	2	5	3SU1000-4CL01-0AA0	1	1 unit
		I+O+11	2	3	3SU1000-4CL11-0AA0	1	1 unit
	$\begin{aligned} & \text { O.M.R. 73037, } \\ & \text { red } \end{aligned}$	\bigcirc	2	5	3SU1000-4FL01-0AA0	1	1 unit
		$\mathrm{O}+1$	2	5	3SU1000-4FL51-0AA0	1	1 unit
	O.M.R. 73038, light blue	0	2	3	3SU1000-4GL01-0AAO	1	1 unit
		I+O+11	2	3	3SU1000-4GL11-0AA0	1	1 unit
	O.M.R. 73034, black	O	2	5	3SU1000-4HL01-0AAO	1	1 unit
		1+O+11	2	3	3SU1000-4HL11-0AA0	1	1 unit
	O.M.R. 73033, yellow	I+O+II	2	5	3SU1000-4JL11-0AA0	1	1 unit

3SU1000-4FL01-0AA0

3SU1000-5BL01-OAA0

CES, SSG10	$\begin{aligned} & \mathrm{O} \\ & 1+\mathrm{O}+11 \\ & 1 \\ & 11 \\ & 1+11 \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	3SU1000-5BL01-0AA0 3SU1000-5BL11-0AA0 3SU1000-5BL21-0AA0 3SU1000-5BL31-0AA0 3SU1000-5BL41-0AA0 3SU1000-5BL51-0AA0	1 1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit 1 unit
CES, SSG10 with key monitoring	0	2	NTEW 3	3SU1000-5JL01-0AA0	1	1 unit
BKS, S1	$\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{I}+\mathrm{O}+\mathrm{II} \\ & 1 \\ & \text { II } \\ & \mathrm{I}+\mathrm{II} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	3SU1000-5PL01-0AA0 3SU1000-5PL11-0AA0 3SU1000-5PL21-0AA0 3SU1000-5PL31-0AA0 3SU1000-5PL41-0AA0	1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
BKS, E2	I+O+11	0	5	3SU1000-5RL11-0AA0	1	1 unit
BKS, E9	1+O+11	0	3	3SU1000-5TL11-0AA0	1	1 unit
IKON, 360012K1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{I}+\mathrm{O}+\mathrm{II} \end{aligned}$	2 2	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3SU1000-5XL01-0AA0 } \\ & \text { 3SU1000-5XL11-0AA0 } \end{aligned}$	1 1	1 unit 1 unit

Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Key-operated switches / ID key-operated switches

Operating principle	Make of lock	Switch position for key removal	Number of keys	SD	Article No.	Price per PU		PS*

Key-operated switches

3 switch positions

Momentary contact/ RONIS, SB30
latching, $2 \times 45^{\circ}$
(10:30/12/
// RONIS, SB30

1:30 o'clock),
reset from left,
latching to the right
|l

3SU1000-5BP01-0AA0

3SU1000-4GN01-0AA0

$$
\begin{aligned}
& \text { Latching/ } \\
& \text { momentary } \\
& \text { contact, } 2 \times 45^{\circ} \\
& (10: 30 / 12 / \\
& 1: 30 \text { o'clock), } \\
& \text { reset from right, } \\
& \text { latching to the } \\
& \text { left } \\
& \text { a }
\end{aligned}
$$

| CES, SSG10 | O | 2 | 3 | 3SU1000-5BP01-0AAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | II | 2 | 5 | 3SU1000-5BP31-0AAO | 1 | 1 unit |
| | O+II | 2 | 3 | 3SU1000-5BP61-0AAO | 1 | 1 unit |
| BKS, S1 | O | 2 | 3 | 3SU1000-5PP01-0AAO | 1 | 1 unit |

Selection and ordering data

| Operating
 angle | Operating
 principle | Switch position
 for key removal | Color |
| :--- | :--- | :--- | :--- | :--- | :--- |

ID key-operated switches

4 switch positions

45 ${ }^{\circ}$ Latching
Key removal possible Black
in all 4 positions

| RONIS, SB30 | O | 2 | 3 | 3SU1000-4BN01-0AAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | I | 2 | 3 | 3SU1000-4BN21-0AAO | 1 | 1 unit |
| | O+I | 2 | 3 | 3SU1000-4BN51-0AAO | 1 | 1 unit |
| O.M.R. 73038,
 light blue
 O.M.R. $73034, ~$ O | I | 2 | 5 | 3SU1000-4GN01-0AAO | 1 | 1 unit |
| black | | | | | | |

For ID keys, see page 11/1.57.
For electronic modules for ID key-operated switches,
see nage 11/118.
For plastic holders for ID key-operated switches,
see page 11/108.

[^99]
Push Button Units and Indicator Lights

3SU1 22 mm, Round, Plastic, Black - Actuating \& Signaling Elements

Indicator lights

Selection and ordering data

	Product function Locking in zero position	Number of switching positions	Operating principle	Direction of actuation	SD	Article No.	Price per PU	PU SET, M)	PS*
		d							
Coordinate switches									
	No	2	Momentary contact	Horizontal Vertical	$>$	$\begin{aligned} & \text { 3SU1000-7AC10-0AA0 } \\ & \text { 3SU1000-7AD10-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
			Latching	Horizontal Vertical	i	$\begin{aligned} & \text { 3SU1000-7AA10-0AA0 } \\ & \text { 3SU1000-7AB10-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
		4	Momentary contact	Horizontal/ Vertical	-	3SU1000-7AF10-0AA0		1	1 unit
			Latching	Horizontal/ Vertical	-	3SU1000-7AE10-0AA0		1	1 unit
		2	Momentary contact	Horizontal Vertical	∇	$\begin{aligned} & \text { 3SU1000-7BC10-0AA0 } \\ & \text { 3SU1000-7BD10-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
			Latching	Horizontal Vertical	i	$\begin{aligned} & \text { 3SU1000-7BA10-0AA0 } \\ & \text { 3SU1000-7BB10-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
		4	Momentary contact	Horizontal/ Vertical	-	3SU1000-7BF10-0AA0		1	1 unit
			Latching	Horizontal/ Vertical	-	3SU1000-7BE10-0AA0		1	1 unit

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Complete Units

Pushbuttons

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Complete Units

Actuators and Indicator

	Supply voltage for light source		Color	Number of			SD	Screw terminals	(1)	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	at AC	at DC		Contact modules	NO contacts	NC contacts					
	V	V					d	Article No.	Price per PU		
Pushbuttons											

Pushbuttons

Illuminated pushbuttons with flat button, momentary contact with integrated LED
230 -- Red

Red	1	0	1	5
		1	1	5
Yellow	1	1	0	5
		1	1	5
Green	1	1	0	5
		1	1	5
Blue	1	1	0	5
		1	1	5
White	1	1	0	5
		1	1	5
Clear	1	1	0	5
		1	1	5

3SU1136-0AB20-1CAO		1	1 unit
3SU1136-0AB20-1FA0		1	1 unit
3SU1136-0AB30-1BAO		1	1 unit
3SU1136-0AB30-1FA0		1	1 unit
3SU1136-0AB40-1BAO		1	1 unit
3SU1136-0AB40-1FA0		1	1 unit
3SU1136-0AB50-1BAO		1	1 unit
3SU1136-0AB50-1FA0		1	1 unit
3SU1136-0AB60-1BA0		1	1 unit
3SU1136-0AB60-1FA0		1	1 unit
3SU1136-0AB70-1BA0		1	1 unit
3SU1136-0AB70-1FA0		1	1 unit
Spring-type terminals	OO		

Pushbuttons with flat button, momentary contact

Black	1	1	0	5	$\mathbf{3 S U}$
		1	1	5	$\mathbf{3 S U}$
Red	1	0	1	5	$\mathbf{3 S U}$
Green	1	1	0	5	$\mathbf{3 S U}$
White	1	1	1	5	$\mathbf{3 S U}$

3SU1130-0AB10-3BAO	1	1 unit
3SU1130-0AB10-3FA0	1	1 unit
3SU1130-0AB20-3CA0	1	1 unit
3SU1130-0AB40-3BAO	1	1 unit
3SU1130-0AB60-3FA0	1	1 unit

3SU1130-OAB10-3BA0

Illuminated pushbuttons with flat button, momentary contact

$24 \quad 24$

| Red | 1 | 0 | 1 | 5 | 3SU1132-0AB20-3CAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 1 | 1 | 5 | 3SU1132-0AB20-3FAO | 1 | 1 unit |
| Yellow | 1 | 1 | 0 | 5 | 3SU1132-0AB30-3BAO | 1 | 1 unit |
| | | 1 | 1 | 5 | 3SU1132-0AB30-3FAO | 1 | 1 unit |
| Green | 1 | 1 | 0 | 5 | 3SU1132-0AB40-3BAO | 1 | 1 unit |
| | | 1 | 1 | 5 | 3SU1132-0AB40-3FAO | 1 | 1 unit |
| Blue | 1 | 1 | 0 | 5 | 3SU1132-0AB50-3BAO | 1 | 1 unit |
| | | 1 | 1 | 5 | 3SU1132-0AB50-3FAO | 1 | 1 unit |
| White | 1 | 1 | 0 | 5 | 3SU1132-0AB60-3BA0 | 1 | 1 unit |
| | | 1 | 1 | 5 | 3SU1132-0AB60-3FAO | 1 | 1 unit |
| Clear | 1 | 1 | 0 | 5 | 3SU1132-0AB70-3BAO | 1 | 1 unit |
| | | 1 | 1 | 5 | 3SU1132-0AB70-3FAO | 1 | 1 unit |

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Complete Units

Mushroom pushbuttons / EMERGENCY STOP mushroom pushbuttons

Selection and ordering data

Unlatching method	Number of Contact modules	NO contacts	NC contacts	SD	Screw terminals	\bigoplus	(UNIT, SET, M)	PS*
				d	Article No.	Price per PU		

Mushroom pushbuttons
\qquad

N

With red mushroom, diameter 40 mm, latching
Pull to unlatch

3SU1130-1BA20-1CA0

5 3SU1130-1BA20-1CAO 1 unit
5 3SU1130-1BA20-1FAO $\quad 1 \quad 1$ unit

Selection and ordering data

Unlatching method	Number of			Marking	SD	Screw terminals	\because		PS*
	Contact modules	NO contacts	NC contacts						
					d	Article No.	$\begin{aligned} & \text { Price } \\ & \text { er PU } \end{aligned}$		

EMERGENCY STOP mushroom pushbuttons, in accordance with ISO 13850 and IEC 60947-5-5
3SU1100-1HB20-1CH0
With red mushroom, diameter 40 mm, with positive latching

With red mushroom, diameter 40 mm, with latching [NEWV

Rotate to unlatch 2 NOT-HALT

3SU1100-1LB20-1PH0
Θ Positive opening according to IEC 60947-5-1, Annex K.
Can be used with 3SK11 safety relays or the 3RK3 Modular Säfety Syystem,
see Section 13 Limit Switches and Safety..
Certificate:

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Complete Units

Coordinate switches, complete

Selection and ordering data

Operating principle	Color	Number of			SD	Screw terminals	\bigoplus		PS*
		Contact modules	NO contacts	NC contacts					
					d	Article No.	$\begin{aligned} & \text { Price } \\ & \text { reU } \end{aligned}$		

Selector switches

Short black actuator, 2 switch positions, can be illuminated

Latching, 90°	White	1	1	0		1

Short black actuator, 3 switch positions, can be illuminated

3SU1130-2BF60-1BA0

Latching, 90°	White	1	1	0	5	3SU1130-2BF60-3BAO	1

Short black actuator, 3 switch positions, can be illuminated

| Momentary contact, White
 $2 \times 45^{\circ}$ | 2 | 2 | 0 | 5 | 3SU1130-2BM60-3NAO | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Complete Units

Coordinate switches, complete

Selection and ordering data

Operating principle	Switch	Number of			Number	SD	Screw term	\oplus	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$
	position for key removal	Contact modules	NO contacts	NC contacts	of keys				

Key-operated switches

With RONIS lock, SB30, 2 switch positions

| Latching, 90° | O+I | 1 | 1 | 0 | 2 | 3 | 3SU1130-4BF11-1BAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $(10.30$ | | | 1 | 1 | 2 | 3 | 3SU1130-4BF11-1FA0 | 1 | 1 unit |

(10:30)
1:30 o'clock)
O ।

With RONIS lock, SB30, 3 switch positions

| Latching, 90°
 (10:30/
 $1: 30$ o'clock) | | O+I | 1 | 1 | 0 | 2 | 5 | 3SU1130-4BF11-3BAO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 1$ 1 unit

Selection and ordering data

Push Button Units and Indicator Lights
3SU1 22 mm, Plastic with Metal Front Ring, Matte - Complete Units
Indicator Lights - Complete Units

Selection and ordering data

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Compact Units

Indicator lights

Selection and ordering data

	Operational voltage				SD	Screw terminals		$\begin{gathered} \text { PU } \\ \text { (UNIT, } \\ \text { SET. M) } \end{gathered}$	PS*
	at AC, rated value	at DC, rated value	of actuating element	of light source					
	V	V			d	Article No.	Price per PU		
Indicator lights NEW									
	24	24	Amber Red Yellow Green Blue White Clear	Amber Red Yellow Green Blue White Clear	$\begin{aligned} & 3 \\ & \\ & 8 \\ & 3 \\ & 8 \end{aligned}$	3SU1201-6AB00-1AA0 3SU1201-6AB20-1AA0 3SU1201-6AB30-1AAO 3SU1201-6AB40-1AAO 3SU1201-6AB50-1AA0 3SU1201-6AB60-1AA0 3SU1201-6AB70-1AAO		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	110	110	Amber Red Yellow Green Blue White Clear	Amber Red Yellow Green Blue White Clear	$\begin{aligned} & 5 \\ & 5 \\ & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1201-6AC00-1AAO } \\ & \text { 3SU1201-6AC20-1AAO } \\ & \text { 3SU1201-6AC30-1AAO } \\ & \text { 3SU1201-6AC40-1AAO } \\ & \text { 3SU1201-6AC50-1AAO } \\ & \text { 3SU1201-6AC60-1AA0 } \\ & \text { 3SU1201-6AC70-1AAO } \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	230	230	Amber Red Yellow Green Blue White Clear	Amber Red Yellow Green Blue White Clear	$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 3 \\ & 5 \end{aligned}$	3SU1201-6AF00-1AAO 3SU1201-6AF20-1AAO 3SU1201-6AF30-1AAO 3SU1201-6AF40-1AAO 3SU1201-6AF50-1AAO 3SU1201-6AF60-1AA0 3SU1201-6AF70-1AAO		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit
Indicator lights with "traffic light" LED									
	$\begin{aligned} & 6 \ldots 24 \\ & 110 \\ & 230 \end{aligned}$	$6 \ldots 24$	Clear Clear Clear	Red/Yellow/ Green Red/Yellow/ Green Red/Yellow/ Green		$\begin{aligned} & \text { 3SU1201-6AG24-1AAO } \\ & \text { 3SU1201-6AC24-1AA0 } \\ & \text { 3SU1201-6AF24-1AA0 } \end{aligned}$		1 1 1	1 unit 1 unit 1 unit

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Compact Units

Sensor switches / potentiometers

Selection and ordering data

Selection and ordering data

Operating principle	Number of NO contacts	Number of NC contacts	Color	SD	M12 conne		PU (UNIT, SET, M)	PS*
				d	Article No.	Price per PU		

Sensor switches

Whether integrated in the two-hand operation console or
installed as a door opening contact, the capacitive sensor
switch is suitable for many different applications in industrial
environments.
The switch is actuated by simple contact with the hand or other
part of the body (i.e. without the application of pressure). As a
result, these switches are rugged, extremely durable and have
the highest possible degree of protection IP66, IP67, IP69
(IP69K).
Without pressure $1 \quad$ Black
Without pressure 10 Black 0 3SU1200-1SK10-2SAO 1 unit
3SU1200-1SK10-2SA0
Optional accessories

- "Protection for sensor switches", see page 11/153.
- "Connectors for sensor switches, angled socket with screw terminal connection", see page 11/161

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Compact Units

Sensor switches / Pushbuttons with extended stroke

Selection and ordering data

Selection and ordering data

	Version	Color	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	
d								
Pushbuttons with extended stroke								
		For actuating relays, can only be combined with extension plunger, no contact module or LED module required		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1230-0EB20-0AAO } \\ & \text { 3SU1230-0EB40-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	Pushbuttons with flat button	Red Green						
	Pushbuttons with raised button	Black	3	3SU1230-0FB10-0AA0		1	1 unit	
	Pushbuttons with flat transparent button for insertion of insert labels	Red Clear	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	3SU1231-0EB20-0AAO 3SU1231-0EB70-0AA0		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	
	Version Material	Color	SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*	
			d					
Accessories								
	Extension plungers For compensation of the distance between the pushbutton and the unlatching button of an overload relay	Gray	-	3SU1900-0KG10-0AA0		1	1 unit	

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements

Pushbuttons

Selection and ordering data

Version of actuating element	Operating principle	Color, marking	SD	Article No.	Price per PU	PU (UNIT,	PS*
Front ring version	Unlatching method					SET, M)	

Pushbuttons

Pushbuttons with flat button
Standard

3SU1030-OAB50-0AR0

3SU1030-OAA40-0AA0

Pushbuttons with raised button

Standard

3SU1030-0BB20-0AA0

Momentary contact	Black	-	3 SU1030-0AB10-0AA0	1	1 unit
	Black, "O"	-	3SU1030-0AB10-0AD0	1	1 unit
	Red	-	3 U1030-0AB20-0AA0	1	1 unit
	Red, "O"	-	3SU1030-0AB20-0AD0	1	1 unit
	Red, "AUTO"	5	3SU1030-0AB20-0AQ0	1	1 unit
	Yellow	-	3SU1030-0AB30-0AA0	1	1 unit
	Green	-	3SU1030-0AB40-0AA0	1	1 unit
	Green, "I"	-	3SU1030-0AB40-0AC0	1	1 unit
	Blue	-	3SU1030-0AB50-0AA0	1	1 unit
	Blue, "R"	5	3SU1030-0AB50-0AR0	1	1 unit
	White	-	3SU1030-0AB60-0AA0	1	1 unit
	White, "I"	-	3SU1030-0AB60-0AC0	1	1 unit
	Clear	-	3SU1030-0AB70-0AA0	1	1 unit
	Gray	-	3SU1030-0AB80-0AA0	1	1 unit
Latching	Black	-	3 U1030-0AA10-0AA0	1	1 unit
Push to unlatch	Red	-	3SU1030-0AA20-0AA0	1	1 unit
	Yellow	-	3 U1030-0AA30-0AA0	1	1 unit
	Green	-	3 U1030-0AA40-0AA0	1	1 unit
	Blue	-	3SU1030-0AA50-0AA0	1	1 unit
	White	-	3SU1030-0AA60-0AA0	1	1 unit

Momentary contact

Black		3SU1030-0BB10-0AAO	1	1 unit
Red		3SU1030-0BB20-0AAO	1	1 unit
Yellow	3SU1030-0BB30-0AAO	1	1 unit	
Green	3SU10300BB40-0AAO	1	1 unit	
Blue	3SU1030-0BB50-0AAO	1	1 unit	
White	3SU1030-0BB60-0AAO	1	1 unit	

3SU1030-0CB30-0AA0

Selection and ordering data

Front ring	Operating principle	Colors caps/ markings	Direction of Actuation	SD	Screw terminals	PU

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements
Twin pushbuttons

Selection and ordering data

3SU1 22 mm，Plastic with Metal Front Ring，Matte－Actuating and Signaling Elements

Mushroom pushbuttons

Selection and ordering data

	Version of actuating element	Operating principle Unlatching method	Color		SD	Article No．	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS＊
					d				
Mushroom pushbutton									
	Mushroom pushbuttons 30 mm diameter， 2 positions	Momentary contact	Black Red Yellow Green		$\stackrel{\rightharpoonup}{i}$	$\begin{aligned} & \text { 3SU1030-1AD10-0AAO } \\ & \text { 3SU1030-1AD20-0AAO } \\ & \text { 3SU1030-1AD30-0AAO } \\ & \text { 3SU1030-1AD40-0AAO } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit 1 unit
		Latching Pull to unlatch	Black Red		i	3SU1030－1AA10－0AAO 3SU1030－1AA20－0AAO		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
	Mushroom pushbuttons 40 mm diameter， 2 positions	Momentary contact	Black Red Yellow Green		$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3SU1030-1BD10-0AAO } \\ & \text { 3SU1030-1BD20-0AA0 } \\ & \text { 3SU1030-1BD30-0AA0 } \\ & \text { 3SU1030-1BD40-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit 1 unit
		Latching Pull to unlatch	Black Red Red，＂O＂		$\begin{aligned} & 7 \\ & 5 \end{aligned}$	3SU1030－1BA10－0AA0 3SU1030－1BA20－0AAO 3SU1030－1BA20－0AD0		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
	Mushroom pushbuttons 30 mm diameter， 2 positions， illuminated	Momentary contact	Yellow Green Blue White Clear	NEW	$\begin{aligned} & \hline 5 \\ & 3 \\ & 5 \\ & 3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3SU1031-1AD30-0AAO } \\ & \text { 3SU1031-1AD40-0AAO } \\ & \text { 3SU1031-1AD50-0AAO } \\ & \text { 3SU1031-1AD60-0AAO } \\ & \text { 3SU1031-1AD70-0AA0 } \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit 1 unit 1 unit
		Latching Pull to unlatch	Red Yellow		$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1031-1AA20-0AAO } \\ & \text { 3SU1031-1AA30-0AAO } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	Mushroom pushbuttons 40 mm diameter， 2 positions，	Momentary contact	Yellow Green White Clear		$\begin{aligned} & 5 \\ & 5 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1031-1BD30-0AAO } \\ & \text { 3SU1031-1BD40-0AAO } \\ & \text { 3SU1031-1BD60-0AAO } \\ & \text { 3SU1031-1BD70-0AAO } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit 1 unit
	illuminated	Latching Pull to unlatch	Red Yellow		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3SU1031-1BA20-0AAO } \\ & \text { 3SU1031-1BA30-0AAO } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
	Mushroom pushbuttons 40 mm diameter， 2 positions	With positive latching Rotate to unlatch	Black Blue		3	3SU1000－1HB10－0AA0 3SU1000－1HB50－0AAO		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
	Mushroom pushbuttons 40 mm diameter， 2 positions RONIS SB30	With positive latching Key－operated release	Black	W $\mathrm{N}=1 \mathrm{~W}$		3SU1000－1HG10－0AA0		1	1 unit
3SU1000-1HG10-0AA0	Mushroom pushbuttons， 60 mm diameter， 2 positions RONIS SB30	With positive latching Rotate to unlatch	Black	［NEW \times		3SU1000－1JB10－0AA0		1	1 unit

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements
EMERGENCY STOP Mushroom pushbuttons

Selection and ordering data

	Version of actuating element	Outer diameter of mushroom	Make of lock	Color	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
		mm			d				
EMERGENCY STOP mushroom pushbuttons									
	With pull-to-unlatch mechanism								
	With positive latching, 2 positions	40	--	Red	-	3SU1000-1HA20-0AA0		1	1 unit

With rotate-to-unlatch mechanism
With p
latching,
2 positions

3SU1000-1HB20-0AA0

33.8

Red
\rightarrow

3SU1000-1JB20-0AA0

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements
EMERGENCY STOP mushroom pushbuttons / toggle switches

Selection and ordering data

Number of switching positions	Number of command points	Color of actuating element	Operating principle of the actuating element	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*

Toggle switches							
2	1	Black	Latching	3	3SU1030-3EA10-0AA0	1	1 unit
			Momentary contact, reset from above	5	3SU1030-3EC10-0AA0	1	1 unit

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements

Selector switches

Selection and ordering data

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements

Key-operated switches

Selection and ordering data

Operating principle	Make of lock	Switch position for key removal	Number of SD keys
	Article No.		

Key-operated switches

3SU1030-4BC01-0AAO
2 switch positions
switch positions
Momentary
contact, 45°
(10:30/12 o'clock),
reset from center
to left

Latching, 90°
(10:30/1:30 o'clock)

O.M.R. 73037,	O	2	3	3SU1030-4FF01-0AAO	1	1 unit
red	O+I	2	3	3SU1030-4FF11-0AAO	1	1 unit
O.M.R. 73038,	O	2	3	3SU1030-4GF01-0AAO	1	1 unit
light blue	O+I	2	3	3SU1030-4GF11-0AAO	1	1 unit
O.M.R. 73034,	O	2	3	3SU1030-4HF01-0AAO	1	1 unit
black	O+I	2	3	3SU1030-4HF11-0AAO	1	1 unit
	I	2	5	3SU1030-4HF21-0AAO	1	1 unit
O.M.R. 73033,	O	2	3	3SU1030-4JF01-0AAO	1	1 unit
yellow	O+I	2	5	3SU1030-4JF11-0AAO	1	1 unit
CES, SSG10	O	2			3SU1030-5BF01-0AAO	1
	O+I	2	-	3SU1030-5BF11-0AAO	1	1 unit
	I	2	3	3SU1030-5BF21-0AAO	1	1 unit
CES, LSG1	O	2	3	3SU1030-5HF01-0AAO	1	1 unit
	O+I	2	3	3SU1030-5HF11-0AAO	1	1 unit

3SU1030-4BF01-0AA0

3SU1030-4FF01-0AA0

3SU1030-5BF01-0AA0

BKS, S1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+\mathrm{I} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 5 \end{aligned}$	3SU1030-5PF01-0AA0 3SU1030-5PF11-0AA0 3SU1030-5PF21-0AA0	1 1 1	1 unit 1 unit 1 unit
BKS, E1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	0	3 5	3SU1030-5QF01-0AA0 3SU1030-5QF11-0AA0	1 1	1 unit 1 unit
BKS, E2	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	3	$\begin{aligned} & \text { 3SU1030-5RF01-0AA0 } \\ & \text { 3SU1030-5RF11-0AAO } \end{aligned}$	1 1	1 unit 1 unit
BKS, E7	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	0	-	$\begin{aligned} & \text { 3SU1030-5SF01-0AA0 } \\ & \text { 3SU1030-5SF11-0AA0 } \end{aligned}$	1 1	1 unit 1 unit
BKS, E9	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	0	3 3	$\begin{aligned} & \text { 3SU1030-5TF01-0AA0 } \\ & \text { 3SU1030-5TF11-0AA0 } \end{aligned}$	1 1	1 unit 1 unit
$\begin{aligned} & \text { IKON, } \\ & 360012 \mathrm{~K} 1 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	2	3	$\begin{aligned} & \text { 3SU1030-5XF01-0AA0 } \\ & \text { 3SU1030-5XF11-0AA0 } \end{aligned}$	1	1 unit 1 unit

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements
Key-operated switches

Operating principle	Make of lock	Switch position for key removal	Number of SD keys	Article No.	Price per PU	PU (UNIT, SET, M)	PS*

d
Key-operated switches

Push Button Units and Indicator Lights

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements
Key-operated switches /

| Operating principle | Make of lock | Switch
 position for
 key
 removal | Article No. |
| :--- | :--- | :--- | :--- | :--- |

Key-operated switches

3 switch positions

Momentary contact/
latching, $2 \times 45^{\circ}$
(10:30/12) 1:30 o'clock), reset from left, latching to the right

RONIS, SB30	$\begin{aligned} & \mathrm{O} \\ & \text { ॥ } \\ & \mathrm{O}+\\| 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1030-4BP01-0AA0 3SU1030-4BP31-0AA0 3SU1030-4BP61-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
CES, SSG10	$\begin{aligned} & \mathrm{O} \\ & \text { ॥ } \\ & \mathrm{O}+\\| \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 3 \end{aligned}$	3SU1030-5BP01-0AA0 3SU1030-5BP31-0AA0 3SU1030-5BP61-0AAO	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
BKS, S1	0	2	3	3SU1030-5PP01-0AA0	1	1 unit
RONIS, SB30	$\begin{aligned} & \mathrm{O} \\ & 1 \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3SU1030-4BN01-0AAO 3SU1030-4BN21-0AAO 3SU1030-4BN51-0AAO	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
O.M.R. 73038, light blue O.M.R. 73034, black	O	2 2	5 5	3SU1030-4GN01-0AAO 3SU1030-4HN21-0AAO	1 1	1 unit 1 unit
CES, SSG10	$\begin{aligned} & \mathrm{O} \\ & 1 \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	3SU1030-5BN01-0AA0 3SU1030-5BN21-0AA0 3SU1030-5BN51-0AAO	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
BKS, S1	$\begin{aligned} & 1 \\ & \mathrm{O}+1 \end{aligned}$	2	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1030-5PN21-0AA0 } \\ & \text { 3SU1030-5PN51-0AA0 } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	1 unit 1 unit
$\begin{aligned} & \hline \text { IKON, } \\ & 360012 \mathrm{~K} 1 \end{aligned}$	O+I	2	5	3SU1030-5XN51-0AA0	1	1 unit

RONIS, SB30	$\begin{aligned} & \mathrm{O} \\ & \text { ॥ } \\ & \mathrm{O}+11 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1030-4BP01-0AA0 3SU1030-4BP31-0AA0 3SU1030-4BP61-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	
CES, SSG10	$\begin{aligned} & \mathrm{O} \\ & \text { ॥ } \\ & \mathrm{O}+\\| \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 3 \end{aligned}$	3SU1030-5BP01-0AA0 3SU1030-5BP31-0AA0 3SU1030-5BP61-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	
BKS, S1	0	2	3	3SU1030-5PP01-0AA0	1	1 unit	
RONIS, SB30	$\begin{aligned} & \mathrm{O} \\ & 1 \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3SU1030-4BN01-0AA0 3SU1030-4BN21-0AAO 3SU1030-4BN51-0AAO	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	
O.M.R. 73038, light blue O.M.R. 73034, black	0	2 2	5 5	3SU1030-4GN01-0AAO 3SU1030-4HN21-0AAO	1 1	1 unit 1 unit	
CES, SSG10	$\begin{aligned} & \mathrm{O} \\ & \mathrm{l} \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	3SU1030-5BN01-0AA0 3SU1030-5BN21-0AAO 3SU1030-5BN51-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	
BKS, S1	$\begin{aligned} & 1 \\ & 0+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1030-5PN21-0AA0 } \\ & \text { 3SU1030-5PN51-0AA0 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	
$\begin{aligned} & \hline \text { IKON, } \\ & 360012 \mathrm{~K} 1 \end{aligned}$	$\mathrm{O}+1$	2	5	3SU1030-5XN51-0AA0	1	1 unit	

d

Latching/momentary
contact, $2 \times 45^{\circ}$
(10:30/21
$1: 300^{\prime}$ clock),
reset from right, latch-

RONIS, SB30	$\begin{aligned} & \mathrm{O} \\ & \text { ॥ } \\ & \mathrm{O}+11 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1030-4BP01-0AA0 3SU1030-4BP31-0AA0 3SU1030-4BP61-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	
CES, SSG10	$\begin{aligned} & \mathrm{O} \\ & \text { ॥ } \\ & \mathrm{O}+\\| \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 3 \end{aligned}$	3SU1030-5BP01-0AA0 3SU1030-5BP31-0AA0 3SU1030-5BP61-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	
BKS, S1	0	2	3	3SU1030-5PP01-0AA0	1	1 unit	
RONIS, SB30	$\begin{aligned} & \mathrm{O} \\ & 1 \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1030-4BN01-0AA0 3SU1030-4BN21-0AAO 3SU1030-4BN51-0AAO	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	
O.M.R. 73038, light blue O.M.R. 73034, black	0	2 2	5 5	3SU1030-4GN01-0AAO 3SU1030-4HN21-0AAO	1 1	1 unit 1 unit	
CES, SSG10	$\begin{aligned} & \mathrm{O} \\ & 1 \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3SU1030-5BN01-0AAO } \\ & \text { 3SU1030-5BN21-0AAO } \\ & \text { 3SU1030-5BN51-0AAO } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit	
BKS, S1	$\begin{aligned} & 1 \\ & 0+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1030-5PN21-0AA0 } \\ & \text { 3SU1030-5PN51-0AA0 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	
$\begin{aligned} & \hline \text { IKON, } \\ & 360012 \mathrm{~K} 1 \end{aligned}$	O+1	2	5	3SU1030-5XN51-0AA0	1	1 unit	

 ing to the left

Selection and ordering data

Operating angle	Operating principle	Switch position for key removal	Color	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
				d				

ID key-operated switches

4 switch positions
$45^{\circ} \quad$ Latching
Key removal possible in all 4 positions
Black \quad 3SU1030-4WS10-0AAO

3SU1030-4WS10-0AA0
For ID keys, see page 11/157.
For electronic modules for ID key-operated switches,
see page 11/118.
For plastic holders for ID key-operated switches,
see page 11/108.

Note:
ID Key Switches requires the use of a plastic holder only!
Purchase 3SU1500-0AA10-0AA0 Holder Separately.

3SU1 22 mm, Plastic with Metal Front Ring, Matte - Actuating and Signaling Elements

Indicator lights

Selection and ordering data

	Product function Locking in zero position	Number of switching positions	Operating principle	Direction of actuation	SD	Article No.	Price per PU		PS*
		d							
Coordinate switches									
	No	2	Momentary contact	Horizontal Vertical	∇	$\begin{aligned} & \text { 3SU1030-7AC10-0AA0 } \\ & \text { 3SU1030-7AD10-0AAO } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
			Latching	Horizontal Vertical	i	$\begin{aligned} & \text { 3SU1030-7AA10-0AA0 } \\ & \text { 3SU1030-7AB10-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
		4	Momentary contact	Horizontal/ Vertical	-	3SU1030-7AF10-0AA0		1	1 unit
			Latching	Horizontal/ Vertical	-	3SU1030-7AE10-0AA0		1	1 unit
cras	Yes	2	Momentary contact	Horizontal Vertical		$\begin{aligned} & \text { 3SU1030-7BC10-0AAO } \\ & \text { 3SU1030-7BD10-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
			Latching	Horizontal Vertical	i	$\begin{aligned} & \text { 3SU1030-7BA10-0AA0 } \\ & \text { 3SU1030-7BB10-0AA0 } \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
		4	Momentary contact	Horizontal/ Vertical	-	3SU1030-7BF10-0AA0		1	1 unit
			Latching	Horizontal/ Vertical	-	3SU1030-7BE10-0AA0		1	1 unit

Selection and ordering data

| Type of
 product | Color |
| :--- | :---: | :---: | :---: | :---: |

3SU1001-6AA20-0AA0
Indicator lights in illuminated pushbutton design

Amber Red Yellow Green Blue White Clear	3	3SU1001-6AA00-0AAO 3SU1001-6AA20-0AAO 3SU1001-6AA30-0AAO 3SU1001-6AA40-0AAO 3SU1001-6AA50-0AAO 3SU1001-6AA60-0AAO 3SU1001-6AA70-0AAO	1 1	1 unit 1 unit
Red Yellow Green Blue Clear	3 5 3 5 3	$\begin{aligned} & \text { 3SU1031-0AD20-0AAO } \\ & \text { 3SU1031-0AD30-0AAO } \\ & \text { 3SU1031-0AD40-0AA0 } \\ & \text { 3SU1031-0AD50-0AAO } \\ & \text { 3SU1031-0AD70-0AAO } \end{aligned}$	1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit

3SU1031-OAD50-0AA0

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Complete Units

Pushbuttons

Selection and ordering data

Supply voltage for light source		Color	Number of			SD	Screw terminals	(1)	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
at AC	at DC		Contact modules	NO contacts	NC contacts					
V	V					d	Article No.	Price per PU		

Pushbuttons

Pushbuttons with flat button, momentary contact

Black	1	1	0	
		0	1	3
	1	1	$>$	
Red	1	1	0	5
		0	1	$>$
		1	1	$>$
Yellow	1	1	0	3
		1	1	5
Green	1	1	0	
		1	1	
Blue	1	1	0	3
		1	1	5
White	1	1	0	3
		1	1	3
Clear	1	1	0	5
		1	1	5

	3SU1150-0AB10-1BAO	1	1 unit
3	3SU1150-0AB10-1CAO	1	1 unit
	3SU1150-0AB10-1FA0	1	1 unit
5	3SU1150-0AB20-1BAO	1	1 unit
	3SU1150-0AB20-1CAO	1	1 unit
$>$	3SU1150-0AB20-1FA0	1	1 unit
3	3SU1150-0AB30-1BAO	1	1 unit
5	3SU1150-0AB30-1FA0	1	1 unit
	3SU1150-0AB40-1BAO	1	1 unit
$>$	3SU1150-0AB40-1FA0	1	1 unit
3	3SU1150-0AB50-1BAO	1	1 unit
5	3SU1150-0AB50-1FA0	1	1 unit
3	3SU1150-0AB60-1BAO	1	1 unit
3	3SU1150-0AB60-1FA0	1	1 unit
5	3SU1150-0AB70-1BAO	1	1 unit
5	3SU1150-0AB70-1FA0	1	1 unit

Pushbuttons with raised button, momentary contact

3SU1150-0BB20-1CA0

| Black | 1 | 1 | 0 | 5 | 3SU1150-0BB10-1BAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 0 | 1 | 5 | 3SU1150-0BB10-1CAO | 1 | 1 unit |
| | | 1 | 1 | 5 | 3SU1150-0BB10-1FAO | 1 | 1 unit |
| Red | 1 | 0 | 1 | 3 | 3SU1150-0BB20-1CAO | 1 | 1 unit |
| | | 1 | 1 | 5 | 3SU1150-0BB20-1FA0 | 1 | 1 unit |
| Green | 1 | 1 | 1 | 5 | 3SU1150-0BB40-1FAO | 1 | 1 unit |
| Blue | 1 | 1 | 0 | 5 | 3SU1150-0BB50-1BAO | 1 | 1 unit |
| | | 1 | 1 | 5 | 3SU1150-0BB50-1FAO | 1 | 1 unit |
| | | | | | | | |

IIluminated pushbuttons with flat button, momentary contact, with integrated LED

2424

3SU1152-0AB50-1BAO

Amber	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1152-0AB00-1BA0 } \\ & \text { 3SU1152-0AB00-1FAO } \end{aligned}$	1	1 unit 1 unit
Red	1	0	1	-	3SU1152-0AB20-1CA0	1	1 unit
		1	1	-	3SU1152-0AB20-1FA0	1	1 unit
Yellow	1	1	0	-	3SU1152-0AB30-1BAO	1	1 unit
		1	1	3	3SU1152-0AB30-1FA0	1	1 unit
Green	1	1	0	-	3SU1152-0AB40-1BA0		1 unit
		1	1	\checkmark	3SU1152-0AB40-1FA0	1	1 unit
Blue	1	1	0	-	3SU1152-0AB50-1BA0	1	1 unit
		1	1	5	3SU1152-0AB50-1FA0	1	1 unit
White	1	1	0	-	3SU1152-0AB60-1BA0	1	1 unit
		1	1	-	3SU1152-0AB60-1FA0	1	1 unit
Clear	1	1	0	-	3SU1152-0AB70-1BA0	1	1 unit
		1	1	\checkmark	3SU1152-0AB70-1FA0	1	1 unit
Amber	1	,	0	5	3SU1153-0AB00-1BA0	1	1 unit
		1	1	5	3SU1153-0AB00-1FA0	1	1 unit
Red	1	0	1	5	3SU1153-0AB20-1CA0	1	1 unit
		1	1	5	3SU1153-0AB20-1FA0	1	1 unit
Yellow	1	1	0	5	3SU1153-0AB30-1BA0	1	1 unit
		1	1	5	3SU1153-0AB30-1FA0	1	1 unit
Green	1	1	0	3	3SU1153-0AB40-1BA0	1	1 unit
		1	1	5	3SU1153-0AB40-1FA0	1	1 unit
Blue	1	1	0	5	3SU1153-0AB50-1BA0	1	1 unit
		1	1	5	3SU1153-0AB50-1FA0	1	1 unit
White	1	1	0	5	3SU1153-0AB60-1BAO	1	1 unit
		1	1	5	3SU1153-0AB60-1FA0	1	1 unit
Clear	1	1	0	5	3SU1153-0AB70-1BA0	1	1 unit
		1	1	5	3SU1153-0AB70-1FA0	1	1 unit
Amber	1	1	0	5	3SU1156-0AB00-1BAO	1	1 unit
		1	1	5	3SU1156-0AB00-1FA0	1	1 unit
Red	1	0	1	5	3SU1156-0AB20-1CA0	1	1 unit
		1	1	5	3SU1156-0AB20-1FA0	1	1 unit
Yellow	1	1	0	5	3SU1156-0AB30-1BAO	1	1 unit
		1	1	5	3SU1156-0AB30-1FA0	1	1 unit
Green	1	1	0	3	3SU1156-0AB40-1BA0	1	1 unit
		1	1	5	3SU1156-0AB40-1FA0	1	1 unit

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Complete Units

Pushbuttons

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Complete Units

Mushroom pushbuttons / EMERGENCY STOP mushroom pushbuttons

Selection and ordering data

Mushroom pushbuttons

3SU1150-1BA20-1CA0

Selection and ordering data

EMERGENCY STOP mushroom pushbuttons, in accordance with ISO 13850 and IEC 60947-5-5

With red mushroom, diameter 40 mm, with positive latching

Pull to unlatch	1	0	1	EMERGENCY STOP	Θ	5	3SU1150-1HA20-1CG0		1	1 unit
	1	0	1	NOT-HALT	Θ	5	3SU1150-1HA20-1CH0		1	1 unit
		1	1	EMERGENCY STOP	Θ	5	3SU1150-1HA20-1FG0		1	1 unit
		1	1	NOT-HALT	Θ	5	3SU1150-1HA20-1FH0		1	1 unit
Rotate to unlatch	1	0	1	$\begin{aligned} & \text { EMERGENCY } \\ & \text { STOP } \end{aligned}$	Θ	3	3SU1150-1HB20-1CG0		1	1 unit
	1	0	1	NOT-HALT	Θ	\checkmark	3SU1150-1HB20-1CH0		1	1 unit
		1	1	EMERGENCY STOP	Θ	5	3SU1150-1HB20-1FG0		1	1 unit
		1	1	NOT-HALT	Θ	-	3SU1150-1HB20-1FH0		1	1 unit
							Spring-type terminals	00		
Pull to unlatch	1	0	1	NOT-HALT	Θ	5	3SU1150-1HA20-3CH0		1	1 unit
	2	0	2	NOT-HALT	Θ	5	3SU1150-1HA20-3FH0		1	1 unit
	2	0	2	NOT-HALT	Θ	5	3SU1150-1HA20-3PH0		1	1 unit
Rotate to unlatch	1	0	1	NOT-HALT	Θ	5	3SU1150-1HB20-3CH0		1	1 unit
	2	0	2	NOT-HALT	Θ	5	3SU1150-1HB20-3FH0		1	1 unit
	2	0	2	NOT-HALT	Θ	5	3SU1150-1HB20-3PH0		1	1 unit

Illuminated EMERGENCY STOP with integrated LED light module, Rated 24-240V AC/DC
Red button, yellow backing plate, self-adhesive label with text:

Rotate to unlatch	2	1	1	EMERGENCY STOP	5	A6X30120577	1	1 unit
Red button, yellow backing plate, self-adhesive label with text:								
Rotate to unlatch	2	1	2	EMERGENCY STOP	5	A6X30120587	1	1 unit
Red button, installed-monitoring contact modules, yellow backing plate, self-adhesive label with text								
Rotate to unlatch	2	0	2 MC	EMERGENCY STOP	5	A6X30120588	1	1 unit

Θ Positive opening according to IEC 60947-5-1, Annex K.
Can be used with 3SK11 safety relays or the
3RK3 Modular Safety System, \qquad
Switches and Safety

3SU1 22 mm, Metal, Shiny - Complete Units

Selector switches / key-operated switches

ILLUMINATED EMERGENCY STOP mushroom pushbuttons,
in accordance with ISO 13850 and IEC 60947-5-5 NEW

With red mushroom, diameter 40 mm , with positive latching

Rotate to unlatch	$\begin{aligned} & 24 \ldots \\ & 240 \end{aligned}$	$\begin{aligned} & 24 \ldots \\ & 240 \end{aligned}$	1	0	2	EMERGENCY	$\Theta 5$	3SU1158-1HB20-1PT0	1	1 unit

3SU1158-1HB20-1PT0
Θ Positive opening according to IEC 60947-5-1, Annex K.
Can be used with 3SK11 safety relays or the 3RK3 Modular Safety System, see Section 13 Limit Switches and Safety. Certificate:

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Complete Units

Coordinate switches

Selection and ordering data

Operating principle	Switch	Number of			Num-	SD	Screw terminals	(1)	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$
	position for key removal	Contact modules	NO contacts	NC contacts	ber of keys				
						d	Article No.	Price per PU	

Key-operated switches

With RONIS lock, SB30, 2 switch positions

$\begin{aligned} & \text { Latching, } 90^{\circ} \\ & (10: 30 / \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	1	1	0	2 2	3 3	$\begin{aligned} & \text { 3SU1150-4BF11-1BA0 } \\ & \text { 3SU1150-4BF11-1FAO } \end{aligned}$		1	1 unit 1 unit
1:30 o'clock)							Spring-type terminals	00		
	All	1	1	0	2	5	3SU1150-4BF11-3BA0		1	1 unit
	All		1		2	5	3SU1150-4BF11-3FA0		1	1 unit
	O	2	0	2	2	5	3SU1150-4BF01-3PA0		1	1 unit

3SU1150-4BF11-1BA0

Selection and ordering data

Number of NO contacts (1 per direction)	Operating principle	Direction of actuation	SD	Screw terminals		$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
			d	Article No.	Price per PU		

Coordinate switches

Without mechanical interlock, 2 switch positions

2 Momentary contact | | Horizontal | 5 | 3SU1150-7AC88-1NAO | 1 | 1 unit | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Vertical | 5 | 3SU1150-7AD88-1NAO | 1 | 1 unit | |
| | Latching | Horizontal | 5 | 3SU1150-7AA88-1NAO | 1 | 1 unit |
| | Vertical | 5 | 3SU1150-7AB88-1NAO | 1 | 1 unit | |
| | | | | | | |

Without mechanical interlock, 4 switch positions

3SU1150-7AF88-1QA0

| Momentary contact | Horizontal/Vertical | 3 | 3SU1150-7AF88-1QAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Latching | Horizontal/Vertical | 5 | 3SU1150-7AE88-1QA0 | 1 | 1 unit |

With mechanical interlock, 2 switch positions

2	Momentary contact	Horizontal Vertical	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1150-7BC88-1NA0 } \\ & \text { 3SU1150-7BD88-1NA0 } \end{aligned}$	1	1 unit 1 unit
	Latching	Horizontal	5	3SU1150-7BA88-1NA0	1	1 unit
		Vertical	5	3SU1150-7BB88-1NA0	1	1 unit

With mechanical interlock, 4 switch positions

3SU1150-7BF88-1QA0

| Momentary contact | Horizontal/Vertical | 5 | 3SU1150-7BF88-1QA0 | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Latching | Horizontal/Vertical | 5 | 3SU1150-7BE88-1QA0 | 1 | 1 unit |

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Complete Units

Indicator lights

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Compact Units

Pushbuttons with extended stroke

Selection and ordering data

3SU1 22 mm，Metal，Shiny－Actuating and Signaling Elements

Pushbuttons

Selection and ordering data

Version of actuating element Front ring version	Operating principle Unlatching method	Color， marking	SD	Article No．

Pushbuttons

Pushbuttons

with flat button

Momentary contact	Black	－	3SU1050－0AB10－0AA0	1	1 unit
	Black，＂O＂	－	3SU1050－0AB10－0AD0	1	1 unit
	Red	－	3SU1050－0AB20－0AA0	1	1 unit
	Red，＂O＂	－	3SU1050－0AB20－0AD0	1	1 unit
	Yellow	3	3SU1050－0AB30－0AA0	1	1 unit
	Green	－	3SU1050－0AB40－0AA0	1	1 unit
	Green，＂I＂	－	3SU1050－0AB40－0AC0	1	1 unit
	Blue	3	3SU1050－0AB50－0AA0	1	1 unit
	Blue，＂R＂	5	3SU1050－0AB50－0AR0	1	1 unit
	White	3	3SU1050－0AB60－0AA0	1	1 unit
	White，＂\odot＂	5	3SU1050－0AB60－0AB0	1	1 unit
	White，＂I＂	－	3SU1050－0AB60－0AC0	1	1 unit
	Clear	3	3SU1050－0AB70－0AA0	1	1 unit
	Gray	－	3SU1050－0AB80－0AA0	1	1 unit
Latching	Black	－	3SU1050－0AA10－0AA0	1	1 unit
Push to unlatch	Red	－	3SU1050－0AA20－0AA0	1	1 unit
	Yellow	－	3SU1050－0AA30－0AA0	1	1 unit
	Green	－	3SU1050－0AA40－0AA0	1	1 unit
	Blue	$\stackrel{ }{ }$	3SU1050－0AA50－0AA0	1	1 unit
	White	－	3SU1050－0AA60－0AA0	1	1 unit

Pushbuttons with raised	Momentary contact	Black	3	3SU1050－0BB10－0AA0	1	1 unit
button		Red	－	3SU1050－0BB20－0AA0	1	1 unit
Standard		Yellow	－	3SU1050－0BB30－0AA0	1	1 unit
		Green	－	3 SU1050－0BB40－0AA0	1	1 unit
		Blue	－	3 U1050－0BB50－0AA0	1	1 unit
		White	\checkmark	3SU1050－0BB60－0AA0	1	1 unit
	Latching	Red	5	3SU1050－0BA20－0AA0	1	1 unit

Push to unlatch

Pushbuttons	Momentary contact	Black	5	3SU1050－0CB10－0AAO	1
with flat button	Red	5	3SU1050－0CB20－0AAO	1	1 unit
Raised		Yellow	5	3SU1050－0CB30－0AAO	1
	Green	5	3SU1050－0CB40－0AAO	1	1 unit
		Blue	5	3SU1050－0CB500AAO	1
	White	5	3SU1050－0CB60－0AAO	1 unit	
				1	1 unit

3SU1050－0CB50－0AA0

| lilluminated pushbuttons | Momentary contact | Green | X | 3SU1051－0CB40－0AA0 | 1 | 20 units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

with flat button
Raised

3SU1051－0CB40－0AA0
Standard

Pushbuttons with raised Momentary contact
Standard

Momentary contact
unit with flat button
Raised

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Pushbuttons

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Twin pushbuttons

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Mushroom pushbuttons

Selection and ordering data

| Version of
 actuating element | Operating principle
 Unlatching method | SD | Article No. |
| :--- | :--- | :--- | :--- | :--- | :--- |

Mushroom pushbuttons

2 switch positions
Mushroom pushbuttons Momentary contact Black
Mushroom pushbuttons Momentary contact Black \quad 3SU1050-1AD10-0AAO - 1 - 1 unit
2 positions
2 positions

3SU1050-1AD20-0AA0

Mushroom pushbuttons Momentary contact
40 mm diameter,
2 positions

3SU1050-1BD30-0AA0

Mushroom pushbuttons Momentary contact 60 mm diameter,
2 positions

3SU1050-1CD40-0AAO

Mushroom pushbuttons	Momentary contact	Yellow	5
30 mm diameter,		Green	5
2 positions,	Blue	INEW	5
illuminated		White	5
		Amber	5
	Latching	Red	5
	Pull to unlatch	Yellow	5
		Green	5
	Blue	5	
	Clear	5	

3SU1051-1AD60-0AA0

Mushroom pushbuttons Momentary contact
40 mm diameter,
2 pos diameter,
2 positions,
illuminated

3SU1051-1BD40-0AA0

3SU1051-1CA50-0AAO

Mushroom pushbuttons Momentary contact

60 mm diameter,

Momentary contact	Amber	5
None	Yellow	5
	Green	5
	White	5
Latching	Red	5
Pull to unlatch	Yellow	5
	Green	5
	Blue	5
	Clear	5

3SU1051-1CDOO-0AAO	1	1 unit
3SU1051-1CD30-0AAO	1	1 unit
3SU1051-1CD40-0AAO	1	1 unit
3SU1051-1CD60-0AAO	1	1 unit
3SU1051-1CA20-0AAO	1	1 unit
3SU1051-1CA30-0AAO	1	1 unit
3SU1051-1CA40-0AAO	1	1 unit
3SU1051-1CA50-0AAO	1	1 unit
3SU1051-1CA70-0AAO	1	1 unit

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Mushroom pushbuttons / EMERGENCY STOP mushroom pushbuttons

Selection and ordering data

Version of actuating element	Outer diameter of mushroom	Make of lock	Color	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*

EMERGENCY STOP mushroom pushbuttons,
in accordance with ISO 13850 and IEC 60947-5-5

With pull-to-unlatch mechanism
With
positive
latching,
2 positions

3SU1050-1HA20-0AAO

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

EMERGENCY STOP mushroom pushbuttons

Version of actuating element	Outer diameter of mushroom	Make of lock Color	Number of SD keys	Article No.	Price PU (UNIT, per PU SET, M)
			d		

EMERGENCY STOP mushroom pushbuttons, in accordance with ISO 13850 and IEC 60947-5-5

With rotate-to-unlatch mechanism

With rotate-to-unlatch mechanism							1	1 unit
With	40	--	Red	--	\checkmark	3SU1050-1HB20-0AA0		
	60	--	Red	--	5	3SU1050-1JB20-0AA0	1	1 unit
With latching,	40	--	Red	--	INEW 3	3SU1050-1LB20-0AA0	1	1 unit

3SU1050-1HB20-0AAO

3SU1050-1JB20-0AA0
With rotate-to-unlatch mechanism, can be illuminated

3SU1051-1HB20-0AA0
With key-operated release

With
positive
latching,
2 positions

40

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Toggle switches / Selector switches

Selection and ordering data

Selection and ordering data

| Version of
 actuating element | Operating principle | Color |
| :--- | :--- | :--- | :--- | :--- |

Selector switches							
	2 switch positions, can be illuminated						
	Selector, short black actuator	Momentary contact, 45° (10:30/12 o'clock), reset from center to left	Black Red Yellow Green Blue White	$\begin{aligned} & 3 \\ & 5 \\ & 5 \\ & 3 \\ & 3 \end{aligned}$	3SU1052-2BC10-0AA0 3SU1052-2BC20-0AAO 3SU1052-2BC30-0AAO 3SU1052-2BC40-0AAO 3SU1052-2BC50-0AAO 3SU1052-2BC60-0AAO	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
		Latching, 90° (10:30/1:30 o'clock)	Amber Black Red Yellow Green Blue White		3SU1052-2BF00-0AA0 3SU1052-2BF10-0AAO 3SU1052-2BF20-0AAO 3SU1052-2BF30-0AAO 3SU1052-2BF40-0AAO 3SU1052-2BF50-0AAO 3SU1052-2BF60-0AAO	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit
	Selector, long black actuator	Momentary contact, 45° (10:30/12 o'clock), reset from center to left	Black Yellow Green Blue White	5 5 5 5 5	$\begin{aligned} & \text { 3SU1052-2CC10-0AAO } \\ & \text { 3SU1052-2CC30-0AAO } \\ & \text { 3SU1052-2CC40-0AAO } \\ & \text { 3SU1052-2CC50-0AAO } \\ & \text { 3SU1052-2CC60-0AAO } \end{aligned}$	1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
3SU1052-2CF60-0AA0		Latching, 90° (10:30/1:30 o'clock)	Black Red Yellow Green Blue White	5 5 5 5 5 5	3SU1052-2CF10-0AA0 3SU1052-2CF20-0AA0 3SU1052-2CF30-0AA0 3SU1052-2CF40-0AA0 3SU1052-2CF50-0AA0 3SU1052-2CF60-0AA0	1 1 1 1 1 1	1 unit 1 unit

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Selector switches

Push Button Units and Indicator Lights

3SU1 22 mm，Metal，Shiny－Actuating and Signaling Elements

Selector switches

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Key-operated switches

Selection and ordering data

Operating principle Make of lock	Switch posi- Number tion for key of keys removal	SD Article No.	Price per PU	PU $(U N I T$,
SET, M)				

Key-operated switches

3SU1050-4BC01-0AA0

2 switch positions

3SU1050-4BF01-0AA0

3SU1050-4GF11-0AAO

3SU1050-5BF01-0AA0

3SU1050-5PF01-0AA0

\qquad

$\begin{aligned} & \text { O.M.R. 73037, } \\ & \text { red } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1050-4FF01-0AA0 3SU1050-4FF11-0AA0 3SU1050-4FF21-0AA0	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
O.M.R. 73038, light blue	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1050-4GF01-0AA0 3SU1050-4GF11-0AA0 3SU1050-4GF21-0AAO	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
O.M.R. 73034, black	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1050-4HF01-0AA0 3SU1050-4HF11-0AA0 3SU1050-4HF21-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
O.M.R. 73033, yellow	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1050-4JF01-0AA0 3SU1050-4JF11-0AA0 3SU1050-4JF21-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
CES, SSG10	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \\ & \mathrm{l} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 5 \end{aligned}$	3SU1050-5BF01-0AA0 3SU1050-5BF11-0AA0 3SU1050-5BF21-0AA0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
CES, SSG10 with key monitoring	0	2	NNEW 5	3SU1050-5JF01-0AA0	1	1 unit
CES, LSG1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SU1050-5HF01-0AA0 3SU1050-5HF11-0AA0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
CES, VL5	0	2	5	3SU1050-5KF01-0AA0	1	1 unit
CES, STGH10	$\mathrm{O}+1$	2	5	3SU1050-5LF11-0AA0	1	1 unit
BKS, S1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+\mathrm{I} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3SU1050-5PF01-0AA0 3SU1050-5PF11-0AA0 3SU1050-5PF21-0AA0	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
BKS, E1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1050-5QF01-0AAO } \\ & \text { 3SU1050-5QF11-0AAO } \end{aligned}$	1 1	1 unit 1 unit
BKS, E2	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	3SU1050-5RF01-0AA0 3SU1050-5RF11-0AA0	1 1	1 unit 1 unit
BKS, E7	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1050-5SF01-0AA0 } \\ & \text { 3SU1050-5SF11-0AA0 } \end{aligned}$	1	1 unit 1 unit
BKS, E9	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1050-5TF01-0AAO } \\ & \text { 3SU1050-5TF11-0AAO } \end{aligned}$	1 1	1 unit 1 unit
IKON, 360012K1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O}+1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1050-5XF01-0AA0 } \\ & \text { 3SU1050-5XF11-0AA0 } \end{aligned}$	1	1 unit 1 unit

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Key-operated switches

Push Button Units and Indicator Lights

3SU1 22 mm, Metal, Shiny - Actuating and Signaling Elements

Key-operated switches / Indicator lights

Selection and ordering data

	Number of NO contacts (1 per direction)	Operating principle	Direction of actuation	SD	Screw terminals	(1)	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
				d	Article No.	Price per PU		
Coordinate switches								
	Without mechanical interlock, 2 switch positions							
	2	Momentary contact	Horizontal Vertical	$\stackrel{\rightharpoonup}{\nabla}$	3SU1050-7AC88-0AA0 3SU1050-7AD88-0AAO		1	1 unit 1 unit
		Latching	Horizontal	-	3SU1050-7AA88-0AAO		1	1 unit
			Vertical	\downarrow	3SU1050-7AB88-0AAO		1	1 unit
	Without mechanical interlock, 4 switch positions							
	4	Momentary contact	Horizontal/Vertical	-	3SU1050-7AF88-0AA0		1	1 unit
		Latching	Horizontal/Vertical	-	3SU1050-7AE88-0AA0		1	1 unit
	With mechanical interlock, 2 switch positions							
	2	Momentary contact	Horizontal Vertical	$>$	$\begin{aligned} & \text { 3SU1050-7BC88-0AAO } \\ & \text { 3SU1050-7BD88-0AAO } \end{aligned}$		1	1 unit 1 unit
		Latching	Horizontal Vertical	i	$\begin{aligned} & \text { 3SU1050-7BA88-0AAO } \\ & \text { 3SU1050-7BB88-0AAO } \end{aligned}$		1	1 unit 1 unit
	With mechanical interlock, 4 switch positions							
	4	Momentary contact	Horizontal/Vertical	-	3SU1050-7BF88-0AA0		1	1 unit
		Latching	Horizontal/Vertical	-	3SU1050-7BE88-0AA0		1	1 unit

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 30 mm, Round, Metal, Matte - Actuating \& Signaling Elements

Pushbuttons

Overview

Actuators and indicators, flat, 30 mm , metal, matte, including adapter (adapter included in scope of supply)

Selection and ordering data

Push Button Units and Indicator Lights
3SU1 30 mm, Round, Metal, Matte - Actuating \& Signaling Elements
Selector switches

Selection and ordering data

Push Button Units and Indicator Lights

3SU1 30 mm, Round, Metal, Matte - Actuating \& Signaling Elements

Key-operated switches / Indicator lights

Selection and ordering data

	Make of lock	Operating principle	Switch position for key removal	Number of keys	SD	Article No.	Price per PU		PS*
	d								
Key-operated switches									
	RONIS, SB30 and front ring for flat installation	ions Momentary contact, 45° (10:30/12 o'clock), reset from center to left	0	2	5	3SU1060-4LC01-0AAO		1	1 unit
3SU1060-4LF11-0AA0		Latching, 90° (10:30/1:30 o'clock)	$\mathrm{O}+\mathrm{I}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 3SU1060-4LF11-0AAO } \\ & \text { 3SU1060-4LF21-0AA } \end{aligned}$		1	1 unit 1 unit
	3 switch positions				5			1	1 unit
	RONIS, SB30 and front ring for flat installation	Latching, $2 \times 45^{\circ}$ (10:30/12/ 1:30 o'clock)	$1+\mathrm{O}+11$	2		3SU1060-4LL11-0AA0			
	3 switch positions		I+O+II	2	5	3SU1060-4LL11-0AA0		1	1 unit
	RONIS, SB30 and front ring for flat installation	Latching, $2 \times 45^{\circ}$ (10:30/12/ 1:30 o'clock)							
3SU1060-4LL11-0AA0		Momentary contact, $2 \times 45^{\circ}$ (10:30/12/ 1:30 o'clock)	O	2 N $N=W$	5	3SU1060-4LM01-0AA0		1	1 unit

Selection and ordering data

	Version	Color	SD	Article No.	Price per PU

Actuators and Indicators, Customized Designs

Special locks

Options

Special locks for key-operated switches

The plastic and metal key-operated switches of type RONIS, BKS, CES and IKON can be optionally ordered with additional locks.

In this case "-Z", the order code "Y01" and the required lock number must be added to the article number of the relevant key-operated switch for standard locking.

Order code	Y01
Standard delivery time	25 working days
Additional price per unit	On request
Ordering example	3SU1000-5BF01-0AA0-Z
	Y01
	Z SSG18

Ordering notes

- For all special locks, an additional price applies.
- The order code "Y01" must be quoted in accordance with the above table. Automated processing of the order with a defined delivery time can be guaranteed only for correctly submitted orders.
- For applications in which access security is important and several lock numbers are used, we recommend the use of BKS or CES key-operated switches.
- Special locks for VW (E1, E2, ...) will be delivered without keys, all others with 2 keys.
- With RONIS, the special locks SB31, 421 and 455 are possible.

Master and master-pass key systems

The following key systems can be supplied with BKS, CES or IKON key-operated switches:

- Central lock systems
- Master key systems
- Central master key systems
- Master-pass key systems

When placing an order you must supplement the article number of the matching key-operated switches with "-Z" and quote the order code "Y03"
Price and delivery time on request.
Email: sirius-attach.aud@siemens.com

Example of master-pass key system

Actuators and Indicators, Customized Designs

Contact Block Selection Table for Selector Switches, Key-operated Switches, and 3-position push-pull

Selection and Ordering Data

Switch Position (front of switch) Left Right	Contact Block Circuit	Contact Block Position ${ }^{1)}$	Contact Block Order No.
Two-Position Selector Switch Contact Block Selection			
\checkmark			
$0 \quad \mathrm{X}$	1 NO	Any Position	3SU1400-1AA10-1BA0
X	1 NC	Any Position	3SU1400-1AA10-1CA0
$\begin{array}{ll} \hline 0 & X \\ X & 0 \end{array}$	$1 \mathrm{NO} / 1 \mathrm{NC}$	Any Position	3SU1400-1AA10-1FA0
$\begin{array}{ll} \hline 0 & X \\ 0 & X \end{array}$	2 NO	Any Position	3SU1400-1AA10-1DA0
x 0 x 0	2 NC	Any Position	3SU1400-1AA10-1EA0
Switch Position (front of switch) Left Center Right	Contact Block Circuit	Contact Block Position ${ }^{1)}$ On Holder Stacked	Contact Block Order No.

Three-Position Selector Switch Contact Block Selection

X	0	0	1 NO	2 or 3A	5 or 6A	3SU1400-1AA10-1BA0
X	0	X	1 NO	3	6	3SU1400-1AA10-1BA0
0	0	X	1 NO	1 or 3B	4 or 6B	3SU1400-1AA10-1BA0
0	X	X	1 NC	2 or 3A	5 or 6A	3SU1400-1AA10-1CA0
0	X	0	1 NC	3	6	3SU1400-1AA10-1CA0
X	X	0	1 NC	1 or 3B	4 or 6B	3SU1400-1AA10-1CA0
$\begin{aligned} & X \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	1 NO/1 NC	2 or 3A	--	3SU1400-1AA10-1FA0
$\begin{aligned} & X \\ & X \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{O} \end{aligned}$	$1 \mathrm{NO} / 1 \mathrm{NC}$	3	--	3SU1400-1AA10-1FA0
$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{O} \end{aligned}$	1 NO/1 NC	1 or 3B	--	3SU1400-1AA10-1FA0
$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	2 NO	2 or 3A	--	3SU1400-1AA10-1DA0
$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	2 NO	3	--	3SU1400-1AA10-1DA0
$\begin{aligned} & \mathrm{O} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	2 NO	1 or 3B	--	3SU1400-1AA10-1DA0
$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	2 NC	2 or 3A	--	3SU1400-1AA10-1EA0
$\begin{aligned} & \mathrm{O} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	2 NC	3	--	3SU1400-1AA10-1EA0
$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	2 NC	1 or 3B	--	3SU1400-1AA10-1EA0

Three-Position Push-Pull Contact Block Selection

Out	Center	In				
X	0	O	1 NO	2 or 3A	5 or 6A	3SU1400-1AA10-1BA0
0	0	X	1 NO	1 or 3B	4 or 6B	3SU1400-1AA10-1BA0
X	X	0	1 NC	1 or 3B	4 or 6B	3SU1400-1AA10-1CA0
0	X	X	1 NC	2 or 3A	5 or 6A	3SU1400-1AA10-1CA0
$\begin{aligned} & 0 \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & 0 \end{aligned}$	$1 \mathrm{NO} / 1 \mathrm{NC}$	2 or 3A	--	3SU1400-1AA10-1FA0
$\begin{aligned} & \mathrm{X} \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	$1 \mathrm{NO} / 1 \mathrm{NC}$	1 or 3B	--	3SU1400-1AA10-1FA0
$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & X \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{x} \end{aligned}$	2 NC	3	--	3SU1400-1AA10-1FA0

Rear View	Plungers Inserted	Center Module Position Numbers	Replace the asterisks in center position numbers 3^{*} or 6*:
	Both	3 or 6	Contact Blocks Position Number will be (3 or 6) when "Both" plungers are installed.
	Right	3B or 6B	Contact Blocks Position Number will be (3B or 6B) when "Right" plunger only is installed.
	Left	3A or 6A	Contact Blocks Position Number will be (3A or 6A) when "Left" plunger only is installed.
	None	None	Both plungers are removed if Center Module Position 3 is used with LED Light Module
X -------------- Contact ClosedO --------- Contact Open3 or 6 ----- Both Plungers Inserted3A or 6A --- Left Plunger Inserted3B or 6B --- Right Plunger Inserted			

1) Single-element Contact Blocks are stackable (2 deep). Dual Contact
Blocks are not stackable.

In order to attach a Light Module to the actuator, both plungers must be removed and Light Module placed in position \#3.

Actuators and Indicators, Customized Designs

Contact Block Selection Table for Selector - Switches and Key-operated Switches

Function Table

${ }^{1)}$ The selector switch position is viewed from the front.
All selector switches are packaged with two plungers, which can be removed manually.

Actuators and Indicators, Customized Designs

Laser inscriptions

Options

Inscription of actuating and signaling elements

Actuating and signaling elements of plastic as well as metal can be optionally inscribed with a laser.

Example of laser inscription
The actuators of the pushbuttons, illuminated pushbuttons, twin pushbuttons, mushroom pushbuttons, illuminated mushroom pushbuttons, EMERGENCY STOP mushroom pushbuttons (without lock), the lenses of the indicator lights, and the acoustic signaling devices can all be inscribed

Version

Text inscriptions have centered alignment and a font height of 4 mm as standard.

The typeface used is Arial. Other letter heights and typefaces are possible, but must be specified when ordering.
The maximum possible number of characters per line is:

- 10 characters for one line of text
- 8 characters for 2 lines of text
- 6 characters for 3 lines of text, but 10 characters in the middle line

Note:

Selected pushbuttons and twin pushbuttons can be supplied as standard with inscribed letters or symbols.

Selector switches, key-operated switches and toggle switches can be inscribed on the front ring only if they are made of plastic (only one text line and the supplement Y19).
Assignment of the positions on the actuator

Ordering notes

To order, the inscribed actuating and signaling elements can be selected via the SIRIUS ACT Configurator. An electronic order form is then generated.
For configurator, see

- www.siemens.com/sirius-act/configurator
- Electronic Catalog CA 01 on DVD or
- Industry Mall: www.siemens.com/industrymall

When ordering, add $\mathbf{- Z}$ and an order code to the article number of the actuator or the indicator light:

- Y10: Text line in upper/lower case, all lines begin with upper case letters (e.g. line 1: Text/line 2: Text)
- Y11: Text in upper case (e.g. LIFT)
- Y12: Text in lower case (e.g. lift/off/lower)
- Y15: Text in upper/lower case, all words begin with upper case letters (e.g. On/Off)
- Y13: Symbol with number according to ISO 7000 or IEC 60417
- Y19: Inscription of choice, text or symbol, can only be ordered via SIRIUS ACT Configurator with a Configuration Identification Number (CIN)
When ordering, specify the required inscription in plain text without spaces, in addition to the article number and order code. In the case of special inscriptions with words in languages other than German, give the exact spelling and specify the language. In the case of symbols with number, quote the corresponding standard (see ordering example 1).
In the case of multi-line inscriptions, the text must be assigned to the respective line, e.g. Z1=Lift, Z2=Lower.
Symbols can also be ordered with numbers according to ISO 7000 or IEC 60417 (see ordering examples 2 and 3).
The SIRIUS ACT Configurator must be used to select special inscriptions and symbols (order code Y19). In this case a CIN (Configuration Identification Number) is generated for placement of future orders. It is then possible to place an order directly using the CIN and the SIRIUS ACT Configurator (Mall shopping cart) or via the standard ordering channels.

Ordering example 1

A round pushbutton with the inscription Reset is required:

3SU1030-0AB20-0AA0-Z

Y10
Z1=Reset

Ordering example 2

A pushbutton inscribed with symbol No. 5389 according to IEC 60417 is required:

3SU1030-0AB20-0AA0-Z

Y13
$Z=5389$ IEC

Ordering example 3

A selector switch with 2 switch positions and multi-line inscription on the front ring is required:

3SU1002-2BF10-0AA0-Z

Z8=0
Z2=1

Push Button Units and Indicator Lights

Holders

Holders without module

Overview

Holders made of plastic can only be attached to actuators and indicators made of plastic (3SU100) or plastic with metal front ring (3SU103).
Metal holders can be attached to all versions of actuators and indicators. Metal holders are automatically grounded by their fastening screw, but a grounding stud can also be fitted

Selection and ordering data

For selector switch with
4 switch positions and for coordinate switches

Holders

Holders with module

Selection and ordering data

Number of Contact modules	NO contacts	NC contacts	SD	Screw terminals	(1)	$\begin{array}{r} \text { PU } \\ (\text { UNIT, } \\ \text { SET. M) } \end{array}$	PS*
				Article No.	Price		
			d		per PU		

Holders with module, metal

$3 x$ with module
1

3SU1550-1AA10-1BA0

[^100]
Push Button Units and Indicator Lights

Modules for Actuators and Indicators

Contact modules

Overview

Contact modules and LED modules

The contact modules are fitted with slow－action contacts （NO contacts or NC contacts）．These ensure a high switching reliability even with small voltages and currents，such as $5 \mathrm{~V} / 1 \mathrm{~mA}$ ．They are suitable for use in electronic systems as well as conventional controls．The contact pieces of the NC contacts are positively driven．
Only LED modules with permanently integrated LEDs are available for illumination．

Contact modules and LED modules bear terminal designations according to EN 50013.

Mounting the modules

With SIRIUS ACT，the modules are mounted on the holder without any further accessories．Holders in plastic or metal versions are available for mounting three modules．

Connection methods

The modules are available with：
－Screw terminals
－Spring－type terminals or
－Solder pin connections（ $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ solder pins） for assembly on printed circuit boards

Selection and ordering data

Contact version	Number o		SD	Screw terminals	Θ	PU （UNIT， SET，M）	PS＊
	NO contacts	NC contacts					
			d	Article No．	$\begin{aligned} & \text { Price } \\ & \text { er PU } \end{aligned}$		

1）The contact module has 1 NO internal contact +1 NC internal contact． The NO contact is connected in series with the NC contact and brought out at terminal 1－2．When the module is snapped onto the holder， the NO contact closes．It opens when the module is detached from the holder again（the NC contact remains closed）．The NC contact opens when the EMERGENCY STOP device is actuated（the NO contact remains closed）．The contact is closed only when both the NC and NO contacts are closed．Unsuitable for mounting in 3SU18 enclosure．
Θ Positive opening according to IEC 60947－5－1，Annex K．
Can be used with 3SK11 safety relays or the
3RK3 Modular Safety System，see Section 13 Limit
Certificate：

Switches and Safety．

Push Button Units and Indicator Lights

Modules for Actuators and Indicators

Contact modules

Θ Positive opening according to IEC 60947-5-1, Annex K.
Certificate:
Can be used with 3SK11 safety relays or the 3RK3 Modular Safety System, see Section 13 Limit Switches and Safety.

Push Button Units and Indicator Lights

Modules for Actuators and Indicators

Contact modules

1) The contact module has 1 NO internal contact +1 NC internal contact. The NO contact is connected in series with the NC contact and brought out at terminal 1-2. When the module is snapped onto the holder, the NO contact closes. It opens when the module is detached from the holder again (the NC contact remains closed). The NC contact opens when the EMERGENCY STOP device is actuated (the NO contact remains closed). The contact is closed only when both the NC and NO contacts are closed. Not suitable for installation in 3SU18 enclosure.
Θ Positive opening according to IEC 60947-5-1, Annex K.

Push Button Units and Indicator Lights

Modules for Actuators and Indicators

Contact modules

	Contact version	Number of				SD	Spring-type terminals	0	(UNIT, SET, M)	PS*
		NO contacts	NC contacts							
						d	Article No.	Price per PU		
Contact modules for front plate mounting										
3SU1400-1AA10-3LA0	Goldplated	1	0	$H_{.4}^{1^{3}}$		5	3SU1400-1AA10-3LA0		1	1 unit
		0		$\Theta \stackrel{1}{1}$		5	3SU1400-1AA10-3MA0		1	1 unit
		2	0	$+\left.\hat{F}_{-4}^{\mid \cdot 3}\right\|_{.4} ^{\cdot 3}$		5	3SU1400-1AA10-3NA0		1	1 unit
		0	2	Θ en		5	3SU1400-1AA10-3PA0		1	1 unit
		1	1	Θ		5	3SU1400-1AA10-3QA0		1	1 unit
		$\begin{aligned} & 1 \\ & \text { leading } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { lagging } \end{aligned}$	Θ		5	3SU1400-1AA10-3RA0		1	1 unit

Θ Positive opening according to IEC 60947-5-1, Annex K.
Can be used with 3SK11 safety relays or the 3RK3 Modular Safety System, see Section 13 Limit

Certificate:

Switches and Safety.

Contact version	Number o NO contacts	NC contacts	SD	Socket ter	11	(UNIT, SET, M)	PS*
			d	Article No.	Price per PU		

Contact modules for mounting on printed-circuit boards NEW
No UL/CSA certification

Θ Positive opening according to IEC 60947-5-1, Annex K.
Can be used with 3SK11 safety relays or the
3RK3 Modular Safety System, see Section 13 Limit
Switches and Safety.

Certificate:

Modules for Actuators and Indicators

LED modules

Selection and ordering data

	Operational voltage at AC	Operational voltage at DC	Color	SD	Screw terminals	\bigcirc	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	V	V		d	Article No.	Price per PU		
L-ED modules ${ }^{1)}$ for front plate mounting								
3SU1401-1BB30-1AA0 3SU1401-1BB30-3AA0	24	24	Amber Red Yellow Green Blue White	$\begin{aligned} & \square \\ & > \\ & > \end{aligned}$	3SU1401-1BB00-1AA0 3SU1401-1BB20-1AAO 3SU1401-1BB30-1AAO 3SU1401-1BB40-1AA0 3SU1401-1BB50-1AAO 3SU1401-1BB60-1AA0		1 1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit 1 unit
	110	-	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 3 \\ & \end{aligned}$	$\begin{aligned} & \text { 3SU1401-1BC00-1AAO } \\ & \text { 3SU1401-1BC20-1AAO } \\ & \text { 3SU1401-1BC30-1AAO } \\ & \text { 3SU1401-1BC40-1AAO } \\ & \text { 3SU1401-1BC50-1AAO } \\ & \text { 3SU1401-1BC60-1AA0 } \end{aligned}$		1 1 1 1 1 1	1 unit 1 unit
	230	-	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & \\ & \hline \end{aligned}$	3SU1401-1BF00-1AA0 3SU1401-1BF20-1AA0 3SU1401-1BF30-1AA0 3SU1401-1BF40-1AA0 3SU1401-1BF50-1AA0 3SU1401-1BF60-1AA0		1 1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit 1 unit
					Spring-type terminals	$\begin{aligned} & \infty \\ & \square \end{aligned}$		
	24	24	Amber Red Yellow Green Blue White	$\begin{aligned} & 3 \\ & 3 \\ & \\ & \\ & \end{aligned}$	3SU1401-1BB00-3AA0 3SU1401-1BB20-3AAO 3SU1401-1BB30-3AAO 3SU1401-1BB40-3AAO 3SU1401-1BB50-3AAO 3SU1401-1BB60-3AAO		1 1 1 1 1 1	1 unit 1 unit
	110	-	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \end{aligned}$	3SU1401-1BC00-3AAO 3SU1401-1BC20-3AA0 3SU1401-1BC30-3AAO 3SU1401-1BC40-3AA0 3SU1401-1BC50-3AAO 3SU1401-1BC60-3AA0		1 1 1 1 1 1	1 unit 1 unit
	230	-	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \end{aligned}$	3SU1401-1BF00-3AA0 3SU1401-1BF20-3AAO 3SU1401-1BF30-3AA0 3SU1401-1BF40-3AA0 3SU1401-1BF50-3AA0 3SU1401-1BF60-3AA0		1 1 1 1 1 1	1 unit 1 unit
	Operational voltage at AC	Operational voltage at DC	Color	SD	Screw terminals	(1)		PS*
	V	V		d	Article No.	Price per PU		
L-ED modules" for front plate mounting with "traffic light" LED								
	$\begin{aligned} & 24 \\ & 110 \\ & 230 \\ & 6-24 \end{aligned}$	$\begin{aligned} & 24 \\ & \overline{6-24} \end{aligned}$	Red / Yellow / Green Red / Yellow / Green Red / Yellow / Green Red / Yellow / Green		$\begin{aligned} & \text { 3SU1401-1BB24-1AAO } \\ & \text { 3SU1401-1BC24-1AA0 } \\ & \text { 3SU1401-1BF24-1AA0 } \\ & \text { 3SU1401-1BG24-1AAO } \end{aligned}$		1 1 1 1	1 unit 1 unit 1 unit 1 unit
3SU1401-1BB24-1AA0								
	$\begin{aligned} & 24 \\ & 110 \\ & 230 \\ & 6-24 \end{aligned}$	$\frac{24}{\overline{6-24}}$	Red / Yellow / Green Red / Yellow / Green Red / Yellow / Green Red / Yellow / Green		$\begin{aligned} & \text { 3SU1401-1BB24-3AAO } \\ & \text { 3SU1401-1BC24-3AAO } \\ & \text { 3SU1401-1BF24-3AAO } \\ & \text { 3SU1401-1BG24-3AA0 } \end{aligned}$		1 1 1 1	1 unit 1 unit 1 unit 1 unit

[^101]
LED modules

	Operational voltage at AC	Operational voltage at DC	Color	SD	Screw terminals	(ㄱ)	$\begin{gathered} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{gathered}$	PS*
	V	V		d	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$		
LED modules ${ }^{11}$ for front plate mounting								
3SU1401-1BG30-1AAO	$6 . . .24$	$6 . .24$	Amber Red Yellow Green Blue White		3SU1401-1BG00-1AAO 3SU1401-1BG20-1AAO 3SU1401-1BG30-1AAO 3SU1401-1BG40-1AAO 3SU1401-1BG50-1AAO 3SU1401-1BG60-1AAO		$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
	$24 \ldots 240$	$24 \ldots 240$	Amber	5	3SU1401-1BH00-1AAO		1	1 unit
			Red	-	3SU1401-1BH20-1AAO		1	1 unit
			Yellow	3	3SU1401-18H30-1AAO		1	1 unit
			Green	-	3SU1401-1BH40-1AAO		1	1 unit
			Blue White	-	3SU1401-1BH50-1AAO 3SU1401-1BH60-1AAO		1	1 unit
			White	-	3SU1401-1BH60-1AAO		1	1 unit
					Spring-type terminals	O		
	6... 24	$6 . . .24$	Amber	3	3SU1401-1BG00-3AA0		1	1 unit
			Red	\checkmark	3SU1401-1BG20-3AAO		1	1 unit
			Yellow	5	3SU1401-1BG30-3AA0		1	1 unit
			Green	-	3SU1401-1BG40-3AAO		1	1 unit
			Blue	-	3SU1401-1BG50-3AA0		1	1 unit
			White	-	3SU1401-1BG60-3AA0		1	1 unit
	$24 \ldots 240$	$24 \ldots 240$	Amber	5	3SU1401-1BH00-3AAO		1	1 unit
			Red	\checkmark	3SU1401-18H20-3AAO		1	1 unit
			Yellow	5	3SU1401-1BH30-3AAO		1	1 unit
			Green	-	3SU1401-1BH40-3AAO		1	1 unit
			Blue White	-	$3 S U 1401-18 H 50-3 A A O$ $3 S U 1401-18 H 60-3 A A O$		1	1 unit 1 unit
3SU1401-1BG30-3AAO			White	-	3SU1401-1BH60-3AAO		1	1 unit

${ }^{1)}$ Only for use with SIRIUS commanding and signaling devices.

1) Only to be used for SIRIUS ACT LED modules
($6 . . .24 \mathrm{~V}$ AC/DC, 24 V AC/DC, $24 \ldots 240 \mathrm{~V}$ AC/DC).

	Operational voltage at AC	Operational voltage at DC	Color	SD	Socket terminals (THT)	\square	PU (UNIT, SET, M)	PS*
	V	V		d	Article No.	Price per PU		
LED modules ${ }^{1)}$ for mounting on printed-circuit boards ${ }^{\text {a }}$ (${ }^{\text {a }}$								
	--	5	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 3 \\ & 5 \\ & 3 \end{aligned}$	3SU1401-3BA00-5AAO 3SU1401-3BA20-5AAO 3SU1401-3BA30-5AAO 3SU1401-3BA40-5AAO 3SU1401-3BA50-5AAO 3SU1401-3BA60-5AA0		1 1 1 1 1 1	1 unit 1 unit

[^102]
Push Button Units and Indicator Lights

Modules for Actuators and Indicators

AS-Interface modules

Selection and ordering data

3SU1400-1EA10-2AAO

3SU1400-1EA10-4AAO

3SU1400-1EC10-4AA0

3SU1400-1EJ10-6AA0

Modules for Actuators and Indicators

Electronic modules for IO-Link/support terminals

Selection and ordering data

	Operational voltage	Slave type	Number of digital inputs	Number of digital outputs	SD	Spring-type terminals (push-in)	0	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	V				d	Article No.	Price per PU		
Electronic modules for IO-Link, front panel mounting								1	1 unit
	24	Freely programmable (default (6 DI/2 DQ)	$0 . . .8$	$0 \ldots 8$	5	3SU1400-1HL10-6AA0			

Selection and ordering data

Push Button Units and Indicator Lights

Modules for Actuators and Indicators

Electronic modules for ID key-operated switches

Technical specifications

		3SU1400-1GC10-1AA0	3SU1400-1GD10-1AA0
Communication/protocol			
Protocol is supported by IO-Link protocol		No	Yes
Product function		Group ID 24 V DC	IO-Link 24 V DC
IO-Link transfer rate		--	COM2 (38.4 kBaud)
Point-to-point cycle time between the master and the IO-Link device, minimum ms		--	10
Type of power supply via IO-Link master		--	Yes
Data volume			
- Of the address area of the inputs with cyclic transfer total	bytes	--	2
	bytes	--	0
Number of NO contacts		5	
General data			
Impulse withstand voltage, rated value	kV	0.8	
Rated insulation voltage	V	30	
Pollution degree		3	
Type of voltage			
- Of operational voltage		DC	
- Of input voltage		DC	
Operational voltage			
- At DC, rated value	V	24	
- Rated value	V	$18 \ldots 30$	
Current consumed, maximum	mA	49	
Ambient temperature			
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$	
Degree of protection		IP20	
Touch protection against electric shock		Finger-safe	
Connections			
Type of electrical connection		Screw terminals \because	
Connectable conductor cross-section for auxiliary contacts			
- Solid - With end sleeves	mm^{2}	$1 \times(0.2 \ldots 2.5), 2 \times(0.2 \ldots 0.75)$	
- Without end sleeves	mm^{2}	$1 \times(0.2 \ldots 2.5), 2 \times(0.2 \ldots 0.75)$	
-Finely stranded - With end sleeves	mm^{2}	$1 \times(0.2 \ldots 2.5), 2 \times(0.25 \ldots 0.75)$	
- Without end sleeves	mm^{2}	$1 \times(0.2 \ldots 2.5), 2 \times(0.2 \ldots 0.75)$	
AWG number as coded connectable conductor cross-section		$26 . .14$	
Tightening torque for screw terminals	Nm	$0.35 \ldots 0.4$	

Selection and ordering data

Type of power supply via IO-Link master	Protocol is supported IO-Link protocol	Number of NO contacts	IO-Link transfer rate	SD	Screw terminals	(1)		PS*	PG
				d	Article No.	Price per PU			
for ID key-operated switches ${ }^{11}$									
--	No	5	--	-	3SU1400-1GC10-1AA0		1	1 unit	41J
Yes	Yes	5	$\begin{aligned} & \text { COM2 } \\ & \text { (38.4 } \\ & \text { kBaud) } \end{aligned}$	-	3SU1400-1GD10-1AA0		1	1 unit	41J

3SU1400-1GD10-1AA0

1) Only use in conjunction with plastic holder 3SU1500-0AA10-0AA0

SIRIUS ACT DIGITALIZATION @ YOUR FINGERTIPS

Interface modules for PROFINET/terminal modules

Selection and ordering data

Selection and ordering data

	Type of product	Color of light source	SD	Insulation displacement connection	(b)	PU (UNIT, SET, M)	PS*
			d	Article No.	Price per PU		
Terminal modules						1	1 unit
	With 2 contacts	--	5	3SU1400-1MA10-1BA1			
	With 2 contacts and integrated LED	Amber	5	3SU1401-1MC00-1CA1		1	1 unit 1 unit
		Red	5	3SU1401-1MC20-1CA1		1	
		Yellow	5	3SU1401-1MC30-1CA1		1	
		Green	5	3SU1401-1MC40-1CA1		1	
		Blue	5	3SU1401-1MC50-1CA1		1	
		White	5	3SU1401-1MC60-1CA1		1	
	With integrated LED	Amber	5	3SU1401-1ME00-1DA1		1	1 unit
		Red	5	3SU1401-1ME20-1DA1		1	1 unit
		Yellow	5	3SU1401-1ME30-1DA1		1	1 unit
		Green	5	3SU1401-1 ME40-1DA1		1	1 unit
			5	3SU1401-1ME50-1DA1		1	1 unit
			5	3SU1401-1ME60-1DA1		1	1 unit
	Type of product		SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*
			d				
Memory modules for	3SK2						
	For backing up the complete parame 3SK2 safety system without a PC/PG system interface	ation of the ugh the	2	3RK3931-0AA00		1	1 unit

Flat ribbon cable, see page 11/161. onwards.
LED modules for mounting on printed-circuit boards,
see page 11/115 onwards.

Enclosures

General data

Overview

Design

Enclosures with standard fittings
Enclosed SIRIUS ACT pushbuttons and indicator lights are used as hand-operated control devices for separately allocated control units and cabinets. The devices are suitable for use in any climate and all have IP66, IP67, IP69 (IP69K) degree of protection, including those with cable glands.

Standards

IEC/EN 60947-5-1

Versions

The enclosed pushbuttons and indicator lights are available with conventional controls as well as for connection to AS-Interface. The following versions are available:

- Empty enclosures with between 1 and 6 command points (the installed components must be ordered separately; modules for base mounting or 1-pole contact and LED modules can be used)
- Enclosures with standard fittings with 1 to 3 command points, e.g. EMERGENCY STOP enclosure with EMERGENCY STOP mushroom pushbutton
- Enclosures with customized fittings with 1 to 6 command points
- Special enclosure for 4-position selector switches, coordinate switches, ID key-operated switches and sensor switches

Color of the enclosures

Top: - Gray, RAL 7035

- Yellow, RAL 1004 for EMERGENCY STOP

Base: • Black, RAL 9005

Application

The enclosures are climate-proof (KTW 24) according to EN ISO 6270-2 and suitable for stationary use, and for use in

Enclosures with standard fittings

Pushbuttons and indicator lights in the enclosure
Customized enclosures
The fittings and labeling of the command point can be chosen using the Configurator on the Internet. The prices depend on the equipment selected, see
www.siemens.com/sirius-act/configurator. marine applications.

Push Button Units and Indicator Lights

Enclosures

Empty enclosures

Selection and ordering data

Color of enclosure top	Number of command points	Enclosure version	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
			d				

Enclosures for surface mounting

3SU1801-0AA00-0AA2

3SU1851-0AA00-0AC2

3SU1851-OAA00-0AH1

3SU1853-0AA00-0AB1

3SU1854-0AA00-0AB1

Plastic

Yellow	1	Center command point	-	3SU1801-0AA00-0AA2	1	1 unit
		With protective collar	-	3SU1801-0AA00-0AC2	1	1 unit
		With recess for labeling plate	-	3SU1801-0AA00-0AB2	1	1 unit
	2	With recess for labeling plate	-	3SU1802-0AA00-0AB2	1	1 unit
Gray	1	With recess for labeling plate	-	3SU1801-0AA00-0AB1	1	1 unit
	2	With recess for labeling plate	-	3SU1802-0AA00-0AB1	1	1 unit
	3	With recess for labeling plate	-	3SU1803-0AA00-0AB1	1	1 unit
	4	With recess for labeling plate	-	3SU1804-0AA00-0AB1	1	1 unit
	6	With recess for labeling plate	-	3SU1806-0AA00-0AB1	1	1 unit

Metal ${ }^{1)}$

Yellow	1	Center command point	\checkmark	3SU1851-0AA00-0AA2	1	1 unit
		With protective collar	3	3SU1851-0AA00-0AC2	1	1 unit
		With recess for labeling plate	-	3SU1851-0AA00-0AB2	1	1 unit

	1
Gray	1

\qquad

	With recess for labeling plate	-	3SU1851-0AA00-0AB1	1	1 unit
	With protective collar	5	3SU1851-0AA00-0AC1	1	1 unit
2	With recess for labeling plate	-	3SU1852-0AA00-0AB1	1	1 unit
3	With recess for labeling plate	-	3SU1853-0AA00-0AB1	1	1 unit
4	With recess for labeling plate	-	3SU1854-0AA00-0AB1	1	1 unit
6	With recess for	\checkmark	3SU1856-0AA00-0AB1	1	1 unit

Enclosure for 4-position selector switches, coordinate switches,

ID key-operated switches and sensor switches

Plastic, front plate mounting

Gray	1	Center command point	3	3SU1801-1AA00-1AA1	1
Metal, front plate mounting					
Gray	1	Center command point	5	3SU1851-1AA00-1AA1	1 unit
			1 unit		

1) Only 3SU185, Metal Enclosure adaptors available to convert Metric Conduit Opening to $1 / 2^{\prime \prime}$ NPT Conduit:
> 3SX1998, 1/2" NPT Metal Adaptor for metal enclosures with M20 x 1.5 (IP65 Max.)
> 3SX1999, 1/2" NPT Metal Adaptor for metal enclosures with M25 x 1.5 (IP65 Max.)

Push Button Units and Indicator Lights

Enclosures

Pushbuttons and indicator lights in the enclosure

Overview

Pushbuttons and indicator lights in the enclosure (standard fittings) are available with:

- 1 to 3 command points (equipped, for example, with A, B, C, in each case from bottom to top)
- Operational voltage up to 400 V
- Vertical mounting type
- Plastic enclosures are equipped with plastic actuators and indicators, metal enclosures are equipped with metal actuators and indicators
- Contact modules and LED modules for base mounting (are snapped into the enclosure base); screw terminals as standard; some versions also with spring-type terminals

Palm pushbuttons

Palm pushbuttons have a particularly large button surface. This means that they can be actuated quickly and easily with the hand, arm or foot.

Selection and ordering data

Enclosures with standard fittings

3SU1801-0NA00-2AC2

3SU1802-0NA00-2AB2

Push Button Units and Indicator Lights

Enclosures

Pushbuttons and indicator lights in the enclosure

Push Button Units and Indicator Lights

Enclosures

Pushbuttons and indicator lights in the enclosure

Enclosures with standard fittings

3SU1851-0NA00-2AA2

3SU1851-0NA00-2AC2

3SU1851-2NG00-2AA2

3SU1851-0AC00-2AB1

3SU1852-0AB00-2AB1

3SU1853-0AB00-2AB1

3SU1851-2GA00-2AA1

Metal ${ }^{1)}$

Yellow 1	Center command	Red	1	0	3	3SU1851-ONA00-2AA2	1	1 unit
	point		2	0	5	3SU1851-0NB00-2AA2	1	1 unit

point
A = EMERGENCY
STOP mushroom
pushbuttons, 40 mm ,
with positive latching
acc. to ISO 13850,
rotate to unlatch

pushbuttons, 40 mm
Screw terminals
with positive latching
acc. to ISO 13850,
rotate to unlatch

	1	Center command point A = EMERGENCY STOP palm pushbuttons with positive latching acc. to ISO 13850 Pull to unlatch	Red		1	1	3	3SU1851-2NG00-2AA2	1	1 unit
Gray	1	With recess for labeling plate A = Pushbutton	Green Red White Black	$\begin{aligned} & A=1 \\ & A=O \\ & A=1 \\ & A=O \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SU1851-0AB00-2AB1 } \\ & \text { 3SU1851-0AC00-2AB1 } \\ & \text { 3SU1851-0AD00-2AB1 } \\ & \text { 3SU1851-0AE00-2AB1 } \end{aligned}$	1 1 1 1	1 unit 1 unit 1 unit 1 unit

1) Only 3SU185, Metal Enclosure adaptors available to convert Metric Conduit Opening to $1 / 2^{\prime \prime}$ NPT Conduit:
>3 SX1998, 1/2" NPT Metal Adaptor for metal enclosures with M20 x 1.5 (IP65 Max.)
>3 SX1999, $1 / 2^{\prime \prime}$ NPT Metal Adaptor for metal enclosures with M 25×1.5 (IP65 Max.)

Enclosures

Pushbuttons and indicator lights in the enclosure

1) The fittings and labeling of the command point can be chosen using the Configurator on the Internet. The prices depend on the equipment selected. When ordering, always add the article number and the code KOY and the CIN number from the Configurator.
Ordering example:
3SU1801-OAZ00 K0Y, CIN20150609140858154554,
see www.siemens.com/sirius-act/configurator.
2) Only 3SU185, Metal Enclosure adaptors available to convert Metric Conduit Opening to $1 / 2^{\prime \prime}$ NPT Conduit: > 3SX1998, 1/2" NPT Metal Adaptor for metal enclosures with M20 x 1.5 (IP65 Max.)
> 3SX1999, 1/2" NPT Metal Adaptor for metal enclosures with M 25×1.5 (IP65 Max.)

Enclosures

Overview

With AS-Interface enclosures, distributed SIRIUS ACT pushbuttons and indicator lights can be quickly connected to the AS-Interface communication system.
Using suitable components you can make your own enclosures with integrated AS-Interface or flexibly modify existing enclosures.

Enclosures for AS-Interface

Enclosures

Color of enclosure top:

- Gray, RAL 7035
- Yellow, RAL 1004 for EMERGENCY STOP

Color of enclosure base:

- Black, RAL 9005

Equipping with AS-Interface slaves

The following slaves are available for connecting the command points:

- Slave in A / B technology with 4 digital inputs and 3 digital outputs (4 DI/3 DQ)
- Slave with 4 digital inputs and 4 digital outputs (4 DI/4 DQ)
- F slave with 2 safe inputs for EMERGENCY STOP mushroom pushbutton (2 F-DI), also with integrated red LED for the illuminated EMERGENCY STOP mushroom pushbutton.
The following table shows the maximum number of slaves possible:

Number of command points	Number of slaves for enclosures without EMERGENCY STOP	Number of slaves for enclosures with EMERGENCY STOP
--	$1 \times$ F slave 2 F -DI	

Connection

One set of links is required in each case to connect a slave to contact modules, LED modules, and the connection element.
The connection elements are mounted in the front-end cable glands and are used to connect the AS-Interface or bring unused inputs or outputs out of the enclosure.
For connection to AS-Interface, the following options are available:

- Terminal for shaped AS-Interface cable. The cable is contacted by the insulation piercing method and routed past the enclosure on the outside (possible only with plastic enclosure).
- Cable gland for the shaped AS-Interface cable or round cable. The cable is routed into the enclosure (preferable for metal enclosure).
- Connection using M12 plug.

If less than all inputs/outputs of the installed slaves in an enclosure are used for connecting the command devices, free inputs and outputs can be routed on request to the outside through an M12 socket on the top or bottom side of the enclosure.
To supply inputs with power, the $\mathrm{S}+$ connection of the slave must be assigned to the socket, for outputs the OUT- connection must be assigned. Addressing is performed using the AS-Interface connections or the integrated addressing socket. An external power supply is not required.

Enclosures with standard fittings

Enclosures with standard fittings are available with:

- 1 to 3 command points
- Operational voltage through AS-Interface (approx. 30 V)
- Vertical mounting type
- Plastic enclosures are equipped with plastic actuators and indicators, metal enclosures are equipped with metal actuators and indicators

The enclosures without EMERGENCY STOP each have one module with 4I/3O; the enclosures with EMERGENCY STOP mushroom pushbuttons have a safe AS-Interface slave integrated in the enclosure. Enclosures with EMERGENCY STOP mushroom pushbuttons are fitted with two NC contact modules, which are wired to the safe F slave.

The contact modules and LED modules (with spring-type terminals) of the command devices and the AS-Interface slaves are mounted in the base of the enclosure and connected using cables. The plastic enclosures are designed with a connection for the AS-Interface flat cable (the cable is run along the outside of the enclosure). For metal enclosures, the AS-Interface cable is run inside the enclosure.

The enclosures with EMERGENCY STOP mushroom pushbuttons are also available with an M12 connector.

Customized enclosures (selection by configurator)

To order customized 3SU18 AS-Interface enclosures with pushbuttons and indicator lights, the configurator must be used to select the fittings.
An electronic order form will be generated for the options.
For the Configurator, see www.siemens.com/sirius-act/configurator.

Push Button Units and Indicator Lights

Enclosures

Pushbuttons and indicator lights in the enclosure for AS-Interface

Selection and ordering data

[^103]
Push Button Units and Indicator Lights

Enclosures

Pushbuttons and indicator lights in the enclosure for AS-Interface

1) The fittings and labeling of the command point can be chosen using the Configurator on the Internet. The prices depend on the equipment selected, see www.siemens.com/sirius-act/configurator.
2) Only 3SU185, Metal Enclosure adaptors available to convert Metric Conduit Opening to $1 / 2$ " NPT Conduit: > 3SX1998, 1/2" NPT Metal Adaptor for metal enclosures with M20 x 1.5 (IP65 Max.)
> 3SX1999, 1/2" NPT Metal Adaptor for metal enclosures with M25 x 1.5 (IP65 Max.)

Push Button Units and Indicator Lights

Enclosures

Modules for enclosures

Selection and ordering data

Θ Positive opening according to IEC 60947-5-1, Annex K.
Can be used with 3SK11 safety relays or the 3RK3 Modular Safety System, see Section 13 Limit Switches and Safety.

Certificate:

Push Button Units and Indicator Lights

Enclosures

Modules for enclosures

	Operational voltage at AC	Operational voltage at DC	Color	SD	Screw terminals	(1)	PU (UNIT, SET, M)	PS*
	V	V		d		Price per PU		
LED modules ${ }^{1}$ (for base mounting								
	24	24	Amber Red Yellow Green Blue White	$\begin{array}{r} 3 \\ 3 \\ 3 \\ 3 \\ 1 \\ 3 \\ \hline \end{array}$	3SU1401-2BB00-1AA0 3SU1401-2BB20-1AAO 3SU1401-2BB30-1AA0 3SU1401-2BB40-1AAO 3SU1401-2BB50-1AAO 3SU1401-2BB60-1AAO		1 1 1 1 1 1	1 unit 1 unit
3SU1401-2BB60-1AA0	110	--	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \\ & \end{aligned}$	3SU1401-2BC00-1AA0 3SU1401-2BC20-1AAO 3SU1401-2BC30-1AAO 3SU1401-2BC40-1AAO 3SU1401-2BC50-1AAO 3SU1401-2BC60-1AAO		1 1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit 1 unit
	230	--	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \end{aligned}$	3SU1401-2BF00-1AAO 3SU1401-2BF20-1AAO 3SU1401-2BF30-1AAO 3SU1401-2BF40-1AAO 3SU1401-2BF50-1AAO 3SU1401-2BF60-1AAO		1 1 1 1 1 1	1 unit 1 unit
${ }^{1)}$ Only for use with SIRIUS commanding and signaling devices.								
	Operational voltage at $A C$	Operational voltage at DC	Color	SD	Spring-type terminals	$\begin{aligned} & \infty \\ & \square \end{aligned}$	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	V	V		d	Article No.	Price per PU		
LED modules ${ }^{11}$ for base mounting								
3SU1401-2BB20-3AA0	24	24	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 8 \end{aligned}$	3SU1401-2BB00-3AA0 3SU1401-2BB20-3AAO 3SU1401-2BB30-3AAO 3SU1401-2BB40-3AAO 3SU1401-2BB50-3AAO 3SU1401-2BB60-3AA0		1 1 1 1 1 1	1 unit 1 unit
	110	--	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \end{aligned}$	3SU1401-2BC00-3AAO 3SU1401-2BC20-3AAO 3SU1401-2BC30-3AAO 3SU1401-2BC40-3AAO 3SU1401-2BC50-3AAO 3SU1401-2BC60-3AAO		1 1 1 1 1 1	1 unit 1 unit
	230	--	Amber Red Yellow Green Blue White	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 8 \end{aligned}$	3SU1401-2BF00-3AA0 3SU1401-2BF20-3AAO 3SU1401-2BF30-3AAO 3SU1401-2BF40-3AAO 3SU1401-2BF50-3AA0 3SU1401-2BF60-3AA0		1 1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit 1 unit

${ }^{1)}$ Only for use with SIRIUS commanding and signaling devices.

Enclosures

Modules for enclosures

Push Button Units and Indicator Lights

Enclosures

Modules for enclosures

Enclosures

Overview

Equipment

The two-hand operation consoles are pre-equipped with commanding devices. In the case of plastic enclosures the command points are equipped as standard with actuators and indicators made of plastic and in the case of metal enclosures they are equipped with actuators and indicators made of metal.

The standard equipment comprises:

- 2 black mushroom pushbuttons, diameter 40 mm , 1 NO + 1 NC
- 1 red EMERGENCY STOP mushroom pushbutton according to ISO 13850, diameter 40 mm , with positive latching, 2 NC

The plastic version can be retrofitted with up to 8 customized command points. The surface of the console has premachined breaking points for this purpose.

Application

The two-hand operation consoles are required for use with machines and systems that have hazardous areas, in order to direct both hands of the operator to one position.
The operation consoles are primarily used on presses, stamping machines, printing presses and paper converting machines, in the chemical industry and in the rubber and plastics industries.
The control command is given by pressing the two mushroom pushbuttons on the sides simultaneously (within 0.5 s of each other) and must be maintained for as long as a hazard exists.
For the further processing of control commands, evaluation units are used, e.g. 3SK11 safety relays or the 3RK3, 3SK2 Modular Safety System.

Standards

The two-hand operation consoles comply with the requirements of EN 574 .

Selection and ordering data

Push Button Units and Indicator Lights

Labels

Overview

Labels can be inserted for identification purposes in pushbuttons (clear) and in illuminated pushbuttons with a flat button. These insert labels are made of semi-transparent plastic with black inscription; they can be fitted in any 90° angle.

Inscription

The inscription is in upper/lower case, all words begin with upper case letters. Graphic symbols, including those not listed in the catalog, are according to ISO 7000 or IEC 60417.
The insert labels without inscription are suitable for user marking with permanent pen.
For customized inscription, see "Options" on page 11/136.

Selection and ordering data

Labels

Labels

Insert labels

Options

Customized inscriptions

The labels can be inscribed with text and symbols not listed in the ordering data.
By default, a letter height of 4 mm (for a single line of text) or 3 mm (for two or three lines of text) is used for text inscriptions.

The typeface used is Arial. Other letter heights and typefaces are possible, but must be specified when ordering.

For round insert labels, the maximum possible number of characters per line is:

- 10 characters for one line of text
- 8 characters for 2 lines of text
- 6 characters for 3 lines of text, but 10 characters in the middle line

Examples for customized inscription

Two-line inscription in upper/lower case lettering (QOY)

Single-line inscription in upper case lettering (Q1Y)

Three-line inscription in lower case letters (Q2Y)

Symbol number 5011 according to IEC 60417 (Q3Y)

Any symbol according to order form supplement (Q9Y)

Ordering notes

Append the following order codes to the Order No.:

- Text line(s) in upper/lower case, upper case always for beginning of line (e.g. "Lift / Off"): Q0Y
- Text line(s) in upper case (e.g. "LIFT"): Q1Y
- Text line(s) in lower case (e.g. "lift / off / lower"): Q2Y
- Text line(s) in upper/lower case, all words begin with upper case letters (e.g. "On Off"): Q5Y
- Symbol with number according to ISO 7000 or IEC 60417: Q3Y
- Any inscription or symbol according to order form supplement: Q9Y
When ordering, specify the required inscription in plain text in addition to the article number and order code. In the case of special inscriptions with words in languages other than German, give the exact spelling and specify the language. In the case of multi-line inscriptions, the text must be assigned to the respective line, e.g. "Z1 = Lift, Z2 =Lower". For long words you can also specify the end-of-line division; see ordering example 1
Symbols can also be ordered with numbers according to
ISO 7000 or IEC 60417; see ordering examples 2 and 3
The SIRIUS ACT Configurator must be used to select customized inscriptions and symbols (order code Q9Y).
In this case a "CIN" (Configuration Identification Number) is generated for placement of future orders. It is then possible to place an order directly using the CIN and the SIRIUS ACT Configurator (Mall shopping cart) or via the standard order channels.

Standard ordering channels:

- Configurator: www.siemens.com/sirius-act/configurator
- Electronic Catalog CA 01 on DVD
- Industry Mall: www.usa.siemens.com/industrymall

Ordering example 1

A label with 2 lines of text is required:
3SU1900-0AB71-0AZ0
Q1Y
Z1 = LIFT
Z2 = LOWER

Ordering example 2

A label inscribed with symbol No. 5011 according to IEC 60417 is required:

3SU1900-0AB71-0AZ0
Q3Y
Z = 5011 IEC
Ordering example 3
A label inscribed with symbol No. 1118 according to ISO 7000 is required:
3SU1900-0AB71-0AZ0
Q3Y
Z = 1118 ISO

Push Button Units and Indicator Lights

Labels

Label holders for labeling plates

Selection and ordering data

	Label holder shape	Label holder color	Label fastening method	Labeling plate size		SD	Article No.	Price per PU	PU SET, M)	PS*
				Height	Width					
				mm	mm	d				
Label holders for labeling plates										
	Plastic With rounded bottom	Black	Selfadhesive	$\begin{aligned} & 12.5 \\ & 17.5 \\ & 27 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \end{aligned}$	$\stackrel{i}{>}$	3SU1900-0AG10-0AA0 3SU1900-0AH10-0AAO 3SU1900-0AJ10-0AA0		$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	10 units 10 units 10 units
			Snap-on	$\begin{aligned} & 12.5 \\ & 17.5 \\ & 27 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \end{aligned}$		3SU1900-0AR10-0AAO 3SU1900-0AS10-0AAO 3SU1900-0AT10-0AAO		$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	10 units 10 units 10 units
	Plastic, with square bottom	Black	Selfadhesive	$\begin{aligned} & 12.5 \\ & 17.5 \\ & 27 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 5 \end{aligned}$	3SU1900-0AN10-0AA0 3SU1900-0AP10-0AA0 3SU1900-0AQ10-0AAO		$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	10 units 10 units 10 units

bottom

For 2 labeling plates

Plastic, Black
with rounded bottom

| Self-
 adhesive | 17.5 | 27 | | 3SU1900-0BQ10-0AAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Snap-on | 17.5 | 27 | | 3SU1900-0BR10-0AAO | 1 | 1 unit |

3SU1900-0BQ10-0AA0

For 4 labeling plates

Plastic,
with rounded bottom
Black

| Self-
 adhesive | 17.5 | 27 | | 3SU1900-0BS10-0AAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Snap-on | 17.5 | 27 | $>$ | 3SU1900-0BT10-0AAO | 1 | 1 unit |

3SU1900-0BT10-0AAO
For actuators and indicators, 30 mm NEW

Metal, matte With rounded bottom	Black	Selfadhesive	17.5	27	-	3SU1960-0AH10-0AA0	1	10 units
		Snap-on	17.5	27	-	3SU1960-0AS10-0AA0	1	10 units

3SU1960-0AH10-0AA0

Label holders for labeling plates, coordinate switches								1	1 unit
	Plastic, with square bottom	Black	Selfadhesive	27	27	-	3SU1900-0AL10-0AAO		
3SU1900-0AL10-0AA0									
	Plastic, cross	Black	Selfadhesive	27	27	-	3SU1900-0AM10-0AA0	1	1 unit

Push Button Units and Indicator Lights

Labels

Label holders for labeling plates

Overview

The backing plates consist of a black molded-plastic label holder and a labeling plate (black with white print or silvercolored with black print) for sticking or snapping in place. They are not suitable for EMERGENCY STOP buttons. Note mounting dimensions!

Inscription

The inscription is in upper/lower case, all words begin with upper case letters. Graphic symbols, including those not listed in the catalog, are according to ISO 7000 or IEC 60417.

For customized inscription, see "Options" on page 11/144.

Labeling plates for sticking/snapping in place

The labels are available in three sizes:

- $12.5 \mathrm{~mm} \times 27 \mathrm{~mm}$
- $17.5 \mathrm{~mm} \times 27 \mathrm{~mm}$
- $27 \mathrm{~mm} \times 27 \mathrm{~mm}$

For mounting the labeling plates, you can choose between label holders for stick-on or snap-on mounting.

Selection and ordering data

Push Button Units and Indicator Lights

Labels

Labeling plates

	Color	Marking	Symbol No.	DT	Order No.		PS*
Labeling plates $12.5 \mathrm{~mm} \times 27 \mathrm{~mm}$							
	For self-inscription					100	10 units
	Silver/Black (label/lettering)	None		A	3SU1900-0AC81-0AA0		
	For custom inscription						
	Silver/Black (label/lettering)	None		A	3SU1900-0AC81-0AZO	100	10 units
3SU1900-0AC81-0AA0	Inscription in English						
Off	Silver/Black(label/lettering)	On	--	B	3SU1900-0AC81-0DJ0	100	10 units
		Off	--	B	3SU1900-0AC81-0DK0	100	10 units
		Up	--	B	3SU1900-0AC81-0DL0	100	10 units
		Down	--	B	3SU1900-0AC81-0DM0	100	10 units
		Stop	--	B	3SU1900-0AC81-0DS0	100	10 units
3SU1900-0AC81-0DK0			--	B	3SU1900-0AC81-0DT0	100	10 units
		Reset	--	B	3SU1900-0AC81-0DU0	100	10 units
		Test	--	B	3SU1900-0AC81-0DV0	100	10 units
		Open	--	B	3SU1900-0AC81-0DW0	100	10 units
		Close	-- B	B	3SU1900-0AC81-0DX0	100	10 units
		Man O Auto	--	B	3SU1900-0AC81-0DY0	100	10 units
		Man Auto	--	B	3SU1900-0AC81-0EA0	100	10 units
		Running	--	B	3SU1900-0AC81-0EB0	100	10 units
		Fault	-- B	B	3SU1900-0AC81-0EC0	100	10 units
		Fast	--	B	3SU1900-0AC81-0EE0	100	10 units
		Slow	--	B	3SU1900-0AC81-0EF0	100	10 units
		Hand Auto	--	B	3SU1900-0AC81-0DB0	100	10 units
		Stop Start	--	B	3SU1900-0AC81-0DC0	100	10 units
		Hand O Auto	--	B	3SU1900-0AC81-0DD0	100	10 units
	With symbol						
3SU1900-0AC81-0QK0	Silver/Black (label/lettering)	0IIIIII	5008 IEC	B	3SU1900-0AC81-0QA0	100	10 units
			5007 IEC	B	3SU1900-0AC81-0QB0	100	10 units
			--	B	3SU1900-0AC81-0QC0	100	10 units
			--	B	3SU1900-0AC81-0QD0	100	10 units
		011011	--	B	3SU1900-0AC81-0QG0	100	10 units
			--	B	3SU1900-0AC81-0QK0	100	10 units
		102	--	B	3SU1900-0AC81-0QL0	100	10 units
		$\longrightarrow \underset{\substack{\text { ARROW DIRECTION } \\ \text { TO RIGHT }}}{\text { AR }}$	5022 IEC	B	3SU1900-0AC81-0QR0	100	10 units
		$\uparrow \quad \begin{aligned} & \text { ARROW DIRECTION } \\ & \text { UP } \end{aligned}$	--	B	3SU1900-0AC81-0QS0	100	10 units

Push Button Units and Indicator Lights

Labels

Labeling plates

Push Button Units and Indicator Lights

Labels

Labeling plates

	Color	Marking	Symbol No.	DT	Order No.	PU (UNIT, SET, M)	PS*
Labeling plates $17.5 \mathrm{~mm} \times 27 \mathrm{~mm}$							
	For self-inscription					100	10 units
	Silver/Black (label/lettering)	None	--	A	3SU1900-0AD81-0AA0		
	For custom inscription						
	Silver/Black (label/lettering)	None	--	A	3SU1900-0AD81-0AZO	100	10 units
3SU1900-0AD81-0AA0							
	Inscription in English						
Fault	Silver/Black (label/lettering)	On	--	B	3SU1900-0AD81-0DJ0	100	10 units
		Off	--	B	3SU1900-0AD81-0DK0	100	10 units
		Stop	--	B	3SU1900-0AD81-0DS0	100	10 units
		Start	--	B	3SU1900-0AD81-0DT0	100	10 units
		Reset	--	B	3SU1900-0AD81-0DU0	100	10 units
		Man O Auto	--	B	3SU1900-0AD81-0DY0	100	10 units
		Fault	--	B	3SU1900-0AD81-0EC0	100	10 units
		Hand Auto	--	B	3SU1900-0AD81-0DB0	100	10 units
3SU1900-0AD81-0EC0		Hand O Auto	--	B	3SU1900-0AD81-0DD0	100	10 units
	With symbol						
	Silver/Black (label/lettering)	0	5008 IEC	B	3SU1900-0AD81-0QA0	100	10 units
			5007 IEC	B	3SU1900-0AD81-0QB0	100	10 units
		OI	--	B	3SU1900-0AD81-0QG0	100	10 units
		1011	--	B	3SU1900-0AD81-0QK0	100	10 units
		102	--	B	3SU1900-0AD81-0QL0	100	10 units
		$\rightarrow \begin{aligned} & \text { ARROW DIRECTION } \\ & \text { TO RIGHT } \end{aligned}$	5022 IEC	B	3SU1900-0AD81-0QR0	100	10 units
3SU1900-0AD81-0QG0		ARROW DIRECTION UP	--	B	3SU1900-0AD81-0QS0	100	10 units

Push Button Units and Indicator Lights

Labels

Labeling plates

Push Button Units and Indicator Lights

Labels

Labeling plates

Options

Customized inscriptions

The labels can be inscribed with text and symbols not listed in the ordering data.
The following letter heights are used as standard for text inscriptions:

- Label size $12.5 \mathrm{~mm} \times 27 \mathrm{~mm}$: 3 lines with letter height 4 mm (1-line), 3.5 mm (2-line) or 2.5 mm (3-line)
- Label size $17.5 \mathrm{~mm} \times 27 \mathrm{~mm}$: 3 lines with letter height 4 mm (1- to 2-line) or 3 mm (3-line)
- Label size $27 \mathrm{~mm} \times 27 \mathrm{~mm}$: 5 lines with letter height 4 mm (1- to 5-line)
Up to 11 characters per line are possible. The typeface used is Arial. Other letter heights and typefaces are possible, but must be specified when ordering.

Examples for customized inscription

Lift Off

Two-line inscription in upper/lower case lettering (QOY)

LIFT

Single-line inscription in upper case lettering (Q1Y)

Three-line inscription in lower case letters (Q2Y)

Symbol number 5011 according to IEC 60417 (Q3Y)

Any symbol according to order form supplement (Q9Y)

Ordering notes

Append the following order codes to the Order No.:

- Text line(s) in upper/lower case, upper case always for beginning of line (e.g. "Lift / Off"): QOY
- Text line(s) in upper case (e.g. "LIFT"): Q1Y
- Text line(s) in lower case (e.g. "lift / off / lower"): Q2Y
- Text line(s) in upper/lower case, all words begin with upper case letters (e.g. "On Off"): Q5Y
- Symbol with number according to ISO 7000 or IEC 60417: Q3Y
- Any inscription or symbol according to order form supplement: Q9Y
When ordering, specify the required inscription in plain text in addition to the article number and order code. In the case of special inscriptions with words in languages other than German, give the exact spelling and specify the language.
In the case of multi-line inscriptions, the text must be assigned to the respective line, e.g. "Z1 = Lift, Z2 =Lower".
For long words you can also specify the end-of-line division; see ordering example 1

Symbols can also be ordered with numbers according to ISO 7000 or IEC 60417; see ordering examples 2 and 3
For special symbols (order code Q9Y), a CAD drawing in BMP, GIF, JEPG, PDF, PNG or TIFF format must be submitted. For special inscriptions (order code Q9Y): document in DOC or XLS format.

The SIRIUS ACT Configurator must be used to select special inscriptions and symbols (order code Q9Y). In this case a "CIN" (Configuration Identification Number) is generated for placement of future orders. It is then possible to place an order directly using the CIN and the SIRIUS ACT Configurator (Mall shopping cart) or via the standard order channels.

Standard ordering channels:

- Configurator: www.siemens.com/sirius-act/configurator
- Electronic Catalog CA 01 on DVD
- Industry Mall: www.usa.siemens.com/industrymall

Ordering example 1
A label with 2 lines of text is required:
3SU1900-0AC16-0AZ0
Q1Y
Z1 = LIFT
Z2 = LOWER
Ordering example 2
A label inscribed with symbol No. 5011 according to IEC 60417 is required:

3SU1900-0AC16-0AZ0
Q3Y
$Z=5011 \mathrm{IEC}$
Ordering example 3
A label inscribed with symbol No. 1118 according to ISO 7000 is required:

3SU1900-0AC16-0AZ0
Q3Y
Z = 1118 ISO

Overview

The labeling plates in size $22 \mathrm{~mm} \times 22 \mathrm{~mm}$ can be attached to enclosures with cutouts for labels. There are versions in black with white print or silver-colored with black print.

Inscription

The inscription is in upper/lower case, all words begin with upper case letters. Graphic symbols, including those not listed in the catalog, are according to ISO 7000 or IEC 60417.
For customized inscription, see "Options" on page 11/147.

Selection and ordering data

Push Button Units and Indicator Lights

Labels

Labeling plates for enclosures

Labels

Options

Customized inscriptions

The labels can be inscribed with texts and symbols not listed in the ordering data.
A letter height of 4 mm is used for text inscriptions (1 to 3 lines).
Up to 11 characters per line are possible. The typeface used is Arial. Other letter heights and typefaces are possible, but must be specified when ordering.

Examples for customized inscription

Single-line inscription in upper case lettering (Q1Y)

3SB39 backing plate for enclosures, customized inscription (Q2Y)

Symbol number 5011 according to IEC 60417 (Q3Y)

Any symbol according to order form supplement (Q9Y)

Ordering notes

Append the following order codes to the Order No.:

- Text line(s) in upper/lower case, upper case always for beginning of line (e.g. "Lift / Off"): QOY
- Text line(s) in upper case (e.g. "LIFT"): Q1Y
- Text line(s) in lower case (e.g. "lift / off / lower"): Q2Y
- Text line(s) in upper/lower case, all words begin with upper case letters (e.g. "On Off"): Q5Y
- Symbol with number according to ISO 7000 or IEC 60417: Q3Y
- Any inscription or symbol according to order form supplement: Q9Y
When ordering, specify the required inscription in plain text in addition to the article number and order code. In the case of special inscriptions with words in languages other than German, give the exact spelling and specify the language.
In the case of multi-line inscriptions, the text must be assigned to the respective line, e.g. "Z1 = Lift, Z2 = Lower". For long words you can also specify the end-of-line division (see ordering example 1).
Symbols can also be ordered with numbers according to
ISO 7000 or IEC 60417 (see ordering examples 2 and 3).
For special symbols (order code Q9Y), a CAD drawing in DXF format can be submitted.
The SIRIUS ACT Configurator must be used to select special inscriptions and symbols (order code Q9Y). In this case a "CIN" (Configuration Identification Number) is generated for placement of future orders. It is then possible to place an order directly using the CIN and the SIRIUS ACT Configurator (Mall shopping cart) or via the standard order channels.
Standard ordering channels:
- Configurator: www.siemens.com/sirius-act/configurator
- Electronic Catalog CA 01 on DVD
- Industry Mall: www.usa.siemens.com/industrymall

Ordering example 1
A label with 2 lines of text is required:
3SU1900-0AF16-0AZ0
Q1Y
Z1 = LIFT
Z2 = LOWER
Ordering example 2
A label inscribed with symbol No. 5011 according to IEC 60417 is required:
3SU1900-0AF16-0AZ0
Q3Y
$Z=5011 \mathrm{IEC}$
Ordering example 3
A label inscribed with symbol No. 1118 according to ISO 7000 is required:
3SU1900-0AF16-0AZ0
Q3Y
Z = 1118 ISO

Push Button Units and Indicator Lights

Labels

Labels for laser printers

Overview

Label inscriptions

Using the Label Designer software, which can be downloaded from the Internet, and the labeling plates for laser inscription you can create your own customized labels with a standard laser printer. The self-adhesive or snap-on labels can be stuck or snapped onto the corresponding label holders. Round labels are provided for inserting in illuminated pushbuttons and switches.

The labels are suitable for inscription with one to three lines of text or symbols.
For applications with more exacting requirements we recommend factory-printed labeling plates and insert labels (laserprinted or engraved depending on the type).
For the Label Designer software see: www.siemens.com/sirius-label-designer

Selection and ordering data

Push Button Units and Indicator Lights

Labels

Other labels

Selection and ordering data

Labels

Other labels

Options

Customized inscriptions

The labels can be inscribed with text and symbols not listed in the ordering data.
The EMERGENCY STOP backing plates can be divided into as many as four radial segments. Each segment can be custom-labeled
The default typeface used for inscriptions with text is Arial and the text is centered

EMERGENCY STOP backing plate 75 mm :

The font height is 5 mm .
With two radial segments up to 20 characters are permissible. With four radial segments up to 10 characters are permissible.

EMERGENCY STOP backing plate 60 mm :
The font height is 4 mm .
With two radial segments up to 16 characters are permissible. With four radial segments up to 8 characters are permissible.

EMERGENCY STOP backing plate 45 mm :

The font height is 4 mm .
With two radial segments up to 10 characters are permissible.

Ordering notes

Append the following order codes to the article number:

- QOY: Segment(s) in upper/lower case, always upper case for beginning of segment, e.g. $Z 1=$ Not halt $Z 2=$ Emergency stop
- Q1Y: Segment(s) in upper case, e.g. Z1=NOT HALT Z2=EMERGENCY STOP
- Q2Y: Segment(s) in lower case, e.g. $Z 1=$ not halt $Z 2=$ emergency stop
- Q5Y: Segment(s) in upper/lower case, all words begin with upper case letters, e.g. Z1=Not Halt Z2=Emergency Stop
- Q3Y: Symbol with number according to ISO 7000 or IEC 60417
- Q9Y: Inscription of choice, text or symbol, can only be ordered via SIRIUS ACT Configurator with a Configuration Identification Number (CIN)

When ordering, specify the required inscription in plain text without spaces, in addition to the article number and order code.
The SIRIUS ACT Configurator must be used to select special inscriptions and symbols (order code Q9Y). In this case a CIN (Configuration Identification Number) is generated for placement of future orders. It is then possible to place an order directly using the CIN and the SIRIUS ACT Configurator (Mall shopping cart) or via the standard ordering channels.
Standard ordering channels:

- Configurator: www.siemens.com/sirius-act/configurator
- Electronic Catalog CA 01 on DVD
- Industry Mall: www.siemens.com/industrymall

With ordering options Q0Y, Q1Y, Q2Y, Q3Y and Q5Y a single-line inscription of two or four radial segments can be implemented. The text or symbol must be assigned to the respective radial segments as follows:

Ordering example 1, two radial segments

An EMERGENCY STOP backing plate, diameter 75 mm , with two radial segments is required

3SU1900-0BB31-0AZ0

Q1Y

Z1=EMERGENCY
Z2=STOP
Ordering example 2, four radial segments
An EMERGENCY STOP backing plate, diameter 75 mm , with four radial segments is required

3SU1900-0BB31-0AZ0

Q1Y

Z1=E-STOP
Z2=EMERGENCIA
Z3=NOT-HALT
Z4=EMERGENZA

Accessories

Protection/access protection

Overview

- Protection and access protection are for actuators and indicators with diameter 22 mm .
- The protective collars cannot be used in conjunction with label holders or single frames.

Selection and ordering data

$\left.\begin{array}{l|l|l|l|l}\hline \begin{array}{l}\text { Product designation } \\ \text { Product version }\end{array} & \text { Material Color } & \text { SD } & \text { Article No. } & \begin{array}{r}\text { Price } \\ \text { per PU }\end{array}\end{array} \begin{array}{c}\text { PU } \\ \text { (UNIT, } \\ \text { SET, M) }\end{array}\right)$

| Sealable caps for pushbuttons, Plastic | Black | 3 | 3SU1900-0DA10-0AAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| flat and raised | Clear | 3 | 3SU1900-0DA70-0AA0 | 1 | 1 unit |

3SU1900-0DA10-0AAO
Sealable caps for pushbuttons, Pl

| Sealable caps for | Plastic | Black | 3 | 3SU1900-0EL10-0AAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| - Pushbuttons, raised | | Clear | 3 | 3SU1900-0EL70-0AAO | 1 | 1 unit |

- Pushbuttons with front ring,
raised
- Pushbuttons with front ring,
raised, castellated

3SU1900-0EL70-0AA0

3SU1900-0DB70-0AA0

| Silicone protective caps
 for pushbuttons, raised | Plastic | Clear | $>$ | 3SU1900-0DC70-0AA0 | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Silicone-free protective caps
 for pushbuttons, raised | Plastic | Clear | $>$ | 3SU1900-0EE70-0AA0 | 1 | 1 unit |

3SU1900-0DC70-0AA0

| Silicone protective caps
 for selectors, short | Plastic | Clear | 3 | 3SU1900-0DD70-0AAO | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Silicone-free protective caps
 for selectors, short | Plastic | Clear | $>$ | 3SU1900-0EF70-0AA0 | 1 | 1 unit |

for selectors, short

Silicone protective caps for mushroom pushbuttons 40 mm	Plastic	Clear	5	3SU1900-0DE70-0AA0	1
Silicone-free protective caps for mushroom pushbuttons 40 mm	Plastic	Clear	$>$	3SU1900-0EG70-0AA0	1

Push Button Units and Indicator Lights

Accessories

Protection/access protection

Accessories

Protection/access protection

Push Button Units and Indicator Lights

Accessories

Protection/access protection

[^104]
Push Button Units and Indicator Lights

Accessories

Actuators

Selection and ordering data

Type of product	Mounting diameter	Accessory color	Accessorymaterial SD	Screw terminals		PU (UNIT, SET, M)	PS*
	mm		d	Article No.	Price per PU		

3SU1930-OGA80-OAAO

3SU1960-OGA80-OAAO RJ45 connection

Accessories

Actuators

	Material	Color	SD	Article No.	Price per PU	PU SET, M)	PS*
			d				
Buttons, flat ${ }^{1)}$							
	For pushbuttons						
	Plastic	Black	-	3SU1900-0FT10-0AA0		100	10 units
		Red	\checkmark	3SU1900-0FT20-0AAO		100	10 units
		Yellow	$\stackrel{\rightharpoonup}{ }$	3SU1900-0FT30-0AA0		100	10 units
		Green	-	3SU1900-0FT40-0AA0		100	10 units
		Blue	-	3SU1900-0FT50-0AAO		100	10 units
		White	\checkmark	3SU1900-0FT60-0AAO			10 units
	For illuminated pushbuttons						
	Plastic	Amber	5	3SU1901-0FT00-0AAO		100	10 units
		Red	-	3SU1901-0FT20-0AA0		100	10 units
		Yellow	-	3SU1901-0FT30-0AA0		100	10 units
		Green	-	3SU1901-0FT40-0AA0		100	10 units
		Blue	-	3SU1901-0FT50-0AA0		100	10 units
		White	-	3SU1901-0FT60-0AA0		100	10 units
3SU1901-0FT30-0AA0		Clear	\checkmark	3SU1901-0FT70-0AA0		100	10 units
Buttons, raised)							
	For pushbuttons						
	Plastic	Black	5	3SU1900-0FS10-0AA0		1	10 units
		Red	5	3SU1900-0FS20-0AA0		1	10 units
		Yellow	5	3SU1900-0FS30-0AA0		1	10 units
			5	3SU1900-0FS40-0AA0		1	
3SU1900-OFS30-0AA0 \quad For illuminated pushbuttons							
	Plastic	Red	-	3SU1901-0FS20-0AA0		1	10 units
		Yellow	5	3SU1901-0FS30-0AA0		1	10 units
		Green	5	3SU1901-0FS40-0AA0		1	10 units
		Blue	5	3SU1901-0FS50-0AA0		1	10 units
			5	3SU1901-0FS70-0AA0		1	
3SU1901-OFS40-0AA0							

1) Buttons are not interchangeable between pushbuttons and illuminated pushbuttons with a raised front ring and with a raised front ring, castellated.

Push Button Units and Indicator Lights

Accessories
Actuators

Push Button Units and Indicator Lights

Accessories

Enclosures

Selection and ordering data

Push Button Units and Indicator Lights

Accessories

Enclosures

	Product version	Material	Color	SD	Insulation piercing method	$t: 3$		PS*
				d	Article No.	Price per PU		
Adapters for AS-i shaped cable								
	$\begin{aligned} & \text { M20 } \\ & \text { M25 } \end{aligned}$	Plastic	Black	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	3SU1900-0HX10-0AA0 3SU1900-0HY10-0AAO		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
3 3U1900-0HX10-0AA0								
Adapters for tab connection								
3SU1930-OHS10-0AAO	For plastic enclosures							
	Adapter, M12 socket, 4-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	3SU1930-0HA10-0AAO 3SU1930-0HB10-0AAO		1 1	1 unit 1 unit
	Adapter, M12 connector, 4-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SU1930-0HC10-0AAO 3SU1930-0HD10-0AAO		1 1	1 unit 1 unit
	Adapter, M12 socket, 5-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	3SU1930-0HP10-0AA0 3SU1930-0HQ10-0AAO		1 1	1 unit 1 unit
	Adapter, M12 connector, 5-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SU1930-0HR10-0AAO 3SU1930-0HS10-0AAO		1 1	1 unit 1 unit
	Adapter, M12 socket, 8-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	3SU1930-0HT10-0AAO 3SU1930-0HU10-0AAO		1 1	1 unit 1 unit
	Adapter, M12 connector, 8-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SU1930-0HV10-0AAO 3SU1930-0HW10-0AAO		1 1	1 unit 1 unit
3SU1950-0HA10-0AAO	For metal enclosures							
	Adapter, M12 socket, 4-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	3SU1950-0HA10-0AAO 3SU1950-0HB10-0AAO		1 1	1 unit
	Adapter, M12 connector, 4-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	3SU1950-0HC10-0AAO 3SU1950-0HD10-0AAO		1 1	1 unit 1 unit
	Adapter, M12 socket, 5-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	3SU1950-0HP10-0AA0 3SU1950-0HQ10-0AAO		1 1	1 unit 1 unit
	Adapter, M12 connector, 5-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{array}{r} 5 \\ 5 \\ \hline \end{array}$	3SU1950-0HR10-0AAO 3SU1950-0HS10-0AAO		1	1 unit 1 unit
	Adapter, M12 socket, 8-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SU1950-0HT10-0AA0 3SU1950-0HU10-0AAO		1 1	1 unit 1 unit
	Adapter, M12 connector, 8-pin M20 cable entry M25 cable entry	Plastic	Black	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SU1950-0HV10-0AAO 3SU1950-0HW10-0AAO		1 1	1 unit 1 unit
Enclosure cover mo	itoring ${ }^{1}$)							
-	Module with extension plunger	Plastic	Black	3	3SU1900-0HM10-0AAO		1	1 unit

[^105]
Push Button Units and Indicator Lights

Accessories

Miscellaneous accessories

Selection and ordering data

Accessories

Miscellaneous accessories

Approvals, test certificates, characteristic curves

An overview of the certificates available for Industrial Control products along with more technical documentation can be consulted daily on the Internet at:
www.siemens.com/sirius/approvals

Product support: Approvals/certificates

Product support: Characteristics

Safety characteristics

In the following standards, the so-called B10 values for calculating the safety integrity or safety integrity level (SIL) in functional safety at a high or continuous demand rate are required also for electromechanical switchgear:

- IEC 62061 "Safety of machines - Functional safety of safetyrelated electrical, electronic and programmable electronic control systems",
- ISO 13849-1 "Safety of machines - Safety-related components of controls - Part 1: General principles".
Failure rates of electromechanical components are required for calculating the safety integrity or safety integrity level (SIL) in functional safety:
- in the manufacturing industry at
a high demand rate
- in the process industry at a low demand rate
Further requirements are laid down in IEC 61511-1 "Functional safety - Safety instrumented systems for the process industry sector - Part 1: Framework, definitions, system, hardware and software requirements".

The German versions of the above standards are:

- EN 62061 (VDE 0113-50), 2005 + AMD 1:2013, which since 31.12.2005 has been harmonized as EN 62061 under the Machinery Directive
- EN ISO 13849-1:2008
- EN 61511-1 (VDE 810-1)

The TÜV-tested Safety Evaluation Tool assists in calculating the safety function as verification for the machine documentation. It is available on the Internet at
www.siemens.com/safety-evaluation-tool.
At www.siemens.com/safety-integrated you will also find examples of functions with calculations according to the current standards.

Definitions

$\lambda(t) d t$ is the probability that a unit which has not failed by a certain time t will fail in the following interval ($t ; t+d t$). Failure rates have the dimension 1/time unit, e.g. 1/h. Failure rates for components are often specified in FIT (failures in time unit): 1 FIT equals $10^{-9} / \mathrm{h}$.
From the failure rate it is possible to derive a (mathematical) distribution function of the failure probability:
$F(t)=1-\exp (-\lambda t)$, with λ as constant failure rate

- The mean value of this exponential distribution is also referred to as:
- Mean Time To Failure (MTTF) in the case of irreparable components; 63.2% of components fail by the MTTF.
- Mean Operating Time Between Failures (MTBF) in the case of reparable components.
- MTTF $=1 / \lambda$
(MTTF is a statistical mean value but no guarantee for endurance)
Electromechanical components are often irreparable components. In general, the failure rate of monitored units changes with age.

The B10 value for devices subject to wear is expressed in number of operating cycles:

- it is the number of operating cycles after which 10% of the test specimens fail in the course of an endurance test (or: the number of operating cycles after which 10% of the devices have failed).
For low demand rates (mainly in the process industry), the failure rate and not the B10 value is used to determine the failure probability.
Standard B10 values at a high demand rate
With the help of the B10 value and a simplified formula (see section 6.7.8.2.1 of EN 62061), the user can then calculate the total failure rate of an electromechanical component:
$\lambda=0.1 \times \mathrm{C} / \mathrm{B} 10$
with $\mathrm{C}=$ operating cycles per hour. C is specified by the user.
The failure rate is made up of safe $\left(\lambda_{S}\right)$ and dangerous (λ_{D}) failures:
$\lambda=\lambda_{S}+\lambda_{D}$
or
$\lambda_{D}=$ [share of dangerous failures in \%] $\times \lambda$
$\lambda_{S}=$ [share of safe failures in \%] $\times \lambda$
The failure rate of the dangerous failures λ_{D} of the components used is needed for further calculations.
Listed in the following table are the standard B10 values and the share of dangerous failures for SIRIUS product groups at a high demand rate.

Standard B10 values (at a high demand rate)		
SIRIUS ACT product group (electromechanical components)	Standard B10 value (operating cycles)	Share of dangerous failures
3SU1 EMERGENCY-STOP mushroom pushbuttons (with positive-opening contacts)	100000	20%
3SU1 pushbuttons (non-latching, with positive-opening contacts)	10000000	20%

${ }^{1)}$ Only applies under the conditions specified in the technical specifications.

The $\mathrm{B10}{ }_{\mathrm{d}}$ value used in EN ISO 13849-1:2008 is determined as follows:
$\mathrm{B} 10_{\mathrm{d}}=\frac{\mathrm{B} 10}{\text { Share of dangerous failures }}$
Calculation example
A protective door is monitored by a position switch with a separate actuator.
The protective door is opened 4 times an hour.
The overall failure rate of the position switch is:
$\lambda=0.1 \cdot$ C/B10 [failures $/ \mathrm{h}$]
$\lambda=0.1 \cdot 4 / 1000000=4 \cdot 10^{-7}$ [failures $/ \mathrm{h}$]
The dangerous failure rate is calculated with:
$\lambda_{\mathrm{D}}=20 \%$ of $\lambda=0.2 \cdot 4 \cdot 10^{-7}$ [failures $/ \mathrm{h}$]
$\lambda_{\mathrm{D}}=8 \cdot 10^{-8}$ [failures $/ \mathrm{h}$]

Standard failure rates (at a low demand rate)

On the basis of the failure rates, it is possible to calculate the average probability of failure on demand ($\mathrm{PFD}_{\text {avg }}$) of a PLT protective device.
A so-called low demand rate is assumed, meaning the rate of demand on the safety-related system amounts to no more than once a year and is not greater than double the frequency of the repeat test.
A repeat test once a year is recommended for electromechanical components in order to reveal passive faults.
For special applications it is possible, in agreement with the inspecting institution (e.g. a technical inspectorate, government agency or the like) to extend the test intervals by using suitable solutions (e.g. a multi-channel version etc.).
Listed in the following table are the standard failure rates and the share of dangerous failures for SIRIUS product groups at a low demand rate.

Standard failure rates at a low demand rate

SIRIUS ACT product group (electromechanical components)	Standard failure rates (in FIT)	Share of dangerous failures
3SU1 EMERGENCY-STOP mushroom pushbuttons (with positive-opening contacts)	100	20%
3SU1 pushbuttons (non-latching, with positive-opening contacts)	100	20%

1) The failure rates specified in the table were limited to 100 FIT.

Push Button Units and Indicator Lights

3SE2, 3SE3 Foot Switches

Plastic and metal enclosures

Overview

3SE29 foot switch with metal enclosure

More information

Homepage, see www.siemens.com/sirius-commanding
Industry Mall, see www.siemens.com/product?3SE2
Manual, see https://support.industry.siemens.com/cs/ww/en/view/107194954

Standard switches

The 3SE29 and 3SE39 foot switch range encompasses versions in a metal enclosure for rugged applications as well as versions with plastic enclosure for less harsh environments. The devices can be supplied with or without a cover and have fixing holes for them to be screwed to the floor.
Depending on the particular application, the metal enclosures can be ordered with contact blocks in latching or momentarycontact versions. The momentary-contact pedal switch in the plastic enclosure has one microswitch (changeover contact) per actuating pedal.

Safety foot switches

The 3SE2924-3AA20 single-pedal safety foot switches are used on machines and plants as OK switches when operation by hand is not possible. The switches have an interlocking function.
The safety foot switches are protected by a guard hood against accidental operation.

[^106]The switches have two contact blocks, each with one NO contact and one NC contact. The NO contacts and NC contacts of the two contact blocks are connected for easy connection of a single-phase motor. The normal workflow is initiated by pressing down the pedal as far as the pressure point so that the two NO contacts close and the motor starts to run.

If in the event of danger the pedal is pressed beyond the resistance of the pressure point, the positively driven NC contacts will open and the motor is stopped. At the same time the independent latching takes effect and holds the NC contacts in open position. This prevents the machine parts from continuing to run out of control or from being restarted.
After the hazard is eliminated, the machine can only be restarted after manually releasing the switch using a pushbutton on the top of the enclosure. The contacts are then released again and return to their initial position (the NO contacts are open and the NC contacts are closed).

Technical specifications

Type	3SE29	3SE39
Metal and plastic enclosures		
Standards	IEC 60947-5-1	
Electrical load		
- At AC-15, 400 V		
-1 NO + 1 NC	A	10
-2 NO + 2 NC	A	6
-3 SE2924-3AA20 (2 NO + 2 NC)	A	10
- At 250 V AC	A	-

Short-circuit protection

$-1 N O+1 N C$	A	10 (slow)	--
$-2 \mathrm{NO}+2 \mathrm{NC}$	A	6 (slow)	--
- 3SE2924-3AA20 (2 NO + 2 NC)	A	10 (slow)	
- 1 CO contact	A	--	5 (slow)
Mechanical endurance		> 10^{6} operating cycles	
Material			
- Enclosures		Aluminum casting	Impact-resistant thermoplast, self-extinguishing according to UL 94 VO
- Covers		Thermoplast	-
- Guard hoods		Aluminum casting	Metal
Degree of protection		IP65	IP65
Ambient temperature	${ }^{\circ} \mathrm{C}$	-25 ... +80	-10 ... +75
Connection		Cable entry, metric	Cable AWG20, UL Style 2464, length 3 m

3SE2, 3SE3 Foot Switches

Plastic and metal enclosures

Selection and ordering data

| Version | Slow-action
 contacts
 for each pedal | SD |
| :--- | :--- | :--- | :--- | :--- | :--- |

Metal enclosures, degree of protection IP65

Momentary-contact foot switches, single pedal, non-latching
M20 x 1.5 cable entry

- Without hood
- With hood

Momentary-contact foot switches, single
pedal, latching
M20 x 1.5 cable entry

- Without hood $1 \mathrm{NO}+1 \mathrm{NC} \Theta>15$ 3SE2912-2AB20 $\quad 1$ 1 unit
- With hood $1 \mathrm{NO}+1 \mathrm{NC} \Theta 15 \quad$ 3SE2912-2AA20

11 unit
Momentary-contact foot switches,
two pedals, non-latching
M 25×1.5 cable entry

- Without hood $1 \mathrm{NO}+1 \mathrm{NC} \Theta 15 \quad$ 3SE2932-0AB20 $\quad 1$ 1 unit

- With hood

3SE2932-.AA20

Safety momentary-contact foot switches, non-latching, single pedal
With hood
$\mathrm{M} 20 \times 1.5$ cable entry
with interlocking function
NO closes as momentary contact type
NC opens with automatic latching
(safety function)
d

3SE2902-0AB20	1	1 unit
3SE2903-1AB20	1	1 unit
3SE2902-0AA20	1	1 unit
3SE2903-1AA20	1	1 unit
	1	1 unit
3SE2912-2AB20		1 unit
3SE2912-2AA20	1	1 unit
3SE2932-0AB20		
3SE2932-1AB20	1	1 unit
3SE2932-0AA20	1	1 unit
3SE2932-1AA20		
3SE2924-3AA20		

Plastic enclosures, degree of protection IP65

Momentary-contact pedal switches, $3 \mathrm{~m} \quad$ Microswitch
cable

- Single pedal
- Without hood
- With hood
- Two pedals, without hood
$2 \times 1 \mathrm{CO}$
1 CO contact
1 CO contact
5 3SE3902-4CB20
$1 \quad 1$ unit

11 unit

$1 \quad 1$ unit

3SE3934-5CB20
Accessories
Protection cover
Single pedal foot switch for 3SE2912-2AA20

3SE2902-0AA20 and 3SE2903-1AA20

Contact block,

Supersedes momentary-contact foot switch 3SE2903-1A. $20^{1)}$ and 3SE2932-1A.203)
Contact block,
Supersedes momentary-contact foot switch 3SE2902-0A. 20 and 3SE2932-0A.202)
Contact block, 16 A ,
Supersedes momentary-contact foot switch 3SE2924-3AA201)
Contact block, 16 A,
Supersedes momentary-contact foot switch Supersedes mom
3SE2912-2A. 20
Θ Positive opening according to IEC 60947-5-1, Annex K.

1) Number of contact hlocks renuluren for the fnot switch $=$?

--	20	3SE3980-8M	1	1 unit
$1 \mathrm{NO}+1 \mathrm{NC}$	X	3SE3982-0K	1	1 unit
$1 \mathrm{NO}+1 \mathrm{NC}$	X	3SE3982-0L	1	1 unit
$1 \mathrm{NO}+1 \mathrm{NC}$	X	3SE3982-7J	1	1 unit
$1 \mathrm{NO}+1 \mathrm{NC}$	30	3SE3982-7L	1	1 unit

2) Number of contact blocks required per pedal $=1$.
3) Number of contact hlocks renuired ne.r nedal $=$?

Push Button Units and Indicator Lights

8WD4 Signaling Columns

General Data

Overview

The 8WD4 signaling columns are flexible in design and versatile in use.

8WD42 signaling column (width 50 mm) with up to 4 elements

8WD44 signaling column (width 70 mm) with up to 5 elements

More information

Homepage, see www.siemens.com/sirius-commanding
Industry Mall, see www.siemens.com/product?8WD4
Manual, see https://support.industry.siemens.com/cs/ww/en/view/107194954
Two product series are available:

- 8WD42
- Thermoplast enclosure, diameter 50 mm
- Degree of protection IP54
- Up to 4 elements can be mounted between the connection element and the cover
- 8WD44
- Thermoplast enclosure, diameter 70 mm
- Advanced design and significantly improved illumination
- Fast and flexible connection using spring-type terminals
- Integrated degree of protection IP65
- Up to 5 elements can be mounted between the connection element and the cover

Signaling columns, mounting examples
The illustrated examples are from the left:

- 8WD42: Cover (without No.), four light elements (2), connection element (4), pipe (8), foot (9)
- 8WD44: Acoustic element with cover (1), two light elements (2), connection element (5), foot with pipe (11)
- 8WD44: Cover (without No.), four light elements (2), AS-Interface adapter element (3), connection element (4), bracket for wall mounting (6)
- 8WD44: Cover (without No.), three light elements (2), AS-Interface adapter element (3), connection element (5), foot with pipe (11)

Note:

The cover is supplied with the connection element.

Benefits

- Choice of various light and acoustic elements with different functions:
Continuous light, blinklight, flashlight and rotating light; buzzer and siren
- Light elements with particularly long-lasting LEDs
- Variety of colors: red, yellow, green, white or blue
- Optimized illumination through improved prism technology with the 8WD44
- Acoustic elements can be adjusted in tone and volume
- Extremely resistant to shock and vibrations
- Easy connection and quick lamp change with secure bayonet mechanism
- Communication capability through connection to AS-Interface

Application

8WD4 signaling columns are used in machines or in automatic processes for monitoring complex procedures or as visual or acoustic warning devices in emergency situations, e.g. for displaying individual assembly stages.

Communication capability

Connection to AS-Interface
The 8WD4 signaling columns can be directly connected to the AS-Interface bus system through an adapter element that can be integrated in the column. Wiring outlay is reduced as the result. The two-wire bus cable is fixed to the terminals in the connection element. Up to four signaling elements can be mounted on it using an adapter element.
A/B technology enables the connection of up to 62 slaves on one AS-Interface system.

Connection

The signaling elements are wired up using terminals in the connection element, screw terminals on the 8WD42 and screw or spring-type terminals on the 8WD44.

Cable outlet

The connecting cables can be guided either downwards or sideways through the cable gland using an adapter that can be screwed under the foot. This makes wiring easier if there is no access from below.
Connection to AS-Interface

8WD42

The two-wire bus cable is fixed to the screw terminals in the connection element. The adapter element must be the first module to be mounted on the connection element. A maximum of four signaling elements can then be mounted on it.
The 8WD4228-0BB adapter element is a standard slave.

8WD44

The two-wire bus cable is fixed to the screw or spring-type terminals in the connection element. The adapter element must be the first module to be mounted on the connection element. The signaling elements can then be mounted on it.
The 8WD4428-0BE adapter element is a standard slave. A maximum of four signaling elements can be mounted on it.
The 8WD4428-0BD adapter element with A/B technology enables the connection of up to 62 slaves on one AS-Interface system. The addressing socket provides user-friendly parameterization of the AS-Interface elements. A maximum of three signaling elements can be mounted on it.

Push Button Units and Indicator Lights

8WD4 Signaling Columns

General Data

Technical specifications

Type		8WD42	8WD44
General data			
Approvals		UL, CSA	UL, CSA
Light and acoustic elements			
Rated voltage, power consumption Light elements with incandescent lamp - Continuous lights - Blinklights - Flashlights - Max. inrush current, blinklights/flashlights		$\begin{aligned} & \text { (AC values for } 50 / 60 \mathrm{~Hz} \text {) } \\ & 12 \mathrm{~V}, 24 \mathrm{~V}, 115 \mathrm{~V}, 230 \mathrm{~V} \mathrm{AC/DC} \\ & 24 \mathrm{~V} \mathrm{AC/DC/125} \mathrm{~mA} ; \\ & 115 \mathrm{VAC} / 20 \mathrm{~mA} ; 230 \mathrm{VAC} / 15 \mathrm{~mA} \end{aligned}$	(AC values for $50 / 60 \mathrm{~Hz}$) $12 \mathrm{~V}, 24 \mathrm{~V}, 115 \mathrm{~V}, 230 \mathrm{~V}$ AC/DC 24 V AC/DC/125 mA; 115 V AC/20 mA; 230 V AC/15 mA 24 V DC/125 mA; 115 V AC/20 mA; 230 V AC/35 mA 500 mA
Light elements with integrated LED - Continuous lights - Blinklights - Rotating lights		$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}, 60 \mathrm{~mA} \\ & 24 \mathrm{~V} \mathrm{AC/DC/60} \mathrm{mA;} \\ & 115 \mathrm{VAC}, 60 \mathrm{~mA} ; 230 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 24 \mathrm{~V} \mathrm{AC/DC/} 25 \mathrm{~mA} ; \\ & 115 \mathrm{~V} \mathrm{AC/} 25 \mathrm{~mA} ; 23 \mathrm{~V} \mathrm{AC/25mA} \\ & 24 \mathrm{~V} \mathrm{AC/DC}, 40 \mathrm{~mA} \\ & 24 \mathrm{~V} \mathrm{AC/DC} / 70 \mathrm{~mA} \end{aligned}$
Acoustic elements - Buzzer element (tone: pulsating or continuous tone) - Siren element (8 tones + amplification can be set, 102 dB) - Siren element (95 ... 105 dB)		```85 dB: 24 V AC/DC/30 mA; 115 V AC/DC/35 mA; 230 V AC/35 mA```	85 dB : 24 V AC/DC/25 mA; $115 \mathrm{~V} \mathrm{AC} / 25 \mathrm{~mA} ; 230 \mathrm{~V} \mathrm{AC/25mA}$ 24 V AC/DC/80 mA; $115 \mathrm{~V} \mathrm{AC} / 30 \mathrm{~mA} ; 230 \mathrm{~V} \mathrm{AC/16mA}$ 24 V DC/100 mA
Power consumption - Incandescent lamps, base BA 15d - Flashlights, flash energy	$\begin{aligned} & \text { W } \\ & \text { Ws } \end{aligned}$	$\text { Max. } 5$	$\begin{aligned} & 7 \\ & 2 \end{aligned}$
Service life - Flashlights		--	4×10^{6} flashes
AS-Interface adapter elements			
IO code/ID code		8/F	8/E
Power supply - Operational voltage - Power consumption $I_{\max }$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	Through bus cable $\begin{aligned} & 18.5 \ldots 31.6 \\ & 50 \end{aligned}$	Through bus cable $\begin{aligned} & 18.5 \ldots 31.6 \\ & 100 \end{aligned}$
Protective measures - Watchdog - Short-circuit/overload protection - Reverse polarity protection - Induction protection		External back-up fuse M 1.6 A \checkmark N/A	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$
Outputs		4 relay outputs	3 electronic outputs
- Load voltage	V	External auxiliary voltage $\begin{aligned} & 0 \ldots 30 \mathrm{DC} \\ & 0 \ldots 230 \mathrm{AC} \end{aligned}$	Through bus cable or external auxiliary voltage, selectable
- Current carrying capacity $\Sigma I_{\text {max }}$ - With external auxiliary voltage - Without external auxiliary voltage	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	1.5	$\begin{aligned} & 0.3 \\ & 0.2 \end{aligned}$
Operating temperature	${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	$-20 \ldots+50$
Enclosures			
Enclosure material		Thermoplast (polyamide), impact-resistant, black	Thermoplast (polyamide), impact-resistant, black
Light elements		Thermoplast (polycarbonate)	Thermoplast (polycarbonate)
Mounting - Horizontal (base mounting, foot with 25 mm diameter pipe) - Horizontal (single-hole mounting) - Vertical with bracket		1 \checkmark \checkmark	$\begin{aligned} & \checkmark \\ & -- \\ & \checkmark \end{aligned}$
Degree of protection - Light elements - Acoustic elements, AS-i adapter elements		$\begin{aligned} & \text { IP54 } \\ & \text { IP54 } \end{aligned}$	IP65 (seal premounted with every module) IP65
Operating temperature	${ }^{\circ} \mathrm{C}$	-20 ... +50	-20 ... +50
Connection - Conductor cross-sections - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{Nm} \end{aligned}$	M3 screw terminal Max. 2.5 Max. 0.4	Spring-type terminals/M3 screw terminals Max. 2.5 --/ Max. 0.4

8WD4 Signaling Columns

8WD42 signaling columns, 50 mm diameter

Overview

Features:

- Thermoplast enclosure, diameter 50 mm
- Degree of protection IP54
- Up to four elements can be mounted between the connection element and the cover

Selection and ordering data

Push Button Units and Indicator Lights

8WD4 Signaling Columns

8WD42 signaling columns, 50 mm diameter

Push Button Units and Indicator Lights

8WD4 Signaling Columns

8WD44 signaling columns, 70 mm diameter

Overview

Features:

- Thermoplast enclosure, diameter 70 mm
- Advanced design and significantly improved
- Fast and flexible connection using spring-type terminals illumination
- Integrated degree of protection IP65
- Up to five elements can be mounted

Selection and ordering data

	Version	Rated voltage	Color	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
		V		d				
Acoustic elements ${ }^{1}$								
Hxy	Buzzer elements 85 dB , pulsating or continuous tone, adjustable by means of a wire jumper	24 AC/DC	Black	2	8WD4420-0FA		1	1 unit
		115 AC	Black	2	8WD4440-0FA		1	1 unit
		230 AC	Black	2	8WD4450-0FA		1	1 unit
	Siren elements, multi-tone, 102 dB , 8 tones and volume are adjustable	24 AC/DC	Black	2	8WD4420-0EA2		1	1 unit
		115 AC	Black	2	8WD4440-0EA2		1	1 unit
		230 AC	Black	2	8WD4450-0EA2		1	1 unit
	Siren elements $95 \ldots 105 \mathrm{~dB}$, IP40, alternating continuous tone	24 DC	Black	2	8WD4420-0EA		1	1 unit
Light elements for incandescent lamps/LEDs, BA 15d bases ${ }^{2 /}$								
	Continuous light elements	$12 . .230$ AC/DC	Red	2	8WD4400-1 AB		1	1 unit
			Green	2	8WD4400-1 AC		1	1 unit
			Yellow	2	8WD4400-1AD		1	1 unit
			Clear	2	8WD4400-1 AE		1	1 unit
			Blue	2	8WD4400-1AF		1	1 unit
Light elements with integrated flash lamps ${ }^{3}$								
	Flashlight elements with integrated electronic flash	24 DC	Red	2	8WD4420-0CB		1	1 unit
			Green	2	8WD4420-0CC		1	1 unit
			Yellow	2	8WD4420-0CD		1	1 unit
			Clear	2	8WD4420-0CE		1	1 unit
			Blue	2	8WD4420-0CF		1	1 unit
		115 AC	Red	2	8WD4440-0CB		1	1 unit
			Green	20	8WD4440-0CC		1	1 unit
			Yellow	2	8WD4440-0CD		1	1 unit
			Clear	20	8WD4440-0CE		1	1 unit
			Blue	20	8WD4440-0CF		1	1 unit
		230 AC	Red	2	8WD4450-0CB		1	1 unit
			Green	2	8WD4450-0CC		1	1 unit
			Yellow	2	8WD4450-0CD		1	1 unit
			Clear	2	8WD4450-0CE		1	1 unit
			Blue	2	8WD4450-0CF		1	1 unit

1) One acoustic element can be mounted per signaling column.

The cover is included in the scope of supply of the acoustic elements and fixed in place.
2) The lamp is not included in the scope of supply. Please order separately.
${ }^{3)}$ The lamp is included in the scope of supply

Push Button Units and Indicator Lights

8WD4 Signaling Columns

8 WD44 signaling columns, 70 mm diameter

	Version	Rated voltage	Color	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
		V		d				
Light elements with integrated LED								
	Continuous light elements	24 AC/DC	Red Green Yellow Clear Blue	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	8WD4420-5AB 8WD4420-5AC 8WD4420-5AD 8WD4420-5AE 8WD4420-5AF		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
		115 AC	Red Green Yellow Clear Blue	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	8WD4440-5AB 8WD4440-5AC 8WD4440-5AD 8WD4440-5AE 8WD4440-5AF		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
		230 AC	Red Green Yellow Clear Blue	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	8WD4450-5AB 8WD4450-5AC 8WD4450-5AD 8WD4450-5AE 8WD4450-5AF		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
	Blinklight elements	24 AC/DC	Red Green Yellow Clear Blue	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	8WD4420-5BB 8WD4420-5BC 8WD4420-5BD 8WD4420-5BE 8WD4420-5BF		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
		115 AC	Red Green Yellow Clear Blue	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	8WD4440-5BB 8WD4440-5BC 8WD4440-5BD 8WD4440-5BE 8WD4440-5BF		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
		230 AC	Red Green Yellow Clear Blue	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	8WD4450-5BB 8WD4450-5BC 8WD4450-5BD 8WD4450-5BE 8WD4450-5BF		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
	Rotating light elements	24 AC/DC	Red Green Yellow Clear Blue	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	8WD4420-5DB 8WD4420-5DC 8WD4420-5DD 8WD4420-5DE 8WD4420-5DF		1 1 1 1 1	1 unit 1 unit 1 unit 1 unit 1 unit
Adapter elements for AS-Interface								
	AS-Interface adapter eleme With/without external auxiliary - A/B technology For 3 - Standard AS-i For 4 Adapter elements for IO-Link	, switchable g elements 24 V DC g elements 24 V DC	Black Black	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	8WD4428-0BD 8WD4428-0BE 8WD4428-0BF		1 1	1 unit 1 unit
Connection elements ${ }^{1)}$								
	Connection elements with Screw terminals - For - For	ing on pipes ing on brackets and fl	Black	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	8WD4408-0AA 8WD4408-0AB		1 1	1 unit 1 unit
	Spring-type terminals \bullet For \bullet For	ing on pipes gon brackets and flo		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	8WD4408-0AD 8WD4408-0AE		1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
	IO-Link Connection Element w	2 connector, 5-pole		2	8WD4408-0AF		1	1 unit
	Cover (replacement)			2	8WD4408-0XA		1	1 unit

1) The connection element with cover is an essential part for assembling the signaling columns.

Push Button Units and Indicator Lights

8WD4 Signaling Columns

8WD44 signaling columns, 70 mm diameter

1) Markings for $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90°.
${ }^{2)}$ For horizontal mounting, only 1 element is recommended.

Push Button Units and Indicator Lights

8WD4 Signaling Columns

8WD44 signaling columns, 70 mm diameter

8WD5 Integrated Signal Lamps

8WD53 integrated signal lamps, 70 mm diameter

Overview

8WD53 integrated signal lamps

More information

Homepage, see www.siemens.com/sirius-commanding
Industry Mall, see www.siemens.com/product?8WD5
Manual, see https://support.industry.siemens.com/cs/ww/en/view/107194954

Design

Features:

- Thermoplast enclosures, diameter 70 mm
- Degree of protection IP65
- Rated voltage 24 V, 115 V, 230 V AC/DC
- Ambient temperature -20 to $+50^{\circ} \mathrm{C}$, incandescent lamp up to $60^{\circ} \mathrm{C}$

The special shape of the integrated signal lamps means that the light is emitted optimally in every direction (to the sides and upwards). Continuous lights (with incandescent lamp or LED) and single-flash lights are available in five colors. As well as the continuous-light version, a flashing-light or all-round light version is also available.
The LED versions of the integrated signal lamps offer a considerably longer endurance than the incandescent lamp versions.

They all have the high degree of protection IP65 and are made of a material highly resistant to impact.

Mounting

8WD53 integrated signal lamps can be mounted at any point of the machine for the purpose of giving visual signals. They are mounted by means of a PG-29 screw base with nut.

Application

SIRIUS 8WD53 integrated signal lamps can be used as visual signaling devices in harsh ambient conditions and in outdoor installations.

Visual signaling devices for indicating operating conditions can be used for the following applications:

- Manufacturing plants
- Injection molding machines
- Conveyors
- Assembly systems for electronic components

Push Button Units and Indicator Lights

8WD5 Integrated Signal Lamps

8WD53 integrated signal lamps, 70 mm diameter

Selection and ordering data

Push Button Units and Indicator Lights

8WD4 Signaling Columns

Dimension drawings

Adapter for single-hole mounting

Foot

Bracket for wall mounting

8WD4 Signaling Columns

Dimension drawings

Dimension drawings

Signaling column (5-tier)

Connection diagrams

conventional

Connection element and cover for mounting on pipes

Bracket for single-sided mounting

Foot with pipe

with AS-Interface, without external auxiliary voltage

with external auxiliary voltage

Push Button Units and Indicator Lights

8WD53 Beacons

Dimension drawings

Dimension drawings

30 mm Heavy Duty, Watertight/Oiltight, Class 52

Pushbutton complete units

Features

- Octagonal Mounting Nuts
- Meets Type 1, 3, 3R, 4, 4X, 12, 13 and Automotive Standards
- Heavy Duty Rated NEMA A600/P600 Contacts
- Θ Positively Driven Contacts
- Positive Indexing Selectors
- Bifurcated Movable Contacts
- Attractive Chrome Plating
- Boots Not Required for Type 4
- UL Listed File \# E22655
- CSA Certified File \# LR6535
- Touchsafe Terminals

Application

Oil tight pilot controls and accessories are designed to provide long, trouble free service in the most demanding industrial applications. These controls are oil and dust tight and meet Type 3, 4, 4X, 12 and 13 specifications.

Rugged

Industrial control operators are durable one piece castings. Heavy duty plastic buttons resist oils and corrosion. Silver contacts carry heavy duty ratings.

Flexible

Accessories modify standard push buttons, selector switches and pilot lights. Building block construction of contact blocks makes possible many circuitry combinations.

Industrial Appearance

Pilot controls add luster to panels. Chrome plating covers exposed metal parts.

Push Button Operators

The Operator Base consists of a durable, one piece casting equipped with a heavy duty actuator with a stainless steel spring, a neoprene actuator sealing ring to prevent oil and dust from penetrating to the contact blocks, a neoprene gasket to seal operator mounting hole and a chrome plated lock nut.

Mushroom Head Push Button Operators

The Mushroom Head base construction is identical to the push button base. The actuator is molded of high impact material for either a 1 58 inch or $21 / 2$ inch diameter molded head.

E-STOP Mushroom Head Operators according to EN 60947-5-5 Cat. No. 52BP, 52BR, 52PP, and 52PR, 2 Position, Twist-To-Release \& 2 Position, Push Pull Maintained operators provided with red operating heads and 52BJK contact blocks meet the requirements of EN 60947-5-5 for Electrical Emergency Stop Device With Mechanical Latching Function (e-stop).

Contact Blocks

Contact Blocks have double break bifurcated silver contacts, with gold flashing as standard, which improves contact reliability. Contact blocks are heavy duty rated NEMA A600 and suitable for applications down to $5 \mathrm{~V} / 1 \mathrm{MA}$ solid state outputs. 52BJK offers
Θ Positive Opening Contacts according to IEC 60947-5-1, Appendix K. Molded bodies and pushers resist arcing and tracking. All units have stainless steel springs that resist corrosion and provide strong contact pressure. Captive mounting screws speed panel assembly.

Push Pull Operators

Push Pull Operators combine two or three functions in one unit. The maintained operator has two positions, typically pull to start, push to stop. The momentary operator with three positions provides spring return from both pull and push positions. In addition, a three position push maintained, pull momentary operator is available. The actuator come is $13 / 4$ inch or 2 $1 / 2$ inch diameter and is available in an illuminated version.

2 Button Maintained Operator

Maintained Push Buttons consist of two push buttons and a latching assembly. When actuated the button remains depressed and is freed only by the release operator to which it is linked. The button assembly adjusts for mounting from a $113 / 16$ inch to a 258 inch center.

Transformer Type Pilot Lights

Transformer Type Pilot Lights are available with a 120, 240, 480 or 600 Volt primary (50/60 Hertz) and a separate secondary winding which supplies reduced voltage to a miniature bayonet base 6 Volt lamp. These units are suitable for applications where vibration is present and long bulb life is desirable.

Full Voltage Type Pilot Lights

Full Voltage Pilot Lights are available for 6,12, 24 and 120 Volt AC and DC applications.

Electrical Ratings

NEMA AC Ratings $50 / 60 \mathrm{~Hz}$
NEMA A600 10 Continuous Amps

Volts	Make	Break
120	60	6
240	30	3
480	15	1.5
600	12	1.2
VA	7200	720

Ordering Information

- Accessories: pages 11/204 - 11/207
- Selector Position and Contact Operation: page 11/202-11/203.
- Legend Plates: page 11/216.
- Enclosures: page 11/217.
- Technical Specifications: page 11/218.

Resistor Type Pilot Lights

Resistor Type Pilot Lights are available for 240 Volt AC and DC applications. The 240 Volt pilot light is supplied with a 120 Volt lamp and a voltage dropping resistor.

LED Type Pilot Lights

LED's (light emitting diodes) can be used in pilot lights instead of incandescent bulbs because of their long life (up to 10 years), resistance to vibration and ambient sensitivity. Clusted LED options are available for standard pilot lights only. Cluster LED options are not available on Push to test Pilot Lights, Illuminated Pushbuttons, Push-pull, or Twist-to-Release Operators.

Integrated LED Module Type Pilot Lights

The integrated LED module is available for 24, 120, and 240 V. LED modules are vibration resistant and have a long life (up to 10 years). The integrated LED module is available for 24, 120, and 240 V. LED modules are vibration resistant and have a long life (up to 10 yrs.).

Selector Operators

Selector Operators have positive action indexing. Operators are available with either a short or long lever. The molded black lever is designed to accept a color insert. A white insert is provided as standard. Each operator is equipped with a cam to actuate plungers of contact blocks assembled behind the operator. Two, three and four position operators are available with seven different cams.
Lever color inserts are available in 8 colors.

Indicator Light

Push Button

Selector Switch

Selector Push Button

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Push Button

Selection Guid

Momentary Push Button - Non-Illuminated

Flush Head

Extended Head

Large Mushroom Head 2 1/2"

Small Mushroom Head 1 3/4"

1 For operator without contact blocks leave position e blank.
2 Products available fall 2014. For current product offer please refer to the 2010 Industrial Control Catalog.

Push Buttons \& Signaling Devices

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Push Buttons

Selection Tables
Momentary Push Button - Non-Illuminated

Head Style	Contacts	Color	Finish	
			Chrome	Black Max
Flush	-	Less cap	52PM8	52BM8
		Black	52PM8A1	52BM8A1
		Red	52PM8A2	52BM8A2
		Green	52PM8A3	52BM8A3
		Yellow	52PM8A4	52BM8A4
	1NO-1 NC	Black	52PM8A1A	52BM8A1A
		Red	52PM8A2A	52BM8A2A
		Green	52PM8A3A	52BM8A3A
	1 NO	Black	52PM8A1K	52BM8A1K
		Red	52PM8A2K	52BM8A2K
		Green	52PM8A3K	52BM8A3K
	1 NC	Red	52PM8A2J	52BM8A2J
Extended	-	Black	52PM8B1	52BM8B1
		Red	52PM8B2	52BM8B2
		Green	52PM8B3	52BM8B3
	1 NO	Black	52PM8B1K	52BM8B1K
		Red	52PM8B2K	52BM8B2K
	1 NC	Red	52PM8B2J	52BM8B2J
Mushroom Head Plastic $\varnothing 13 / 4$ "	-	Less cap	52PM9	52BM9
		Red	52PM9W2	52BM9W2
	1 NO	Green	52PM9W3K	52BM9W3K
	$1 \mathrm{NO}-1 \mathrm{NC}$	Black	52PM9W1A	52BM9W1A
		Red	52PM9W2A	52BM9W2A
	1 NO-1 NC	Green	52PM9W3A	52BM9W3A
Mushroom Head Plastic Ø 2 1/2"	-	Red	52PM9V2	52BM9V2
	1NO-1 NC	Black	52PM9V1A	52BM9V1A
		Red	52PM9V2A	52BM9V2A
		Green	52PM9V3A	52BM9V3A

Readily available items are in bold.
This is a small representation of stocked items.

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Non-Illuminated Push Pull

Selection Guide
2 \& 3 Position Push-Pull Mushroom Head Devices - Non-Illuminated

Mushroom Head Metal Ø 1 3/4"

Mushroom Head Plastic Ø 2 1/2"

Mushroom Head Plastic Ø 1 3/4"

1 EMERGENCY-STOP control devices according to IEC 60947-5-5 when provided with red operating head and positively driven NC contact blocks. Positive opening contacts according to IEC 60947-5-1, Appendix K.
2 Blocks cannot be interchanged (stop-start circuit - pull to start, push to stop).
3 For operator without contact blocks leave position f blank.

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Non-Illuminated Push Pull

Selection Tables

2 \& 3 Position Push-Pull Mushroom Head Devices - Non-Illuminated

	Color	2 pos - maintained					
		Metal Ø 1 3/4"		Plastic © 1 3/4"		Plastic Ø 2 1/2"	
Contacts		Chrome	Black Max	Chrome	Black Max	Chrome	Black Max
-	Black	-	-	52PP2W1	52BP2W1	52PP2V1	2BP2V1
	Red	52PP2A2	52BP2A2	52PP2W2	52BP2W2	52PP2V2	52BP2V2
	Green	52PP2A3	52BP2A3	52PP2W3	52BP2W3	52PP2V3	52BP2V3
	Yellow	-	-	52PP2W4	52BP2W4	52PP2V4	52BP2V4
1 NO-1 NC	Red	52PP2A2A ${ }^{1}$	52BP2A2A ${ }^{1}$	52PP2W2A ${ }^{1}$	52BP2W2A ${ }^{1}$	52PP2V2A ${ }^{1}$	52BP2V2A1
	Green	52PP2A3A	52BP2A3A	52PP2W3A	52BP2W3A	52PP2V3A	-
	Yellow	-	-	52PP2W4A	52BP2W4A	52BP2V4A	52BP2V4A
	Chrome	52PP2ACA	52BP2ACA	-	-	-	-

3 pos - maintained in - momentary out
Metal Ø 1 3/4" Plastic Ø 1 3/4"
Plastic Ø 2 1/2"

Contacts	Color
-	Black
	Red
	Green
	Chrome
1 NO - 1 NCELB	Red
	Green

Chrome	Black Max	Chrome	Black Max
-	-	52PP7W1	52BP7W1
52PP7A2	52BP7A2	52PP7W2	52BP7W2
52PP7A3	52BP7A3	52PP7W3	52BP7W3
52PP7AC	52BP7AC	-	-
52PP7A2U	52BP7A2U	52PP7W2U	52BP7W2U
52PP7A3U	52BP7A3U	52PP7W3U	52BP7W3U

Chrome	Black Max
52PP7V1	52 BP 7 V 1
52PP7V2	52 BP 7 V 2
52PP7V3	52 BP 7 V 3
-	-
52PP7V2U	$52 \mathrm{BP7V} 2 \mathrm{U}$
52PP7V3U	52 BP 7 V 3 U

Readily available items are in bold
This is a small representation of stocked items.
${ }^{1}$ EMERGENCY-STOP control devices according to IEC 60947-5-5

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Illuminated Push Pull \& Push Button

Selection Guide

2 \& 3 Position Push-Pull Mushroom Head Devices - Illuminated

Mushroom Head Metal Ø 1 3/4"

Mushroom Head Plastic Ø 2 1/2"

Mushroom Head Plastic Ø 1 3/4"

Part Number		52	$\frac{\mathbf{P}}{\mathrm{b}}$
a	Code	Finish	
	P	Chrome-Command 52	
	B	Epoxy Coated-Black Max	
b	Code	Type	
	P	Push Pull Operator	
C	Code	Function	
	2	2 positions - maintained ${ }^{1}$	
	3	3 positions - momentary in - momentary out ${ }^{2}$	
	7	3 positions - maintained in - momentary out ${ }^{2}$	
d	Code	Opera	
		Full Voltage	C)
		Incandescent	LED ${ }^{4}$
	B	6-8V	6 V
	C	12-13V	-
	D	24-28V	24-28V
	E	120 V	120 V
		Transformer ${ }^{3}$	
	G	120 V AC	
	H	240 V AC	
	J	480 V AC	
	K	600 V AC	
		Integrated LED Light Module	
	L	6-24V AC/DC	
	U	24-240V AC/DC	

[^107]
Selection Tables

						Opera	r Type	
						2 pos -	intained	
					Meta	$13 / 4$ "	Plastic	$13 / 4$ "
Type	Lamp Type	Voltage	Color	Contacts	Chrome	Black Max	Chrome	Black Max
	ED	24 V	Red	1 NO-1 NC	52PP2D2AB ${ }^{1}$	52BP2D2AB ${ }^{1}$	52PP2DRAB1	52BP2DRAB ${ }^{1}$
	LED	24	Green	1 NO-1 NC	52PP2D3AB	52BP2D3AB	52PP2DSAB	52BP2DSAB
Full Voltage		24 V	Red	1 NO-1 NC	52PP2D2A ${ }^{1}$	52BP2D2A ${ }^{1}$	52PP2DRA ${ }^{1}$	52BP2DRA ${ }^{1}$
(AC/DC)	Incandescent	24 V	Green	1 NO-1 NC	52PP2D3A	52BP2D3A	52PP2DSA	52BP2DSA
		120 V	Red	1 NO-1 NC	52PP2E2A ${ }^{1}$	52BP2E2A ${ }^{1}$	52PP2ERA ${ }^{1}$	52BP2ERA ${ }^{1}$
				-	52PP2E2	52BP2E2	52PP2ER	52BP2ER
	IFD	120 V	Red	1 NO-1 NC	52PP2G2AB ${ }^{1}$	52BP2G2AB ${ }^{1}$	52PP2GRAB ${ }^{1}$	52BP2GRAB ${ }^{1}$
Transformer			Green	1 NO-1 NC	52PP2G3AB	52BP2G3AB	52PP2GSAB	52BP2GSAB
(AC)	Incandescent	120V	Red	1 NO-1 NC	52PP2G2A ${ }^{1}$	52BP2G2A ${ }^{1}$	52PP2GRA ${ }^{1}$	52BP2GRA ${ }^{1}$
	Incandescent		Green	1 NO-1 NC	52PP2G3A	52BP2G3A	52PP2GSA	52BP2GSA

Type	Lamp Type	Voltage	Color	Contacts
Full Voltage (AC/DC)	LED	24 V	Green	1 NO-1 NCELB
	Incandescent	24V	Green	1 NO-1 NCELB
			Red	1 NO-1 NCELB
		120 V	Red	-
Transformer (AC)	LED	120 V	Red	1 NO-1 NCELB
			Green	1 NO-1 NCELB
	Incandescent	120 V	Red	1 NO-1 NCELB
			Green	1 NO-1 NCELB

Operator Type

3 pos - maintained in - momentary out

Metal Ø 1 3/4"

Plastic Ø 1 3/4"

Type	Lamp Type	Voltage	Color	Contacts
Full Voltage (AC/DC)	LED	24 V	Green	1 NO-1 NCELB
	Incandescent	24V	Green	1 NO-1 NCELB
			Red	1 NO-1 NCELB
		120 V	Red	-
Transformer (AC)	LED	120 V	Red	1 NO-1 NCELB
			Green	1 NO-1 NCELB
	Incandescent	120 V	Red	1 NO-1 NCELB
			Green	1 NO-1 NCELB

Readily available items are in bold.
This is a small representation of stocked items.
${ }^{1}$ EMERGENCY-STOP control devices according to IEC 60947-5-5

Chrome	Black Max	Chrome	Black Max
52PP3D3UB	52BP3D3UB	52PP3DRUB	52BP3DRUB
52PP3D3U	52BP3D3U	52PP3DSU	52BP3DSU
52PP3D2U	52BP3D2U	52PP3DRU	52BP3DRU
52PP3E2	52BP3E2	52PP3ER	52BP3ER
52PP3G2UB	52BP3G2UB	52PP3GRUB	52BP3GRUB
52PP3G3UB	52BP3G3UB	52PP3GSUB	52BP3GSUB
52PP3G2U	52BP3G2U	52PP3GRU	52BP3GRU
52PP3G3U	52BP3G3U	52PP3GRU	52BP3GRU

Operator Type

3 pos - momentary in - momentary out
Metal Ø 1 3/4"
Plastic Ø 1 3/4"

Selection Guide

2 Position Twist－to－Release Devices Mushroom Head－Non－Illuminated

Part Number	52 a	$\frac{R}{b}-\frac{8}{c}$	$\frac{\mathbf{W}}{\mathrm{d}}$	e	f^{2}
Finish	Function	Style	Color	Contacts	Part Number
Chrome	2 Position Twist－to－Release	Plastic $13 / 4$＂Mushroom Head	Red	1 NO－1 NC	52PR8W2A
Black Max	2 Position Twist－to－Release	Plastic $13 / 4$＂Mushroom Head	Red	$1 \mathrm{NO}-1 \mathrm{NC}$	52BR8W2A
Chrome	2 Position Twist－to－Release	Plastic $13 / 4$＂Mushroom Head	Red	None	52PR8W2

Readily available items are in bold．
This is a small representation of stocked items．

a	Code	Finish
	P	Chrome－Command 52
	B	Epoxy Coated－Black Max
b	Code	Function
	R	2 Position Twist－to－Release，Maintained ${ }^{1}$
C	Code	Style
d	Code	Plastic 1 3／4＂Mushroom Head
	W	Lamp Type

e	Code	Color
	2	Red ${ }^{1}$
	3	Green
	4	Yellow
	Z	No head
f^{2}	Code	Contact Blocks
	A	$1 \mathrm{NO}+1 \mathrm{NC}^{1}$
	B	$2 \mathrm{NO}+2 \mathrm{NC}^{1}$
	C	$3 \mathrm{NO}+3 \mathrm{NC}^{1}$
	D	$4 \mathrm{NO}+4 \mathrm{NC}^{1}$
	E	1 NC （LB）
	F	2 NO
	G	$2 \mathrm{NC}^{1}$
	H	1 NO （EM）
	J	$1 \mathrm{NC}^{1}$
	K	1 NO

[^108]
30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Selection Guide

2 Position Twist-to-Release Mushroom Head Devices - Illuminated

Plastic 1 3/4" Mushroom Head - Chrome

Plastic 1 3/4" Mushroom Head - Black Max

Readily available items are in bold.
This is a small representation of stocked items.

a	Code	Finish	
	P	Chrome-Command 52	
	B	Epoxy Coated-Black Max	
b	Code	Function	
	R	2 Position Twist-to-Release, Maintained	
C	Code	Style	
	8	Plastic $13 / 4$ " Mushroom Head	
d	Code	Operation	
		Full Voltage ${ }^{2}$ (AC/DC)	
		Incandescent	LED ${ }^{3}$
	B	6-8V	6 V
	C	12-13V	-
	D	24-28V	24-28V
	E	120 V	120 V
		Transformer ${ }^{2}$	
	G	120 V AC	
	H	240 V AC	
	J	480 V AC	
	K	600 V AC	
		Integrated LED Light Module	
	L	6-24V AC/DC	
	U	24-240V AC/DC	

e	Code	Color
	R	Red ${ }^{1}$
	S	Green
	T	Amber
	Z	No head
f	Code	Contact Blocks
	A	$1 \mathrm{NO}+1 \mathrm{NC}^{1}$
	B	$2 \mathrm{NO}+2 \mathrm{NC}^{1}$
	C	$3 \mathrm{NO}+3 \mathrm{NC}^{1}$
	D	$4 \mathrm{NO}+4 \mathrm{NC}^{1}$
	E	1 NC (LB)
	F	2 NO
	G	$2 \mathrm{NC}^{1}$
	H	1NO (EM)
	J	$1 \mathrm{NC}^{1}$
	K	1 NO
g	Code	Bulb Type
	Blank	Incandescent
	B	LED
	Y	Super-Bright LED ${ }^{4}$

1 EMERGENCY-STOP control devices according to IEC 60947-5-5 when provided with red operating head and positively driven NC contact blocks. Positive opening contacts according to IEC 60947-5-1, Appendix K, Molded bodies.
2 Default bulb type is incandescent. For LED options, append field g.
LED option not available on units sold "no head."
3 LED voltages apply to table g option code B and Y.
4 Not available in 120 V or 240 V .

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Indicator Light

Selection Guide
Indicator Light

Plastic Lens

Glass Lens

[^109]Push Buttons \& Signaling Devices

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Indicator Lights

Selection Tables

Indicator Light

Type	Lamp Type	Voltage	Color	Plastic Lens	
				Chrome	Black Max
Full Voltage (AC/DC)	LED	24 V	Red	52PL4D2XB	52BL4D2XB
			Green	52PL4D3XB	52BL4D3XB
			Blue	52PL4D5XB	52BL4D5XB
			Amber	52PL4D9XB	52BL4D9XB
			White	52PL4DBXB	52BL4DBXB
		120 V	Red	52PL4E2XB	52BL4E2XB
			Green	52PL4E3XB	52BL4E3XB
			Amber	52PL4E9XB	52BL4E9XB
			Clear	52PL4EAXB	52BL4EAXB
			White	52PL4EBXB	52BL4EBXB
	Incandescent	24V	Red	52PL4D2	52BL4D2
			Green	52PL4D3	52BL4D3
			Blue	52PL4D5	52BL4D5
			Amber	52PL4D9	52BL4D9
			White	52PL4DB	52BL4DB
			No Lens	52PL4DN	52BL4DN
		120 V	Red	52PL4E2	52BL4E2
			Green	52PL4E3	52BL4E3
			Amber	52PL4E9	52BL4E9
			No Lens	52PL4EN	52BL4EN
Transformer (AC)	LED	120 V	Red	52PL4G2XB	52BL4G2XB
			Green	52PL4G3XB	52BL4G3XB
			Amber	52PL4G9XB	52BL4G9XB
			White	52PL4GBXB	52BL4GBXB
		480 V	Red	52PL4J2XB	52BL4J2XB
			Green	52PL4J3XB	52BL4J3XB
			White	52PL4JBXB	52BL4JBXB
	Incandescent	120 V	Red	52PL4G2	52BL4G2
			Green	52PL4G3	52BL4G3
			Amber	52PL4G9	52BL4G9
			White	52PL4GB	52BL4GB
			No Lens	52PL4GN	52BL4GN
		240 V	Red	52PL4H2	52BL4H2
			Green	52PL4H3	52BL4H3
		480 V	Red	52PL4J2	52BL4J2
			Green	52PL4J3	52BL4J3
			Amber	52PL4J9	52BL4J9

Readily available items are in bold.
This is a small representation of stocked items.

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Illuminated Push Button \& Push-to-Test

Selection Guide
Push Button \& Push-to-Test - Illuminated

Extended Lens

2 Default bulb type is incandescent. For LED options, append field g. LED option not available on units sold "No Lens".
3 LED voltages apply to table g option code B and Y.
4 Not available in 120 V or 240 V .

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Illuminated Push Buttons \& Push-to-Test

Selection Tables
Push Button \& Push-to-Test - Illuminated

Type	Lamp Type	Voltage	Color	Contacts	Extended Lens	
					Chrome	Black Max
Full Voltage (AC/DC)	LED	24 V	Red	1 NO-1 NC	52PT6D2AB	52BT6D2AB
			Green	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6D3AB	52BT6D3AB
			Blue	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6D5AB	52BT6D5AB
			Amber	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6D9AB	52BT6D9AB
			White	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6DBAB	52BT6DBAB
		120 V	Red	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6E2AB	52BT6E2AB
			Green	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6E3AB	52BT6E3AB
	Incandescent	24 V	Red	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6D2A	52BT6D2A
			Green	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6D3A	52BT6D3A
			Blue	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6D5A	52BT6D5A
			Amber	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6D9A	52BT6D9A
			White	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6DBA	52BT6DBA
		120 V	Red	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6E2A	52BT6E2A
			Green	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6E3A	52BT6E3A
Transformer (AC)	LED	120 V	Red	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6G2AB	52BT6G2AB
			Green	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6G3AB	52BT6G3AB
			Amber	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6G9AB	52BT6G9AB
			White	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6GBAB	52BT6GBAB
		240 V	Red	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6H2AB	52BT6H2AB
			Green	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6H3AB	52BT6H3AB
	Incandescent	120 V	Red	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6G2A	52BT6G2A
			Green	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6G3A	52BT6G3A
			Amber	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6G9A	52BT6G9A
			White	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6GBA	52BT6GBA
			No Lens	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6GNA	52BT6GNA
		240 V	Green	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6H3A	52BT6H3A
		480 V	Clear	$1 \mathrm{NO}-1 \mathrm{NC}$	52PT6JAA	52BT6JAA

Readily available items are in bold.
This is a small representation of stocked items.

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Illuminated Push Button

Selection Guide
Push Button Mushroom Head Devices - Illuminated

Mushroom Head Metal Ø 1 3/4"

Mushroom Head Plastic Ø 2 1/2"

Mushroom Head Plastic Ø $13 / 4$ "

Selection Guide

Selector Switches - Illuminated

Short Lever - Chrome
Short Lever - Black Max

Readily available items are in bold
This is a small representation of stocked items.

a	Code	Type
	S	Selector Switch
b	Code	Finish
	A	Chrome - Command 52
	X	Epoxy Coated - Black Max
C	Code	Style
	7	Maintained
d	Code	Function
	A	2 Position: CAM A
	B	3 Position: CAM B
	C	3 Position: CAM C
e	Code	Operation
		Full Voltage ${ }^{1}$ (AC/DC)
		Incandescent LED ${ }^{2}$
	B	$6-8 \mathrm{~V}$ - 6V
	C	12-13V
	D	$24-28 \mathrm{~V}$ 24-28V
	E	120 V
		Transformer ${ }^{1}$
	G	120 V AC
	H	240 V AC
	J	480 V AC
	K	600 V AC
		Integrated LED Light Module
	L	6-24V AC/DC
	U	24-240V AC/DC

f	Code	Color	
	2	Red	
	3	Green	
	5	Blue	
	9	Amber	
	A	Clear	
	N	No Insert	
9	Code	Contact Blocks	
	A	1 NO-1 NC	
	E	1 NC (LB)	
	H	1 NO (EM)	
	J	1 NC	
	K	1 NO	
h	Code	Contact Quantity \& Location	
		A CAM \& C CAM Left	B CAM Right
	0	1	-
	1	-	1
	3	2	-
	4	-	2
i	Code	Bulb Type	
	Blank	Incandescent	
	B	LED	
	Y	Super-Bright LED ${ }^{3}$	

1 Default bulb type is incandescent. For LED options, append field i.
LED option not available on units sold "no head".
2 LED voltages apply to table i option code B and Y.
3 Not available in 120 V or 240 V .

For CAM selection see page 11/202

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Non-Illuminated Selector Switch

Selection Guide

Selector Switch - Non-Illuminated

Short Lever

1 C CAM on spring return selectors is limited to 4 contact blocks.
For CAM selection see page 11/202.
2 For operator without contact blocks leave positions g and h blank.

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Non-Illuminated Selector Switch

Selector Switch, Non-Illuminated ${ }^{1)}$

		Switch Position		Type	Chrome		Black Max	
Contact Type	Contact	Left	Right	$\begin{aligned} & M=\text { Maintained } \\ & S=\text { Spring Return } \end{aligned}$	Short Lever	Long Lever	Short Lever	Long Lever
		(\bigcirc		2-Position Operator			
No Contacts	-	-	-	M M	52SA2AAB	52SB2AAB	52SX2AAB	52SW2AAB
				M<---S	52SA2ACB	52SB2ACB	52SX2ACB	52SW2ACB
1 N.O.	A	0	X	M M	52SA2AABK1	52SB2AABK1	52SX2AABK1	52SW2AABK1
				M<---S	52SA2ACBK1	52SB2ACBK1	52SX2ACBK1	52SW2ACBK1
1 N.O.	A	0	X	M M	52SA2AABA1	52SB2AABA1	52SX2AABA1	52SW2AABA1
1 N.C.	B	X	0	M<---S	52SA2ACBA1	52SB2ACBA1	52SX2ACBA1	52SW2ACBA1

Contact Type	Contact	Switch Position			Type	Chrome		Black Max	
		Left	Center	Right	M = Maintained S = Spring Return	Short Lever	Long Lever	Short Lever	Long Lever
		((1)	(3-Positio	Operator	
No Contacts	-	-	-	-	M M M	52SA2CAB	52SB2CAB	52SX2CAB	52SW2CAB
					M M M	52SA2BAB	52SB2BAB	52SX2BAB	52SW2BAB
					S--->M M	52SA2BBB	52SB2BBB	52SX2BBB	52SW2BBB
					M M<----S	52SA2BCB	52SB2BCB	52SX2BCB	52SW2BCB
					S--->M<---S	52SA2BDB	52SB2BDB	52SX2BDB	52SW2BDB
1 N.O.	A	0	0	X	M M M	52SA2CABA1	52SB2CABA1	52SX2CABA1	52SW2CABA1
					S--->M M	52SA2CBBA1	52SB2CBBA1	52SX2CBBA1	52SW2CBBA1
1 N.C.	B	X	0	0	M M<----S	52SA2CCBA1	52SB2CCBA1	52SX2CCBA1	52SW2CCBA1
					S--->M<---S	52SA2CDBA1	52SB2CDBA1	52SX2CDBA1	52SW2CDBA1
1 N.O.	A	0	0	X	M M M	52SA2CABA2	52SB2CABA2	52SX2CABA2	52SW2CABA2
1 N.C.	B	X	0	0	S--->M M	52SA2CBBA2	52SB2CBBA2	52SX2CBBA2	52SW2CBBA2
1 N.O.	C	0	0	X	M M<----S	52SA2CCBA2	52SB2CCBA2	52SX2CCBA2	52SW2CCBA2
1 N.C.	D	X	0	0	S--->M<---S	52SA2CDBA2	52SB2CDBA2	52SX2CDBA2	52SW2CDBA2
1 N.O.	A	0	0	X					
1 N.C.	B	X	0	0	M M M	52SA2GABJ2K1	52SB2GABJ2K1	52SX2GABJ2K1	52SW2GABJ2K1
1 N.C.	C	0	X	0					

Contact Type	Contact	Switch Position				Type				Chrome		Black Max	
		Left	Left Center	Right Center	Right				ned eturn	Short Lever	Long Lever	Short Lever	Long Lever
		\bigcirc	(((4-Position	Operator	
No Contacts	-	-	-	-	-	M	M	M	M	52SA2HAB	52SB2HAB	52SX2HAB	52SW2HAB
$\begin{aligned} & 1 \mathrm{~N} . \mathrm{O} . \\ & 1 \mathrm{~N} . \mathrm{C} . \\ & 1 \text { N.C. } \end{aligned}$	A B C	$\begin{aligned} & \mathrm{X} \\ & \mathrm{O} \\ & 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{O} \\ \mathrm{X} \\ \mathrm{O} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	M		M	M	52SA2HABJ2K1	52SB2HABJ2K1	52SX2HABJ2K1	52SW2HABJ2K1
$\begin{aligned} & 1 \mathrm{~N} . \mathrm{O} . \\ & 1 \mathrm{~N} . \mathrm{O} . \\ & 1 \mathrm{~N} . \mathrm{C} . \\ & 1 \mathrm{~N} . \mathrm{C} . \end{aligned}$	A	0 \times 0 0	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{x} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	M		M	M	52SA2HABJ2K2	52SB2HABJ2K2	52SX2HABJ2K2	52SW2HABJ2K2

[^110]
30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Keyed Selector Switch

Selection Guide

Keyed Selector Switch

1a. See page 11/199 for replacement keys, and up-to 15 additional uniquely keyed M - Series Lock Options available for use with the 52SC6 key-operated selector switches.

1b. To order the specific lock types shown in table \mathbf{h}, simply append the corresponding " X " suffix to a standard part number (Ordering Example: 52SC6AEX298).
Note: Same list price applies as standard keyed locks.
2. C CAM on spring return selectors is limited to 4 contact blocks. For CAM selection see page 11/202.
3 For operator without contact blocks leave positions f and g blank.

30mm Water, Oil Tight \& Corrosion Resistant - Class 52
Keyed Selector Switch

Key-operated Selector Switch, Non-Illuminated ${ }^{1)}$

Contact Type	Contact	Switch Position		Type	Key Removal	
		Left	Right	M = Maintained S = Spring Return	Left	Both
		((Operator
No Contacts	-	-	-	M M	52SC6AF	52SC6AE
				M<---S	52SC6AX	-
1 N.O.	A	0	X	M M	52SC6AFK1	52SC6AEK1
				M<---S	52SC6AXK1	-
1 N.O.	A	O	X	M M	52SC6AFA1	52SC6AEA1
1 N.C.	B	X	0	M<---S	52SC6AXA1	-

Contact Type	Contact	Switch Position			Type		Key Removal					All Positions
		Left	Center	Right	M = Maintained S = Spring Return	Left	Right	Center	Left \& Center	Left \& Right	Center \& Right	
		((1)	(3-Po	sition Ope	ator		
No Contacts	-	-	-	-	M M M	52SC6CF	52SC6CG	$52 \mathrm{SC6CH}$	52SC6CK	52SC6CJ	52SC6CM	52SC6CE
					M M M	52SC6BF	52SC6BG	52SC6BH	52SC6BK	52SC6BJ	52SC6BM	52SC6BE
					S--->M M	-	52SC6BW	52SC6BT	-	-	52SC6BY	-
					M M<----S	-	-	52SC6BU	52SC6BZ	-	-	-
					S--->M<---S	-	-	52SC6BV	-	-	-	-
1 N.O.	A	O	0	X	M M M	52SC6CFA1	52SC6CGA1	52SC6CHA1	52SC6CKA1	52SC6CJA1	52SC6CMA1	52SC6CEA1
					S--->M M	-	52SC6CWA1	52SC6CTA1	-	-	52SC6CYA1	-
1 N.C.	B	X	O	O	M M<----S	-	-	52SC6CUA1	52SC6CZA1	-	-	-
					S--->M<---S	-	-	52SC6CVA1	-	-	-	-
$\begin{aligned} & 1 \mathrm{~N} . \mathrm{O} . \\ & 1 \mathrm{~N} . \mathrm{C} . \\ & 1 \mathrm{~N} . \mathrm{O} . \\ & 1 \text { N.C. } \end{aligned}$	A B C D	X0X	0000	$\begin{gathered} \mathrm{x} \\ 0 \\ \mathrm{x} \\ 0 \end{gathered}$	M M M	52SC6CFA2	52SC6CGA2	52SC6CHA2	52SC6CKA2	52SC6CJA2	52SC6CMA2	52SC6CEA2
					S--->M M	-	52SC6CWA2	52SC6CTA2	-	-	52SC6CYA2	-
					M M<----S	-	-	52SC6CUA2	52SC6CZA2	-	-	-
					S--->M<---S	-	-	52SC6CVA2	-	-	-	-
1 N.O.	A	\bigcirc	\bigcirc	X								
1 N.C.	B	X	0	0	M M M	52SC6GFJ2K1	52SC6GGJ2K1	52SC6GHJ2K1	52SC6GKJ2K1	52SC6GJJ2K1	52SC6GMJ2K1	52SC6GEJ2K1
1 N.C.	C	0	X	0								

Contact Type	Contact	Switch Position				Type				Key Removal	
		Left	Left Center	Right Center	Right		$=\text { Ma }$	$\begin{aligned} & \text { intai } \\ & \text { ing } \end{aligned}$	ined Return	Right	All Positions
		\bigcirc	O	θ	(Operator
No Contacts	-	-	-	-	-	M	M	M	M	52SC6HG	52SC6HE
1 N.O.	A	x	0	\bigcirc	0						
1 N.C.	B	0	X	\bigcirc	\bigcirc	M	M	M	M	52SC6HGJ2K1	52SC6HEJ2K1
1 N.C.	C	\bigcirc	\bigcirc	X	\bigcirc						
1 N.O.	A	\bigcirc	\bigcirc	\bigcirc	\times						
1 N.O.	B	x	\bigcirc	0	\bigcirc						
1 N.C.	C	\bigcirc	X	\bigcirc	0		M	M	M	52SC6HGJ2K2	52SC6HEJ2K2
1 N.C.	D	\bigcirc	\bigcirc	x	\bigcirc						

Note: $\mathrm{X}=$ Closed $/ \mathrm{O}=$ Open

1) Readily available items are in bold.

All Operatores listed above are furnished with Lock No. 501 CH This is a small representation of stocked items.

Push Button Units and Indicator Lights

Actuators and Indicators, Customized Designs

Special locks

Options

Special locks for key-operated switches

Siemens Key-Operated Selector Switches beginning with 51SA6 or 52SC6 can be optionally ordered with the 15 uniquely keyed M -Series Locks by appending the corresponding "X" suffixes from the table below to the catalog number. (Ordering Example for Lock Number M705: 52SC6CEX705).
Note: Pricing for M - Series Locks on this page are slightly higher than standard lock types.

Suffix Code	Lock Number
X705	M705
$\times 709$	M709
$\times 713$	M713
$\times 714$	M714
$\times 715$	M715
$\times 723$	M723
$\times 725$	M725
$\times 738$	M738
$\times 749$	M749
$\times 750$	M750
$\times 757$	M757
$\times 766$	M766
$\times 779$	M779
$\times 782$	M782
$\times 795$	M795

Spare Keys for Key-Operated Selector Switches

Spare Key	Part Number
550CH (1 Key)	52KEY-550CH
549CH (1 Key)	52KEY-549CH
548CH (1 Key)	52KEY-548CH
547CH (1 Key)	52KEY-547CH
501CH (1 Key)	52KEY-501CH
506CH (1 Key)	52KEY-506CH
M703 (1 Key)	52KEY-M703
M705 (1 Key)	52KEY-M705
M706 (1 Key)	52KEY-M706
M709 (1 Key)	52KEY-M709
M712 (1 Key)	52KEY-M712
M713 (1 Key)	52KEY-M713
M714 (1 Key)	52KEY-M714
M715 (1 Key)	52KEY-M715
M716 (1 Key)	52KEY-M716
M717 (1 Key)	52KEY-M717
M723 (1 Key)	52KEY-M723
M725 (1 Key)	52KEY-M725
M728 (1 Key)	52KEY-M728
M730 (1 Key)	52KEY-M730
M735 (1 Key)	52KEY-M735
M736 (1 Key)	52KEY-M736
M738 (1 Key)	52KEY-M738
M747 (1 Key)	52KEY-M747
M749 (1 Key)	52KEY-M749
M750 (1 Key)	52KEY-M750
M752 (1 Key)	52KEY-M752
M753 (1 Key)	52KEY-M753
M756 (1 Key)	52KEY-M756
M757 (1 Key)	52KEY-M757
M759 (1 Key)	52KEY-M759
M766 (1 Key)	52KEY-M766
M769 (1 Key)	52KEY-M769
M771 (1 Key)	52KEY-M771
M779 (1 Key)	52KEY-M779
M784 (1 Key)	52KEY-M784
M790 (1 Key)	52KEY-M790
M795 (1 Key)	52KEY-M795
M700 (1 Key)	52KEY-M700
M701 (1 Key)	52KEY-M701
M702 (1 Key)	52KEY-M702
M704 (1 Key)	52KEY-M704
M705 (1 Key)	52KEY-M705
M707 (1 Key)	52KEY-M707
M711 (1 Key)	52KEY-M711
M713 (1 Key)	52KEY-M713
M715 (1 Key)	52KEY-M715
M782 (1 Key)	52KEY-M782
M795 (1 Key)	52KEY-M795

Push Buttons \& Signaling Devices
30mm Water, Oil Tight \& Corrosion Resistant - Class 52
Selector Push Button
Selection Guide
Selector Push Button

d	Code	Function
	P	2 Position: CAM P
	Q	2 Position: CAM Q
	R	2 Position: CAM R
	S	3 Position: CAM S
e	Code	Color
	1	Black
	2	Red

f1 Code

Note: $\mathrm{X}=$ Closed $/ \mathrm{O}=$ Open $\quad 1$ For operator without contact blocks leave position f blank

30mm Water，Oil Tight \＆Corrosion Resistant－Class 52

Special devices

Selection and ordering data

	Ohms／color	Order no．
	Porsion	Pack
		50

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Cam selection

Selection and ordering data

Ordering Information

- Contact blocks are ordered separately, see page 11/202
- Determine which table to use based upon the type of selector (non-illum selector switch-top, illum selector switch-middle, and selector pushbutton-bottom).
- Find the correct number of selector positions (2,3 or 4 positions).
- Select the contact operation required for each selector position. X indicates the contacts are closed while O indicates the contacts are open. (For the selector pushbutton, $\mathrm{N}=$ =normal and $\mathrm{D}=$ depressed) Contact block must be assembled in position shown for each circuit application.
- Identify the CAM letter required for the chosen contact operation (only 1 CAM can be used per selector switch or selector pushbutton)
- Contact blocks must be assembled in the position shown for each circuit application. The mounting position is viewed from the front of the device.

Ordering CAMs D, E or G

- CAM D, E or G may be ordered at the same price by changing the 6th character of the selector catalog number. Example: Selector with D cam 52SX2DAB.

Size Requirements

- C CAM on spring return selectors is limited to 4 contact blocks.
- Selector operators in enclosures are limited to depth of 1 contact block. (2 blocks wide).

Non-illuminated and keyed selector switches (viewed from front)

Illuminated selector switches (viewed from front)

2 Selector Positions Left	Right	Contact Blocks	CAM	Mounting Left	Right
$\begin{aligned} & X \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{x} \end{aligned}$	NC (52BAJ) NO (52BAK)	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	
3 Selector Positions Left Center	Right	Contact Blocks	CAM	Mounting Left	Right
0 0 0 X	$\begin{aligned} & x \\ & 0 \end{aligned}$	$\begin{aligned} & \text { NC (52BAJ) } \\ & \text { NO (52BAK) } \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$		
$\begin{array}{ll}X & 0 \\ 0 & 0\end{array}$	+	NC (52BAJ) NO (52BAK)	C	${ }_{L}^{\text {L }}$	

Selector Pushbuttons (viewed from front)

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Custom selector switch designs

Selection and ordering data

Assembled Non-illuminated Selector Switches

- Determine contact block and location from above.
- Select block suffix. Ex: $\mathbf{J}=\mathbf{5 2 B A J}$
- Now select position suffix.

Additional suffixes allow for multiple quantities and locations.

- 1-52BAJ block mounted on right side, suffix will be J 1
- Repeat process for next block if required.
- Add list price of blocks to operator list price.
- Consult factory for delivery.

Example 1: $\mathrm{X} \bigcirc \bigcirc \bigcirc$	Block Suffix	Position Suffix		
0 O X	$\begin{aligned} & \text { A }=1 \text { NO - } 1 \text { NC, 52BJK } \\ & E=\text { NC Late Break, 52BAE } \\ & H=\text { NO Early Make, 52BAH } \\ & J=N C, 52 B A J \\ & K=N O, 52 B A K \end{aligned}$	Suffix	Quantity and Location	
HAND-OFF-AUTO Maintained Switch			Left	Right
Catalog No 52SA2CAB A 1 = 52A2CABA1		0	1	-
(52BJK block mounted on right side)		1	-	1
		2	1	1
Example 2: $\quad \times$ O		3	2	-
$\bigcirc \times \bigcirc \quad$ 52BAJ (R)		4	-	2
$\bigcirc \bigcirc \times$ 52BAK (L or R) \}K1		5	2	1
G Cam required		6	1	2
Catalog No 52SA2GAB J2 K1 = 52SA2GABJ2K1		7	2	2
		8	3	-
		9	-	3

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Accessories and spare parts

Selection and ordering data

	Version	Suitable for	Color	Order no.
	Flush actuator lens cap The 52RC1 Screw-on style caps shown are used on the new 52BM8 \& 52PM8 Pushbutton Operators. To order Snap-on style replacement caps for the old style 52PA8 \& 52PX8 Pushbutton Operators change the 4th character from " C " to " A " (i.e. 52RA1A1).	For flush type, non-illuminated pushbuttons bag of 5 caps	black red green yellow blue gray orange kit- all colors	52RC1A1 52RC1A2 52RC1A3 52RC1A4 52RC1A5 52RC1A6 52RC1A8 52RC1AN
	Extended actuator lens cap The 52RC1 Screw-on style caps shown are used on the new 52BM8 \& 52PM8 Pushbutton Operators. To order Snap-on style replacement caps for the old style 52PA8 \& 52PX8 Pushbutton Operators change the 4th character from " C " to " A " (i.e. 52RA1B1).	For extended type, non-illuminated pushbuttons bag of 5 caps	black red green yellow blue gray orange 1 of each color cap	52RC1B1 52RC1B2 52RC1B3 52RC1B4 52RC1B5 52RC1B6 52RC1B8 52RC1BN
	Mushroom head cap - Plastic set-screw type replacement caps are for discontinued 52PB9 and 52PX9 operators only	For large 2 1/2" $(63.5 \mathrm{~mm})$ type, set screw non-illuminated mushroom pushbuttons For small $15 / 8$ "(41.3mm) type, non-illuminated mushroom pushbuttons	```black red green yellow blue gray orange 1 kit of each color cap black red green yellow blue gray orange 1 of each color cap```	52RB3E1 52RB3E2 52RB3E3 52RB3E4 52RB3E5 52RB3E6 52RB3E8 52RB3EN 52RB3D1 52RB3D2 52RB3D3 52RB3D4 52RB3D5 52RB3D6 52RB3D8 52RB3DN
	Mushroom head cap - Metal set-screw type	For small $15 / 8$ "(41.3mm) type, set screw non-illuminated mushroom pushbuttons	chrome red green	52RB3FC 52RB3F2 52RB3F3
	Replacement Lens for Indicator Lights	For catalog numbers starting with 52PL or 52BL(1) 2 Plastic Glass	red green blue amber clear white 1 of each color red green blue amber clear white 1 of each color	52RA4S2 52RA4S3 52RA4S5 52RA4S9 52RA4SA 52RA4SB 52RA4SN 52RA4T2 52RA4T3 52RA4T5 52RA4T9 52RA4TA 52RA4TB 52RA4TN
	Replacement Lens forPush to Test/ Illuminated Pushbuttons The 52RA5S Raised lens caps shown are used on the 52BT6 \& 52PT6 PTT/llluminated Pushbutton Operators. To order Flush lens caps for the new style 52BT8 \& 52PT8 PTT/ Illuminated Pushbutton Operators change the 52RA5S prefix to 52RC5P (i.e. 52RC5P2).	For catalog numbers starting with 52PT or 52BT(2)3 Plastic	red green blue amber clear white	52RA5S2 52RA5S3 52RA5S5 52RA5S9 52RA5SA 52RA5SB

(1) To order replacement lens for indicator lights starting with 52PA, 52PE, or 52PX, change the 6th digit to P for plastic and G for glass.
(2) It is possible to retrofit catalog numbers starting with 52PA, 52PE and 52PX with the replacement lens. The new lens have concentric ribs for improved light distribution.

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Accessories and spare parts

Selection and ordering data

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Accessories and spare parts

Selection and ordering data

(1) These can also be used with the $15 / 8^{\prime \prime}$ push-pull devices.
(2) For push-pull units starting with part numbers 52PA, 52PE or 52PX, replacement locknuts can be ordered using 52AANL (Chrome) and 52AXNL (BlackMax).
(3) Hermetically Sealed
(4) Θ Positive opening according to IEC 60947-5-1, Appendix K.

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Accessories and spare parts

Selection and ordering data

	Version	Suitable for	Lamp voltage	Color	Order no.
	Lamps with screw connection, miniature b Incandescent lamps, Flashing, type 267 lamp (replaces 755 lamp) 6 V type 755 lamp (Rated 150 mA) 12 V type 756 (Rated 80 mA) 24 V type 757 (Rated 80 mA) 48V, 2W 60V, 2W 120V, 2.5W, type \#120MB (Rated 250 mA) Neon (uses resistors) type B2A (NE-51H) Candelabra,120V, 3W, Full voltage type 3S6/5	et (BA 9s style) $\begin{gathered} 51,52 \\ 51,52 \\ 51,52 \\ 51,52 \\ 52 \\ 52 \\ 52 \\ 52 \end{gathered}$ 52 older revision styles	6 V 6 V 12 V 24 V 48 V 60 V 120 V 120 V 120 V		52AABNF 52AABN 52AACN 52AADN 3SB1902-1AP 3SR9424 52AAENC1 52AAPN 52AAENC
	LED bulbs ${ }^{\text {(1) }}$ LED, BA9s type Super-Bright LED	Class 52 Class 52	6 V AC/DC 24 V AC/DC 120 V AC/DC 6 V AC/DC 24 V AC/DC		52AEB 52AED 52AEE 52AEB $\square 7$ 52AED $\square 7$
	LED lighting module with integrated LED. Single LED	Class 52	6-24 V AC/DC 24-240V AC/DC		52AAIL 52AAIU
	Full voltage lighting module accessory with LED Super-Bright LED Incandescent bulb	s type lamp ${ }^{\text {(1) }}$ Class 52 Class 52 Class 52	6 V AC/DC 24 V AC/DC 120 V AC/DC 6 V AC/DC 24 V AC/DC 6 V AC/DC 24 V AC/DC 120 V AC/DC		52AAFB \square B 52AAFD \square B 52AAFE \square B 52AAFB $\square Y$ 52AAFD $\square Y$ 52AAFB 52AAFD 52AAFE
	Transformer lighting module accessory with BA9s type lamp (1) LED Class 52		$\begin{aligned} & 120 \mathrm{~V} \mathrm{AC} \\ & 240 \mathrm{~V} \mathrm{AC} \\ & 277 \mathrm{~V} \mathrm{AC} \\ & 480 \mathrm{~V} \mathrm{AC} \\ & 600 \mathrm{~V} \mathrm{AC} \end{aligned}$		52AATG \square B 52AATH \square B 52AATT $\square B$ 52AATJ \square B 52AATK \square B
	Super-Bright LED	Class 52	$\begin{aligned} & 120 \mathrm{~V} \mathrm{AC} \\ & 240 \mathrm{~V} \mathrm{AC} \\ & 277 \mathrm{~V} \mathrm{AC} \\ & 480 \mathrm{~V} \mathrm{AC} \\ & 600 \mathrm{~V} \mathrm{AC} \end{aligned}$		52AATG $\square Y$ 52AATH $\square Y$ 52AATT $\square Y$ 52AATJ $\square Y$ 52AATK $\square \mathbf{Y}$
	Incandescent bulb	Class 52	$\begin{aligned} & 120 \mathrm{~V} \mathrm{AC} \\ & 240 \mathrm{~V} \mathrm{AC} \\ & 277 \mathrm{~V} \mathrm{AC} \\ & 480 \mathrm{~V} \mathrm{AC} \\ & 600 \mathrm{~V} \mathrm{AC} \end{aligned}$		52AATGN 52AATHN 52AATTN 52AATJN 52AATKN
			Color options:	red green yellow/amber blue white/clear	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \text { B } \end{aligned}$

Illuminated Push－Pull Metal Mushroom Head

Non－Illuminated Twist Release Plastic Mushroom Head

Non－Illuminated Push－Pull Small Plastic Mushroom Head

Fully Illuminated Push－Pull
Small Plastic Mushroom Head

Illuminated Twist Release Plastic Mushroom Head

Non－Illuminated Push－Pull
Large Plastic Mushroom Head

Illuminated Push－Pull Large Plastic Mushroom Head

Illuminated Pushbutton Flush Lens Illuminated Pushbutton Extended Lens Illuminated Push to Test

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Selector Switch
Non-Illuminated

Momentary Pushbutton Non-Illuminated Flush Cap

Momentary Pushbutton Metal Mushroom Head

Selector Switch
Illuminated

Momentary Pushbutton Non-Illuminated Raised Cap

Momentary Pushbutton
Small Plastic Mushroom Head

Indicator Light
Plastic Lens

Indicator Light Glass Lens

Momentary Pushbutton Large Plastic Mushroom Head

30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Dimensional drawings

Illuminated Momentary Pushbutton Metal Mushroom Head

Selector Switch
Keyed

Toggle Switch

Illuminated Momentary Pushbutton Small Plastic Mushroom Head

Wobble Switch

Selector Pushbutton Switch
Flush Cap

Illuminated Momentary Pushbutton Large Plastic Mushroom Head

Potentiometer Switch

Selector Pushbutton Switch
Raised Cap

30mm Water，Oil Tight \＆Corrosion Resistant－Class 52

Dimensional drawings

Momentary Pushbutton Guard
Illuminated Push to Test Guard

Large Metal Legend Plate

Mushroom Head Guard

Automotive Metal Legend Plate

Contact Block

Large Plastic Legend Plate

Break Glass and Emergency Power Off Pushbutton（EPO）Stations NEW

Selection and ordering data

| Description | Degree of
 protection | Conduit Entry
 $3 / 4^{\prime \prime}$ NPT | No．of
 command
 points | Contact（1） |
| :--- | :--- | :--- | :--- | :--- | :--- | | Legend Plate |
| :--- |

Class 52 Oiltight Pushbutton Stations ${ }^{(3)}$

Break Glass Pushbutton Station	NEMA 4X	Side	1	1NO－1NC	＂EMERGENCY SHUT－OFF＂	52G112FB
					＂EMERGENCY OFF＂	52G113FB
					＂EMERGENCY POWER OFF＂	52G114FB
					＂EMERGENCY GENERATOR STOP＂	52G115FB
		Rear（2）			＂EMERGENCY SHUT－OFF＂	52G112FR
					＂EMERGENCY OFF＂	52G113FR
					＂EMERGENCY POWER OFF＂	52G114FR
					＂EMERGENCY GENERATOR STOP＂	52G115FR
		Side and Rear ${ }^{2}$			＂EMERGENCY SHUT－OFF＂	52G112FD
					＂EMERGENCY OFF＂	52G113FD
					＂EMERGENCY POWER OFF＂	52G114FD
					＂EMERGENCY GENERATOR STOP＂	52G115FD
Emergency Power Off EPO Pushbutton Station						
	NEMA 4X	Side	1	1NO－1NC	＂EMERGENCY POWER OFF＂	52C114EB
	NEMA 12／13	N／A	1	1NO－1NC	＂EMERGENCY POWER OFF＂	52C114A
$Q \quad$ siemens 0						

（1）Pushbutton Station comes with 1）52BJK，1NO－1NC contact rated NEMA A600／P600．One additional Class 52 contact block may be field installed if required．
（2）Versions with Conduit Entry from the Rear available February 2020.
（3）All Glass Break Pushbutton Stations come with 4 Extra Glass Lens Inserts．
（4）Sealant is not supplied with 52PM8AGAH kits．Note：Teflon Tape or Pipe Dope is required on the Mallet Mounting Clip Screw when field installed in a NEMA 4X Enclosure．
（5）For a more comprehensive list of our most common legend plates，see page 10／238 of the Siemens IC Catalog．

Class 52 oiltight pushbutton stations

Selection and ordering data

	Actuator identification C = top device in station $B=$ middle device in station A = bottom device in station	Degree of protection(1)	Contact / voltage	No. of command points	Order no.	Pack
						Unit
1 unit control station	A = Momentary flush pushbutton black, label "START"	NEMA 12	1NO-1NC	1	52C101A	
	A = Momentary raised pushbutton red, label "STOP"	NEMA 12	1NO-1NC	1	52C103A	
	A = Momentary mushroom head red, label "STOP"	NEMA 12	1NO-1NC	1	52C104A	
	A = Maintained metal mushroom head red, label "EMERGENCY STOP"	NEMA 12	1NO-1NC	1	52C117A	
	$\mathrm{A}=2$ position selector switch "OFF-ON"	NEMA 12	1NO-1NC	1	52C159A	
	A = 3 position selector switch "HAND-OFF-AUTO"	NEMA 12	1NO-1NC	1	52C156A	
	A = Indicator light, red	NEMA 12	120V Transformer type	1	52C131A	
	A = Indicator light, green	NEMA 12	120 V Transformer type	1	52C135A	
	A = Momentary flush pushbutton black, label "START"	NEMA 4X Stainless Steel	1NO-1NC	1	52C101S	
	A = Momentary raised pushbutton red, label "STOP"	NEMA 4X Stainless Steel	1NO-1NC	1	52C103S	
	A = Momentary mushroom head red, label "STOP"	NEMA 4X Stainless Steel	1NO-1NC	1	52C104S	
	$\mathrm{A}=$ Maintained plastic mushroom head red, label "EMERGENCY STOP"	NEMA 4X Stainless Steel	1NO-1NC	1	52C116S	
	A = 2 position selector switch "OFF-ON"	NEMA 4X Stainless Steel	1NO-1NC	1	52C159S	
	A = 3 position selector switch "HAND-OFF-AUTO"	NEMA 4X Stainless Steel	1NO-1NC	1	52C156S	
	A = Momentary flush pushbutton black, label "START"	NEMA 4X Fiberglass	1NO-1NC	1	52C101X	
	A = Momentary raised pushbutton red, label "STOP"	NEMA 4X Fiberglass	1NO-1NC	1	52C103X	
	A = Momentary mushroom head red, label "STOP"	NEMA 4X Fiberglass	1NO-1NC	1	52C104X	
	$\mathrm{A}=$ Maintained plastic mushroom head red, label "EMERGENCY STOP"	NEMA 4X Fiberglass	1NO-1NC	1	52C116X	
	A = 2 position selector switch "OFF-ON"	NEMA 4X Fiberglass	1NO-1NC	1	52C159X	
	A = 3 position selector switch "HAND-OFF-AUTO"	NEMA 4X Fiberglass	1NO-1NC	1	52C156X	
2 unit control station	B = Momentary flush pushbutton black, label "START" A = Momentary raised pushbutton red, label "STOP"	NEMA 12	$\begin{aligned} & \hline 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	2	52C201A	
	B = Momentary flush pushbutton black, label "START" A = Momentary Mushroom head pushbutton red, label "STOP"	NEMA 12	$\begin{aligned} & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	2	52C202A	
	B = Momentary flush pushbutton, label "FORWARD" A = Momentary flush pushbutton, label "REVERSE"	NEMA 12	$\begin{aligned} & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	2	52C204A	
	B = Momentary flush pushbutton, label "UP" A = Momentary flush pushbutton, label "DOWN"	NEMA 12	$\begin{aligned} & \text { 1NO, 1NC } \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	2	52C223A	
	B = Indicator light, red, label "RUN" A = Maintained selector switch, label "HAND-OFF-AUTO"	NEMA 12	120V Transformer type	2	52C224A	
	$\begin{aligned} & \text { B = Indicator light, red } \\ & \text { A = Indicator light, green } \\ & \hline \end{aligned}$	NEMA 12	120V Transformer type	2	52C230A	
	$\mathrm{B}=$ Momentary flush pushbutton black, label "START" A = Momentary raised pushbutton red, label "STOP"	NEMA 4X Stainless Steel	$\begin{aligned} & \hline 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	2	52C201S	
	B = Momentary flush pushbutton black, label "START" A = Momentary Mushroom head pushbutton red, label "STOP"	NEMA 4X Stainless Steel	$\begin{aligned} & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	2	52C202S	
	B = Momentary flush pushbutton, label "UP" A = Momentary flush pushbutton, label "DOWN"	NEMA 4X Stainless Steel	$\begin{aligned} & \hline 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	2	52C223S	
	B = Indicator light, red, label "RUN" A = Maintained selector switch, label "HAND-OFF-AUTO"	NEMA 4X Stainless Steel	$\begin{aligned} & \hline 120 \mathrm{~V} \text { Transformer } \\ & \text { type } \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	2	52C224S	
	B = Momentary flush pushbutton black, label "START" A = Momentary raised pushbutton red, label "STOP"	NEMA 4X Fiberglass	$\begin{aligned} & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	2	52C201X	
	B = Momentary flush pushbutton black, label "START" A = Momentary Mushroom head pushbutton red, label "STOP"	NEMA 4X Fiberglass	$\begin{aligned} & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	2	52C202X	
	$B=$ Momentary flush pushbutton, label "UP" A = Momentary flush pushbutton, label "DOWN"	NEMA 4X Fiberglass	$\begin{aligned} & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO} .1 \mathrm{NC} \end{aligned}$	2	52C223X	
	```B = Indicator light, red, label "RUN" A = Maintained selector switch, label "HAND-OFF-AUTO"```	NEMA 4X Fiberglass	120 V Transformer type   1NO, 1NC	2	52C224X	

(1) NEMA 4X Stainless Steel Enclosure is 304 SS.

## 30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Class 52 oiltight pushbutton stations

Selection and ordering data

	Actuator identification	Degree of protection ${ }^{(1)}$	Contact/ voltage	No. of command points	Order no.	Pack
						Unit
3 unit control station	$\begin{aligned} & \hline \text { C = Indicator light, red } \\ & \text { B = Momentary flush pushbutton black, label "START" } \\ & \text { A = Momentary raised pushbutton red, label "STOP" } \\ & \hline \end{aligned}$	NEMA 12	$\begin{aligned} & \hline 120 \mathrm{~V} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	3	52C307A	
	$\begin{aligned} & \hline \text { C = Momentary flush pushbutton black, label "FORWARD" } \\ & \mathrm{B}=\text { Momentary flush pushbutton black, label "REVERSE" } \\ & \text { A = Momentary raised pushbutton red, label "STOP" } \\ & \hline \end{aligned}$	NEMA 12	$\begin{aligned} & \hline 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	3	52C301A	
	C = Momentary flush pushbutton black, label "UP"   $B=$ Momentary flush pushbutton black, label "DOWN"   A = Momentary raised pushbutton red, label "STOP"	NEMA 12	1NO, 1NC $1 \mathrm{NO}, 1 \mathrm{NO}$ 1NO, 1NO	3	52C332A	
	C = Momentary flush pushbutton black, label "OPEN"   B = Momentary flush pushbutton black, label "CLOSE"   A = Momentary raised pushbutton red, label "STOP"	NEMA 12	$1 \mathrm{NO}, 1 \mathrm{NC}$ 1NO, 1NO 1NO, 1NO	3	52C333A	
	$\mathrm{C}=$ Momentary flush pushbutton black, label "HI" $\mathrm{B}=$ Momentary flush pushbutton, black label "LOW" A   A = Momentary raised pushbutton red, label "STOP"	NEMA 12	$1 \mathrm{NO}, 1 \mathrm{NC}$ $1 \mathrm{NO}, 1 \mathrm{NO}$ $1 \mathrm{NO}, 1 \mathrm{NO}$	3	52C334A	
	$\mathrm{C}=$ Indicator light, red   B = Momentary flush pushbutton black, label "START"   A = Momentary raised pushbutton red, label "STOP"	NEMA 4X Stainless Steel	$\begin{aligned} & \hline 120 \mathrm{~V} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	3	52C307S	
	$\begin{aligned} & \hline \mathrm{C}=\text { Momentary flush pushbutton black, label "FORWARD" } \\ & \mathrm{B}=\text { Momentary flush pushbutton black, label "REVERSE" } \\ & \mathrm{A}=\text { Momentary raised pushbutton red, label "STOP" } \\ & \hline \end{aligned}$	NEMA 4X Stainless Steel	$\begin{aligned} & \hline 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	3	52C301S	
	$\begin{aligned} & \hline \mathrm{C}=\text { Momentary flush pushbutton black, label "UP" } \\ & \mathrm{B}=\text { Momentary flush pushbutton black, label "DOWN" } \\ & \mathrm{A}=\text { Momentary raised pushbutton red, label "STOP" } \\ & \hline \end{aligned}$	NEMA 4X Stainless Steel	$\begin{aligned} & \hline 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	3	52C332S	
	C = Momentary flush pushbutton black, label "OPEN"   B = Momentary flush pushbutton black, label "CLOSE"   A = Momentary raised pushbutton red, label "STOP"	NEMA 4X Stainless Steel	1NO, 1NC $1 \mathrm{NO}, 1 \mathrm{NO}$ 1NO, 1NO	3	52C333S	
	C = Momentary flush pushbutton black, label "HI"   $B=$ Momentary flush pushbutton, black label "LOW"   A = Momentary raised pushbutton red, label "STOP"	NEMA 4X Stainless Steel	$1 \mathrm{NO}, 1 \mathrm{NC}$   $1 \mathrm{NO}, 1 \mathrm{NO}$   $1 \mathrm{NO}, 1 \mathrm{NO}$	3	52C334S	
	$\begin{aligned} & \hline C=\text { Indicator light, red } \\ & B=\text { Momentary flush pushbutton black, label "START" } \\ & A=\text { Momentary raised pushbutton red, label "STOP" } \\ & \hline \end{aligned}$	NEMA 4X Fiberglass	$\begin{aligned} & \hline 120 \mathrm{~V} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	3	52C307X	
	$\begin{aligned} & \hline \mathrm{C}=\text { Momentary flush pushbutton black, label "FORWARD" } \\ & \mathrm{B}=\text { Momentary flush pushbutton black, label "REVERSE" } \\ & \mathrm{A}=\text { Momentary raised pushbutton red, label "STOP" } \\ & \hline \end{aligned}$	NEMA 4X Fiberglass	$\begin{aligned} & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	3	52C301X	
	$\begin{aligned} & \hline \mathrm{C}=\text { Momentary flush pushbutton black, label "UP" } \\ & \mathrm{B}=\text { Momentary flush pushbutton black, label "DOWN" } \\ & A=\text { Momentary raised pushbutton red, label "STOP" } \\ & \hline \end{aligned}$	NEMA 4X Fiberglass	$\begin{aligned} & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	3	52C332X	
	$\begin{aligned} & \hline \mathrm{C}=\text { Momentary flush pushbutton black, label "OPEN" } \\ & \mathrm{B}=\text { Momentary flush pushbutton black, label "CLOSE" } \\ & \mathrm{A}=\text { Momentary raised pushbutton red, label "STOP" } \\ & \hline \end{aligned}$	NEMA 4X Fiberglass	$\begin{aligned} & \hline 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & \hline \end{aligned}$	3	52C333X	
	$\begin{aligned} & \hline \mathrm{C}=\text { Momentary flush pushbutton black, label "HI" } \\ & \mathrm{B}=\text { Momentary flush pushbutton, black label "LOW" } \\ & \mathrm{A}=\text { Momentary raised pushbutton red, label "STOP" } \end{aligned}$	NEMA 4X Fiberglass	$\begin{aligned} & \text { 1NO, } 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \\ & 1 \mathrm{NO}, 1 \mathrm{NC} \end{aligned}$	3	52C334X	

## Pushbutton Units and Indicator Lights

## 30mm Water, Oil Tight \& Corrosion Resistant - Class 52

Empty enclosures

Selection and ordering data

	Version	Number of command points	Degree of protection	Order No. ${ }^{\text {(1) }}$	Pack   Unit
	Standard enclosures come with 2 1/4" leg center for legend spacing. Automotive end plates require 2 1/2" spacing. For more than 2 contact blocks on the right or left, use extra deep enclosure.	1	NEMA Type 12/13	P30EMS01	
		1	NEMA Type 12/13 extra deep	P30EMS01D	
00		1	NEMA Type 4/4X stainless steel	P30EMS014	
		1	NEMA Type 4/4X Fiberglass	P30EMS01X	
		2	NEMA Type 12/13	P30EMS02	
		2	NEMA Type 12/13 extra deep	P30EMS02D	
	Mounting hole arrangement	2	NEMA Type 4/4X stainless steel	P30EMS024	
		2	NEMA Type 4/4X Fiberglass	P30EMS02X	
	1 thu 4 are in one row	3	NEMA Type 12/13	P30EMS03	
	6 holes are 3 down and 2 across	3	NEMA Type 12/13 extra deep	P30EMS03D	
	9 holes are 3 down and 3 across	3	NEMA Type 4/4X stainless steel	P30EMS034	
	12 holes are 4 down and 3 across	3	NEMA Type 4/4X Fiberglass	P30EMS03X	
	16 holes are 4 down and 4 across	4	NEMA Type 12/13	P30EMS04	
		4	NEMA Type 12/13 extra deep	P30EMS04D	
		4	NEMA Type 4/4X stainless steel	P30EMS044	
		4	NEMA Type 4/4X Fiberglass	P30EMS04X	
		6	NEMA Type 12/13	P30EMS06	
		6	NEMA Type 12/13 extra deep	P30EMS06D	
		6	NEMA Type 4/4X stainless steel	P30EMS064	
		9	NEMA Type 12/13	P30EMS09	
		9	NEMA Type 12/13 extra deep	P30EMS09D	
		9	NEMA Type 4/4X stainless steel	P30EMS094	
		12	NEMA Type 12/13	P30EMS12	
		12	NEMA Type 12/13 extra deep	P30EMS12D	
		12	NEMA Type 4/4X stainless steel	P30EMS124	
		16	NEMA Type 12/13	P30EMS16	
		16	NEMA Type 12/13 extra deep	P30EMS16D	
		16	NEMA Type 4/4X stainless steel	P30EMS164	

Order Form


Location	Operator PB-SEL.-PL	Accessories Key Lock, Boot, Etc,	Legend Plate Legend or Blank	Special Marking

## Pushbutton Units and Indicator Lights

## 30 mm Heavy Duty, Watertight/Oiltight, Class 52

## Legend plates for Class 51 and 52

## Design

The 30 mm legend plates are approved for the use with both Class 51 and Class 52 devices.
Automotive legend plates require $21 / 2^{\prime \prime}$ mounting centers. Plastic legend plates will have white letters ingraved.
When ordering custom engraved legend plates, specify the required inscription text.
Selection and ordering data

(1) Automotive requires $21 / 2^{\prime \prime}$ mounting centers
(2) White letters on plastic nameplate.

30 mm Heavy Duty, Watertight/Oiltight, Class 52
Dimensional drawings


Type 12/13 and 4X Stainless Steel

Enclosure Size				Mounting		Overall					
Units	A	B	C	G	H	L	w	J	T	X	Y
1	3.50 (89)	3.25 (83)	2.75 (70)	4.00 (102)	2.38 (60)	4.50 (114)	3.47 (88)	2.31 (59)	3.00 (76)	1.73 (44)	1.86 (47)
2	5.75 (146)	3.25 (83)	2.75 (70)	6.25 (159)	2.38 (60)	6.75 (171)	3.47 (88)	2.31 (59)	3.00 (76)	1.73 (44)	1.86 (47)
3	8.00 (203)	3.25 (83)	2.75 (70)	8.50 (216)	2.38 (60)	9.00 (229)	3.47 (88)	2.31 (59)	3.00 (76)	1.73 (44)	1.86 (47)
4	10.25 (260)	3.25 (83)	2.75 (70)	10.75 (273)	2.38 (60)	11.25 (286)	3.47 (88)	2.31 (59)	3.00 (76)	1.73 (44)	1.86 (47)
6	9.50 (241)	6.25 (159)	3.00 (76)	10.00 (254)	5.38 (137)	10.50 (267)	6.47 (164)	2.56 (65)	6.00 (152)	2.11 (54)	2.61 (66)
9	9.50 (241)	8.50 (216)	3.00 (76)	10.00 (254)	7.62 (194)	10.50 (267)	8.72 (221)	2.56 (65)	8.25 (210)	2.11 (54)	2.61 (66)
12	11.75 (298)	8.50 (216)	3.00 (76)	12.25 (311)	7.62 (194)	12.75 (324)	8.72 (221)	2.56 (65)	8.25 (210)	2.11 (54)	2.61 (66)
162)	11.75 (298)	10.75 (273)	3.00 (76)	12.25 (311)	9.88 (251)	12.75 (324)	10.97 (279)	2.56 (65) ${ }^{2}$ )	10.50 (267)	2.11 (54)	2.61 (66)

## Type 12/13 Extra Deep Enclosures

Enclosure Size				Mounting		Overall					
Units	A	B	C	G	H	L	W	J	T	X	Y
1	4.00	4.00	4.75	4.50	3.12	5.00	4.22	4.31	3.75	2.11	2.11
2	6.00	4.00	4.75	6.50	3.12	7.00	4.22	4.31	3.75	2.11	1.98
3	8.00	4.00	4.75	8.50	3.12	9.00	4.22	4.31	3.75	2.11	1.86
4	10.00	4.00	4.75	10.50	3.12	11.00	4.22	4.31	3.75	2.11	1.73
6	9.50	6.25	4.75	10.00	5.38	10.50	6.47	4.31	6.00	2.11	2.61
9	9.50	8.50	4.75	10.00	7.62	10.50	8.72	4.31	8.25	2.11	2.61
12	11.75	8.50	4.75	12.25	7.62	12.75	8.72	4.31	8.25	2.11	2.61
162)	11.75	10.75	4.75	12.25	9.88	12.75	10.97	4.31	10.50	2.11	2.61



[^111]
## 30 mm Pilot Devices

Technical Specifications


Mechanical Design Life Cycles

Vibration	Frequency $5-60 \mathrm{~Hz}$.; Disp. . 030 inches, sweep 5 minutes for a duration of 30 minutes on each axis. Not to exceed 5.5 G 's for maximum of 1 minute.	
Pushbuttons	Momentary, Non-illuminated Momentary, Illuminated	5,000,000 Operating Cycles 300,000 Operating Cycles
Push-Pull	Maintained Momentary	300,000 Operating Cycles 2,000,000 Operating Cycles
Twist-to-Release		300,000 Operating Cycles
Selector	Non-illuminated	2,000,000 Operating Cycles
Switches	Illuminated, Key-operated	2,000,000 Operating Cycles
Contact Operation	Standard Contact Black Logic Reed	
Wire Gauge	\#18-12 AWG	
Terminal Screw Torque	2-10 lb-in / 20 lb -in max; 8 lb -in recommended	
Locknut Torque	15 ft . lbs. max	
Temperature	Operating	31 F to $+158 \mathrm{~F}(-35 \mathrm{C}$ to $+70 \mathrm{C})$
Range	Storage	40 F to $+185 \mathrm{~F}(-40 \mathrm{C}$ to $+85 \mathrm{C})$

All parts are designed and manufactured of corrosion resistant material or are plated or painted as corrosion protection. All contact block contacts are gold flashed as a standard offering. Internal return spring mechanisms of operators and contact blocks of stainless steel. RoHS Compliant.
Declaration of Conformity - The products listed below, to which this declaration relates, are in conformity with the following standards, following the provisions of the Low Voltage Directive (LVD) (73/23/EEC), and the Electromagnetic Compatibility Directive (89/336/EEC.)
Products: Contact Blocks: Cat Nos. 52BAE, 52BAH, 52BAJ, 52BAK, 52BAR, 52BAU and 52BJK, with suffixes. Pilot Lights: Cat Nos 52P, with suffixes. Operators: Cat Nos 52S or 52P, with suffixes.
Applicable Standards: EN 60947-5-1 Low-Voltage Switchgear and controlgear. Enclosed devices meet the requirements of environmental ratings of IP10, IP11, IP14, IP52, IP54, and IP56. Open devices, when mounted as instructed, in environmental type IP10, IP11, IP14, IP52, IP54 or IP56 enclosures, maintain the environmental requirements for those enclosure types. Cat. No. 52BP, 52BR,52PP, and 52PR, 2 Position, Twist-To-Release and 2 Position, Push Pull Maintained operators provided with red operating heads and 52BJK contact blocks meet the requirements of EN 60947-5-5 for Electrical Emergency Stop Device With Mechanical Latching Function (e-stop).

## Function Relays, Interfaces and Converters

## contents

## Section Overview <br> 12/2-12/3

## Temperature Monitoring Relays UPDATIED

3RS10, 3RS11, 3RS20, 3RS21

Overview	$12 / 4$
Technical specifications	$12 / 5-12 / 7$
Relays, analogically adjustable for 1 sensor	$12 / 8-12 / 9$
Relays, digitally adjustable for 1 sensor	$12 / 10-12 / 11$
Relays, digitally adjustable for up to 3 sensors	$12 / 12-12 / 13$
Accessories	$12 / 14$
3RS14, 3RS15	
Overview	$12 / 15$
Technical specifications	$12 / 16-12 / 19$
Relays, digitally adjustable for 1 sensor	$12 / 20-12 / 22$
Relays, digitally adjustable for up to 3 sensors	$12 / 23-12 / 25$

## Thermistor Motor Protection

Overview 12/26
Benefits and Application 12/27
Technical specifications 12/28-12/29
Function Diagrams 12/30

Technical Data	$12 / 31-12 / 32$
$3 R N 2$ Selection and ordering data	$12 / 33$

Accessories 12/34

Timing Relays
General Data 12/35
3RP25 Timing Relays, 17.5 mm and 22.5 mm

Overview	$12 / 36-12 / 37$
Technical specifications	$12 / 39$
Circuit diagrams	$12 / 40-12 / 44$
Functions	$12 / 45-12 / 50$
Selection and ordering data	$12 / 51$
Accessories	$12 / 52$

3RP20 Timing Relays, 45 mm
Overview
Technical specifications 12/54
Functions 12/55 12/56
Selection and ordering data 12/57
Accessories 12/58

7PV15 Timing Relays, 17.5 mm	
Overview	

Technical specifications 12/60

Circuit diagrams	$12 / 60-12 / 61$
Functions	$12 / 62-12 / 63$

Selection and ordering data 12/64

## Monitoring Relays for Stand-alone Installation

3UG45, 3UG46 General data	$12 / 65-12 / 66$
Line monitoring	$12 / 67-12 / 71$
Voltage monitoring	$12 / 72-12 / 74$
Current monitoring	$12 / 75-12 / 76$
Power factor and active current monitoring	$12 / 77-12 / 79$
Residual-current monitoring relays	$12 / 80-12 / 81$
3UL23 residual-current transformers	$12 / 82$

Insulation monitoring

General data	$12 / 83-12 / 84$
For ungrounded AC networks	$12 / 85-12 / 86$
For ungrounded DC and AC networks	$12 / 87-12 / 91$
Level monitoring sensors	$12 / 92$
Speed monitoring	$12 / 93-12 / 95$
Accessories	$12 / 96$

## Monitoring Relays For Stand-alone Installation for

 IO-Link| 3UG48 General data | $12 / 97-12 / 99$ |
| :--- | ---: |
| Line monitoring | $12 / 100-12 / 102$ |
| Voltage monitoring | $12 / 103-12 / 105$ |
| Current monitoring | $12 / 106-12 / 108$ |
| Power factor and active current monitoring | $12 / 109-12 / 112$ |
| Residual-current monitoring relays | $12 / 113-12 / 115$ |
| Speed monitoring | $12 / 116-12 / 118$ |
| Accessories | $12 / 119$ |

## Coupling Relays - Narrow Design

3RQ3 Overview 12/120

Benefits	$12 / 121$

Technical specifications 12/122-12/123
Circuit diagrams 12/124

Selection and ordering data 12/125-12/127
Accessories

## Coupling Relays with Industrial Enclosure NEW

3RQ2 Overview 12/128
Technical specifications 12/129
Selection and ordering data 12/130
Accessories 12/130

## Signal Converters/Interface Converters

3RS70 Overview 12/132

Technical specifications	$12 / 133-12 / 135$
Circuit diagrams	$12 / 136$
Selection and Ordering	$12 / 137$
Accessories	$12 / 138$

## Power Relays

3TG10
Overview 12/139
Selection and ordering data 12/139
Technical specifications 12/140-12/141
Accessories, Circuit Diagrams, Dimensions 12/142

## Plug-in Relays UPDATIED

3TX71

Selection and ordering data	$12 / 143-12 / 146$
Technical specifications	$12 / 147-12 / 148$
Circuit diagrams	$12 / 149-12 / 151$
Dimensions	$12 / 152-12 / 158$
ZS	
Selection and ordering data	$12 / 159-12 / 163$
Technical specifications	$12 / 164-12 / 166$

## contents

3RP20 timing
3RP20 timing
relays
Selection and ordering data   - Overview   Screw and Spring-type   connection
Technical data   Function diagrams

## Timing Relays

3RP25 timing   relays   Selection and ordering data   - Overview   - Screw and Spring-type connection	$\begin{aligned} & \text { Page } \\ & 12 / 36 \\ & 12 / 51 \end{aligned}$	7PV solid-state relay   Selection and ordering data   - Screw connection   - Accessories	$\begin{aligned} & \text { Page } \\ & \\ & 12 / 40 \\ & 12 / 40 \end{aligned}$	3RA28 and 3RT19 time delay blocks for mounting on 3RT contactors   Selection and ordering data   - See Section 2 Contactors
Technical data   Circuit diagrams   Function diagrams	$\begin{aligned} & 12 / 39 \\ & 12 / 40 \\ & 12 / 45 \end{aligned}$	Technical data Dimension drawings	$\begin{aligned} & 12 / 40 \\ & 12 / 40 \end{aligned}$	



12/45

3RP25 timing relays   Selection and ordering data   - Overview   - Screw and Spring-type connection	$\begin{aligned} & \text { Page } \\ & 12 / 36 \\ & 12 / 51 \end{aligned}$	7PV solid-state relay   Selection and ordering data   - Screw connection   - Accessories	$\begin{aligned} & \text { Page } \\ & 12 / 40 \\ & 12 / 40 \end{aligned}$	3RA28 and 3RT19 time delay blocks for mounting on 3RT contactors   Selection and ordering data   - See Section 2 Contactors
Technical data Circuit diagrams Function diagrams	$\begin{aligned} & 12 / 39 \\ & 12 / 40 \\ & 12 / 45 \end{aligned}$	Technical data Dimension drawings	$\begin{aligned} & 12 / 40 \\ & 12 / 40 \end{aligned}$	



## 7PV solid-state

 relay PageSelection and ordering data

- Screw connection

12/40

- Accessories

12/40

Dimension drawings

## 3RS10/3RS20 temperature monitoring relays <br>  <br> 3RS10/3RS20 temperature monitoring relay for RTD or Thermocouple Page <br> Selection and ordering data <br> - Overview <br> - Screw and Spring-type connection <br> 12/7 <br> nfiguration <br> 12/9 <br> Dimension draw <br> 12/11

3RN2 thermistor
motor protection
3RN20 thermistor motor protection
for PTC temperature detectors
Selection and ordering data
Page
- Overview
- Screw and Spring-type
connection
- Accessories
Technical data
Function diagrams
Functions    Circuit diagrams    Dimension drawings $12 / 26$

contents

## 3UG3/4 monitoring relays



## For electrical quantities

	Page
Selection and ordering data	
- Selection Data	$12 / 66$
Overview	$12 / 65$
Technical data	$12 / 67$
Dimension drawings	$12 / 68$



For non-electrical quantities

	Page
Selection and ordering data   - Selection Data	$12 / 92$
Overview	$12 / 92$
Technical data	$12 / 93$
Dimension drawings	$12 / 94$

Coupling relays and interfaces


3RQ3 slim design 3RQ2 standard width

Selection and ordering data

- 3RQ3 Selection Data 12/125
- 3RQ2 Selection Data 12/130
Overview 12/120

Technical data 12/122
Accessories

## Coupling relays and interfaces



3RS70 signal converter

Selection and ordering data	Page
- Screw and Spring-type   connection	$12 / 137$
Overview	$12 / 132$
Technical data	$12 / 133$
Circuit diagrams	$12 / 136$



3TG10 power relay, 20A max. resistance load pole

Selection and ordering data

- AC and DC operation, hum-free With screw connection or tab connector

12/139

- Accessories 12/142
Application 12/139

Technical data $\quad 12 / 140$
Circuit diagrams 12/142
Position of terminals 12/142
Dimension drawings 12/142


## 3TX71 and LZ series

Selection and ordering data	Page
- AC and DC operation	

## Relays

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

## General Data

## Overview



SIRIUS 3RS temperature monitoring relays

## More information

Homepage, see www.siemens.com/relays
Industry Mall, see www.siemens.com/product?3RS10
The 3RS10, 3RS11, 3RS20 and 3RS21 temperature monitoring relays can be used for measuring temperatures in solid, liquid and gas media. The temperatures are acquired by means of sensors in the medium, evaluated by the device and monitored for overshoot, undershoot or location within a specified range (window function).
The range comprises adjustable analog units with one or two threshold values, digital units for 1 sensor, which are also a good alternative to temperature controllers for the low-end range, and digital units for up to 3 sensors which have been optimized for monitoring large motors.

## Article No. scheme



Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

## General Data

## Technical specifications

## More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16369/td
Manual and internal circuit diagrams, see
https://support.industry.siemens.com/cs/ww/en/view/54999309

## Connection of resistance-type thermometers

## Two-wire measurement

When two-wire temperature sensors are used, the resistances of the sensor and wiring are added. The resulting systematic error must be taken into account when the signal evaluation unit is calibrated. A jumper must be clamped between terminals T2 and T3 for this purpose.


## Wiring errors

The errors that are generated by the wiring comprise approximately $2.5 \mathrm{~K} / \Omega$. If the resistance of the cable is not known and cannot be measured, the wiring errors can also be estimated using the following table.

Temperature drift dependent on the length and cross-section of the cable with Pt100 sensors and an ambient temperature of $20^{\circ} \mathrm{C}$, in K :

Cable length   in $\mathbf{m}$	$l$   Cross-section   $\mathbf{m m}^{\mathbf{2}}$   0.5	0.75	1	1.5
0	Temperature drift in $\mathrm{K}:$   0	0	0	0
10	1.8	1.2	0.9	0.6
25	4.5	3.0	2.3	1.5
50	9.0	6.0	4.5	3.0
75	13.6	9.0	6.8	4.5
100	18.1	12.1	9.0	6.0
200	36.3	24.2	18.1	12.1
500	91.6	60.8	45.5	30.2

Example: On a Pt100 sensor with a cable length of 10 m and a conductor cross-section of $1 \mathrm{~mm}^{2}$ the temperature drift equals 0.9 K .

## Three-wire measurement

To minimize the effects of the line resistances, a three-wire circuit is often used. Using the additional cable, two measuring circuits can be formed of which one is used as a reference. The signal evaluation unit can then automatically calculate the line resistance and take it into account.


## Connection of thermocouples

Based on the thermo-electrical effect, a differential temperature measurement will be performed between the measuring point and the signal evaluation unit.

This principle assumes that the signal evaluation unit knows the temperature at the clamping point (T2). For this reason, the 3RS11 temperature monitoring relay has an integral compensator that determines this comparison temperature and builds it into the result of the measurement. The thermal sensors and cables must be insulated therefore.
The absolute temperature is therefore calculated from the ambient temperature of the signal evaluation unit and the temperature difference measured by the thermocouple.
Temperature detection is therefore possible (T1) without needing to know the precise ambient temperature of the clamping point at the signal evaluation unit (T2).

The connecting cable is only permitted to be extended using connecting leads that are made from the same material as the thermocouple. If a different type of conductor is used, an error will result in the measurement.


## Relays

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

## General Data

## Principle of operation

Once the temperature has reached the set threshold value $\vartheta 1$, the output relay K1 changes its switching state as soon as the set time $t$ has elapsed (K2 responds in the same manner to $\vartheta 2$ ). The delay time can only be adjusted with digital units (on analog units $t=0$ ).
The relays return to their original state as soon as the temperature reaches the set hysteresis value.

## Temperature overshoot

Closed-circuit principle


## Temperature undershoot

Closed-circuit principle


## Range monitoring (digital units only)

Once the temperature has reached the upper threshold value 91 , the output relay K1 changes its switching state as soon as the set time $t$ has elapsed. The relay returns to its original state as soon as the temperature reaches the set hysteresis value.
K2 responds in the same manner to the lower threshold value of $\vartheta 2$.
Closed-circuit principle


Principle of operation with memory function (3RS1042, 3RS1142) based on the example of temperature overshoot

Once the temperature has reached the set threshold value 91 , the output relay K1 changes its switching state as soon as the set time thas elapsed (K2 responds in the same manner to Ұ2) The relays only return to the original state when the temperature falls below the set hysteresis value and when terminals $\mathrm{Y} 3-\mathrm{Y} 4$ have been briefly jumpered.
Closed-circuit principle


## Characteristic curves

For resistance sensors


The short-circuit and open-circuit detection as well as the measuring range is limited, depending on the sensor type.
Measuring ranges in ${ }^{\circ} \mathrm{C}$ for resistance sensors

Sensor   type	Short   circuit	Open   circuit	3RS1040/   3RS1041   Measuring   range in ${ }^{\circ}$ C	3RS1042
Measuring   range in ${ }^{\circ}$ C				
Pt100	$\checkmark$	$\checkmark$	$-50 \ldots+500$	$-50 \ldots+750$
Pt1000	$\checkmark$	$\checkmark$	$-50 \ldots+500$	$-50 \ldots+500$
KTY83-110	$\checkmark$	$\checkmark$	$-50 \ldots+175$	$-50 \ldots+175$
KTY84	$\checkmark$	$\checkmark$	$-40 \ldots+300$	$-40 \ldots+300$
NTC $^{1)}$	$\checkmark$	--	$80 \ldots \quad 160$	$80 \ldots \quad 160$

$\checkmark$ Detection possible
-- Detection not possible
${ }^{1)}$ NTC type: B57227-K333-A1 ( $100{ }^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 25^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ ).

## Relays

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

## General Data

## Characteristic curves

For thermocouples


Measuring range in ${ }^{\circ} \mathrm{C}$ for thermocouples

Sensor   type	Short   circuit	Open   circuit	3RS1140   Measuring   range in ${ }^{\circ}$ C	3RS1142   Measuring   range in ${ }^{\circ} \mathbf{C}$
$J$	--	$\checkmark$	$-99 \ldots+999$	$-99 \ldots+1200$
K	--	$\checkmark$	$-99 \ldots+999$	$-99 \ldots+1350$
T	--	$\checkmark$	$-99 \ldots+400$	$-99 \ldots+400$
E	--	$\checkmark$	$-99 \ldots+999$	$-99 \ldots+999$
N	--	$\checkmark$	$-99 \ldots+999$	$-99 \ldots$
S	--	$\checkmark$	--	$0 . \ldots 1750$
R	--	$\checkmark$	--	$0 \ldots 1750$
B	--	$\checkmark$	--	$400 \ldots 1800$

$\checkmark$ Detection possible
-- Detection not possible
Characteristic curves for sensor types $\mathrm{J}, \mathrm{K}, \mathrm{T}, \mathrm{E}, \mathrm{N}$


Characteristic curves for sensor types S, R and B

Type		$\begin{aligned} & \text { 3RS10, 3RS11 } \\ & \text { analog } \end{aligned}$	$\begin{aligned} & \text { 3RS10, 3RS11, 3RS20, 3RS21 } \\ & \text { digital } \end{aligned}$
General technical specifications			
Dimensions (W x H x D)   - Screw terminals   - Spring-type terminals	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 22.5 \times 102 \times 91 \\ & 22.5 \times 103 \times 91 \end{aligned}$	$\begin{aligned} & 45 \times 106 \times 91 \\ & 45 \times 108 \times 91 \end{aligned}$
Permissible ambient temperature   - During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$	
Connection type		Screw term	
- Terminal screw   - Solid   - Finely stranded with end sleeve   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	M3 (for standard $\begin{aligned} & 1 \times(0.5 \ldots 4) / 2 \times \\ & 1 \times(0.5 \ldots 2.5) / 2 \\ & 2 \times(20 \ldots 14) \\ & \hline \end{aligned}$	and Pozidriv 2)
Connection type		O Spring-typ	
- Solid   - Finely stranded, with end sleeve acc. to DIN 46228   - Finely stranded   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(24 \ldots 16) \end{aligned}$	

## Relays

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

Relays, analogically adjustable for 1 sensor

## Overview



SIRIUS 3RS analog temperature monitoring relays for 1 sensor
The 3RS10, 3RS11 analog temperature monitoring relays can be used for measuring temperatures in solid, liquid and gas media. The temperature is detected by the sensors in the medium, evaluated by the device and monitored for overshoot or undershoot. When the threshold values are reached, the output relay switches on or off depending on the parameterization.

## Benefits

- All devices except for 24 V AC/DC feature electrical separation
- Extremely easy operation using a rotary potentiometer
- Adjustable hysteresis
- Adjustable working principle for devices with 2 threshold values
- All versions with removable terminals
- All versions with screw terminals, many versions alternatively with spring-type terminals


## Application

The analogically adjustable SIRIUS 3RS 10, 3RS11 temperature monitoring relays can be used in almost any application in which temperature overshoot or undershoot is not permitted, e.g. in the monitoring of set temperature limits and the output of alarm messages for:

- Motor and system protection
- Control cabinet temperature monitoring
- Freeze monitoring
- Temperature limits for process variables e.g. in the packaging industry or electroplating
- Controlling equipment and machines such as heating, climate and ventilation systems, solar collectors, heat pumps or warm water supplies
- Motor, bearing and gear oil monitoring
- Monitoring of coolants


## Technical specifications

$\left.\begin{array}{l|l|l|l|l}\hline \text { Type } & & \begin{array}{l}\text { 3RS1000, } \\ \text { 3RS1010 }\end{array} & \begin{array}{l}\text { 3RS1100, } \\ \text { 3RS1020, } \\ \text { 3RS1120, }\end{array} \\ \hline \text { 3RS1030 }\end{array}\right]$

1) Two-wire connection of resistance sensors with wire jumper between T2 and T3.

## Relays

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

## Relays, analogically adjustable for 1 sensor

## Selection and ordering data

- For temperature monitoring with resistance sensors or thermocouples
- Temperature range $-55^{\circ} \mathrm{C}$ to $+1000^{\circ} \mathrm{C}$, depending on the sensor type
- Wide voltage range versions are electrically separated
- Analogically adjustable, setting accuracy $\pm 5 \%$
- Versions with 2 separately adjustable threshold values and adjustable open/closed-circuit principle
- Hysteresis for threshold value 1 is adjustable (2 to 20\%), hysteresis for threshold value 2 is non-adjustable (5\%)

```
PU (UNIT, SET, M) = 1
PS* = 1 unit
```

- $1 \mathrm{NC}+1 \mathrm{NO}$ for versions with one threshold value
- 1 CO for threshold value 1 and 1 NO for threshold value 2


For accessories, see page 12/14.

## Relays

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

Relays, digitally adjustable for 1 sensor

## Overview



SIRIUS 3RS digital temperature monitoring relay for 1 sensor
The 3RS10, 3RS11, 3RS20 and 3RS21 temperature monitoring relays can be used for measuring temperatures in solid, liquid and gas media. The temperatures are acquired by means of sensors in the medium, evaluated by the device and monitored for overshoot, undershoot or location within a specified range (window function). The 3RS10 and 3RS11 units indicate the measured temperature in ${ }^{\circ} \mathrm{C}$, the 3RS20 and 3RS21 units in ${ }^{\circ} \mathrm{F}$.
The units are also an excellent alternative to temperature controllers in the low-end performance range (two- or three-point control).

## Benefits

- Very simple operation without complicated menu selections
- Two- or three-point control can be parameterized quickly
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

The temperature monitoring relays can be used in almost any application in which temperature overshoot or undershoot is not permitted, e.g. in the monitoring of set temperature limits and the output of alarm messages for:

- Plant and environment protection
- Temperature limits for process variables e.g. in the packaging industry or electroplating
- Temperature limits for district heating plants
- Exhaust temperature monitoring
- Controlling equipment and machines such as heating, climate and ventilation systems, solar collectors, heat pumps or warm water supplies
- Motor, bearing and gear oil monitoring
- Monitoring of coolants


## Technical specifications

| Type |  | 3RS1040, <br> 3RS1042, <br> 3RS2140 |
| :--- | :--- | :--- | :--- |

1) Not for NTC type B57227-K333-A1 ( $100^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 25^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ ).
${ }^{2)}$ Two-wire connection of resistance sensors with wire jumper between T2 and T3.

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

Relays, digitally adjustable for 1 sensor

## Selection and ordering data

- For temperature monitoring with resistance sensors or thermocouples
- Temperature range dependent on sensor type
- Wide voltage range versions are electrically separated
- Non-volatile
- Short-circuit and open-circuit detection in sensor circuit
- Digitally adjustable, with illuminated LCD
- Overshoot, undershoot or range monitoring adjustable
- Exact sensor type can be set
- 2 separately adjustable threshold values

```
PU (UNIT, SET, M) = 1
PS* = 1 unit
```

- 1 hysteresis applies to both thresholds (0 to 99 K )
- 1 delay time applies to both thresholds (0 to 999 s)
- Adjustable open/closed-circuit principle
- Adjustable Manual/remote RESET
- Permanent display of actual value in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ and tripping state
- 1 CO contact each per threshold value
- 1 NO for sensor monitoring


1) NTC type: B57227-K333-A1 ( $100^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 25^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ ).

For accessories, see page 12/14.

## Relays

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

Relays, digitally adjustable for up to 3 sensors

## Overview

SIRIUS 3RS digital temperature monitoring relay for up to 3 sensors
The 3RS10, 3RS20 temperature monitoring relays can be used for measuring temperatures in solid, liquid and gas media. The temperature is detected by the sensor in the medium, evaluated by the device and monitored for overshoot or undershoot or for staying within an operating range (window function). The 3RS10 units indicate the measured temperature in ${ }^{\circ} \mathrm{C}$, the 3RS20 units in ${ }^{\circ}$ F. The evaluation unit can evaluate up to 3 resistance sensors at the same time and is specially designed for monitoring motor windings and bearings.

## Benefits

- Very simple operation without complicated menu selections
- Space-saving with 45 mm width
- Two- or three-point control can be parameterized quickly
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

The 3RS10, 3RS20 temperature monitoring relays can be used in almost any application in which several temperatures have to be monitored simultaneously for overshoot or undershoot or within a range.

Monitoring of set temperature limits and output of alarm messages for:

- Plant and environment protection
- Temperature limits for process variables e.g. in the packaging industry or electroplating
- Controlling equipment and machines such as heating climate and ventilation systems, solar collectors, heat pumps or warm water supplies
- Motor, bearing and gear oil monitoring
- Monitoring of coolants


## Technical specifications

Type		3RS1041,
	3RS2041	

1) Not for NTC type B57227-K333-A1 ( $100^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 25^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ ).
${ }^{2)}$ Two-wire connection of resistance sensors with wire jumper between T2 and T3.

## SIRIUS 3RS10, 3RS11, 3RS20, 3RS21 Temperature Monitoring Relays

## Relays, digitally adjustable for up to 3 sensors

## Selection and ordering data

- For temperature monitoring of solids, liquids, and gases
- For two- and three-conductor resistance sensors or thermocouples
- Temperature range dependent on sensor type - for 3RS10: - 50 to $+500^{\circ} \mathrm{C}$
- for 3RS20: - 58 to $+932^{\circ} \mathrm{F}$
- Wide voltage range versions are electrically separated
- Non-volatile
- Short-circuit and open-circuit detection in sensor circuit
- Digitally adjustable, with illuminated LCD
- Overshoot, undershoot or range monitoring adjustable
- Exact sensor type and number of sensors can be set
- 2 separately adjustable threshold values
- 1 hysteresis; applies to both thresholds ( 0 to 99 K )
- 1 delay time; applies to both thresholds (0 to 999 s)
- Adjustable open-/closed-circuit principle
- With connectable and disconnectable error memory
- Permanent display of actual value in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ and tripping state
- 1 CO contact each per threshold value
- 1 NO for sensor monitoring

Sensors	Number of sensors	Measuring range (limit of measuring range dependent on sensor)	Rated control supply voltage $U_{\mathrm{s}}$	SD	Screw terminals	$(\Im)$	SD	Spring-type terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$
			V	d	Article No.	Price per PU	a	Article No.	Price per PU

Motor monitoring relays, digitally adjustable for up to 3 sensors,
width $45 \mathrm{~mm} ; 1 \mathrm{CO}+1 \mathrm{CO}+1 \mathrm{NO}$

${ }^{1)}$ NTC type: B57227-K333-A1 ( $100{ }^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 25^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ ).
For accessories, see page 12/14.

## Selection and ordering data

	Use	Version	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	d						
Blank labels							
	For 3RS10, 3RS11, 3RS20, 3RS21	Unit labeling plates For SIRIUS devices $20 \mathrm{~mm} \times 7 \mathrm{~mm}$, pastel turquoise	20	3RT1900-1SB20		100	340 units
	$\begin{aligned} & \text { For 3RS10, } \\ & \text { 3RS11, 3RS20, } \\ & \text { 3RS21 } \end{aligned}$	Adhesive labels for SIRIUS devices   - $19 \mathrm{~mm} \times 6 \mathrm{~mm}$, pastel turquoise   - $19 \mathrm{~mm} \times 6 \mathrm{~mm}$, zinc yellow	15 15	3RT1900-1SB60 3RT1900-1SD60		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	3060 units   3060 units
Push-in lugs and covers						1	10 units
3RP1903	For 3RS10, 3RS11, 3RS20, 3RS21	Push-in lugs   For screw fixing,   2 units are required for each device	5	3RP1903			
	$\begin{aligned} & \text { For } 22.5 \mathrm{~mm} \\ & \text { wide } \\ & \text { 3RS10, 3RS11, } \\ & \text { 3RS20, } \\ & \text { 3RS21 } \end{aligned}$	Sealable covers   For securing against unauthorized adjustment of setting knobs	5	3RP1902		1	5 units
Tools for opening spring-type terminals						1	
	For auxiliary circuit connections	Screwdrivers   For all SIRIUS devices with spring-type terminals; $3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$; length approx. 200 mm , titanium gray/black, partially insulated	2	Spring-type terminals   3RA2908-1A	$0$		1 unit

For matching sensors, see www.siemens.com/temperature

## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

## General data

## Overview



SIRIUS 3RS14, 3RS15 temperature monitoring relay

## More information

Homepage, see www.siemens.com/relays
Industry Mall, see www.siemens.com/product?3RS14
The temperature monitoring relays for IO-Link are used to measure temperatures in solid, liquid and gas media.


Conventional temperature monitoring relays

## Notes:

Devices required for the communication via IO-Link:

- Consult Catalog ST 70 for any controller that supports IO-Link (e.g. ET 200SP with CPU or S7-1200), see
www.support.industry.siemens.com
Each monitoring relay requires an IO-Link channel.

The temperatures are acquired by means of sensors in the medium, evaluated by the device and monitored up to two limit values for overshooting or undershooting a working range (window function).

In addition to warnings and disconnection in case of temperature deviations, the devices can also be used as a temperature controller (one-point, two-point or three-point control).
The devices differ from one another in terms of the type and number of connectable temperature sensors

- 3RS14: Connection for resistance sensor
- 3RS15: Connection for thermocouples

	Temperature monitoring relays		
	3RS1440	3RS1441	3RS1540
Connectable sensor type			
Number of sensors monitored	1	3	1
Resistance sensor	$\checkmark$	$\checkmark$	--
Thermocouples	--	--	$\checkmark$
Temperature monitoring	$\checkmark$		
Temperature monitoring -   overshoot	$\checkmark$	$\checkmark$	$\checkmark$
Temperature monitoring -   undershoot	2	$\checkmark$	$\checkmark$
Number of adjustable limit   values	2	2	

$\checkmark$ Function supported
-- Function not supported


Temperature monitoring relays for IO-Link

## Notes on security

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information on Industrial Security, see www.siemens.com/industrialsecurity.

## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

## General data

Article No. scheme


## Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## Technical specifications

## More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16370/td
Manual and internal circuit diagrams, see
https://support.industry.siemens.com/cs/ww/en/view/54375463

## Connection for resistance sensors

Two-wire measuremen
When two-wire temperature sensors are used, the resistances of the sensor and wiring are added. The resulting systematic error must be taken into account when the signal evaluation unit is calibrated. A jumper must be clamped between terminals T2 and T3 for this purpose.


## Wiring errors

The errors that are generated by the wiring comprise approximately $2.5 \mathrm{~K} / \boxtimes$. If the resistance of the cable is not known and cannot be measured, the wiring errors can also be estimated using the following table.

Temperature drift dependent on the length and cross-section of the cable with Pt100 sensors and an ambient temperature of $20^{\circ} \mathrm{C}$, in K :

Cable length   in $\mathbf{m}$	$l$   Cross-section   $\mathbf{m m}^{\mathbf{2}}$   0.5	0.75	1	1.5
	Temperature drift in $\mathrm{K}:$   0			
0	0	0	0	
10	1.8	1.2	0.9	0.6
25	4.5	3.0	2.3	1.5
50	9.0	6.0	4.5	3.0
75	13.6	9.0	6.8	4.5
100	18.1	12.1	9.0	6.0
200	36.3	24.2	18.1	12.1
500	91.6	60.8	45.5	30.2

Example: On a Pt100 sensor with a cable length of 10 m and a conductor cross-section of $1 \mathrm{~mm}^{2}$ the temperature drift equals 0.9 K.

## Three-wire measurement

To minimize the effects of the line resistances, a three-wire circuit is often used. Using the additional cable, two measuring circuits can be formed of which one is used as a reference. The signal evaluation unit can then automatically calculate the line resistance and take it into account.


## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

## General data

## Connection of thermocouples

Based on the thermo-electrical effect, a differential temperature measurement will be performed between the measuring point and the signal evaluation unit.

This principle assumes that the signal evaluation unit knows the temperature at the clamping point (T2). For this reason, the 3RS 15 temperature monitoring relay has an integral compensator that determines this comparison temperature and builds it into the result of the measurement. The thermal sensors and cables must be insulated therefore.

The absolute temperature is therefore calculated from the ambient temperature of the signal evaluation unit and the temperature difference measured by the thermocouple.
Temperature detection is therefore possible (T1) without needing to know the precise ambient temperature of the clamping point at the signal evaluation unit (T2)

The connecting cable is only permitted to be extended using connecting leads that are made from the same material as the thermocouple. If a different type of conductor is used, an error will result in the measurement.


## Principle of operation

When the temperature has reached the set upper limit value $\vartheta 1$, the K1 output relay changes its switching state after the configured time $t$ has expired. The delay time can be adjusted. The K2 output relay responds in the same manner to the lower limit value of $\vartheta 2$.
The output relays return immediately to their original state (the RESET response is configured at Auto RESET) once the temperature reaches the respective hysteresis value.

Both thresholds $\vartheta 1$ and $\vartheta 2$ can be parameterized for overshooting or undershooting. This makes it possible to use a limit value for issuing an alarm signal to announce that a limit value is about to be overshot or undershot. The other limit value can be used for disconnection or to implement two-point or three-point control.

## Note

The "Temperature monitoring mode" parameter can be used to set the desired type of monitoring (monitoring for overshooting or undershooting or range monitoring).

With the closed-circuit principle selected
Temperature overshoot


Temperature undershoot


Range monitoring


## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

## General data

## Memory function

The digitally adjustable temperature monitoring relays for IO-Link have a memory function. The memory function is illustrated below by the example of a temperature overshoot.

When the temperature has reached the set limit value 91 , the output relay K1 changes its switching state after the configured time $t$ has expired (output relay K2 responds to $\vartheta 2$ in the same way).
The temperature monitoring relays for IO-Link respond as described below:

- With temperature monitoring relays for IO-Link the memory function is activated as standard (RESET). The output relays only return to the original state when the temperature falls below the set hysteresis value and when one of the following steps is performed:
- Brief jumpering of the $Y 3 / Y 4$ terminals
- Set the rotary knob to "RUN" position and press the right-hand arrow key
- Perform a RESET via IO-Link
- If the $Y 3 / Y 4$ terminals are permanently jumpered, the memory function is deactivated (Auto RESET). The output relays return immediately to their original state once a previously occurred fault has been rectified and the temperature falls below the respective hysteresis value.

With the closed-circuit principle selected


The short-circuit and open-circuit detection as well as the measuring range is limited, depending on the sensor type. Measuring ranges for resistance sensors

Sensor type	Short   circuit	Open   circuit	3RS1440, 3RS1441   Measuring range   in ${ }^{\circ} \mathbf{C}$	Measuring range   in ${ }^{\circ}$ F
Pt100	$\checkmark$	$\checkmark$	$-50 \ldots+750$	$-58 \ldots+1382$
Pt1000	$\checkmark$	$\checkmark$	$-50 \ldots+500$	$-58 \ldots+932$
KTY83-110	$\checkmark$	$\checkmark$	$-50 \ldots+175$	$-58 \ldots+347$
KTY84	$\checkmark$	$\checkmark$	$-40 \ldots+300$	$-40 \ldots+572$
NTC $^{1)}$	$\checkmark$	--	$+80 \ldots+160$	$+176 \ldots+320$

$\checkmark$ Detection possible
-- Detection not possible
${ }^{1)}$ NTC type: B57227-K333-A1 ( $100{ }^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 25^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ ).

## Relays

## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

## General data

## For thermocouples



Characteristic curves for sensor types K, N, J, E and T


Characteristic curves for sensor types S, R and B

Measuring ranges for thermocouples

| Sensor type | Short <br> circuit | Open <br> circuit | 3RS1540 <br> Measuring range <br> in ${ }^{\circ}$ C |
| :--- | :--- | :--- | :--- | | Measuring range <br> in ${ }^{\circ}$ F |
| :--- |
| K |
| N |

$\checkmark$ Detection possible
-- Detection not possible

Type		$\begin{aligned} & \text { 3RS14, } \\ & \text { 3RS15 } \end{aligned}$
General technical specifications		
Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ )   - Screw terminals   - Spring-type terminals	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 45 \times 106 \times 91 \\ & 45 \times 108 \times 91 \end{aligned}$
Permissible ambient temperature   - During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
Connection type		Screw terminals
- Terminal screw   - Solid   - Finely stranded with end sleeve   - AWG cables, solid or stranded   - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{AWG} \\ & \mathrm{Nm} \end{aligned}$	M3 (for standard screwdriver, size 2 and Pozidriv 2) $\begin{aligned} & 1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.5) \\ & 2 \times(20 \ldots 14) \\ & 0.8 \ldots 1.2 \end{aligned}$
Connection type		0 Spring-type terminals
- Solid   - Finely stranded, with end sleeve acc. to DIN 46228   - Finely stranded   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(24 \ldots 16) \end{aligned}$

## Overview



SIRIUS 3RS1440 digital monitoring relay for 1 sensor
The 3RS14 and 3RS15 temperature monitoring relays for IO-Link are used to measure temperatures in solid, liquid and gas media. The temperatures are acquired by means of sensors in the medium, evaluated by the device and monitored for overshooting or undershooting a working range (window function) The digital temperature monitoring relays have two separately adjustable limit values, are non-volatile and can be operated as desired using the open- or closed-circuit principle.

The devices differ in terms of the number of temperature sensors which can be evaluated. The 3RS1440 and 3RS1540 for IO-Link temperature monitoring relays can be digitally adjusted for one sensor and represent an alternative to temperature controllers in the low-end range (two-point or three-point control).

The devices with two-point control can, for example, be used as a thermostat. The devices with three-point control can, for example, independently switch between heating and cooling.
The 3RS1441 temperature monitoring relays for IO-Link can be digitally adjusted to evaluate up to three resistance sensors at one time. The devices were designed specifically for monitoring motor windings and positions.

The temperature monitoring relays are powered through the control supply voltages IO-Link (L+) and ground (L-) or via an external 24 V DC power supply.

## Monitoring

When the temperature has reached the set limit value 91, the output relay K1 changes its switching state after the configured time $t$ has expired (output relay K2 responds to $\vartheta 2$ in the same way). The delay time can be adjusted.
The output relays return immediately to their original state once the temperature reaches the respective hysteresis value.
When the temperature has reached the upper limit value 91 , the output relay K 1 changes its switching state after the configured time $t$ has expired. The output relay returns immediately to its original state once the temperature reaches the respective hysteresis value.
The K2 output relay responds in the same manner to the lower limit value of $\vartheta 2$. Both thresholds $\vartheta 1$ and $\vartheta 2$ can be parameterized for overshooting or undershooting. This makes it possible to use a limit value for issuing an alarm signal to announce that a limit value is about to be overshot or undershot.
Note:
The "Temperature monitoring mode" parameter can be used to set the desired type of monitoring (monitoring for overshooting or undershooting or range monitoring).

## Benefits

- Very simple operation without complicated menu selections
- Two- or three-point control can be parameterized quickly
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

The temperature monitoring relays can be used in almost any application in which temperature overshoot or undershoot is not permitted, e.g. in the monitoring of set temperature limits and the output of alarm messages for:

- Plant and environment protection
- Temperature limits for process variables e.g. in the packaging industry or electroplating
- Temperature limits for district heating plants
- Exhaust temperature monitoring
- Controlling equipment and machines such as heating, climate and ventilation systems, solar collectors, heat pumps or warm water supplies
- Motor, bearing and gear oil monitoring
- Monitoring of coolants


## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

Relays, digitally adjustable for 1 sensor

## Technical specifications

Type		3RS1440	3RS1540
Auxiliary circuit			
Rated operational currents $I_{\mathrm{e}}$   - AC-15/24 ... 250 V   - DC-13 at   - 24 V   - 125 V   - 250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$	
Evaluation unit			
Measuring accuracy at $20^{\circ} \mathrm{C}$ ambient temperature (T20)		$< \pm 2 \mathrm{~K}, \pm 1$ digit	$< \pm 5 \mathrm{~K}, \pm 1$ digit
Reference point accuracy		--	$< \pm 5 \mathrm{~K}$
Deviations due to ambient temperature In \% of measuring range	\%	$0.05{ }^{\circ} \mathrm{C}$ per K deviation from T20	
Measuring cycle	ms	500	
Hysteresis settings for temperature	K	1 ... 99, for both values	
Adjustable delay time	s	0 ... 999.9	
Sensor circuit			
Typical sensor current   - Pt100   - Pt1000/KTY83/KTY84/NTC	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1 \\ & 0.2 \end{aligned}$	--
Open-circuit detection		${ }^{1)}$	$\checkmark$
Short-circuit detection		$\checkmark$	--
Three-wire conductor connection		$\checkmark^{2)}$	--
Enclosure			
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ Pollution degree 2	V AC	300	

Pollution degree 2
$\checkmark$ Available
-- Not available

1) Not for NTC type B57227-K333-A1 ( $100{ }^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 2{ }^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ )
${ }^{2)}$ Two-wire connection of resistance sensors with wire jumper between T2 and T3.

## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

Relays, digitally adjustable for 1 sensor

## Selection and ordering data

- To monitor temperatures with a resistance sensor or thermocouple
- Temperature range dependent on sensor type -99 to $+1800^{\circ} \mathrm{C}$ or -146.2 to $+3272^{\circ} \mathrm{F}$
- Short-circuit and open-circuit detection in sensor circuit
- Adjustable via IO-Link and locally, with illuminated LCD
- Power supply with 24 V DC via IO-Link or external auxiliary voltage
- Overshoot, undershoot or range monitoring adjustable
- Exact sensor type can be set
- 2 limit values, can be adjusted separately
- Adjustable open-/closed-circuit principle
- Can be adjusted by Manual or remote RESET (via an external contact)
- Actual value, tripping state for control displayed and conveyed, adjustable in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
- 1 CO contact per limit value
- 1 CO contact for monitoring sensors and devices

PU (UNIT, SET, M) = 1
PS* = 1 unit


3RS1440-2HB50


3RS1440-1HB50

3RS1540-2HB80

Sensors	Measuring range (limit of measuring range dependent on sensor)	Adjustable hysteresis for $\vartheta 1$ and $\vartheta 2$	Tripping delay time adjustable for $\vartheta 1$ and $\vartheta 2$ DELAY	Supply voltage $U_{\mathrm{s}}$	SD	Screw terminals	(1)	SD	Spring-type terminals	$00$
		K	s	V DC	d	Article No.	Price per PU	d	Article No.	Price per PU
Temperature monitoring relay, digitally adjustable for a sensor, non-volatile fault storage can be selected										
Pt100/Pt1000, KTY83/KTY84, NTC (resistance sensor) ${ }^{1)}$	$\begin{aligned} & -50 \ldots+750^{\circ} \mathrm{C} \text { or } \\ & -58 \ldots+1382^{\circ} \mathrm{F} \end{aligned}$	$0 \ldots 99$	$0 \ldots+999.9$	24	2	3RS1440-1HB50		2	3RS1440-2HB50	
Type   B, E, J, K, N, R, S, T (thermocouples)	$\begin{aligned} & -99 \ldots+1800^{\circ} \mathrm{C} \text { or } \\ & -146.2^{\ldots}+3272^{\circ} \mathrm{F} \end{aligned}$	$0 \ldots 99$	$0 \ldots+999.9$	24	2	3RS1540-1HB80		2	3RS1540-2HB80	

1) NTC type B57227-K333-A1 ( $100^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 25^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ ).

For accessories, see page 12/14.

## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

## Relays, digitally adjustable for up to 3 sensors

## Overview



SIRIUS 3RS1441 digital temperature monitoring relay for up to 3 sensors The 3RS14 temperature monitoring relays can be used to measure temperatures in solid, liquid and gas media. The temperatures are acquired by means of sensors in the medium, evaluated by the device and monitored for overshooting or undershooting a working range (window function).

The devices can be parameterized to indicate the measured temperature in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. The 3 RS1441 evaluation unit can evaluate up to 3 resistance sensors at the same time.

## Benefits

- Very simple operation without complicated menu selections
- Space-saving with 45 mm width
- Two- or three-point control can be parameterized quickly
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

The 3RS1441 temperature monitoring relays can be used almost anywhere where several temperatures must be monitored at one time for overshooting, undershooting or staying within a certain range.
Monitoring of set temperature limits and output of alarm messages for

- Plant and environment protection
- Temperature limits for process variables e.g. in the packaging industry or electroplating
- Controlling equipment and machines such as heating, climate and ventilation systems, solar collectors, heat pumps or warm water supplies
- Motor, bearing and gear oil monitoring
- Monitoring of coolants


## Technical specifications



## SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link

Relays, digitally adjustable for up to 3 sensors

## Selection and ordering data

- For temperature monitoring with up to 3 resistance sensors
- Temperature range dependent on sensor type -50 to $+750^{\circ} \mathrm{C}$ or -58 to $+1382^{\circ} \mathrm{F}$
- Short-circuit and open-circuit detection in sensor circuit
- Adjustable via IO-Link and locally, with illuminated LCD
- Power supply with 24 V DC via IO-Link or external auxiliary voltage
- Overshoot, undershoot or range monitoring adjustable
- Exact sensor type and number of sensors can be set
- 2 limit values, can be adjusted separately
- Adjustable open-/closed-circuit principle
- Can be adjusted by manual or remote RESET (via an external contact)
- Actual value, tripping state for control displayed and conveyed, adjustable in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
- 1 CO contact per limit value
- 1 CO contact for monitoring sensors and devices


3RS1441-1HB50
3RS1441-2HB50

```
PU (UNIT, SET, M) = 1
PS* = 1 unit
```

Sensors	Number of sensors that can be set	Measuring range (limit of measuring range dependent on sensor)	Adjustable hysteresis for $\vartheta 1$ and Э2	Tripping delay time adjustable for 91 and $\vartheta 2$ DELAY	Supply voltage $U_{\mathrm{s}}$	SD	Screw terminals		SD	Spring-type terminals	$\frac{00}{1}$
			K	s	V DC	d	Article No.	Price per PU	d	Article No.	Price per PU

Temperature monitoring relay, digitally adjustable for up to 3 sensors, non-volatile fault storage can be selected

| Pt100/Pt1000, | $1 \ldots 3$ | $-50 \ldots+750^{\circ} \mathrm{C}$ or $0 \ldots 99$ | $0 \ldots 99.9$ | 24 | 2 | 3RS1441-1HB50 | 3RS1441-2HB50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| KTY83/KTY84, | sensors | $-58 \ldots+1382^{\circ} \mathrm{F}$ |  |  |  |  |  |

KTY83/KTY84, sensors $-58 \ldots+1382^{\circ} \mathrm{F}$
NTC
(resistance sensor) ${ }^{1)}$
${ }^{1)}$ NTC type: B57227-K333-A1 ( $100^{\circ} \mathrm{C}: 1.8 \mathrm{k} \Omega ; 25^{\circ} \mathrm{C}: 32.762 \mathrm{k} \Omega$ ).
For accessories, see page 12/25.

SIRIUS 3RS14, 3RS15 Temperature Monitoring Relays for IO-Link
Accessories

Selection and ordering data


For matching sensors, www.siemens.com/temperature.

## Relays

## Thermistor Motor Protection

3RN2

## Overview



SIRIUS 3RN2 thermistor motor protection

## More information

Homepage, see www.siemens.com/relays Industry Mall, see www.siemens.com/product?3RN2
For the conversion tool, e.g. from 3RN1 to 3RN2, see
www.siemens.com/sirius/conversion-tool
Thermistor motor protection devices are used for direct monitoring of the motor winding temperature. For this purpose, the motors are equipped with temperature-dependent resistors (PTC) that are directly installed in the motor winding and abruptly change their resistance at their temperature limit.

## Versions

SIRIUS 3RN2 thermistor motor protection relays are available in the following versions:

- 3RN2000 compact evaluation unit
- 3RN2010 compact/standard evaluation unit
- 3RN2012-.BW31 bistable evaluation unit
- 3RN2011, 3RN2012-...30, 3RN2013 standard evaluation unit with ATEX approval
- 3RN2023 evaluation unit with ATEX approval and 2 sensor circuits for warning and disconnection

They comply with

- IEC 60947-8. Low-voltage switchgear and controlgear Part 8: "Control units for built-in thermal protection (PTC) for rotating electrical machines"
- IEC 61000-6-2, IEC 61000-6-4. "Electromagnetic compatibility for industrial-process measurement and control equipment"
The 3RN2 thermistor motor protection relays with ATEX approval fulfill SIL1 in compliance with EN 50495.

The terminals of the auxiliary contacts are designated in accordance with EN 60947-1.

3RN2 evaluation units are suitable for snap-on mounting onto TH 35 standard mounting rails according to IEC 60715 or for screw fixing using an adapter (accessory).

## Article No. scheme



Example
3RN20 0 - 1 A A 30

Note:
The Article No. scheme is presented here merely for information purposes and for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## Benefits

- Thanks to direct motor protection, overdimensioning of the motors is not necessary
- No settings on the device are necessary
- Semiconductor compatible output thanks to versions with hard gold-plated contacts
- Rapid error diagnosis thanks to versions that indicate open and short circuits in the sensor circuit
- All versions with removable terminals
- All versions with screw or spring-type terminals with push-in functionality


## Application

Direct motor protection through temperature monitoring of the motor winding offers $100 \%$ motor protection even under the most difficult ambient conditions, without the need to make adjustments on the device. Versions with hard gold-plated contacts ensure, in addition, a high switching reliability that is even higher than an electronic control.

Direct motor protection

- At increased ambient temperatures
- When switching frequency is too high
- When start up and braking procedures are too long


## ATEX approval for operation in areas subject to explosion hazard

The SIRIUS 3RN2011, 3RN2012-...30, 3RN2013 and 3RN2023 thermistor motor protection relays for PTC sensors are certified according to ATEX Ex II (2) G and D for environments with explosive gas or dust loads.

## Motor protection using current- and temperature-dependent protective devices

IEC 60204 stipulates that motors must be protected from overheating at a rating of 0.5 kW and higher. The protection can take the form of overload protection, overtemperature protection or current limiting.
For motors with frequent starting and braking and in environments where cooling may be impaired (e.g. by dust), it is recommended to use the overtemperature protection option in the form of a protective device coordinated with this mode of operation. A good choice in this case is the use of 3RN2 thermistor motor protection devices.

On rotor-critical motors, overtemperature detection in the stator windings can lead to delayed and hence inadequate protection. In this case the standards stipulate additional protection, e.g. by means of an overload relay.

This combination of thermistor motor protection and an overload relay is recommended for full motor protection in case of frequent starting and braking of motors, irregular intermittent duty or excessive switching frequency. To prevent premature tripping of the overload relay in such operating conditions, a higher setting than that normally required for the operational current is chosen. The overload relay then performs stall protection, and the 3RN2 thermistor motor protection relay monitors the temperature of the motor windings

Application	Motor protection		
	Only currentdependent, e.g. with overload relay	Temperaturedependent only, e.g. with thermistor motor protection relay	Currentand tem-peraturedependent
Motor protection in case of			
Overloading in uninterrupted duty	$\checkmark$	$\checkmark$	$\checkmark$
Long start up and braking operations	O	$\checkmark$	$\checkmark$
Irregular intermittent duty	$\bigcirc$	$\checkmark$	$\checkmark$
Excessively high switching frequency	$\bigcirc$	$\checkmark$	$\checkmark$
Single-phase operation and current unbalance	$\checkmark$	$\checkmark$	$\checkmark$
Voltage and frequency fluctuations	$\checkmark$	$\checkmark$	$\checkmark$
Stalling of the rotor	$\checkmark$	$\checkmark$	$\checkmark$
Switching on a stalled rotor of a stator-critical motor	$\checkmark$	$\checkmark$	$\checkmark$
Switching on a stalled rotor of a rotor-critical motor	$\checkmark$	O	$\checkmark$
Elevated ambient temperature	--	$\checkmark$	$\checkmark$
Impeded cooling	--	$\checkmark$	$\checkmark$

$\checkmark$ Full protection
O Conditional protection
-- No protection

## Relays

## Thermistor Motor Protection

3RN2

## Technical specifications

## More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/24302/td
Operating instructions and internal circuit diagrams, see
https://support.industry.siemens.com/cs/ww/en/ps/24302/man

## Type A PTC temperature sensor

If a Type A temperature sensor is connected to a Type A evaluation unit, compliance with the operating temperatures is assured (on pick-up and reset) according to IEC 60947-8.
The characteristic curves of the Type A temperature sensors are described in IEC 60947-8, EN 44081 and EN 44082 standards.


Characteristic curve of the 3RN2 evaluation unit

## Bimetallic switch

In some applications, bimetallic switches (e.g. Klixon, Thermoclick) are used as sensors instead of PTC temperature sensors. Bimetallic switches are temperature- and current-dependent NC contacts and are available for different temperature ranges. Because bimetallic switches have practically no resistance below their opening temperature, short-circuit detection is not possible when using bimetallic switches. A bimetallic switch can be used for versions 3RN2000 and 3RN2010 on the SIRIUS thermistor motor protection relay.

## Note:

Never use bimetallic switches in applications subject to an explosion hazard! Because of their non-standardized tripping characteristic, bimetallic switches must not be used in applications where there is an explosion hazard. Use Type A PTC sensors instead!

FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/24302/faq For more information on explosion protection (ATEX), see www.siemens.com/sirius/atex

## Use in hazardous areas

Increased danger in hazardous areas means it is necessary to observe the following notes and standards carefully:

- EN 60079-14/VDE 0165-1 for electrical apparatus for explosive gas atmospheres
- EN 60079-17 Explosive atmospheres - Electrical installations inspection and maintenance
- EN 50495 Safety devices required for the safe functioning of equipment with respect to explosion risks

The following SIRIUS 3RN2 thermistor motor protection relays with short-circuit detection are approved for Equipment Group II, Category (2) in Area "G" (areas in which potentially explosive gas, vapor, mist, or air mixtures are present) and are additionally approved for Area "D" (areas containing combustible dust):

- 3RN2011
- 3RN2012-... 30
- 3RN2013
- 3RN2023

PTB 15 ATEX 3011 ex II (2) G (Ex E) (EX d) (Ex px) PTB 15 ATEX 3011 ex II (2) D (Ex T) (Ex p)
For 3RN2 thermistor motor protection relays, the EC type examination certificate is available for Group II, Category (2) G [Exe] [Exd] [Expx] and D [Ext] [Exp]. The number is PTB 15 ATEX 3011.

SIRIUS 3RN2 thermistor motor protection relays are not intended for installation in hazardous areas. If they are installed in a potentially explosive atmosphere, the SIRIUS 3RN2 thermistor motor protection relays must be adapted to the applicable type of protection.

The machine or plant must shut down immediately if the SIRIUS 3RN2 thermistor motor protection relay is tripped, even if connected through a frequency converter. This must be implemented with circuitry.
SIRIUS 3RN2 thermistor motor protection relays with functional safety in accordance with EN 50495 are suitable for protecting explosion-proof motors/machines.

On evaluation units with a supply voltage of 24 V AC/DC, you must ensure electrical separation with a battery network or a power supply unit with electrical separation (e.g. isolating transformer) (does not apply to 3RN2013-BA30).
A SIRIUS 3RN2 thermistor motor protection relay set to "automatic RESET" mode will be reset automatically after the recovery time has elapsed, without the RESET button being pressed. An additional ON button has to be used to ensure that the motor does not start up automatically following tripping. "Automatic RESET" mode must not be used in applications where there is a risk of personal injury or damage to property if the motor restarts unexpectedly.

## $\triangle$ NOTICE!

When used in a hazardous area, the thermistor motor protection relay must not be operated with automatic RESET (terminal Y1 and Y2 permanently jumpered).
A risk analysis must be performed for the complete plant or machine. If this analysis yields a lower hazard potential (category 1), all SIRIUS 3RN2 thermistor motor protection relays can be used, provided the safety regulations are observed.

## © WARNING!

All work involved in connecting, commissioning and maintenance must be carried out by qualified, responsible personnel. Improper handling may result in serious personal injury and considerable damage to property.

## Cable routing

The measuring circuit leads must be routed as separate control cables. It is not permitted to use cores from the supply line of the motor or any other main supply cables. If extreme inductive or capacitive interference is expected as a result of power lines routed in parallel, shielded control cables must be used.
Maximum length of sensor circuit cables for evaluation units without short-circuit detection in the sensor circuit:

Cable cross-section	3RN2000, 3RN2010
$2.5 \mathrm{~mm}^{2}$	$2 \times 2800 \mathrm{~m}$
$1.5 \mathrm{~mm}^{2}$	$2 \times 1500 \mathrm{~m}$
$0.5 \mathrm{~mm}^{2}$	$2 \times 500 \mathrm{~m}$

Maximum length of sensor circuit cables for evaluation units with short-circuit detection ${ }^{1)}$

Cable cross-section	3RN2011, 3RN2012, 3RN2013, 3RN2023
$2.5 \mathrm{~mm}^{2}$	$2 \times 250 \mathrm{~m}$
$1.5 \mathrm{~mm}^{2}$	$2 \times 150 \mathrm{~m}$
$0.5 \mathrm{~mm}^{2}$	$2 \times 50 \mathrm{~m}$

1) A short circuit in the sensor circuit will be detected up to this maximum cable length.

## Principle of operation

SIRIUS 3RN2 thermistor motor protection relays are thermal protection devices that are suitable, in combination with type A PTC thermistors, for monitoring temperatures of electrical drives, transformer windings, oils, bearings, air, etc.
The most frequent application is monitoring of three-phase motors in which the motor manufacturer has fitted a PTC sensor into every winding overhang and in which these PTC sensors are connected in series.

The SIRIUS 3RN2 thermistor motor protection relays operate in accordance with the closed-circuit principle and therefore monitor themselves for loss of supply voltage. The exceptions are the warning output on 3RN2023, which always works on the opencircuit principle and the bistable relays of the 3RN2012-.BW31, which always retain the last switching state.
A micro-interruption in the power supply of less than 30 ms does not change the status of the output relays.
For devices with the "Manual RESET" function, the test function can be activated and a trip simulated by pressing the blue Test/RESET button for $>2$ seconds.

The 3RN2011, 3RN2012, 3RN2013 and 3RN2023 devices are additionally equipped with open-circuit and short-circuit detection in the sensor circuit. The unit will trip in the event of a shortcircuit (resistance in sensor circuit $<10 \Omega$ ) or open circuit in the sensor circuit (dynamic open-circuit detection). Tripping as the result of a short-circuit in the sensor circuit is indicated by a flickering red LED (TRIPPED). In the event of a short-circuit in the sensor circuit for warning on the 3RN2023, the yellow warning LED (WARNING) flickers. The devices with dynamic open-circuit detection evaluate the rise time of the sensor circuit resistance. If the sensor circuit resistance rises from $3300 \Omega$ to $12 \mathrm{k} \Omega$ within 200 ms , the unit will not only trip, but also indicate the open circuit via a flashing red LED (TRIPPED). In the event of an open circuit in a sensor circuit, the yellow warning LED (WARNING) flashes for the 3RN2023.
All evaluation units (except for the 3RN2000 compact evaluation unit) feature electrical separation between the control circuit and the sensor circuit. The relay outputs are also electrically separated from all other circuits. The 3RN2013 and 3RN2023 evaluation units incorporate protective electrical separation between all circuits up to $U_{i}=300 \mathrm{~V}$.

## 3RN2000 compact evaluation unit

The compact unit, which is only 17.5 mm wide, is equipped with a red LED (TRIPPED) for the tripped indicator and a changeover contact. After the unit has tripped, it is automatically reset once the thermistors have cooled down. The root of the changeover contact is connected to the control voltage (terminal 11 is connected to terminal A1). This unit is particularly suitable in circuits in which the control circuit and signaling circuit have the same potential, e.g. in local control boxes.

3RN2010, 3RN2011, 3RN2012 and 3RN2013 compact/standard evaluation units
The units are equipped with two LEDs (READY and TRIPPED) for an operating and tripped display and are available with either $1 \mathrm{NO}+1 \mathrm{NC}$ contacts (3RN2010, overall width 17.5 mm ) or with 2 CO contacts. Depending on the version, they are available with Auto RESET (3RN2010), Manual/Remote RESET (3RN2011) or Manual/Auto and Remote RESET (3RN2O12 and 3RN2O13). Remote RESET can be achieved by connecting an external pushbutton with a normally-open function to terminals Y 1 and Y2. If terminals Y 1 and Y 2 are jumpered, the unit is automatically reset once the thermistors have cooled down (Auto RESET). 3RN2012 and 3RN2013 are non-volatile. This means a previous trip remains stored in the event of a control supply voltage failure - the thermistor motor protection relay remains in the safe state with an opened output relay until it is intentionally reset by pressing the TEST/RESET button of the unit or an external pushbutton.

## 3RN2023 "warning and disconnection" evaluation units

Two sensor circuits can be connected to one 3RN2023 evaluation unit that act on two separate output relays with 1 NO contact for warning and 1 CO contact for disconnection. Thermistors with different rated response temperatures TNF are used to implement the "Warning" and "Disconnection" functions. When sensor circuit 2 for "Warning" responds, a yellow LED is lit and when the "Disconnection" circuit responds, a red LED is lit. The sensor circuits have a different reset response and operating behavior: The "Warning" thermistor sensor circuit 2 (terminals 2T1, T2) works only with Auto RESET and according to the open-circuit principle (output relay K2, NO contact). The "Disconnection" thermistor sensor circuit 1, (terminals 1T1, T2) can be changed from Manual RESET to Auto RESET by jumpering terminals Y1 and Y2. Remote RESET is implemented by connecting an external pushbutton with a normally-open function to these terminals.

## Relays

## Thermistor Motor Protection

Function diagrams

${ }^{\text {1) }}$ (3RN2000; 3RN2010-.B.30)
2) (3RN2010-.B.30)
3) (3RN2010-.C.30)

3RN2000, 3RN2010


3RN2011: resetting via external pushbutton or interruption of the supply voltage


3RN2012-.B.30, 3RN2013: resetting via the TEST/RESET button or external pushbutton


3RN2012-.BW31: resetting via the TEST/RESET button or external pushbutton

${ }^{1)}$ Relay for sensor circuit (warning)
${ }^{2)}$ Relay for sensor circuit (trip)
S. Short circuit in the sensor circuit

رv Wire break in the sensor circuit

3RN2023: resetting via the TEST/RESET button or external pushbutton

## Relays

## Thermistor Motor Protection

## 3RN2



## Relays

## Thermistor Motor Protection

## 3RN2

Article number		$\begin{aligned} & \text { 3RN2000- } \\ & \text {.AA30 } \end{aligned}$	3RN2000.AW30, 3RN2010.BW30, 3RN2010.CW30	3RN2010.BA30, 3RN2010.CA30	$\begin{aligned} & \text { 3RN2011- } \\ & \text {.BA30, } \\ & \text { 3RN2012- } \\ & \text {.BA30 } \end{aligned}$	3RN2011.BW30, 3RN2012.BW30	$\begin{aligned} & \text { 3RN2012- } \\ & \text {.BW31 } \end{aligned}$	$\begin{aligned} & \text { 3RN2013- } \\ & \text {.BA30 } \end{aligned}$	3RN2013.BW30, 3RN2013.GW30	3RN2023-   .DW30
Control circuit										
Current carrying capacity of the output relay   - At AC-15 at 250 V at $50 / 60 \mathrm{~Hz}$   - At DC-13 at 24 V   - At DC-13 at 125 V   - At DC-13 at 250 V		$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$								
Thermal current of the non-solidstate contact blocks, maximum	A	5								
Continuous current of the output relay's DIAZED fuse link	A	6								
Supply voltage										
Control supply voltage- At AC										
Operating range factor of the control supply voltage, rated value   - At AC at 50 Hz   - At AC at 60 Hz   0.85 ... 1.1   - At DC   0.85 ... 1.1										
Article number		3RN20.--1				3RN20..-2				
Type of electrical connection		Screw terminals				OO Spring-type terminals (push-in)				
Tightening torque	Nm	0.6 ... 0.8				--				
Type of connectable conductor cross-sections   - Solid   - Finely stranded with end sleeve   - For AWG cables   - Solid   - Stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$   AWG AWG	$\begin{aligned} & 1 \times\left(0.5 \ldots 4.0 \mathrm{~mm}^{2}\right), 2 \times\left(0.5 \ldots 2.5 \mathrm{~mm}^{2}\right) \\ & 1 \times\left(0.5 \ldots 4 \mathrm{~mm}^{2}\right), 2 \times\left(0.5 \ldots 1.5 \mathrm{~mm}^{2}\right) \\ & 1 \times(20 \ldots 12), 2 \times(20 \ldots 14) \end{aligned}$				$\begin{aligned} & 1 \times\left(0.5 \ldots 4 \mathrm{~mm}^{2}\right) \\ & 1 \times\left(0.5 \ldots 2.5 \mathrm{~mm}^{2}\right) \end{aligned}$				

## Thermistor Motor Protection

3RN2

Selection and ordering data


3RN2000-1AA30


3RN2010-1BA30


3RN2011-1BA30


3RN2012-1BW30


3RN2023-1DW30

## Compact evaluation unit, suitable for bimetallic switch

Terminal A1 jumpered with root of changeover contact

Auto RESET	1	0	0	AgSnO2	$\begin{aligned} & 24 \ldots 24 \\ & 24 \ldots 240 \end{aligned}$	$\begin{aligned} & 24 \ldots 24 \\ & 24 \ldots 240 \end{aligned}$	2 2	$\begin{aligned} & \text { 3RN2000-■AA30 } \\ & \text { 3RN2000-■AW30 } \end{aligned}$	1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
	0	1	1	AgSnO2	$24 \ldots 24$	$24 \ldots 24$	2	3RN2010-पCA30	1	1 unit
					$24 . . .240$	$24 . .240$	2	3RN2010-■CW30	1	1 unit
Standard evaluation unit, suitable for bimetallic switch										
Auto RESET	2	0	0	AgSnO2	$24 . .24$	$24 . . .24$	2	3RN2010-पВA30	1	1 unit
					24 ... 240	24 ... 240	2	3RN2010-पBW30	1	1 unit

## Bistable evaluation unit,

open-circuit and short-circuit detection in the sensor circuit
Does not trigger in the event of control supply voltage failure


- Spring-type terminals (push-in)

2

1) For 3RN2011: The unit can be reset with the RESET button or by disconnecting the control supply voltage.
2) Protective separation up to 300 V acc. to DIN/VDE 0160, IEC 60947-1.
3) Protection against voltage failure or non-volatile fault storage means that previous tripping due to a fault remains stored even if the control supply voltage fails. The monitoring device is not reset if the voltage fails. With an active fault, meaning a fault which has not been manually confirmed, an automatic restart of the plant upon recovery of the power is prevented therefore and plant safety increased as the result.

## Relays

## Thermistor Motor Protection

3RN2

Accessories

	Version	SD	Article No.		PU (UNIT, SET, M)	PS*
	d					
Terminals for SIRIUS devices in the industrial standard mounting rail enclosure					1	6 units
	Removable terminals   - 2-pole, up to $2 \times 2.5 \mathrm{~mm}^{2}$ or $1 \times 4 \mathrm{~mm}^{2}$	2	Screw terminals   3ZY1122-1BA00	$\mapsto$		
			Spring-type terminals (push-in)	$\begin{aligned} & \infty \\ & \square \\ & \square \end{aligned}$		
3ZY1122-1BA00	- 2-pole, up to $1 \times 4 \mathrm{~mm}^{2}$ or $2 \times 1.5 \mathrm{~mm}^{2}$	2	3ZY1122-2BA00		1	6 units
Accessories for enclosures					1	10 units
	Push-in lugs For wall mounting	2	3ZY1311-0AA00			
	Coding pins   For removable terminals of SIRIUS devices in the industrial standard mounting rail enclosure. They enable the mechanical coding of terminals, see Manual "SIRIUS 3RN2 thermistor motor protection", https://support.industry.siemens.com/cs/ww/en/ps/24302/man	2	3ZY1440-1AA00		1	12 units
Tools for open	ring-type terminals				1	1 unit
	Screwdrivers   For all SIRIUS devices with spring-type terminals	2	Spring-type terminals (push-in)	$00$		
3RA2908-1A	$3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, length approx. 200 mm , titanium gray/black, partially insulated		3RA2908-1A			

## Timing Relays

## Overview



7PV15, SIRIUS 3RP25 and SIRIUS 3RP20 timing relays
Electronic timing relays are used in control, starting, and protective circuits for all switching operations involving time delays. Their fully developed concept and space-saving, compact design make the SIRIUS 3RP timing relays ideal modules for control cabinet, switchgear and control manufacturers in the industry.
With their narrow design, the 7PV15 timing relays are ideal in particular for use in heating, ventilation and air-conditioning systems and in compressors. All 7PV15 timing relays in this enclosure version are suitable for snap-on mounting onto TH 35 standard mounting rails according to IEC 60175. The enclosure complies with DIN 43880.

## Benefits

- Clear-cut basic range with five basic units in the case of the 7PV15 timing relays, and seven basic units in the case of the 3RP timing relays
- Logistic advantages provided by versions with wide voltage range and wire setting range
- No tools required for assembly or disassembly on standard mounting rails
- Cadmium-free relay contacts
- Recyclable, halogen-free enclosure
- Optimum price/performance ratio
- Versions with logical separation
- Low variance: One design for distribution boards and for control cabinets
- Compliance with EMC requirements for buildings
- Environmentally friendly laser inscription instead of printing containing solvents
- Timing relays suitable for the 3RT miniature contactors allow smaller tier spacing
- Versions with screw terminals or alternatively with spring-type terminals


## Application

## Timing relays with ON-delay

- Interference pulse suppression (gating of interference pulses)
- Gradual startup of motors so as not to overload the power supply


## Timing relays with OFF-delay

- Generation of overtravel functions following removal of voltage
- Gradual, delayed shutdown, e.g. of motors or fans, to allow a plant to be shut down selectively


## Wye-delta timing relay

- Switchover of motors from wye to delta with a dead interval of 50 ms to prevent phase-to-phase short circuits


## Multifunctional timing relays

- Maximum flexibility, with a device for every application
- Available with relay and semiconductor output


## Timing Relays

3RP25 timing relays

## Overview



## SIRIUS 3RP25 timing relays

Electronic timing relays for general use in control systems and mechanical engineering with:

- 1 or $2 \mathrm{CO}, 1 \mathrm{NO}$ (semiconductor) or 3 NO
- Monofunction or multifunction
- Combination voltage
- Wide voltage range
- Single or selectable time setting ranges
- Switch position indication and voltage indication by LED


## Standards

The timing relays comply with:

- IEC 60721-3-3 "Classification of environmental conditions"
- IEC 61812-1/DIN VDE 0435 Part 2021 "Specified time relays for industrial use"
- IEC 61000-6-2, IEC 61000-6-3 and IEC 61000-6-4 "Electromagnetic compatibility"
- IEC 60947-5-1 "Low-voltage switchgear and controlgear Electromechanical control circuit devices"


## 3RP2505 multifunctional timing relays

The functions of the 3RP2505 multifunctional timing relays can be set by means of the function selector switch. Whether both CO contacts are switched in parallel or one CO contact with a delay and one instantaneously and the choice of time setting range are set by means of the time setting range selector switch. The exact operating time can be adjusted with the operating time switch.
With a set of foil labels the timing relay can be legibly marked with the functions which can be selected on the timing relay. This is supplied together with the multifunctional timing relay.
The same potential must be applied to terminals $A$. and $B$. Functions, see the overview of functions on page 12/37

## Note:

The activation of loads parallel to the start input is permissible when using AC/DC control voltage (see diagram).


Diagram

## Accessories



Push-in lugs for wall mounting


Sealable cover 17.5 mm


Sealable cover 22.5 mm

## Timing Relays

## 3RP25 timing relays, 17.5 mm and 22.5 mm

Two setting options for implementing the multifunctions (A-M):

(1) Determination of 13 functions by the setting $A$ to $M$, with $1 \mathrm{CO}, 1 \mathrm{NO}, 2 \mathrm{CO}$ that switch in parallel.
(2) Extended function variance by selecting the time range and determining, whether 2 CO switch in parallel or whether 1 CO switches with delay +1 CO switches immediately ( $\mathrm{CO}+1 \mathrm{CO}$ )

Setting the functions on the device

Overview of functions of the 3RP2505 multifunctional timing relay

Identification letter	13 functions	27 functions
	$1 \mathrm{CO}, 1 \mathrm{NO}$ (semiconductor) or 2 CO switched in parallel	13 functions $(A-M) 2 C O$ switched in parallel + 13 functions (A - M) 1 CO delayed +1 CO instantaneous ( $1 \mathrm{CO}+1 \mathrm{CO}$ ) and wye-delta function
A	ON-delay	ON-delay and instantaneous contact
B	OFF-delay with control signal	OFF-delay with control signal and instantaneous contact
C	ON-delay/OFF-delay with control signal	ON-delay/OFF-delay with control signal and instantaneous contact
D	Flashing, symmetrical, starting with interval	Flashing, symmetrical, starting with interval and instantaneous contact
E	Passing make contact, interval relay	Passing make contact, interval relay and instantaneous contact
F	Retriggerable interval relay with deactivated control signal (passing break contact with control signal)	Retriggerable interval relay with deactivated control signal (passing break contact with control signal) and instantaneous contact
G	Passing make contact, with control signal, not retriggerable (pulse-forming with control signal)	Passing make contact, with control signal, not retriggerable (pulse-forming with control signal) and instantaneous contact
H	Additive ON-delay, instantaneous OFF with control signal	Additive ON-delay, instantaneous OFF with control signal and instantaneous contact
1	Additive ON-delay with control signal	Additive ON-delay with control signal and instantaneous contact
J	Flashing, symmetrical, starting with pulse	Flashing, symmetrical, starting with pulse and instantaneous contact
K	Pulse-delayed (fixed pulse (at 1 s ) and settable pulse delay)	Pulse-delayed (fixed pulse (at 1 s ) and settable pulse delay) and instantaneous contact
L	Pulse-delayed with control signal (fixed pulse (at 1 s ) and settable pulse delay)	Pulse-delayed with control signal (fixed pulse (at 1 s ) and settable pulse delay) and instantaneous contact
M	Retriggerable interval relay with activated control signal (watchdog)	Retriggerable interval relay with activated control signal and instantaneous contact (watchdog)
--	--	Wye-delta function

[^112]
## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm

Article No. scheme

Digit of the Article No.	$1^{\text {st }}-5^{\text {th }}$   뭄ㅁㅁㅁ	$6^{\text {th }}$ $\square$	$7^{\text {th }}$	-	$8^{\text {th }}$ $\square$	$g^{\text {th }}$	$\begin{gathered} 10^{\text {th }} \\ \square \\ \hline \end{gathered}$	$11^{\text {th }}$ $\square$	$\begin{gathered} 12^{\text {th }} \\ 0 \\ \hline \end{gathered}$
Timing relays in industrial enclosure 17.5 mm and 22.5 mm	3 R P 25								
Functions/time setting ranges		$\square$	$\square$						
Connection type					$\square$				
Contacts						$\square$			
Rated control supply voltage							$\square$	$\square$	
Example	$3 \mathrm{R} P 25$	0	5	-	1	A	W	3	0

Note:
The Article No. scheme is presented here merely for information purposes and for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the catalog in the Selection and ordering data.

## Benefits

- Easy stock keeping and logistics thanks to low variance of devices
- Reduced space requirement in the control cabinet thanks to variants in width 17.5 mm and 22 mm
- Consistent for all functions thanks to wide voltage range from 12 to 240 V AC/DC
- Up to 27 functions according to IEC 61812 in the multifunctional timing relay with wide voltage range
- Multifunctional timing relay with semiconductor output for high switching frequencies, bounce-free and wear-free switching


## Application

Timing relays are used in control, starting, and protective circuits for all switching operations involving time delays. They guarantee a high level of functionality and a high repeat accuracy of timer settings.

## Enclosure version

All timing relays are suitable for snap-on mounting onto TH 35 standard mounting rails according to IEC 60715 or for screw fixing.

## Function Relays, Interfaces and Converters <br> Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm

Technical specifications

Type			$\begin{aligned} & \text { 3RP2505-.A, } \\ & \text { 3RP2505-.C, } \\ & \text { 3RP251., } \\ & \text { 3RP2525-.A, } \\ & \text { 3RP2527,, } \\ & \text { 3RP253.,' } \\ & \text { 3RP255. } \end{aligned}$	$\begin{aligned} & \text { 3RP2505-.B, } \\ & \text { 3RP2505-R, } \\ & \text { 3RP2525.-B, } \\ & \text { 3RP254.., } \\ & \text { 3RP256., } \\ & \text { 3RP257. } \end{aligned}$
Width		mm	17.5	22.5
Height		mm	100	100
Depth		mm	90	90


Type		$\begin{aligned} & \text { 3RP25...-.AB30, } \\ & \text { 3RP25...AW30, } \\ & \text { 3RP25...-BB30, } \\ & \text { 3RP25...-BW30, } \\ & \text { 3RP25..-.NW30, } \\ & \text { 3RP25..-SW30 } \end{aligned}$	$\begin{aligned} & \text { 3RP25..-.BT20, } \\ & \text { 3RP25..-.NM20 } \end{aligned}$	3RP25..-.CW30	3RP25..-.EW30	3RP25...-RW30
Insulation voltage For overvoltage category III According to IEC 60664 For pollution degree 3, rated value	$\mathrm{VAC}$	300	500	300	--	300
Ambient temperature   - During operation   - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+85 \end{aligned}$				$-40 \ldots+70$
Operating range factor Of the control supply voltage, rated value   - At AC   - At 50 Hz   - At 60 Hz   - At DC		$\begin{array}{llll} 0.85 & \ldots & 1.1 \\ 0.85 & \ldots & 1.1 \\ 0.85 & \ldots & 1.1 \end{array}$	--	0.85 ... 1.1	0.85 ... 1.1	$\begin{array}{lll} 0.7 & \ldots & 1.1 \\ 0.7 & \ldots & 1.1 \\ 0.7 & \ldots & 1.1 \\ \hline \end{array}$
Switching capacity current With inductive load	A	0.01 ... 3	0.01 ... 3	$0.01 \ldots 1$	0.01 ... 6	$0.01 \ldots 3$
Operational current of the auxiliary contacts   - At AC-15   - At 24 V   - At 250 V   - At 400 V   - At DC-12   - At 24 V   - At 125 V   - At 250 V   - At DC-13   - At 24 V   - At 125 V   - At 250 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & -- \\ & -- \\ & -- \\ & -- \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & -- \\ & -- \\ & -- \\ & 1 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & -- \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & -- \\ & \hline-- \end{aligned}$	$\begin{aligned} & -- \\ & -- \\ & -- \\ & -- \\ & -- \\ & \text {-- } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & -- \\ & -- \\ & -- \\ & -- \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Uninterrupted thermal current $I_{\text {th }}$		5	5	1	0.6	5
Mechanical endurance	(Operating cycles) Typical	$10 \times 10^{6}$				
Electrical endurance For AC-15 at 230 V , typical	(Operating cycles)	$1 \times 10^{5}$				


Type		3RP25
Connection type		(i) Screw terminals
- Design of thread of connection s	crew	M3
- Solid	$\mathrm{mm}^{2}$	$1 \times(0.5 \ldots 4.0) / 2 \times(0.5 \ldots 2.5)$
- Finely stranded with end sleeve	$\mathrm{mm}^{2}$	$1 \times(0.5 \ldots 4) / 2 \times(0.5 \ldots 1.5)$
- Solid for AWG cables	AWG	$1 \times(20 \ldots 12), 2 \times(20 \ldots 14)$
- Stranded for AWG cables	AWG	$1 \times(20 \ldots 12), 2 \times(20 \ldots 14)$
- Tightening torque	Nm	$0.6 \ldots 0.8$
Connection type		$\bigcirc$ Spring-type terminals
- Solid	$\mathrm{mm}^{2}$	$1 \times(0.5 \ldots 4)$
- Finely stranded with end sleeve	$\mathrm{mm}^{2}$	$1 \times(0.5 \ldots 2.5)$
- AWG cables, solid	AWG	$1 \times(20 \ldots 12)$

## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm
Internal circuit diagrams 3RP25
Multifunction 3RP2505-.A, 13 functions, 1 CO

3RP2505-. A (A)	3RP2505-. A (B)	3RP2505-.A (C)	3RP2505-.A (D)
ON-delay	OFF-delay with control signal	ON-delay/OFF-delay with control signal	Flashing, symmetrical, starting with interval
3RP2505-. A (E)	3RP2505-.A (F)	3RP2505-. A (G)	3RP2505-.A (H)
Passing make contact, interval relay	Retriggerable interval relay with deactivated control signal (passing break contact with control signal)	Passing make contact with control signal, not retriggerable (pulse-forming with control signal)	Additive ON-delay, instantaneous OFF with control signal
3RP2505-.A (I)	3RP2505-.A (J)	3RP2505-.A (K)	3RP2505-.A (L)
Additive ON-delay with control signal	Flashing, symmetrical, starting with pulse	Pulse-delayed (fixed pulse (at 1 s ) and settable pulse delay)	Pulse-delayed with control signal (fixed pulse (at 1 s ) and settable pulse delay)



## 3RP2505-.A (M)

Retriggerable interval relay with activated control signal (watchdog)

## Timing Relays

## 3RP25 timing relays, 17.5 mm and 22.5 mm

Multifunction 3RP2505-.C, 13 functions, 1 NO (semiconductor)

in			
3RP2505-.C (A)	3RP2505-.C (B)	3RP2505-.C (C)	3RP2505-.C (D)
ON-delay	OFF-delay with control signal	ON-delay/OFF-delay with control signal	Flashing, symmetrical, starting with interval
3RP2505-.C (E)	3RP2505-.C (F)	3RP2505-.C (G)	3RP2505-.C (H)
Passing make contact, interval relay	Retriggerable interval relay with deactivated control signal (passing break contact with control signal)	Passing make contact with control signal, not retriggerable (pulse-forming with control signal)	Additive ON-delay, instantaneous OFF with control signal
3RP2505-.C (I)	3RP2505-.C (J)	3RP2505-.C (K)	3RP2505-.C (L)
Additive ON-delay with control signal	Flashing, symmetrical, starting with pulse	Pulse-delayed (fixed pulse (at 1 s ) and settable pulse delay)	Pulse-delayed with control signal (fixed pulse (at 1 s ) and settable pulse delay)



[^113]
## Timing Relays

Multifunction 3RP2505-.B, 27 functions, 2 CO switched in parallel with delay/
multifunction 3RP2505-.R, 13 functions, 2 CO positively driven, and switched in parallel with delay (see also note below)


3RP2505-.B (E)
Passing make contact, interval relay

3RP2505-. B (F)
Retriggerable interval relay with deactivated control signal (passing break contact with control signal)


3RP2505-.B (J)
Flashing, symmetrical, starting with pulse


3RP2505-.B (K)
Pulse-delayed (fixed pulse (at 1 s ) and settable pulse delay)

3RP2505-.B (H)
Additive ON-delay, instantaneous OFF with control signal

3RP2505-.B (L)
Pulse-delayed with control signal (fixed pulse (at 1 s ) and settable pulse delay)


3RP2505-.B (D)
Flashing, symmetrical, starting with interval

3RP2505-. B (M)
Retriggerable interval relay with activated control signal (watchdog)

Note:
3RP2505-RW30 has 13 functions (A to M) like 3RP2505-. B switched in parallel with delay, but with positively driven contacts. The circuit diagrams are identical except for the representation of the symbols for these contacts, see also the example on the right for 3RP2505-.RW30 of the function (A) with ON-delay.



## Timing Relays

## 3RP25 timing relays, 17.5 mm and 22.5 mm

Multifunction 3RP2505-.B, 27 functions, 1 CO delayed + 1 CO instantaneous (continued)


3RP2505-. B (A)
ON-delay and instantaneous contact
RP2505-.B (B)
OFF-delay with control signal and instantaneous contact


3RP2505-.B (E)
Passing make contact, interval relay and instantaneous contact



3RP2505-.B (F)
Retriggerable interval relay with deactivated control signal (passing break contact with control signal) and instantaneous contact


3RP2505-.B (I)
Additive ON-delay with control signal and instantaneous contact

3RP2505-.B (J)
Flashing, symmetrical, starting with pulse and instantaneous contact


3RP2505-.B (C)
ON-delay/OFF-delay with control signal and instantaneous contact


3RP2505-.B (G)
Passing make contact with control signal, not retriggerable (pulse-forming with control signal) and instantaneous contact


3RP2505-.B (D)
Flashing, symmetrical, starting with interval and instantaneous contact


3RP2505-.B (H)
Additive ON-delay, instantaneous OFF with control signal and instantaneous contact


3RP2505-B (L)
Pulse-delayed with control signal (fixed pulse (at 1 s ) and settable pulse delay) and instantaneous contact


3RP2505-.B (M)
Retriggerable interval relay with activated control signal and instantaneous contact (watchdog)


3RP2505-.B (K)
Pulse-delayed (fixed pulse (at 1 s ) and settable pulse delay) and instantaneous contact

3RP2505-.B
Wye-delta function


## Timing Relays

Monofunctions 3RP251. up to 3RP257. ${ }^{1)}$


## Timing Relays

## 3RP25 timing relays, 17.5 mm and 22.5 mm

## 3RP25 function diagrams

Multifunction 3RP2505-.A, 1 CO, 13 functions and 3RP2505-.C, 1 NO (semiconductor), 13 functions

		A1/A2 पापापापापापापाँ	
A ON-delay	B   OFF-delay with control signal	C   ON-delay/OFF-delay with control signal	D   Flashing, symmetrical, starting with interval
E   Passing make contact, interval relay	F   Retriggerable interval relay with deactivated control signal (passing break contact with control signal)	G   Passing make contact with control signal, not retriggerable (pulse-forming with control signal)	H   Additive ON-delay, instantaneous OFF with control signal
I	$J$	K	L
Additive ON-delay, with control signal	Flashing, symmetrical, starting with pulse	Pulse-delayed (fixed pulse (at 1 s ) and settable pulse delay)	Pulse-delayed with control signal (fixed pulse (at 1 s ) and settable pulse delay)

Pulse-delayed with control signal (fixed pulse (at 1 s ) and settable pulse delay)


```
M
Retriggerable interval relay with
activated control signal (watchdog)
Legend
A ... M Identification letters
Z/\ Timing relay energized
```

```
 Contact closed
```

```Contact open
```


## Function Relays, Interfaces and Converters

## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm

Multifunction 3RP2505-.B, 13 functions, 2 CO positively driven and switched in parallel with delay



M
Retriggerable interval relay with activated control signal (watchdog)

## Legend

A ... M Identification letters
Z $\quad$ Timing relay energized
$\square$ Contact closedContact open

Function Relays, Interfaces and Converters

## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm

## Multifunction 3RP2505-.B, 27 functions, 2 CO


c
2 CO switched in parallel


G
2 CO switched in parallel


Passing make contact with control signal, not retriggerable (pulse-forming with control signal)

2 CO switched in parallel


D
2 CO switched in parallel $\begin{array}{ll}1 \mathrm{CO} \text { delayed }+ \\ & 1 \mathrm{CO} \text { instantaneous }\end{array}$


F
2 CO switched in parallel


H
2 CO switched in parallel


Additive ON-delay, instantaneous OFF with control signal

1 CO delayed + 1 CO instantaneous


OFF-delay with control signal and instantaneous contact

1 CO delayed + 1 CO instantaneous


Retriggerable interval relay with deactivated control signal (passing break contact with control signal) and instantaneous contact

1 CO delayed + 1 CO instantaneous


Additive ON-delay, instantaneous OFF with control signal and instantaneous contact

Legend
A ... M Identification letters
[ $\square$ Timing relay energized
$\square$ Contact closed
$\square$ Contact open

## Function Relays, Interfaces and Converters

## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm


## Legend

A ... M Identification letters
Z Timing relay energizedContact closedContact open

## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm

Monofunctions 3RP251. up to 3RP257. ${ }^{\text {1) }}$


3RP251.-.AW30, 1 CO, ON-delay


3RP2527-EW30, 1 NO (semiconductor), ON-delay


3RP2540-.B.30, 2 CO, OFF-delay ( N$)^{1}$ )
3RP2540-.A.30, 1 CO, positive passing make contact ( O$)^{1}$ ) (idling)


3RP2560-.SW30, 3 NO, wye-delta function with overtravel function


3RP257.-. NM20, 2 NO, wye-delta function


3RP257.-.NM30, 2 NO, wye-delta function

Legend
$\square \square$ Timing relay energizedContact closedContact open

1) 3RP2540 has a double function: Function $\mathrm{N}=\mathrm{OFF}$-delay
Function $\mathrm{O}=$ positive passing make contact.

## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm

## Possibilities of operation of the 3RP2560-.SW30 timing relay

Operation 1: Start contact B./A2 is open when control supply voltage A./A2 is applied
The control supply voltage is applied to A./A2 and there is no control signal on B./A2. This starts the Ya timing. The idling time (coasting time) is started by applying a control signal to B./A2. When the set time $t_{\text {Idling }}$ ( $30 \ldots 600 \mathrm{~s}$ ) has elapsed, the output relays ( $17 / 38$ and $17 / 28$ ) are reset. If the control signal on B./A2 is switched off (minimum OFF period 270 ms ), a new timing is started.
Note:
Observe response time (dead time) of 400 ms on energizing control supply voltage until contacts 17/18 and 17/16 close.


Operation 1
Operation 2: Start contact B./A2 is closed when control supply voltage A./A2 is applied
If the control signal B./A2 is already present when the control supply voltage A./A2 is applied, no timing is started. The timing is only started when the control signal B./A2 is switched off.


Operation 2
Operation 3: Start contact B./A2 closes while star time is running
If the control signal B./A2 is applied again during the star time, the idling time starts and the timing is terminated normally.


Operation 3

Operation 4: Start contact B./A2 opens while delta time is running and is applied again
If the control signal on B./A2 is applied and switched off again during the delta time, although the idling time has not yet elapsed, the idling time (coasting time) is reset to zero. If the control signal is re-applied to B./A2, the idling time is restarted.


Operation 4
Legend
ZZ Timing relay energized
$\square$ Contact closed
$\square$ Contact open
$t_{Y}=$ Star time 1... 20 s
$t_{\text {Idling }}=$ Idling time (coasting time) $30 \ldots 600 \mathrm{~s}$
Note:
The following applies to all operations: The pressure switch controls the timing via B./A2.

Application example based on standard operation
(operation 1): For example, use of 3RP2560 for compressor
$\underline{\text { control }}$
Frequent starting of compressors strains the network, the machine, and the increased costs for the operator. The new timing relay prevents frequent starting at times when there is high demand for compressed air. A special control circuit prevents the compressor from being switched off immediately when the required air pressure in the tank has been reached. Instead, the valve in the intake tube is closed and the compressor runs in "Idling" mode, i.e. in no-load operation for a specific time which can be set from $30 \ldots 600 \mathrm{~s}$.
If the pressure falls within this time, the motor does not have to be restarted again, but can return to nominal load operation from no-load operation.
If the pressure does not fall within this idling time, the motor is switched off.

The pressure switch controls the timing via B./A2.
The control supply voltage is applied to A./A2 and the start contact B./A2 is open, i.e. there is no control signal on B./A2 when the control supply voltage is applied. The pressure switch signals "too little pressure in system" and starts the timing by way of terminal B./A2. The compressor is started, enters Y Y operation, and fills the pressure tank.
When the pressure switch signals "sufficient pressure", the control signal B./A2 is applied, the idling time (coasting time) is started, and the compressor enters no-load operation for the set period of time from $30 \ldots 600 \mathrm{~s}$. The compressor is then switched off. The compressor is only restarted if the pressure switch responds again (low pressure).

## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm

Selection and ordering data


3RP2505-2AB30


3RP2505-2BB30


3RP2525-2AW30


3RP2540-2AW30


3RP2555-2AW30

PU (UNIT, SET, M)=1 PS* = 1 unit


3RP2505-.A and 3RP2505-.C timing relays, 13 functions
The functions can be adjusted by means of function selector switches on the device. With a set of foil labels the timing relay can be legibly marked with the functions which can be selected on the timing relay. This is supplied together with the multifunctional timing relay.
The same potential must be applied to terminals A. and B. Functions, see the overview functions on page $12 / 37$.

| 0 | 0 | 0 | 1 | -- | $0.05 \mathrm{~s} \ldots 100 \mathrm{~h} 24$ | 24 | A | 3RP2505-1AB30 |  | A | 3RP2505-2AB30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | $12 \ldots 240$ | $12 \ldots 240$ A | 3RP2505-1AW30 |  | A | 3RP2505-2AW30 |  |  |
| 0 | 1 | 0 | 0 | $\checkmark$ | $0.05 \mathrm{~s} \ldots 100 \mathrm{~h} 12 \ldots 240$ | $12 \ldots 240$ A | 3RP2505-1CW30 | A | 3RP2505-2CW30 |  |  |

## 3RP2505-.R timing relays sultable for railway applications, 13 functions

The functions can be adjusted by means of function selector switches on the device. With a set of foil labels the timing relay can be legibly marked with the functions which can be selected on the timing relay. This is supplied together with the multifunctional timing relay. For accessories

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | -- | $2^{1)}$ | -- | $0.05 \mathrm{~s} \ldots 100 \mathrm{~h} 24 \ldots 240$ | $24 \ldots 240$ A | 3RP2505-1RW30 | ARP2505-2RW30 |

## 3RP2505-. 3 timing relay, 27 functions

The functions can be adjusted by means of function selector switches on the device. With a set of foil labels the timing relay can be legibly marked with the functions which can be selected on the timing relay. This is supplied together with the multifunctional timing relay. The same potential must be applied to terminals A. and B. Functions, see the overview functions on page 12/37.


Function Relays, Interfaces and Converters

## Timing Relays

3RP25 timing relays, 17.5 mm and 22.5 mm


## Timing Relays

3RP20 timing relays, 45 mm

## Overview



SIRIUS 3RP20 timing relays
SIRIUS 3RP20 electronic timing relays for use in control systems and mechanical engineering with:

- 1 or 2 CO contacts
- Multifunction or monofunction
- Wide voltage range or combination voltage
- Single or selectable time setting ranges
- Switch position indication and voltage indication by LED


## Standards

The timing relays comply with:

- IEC 60721-3-3 "Classification of environmental conditions"
- IEC 61812-1 "Time relays for industrial and residential use"
- IEC 61000-6-2 and EN 61000-6-4 "Electromagnetic compatibility"
- IEC 60947-5-1 "Low-voltage switchgear and controlgear Electromechanical control circuit devices"
- IEC 60947-1, Appendix N "Protective separation"


## Multifunction

The functions of the 3RP2005 multifunctional timing relays can be set by means of the function selector switch. Insert labels can be used to adjust different functions of the timing relay clearly and unmistakably. The corresponding labels can be ordered as an accessory. The same potential must be applied to terminals $A$ and $B$.
For functions, see 3RP2901 label set, page 12/58.
Note:
The activation of loads parallel to the start input is not permissible when using AC control voltage (see diagrams).


## Diagrams

## Accessories



Label set for marking the multifunctional relay

## Article No. scheme

Digit of the Article No.	$1^{\text {st }}-5^{\text {th }}$   ㅁㅁㅁㅁㅁㅁ	$6^{\text {th }}$ $\square$	$7^{\text {th }}$ $\square$	-	$\begin{aligned} & 8^{\text {th }} \\ & \square \end{aligned}$	gth $\square$	$\begin{gathered} 10^{\text {th }} \\ \square \\ \hline \end{gathered}$	$11^{\text {th }}$ $\square$	$\begin{gathered} 12^{\text {th }} \\ 0 \\ \hline \end{gathered}$
SIRIUS timing relays, enclosure 45 mm	3 R P 20								
Functions/time setting ranges		$\square$	$\square$						
Connection type					$\square$				
Contacts						$\square$			
Rated control supply voltage							$\square$	$\square$	
Example	3 R P 20	0	5	-	1	A	P	3	0

Note:
The Article No. scheme is presented here merely for information purposes and for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the catalog in the Selection and ordering data.

## Benefits

- Suitable for 3RT miniature contactors
- Uniform design
- Ideal for small distance between standard mounting rails and/or for low mounting depth, e.g. in control boxes
- Labels are used on the multifunctional time relay to document the function that has been set


## Function Relays, Interfaces and Converters <br> Timing Relays

3RP20 timing relays, 45 mm

## Application

Timing relays are used in control, starting, and protective circuits for all switching operations involving time delays. They guarantee a high level of functionality and a high repeat accuracy of timer settings.

Technical specifications

| Type |
| :--- | :--- | :--- |
| Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ ) |

- Max. external diameter of the conductor insulation
mm 3.6

1) If nothing else is stated.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in one of the ranges specified.

## 3RP20 internal circuit diagrams



## Timing Relays

## 3RP20 timing relays, 45 mm

## 3RP20 function diagrams and 3RP2901 label set

1 CO contact


A
3RP2005-.A, 3RP2025
ON-delay


E
3RP2005-.A
Passing make contact


B1)
3RP2005-.A
OFF-delay with control signal

$\mathbf{F}^{1)}$
3RP2005-.A
Passing break contact with control signal


C ${ }^{1)}$
3RP2005-.A
ON-delay and OFF-delay with control signal $\left(t=t_{\mathrm{on}}=t_{\mathrm{off}}\right)$


D
3RP2005-.A
Flashing, starting with interval (pulse/interval 1:1)


Legend
A ... H Identification letters for 3RP2005
$\square \square$ Timing relay energizedContact closedContact open

1) Note on function with start contact: A new control signal at terminal B, after the operating time has started, resets the operating time to zero (retriggerable). This does not apply to $\mathrm{G}, \mathrm{G} \bullet$ and $\mathrm{H} \bullet$, which are not retriggerable.

Function Relays, Interfaces and Converters
Timing Relays
3RP20 timing relays, 45 mm

## 2 CO contacts

##  <br>  <br> A

3RP2005-.B
ON-delay


A•
3RP2005-.B
ON-delay and instantaneous contact


B ${ }^{1)}$
3RP2005-.B
OFF-delay with control signal


## D

3RP2005-. B
Flashing, starting with interval (pulse/interval 1:1)

ON-delay and OFF-delay
with control signal and instantaneous
contact
$\left(t=t_{\mathrm{on}}=t_{\mathrm{off}}\right)$


## C. ${ }^{1)}$

3RP2005-.B

E
3RP2005-.B
Passing make contact

E•
3RP2005-. B
Passing make contact and instantaneous contact

$F^{1)}$
3RP2005-.B
Passing break contact with control signal


Be1)
3RP2005-. B
OFF-delay with control signal and instantaneous contact


3RP2005-.B
Flashing, starting with interval (pulse/interval 1:1) and instantaneous contact

$\mathbf{G}^{1)}$
3RP2005-B
Pulse-forming with control signal (pulse generation at the output does not depend on duration of energizing)


G• ${ }^{1)}$
3RP2005-. B
Pulse-forming with control signal and instantaneous contact (pulse generation at the output does not depend on duration of energizing)


He ${ }^{1)}$
3RP2005-. B
Additive ON-delay with control signal Wye-delta function and instantaneous contact


Fe ${ }^{1)}$
3RP2005-.B
Passing break contact with control signal and instantaneous contact

Legend
A ... H Identification letters for 3RP2005
Z Timing relay energizedContact closedContact open

1) Note on function with start contact: A new control signal at terminal $B$, after the operating time has started, resets the operating time to zero (retriggerable). This does not apply to $\mathrm{G}, \mathrm{G} \bullet$ and $\mathrm{H} \bullet$, which are not retriggerable.

## Timing Relays

## 3RP20 timing relays, 45 mm

## Selection and ordering data

PU (UNIT, SET, M) = 1
PS* = 1 unit


Version	Time setting range $t$	Rated control supply voltage $U_{S}$		DT	Screw terminals	$\cdots$	DT	Spring-type terminals	$\begin{aligned} & 00 \\ & \square \square \end{aligned}$
		50/60 Hz AC	DC						
		V	V		Article No.	Price per PU		Article No.	Price per PU
3RP2005 timing relays, multifunction, 15 time setting ranges									
The functions can be adjusted by means of rotary switches. Insert labels can be used to adjust different functions of the 3RP2505 timing relay clearly and unmistakably. The corresponding labels can be ordered as an accessory. The same potential must be applied to terminals $A$. and $B$. For functions, see 3RP2901 label set, page 12/58.									
With LED and 1 CO contact ${ }^{1}$ ), 8 functions	$\begin{aligned} & 0.05 \ldots 1 \mathrm{~s} \\ & 0.15 \ldots 3 \mathrm{~s} \\ & 0.5 \ldots 10 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 24 / 100 \ldots 127 \\ & 24 / 200 \ldots 240 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	i	$\begin{aligned} & \text { 3RP2005-1AQ30 } \\ & \text { 3RP2005-1AP30 } \end{aligned}$		A	$\begin{aligned} & \text { 3RP2005-2AQ30 } \\ & \text { 3RP2005-2AP30 } \end{aligned}$	
With LED and 2 CO contacts, 16 functions	$\begin{aligned} & 1.5 \ldots 30 \mathrm{~s} \\ & 0.05 \ldots 1 \mathrm{~min} \\ & 5 \ldots 100 \mathrm{~s} \\ & 0.15 \ldots 3 \mathrm{~min} \\ & 0.5 \ldots 10 \mathrm{~min} \\ & 1.5 \ldots 30 \mathrm{~min} \\ & 0.05 \ldots 1 \mathrm{~h} \\ & 5 \ldots 100 \mathrm{~min} \\ & 0.15 \ldots 3 \mathrm{~h} \\ & 0.5 \ldots 10 \mathrm{~h} \\ & 1.5 \ldots 30 \mathrm{~h} \\ & 5 \ldots 100 \mathrm{~h} \\ & \infty 2 . \end{aligned}$	$24 \ldots 240^{3)}$	$24 \ldots 240^{4}$	-	3RP2005-1BW30		A	3RP2005-2BW30	
3RP2025. timing relays, ON-delay, 15 time setting ranges									
With LED and 1 CO contact ${ }^{1}$ )	$0.05 \ldots 1 \mathrm{~s}$ $0.15 \ldots 3 \mathrm{~s}$ $0.5 \ldots 10 \mathrm{~s}$ $1.5 \ldots 30 \mathrm{~s}$ $0.05 \ldots 1 \mathrm{~min}$ $5 \ldots 100 \mathrm{~s}$ $0.15 \ldots 3 \mathrm{~min}$ $0.5 \ldots 10 \mathrm{~min}$ $1.5 \ldots 30 \mathrm{~min}$ $0.05 \ldots 1 \mathrm{~h}$ $5 \ldots 100 \mathrm{~min}$ $0.15 \ldots 3 \mathrm{~h}$ 0.510 h $1.5 \ldots 30 \mathrm{~h}$ $5 \ldots 100 \mathrm{~h}$ $\infty 2)$	$\begin{aligned} & 24 / 100 \ldots 127 \\ & 24 / 200 \ldots 240 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\stackrel{+}{ }$	$\begin{aligned} & \text { 3RP2025-1AQ30 } \\ & \text { 3RP2025-1AP30 } \end{aligned}$		-	$\begin{aligned} & \text { 3RP2025-2AQ30 } \\ & \text { 3RP2025-2AP30 } \end{aligned}$	

For accessories, see page 12/58.

1) Units with protective separation.
2) With switch position $\infty$ no timing. For test purposes (ON/OFF function) on site. Relay is constantly on when activated, or relay remains constantly off when activated. Depending on which function is set
3) Operating range 0.8 to $1.1 \times U_{S}$.
4) Operating range 0.7 to $1.1 \times U_{\mathrm{S}}$.

# Function Relays, Interfaces and Converters 

## Timing Relays

3RP20 timing relays, 45 mm

## Accessories

	Version	Function	Identification letter		DT	Article No.	Price per PU	PU   (UNIT,   SET, M)	PS*
Label sets for 3RP20									
	Accessories for 3RP20 (not included in the scope of supply). The label set offers the possibility of labeling timing relays with the set function in English and German.								
	1 label set (1 unit) with 8 functions	ON-delay	A		C	3RP2901-0A		1	5 units
Praters		OFF-delay with control signal	B	For					
寿保		ON-delay and OFF-delay with control signal	C	devices   with 1 CO					
		Flashing, starting with interval	D						
		Passing make contact	E						
		Passing break contact with control signal	F						
3RP2901-0A		Pulse-forming with control signal	G						
		Additive ON-delay with control signal	H						
	1 label set (1 unit) with 16 functions	ON-delay	A		C	3RP2901-0B		1	5 units
		OFF-delay with control signal	B	For					
		ON-delay and OFF-delay with control signal	C	devices   with 2 CO					
		Flashing, starting with interval	D	contacts					
		Passing make contact	E						
		Passing break contact with control signal	F						
		Pulse-forming with control signal	G						
		ON-delay and instantaneous contact							
		OFF-delay with control signal and instantaneous contact	B•						
3RP2901-0B		ON-delay and OFF-delay with control signal and instantaneous contact	C•						
3RP2901-0B		Flashing, starting with interval, and instantaneous contact	D•						
		Passing make contact and instantaneous contact	$E \bullet$						
		Passing break contact with control signal and instantaneous contact							
		Pulse-forming with control signal and instantaneous contact	$G \bullet$						
		Additive ON-delay with control signal and instantaneous contact	H•						
		Wye-delta function	$Y \Delta$						
Blank inscription labels for 3RP20									
	Blank labels, $20 \mathrm{~mm} \times 7 \mathrm{~mm}$, pastel turquoise			For 3RP20	D	3RT1900-1SB20		100	340 units

## Timing Relays

## 7PV15 timing relays in enclosure, 17.5 mm

## Overview



7PV15 timing relay
Electronic timing relays for general use and in control systems, mechanical engineering and infrastructure with:

- 1 or 2 CO contacts
- Multifunction or monofunction
- Wide voltage range or combination voltage
- Single or selectable time setting ranges
- Switch position indication and voltage indication by LED


## Standards

The timing relays comply with:

- IEC 60721-3-3 "Classification of environmental conditions"
- IEC 61812-1 "Time relays for industrial and residential use"
- IEC 61000-6-2 and EN 61000-6-4
"Electromagnetic compatibility"
- IEC 60947-5-1 "Low-voltage switchgear and controlgear Electromechanical control circuit devices"
- DIN 43880 "Built-in equipment for electrical installations; overall dimensions and related mounting dimensions"


## Multifunction

The functions of the 7PV1508-1A multifunctional timing relays can be set by means of rotary switches. The identification letters A to $G$ are printed on the front alongside the rotary selector switch of the unit. The related function can be found in the form of a bar graph on the side of the device.

## Enclosure version

All timing relays are suitable for snap-on mounting onto TH 35 standard mounting rails according to IEC 60715. The enclosure complies with DIN 43880, 1 MW.


## Dimensions

## Note:

The activation of loads parallel to the start input is not permissible when using AC control voltage (see diagrams).


Diagrams

Article No. scheme

Digit of the Article No.	$1^{\text {st }}-5^{\text {th }}$   $\square \square \square \square \square$	$\begin{aligned} & 6^{\text {th }} \\ & \square \end{aligned}$	$\begin{aligned} & 7^{\text {th }} \\ & \square \end{aligned}$	-	$\begin{gathered} 8^{\text {th }} \\ \square \end{gathered}$	$9^{\text {th }}$ $\square$	$\begin{gathered} 10^{\text {th }} \\ \square \end{gathered}$	$11^{\text {th }}$	$\begin{gathered} 12^{\text {th }} \\ \mathbf{0} \end{gathered}$
Timing relays in industrial enclosure, 17.5 mm	7 PV15								
Functions/time setting ranges		$\square$	$\square$						
Connection type					$\square$				
Contacts						$\square$			
Rated control supply voltage							$\square$	$\square$	
Example	7 P V 15	0	8	-	1	A	W	3	0

Note:
The Article No. scheme is presented here merely for information purposes and for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the catalog in the Selection and ordering data.

## Function Relays, Interfaces and Converters <br> Timing Relays

7PV15 timing relays in enclosure, 17.5 mm

## Benefits

- Wide voltage range 12 to 240 V AC/DC
- High switching capacity, e.g. AC-15 at 230 V, 3 A
- Combination voltage, e.g. 24 V AC/DC and 200 to 240 V AC
- Changes to the time setting range during operation
- Changes to the function in the de-energized state
- High level of functionality and a high repeat accuracy of timer settings
- Integrated surge suppressor
- Function charts printed on the side of the device for reliable device adjustment


## Application

Timing relays are used in control, starting and protective circuits for all switching operations involving time delays, e.g. in non-residential buildings, airports, industrial buildings etc.

Technical specifications

Type		7PV15
Rated insulation voltage Pollution degree 2, overvoltage category III	V AC	300
Permissible ambient temperature   - During operation   - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \\ & -40 \ldots+70 \\ & \hline \end{aligned}$
Operating range at excitation ${ }^{1)}$		$\begin{aligned} & 0.85 \ldots 1.1 \times U_{\mathrm{s}} \text { at } \mathrm{V} \mathrm{AC/DC}, 50 / 60 \mathrm{~Hz} \\ & 0.8 \ldots 1.25 \times U_{\mathrm{s}} 24 \mathrm{~V} \text { DC } \\ & 0.95 \ldots 1.05 \text { times the rated frequency } \end{aligned}$
Rated operational current $I_{\mathrm{e}}$   - AC-15 at $24 \ldots 240 \mathrm{~V}, 50 \mathrm{~Hz}$   - DC-13 at   - 24 V   - 125 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \end{aligned}$
Uninterrupted thermal current $I_{\text {th }}$	A	5
Mechanical endurance	Operating cycles	$1 \times 10^{6}$
Electrical endurance at $I_{\text {e }}$	Operating cycles	$1 \times 10^{5}$
Connection type		Screw terminals
- Terminal screw   - Solid   - Finely stranded with end sleeve   - Finely stranded without end sleeve   - AWG cables, solid or stranded   - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \\ & \mathrm{Nm} \end{aligned}$	M3 (for standard screwdriver, size 2 and Pozidriv 2) $\begin{aligned} & 1 \times(0.2 \ldots 2.5) \\ & 1 \times(0.25 \ldots 1.5) \\ & 1 \times(0.2 \ldots 1.5) \\ & 1 \times(24 \ldots 14) \\ & 0.4 \ldots 0.5 \end{aligned}$

- Tightening torque
0.4 ....

1) If nothing else is stated

## 7PV15 internal circuit diagrams




7PV1508-1AW30
Passing break contact with control signal


7PV1508-1AW30
Flashing, starting with interval


7PV1508-1AW30
Additive ON-delay, with control signal


7PV1508-1BW30
ON-delay

## Timing Relays

## 7PV15 timing relays in enclosure, 17.5 mm

## 7PV15 internal circuit diagrams (continued)



7PV1508-1BW30
OFF-delay
with control signal


7PV1508-1BW30 Flashing, starting with interval


7PV1508-1BW30
Fixed pulse after ON-delay


7PV1538-1AW30 OFF-delay
with control signal


7PV1508-1BW30
Passing make contact


7PV1508-1BW30
Pulse-forming with control signal


7PV151.-1AQ30, 7PV151.-1AP30 ON-delay


7PV1540-1AW30
OFF-delay
without control signal


7PV1558-1AW30 Clock-pulse relay

## Timing Relays

7PV15 timing relays in enclosure, 17.5 mm

## 7PV15 function diagrams

## 1 CO contact



A
7PV1508-1A, 7PV1511, 7PV1512,
7PV1513, 7PV1518 ON-delay


7PV1558
Clock-pulse, starting with interval (dead period, pulse time, and time setting ranges each separately adjustable) -


G1)
7PV1508-1A
Additive ON-delay with control signal

## Legend

A ... G Identification letters for 7PV1508
[7/ Timing relay energizedContact closedContact open

1) Note on function with start contact: A new control signal at terminal B, after the operating time has started, resets the operating time to zero (retriggerable). This does not apply to E, F and G, which are not retriggerable.

## Note:

With the 7PV1508-1A multifunctional relay the identification letters A to $G$ are printed on the front alongside the rotary selector switch of the unit. The related function can be found in the form of a bar graph on the side of the device.

$\mathbf{E}^{1}$
7PV1508-1A
Passing break contact with control signal

$F^{1)}$
7PV1508-1A
Pulse-forming with control signal (pulse generation at the output does not depend on duration of energizing)

Function Relays, Interfaces and Converters

## Timing Relays

## 7PV15 timing relays in enclosure, 17.5 mm

## 2 CO contacts


--
7 PV1578
Wye-delta function ${ }^{2)}$

Legend
A ... D, F, H, I Identification letters for 7PV1508

## Z Timing relay energized

Contact closedContact open1) Note on function with start contact: A new control signal at terminal B, after the operating time has started, resets the operating time to zero (retriggerable). This does not apply to E, F and G, which are not retriggerable
2) With 7 PV1578 the contacts 16 and 26 are not needed for the wye-delta function.
Note:
With the 7PV1508-1B multifunctional relay the identification letters A to D, F, H, I are printed on the front alongside the rotary selector switch of the unit. The related function can be found in the form of a bar graph on the side of the device.

## Function Relays, Interfaces and Converters

## Timing Relays

7PV15 timing relays in enclosure, 17.5 mm

## Selection and ordering data



7PV1518-1AW30

7PV1538-1AW30

7PV1540-1AW30

7PV1558-1AW30

7PV1578-1BW30

Version	Time setting range $t$ adjustable by rotary switch to	Rated control supply voltage $U_{S}$		DT	Screw term	(1)	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
		$50 / 60 \mathrm{~Hz}$ AC V	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{~V} \end{aligned}$		Article No.	Price per PU		

## 7PV1508 timing relays, multifunction, 7 time setting ranges

The functions can be adjusted by means of rotary switches. The same potential must be applied to terminals A. and B.

With LED and 1 CO contact, 7 functions	$\begin{aligned} & 0.05 \ldots 1 \mathrm{~s} \\ & 0.5 \ldots 10 \mathrm{~s} \\ & 5 \ldots 100 \mathrm{~s} \end{aligned}$	$12 . .240$	$12 . .240$	-	7PV1508-1AW30	1	1 unit
With LED and 2 CO contacts, 7 functions	$\begin{aligned} & 30 \mathrm{~s} \ldots 10 \mathrm{~min} \\ & 3 \mathrm{~min} \ldots 1 \mathrm{~h} \\ & 30 \mathrm{~min} \ldots 10 \mathrm{~h} \\ & 5 \ldots 100 \mathrm{~h} \end{aligned}$	$12 . .240$	$12 . .240$	-	7PV1508-1BW30	1	1 unit
7PV151. timing relays, ON-delay, 1 time setting range							
With LED and 1 CO contact	0.05 ... 1 s	24/200 ... 240	24	-	7PV1511-1AP30	1	1 unit
	$0.5 \ldots 10 \mathrm{~s}$	$\begin{aligned} & \hline 24 / 100 \ldots 127 \\ & 24 / 200 \ldots 240 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$>$	$\begin{aligned} & \text { 7PV1512-1AQ30 } \\ & \text { 7PV1512-1AP30 } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	$5 \ldots 100 \mathrm{~s}$	$\begin{aligned} & \hline 24 / 100 \ldots 127 \\ & 24 / 200 \ldots 240 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$>$	$\begin{aligned} & \text { 7PV1513-1AQ30 } \\ & \text { 7PV1513-1AP30 } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	1 unit 1 unit
7PV1518 timing relays, ON-delay, 7 time setting ranges							
With LED and 1 CO contact	$\begin{aligned} & 0.05 \ldots 1 \mathrm{~s} \\ & 0.5 \ldots 10 \mathrm{~s} \\ & 5 \ldots 100 \mathrm{~s} \\ & 30 \mathrm{~s} \ldots 10 \mathrm{~min} \\ & 3 \mathrm{~min} \ldots 1 \mathrm{~h} \\ & 30 \mathrm{~min} \ldots 10 \mathrm{~h} \\ & 5 \ldots 100 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 12 \ldots 240 \\ & 90 \ldots .127 \\ & 180 \ldots 240 \end{aligned}$	$\begin{aligned} & 12 \ldots 240 \\ & 90 \ldots 127 \\ & 180 \ldots 240 \end{aligned}$	$\nabla$	7PV1518-1AW30   7PV1518-1AJ30   7PV1518-1AN30	1 1 1	1 unit   1 unit   1 unit
7PV1538 timing relays, OFF-delay, with control signal, 7 time setting range							
With LED and 1 CO contact	$\begin{aligned} & 0.05 \ldots 1 \mathrm{~s} \\ & 0.5 \ldots 10 \mathrm{~s} \\ & 5 \ldots 100 \mathrm{~s} \\ & 30 \mathrm{~s} \ldots 10 \mathrm{~min} \\ & 3 \mathrm{~min} \ldots 1 \mathrm{~h} \\ & 30 \mathrm{~min} \ldots 10 \mathrm{~h} \\ & 5 \ldots 100 \mathrm{~h} \end{aligned}$	$12 \ldots 240$	$12 . .240$	-	7PV1538-1AW30	1	1 unit
7PV1540 timing relays, OFF-delay, without control signal, 7 time setting ranges							
With LED and 1 CO contact	$\begin{aligned} & 0.05 \ldots 1 \mathrm{~s} \\ & 0.15 \ldots 3 \mathrm{~s} \\ & 0.3 \ldots 6 \mathrm{~s} \\ & 0.5 \ldots 10 \mathrm{~s} \\ & 1.5 \ldots 30 \mathrm{~s} \\ & 3 \ldots 60 \mathrm{~s} \\ & 5 \ldots 100 \mathrm{~s} \end{aligned}$	$12 \ldots 240$	$12 . .240$	-	7PV1540-1AW30	1	1 unit
7PV1558 timing relays, clock-pulse relay, 7 time setting ranges							
With LED and 1 CO contact	$\begin{aligned} & 0.05 \ldots 1 \mathrm{~s} \\ & 0.5 \ldots 10 \mathrm{~s} \\ & 5 \ldots 100 \mathrm{~s} \\ & 30 \mathrm{~s} \ldots 10 \mathrm{~min} \\ & 3 \mathrm{~min} \ldots 1 \mathrm{~h} \\ & 30 \mathrm{~min} \ldots 10 \mathrm{~h} \\ & 5 \ldots 100 \mathrm{~h} \end{aligned}$	$12 \ldots 240$	$12 . .240$	-	7PV1558-1AW30	1	1 unit
7PV1578 timing relays, wye-delta function, 7 time setting ranges							
With LED and 2 NO contacts, dead interval 0.05 ... 1 s adjustable	$\begin{aligned} & 0.05 \ldots 1 \mathrm{~s} \\ & 0.5 \ldots 10 \mathrm{~s} \\ & 5 \ldots 100 \mathrm{~s} \\ & 30 \mathrm{~s} \ldots 10 \mathrm{~min} \\ & 3 \mathrm{~min} \ldots 1 \mathrm{~h} \\ & 30 \mathrm{~min} \ldots 10 \mathrm{~h} \\ & 5 \ldots 100 \mathrm{~h} \end{aligned}$	$12 . . .240$	$12 . . .240$	-	7PV1578-1BW30	1	1 unit

## 3UG45，3UG46 Monitoring Relays for Stand－Alone Installation

## General data

Overview


SIRIUS 3UG4 monitoring relay

## More information

Homepage，see www．siemens．com／relays
Industry Mall，see www．siemens．com／product？3UG45 For the conversion tool，e．g．from 3UG3 to 3UG4，see www．siemens．com／sirius／conversion－tool
The field－proven SIRIUS monitoring relays for electrical and mechanical variables enable constant monitoring of all import－ ant characteristic quantities that provide information about the functional capability of a plant．Both sudden disturbances and gradual changes，which may indicate the need for maintenance， are detected．Thanks to their relay outputs，the monitoring relays permit direct disconnection of the affected system components as well as alerting（e．g．by switching a warning lamp）．

## Article No．scheme

Product versions		Article number			
Monitoring relays		3UG4	ロロロ－	$\square \square$	
Type of setting	e．g． 5 ＝analogically adjustable		$\square$		
Functions	e．g． 11 ＝line monitoring		$\square \square$		
Connection type	Screw terminals			1	
	Spring－type terminals			2	
Contacts	e．g．A＝ 1 CO contact				
Supply voltage	e．g． $\mathrm{N} 2=160 \ldots 260 \mathrm{~V}$ AC				
Example		3UG4	511 －	1	

## Note：

The Article No．scheme shows an overview of product versions for better understanding of the logic behind the article numbers．

Thanks to adjustable delay times the monitoring relays can respond very flexibly to brief faults such as voltage dips or load changes．This avoids unnecessary alarms and disconnections while enhancing plant availability．

The individual 3UG4 monitoring relays offer the following functions in various combinations：
－Undershooting and／or overshooting of liquid levels
－Phase sequence
－Phase failure，neutral conductor failure
－Phase asymmetry
－Undershooting and／or overshooting of limit values for voltage
－Undershooting and／or overshooting of limit values for current
－Undershooting and／or overshooting of limit values for power factor
－Monitoring of the active current or the apparent current
－Monitoring of the residual current
－Monitoring of the insulation resistance
－Undershooting and／or overshooting of limit values for speed

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## General data

## Benefits

- Customary screw and spring-type terminals for quick and reliable wiring
- Fast commissioning thanks to menu-guided parameterization and actual value display for limit value determination
- Reduced space requirement in the control cabinet thanks to a consistent width of 22.5 mm
- Parameterizable monitoring functions, delay times, RESET response, etc.
- Reduced stockkeeping thanks to minimized variance and large measuring ranges
- Wide-voltage power supply units for global applicability
- Device replacement without renewed wiring thanks to removable terminals
- Reliable system diagnostics thanks to actual value display and connectable fault memory
- Rapid diagnostics thanks to unambiguous error messages on the display

The 3UG4 monitoring relays are available for the following applications:

- Line and single-phase voltage monitoring
- Single-phase current monitoring or power factor and active current monitoring
- Residual current monitoring
- Insulation monitoring
- Level monitoring
- Speed monitoring dance with the actual conditions.
The positive result: More selective avoidance of production faults - sustained increases in availability and productivity.


## Technical specifications

## More information

Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16367/td
Manual and internal circuit diagrams, see
https://support.industry.siemens.com/cs/ww/en/view/54397927

Type		3UG
General data		
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$ )   - For 2 terminal blocks   - Screw terminals   - Spring-type terminals   - For 3 terminal blocks   - Screw terminals   - Spring-type terminals   - For 4 terminal blocks   - Screw terminals   - Spring-type terminals	mm mm   mm mm   mm mm	$\begin{aligned} & 22.5 \times 83 \times 91 \\ & 22.5 \times 84 \times 91 \\ & \\ & 22.5 \times 92 \times 91 \\ & 22.5 \times 94 \times 91 \\ & 22.5 \times 103 \times 91 \\ & 22.5 \times 103 \times 91 \end{aligned}$
Permissible ambient temperature   - During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
Connection type		(i) Screw terminals
- Terminal screw   - Solid   - Finely stranded with end sleeve   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	M3 (for standard screwdriver, size 2 and Pozidriv 2) $\begin{aligned} & 1 \times(0.5 \ldots 4) / 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5) / 2 \times(0.5 \ldots 1.5) \\ & 2 \times(20 \ldots 14) \end{aligned}$
Connection type		Spring-type terminals
- Solid   - Finely stranded, with end sleeve acc. to DIN 46228   - Finely stranded   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(0.25 \ldots .1 .5) \\ & 2 \times(24 \ldots 16) \end{aligned}$

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Line monitoring

## Overview



SIRIUS 3UG4615 monitoring relay
Electronic line monitoring relays provide maximum protection for mobile machines and plants or for unstable networks. Network and voltage faults can thus be detected early and rectified before far greater damage ensues.
Depending on the version, the relays monitor phase sequence, phase failure with and without N conductor monitoring, phase asymmetry, undervoltage or overvoltage.
Phase asymmetry is evaluated as the difference between the greatest and the smallest phase voltage relative to the greatest phase voltage. Undervoltage or overvoltage exists when at least one phase voltage deviates by $20 \%$ from the set rated system voltage or the directly set limit values are overshot or undershot. The rms value of the voltage is measured.
With the 3UG4617 or 3UG4618 relay, a wrong direction of rotation can also be corrected automatically.

## Benefits

- Can be used without auxiliary voltage in any network from 160 to 630 V AC worldwide thanks to wide voltage range
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Width 22.5 mm
- Permanent display of actual value and line fault type on the digital versions
- Automatic correction of the direction of rotation by distinguishing between power system faults and wrong phase sequence
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

The relays are used above all for mobile equipment, e.g. air conditioning compressors, refrigerating containers, building site compressors and cranes.

Function	Application
Phase sequence	- Direction of rotation of the drive
Phase failure	- A fuse has tripped   - Failure of the control supply voltage   - Broken cable
Phase asymmetry	- Overheating of the motor due to asymmetrical voltage   - Detection of asymmetrically loaded networks
Undervoltage	- Increased current on a motor with corresponding overheating   - Unintentional resetting of a device   - Network collapse, particularly with battery power
Overvoltage	- Protection of a plant against destruction due to overvoltage

## Technical specifications

## 3UG4511 monitoring relays

The 3UG4511 phase sequenced relay monitors the phase sequence in a three-phase network. No adjustments are required for operation. The device has an internal power supply and works using the closed-circuit principle. If the phase sequence at the terminals L1-L2-L3 is correct, the output relay picks up after the delay time has elapsed and the LED is lit. If the phase sequence is wrong, the output relay remains in its rest position.

## Note:

When one phase fails, connected loads (motor windings, lamps, transformers, coils, etc.) create a feedback voltage at the terminal of the failed phase due to the network coupling. Because the 3UG4511 relays are not resistant to voltage feedback, such a phase failure is not detected. Should this be required, then the 3UG4512 monitoring relay must be used.

Correct phase sequence


Wrong phase sequence


## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Line monitoring

## 3UG4512 monitoring relays

The 3UG4512 line monitoring relay monitors three-phase networks with regard to phase sequence, phase failure and phase unbalance of $10 \%$. Thanks to a special measuring method, a phase failure is reliably detected in spite of the wide voltage range from 160 to 690 V AC and feedback through the load of up to $90 \%$. The device has an internal power supply and works using the closed-circuit principle. No adjustments are required. If the line voltage is switched on, the green LED will light up. If the phase sequence at the terminals L1-L2-L3 is correct, the output relay picks up. If the phase sequence is wrong, the red LED flashes and the output relay remains in its rest position. If a phase fails, the red LED is permanently lit and the output relay drops.

## Note:

The red LED is a fault diagnostic indicator and does not show the current relay status. The 3UG4512 monitoring relay is suitable for line frequencies of $50 / 60 \mathrm{~Hz}$.

## Phase failure



Wrong phase sequence


## 3UG4513 monitoring relays

The 3UG4513 line monitoring relay monitors three-phase networks with regard to phase sequence, phase failure, phase asymmetry and undervoltage of $20 \%$. The device has an internal power supply and works using the closed-circuit principle. The hysteresis is $5 \%$. The integrated response delay time T is adjustable from 0 to 20 s and responds to undervoltage. If the direction is incorrect, the device switches off immediately. Thanks to a special measuring method, a phase failure is reliably detected in spite of the wide voltage range from 160 to 690 V and feedback through the load of up to $80 \%$. If the line voltage is switched on, the green LED will light up. If the phase sequence at the terminals L1-L2-L3 is correct, the output relay picks up. If the phase sequence is wrong, the red LED flashes and the output relay remains in its rest position. If a phase fails, the red LED is permanently lit and the output relay drops.

## Note:

The red LED is a fault diagnostic indicator and does not show the current relay status. The 3UG4513 monitoring relay is suitable for line frequencies of $50 / 60 \mathrm{~Hz}$.
Phase failure and undervoltage


Wrong phase sequence


## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Line monitoring

## 3UG4614 monitoring relays

The 3UG4614 line monitoring relay has a wide voltage range input and an internal power supply. The device is equipped with a display and is parameterized using three buttons. The unit monitors three-phase networks with regard to phase asymmetry from 5 to $20 \%$, phase failure, undervoltage and phase sequence. The hysteresis is adjustable from 1 to 20 V . In addition the device has a response delay and ON-delay from 0 to 20 s in each case. The integrated response delay time responds to phase asymmetry and undervoltage. If the direction is incorrect, the device switches off immediately. Thanks to a special measuring method, a phase failure is reliably detected in spite of the wide voltage range from 160 to $690 \vee$ and feedback through the load of up to $80 \%$.
The 3UG4614 monitoring relay can be operated on the basis of either the open-circuit or closed-circuit principle and with Manual or Auto RESET.
With the closed-circuit principle selected
Wrong phase sequence


Phase failure


Undervoltage


## Unbalance



## 3UG4615/3UG4616 monitoring relays

The 3UG4615/3UG4616 line monitoring relay has a wide voltage range input and an internal power supply. The device is equipped with a display and is parameterized using three buttons. The 3UG4615 device monitors three-phase networks with regard to phase failure, undervoltage, overvoltage and phase sequence. The 3UG4616 monitoring relay monitors the neutral conductor as well. The hysteresis is adjustable from 1 to 20 V . In addition the device has two separately adjustable delay times for overvoltage and undervoltage from 0 to 20 s in each case. If the direction of rotation is incorrect, the device switches off immediately. Thanks to a special measuring method, a phase failure is reliably detected in spite of the wide voltage range from 160 to 690 V and feedback through the load of up to $80 \%$.
The 3UG4615/3UG4616 monitoring relay can be operated on the basis of either the open-circuit or closed-circuit principle and with Manual or Auto RESET.
With the closed-circuit principle selected
Wrong phase sequence


Phase failure


Undervoltage


Overvoltage


## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Line monitoring

## 3UG4617/3UG4618 monitoring relays

The 3UG4617/3UG4618 line monitoring relay has an internal power supply and can automatically correct a wrong direction of rotation. Thanks to a special measuring method, a phase failure is reliably detected in spite of the wide voltage range from 160 to 690 V AC and feedback through the load of up to $80 \%$. The device is equipped with a display and is parameterized using three buttons. The 3UG4617 line monitoring relay unit monitors three-phase networks with regard to phase sequence, phase failure, phase unbalance, undervoltage and overvoltage. The 3UG4618 monitoring relay monitors the neutral conductor as well. The hysteresis is adjustable from 1 to 20 V . In addition the device has delay times from 0 to 20 s in each case for overvoltage, undervoltage, phase failure and phase unbalance. The 3UG4617/3UG4618 monitoring relay can be operated on the basis of either the open-circuit or closed-circuit principle and with Manual or Auto RESET.
The one changeover contact is used for warning or disconnection in the event of power system faults (voltage, asymmetry), the other responds only to a wrong phase sequence. In conjunction with a contactor reversing assembly it is thus possible to change the direction automatically.

With the closed-circuit principle selected
Phase failure


## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Line monitoring

## Selection and ordering data

PU (UNIT, SET, M) = 1
PKG* $=1$ UNIT


3UG4511-1AP20



3UG4616-1CR20


3UG4617-1CR20


3UG4618-1CR20


3UG4511-2BP20


3UG4512-2BR20

Adjustable hysteresis	Undervoltage detection	Overvoltage detection	Stabilization time adjustable stDEL	Tripping delay time adjustable Del	Version of auxiliary contacts	Measurable line voltage ${ }^{1)}$	SD	Screw terminals	(1)	SD	Spring-type terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$
			s	s	CO contact	V	d	Article No.	Price per PU	d	Article No.	Price per PU
Monitoring of phase sequence												
Auto RESET												
--	--	--	--	--	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$160 \ldots 260$ AC	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4511-1AN20 } \\ & \text { 3UG4511-1BN20 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4511-2AN20 } \\ & \text { 3UG4511-2BN20 } \end{aligned}$	
					$\begin{aligned} & 1 \\ & 2 \end{aligned}$	320 .. 500 AC	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4511-1AP20 } \\ & \text { 3UG4511-1BP20 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4511-2AP20 } \\ & \text { 3UG4511-2BP20 } \end{aligned}$	
					$\begin{aligned} & \hline 1 \\ & 2 \end{aligned}$	420 ... 690 AC	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4511-1AQ20 } \\ & \text { 3UG4511-1BQ20 } \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3UG4511-2AQ20 } \\ & \text { 3UG4511-2BQ20 } \end{aligned}$	
Monitoring of phase sequence, phase failure and phase unbalance												
Auto RESET, closed-circuit principle, unbalance threshold permanently 10\%												
--	--	--	--	--	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$160 \ldots 690$ AC	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4512-1AR20 } \\ & \text { 3UG4512-1BR20 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4512-2AR20 } \\ & \text { 3UG4512-2BR20 } \end{aligned}$	

Monitoring of phase sequence, phase failure, unbalance and undervoltage
Analogically adjustable, Auto RESET, closed-circuit principle, asymmetry and undervoltage threshold permanently 20\%
$5 \%$ of $\quad$-- $--\quad 0.1 \ldots 20 \quad 2 \quad 160 \ldots 69$ AC 2 set value
Digitally adjustable, Auto RESET or Manual RESET, open-circuit or closed-circuit principle, asymmetry threshold 0 or $5 \ldots 20 \%$
adjustable $\boldsymbol{\checkmark}$-- $0.1 \ldots 20 \quad 0.1 \ldots 20 \quad 2 \quad 160 \ldots 69$ AC 2

1 ... 20 V

## Monitoring of phase sequence, phase failure, overvoltage and

undervoltage
Digitally adjustable, Auto RESET or Manual RESET, open-circuit or closed-circuit principle adjustable $\boldsymbol{\checkmark} \quad \boldsymbol{\checkmark} \quad-\quad 0.1 \ldots 20^{2)} \quad 2^{2)} \quad 160 \ldots 690$ AC 2 1 ... 20 V
Monitoring of phase sequence, phase and N conductor failure,
overvoltage and undervoltage
Digitally adjustable, Auto RESET or Manual RESET, open-circuit or closed-circuit principle

adjustable   $1 \ldots 20 \mathrm{~V}$
Automatic correction of the direction of rotation in case of wrong phase   sequence, phase failure, unbalance, overvoltage and undervoltage

Digitally adjustable, Auto RESET or Manual RESET, open-circuit or closed-circuit principle, asymmetry threshold 0 or $5 \ldots 20 \%$
adjustable $\checkmark \quad$-- $0.1 \ldots 20 \quad 2^{3)} \quad 160 \ldots 690$ AC 2 1 ... 20 V
on of rotation in case of wrong phase
Automatic correction of the direction of rotation in case of wrong phase
sequence, phase and N conductor failure, phase unbalance, overvoltage sequence, phase and
and undervoltage
Digitally adjustable, Auto RESET or Manual RESET, open-circuit or closed-circuit principle, asymmetry threshold 0 or $5 \ldots 20 \%$
adjustable $\checkmark \quad \checkmark \quad$--
$0.1 \ldots 20 \quad 2^{3)}$
$90 . . .400 \mathrm{AC}$
2 3UG4618-1CR2O
2
3UG4618-1CR20
2 3UG4618-2CR2O
against $N$
3UG4616-1CR20
2 3UG4616-2CR20
. 20
,
$\checkmark$ Function available
-- Function not available
${ }^{1)}$ Absolute limit values. For accessories, see page 12/96
2) 1 CO contact each and one tripping delay time each for $U_{\text {min }}$ and $U_{\max }$.
3) 1 CO contact each for power system fault and phase sequence correction.

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Voltage monitoring

## Overview



SIRIUS 3UG4631 monitoring relay
The relays monitor single-phase AC voltages (rms value) and DC voltages against the set threshold value for overshoot and undershoot. The devices differ with regard to their power supply (internal or external).

## Benefits

- Versions with wide voltage supply range
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Width 22.5 mm
- Display of ACTUAL value and status messages
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

- Protection of a plant against destruction due to overvoltage
- Switch-on of a plant at a defined voltage and higher
- Protection from undervoltage due to overloaded control supply voltages, particularly with battery power
- Threshold switch for analog signals from 0.1 to 10 V


## Technical specifications

## 3UG4631/3UG4632 monitoring relays

The 3UG4631/3UG4632 voltage monitoring relay is supplied with an auxiliary voltage of $24 \mathrm{~V} \mathrm{AC/DC}$ or 24 to 240 V AC/DC and performs overshoot, undershoot or range monitoring of the voltage depending on parameterization. The device is equipped with a display and is parameterized using three buttons.

The measuring range extends from 0.1 to 60 V or 10 to $600 \mathrm{~V} \mathrm{AC/DC}$. The threshold values for overshoot or undershoot can be freely configured within this range. If one of these threshold values is reached, the output relay responds according to the set principle of operation as soon as the delay time has elapsed. This delay time $U_{\text {Del }}$ can be set from 0.1 to 20 s . The hysteresis can be set from 0.1 to 30 V or 0.1 to 300 V . The device can be operated on the basis of either the open-circuit or closed-circuit principle and with Manual or Auto RESET. One output changeover contact is available as signaling contact.

## With the closed-circuit principle selected

Overvoltage


Undervoltage


Range monitoring


## 33UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Voltage monitoring

## 3UG4633 monitoring relay

The 3UG4633 voltage monitoring relay has an internal power supply and performs overshoot, undershoot or range monitoring of the voltage depending on parameterization. The device is equipped with a display and is parameterized using three buttons.
The operating and measuring range extends from 17 to 275 V AC/DC. The threshold values for overshoot or undershoot can be freely configured within this range. If one of these threshold values is reached, the output relay responds according to the set principle of operation as soon as the tripping delay time has elapsed. This delay time $U_{\text {Del }}$ can also be adjusted, just like the ON -delay time on ${ }_{\text {Del }}$, from 0.1 to 20 s .
The hysteresis is adjustable from 0.1 to 150 V . The device can be operated on the basis of either the open-circuit or closed-circuit principle and with Manual or Auto RESET. One output changeover contact is available as signaling contact.

## With the closed-circuit principle selected

Overvoltage


Undervoltage


Range monitoring


Type		3UG4631	3UG4632	3UG4633
General data				
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$   Pollution degree 3   Overvoltage category III acc. to VDE 0110	V	690		
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6		
Measuring circuit				
Permissible measuring range single-phase AC/DC voltage	V	0.1 ... 68	10 ... 650	$17 \ldots 275$
Measuring frequency	Hz	40 ... 500		
Setting range single-phase voltage	V	0.1 ... 60	10 ... 600	$17 . . .275$
Control circuit				
Load capacity of the output relay   - Thermal current $I_{\mathrm{th}}$	A	5		
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13/24 V   - DC-13/125 V   - DC-13/250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$		
Minimum contact load at 17 V DC	mA	5		

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Voltage monitoring

## Selection and ordering data

- Digitally adjustable, with illuminated LCD

PU (UNIT, SET, M) = 1

- Auto or Manual RESET
- Open- or closed-circuit principle
- 1 CO contact


3UG4631-1AA30


3UG4633-2AL30

Measuring range	Adjustable hysteresis	Rated control supply voltage $U_{s}$	SD	Screw terminals	(1)	SD	Spring-type terminals	$00$
V	V	V	d	Article No.	Price per PU	d	Article No.	Price per PU
Internal power supply without auxiliary voltage, separately adjustable ON-delay and tripping delay 0.1 ... 20 s								
17 ... 275 AC/DC	$0.1 \ldots 150$	$17 . . .275$ AC/DC ${ }^{1)}$	2	3UG4633-1AL30		2	3UG4633-2AL30	
Externally supplied with auxiliary voltage, tripping delay adjustable 0.1 ... 20 s								
$\begin{aligned} & 0.1 \ldots 60 \mathrm{AC} / \mathrm{DC} \\ & 10 \ldots 600 \mathrm{AC} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & 0.1 \ldots 30 \\ & 0.1 \ldots 300 \end{aligned}$	24 AC/DC	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4631-1AA30 } \\ & \text { 3UG4632-1AA30 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4631-2AA30 } \\ & \text { 3UG4632-2AA30 } \end{aligned}$	
$\begin{aligned} & 0.1 \ldots 60 \mathrm{AC} / \mathrm{DC} \\ & 10 \ldots 600 \mathrm{AC} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & 0.1 \ldots 30 \\ & 0.1 \ldots 300 \end{aligned}$	$24 . .240$ AC/DC	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4631-1AW30 } \\ & \text { 3UG4632-1AW30 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4631-2AW30 } \\ & \text { 3UG4632-2AW30 } \end{aligned}$	

1) Absolute limit values.

For accessories, see page 12/96

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Current monitoring

## Overview



SIRIUS 3UG4622 monitoring relay
The relays monitor single-phase AC currents (rms value) and DC currents against the set threshold value for overshoot and undershoot. They differ with regard to their measuring ranges and control supply voltage types.

## Benefits

- Versions with wide voltage supply range
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Width 22.5 mm
- Display of ACTUAL value and status messages
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

- Overcurrent and undercurrent monitoring
- Monitoring the functionality of electrical loads
- Open-circuit monitoring
- Threshold switch for analog signals from 4 to 20 mA


## Technical specifications

## 3UG4621/3UG4622 monitoring relays

The 3UG4621 or 3UG4622 current monitoring relay is supplied with an auxiliary voltage of 24 V AC/DC or 24 to 240 V AC/DC and performs overshoot, undershoot or range monitoring of the current depending on parameterization. The device is equipped with a display and is parameterized using three buttons.
The measuring range extends from 3 to 500 mA or 0.05 to 10 A . The rms value of the current is measured. The threshold values for overshoot or undershoot can be freely configured within this range. If one of these threshold values is reached, the output relay responds according to the set principle of operation as soon as the tripping delay time $I_{\text {Del }}$ has elapsed. This time and the ON-delay time on Del $_{\text {are }}$ adjustable from 0.1 to 20 s .
The hysteresis is adjustable from 0.1 to 250 mA or 0.01 to 5 A . The device can be operated with Manual or Auto RESET and on the basis of either the open-circuit or closed-circuit principle. You can decide here whether the output relay is to respond when the supply voltage $U_{\mathrm{s}}=\mathrm{ON}$ is applied, or not until the lower measuring range limit of the measuring current
( $I>3 \mathrm{~mA} / 50 \mathrm{~mA}$ ) is reached. One output changeover contact is available as signaling contact.
With the closed-circuit principle selected upon application of the control supply voltage
Current overshoot


Current undershoot


Range monitoring


## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Current monitoring

Type		3UG4621-.AA	3UG4621-.AW	3UG4622-.AA	3UG4622-.AW
General data					
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$   Pollution degree 3; overvoltage category III according to VDE 0110	V	690			
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6			
Measuring circuit					
Measuring range for single-phase AC/DC current	A	$0.003 \ldots 0.6$		0.05 ... 15	
Measuring frequency	Hz	40 ... 500			
Setting range for single-phase current	A	$0.003 \ldots 0.5$		0.05 ... 10	
Load supply voltage	V	24	$\begin{aligned} & \text { Max. } 300^{11} \\ & \text { Max. } 500^{2)} \end{aligned}$	24	$\begin{aligned} & \text { Max. } 300^{11} \\ & \text { Max } 500^{2)} \end{aligned}$
Control circuit					
Load capacity of the output relay   - Thermal current $I_{\text {th }}$	A	5			
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13/24 V   - DC-13/125 V   - DC-13/250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$			
Minimum contact load at 17 V DC	mA	5			
1) With protective separation.   2) With simple separation.					

## Selection and ordering data

- Digitally adjustable, with illuminated LCD

PU (UNIT, SET, M) = 1

- Auto or Manual RESET
- Open- or closed-circuit principle
- 1 CO contact


3UG4621-1AA30


3UG4622-2AW30

Measuring range	Adjustable hysteresis	Rated control supply voltage $U_{s}$	SD	Screw terminals	(1)	SD	Spring-type terminals	oo
		V	d	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \\ \hline \end{array}$	d	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \\ \hline \end{array}$
Monitoring of undercurrent and overcurrent, start up delay and tripping delay times can be adjusted separately 0.1 ... 20 s								
$\begin{aligned} & 3 \ldots 500 \mathrm{~mA} A C / D C \\ & 0.05 \ldots 10 \mathrm{~A} A C / D C \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \ldots 250 \mathrm{~mA} \\ & 0.01 \ldots 5 \mathrm{~A} \end{aligned}$	24 AC/DC ${ }^{1)}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3UG4621-1AA30 } \\ & \text { 3UG4622-1AA30 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3UG4621-2AA30 3UG4622-2AA30	
$\begin{aligned} & 3 \ldots 500 \mathrm{~mA} \mathrm{AC/DC} \\ & 0.05 \ldots 10 \mathrm{~A} \mathrm{AC/DC} \end{aligned}$	$\begin{aligned} & 0.1 \ldots 250 \mathrm{~mA} \\ & 0.01 \ldots 5 \mathrm{~A} \end{aligned}$	$24 . .240 \mathrm{AC} / \mathrm{DC}^{2)}$	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3UG4621-1AW30 } \\ & \text { 3UG4622-1AW30 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3UG4621-2AW30 3UG4622-2AW30	

1) No electrical separation. Load supply voltage 24 V .
2) Electrical separation between control circuit and measuring circuit. Load supply voltage for protective separation max. 300 V , for simple separation max. 500 V .
For accessories, see page 12/96
With AC currents $I>10 \mathrm{~A}$ it is possible to use 4NC current transformers as an accessory.

## Overview



SIRIUS 3UG4641 monitoring relay
The 3UG4641 power factor and active current monitoring device enables the load monitoring of motors.
Whereas power factor (p.f.) monitoring is used above all for monitoring no-load operation, the active current monitoring option can be used to observe and evaluate the load factor over the entire torque range.

## Benefits

- Can be used worldwide thanks to wide voltage range from 90 to 690 V (absolute limit values)
- Monitoring of even small single-phase motors with a no-load supply current below 0.5 A
- Simple determination of threshold values by the direct collection of measured variables on motor loading
- Range monitoring and active current measurement enable detection of cable breaks between control cabinets and motors, as well as phase failures
- Power factor (p.f.) or $I_{\text {res }}$ (active current) can be selected as the measurement principle
- Width 22.5 mm
- All versions with removable terminals


## Application

- No-load monitoring and load shedding, such as in the event of a V-belt tear
- Underload monitoring in the low-end performance range, e.g. in the event of pump no-load operation
- Monitoring of overload, e.g. due to a dirty filter system
- Simple power factor monitoring in power systems for control of compensation equipment
- Broken cable between control cabinet and motor


## Technical specifications

## 3UG4641 monitoring relay

The 3UG4641 monitoring relay is self-powered and serves the single-phase monitoring of the power factor or performs overshoot, undershoot or range monitoring of the active current depending on how it is parameterized. The load to be monitored is connected upstream of the IN terminal. The load current flows through the terminals IN and $\mathrm{Ly} / \mathrm{N}$. The setting range for the power factor is 0.1 to 0.99 and for the active current $I_{\text {res }}$ it is 0.2 to 10 A . If the control supply voltage is switched on and no load current flows, the display will show $I<0.2$ and a symbol for overrange, underrange or range monitoring. If the motor is now switched on and the current exceeds 0.2 A , the set ON -delay time begins. During this time, if the set limit values are undershot or exceeded, this does not lead to a relay reaction of the changeover contact. If the operational flowing active current and/or the power factor value falls below or exceeds the respective set threshold value, the spike delay begins. When this time has expired, the relay changes its switch position. The relevant measured variables for overshooting and undershooting in the display flash. If monitoring for active current undershoot is switched off ( $I_{\text {res }} \boldsymbol{\nabla}=\mathrm{OFF}$ ), and if the load current undershoots the lower measuring range threshold $(0.2 \mathrm{~A})$, the CO contacts remain unchanged. If a threshold value is set for the monitoring of active current undershooting, then undershooting of the measuring range threshold ( 0.2 A ) will result in a response of the CO contacts.
The relay operates either according to the open-circuit or closed-circuit principle. If the device is set to Auto RESET (Memory = No), depending on the set principle of operation, the switching relay returns to its initial state and the flashing ends when the hysteresis threshold is reached.
If Manual RESET is selected in the menu (Memory = Yes), the switching relay remains in its current switching state and the current measured value and the symbol for undershooting and overshooting continues to flash, even when the measured variable reaches a permissible value again. This stored fault status can be reset by simultaneously pressing the UP $\mathbf{A}$ and DOWN $\mathbf{\nabla}$ keys for 2 seconds, or by switching the supply voltage off and back on again.

## With the closed-circuit principle selected

Response in the event of undershooting the measuring range limit

- With activated monitoring of $I_{\text {res }}$

- With deactivated monitoring of active current undershooting



## Function Relays, Interfaces and Converters

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Power factor and active current monitoring

Overshooting of active current


Undershooting of active current


Range monitoring of active current


Overshooting of power factor


Undershooting of power factor


Range monitoring of power factor


## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Power factor and active current monitoring

Type		3UG4641
General data		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$   Pollution degree 3   Overvoltage category III acc. to VDE 0110	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6
Control circuit		
Number of CO contacts for auxiliary contacts		2
Load capacity of the output relay   - Thermal current $I_{\text {th }}$	A	5
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13/24 V   - DC-13/125 V   - DC-13/250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Minimum contact load at 17 V DC	mA	5

## Selection and ordering data

- For monitoring the power factor and the active current $I_{\text {res }}$ (p.f. $\times I$ )

PU (UNIT, SET, M) = 1
PKG* $=1$ UNIT

- Suitable for single- and three-phase currents
- Digitally adjustable, with illuminated LCD
- Overshoot, undershoot or range monitoring adjustable
- Upper and lower threshold value can be adjusted separately
- Permanent display of actual value and tripping state
- 1 changeover contact each for undershoot/overshoot

Measuring range		Adjustable hysteresis		ON-delay time adjustable onDel	Tripping delay time adjustable I $\mathbf{\Delta D e l} /$ IV Del, $\varphi$-Del/ $\varphi$ VDel	Rated control supply voltage $U_{s}{ }^{1)}$ $50 / 60 \mathrm{~Hz} \mathrm{AC}$	SD	Screw terminals	(1)	SD	Spring-type terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$
For power factor	For active current $I_{\text {res }}$	For power factor	For active current $I_{\text {res }}$									
P.f.	A	P.f.	A	s	s	V	d	Article No.	Price per PU	d	Article No.	Price per PU
0.10 ... 0.99	$0.2 \ldots 10.0$	0.1	0.1 ... 2.0	$0 \ldots 99$	0.1 ... 20.0	90 ... 690	2	3UG4641-1CS20		2	3UG4641-2CS20	

1) Absolute limit values.

For accessories, see page 12/96
With AC active currents $I_{\text {res }}>10 \mathrm{~A}$ it is possible to use
4NC current transformers as an accessory, see Catalog LV 10.

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Overview



SIRIUS 3UG4625 monitoring relay
The 3UG4625 residual-current monitoring relays are used in conjunction with the 3UL23 residual-current transformers for monitoring plants in which higher residual currents are increasingly expected due to ambient conditions. Monitoring encompasses pure AC residual currents or AC residual currents with a pulsating DC fault current component (transformer type A in accordance with DIN VDE 0100-530/IEC TR 60755).

## Benefits

- Worldwide use thanks to wide voltage range from 24 to 240 V AC/DC
- High measuring accuracy of $\pm 7.5 \%$
- Permanent self-monitoring
- Variable threshold values for warning and disconnection
- Freely configurable delay times and RESET response
- Permanent display of the actual value and fault diagnostics via the display
- High level of flexibility and space saving through installation of the transformer inside or outside the control cabinet
- Width 22.5 mm
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

Monitoring of plants in which residual currents can occur, e.g. due to dust deposits or moisture, porous cables and leads, or capacitive residual currents.

## Technical specifications

## 3UG4625 monitoring relays

The main conductor, and any neutral conductor to which a load is connected, are routed through the opening of the annular ring core of a residual-current transformer. A secondary winding is placed around this annular strip-wound core to which the monitoring relay is connected.
If operation of a plant is fault-free, the sum of the inflowing and outward currents equals zero. No current is then induced in the secondary winding of the residual-current transformer.

However, if an insulation fault occurs downstream of the residual current operated circuit breaker, the sum of the inflowing currents is greater than that of the outward currents. The differential current - i.e. the residual current - induces a secondary current in the secondary winding of the transformer. This current is evaluated in the monitoring relay and is used on the one hand to display the actual residual current and on the other, to switch the relay if the set warning or tripping threshold is overshot.
If the measured residual current exceeds the set warning value, the associated changeover contact instantly changes the switching state and an indication appears on the display.
If the measured residual current exceeds the set tripping value, the set delay time begins and the associated relay symbol flashes. On expiry of this time, the associated changeover contact changes the switching state.

## ON-delay time for motor start

To be able to start a drive when a residual current is detected, the output relays switch to the OK state for an adjustable ONdelay time depending on the selected open-circuit principle or closed-circuit principle.
The changeover contacts do not react if the set threshold values are overshot during this period.

## With the closed-circuit principle selected

Residual current monitoring with Auto RESET (Memory = no)


If the device is set to Auto RESET, the relay switches back to the OK state for the tripping value once the value falls below the set hysteresis threshold and the display stops flashing.
The associated relay changes its switching state if the value falls below the fixed hysteresis value of $5 \%$ of the set warning value.
Any overshoots are therefore not stored.

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Residual-current monitoring relays

$\underline{\text { Residual current monitoring with Manual RESET (Memory = yes) }}$


If Manual RESET is selected in the menu, the output relays remain in their current switching state and the current measured value and the symbol for overshooting continues to flash, even when the measured residual current returns to a permissible value. This stored fault status can be reset by simultaneously pressing the UP $\mathbf{A}$ and DOWN $\boldsymbol{\text { keys for }}>2$ seconds, or by switching the supply voltage off and back on again.

Note:
Do not ground the neutral conductor downstream of the residualcurrent transformer as otherwise residual current monitoring functions can no longer be ensured.

Type		3UG4625-1CW30,   3UG4625-2CW30
General data		
Insulation voltage for overvoltage category III to IEC 60664 for pollution degree 3, rated value	V	300
Impulse withstand voltage, rated value $U_{\text {imp }}$	kV	4
Control circuit		
Number of CO contacts for auxiliary contacts		2
Thermal current of the non-solid-state contact blocks, maximum	A	5
Current carrying capacity of the output relay   - At AC-15 at 250 V at $50 / 60 \mathrm{~Hz}$   - At DC-13	A	3
- At 24 V	A	1
- At 125 V	A	0.2
- At 250 V	A	0.1
Operational current at 17 V , minimum	mA	5

## Selection and ordering data

- For monitoring residual currents from 0.03 to 40 A , from 16 to 400 Hz
- For 3UL23 residual-current transformers with feed-through opening from 35 to 210 mm
- Permanent self-monitoring
- Certified in accordance with IEC 60947, functionality corresponds to IEC 62020
- Digitally adjustable, with illuminated LCD

3UG4625-1CW30



3UG4625-2CW30

Measurable current	Adjustable response value current	Switching hysteresis	Adjustable ON-delay time	Control supply voltage			SD	Screw terminals	$\bigoplus$	SD	Spring-type	00
				For AC at 50 Hz rated value	For AC at 60 Hz rated value	At DC rated value		Article No.	Price per PU		Article No.	Price per PU
A	A	\%	s	V	V	V	d			d		
0.01 ... 43	$0.03 \ldots 40$	$0 \ldots 50$	0... 20	$24 \ldots 240$	24.. 240	$24 \ldots 240$	2	3UG4625-1CW30		2	3UG4625-2CW30	

- Permanent display of actual value and tripping state
- Separately adjustable limit value and warning threshold
- 1 changeover contact each for warning threshold and tripping threshold
PU (UNIT, SET, M) = 1
PS* $=1$ unit

For accessories, see page 12/96

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

3UL23 residual-current transformers

## Overview



SIRIUS 3UL23 residual-current transformer

The 3UL23 residual-current transformers detect residual currents in machines and plants. They are suitable for pure AC residual currents or $A C$ residual currents with a pulsating DC fault current component (transformer type A in accordance with DIN VDE 0100-530/IEC TR 60755).
Together with the 3UG4625, 3UG4825 residual-current monitoring relays for IO-Link or the SIMOCODE 3UF motor management and control device they enable residual-current and ground-fault monitoring.
The 3UL2302-1A and 3UL2303-1A residual-current transformers with a feed-through opening from 35 to 55 mm can be mounted in conjunction with the 3UL2900 accessories on a TH 35 standard mounting rail according to IEC 60715.

## Selection and ordering data



## Accessories



## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Overview



SIRIUS 3UG458. insulation monitor
Insulation monitoring relays are used for monitoring the insulation resistance between ungrounded single or three-phase AC supplies and a protective conductor.
Ungrounded, i.e. isolated networks (IT networks) are always used where high demands are placed on the reliability of the power supply, e.g. emergency lighting systems. IT systems are supplied via an isolating transformer or by power supply sources such as batteries or a generator. While an initial insulation fault between a phase conductor and the ground effectively grounds the conductor, as a result no circuit has been closed, so it is possible to continue work in safety (single-fault safety). However, the fault must be rectified as quickly as possible before a second insulation fault occurs (e.g. according to DIN VDE 0100-410). For this purpose insulation monitoring relays are used, which constantly measure the resistance to ground of the phase conductor and the neutral conductor, reporting a fault immediately if insulation resistance falls below the set value so that either a controlled shutdown can be performed or the fault can be rectified without interrupting the power supply.

## Two device series

- 3UG4581 insulation monitoring relays for ungrounded AC networks
- 3UG4582 and 3UG4583 insulation monitoring relays for ungrounded DC and AC networks


## Benefits

- Devices for AC and DC systems
- All devices have a wide control supply voltage range
- Direct connection to networks with mains voltages of up to 690 VAC and 1000 V DC by means of a voltage reducer module
- For AC supply systems: Frequency range 15 to 400 Hz
- Monitoring of broken conductors
- Monitoring of setting errors
- Option of resetting and testing (by means of button on front or using control contact)
- New predictive measurement principle allows very fast response times


## Application

IT networks are used, for example:

- In emergency power supplies
- In safety lighting systems
- In industrial production facilities with high availability requirements (chemical industry, automobile manufacturing, printing plants)
- In shipping and railways
- For mobile generators (aircraft)
- For renewable energies, such as wind energy and photovoltaic power plants
- In the mining industry


## Function Relays, Interfaces and Converters

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Insulation monitoring general data

## Technical specifications

More information
For manuals, see

- https://support.industry.siemens.com/cs/ww/en/view/54382552
- https://support.industry.siemens.com/cs/ww/en/view/54382528



## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Insulation monitoring for ungrounded AC networks

Overview
The 3UG4581 insulation monitoring relays are used to monitor insulation resistance according to IEC 61557-8 in ungrounded AC networks with rated voltages of up to 400 V .
These devices can monitor control circuits (single-phase) and main circuits (three-phase).
They measure insulation resistances between system cables and system ground. If the value falls below the threshold value, the output relays are switched to fault status.
In the case of 3UG4581 a higher-level DC measuring signal is used. The higher-level DC measuring signal and the resulting current are used to determine the value of the insulation resistance of the network which is to be measured.

SIRIUS 3UG4581 insulation monitor

## Technical specifications

## 3UG4581 monitoring relay

With the closed-circuit principle selected

Insulation resistance monitoring without fault storage, with Auto RESET


Insulation resistance monitoring with fault storage and Manual RESET


## Function Relays, Interfaces and Converters

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Insulation monitoring for ungrounded AC networks

Type		3UG4581
Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ )	mm	$22.5 \times 100 \times 100$
Connection type		$\because$ Screw terminals
- Solid   - Finely stranded with end sleeve   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 4) \\ & 2 \times(0.75 \ldots 2.5) \\ & 2 \times(20 \ldots 14) \\ & \hline \end{aligned}$
General data		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$   Pollution degree 3   Overvoltage category III acc. to IEC 60664	V	400 supply circuit/measuring circuit 300 supply circuit/output circuit
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6
Rated control supply voltage	V	$24 . .240$ AC/DC
Rated frequency	Hz	$15 . . .400$
Measuring circuit		
Rated line voltage of the network being monitored	V	0... 400
Rated frequency of the network being monitored	Hz	$50 \ldots 60$
Setting range for insulation resistance	k $\Omega$	1 ... 100
Control circuit		
Load capacity of the output relay   - Thermal current $I_{\text {th }}$	A	4
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13/24 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$
Minimum contact load at 24 V DC	mA	10

## Selection and ordering data

- Auto or Manual RESET
- Closed-circuit principle
- 1 CO contact
- Fault memory adjustable using control input (Y2-Y3)
- Reset by means of button on front or using control input (Y2-Y3)
- Test by means of button on front or using control input (Y1-Y3)



## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Insulation monitoring for ungrounded DC and AC networks

Overview


SIRIUS 3UG4582 and 3UG4583 insulation monitors
The 3UG4582 and 3UG4583 insulation monitoring relays are used to monitor insulation resistance in ungrounded IT AC or DC networks according to IEC 61557-8.

They measure insulation resistances between system cables and system ground. If the value falls below the threshold value, the output relays are switched to fault status. With these devices, which are suitable for both AC and DC networks, a pulsed test signal is fed into the network to be monitored and the isolation resistance is determined.

The pulsed test signal changes its form according to insulation resistance and network loss capacitance. The changed form is used to predict the changed insulation resistance.
If the predicted insulation resistance matches the insulation resistance calculated in the next measurement cycle, and is lower than the threshold value, the output relays are activated or deactivated, depending on the device configuration. This measurement principle is also suitable for identifying symmetrical insulation faults.

3UG4983 voltage reducer module
The 3UG4983 passive voltage reducer module can be used to allow the 3UG4583 insulation monitoring relay to be used for insulation monitoring of IT networks with rated voltages of up to 690 V AC and 1000 V DC.

## Technical specifications

## 3UG4582 monitoring relays

With the closed-circuit principle selected

Insulation resistance monitoring without fault storage, with Auto RESET


Insulation resistance monitoring with fault storage and Manual RESET


## Function Relays, Interfaces and Converters

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Insulation monitoring for ungrounded DC and AC networks

## 3UG4583 monitoring relays

With the closed-circuit principle selected

Insulation resistance monitoring without fault storage, with Auto RESET

Insulation resistance monitoring with fault storage and Manual RESET


Type		3UG4582	3UG4583
Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ )	mm	$22.5 \times 100 \times 100$	$45 \times 100 \times 100$
Connection type		Screw terminals	
- Solid   - Finely stranded with end sleeve   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 4) \\ & 2 \times(0.75 \ldots 2.5) \\ & 2 \times(20 \ldots 14) \end{aligned}$	
General data			
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$   Pollution degree 3   Overvoltage category III acc. to IEC 60664	V	400 supply circuit/measuring circuit, 300 supply circuit/output circuit	400 supply circuit/measuring circuit 300 supply circuit/output circuit, 300 output circuit 1 /output circuit 2
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6	
Rated control supply voltage	V AC/DC	$24 \ldots 240$	
Rated frequency	Hz	$15 . . .400$	
Measuring circuit			
Rated line voltage of the network being monitored	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 0 \ldots 250 \mathrm{AC}, \\ & 0 \ldots 300 \mathrm{DC} \end{aligned}$	0 ... 300 AC, 0 ... 690 AC with 3UG49 83   0 ... 600 DC, 0 ... 1000 DC with 3UG49 83
Rated frequency of the network being monitored	Hz	DC or $15 . . .400$	
Setting range for insulation resistance	k区	1 ... 100	1... 100,   2 ... 200 for 2nd limit value (disconnectable)
Control circuit			
Number of CO contacts for auxiliary contacts		1	2 or $1+1$, adjustable
Load capacity of the output relay   - Thermal current $I_{\text {th }}$	A	4	
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13/24 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	
Minimum contact load at 24 V DC	mA	10	

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Insulation monitoring for ungrounded DC and AC networks

## Selection and ordering data

- Auto or Manual RESET
- Rated control supply voltage $U_{\mathrm{s}} 24$... 240 V AC/DC
- 3UG4582: Closed-circuit principle

3UG4583: Open-circuit or closed-circuit principle, adjustable

- 1 or 2 CO contacts
- Fault memory adjustable using control input (Y2-Y3)
- Reset by means of button on front or using control input (Y2-Y3)
- Test by means of button on front or using control input (Y1-Y3)
- 3UG4583: Non-volatile fault storage can be configured
- 3UG4583: 2 separate limit values (e.g. for warning and disconnection) or 2 CO contacts for one limit value (e.g. for a local alarm and signaling to the PLC via separate circuits) can be configured


## Note:

With the 3UG4983-1A coupling unit, connection to networks with voltages of up to 690 VAC and 1000 V DC is possible, see below.


For accessories, see page 12/96

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Insulation monitoring for ungrounded DC and AC networks

## Overview



SIRIUS 3UG4501 monitoring relay
The 3UG4501 level monitoring relay is used in combination with 2 - or 3-pole sensors to monitor the levels of conductive liquids.

## Benefits

- Can be used worldwide thanks to wide voltage range from 24 to 240 V (absolute limit values)
- Individually shortenable 2- and 3-pole wire electrodes for easy mounting from above/below
- Bow electrodes for installation from the side, for larger filling levels and minimum space requirements
- Can be flexibly adapted to different conductive liquids through analog setting of the sensitivity from 2 to $200 \mathrm{k} \Omega$
- Compensation for wave movements through tripping delay times from 0.1 to 10 s
- Upstream or downstream function selectable
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

- Single-point and two-point level monitoring
- Overflow protection
- Dry run protection
- Leak monitoring


## Technical specifications

## 3UG4501 monitoring relays

The principle of operation of the 3UG4501 level monitoring relay is based on measuring the electrical resistance of the liquid between two immersion sensors and a reference terminal. If the measured value is lower than the sensitivity set at the front, the output relay changes its switching state. In order to exclude electrolytic phenomena in the liquid, the sensors are supplied with alternating current.

Two-point control
The output relay changes its switching state as soon as the liquid level reaches the maximum sensor, while the minimum sensor is submerged. The relay returns to its original switching state as soon as the minimum sensor no longer has contact with the liquid.
OVER, two-point control


UNDER, two-point control


## Note:

It is also possible to connect other resistance sensors to the Min and Max terminals in the range 2 to $200 \mathrm{k} \Omega$, e.g. photoresistors, temperature sensors, encoders based on resistance, etc. The monitoring relay can therefore also be used for other applications as well as for monitoring the levels of liquids.

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Insulation monitoring for ungrounded DC and AC networks

## Single-point control

If only one level is being controlled, the terminals for Min and Max on the monitoring relay are bridged. The output relay changes its switching state as soon as the liquid level is reached and returns to its original switching state once the sensor no longer has contact with the liquid.
In order to prevent premature tripping of the switching function caused by wave motion or frothing, even though the set level has not been reached, it is possible to delay this function by 0.5 to 10 s .

For safe resetting, the control supply voltage must be interrupted for at least the set delay time of +0.5 s .

OVER, single-point control


UNDER, single-point control


Type		3UG4501
General data		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$   Pollution degree 3   Overvoltage category III acc. to VDE 0110	V	300
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	4
Measuring circuit		
Electrode current, max. (typ. 70 Hz )	mA	1
Electrode voltage, max. (typ. 70 Hz )	V	15
Sensor feeder cable	m	Max. 100
Conductor capacitance of sensor cable ${ }^{1)}$	nF	Max. 10
Control circuit		
Load capacity of the output relay Thermal current $I_{\text {th }}$	A	5
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13/24 V   - DC-13/125 V   - DC-13/250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Minimum contact load at 17 V DC	mA	5

1) The sensor cable does not necessarily have to be shielded, but we do not recommend installing this cable parallel to the power supply lines. It is also possible to use a shielded cable, whereby the shield has to be connected to the M terminal.

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Level monitoring relays

## Selection and ordering data

- For level monitoring of electrically conductive liquids
- Control principle: inlet or sequence control adjustable per rotary switch
- Single-point and two-point control possible
- Analogically adjustable sensitivity (specific resistance of the liquid)
- Analogically adjustable tripping delay time
- 1 yellow LED for displaying the relay state
- 1 green LED for displaying the applied control supply voltage
- 1 CO contact

Sensitivity	Tripping delay time	Rated control supply voltage $U_{s}$	SD	Screw terminals	$\bigcirc$	SD	Spring-type terminals	00
k $\Omega$	s	$\begin{aligned} & \mathrm{V} \\ & \mathrm{AC} / \mathrm{DC} \end{aligned}$	d	Article No.	Price per PU	d	Article No.	Price per PU
$2 \ldots 200$	0.5 ... 10	$24^{1)}$	2	3UG4501-1AA30		2	3UG4501-2AA30	
		24 .. 240	2	3UG4501-1AW30		2	3UG4501-2AW30	

${ }^{1)}$ The rated control supply voltage and the measuring circuit are not electrically separated.

For accessories, see nage 12/96

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

## Speed monitoring

## Overview



SIRIUS 3UG4651 monitoring relay
The 3UG4651 monitoring relay is used in combination with a sensor to monitor motor drives for overspeed and/or underspeed.
Furthermore, the monitoring relay is ideal for all functions where a continuous pulse signal needs to be monitored (e.g. belt travel monitoring, completeness monitoring, passing monitoring, clock-time monitoring).

## Benefits

- Can be used worldwide thanks to wide voltage range from 24 to 240 V (absolute limit values)
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Permanent display of actual value and fault type
- Use of up to 10 sensors per rotation for extremely slowly rotating motors
- 2- or 3-wire sensors and sensors with a mechanical switching output or semiconductor output can be connected
- Auxiliary voltage for sensor integrated
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

- Slip or tear of a belt drive
- Overload monitoring
- Transport monitoring for completeness


## Technical specifications

## 3UG4651 monitoring relay

The speed monitoring relay operates according to the principle of period duration measurement.

In the monitoring relay, the time between two successive rising edges of the pulse encoder is measured and compared to the minimum and/or maximum permissible period duration calculated from the set limit values for the speed.
Thus, the period duration measurement recognizes any deviation in speed after just two pulses, even at very low speeds or in the case of extended pulse gaps.

By using up to ten pulse encoders evenly distributed around the circumference, it is possible to shorten the period duration, and in turn the response time. By taking into account the number of sensors in the monitoring relay, the speed continues to be indicated in rpm.

## ON-delay time for motor start

To be able to start a motor drive, and depending on whether the open-circuit or closed-circuit principle is selected, the output relay switches to the GO state during the ON-delay time, even if the speed is still below the set value.

The ON-delay time is started by either switching on the auxiliary voltage or, if the auxiliary voltage is already applied, by actuating the respective NC contact (e.g. auxiliary contact).

## Speed monitoring with Auto RESET (Memory = no)

If the device is set to Auto RESET, the output relay switches to the GO state, once the adjustable hysteresis threshold is reached in the range of 0.1 to 99.9 rpm and the flashing stops. Any overshoots or undershoots are therefore not stored.

Speed monitoring with Manual RESET (Memory = yes)
If Manual RESET is selected in the menu, the output relay remains in its current switching state and the current measured value and the symbol for overshooting/undershooting continue to flash, even when the speed returns to a permissible value. This stored fault status can be reset by simultaneously pressing the UPA and DOWNV keys for $>2 \mathrm{~s}$, by connecting the RESET device terminal to 24 V DC or by switching the control supply voltage off and back on again.

## Function Relays, Interfaces and Converters

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Speed monitoring
With the closed-circuit principle selected

Range monitoring without enable input


Range monitoring with enable input


Type		3UG4651
General data		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$   Pollution degree 3   Overvoltage category III acc. to VDE 0110	V	300
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	4
Measuring circuit		
Sensor supply   - For 3-wire sensor ( $24 \mathrm{~V} / 0 \mathrm{~V}$ )   - For 2-wire NAMUR sensor (8V2)	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { Max. } 50 \\ & \text { Max. } 8.2 \end{aligned}$
Signal input   - IN1   - IN2	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \hline \end{aligned}$	16, 3-wire sensor, pnp operation   1, floating contact, 2-wire NAMUR sensor
Voltage level   - For level 1 at IN1   - For level 0 at IN1	V	$\begin{aligned} & 4.5 \ldots 30 \\ & 0 \ldots 1 \\ & \hline \end{aligned}$
Current level   - For level 1 at IN2   - For level 0 at IN2	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & >2.1 \\ & <1.2 \end{aligned}$
Minimum pulse duration of signal	ms	5
Minimum interval between 2 pulses	ms	5
Control circuit		
Number of CO contacts for auxiliary contacts		1
Load capacity of the output relay Thermal current $I_{\text {th }}$	A	5
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13/24 V   - DC-13/125 V   - DC-13/250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$
Minimum contact load at 17 V DC	mA	5

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Speed monitoring

## Selection and ordering data

- For speed monitoring in revolutions per minute (rpm)
- Two- or three-wire sensor with mechanical or electronic switching output can be connected
- Two-wire NAMUR sensor can be connected
- Sensor supply 24 V DC/50 mA integrated
- Input frequency 0.1 to 2200 pulses rpm ( 0.0017 to 36.7 Hz )
- With or without enable signal for the drive to be monitored
- Digitally adjustable, with illuminated LCD
- Overshoot, undershoot or range monitoring adjustable
- Number of pulses per revolution can be adjusted
- Upper and lower threshold value can be adjusted separately
- Auto, manual or remote RESET options after tripping
- Permanent display of actual value and tripping state
- 1 CO contact

Measuring range	Hysteresis	ON-delay time	Tripping delay time	Pulses per revolution	Rated control supply voltage $U_{s}$ AC/DC	SD	Screw terminals	$(\Im)$	SD	Spring-type terminals	$\begin{aligned} & \infty \\ & \square \end{aligned}$
rpm	rpm	s	s		V	d	Article No.	Price per PU	d	Article No.	Price per PU
0.1... 2200	$\begin{aligned} & \hline \text { OFF } \\ & 0.1 \ldots 99.9 \end{aligned}$	$0 \ldots 900$	$0.1 \ldots 99.9$	1... 10	$24^{1)}$	2	3UG4651-1AA30		2	3UG4651-2AA30	
					$24 . .240$	2	3UG4651-1AW30		2	3UG4651-2AW30	

1) The rated control supply voltage and the measuring circuit are not electrically separated.
For accessories, see page 12/96

## 3UG45, 3UG46 Monitoring Relays for Stand-Alone Installation

Accessories

## Selection and ordering data

	Use	Version	SD   d	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, } \\ M) \end{array}$	PS*
Blank labels							
	For 3UG4	Unit labeling plates For SIRIUS devices $20 \mathrm{~mm} \times 7 \mathrm{~mm}$, pastel turquoise	20	3RT1900-1SB20		100	340 units
	For 3UG4	Adhesive labels for SIRIUS devices   - $19 \mathrm{~mm} \times 6 \mathrm{~mm}$, pastel turquoise   - $19 \mathrm{~mm} \times 6 \mathrm{~mm}$, zinc yellow	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	3RT1900-1SB60 3RT1900-1SD60		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	3060 units   3060 units
Push-in lugs and covers							
	For 3UG4	Push-in lugs   For screw fixing,   2 units are required for each device	5	3RP1903		1	10 units
H	For 3UG4	Sealable covers   For securing against unauthorized adjustment of setting knobs	5	3RP1902		1	5 units
3RP1902	For 3UG45	Sealing foil   For securing against unauthorized adjustment of setting knobs	-	3TK2820-0AA00		1	1 unit
Covers for insulation monitoring relays							
		Sealable, transparent covers					
pos	For 3UG4581 and 3UG4582		5	3UG4981-0C		1	1 unit
	For 3UG4583		5	3UG4983-0C		1	1 unit
Tools for opening spring-type terminals							
	For auxiliary circuit connections	Screwdrivers   For all SIRIUS devices with spring-type terminals; $3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$; length approx. 200 mm , titanium gray/black, partially insulated	2	Spring-type terminals   3RA2908-1A	$\begin{aligned} & \infty \\ & 10 \end{aligned}$	1	1 unit

## Note:

For products for mechanical bearing monitoring,
e.g. condition monitoring systems, see
www.siemens.com/siplus-cms.

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## General data

## Overview



SIRIUS 3UG48 monitoring relays
More information
Homepage, see www.siemens.com/relays
Industry Mall, see www.siemens.com/product?3UG48
For the conversion tool, e.g. from 3UG3 to 3UG4, see
www.siemens.com/sirius/conversion-tool
The SIRIUS 3UG4 monitoring relays for electronic and mechanical variables monitor all important characteristics that allow conclusions to be drawn about the functionality of a plant. Both sudden disturbances and gradual changes, which may indicate the need for maintenance, are detected.

Thanks to their relay outputs, the monitoring relays permit direct disconnection of the affected system components and alerting, e.g. by the triggering of a warning light. Thanks to adjustable delay times the 3UG4 monitoring relays can respond very flexibly to brief faults such as voltage dips or load changes and can thus avoid unnecessary alarms and disconnections and increase system availability.

## 3UG48 monitoring relays for IO-Link

The SIRIUS 3UG48 monitoring relays for IO-Link also offer many other options based upon the monitoring functions of the tried-and-tested SIRIUS 3UG4 monitoring relays:

- Measured value transmission to a controller, including resolution and unit, may be parameterizable as to which value is cyclically transmitted
- Transmission of alarm flags to a controller
- Full diagnosis capability by inquiry as to the cause of the fault in the diagnosis data record
- Remote parameterization is also possible, in addition to or instead of local parameterization
- Rapid parameterization of the same devices by duplication of the parameterization in the controller
- Parameter transmission through uploading to a controller by IO-Link call or by parameter server (if IO-Link master from IO-Link Specification V1.1 and higher is used)
- Consistent central data storage in the event of parameter change locally or via a controller
- Automatic reparameterizing when devices are exchanged
- Blocking of local parameterization via IO-Link possible
- Faults are saved in parameterizable and non-volatile fashion to prevent an automatic start up after voltage failure and to make sure diagnostics data is not lost
- Integration into the automation level provides the option of parameterizing the monitoring relays at any time via a display unit, or displaying the measured values in a control room or locally at the machine/control cabinet

Even without communication via IO-Link the devices continue to function fully autonomously:

- Parameterization can take place locally at the device, independently of a controller.
- In the event of failure or before the controller becomes available the monitoring relays work as long as the control supply voltage ( 24 V DC ) is present.
- If the monitoring relays are operated without the controller, the 3UG48 monitoring relays have, thanks to the integrated SIO mode, an additional semiconductor output, which switches when the adjustable warning threshold is exceeded.

Thanks to the combination of autonomous monitoring relay function and integrated IO-Link communication, redundant sensors and/or analog signal converters - which previously took over the transmission of measured values to a controller, leading to considerable extra cost and wiring outlay - are no longer needed.
Because the output relays are still present, the monitoring relays increase the functional reliability of the system, since only the controller can fulfill the control tasks if the current measured values are available, whereas the output relays can also be used for the disconnection of the system if limit values that cannot be reached during operation are exceeded.

The individual 3UG48 monitoring relays for IO-Link offer the following functions in different combinations:

- Phase sequence
- Phase failure, neutral conductor failure
- Phase asymmetry
- Undershooting and/or overshooting of limit values for voltage
- Undershooting and/or overshooting of limit values for current
- Undershooting and/or overshooting of power factor limit values
- Monitoring of the active current or the apparent current
- Monitoring of the residual current
- Undershooting and/or overshooting of limit values for speed


## Note:

For more information on the IO-Link bus system, see Section 14 AS-Interface \& IO-Link.

## Notes on security

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.

For more information on Industrial Security, see www.siemens.com/industrialsecurity.

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## General data



Use of conventional monitoring relays

## Notes:

Devices required for the communication via IO-Link:

- Any controller that supports the IO-Link (e.g. ET 200SP with CPU or S7-1200).
- IO-Link master (e.g. CM 4xIO-Link for SIMATIC ET 200SP or SM 1278 for S7-1200).


Monitoring relays for IO-Link

Each monitoring relay requires an IO-Link channel.

## Article No. scheme



## Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## Benefits

- Simple cyclical transmission of the current measured values, relay switching states and events to a controller
- Remote parameterization
- Automatic reparameterizing when devices are exchanged
- Simple duplication of identical or similar parameterizations
- Reduction of control current wiring
- Elimination of testing costs and wiring errors
- Reduction of configuration work
- Integration in TIA means clear diagnostics if a fault occurs
- Cost saving and space saving in control cabinet due to the elimination of AI and IO modules as well as analog signal converters and duplicated sensors


## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## General data

## Application

The use of SIRIUS monitoring relays for IO-Link is particularly recommended for machines and plants in which these relays, in addition to their monitoring function, are to be connected to the automation level for the rapid, simple and fault-free provision of the current measured values and/or for remote parameterization.

The monitoring relays can either relieve the controller of monitoring tasks or, as a second monitoring entity in parallel to and independent of the controller, increase the reliability in the process or in the system. In addition, the elimination of AI and IO modules allows the width of the controller to be reduced despite significantly expanded funcionality.

## Technical specifications

## More information

Technical specifications, see
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16368/faq
https://support.industry.siemens.com/cs/ww/en/ps/16368/td
Manual and internal circuit diagrams, see
https://support.industry.siemens.com/cs/ww/en/view/54375430

Type		3UG48
General technical specifications		
Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ )   - For 3 terminal blocks   - Screw terminals   - Spring-type terminals   - For 4 terminal blocks   - Screw terminals   - Spring-type terminals	mm mm   mm mm	$\begin{aligned} & 22.5 \times 92 \times 91 \\ & 22.5 \times 94 \times 91 \\ & 22.5 \times 103 \times 91 \\ & 22.5 \times 103 \times 91 \end{aligned}$
Permissible ambient temperature   - During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$
Connection type		Screw terminals
- Terminal screw   - Solid   - Finely stranded with end sleeve   - AWG cables, solid or stranded   - Tightening torque	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \\ & \mathrm{Nm} \\ & \hline \end{aligned}$	M3 (for standard screwdriver, size 2 and Pozidriv 2) $\begin{aligned} & 1 \times(0.5 \ldots 4), 2 \times(0.5 \ldots 2.5) \\ & 1 \times(0.5 \ldots 2.5), 2 \times(0.5 \ldots 1.5) \\ & 2 \times(20 \ldots 14) \\ & 0.8 \ldots 1.2 \end{aligned}$
Connection type		OO Spring-type terminals
- Solid   - Finely stranded, with end sleeve acc. to DIN 46228   - Finely stranded   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$2 \times(0.25 \ldots 1.5)$ $2 \times(0.25 \ldots 1.5)$ $2 \times(0.25 \ldots 1.5)$ $2 \times(24 \ldots 16)$

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Line monitoring

## Overview



SIRIUS 3UG4815 monitoring relay
Solid-state line monitoring relays provide maximum protection for mobile machines, plants and hoisting equipment or for unstable networks. Network and voltage faults can thus be detected early and rectified before far greater damage ensues.
The line monitoring relays with IO-Link monitor phase sequence, phase failure (with or without N conductor monitoring), phase asymmetry and undervoltage and/or overvoltage.
Phase asymmetry is evaluated as the difference between the greatest and the smallest phase voltage relative to the greatest phase voltage. Undervoltage or overvoltage exist if the set limit values for at least one phase voltage are overshot or undershot. The rms value of the voltage is measured.

## Benefits

- Can be used in any network from 160 to 630 V AC worldwide thanks to wide voltage range
- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Width 22.5 mm
- Display and transmission of actual value and network fault type to controller
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

The relays are used above all for mobile equipment, e.g. air conditioning compressors, refrigerating containers, building site compressors and cranes.

Function	Application
Phase sequence	- Direction of rotation of the drive
Phase failure	- A fuse has tripped
	- Failure of the control supply voltage
	- Broken cable

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Line monitoring

## Technical specifications

## 3UG4815/3UG4816 monitoring relays

The 3UG4815 and 3UG4816 line monitoring relays have a wide voltage range input and are supplied with power through IO-Link or from an external 24 V DC source.

The device is equipped with a display and is parameterized using three buttons. The 3UG4815 monitoring relay monitors threephase networks with regard to phase sequence, phase failure, phase asymmetry, undervoltage and overvoltage. The 3UG4816 monitoring relay monitors the neutral conductor as well. The hysteresis is adjustable from 1 to 20 V .
The device has two separately adjustable delay times for overvoltage and undervoltage and for line stabilization. If the direction of rotation is incorrect or a phase fails, the device switches off immediately. Thanks to a special measuring method, a phase failure is reliably detected in spite of the wide voltage range from and potentially high feedback through the load.
The 3UG4815 and 3UG4816 monitoring relays can be operated on the basis of either the open-circuit or closed-circuit principle and with Manual or Auto RESET.
If Manual RESET is selected in the menu (Memory = Yes), the switching relay remains in its current switching state and the current measured value and the symbol for undershooting and overshooting continues to flash, even when the measured variable reaches a permissible value again. This stored fault status can be reset by simultaneously pressing the UP $\mathbf{\Delta}$ and DOWN $\mathbf{\nabla}$ keys for 2.5 s .
With Manual RESET through IO-Link it is possible in addition to set whether error signals are to be deleted when the control supply voltage is switched off and on (as remote RESET) or whether the signals are to be permanently saved even in a voltage failure, with confirmation possible only through local RESET or via IO-Link.

With the closed-circuit principle selected
Wrong phase sequence


Phase failure


Undervoltage

Overvoltage


Type		3UG4815, 3UG4816
General technical specifications		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ Pollution degree 2   Overvoltage category III acc. to VDE 0110	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6
Control circuit		
Load capacity of the output relay   - Thermal current $I_{\mathrm{th}}$	A	5
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13 at   - 24 V   - 125 V   - 250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Minimum contact load at 17 V DC	mA	5
Electrical endurance AC-15	Million operating cycles	0.1
Mechanical endurance	Million operating cycles	10

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Line monitoring

Selection and ordering data

- Adjustable via IO-Link and locally, with illuminated LCD
- Power supply with 24 V DC via IO-Link or external auxiliary voltage
- Auto or Manual RESET
- Open- or closed-circuit principle
- 1 CO contact, 1 semiconductor output (in SIO mode)


3UG4815-1AA40


3UG4816-1AA40


3UG4815-2AA40

PU (UNIT, SET, M) = 1
PKG* $=1$ UNIT

Adjustable hysteresis	Undervoltage detection	Overvoltage detection	Stabilization time adjustable stDEL	Tripping delay time adjustable Del	Version of auxiliary contacts	Measurable line voltage ${ }^{1)}$	SD	Screw terminals	$\bigoplus$	SD	Spring-type terminals	$\begin{aligned} & 00 \\ & \square 1 \end{aligned}$
V			s	S		V AC	d	Article No.	Price per PU	d	Article No.	Price per PU

Monitoring of phase sequence, phase failure, phase asymmetry, overvoltage and undervoltage
$1 \ldots 20 \checkmark \quad \checkmark \quad 0.1 \ldots 999.90 .1 \ldots 999.91 \mathrm{CO}+1 \mathrm{Q}^{2)} 160 \ldots 6902$ 3UG4815-1AA40 2 3UG4815-2AA40

Monitoring of phase sequence, phase and N conductor failure,
phase asymmetry, overvoltage and undervoltage
$1 \ldots 20 \checkmark \quad \checkmark \quad 0.1 \ldots 999.90 .1 \ldots 999.91 \mathrm{CO}+1 \mathrm{Q}^{2)} 90 \ldots 400 \quad 2 \quad$ to N.
$\checkmark$ Function supported

1) Absolute limit values.
2) In SIO mode.

For accessories, see page 12/119

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Voltage monitoring

## Overview



SIRIUS 3UG4832 monitoring relays
The relays monitor single-phase AC voltages (rms value) and DC voltages against the set limit value for overshoot and undershoot.

## Benefits

- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Width 22.5 mm
- Display and transmission of actual value and status messages to controller
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

- Protection of a plant against destruction due to overvoltage
- Switch-on of a plant at a defined voltage and higher
- Protection from undervoltage due to overloaded control supply voltages, particularly with battery power

Technical specifications

## 3UG4832 monitoring relays

The 3UG4832 voltage monitoring relays are supplied with power through IO-Link or with an external auxiliary voltage of 24 V DC and perform overshoot, undershoot or range monitoring of the voltage depending on parameterization. The devices are equipped with a display and are parameterized by means of three buttons or through IO-Link.
The measuring range extends from 10 to 600 V AC/DC. The limit values for overshoot or undershoot can be freely configured within this range. If one of these limit values is reached, the output relay responds according to the set principle of operation as soon as the delay time has elapsed. This tripping delay time $U \boldsymbol{A}$ Del/U time onDel. The hysteresis is adjustable from 0.1 to 300 V .
The device can be operated on the basis of either the open-circuit or closed-circuit principle and with Manual or Auto RESET. One output changeover contact is available as a signaling contact, and a semiconductor output is available in addition in SIO mode.
If Manual RESET is selected in the menu (Memory = Yes), the switching relay remains in its current switching state and the current measured value and the symbol for undershooting and overshooting continues to flash, even when the measured variable reaches a permissible value again. This stored fault status can be reset by simultaneously pressing the UP $\mathbf{A}$ and DOWN $\mathbf{\nabla}$ keys for 2.5 s .
With Manual RESET through IO-Link it is possible in addition to set whether error signals are to be deleted when the control supply voltage is switched off and on (as remote RESET) or whether the signals are to be permanently saved even in a voltage failure, with confirmation possible only through local RESET or via IO-Link.

With the closed-circuit principle selected
Overvoltage


Undervoltage


## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Voltage monitoring

With the closed-circuit principle selected
Range monitoring


Type		3UG4832
General technical specifications		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$   Pollution degree 2   Overvoltage category III acc. to VDE 0110	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6
Measuring circuit		
Permissible measuring range single-phase AC/DC voltage	V	$10 \ldots 690$
Measuring frequency	Hz	40 ... 500
Setting range single-phase voltage	V	$10 . . .600$
Control circuit		
Load capacity of the output relay   - Thermal current $I_{\text {th }}$	A	5
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13 at   - 24 V   - 125 V   - 250 V	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \\ & \hline \end{aligned}$
Minimum contact load at 17 V DC	mA	5

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Voltage monitoring

## Selection and ordering data

- Adjustable via IO-Link and locally, with illuminated LCD
- Power supply with 24 V DC via IO-Link or external auxiliary voltage
- Auto or Manual RESET
- Open- or closed-circuit principle
- 1 CO contact, 1 semiconductor output (in SIO mode)


3UG4832-1AA40


3UG4832-2AA40

PU (UNIT, SET, M) = 1
$\mathrm{PKG}^{*}=1$ UNIT

Measuring range	Adjustable hysteresis	ON-delay time adjustable onDel	Tripping delay time separately adjustable U $\mathbf{\Delta}$ Del/U	SD	Screw terminals	(1)	SD	Spring-type terminals	$\begin{aligned} & 00 \\ & 1+1 \end{aligned}$
V AC/DC	V	S	S	d	Article No.	Price per PU	d	Article No.	Price per PU
Monitoring of voltage for overshoot or undershoot									
$10 \ldots 600$	0.1 ... 300	0 ... 999.9	0 ... 999.9	2	3UG4832-1AA40		2	3UG4832-2AA40	

For accessories, see page 12/119.

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Current monitoring

## Overview



SIRIUS 3UG4822 monitoring relays
The relays monitor single-phase AC (rms value) and DC currents against the set limit value for overshoot and undershoot.

## Benefits

- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Width 22.5 mm
- Display and transmission of actual value and status messages to controller
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

- Overcurrent and undercurrent monitoring
- Monitoring the functionality of electrical loads
- Monitoring for broken conductors


## Technical specifications

## 3UG4822 monitoring relays

The 3UG4822 current monitoring relays are supplied with power through IO-Link or with an external voltage of 24 V DC and perform overshoot, undershoot or range monitoring of the current depending on the parameterization. The devices are equipped with a display and are parameterized using three buttons.
The measuring range extends from 0.05 to 10 A . For larger AC currents the measuring range can be extended by using commercially available current transformers. Using the adjustable transformer factor, the display of the measured primary currents up to 750 A instead of the secondary currents (max. 1 A or 5 A ) is possible.
The rms value of the current is measured. The limit values for overshoot or undershoot can be freely configured within this range. If one of these limit values is reached, the output relay responds according to the set principle of operation as soon as the delay time $I \mathbf{\Delta} \mathrm{Del} / I \boldsymbol{D}$ Del has elapsed. This time and the ON-delay time onDel are adjustable from 0 to 999.9 s .

The hysteresis is adjustable from 0.01 to 5 A . The device can be operated with Manual or Auto RESET and on the basis of either the open-circuit or closed-circuit principle. You can decide here whether the output relay is to respond when the supply voltage $U_{\mathrm{S}}=\mathrm{ON}$ is applied, or not until the lower measuring range limit of the measuring current ( $I>50 \mathrm{~mA}$ ) is reached. One output changeover contact is available as a signaling contact, and a semiconductor output is available in addition in SIO mode.
If Manual RESET is selected in the menu (Memory = Yes), the switching relay remains in its current switching state and the current measured value and the symbol for undershooting and overshooting continues to flash, even when the measured variable reaches a permissible value again. This stored fault status can be reset by simultaneously pressing the UP■ and DOWN $\mathbf{\nabla}$ keys for 2.5 s .
With Manual RESET through IO-Link it is possible in addition to set whether error signals are to be deleted when the control supply voltage is switched off and on (as remote RESET) or whether the signals are to be permanently saved even in a voltage failure, with confirmation possible only through local RESET or via IO-Link.

With the closed-circuit principle selected upon application of the control supply voltage
Current overshoot


Current undershoot


## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Current monitoring



Type		3UG4822
General technical specifications		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$   Pollution degree 2   Overvoltage category III acc. to VDE 0110	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6
Measuring circuit		
Measuring range for single-phase AC/DC current	A	0.05 ... 15
Measuring frequency	Hz	$40 \ldots 500$
Setting range for single-phase current	A	0.05 ... 10
Load supply voltage	V	Max. 300 (with protective separation) Max. 500 (with simple separation)
Control circuit		
Load capacity of the output relay   - Thermal current $I_{\text {th }}$	A	5
Rated operational current $I_{\mathrm{e}}$ at   - AC-15/24 ... 400 V   - DC-13 at   - 24 V   - 125 V   - 250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Minimum contact load at 17 V DC	mA	5

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Current monitoring

## Selection and ordering data

- Adjustable via IO-Link and locally, with illuminated LCD
- Power supply with 24 V DC via IO-Link or external auxiliary voltage
- Adjustable converter factor to display the measured primary current when an external current transformer is used
- Auto or Manual RESET
- Open- or closed-circuit principle
- 1 CO contact, 1 semiconductor output (in SIO mode)


Measuring range	Adjustable hysteresis	ON-delay time adjustable onDel	Tripping delay time separately adjustable $I \mathbf{\Delta D e l} / I \nabla$ Del	SD	Screw terminals	(1)	SD	Spring-type terminals	00 $\square$
A AC/DC	A	s	S	d	Article No.	Price per PU	d	Article No.	Price per PU
Monitoring of current for overshooting and undershooting									
$0.05 \ldots 10$	0.01 ... 5	0.1 ... 999.9	0.1 ... 999.9	2	3UG4822-1AA40		2	3UG4822-2AA40	

For accessories, see page 12/119.
For AC currents $I>10 \mathrm{~A}$ it is possible to use commercially available current transformers, e.g. the Siemens 4NC current transformer, as accessories, see Catalog LV 10.

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Overview



SIRIUS 3UG4841 monitoring relay
The 3UG4841 power factor and active current monitoring devices enable the load monitoring of motors.

Whereas power factor (p.f.) monitoring is used above all for monitoring no-load operation, the active current monitoring option can be used to observe and evaluate the load factor over the entire torque range.

## Benefits

- Monitoring of even small single-phase motors with a no-load supply current below 0.5 A
- Simple determination of threshold values by the direct collection of measured variables on motor loading
- Range monitoring and active current measurement enable detection of cable breaks between control cabinets and motors, as well as phase failures
- Power factor and/or $I_{\text {res }}$ (active current) can be selected as the measurement principle
- Width 22.5 mm
- Display and transmission of actual value and status messages to controller
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

- No-load monitoring and load shedding, such as in the event of a V-belt tear
- Underload monitoring in the low-end performance range, e.g. in the event of pump no-load operation
- Monitoring of overload, e.g. due to a dirty filter system
- Power factor monitoring in networks for control of compensation equipment
- Broken cable between control cabinet and motor


## Technical specifications

## 3UG4841 monitoring relays

The 3UG4841 monitoring relays are supplied with power through IO-Link or with an external auxiliary voltage of 24 V DC and are used for performing overshoot, undershoot or range monitoring of the power factor and/or the resulting active current, depending on parameterization. The load to be monitored is connected upstream of the IN terminal. The load current flows through the terminals IN and $\mathrm{Ly} / \mathrm{N}$. The setting range for the power factor is 0 to 0.99 and for the active current $I_{\text {res }}$ it is 0.2 to 10 A . If the control supply voltage is switched on and no load current flows, the display will show $I<0.2$ and a symbol for overrange, underrange or range monitoring. If the motor is now switched on and the current exceeds 0.2 A, the set ON-delay time onDel begins. During this time, if the set limit values are undershot or exceeded, this does not lead to a relay reaction of the changeover contact. If the operational flowing active current and/or the p.f. value falls below or exceeds the respective set threshold value, the tripping delay time begins. When this time has expired, the relay changes its switch position. The relevant measured variables for overshooting and undershooting in the display flash. If monitoring for active current undershoot is switched off ( $I_{\mathrm{res}} \mathbf{\nabla}=$ OFF), and if the load current undershoots the lower measuring range threshold ( 0.2 A ), the CO contacts remain unchanged. If a threshold value is set for the monitoring of active current undershooting, then undershooting of the measuring range threshold ( 0.2 A ) will result in a response of the CO contacts.

The relay operates either according to the open-circuit or closed-circuit principle.
If the device is set to Auto RESET (Memory = No), depending on the set principle of operation, the switching relay returns to its initial state and the flashing ends when the hysteresis threshold is reached.

If Manual RESET is selected in the menu (Memory = Yes), the switching relay remains in its current switching state and the current measured value and the symbol for undershooting and overshooting continues to flash, even when the measured variable reaches a permissible value again. This stored fault status can be reset by simultaneously pressing the UP $\triangle$ and DOWN $\mathbf{\nabla}$ keys for 2.5 s .

With Manual RESET through IO-Link it is possible in addition to set whether error signals are to be deleted when the control supply voltage is switched off and on (as remote RESET) or whether the signals are to be permanently saved even in a voltage failure, with confirmation possible only through local RESET or via IO-Link.

## Function Relays, Interfaces and Converters

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

Power factor and active current monitoring

With the closed-circuit principle selected
Response in the event of undershooting the measuring range limit with activated monitoring of $I_{\text {res }}$ V


Response in the event of undershooting the measuring range limit with deactivated monitoring of active current undershooting


Overshooting of active current


Undershooting of active current


Range monitoring of active current


## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Power factor and active current monitoring

With the closed-circuit principle selected
Overshooting of power factor


Undershooting of power factor


Range monitoring of power factor


Type		3UG4841
General technical specifications		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ Pollution degree 2 Overvoltage category III according to IEC 60664-1	V	690
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6
Control circuit		
Number of CO contacts for auxiliary contacts		2
Load capacity of the output relay   - Thermal current $I_{\text {th }}$	A	5
Rated operational current $I_{\mathrm{e}}$ at   -AC-15/24 ... 400 V   - DC-13 at   - 24 V   - 125 V   - 250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Minimum contact load at 17 V DC	mA	5

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

Power factor and active current monitoring

## Selection and ordering data

- For monitoring the power factor and the active current $I_{\text {res }}$ (p.f. $\times I$ )
- Suitable for single- and three-phase currents
- Adjustable via IO-Link and locally, with illuminated LCD
- Power supply with 24 V DC via IO-Link or external auxiliary voltage
- Overshoot, undershoot or range monitoring adjustable
- Upper and lower limit values can be adjusted separately
- Permanent display of actual value and tripping state
- 1 CO contact each for undershoot and overshoot, 1 semiconductor output (in SIO mode)


3UG4841-1CA40


3UG4841-2CA40

PU (UNIT, SET, M) = 1
PKG* $=1$ UNIT

Measuring range		Voltage range of the measuring voltage ${ }^{1)}$$50 / 60 \mathrm{~Hz} \mathrm{AC}$	Hysteresis		ON-delay time adjustable onDel	Tripping delay time separately adjustable U $\mathbf{A D e l} /$ U Del, $\varphi$-Del/ $\varphi$ VDel	SD	Screw terminals	$\mapsto$	SD	Spring-type terminals	$00$
For power factor	For active current $I_{\text {res }}$		Adjustable for power factor	Adjustable for active current $I_{\text {res }}$								
P.f.	A	V	P.f.	A	s	s	d	Article No.	Price per PU	d	Article No.	Price per PU
Monitoring of power factor and active current for overshooting or undershooting												
0.1 ... 0.99 0.2 ... 1090 ... 690			$0.1 \ldots 0.2$	$0.1 \ldots 3$	$0 . . .999 .9$	$0 . . .999 .9$	2	3UG4841-1CA40		2	3UG4841-2CA40	

1) Absolute limit values.

For accessories, see page 12/119.
For AC active currents $I_{\text {res }}>10 \mathrm{~A}$ it is possible to use commercially available current transformers, e.g. Siemens 4 NC current transformers, as accessories, see Catalog LV 10.

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Overview



SIRIUS 3UG4825 monitoring relay
The 3UG4825 residual-current monitoring relays are used in conjunction with the 3UL23 residual-current transformers for monitoring plants in which higher residual currents are increasingly expected due to ambient conditions. Monitoring encompasses pure AC residual currents or AC residual currents with a pulsating DC fault current component (transformer type A in accordance with DIN VDE 0100-530/IEC TR 60755).

## Benefits

- High measuring accuracy of $\pm 7.5 \%$
- Permanent self-monitoring
- Parameterization of the devices locally or via IO-Link possible
- Variable threshold values for warning and disconnection
- Freely configurable delay times and RESET response
- Display and transmission of actual value and status messages to controller
- High level of flexibility and space saving through installation of the transformer inside or outside the control cabinet
- Width 22.5 m
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

Monitoring of plants in which residual currents can occur, e.g. due to dust deposits or moisture, porous cables and leads, or capacitive residual currents.

## Technical specifications

## 3UG4825 monitoring relays

The main conductor, and any neutral conductor to which a load is connected, are routed through the opening of the annular ring core of a residual-current transformer. A secondary winding is placed around this annular strip-wound core to which the monitoring relay is connected.
If operation of a plant is fault-free, the sum of the inflowing and outward currents equals zero. No current is then induced in the secondary winding of the residual-current transformer.
However, if an insulation fault occurs downstream of the residual current operated circuit breaker, the sum of the inflowing currents is greater than that of the outward currents. The differential current - the residual current - induces a secondary current in the secondary winding of the transformer. This current is evaluated in the monitoring relay and is used on the one hand to display the actual residual current and on the other, to switch the relay if the set warning or tripping threshold is overshot.
If the measured residual current exceeds the set warning value, the associated changeover contact instantly changes the switching state and an indication appears on the display.
If the measured residual current exceeds the set tripping value, the set delay time begins and the associated relay symbol flashes. On expiry of this time, the associated changeover contact changes the switching state.

## ON-delay time for motor start

To be able to start a drive when a residual current is detected, the output relays switch to the OK state for an adjustable ONdelay time depending on the selected open-circuit principle or closed-circuit principle.
The changeover contacts do not react if the set threshold values are overshot during this period.

With the closed-circuit principle selected
Residual current monitoring with Auto RESET (Memory = no)


If the device is set to Auto RESET, the relay switches back to the OK state for the tripping value once the value falls below the set hysteresis threshold and the display stops flashing.
The associated relay changes its switching state if the value falls below the fixed hysteresis value of $5 \%$ of the warning value.
Any overshoots are therefore not stored.

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

Residual-current monitoring relays


If Manual RESET is selected in the menu, the output relays remain in their current switching state and the current measured value and the symbol for overshooting continues to flash, even when the measured residual current returns to a permissible value. This stored fault status can be reset by simultaneously pressing the UP $\mathbf{\Delta}$ and DOWN $\mathbf{~ k e y s ~ f o r ~}>2$ seconds, or by switching the supply voltage off and back on again.

Note:
The neutral conductor must not be grounded downstream of the summation current transformer as this may impair the function of the residual-current monitoring device.

Type		3UG4825-1CA40,   3UG4825-2CA40
General data		
Insulation voltage for overvoltage category III to IEC 60664 for pollution degree 3 rated value	V	300
Impulse withstand voltage, rated value $\boldsymbol{U}_{\text {imp }}$	kV	4
Control circuit		
Number of CO contacts for auxiliary contacts		2
Thermal current of the non-solid-state contact blocks, maximum	A	5
Current carrying capacity of the output relay   - At AC-15 at 250 V at $50 / 60 \mathrm{~Hz}$   - At DC-13   - At 24 V   - At 125 V   - At 250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Operational current at 17 V , minimum	mA	5

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

## Residual-current monitoring relays

## Selection and ordering data

- For monitoring residual currents from 0.03 to 40 A , from 16 to 400 Hz
- For 3UL23 residual-current transformers with feed-through opening from 35 to 210 mm
- Permanent self-monitoring
- Certified in accordance with IEC 60947, functionality corresponds to IEC 62020
- Digitally adjustable, with illuminated LCD
- Permanent display of actual value and tripping state
- Separately adjustable limit value and warning threshold
- 1 changeover contact each for warning threshold and tripping threshold

```
PU (UNIT, SET, M) = 1
PS* = 1 unit
```



3UG4825-1CA40


3UG4825-2CA40

Measurable current	Adjustable response value current	Switching hysteresis	Adjustable ON-delay time	Control supply voltage	SD	Screw terminals	(1)	SD	Spring-type terminals	$\begin{aligned} & 00 \\ & 10 \end{aligned}$
				At DC rated value		Article No.	Price per PU		Article No.	Price per PU
A	A	\%	s	V	d			d		
$0.01 \ldots 43$	$0.03 \ldots 40$	$0 \ldots 50$	0 ... 999.9	24	2	3UG4825-1CA40		2	3UG4825-2CA40	

For accessories, see page 12/119.
For 3UL23 residual-current transformers and accessories for 3UL23, see page 12/82.

## Overview



## SIRIUS 3UG4851 monitoring relay

3UG4851 monitoring relays are used in combination with a sensor to monitor drives for overspeed and/or underspeed.

Furthermore, the monitoring relays are ideal for all functions where a continuous pulse signal needs to be monitored (e.g. belt travel monitoring, completeness monitoring, passing monitoring, clock-time monitoring).

## Benefits

- Variably adjustable to overshoot, undershoot or range monitoring
- Freely configurable delay times and RESET response
- Display and transmission of actual value and fault type to controller
- Use of up to 10 sensors per rotation for extremely slowly rotating motors
- 2- or 3-wire sensors and sensors with a mechanical switching output or semiconductor output can be connected
- Auxiliary voltage for sensor integrated
- All versions with removable terminals
- All versions with screw or spring-type terminals


## Application

- Slip or tear of a belt drive
- Overload monitoring
- Transport monitoring for completeness


## Technical specifications

## 3UG4851 monitoring relays

The speed monitoring relay operates according to the principle of period duration measurement.

In the monitoring relay, the time between two successive rising edges of the pulse encoder is measured and compared to the minimum and/or maximum permissible period duration calculated from the set limit values for the speed.
Thus, the period duration measurement recognizes any deviation in speed after just two pulses, even at very low speeds or in the case of extended pulse gaps.

By using up to ten pulse encoders evenly distributed around the circumference, it is possible to shorten the period duration, and in turn the response time. By taking into account the number of sensors in the monitoring relay, the speed continues to be indicated in rpm.

## ON-delay time for motor start

To be able to start a motor drive, and depending on whether the open-circuit or closed-circuit principle is selected, the output relay switches to the GO state during the ON-delay time, even if the speed is still below the set value.
The ON-delay time is started by either switching on the auxiliary voltage or, if the auxiliary voltage is already applied, by actuating the respective NC contact (e.g. auxiliary contact).

## Speed monitoring with Auto RESET (Memory = no)

If the device is set to Auto RESET, the output relay switches to the GO state, once the adjustable hysteresis threshold is reached in the range of 1 to 99.9 rpm and the flashing stops. Any overshoots or undershoots are therefore not stored.
Speed monitoring with Manual RESET (Memory = yes)
If Manual RESET is selected in the menu, the output relay remains in its current switching state and the current measured value and the symbol for overshooting/undershooting continue to flash, even when the speed returns to a permissible value. This stored fault status can be reset by simultaneously pressing the UP■ and DOWN $\mathbf{V}$ keys for $>2.5 \mathrm{~s}$ or by connecting the RESET device terminal to 24 V DC.
With Manual RESET through IO-Link it is possible in addition to set whether error signals are to be deleted when the control supply voltage is switched off and on (as remote RESET) or whether the signals are to be permanently saved even in a voltage failure, with confirmation possible only through local RESET or via IO-Link.

## Function Relays, Interfaces and Converters

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

Speed monitoring
With the closed-circuit principle selected

Range monitoring without enable input


Range monitoring with enable input


Type		3UG4851
General technical specifications		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$   Pollution degree 2   Overvoltage category III acc. to VDE 0110	V	300
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	4
Measuring circuit		
Sensor supply   - For 3-wire sensor (24 V/0 V)   - For 2-wire NAMUR sensor (8V2)	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max. 50 Max. 8.2
Signal input   - IN1   - IN2	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$	16, 3-wire sensor, pnp operation   1, floating contact, 2-wire NAMUR sensor
Voltage level   - For level 1 at IN1   - For level 0 at IN1	$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & 4.5 \ldots 30 \\ & 0 \ldots .1 \\ & \hline \end{aligned}$
Current level   - For level 1 at IN2   - For level 0 at IN2	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & >2.1 \\ & <1.2 \\ & \hline \end{aligned}$
Minimum pulse duration of signal	ms	5
Minimum interval between 2 pulses	ms	5
Control circuit		
Number of CO contacts for auxiliary contacts		1
Load capacity of the output relay Thermal current $I_{\text {th }}$	A	5
Rated operational current $I_{\mathrm{e}}$ at   -AC-15/24 ... 250 V   - DC-13 at   - 24 V   - 125 V   - 250 V	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 1 \\ & 0.2 \\ & 0.1 \end{aligned}$
Minimum contact load at 17 V DC	mA	5

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

Speed monitoring

## Selection and ordering data

- For speed monitoring in revolutions per minute (rpm)
- Two- or three-wire sensor with mechanical or electronic switching output can be connected
- Two-wire NAMUR sensor can be connected
- Sensor supply 24 V DC/50 mA integrated
- Input frequency 0.1 to 2200 pulses per minute ( 0.0017 to 36.7 Hz )
- With or without enable signal for the drive to be monitored
- Adjustable via IO-Link and locally, with illuminated LCD
- Power supply with 24 V DC via IO-Link or external auxiliary voltage
- Overshoot, undershoot or range monitoring adjustable
- Number of pulses per revolution can be adjusted
- Upper and lower limit values can be adjusted separately
- Auto, manual or remote RESET options after tripping
- Permanent display of actual value and tripping state
- 1 CO contact, 1 semiconductor output (in SIO mode)


PU (UNIT, SET, M) = 1
PKG* $=1$ UNIT

Measuring range	Adjustable hysteresis	ON-delay time adjustable onDel	Tripping delay time separately adjustable rpm $\triangle$ Del/ rpm Del	Pulses per revolution	SD	Screw terminals	(1)	SD	Spring-type terminals	$\infty$
rpm	rpm	s	s		d	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \\ \hline \end{array}$	d	Article No.	Price per PU
Speed monitoring for overshooting and undershooting										
0.1 ... 2200	$\begin{aligned} & \text { OFF } \\ & 1 \text {... } 99.9 \end{aligned}$	$0 . . .999 .9$	0 ... 999.9	$1 . . .10$	2	3UG4851-1AA40		2	3UG4851-2AA40	

For accessories, see page 12/119.

## 3UG48 Monitoring Relays for Stand-Alone Installation for IO-Link

Accessories

## Selection and ordering data

	Use	Version	SD d	Article No.	Price per PU	PU (UNIT, SET, M)	PS*
Blank labels							
	For 3UG48	Unit labeling plates   For SIRIUS devices   $20 \mathrm{~mm} \times 7 \mathrm{~mm}$, titanium gray	20	3RT2900-1SB20		100	340 units
	For 3UG48	Adhesive labels for SIRIUS devices   - $19 \mathrm{~mm} \times 6 \mathrm{~mm}$, pastel turquoise   - $19 \mathrm{~mm} \times 6 \mathrm{~mm}$, zinc yellow	15 15	3RT1900-1SB60 3RT1900-1SD60		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	3060 units   3060 units
Push-in lugs and covers							
	For 3UG48	Push-in lugs   For screw fixing,   2 units are required for each device	5	3RP1903		1	10 units
Tools for opening spring-type terminals							
	For auxiliary circuit connections	Screwdrivers   For all SIRIUS devices with spring-type terminals   $3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, length approx. 200 mm , titanium gray/black, partially insulated	2	Spring-type terminals 3RA2908-1A	$\frac{\infty}{\square}$	1	1 unit

## Coupling Relays

## Coupling Relays - Narrow Design

## SIRIUS 3RQ3

Overview


SIRIUS 3RQ3 coupling relays

SIRIUS 3RQ3 coupling relays in narrow design are used for coupling control signals from and to a controller, and they are available in different versions:

- Coupling relays with relay output (not plug-in)
- Coupling relays with plug-in relays
- Coupling relays with semiconductor output (not plug-in)

Coupling relays with relay output (not plug-in)

## AC and DC operation

IEC/EN 60947-5-1
The input and output coupling relays differ with regard to the positioning of the terminals and the LEDs.

## Coupling relays with plug-in relays

## AC and DC operation

IEC 60947-1
The coupling relays are plug-in, so the relay can be replaced quickly at the end of its service life without detaching the wiring.

## Coupling relays with semiconductor output (not plug-in)

## AC and DC operation

IEC 60947-1, EN 60664-1 and EN 50005: coupling relays with semiconductor output: EN 60747-5; programmable controllers: IEC 61131-2

The input and output coupling relays differ with regard to the positioning of the terminals and the LEDs.

The coupling relays with semiconductor output have extremely high contact reliability, so they are especially suitable for electronic systems.

For test purposes, versions are available with manual-0-automatic switches.

## Coupling Relays - Narrow Design

## SIRIUS 3RQ3

## Article No. scheme


versions for better understanding of the logic behind the article numbers.
selection and ordering data.
For your orders, please use the article numbers quoted in the

## Coupling Relays

## Coupling Relays - Narrow Design

## SIRIUS 3RQ3

## Benefits

## General

- All versions with screw terminals or spring-type terminals (push-in technology)
- TOP wiring with spring-type terminals (push-in) for quick and reliable wiring
- Low space requirements in the control cabinet thanks to a consistent width of 6.2 mm
- Reduced inventory due to fewer variants
- Clearly visible functional state of the coupling relay by green LED
- Integrated reverse polarity protection and EMC arc-suppression diode
- Standardized accessories across the entire 3RQ3 series
- Universal bridging option using connecting combs for all terminals
- Galvanic isolation plate for isolating different voltages for neighboring units
- Clip-on labels available as set for individual labeling


## Coupling relays with relay output (not plug-in)

- Relays fixed in enclosure for increased contact reliability
- Device variants with hard gold-plated contacts, hence high contact reliability at low currents


## Coupling relays with plug-in relays

- Fast replacement of the relays with existing wiring
- Shorter installation times thanks to certified complete units
- Individual relays available as spare parts
- Device variants with hard gold-plated contacts, hence high contact reliability at low currents

Coupling relays with semiconductor output (not plug-in)

- Long service life since there is no mechanical wear
- High switching frequency thanks to short make-break times
- Vibration-resistant
- No contact bounce
- Extremely high contact reliability
- Noise-free switching
- Low control power required
- Switching of DC and capacitive loads


## Application

- Electrical separation between the input and output circuit
- Adjustment of different signal levels
- Signal amplification


Application example motor controller

## Coupling Relays

## Coupling Relays - Narrow Design

## SIRIUS 3RQ3

## Technical specifications

More information		
Technical specifications, see	Operating instructions, see	
https://support.industry.siemens.com/cs/ww/en/ps/16198/td	https://support.industry.siemens.com/cs/ww/en/ps/16198/man	
FAQs, see https://support.industry.siemens.com/cs/ww/en/ps/16198/faq		

## Coupling relays with relay output (not plug-in)

Article number		$\begin{aligned} & \text { 3RQ30.8- } \\ & . A B 00 \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & . A B 01 \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & \text {.AE00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & . A E 01 \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & \text {.AF00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ30.8- } \\ & \text {.AF01 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3018- } \\ & \text { 2AM08-0AAO } \end{aligned}$	$\begin{aligned} & \text { 3RQ3018- } \\ & \text { 2AN08-0AAO } \end{aligned}$
General technical specifications									
Width $\mathbf{x}$ height $\mathbf{x}$ depth		$6.2 \times 93 \times$	72.5						
Insulation voltage for overvoltage category III acc. to IEC 60664 for pollution degree 3	V	300							
Max. permissible voltage for protective separation between control circuit and auxiliary circuit	V	300							
Ambient temperature									
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$						$-40 \ldots+70$	
- During storage	${ }^{\circ} \mathrm{C}$	-40 ... +85							
Degree of protection		IP20							
Version of the fuse link required for short-circuit protection of the auxiliary switch		Fuse gG: 4 A							
Operational current of the auxiliary contacts									
- At AC-15									
- At 24 V	A	3							
- At 250 V	A	3							
- At DC-13									
- At 24 V	A	1							
- At 125 V	A	0.2							
- At 250 V	A	0.1							
Contact reliability of the auxiliary contacts (one contact failure per 100 million)		$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	
Mechanical endurance (operating cycles) typical		10000000							
Electrical endurance (operating cycles) for AC-15 at 230 V typical		100000							
Operating range factor of the control supply voltage, rated value									
- At AC									
- At 50 Hz		0.8 ... 1.25		0.8 ... 1.1				--	
- At 60 Hz		0.8 ... 1.25		0.8 ... 1.1				--	
- At DC		0.8 ... 1.25		0.8 ... 1.1				0.7 ... 1.25	
Active power input	W	0.3		0.5		1		0.3	0.6
Thermal current	A	6							

## Coupling Relays

## Coupling Relays - Narrow Design

3RQ3
Coupling relays with plug-in relay

Article number		$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AB00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AB01 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AE00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AE01 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AF00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AF01 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AM00 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3118- } \\ & \text {.AM01 } \end{aligned}$
General technical specifications									
Width $\mathbf{x}$ height $\mathbf{x}$ depth		$6.2 \times 93 \times 7$							
Insulation voltage for overvoltage category III acc. to IEC 60664 for pollution degree 3	V	300							
Max. permissible voltage for protective separation between control circuit and auxiliary circuit	V	300							
Ambient temperature									
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$							
- During storage	${ }^{\circ} \mathrm{C}$	-40 ... +85							
Degree of protection		IP20							
Version of the fuse link required for short-circuit protection of the auxiliary switch		Fuse gG: 4							
Operational current of the auxiliary contacts									
- At AC-15									
- At 24 V	A	3							
- At 250 V	A	3							
- At DC-13									
- At 24 V	A	1							
- At 125 V	A	0.2							
- At 250 V	A	0.1							
Contact reliability of the auxiliary contacts (one contact failure per 100 million)		$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \end{aligned}$
Mechanical endurance (operating cycles) typical		10000000							
Electrical endurance (operating cycles) for AC-15 at 230 V typical		100000							
Operating range factor of the control supply voltage, rated value									
- At AC									
- At 50 Hz		0.8 ... 1.25		0.8 ... 1.1				--	
- At 60 Hz		0.8 ... 1.25		$0.8 \ldots 1.1$				--	
- At DC		0.8... 1.25		$0.8 \ldots 1.1$				0.8... 1.25	
Active power input	W	0.3		0.5		1		0.3	
Thermal current	A	6							

## Coupling Relays

## Coupling Relays - Narrow Design

## 3RQ3 with relay output

## Coupling relays with semiconductor output (not plug-in)

Article number		$\begin{aligned} & \text { 3RQ3050- } \\ & . \text { SM50 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3052- } \\ & \text {.SM30 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3052- } \\ & \text {.SM40 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3052- } \\ & \text {.SM50 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3053- } \\ & \text {.SG30 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3055- } \\ & \text {.SM30 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3065- } \\ & \text {.SM30 } \end{aligned}$	$\begin{aligned} & \text { 3RQ3070- } \\ & \text {.SB30 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RQ3070- } \\ & \text {.SG30 } \end{aligned}$
General technical specifications										
Width $\mathbf{x}$ height $\mathbf{x}$ depth		$6.2 \times 93 \times 72.5$						$\begin{aligned} & 6.2 \times 93 \times \\ & 75 \end{aligned}$	$6.2 \times 93 \times 7$	2.5
Insulation voltage for overvoltage category III acc. to IEC 60664 for pollution degree 3	V	50			300		50			--
Ambient temperature										
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$								
- During storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$								
Degree of protection		IP20								
Switching voltage of the semiconductor output										
- At AC	V	--			$20 . .264$	--				
- At DC	V	$10 \ldots 60$	$10 \ldots 30$	$10 \ldots 60$	--	$10 \ldots 30$				
Current carrying capacity of the semiconductor output										
- At AC		--			$5 \mathrm{~mA} . . .2 \mathrm{~A}$	--				
- At DC		$1 \mathrm{~mA} \ldots 0.5 \mathrm{~A}$	$5 \mathrm{~mA} . . .2 \mathrm{~A}$	$1 \mathrm{~mA} . . .2$ A	--	$1 \mathrm{~mA} . . .3$ A	$5 \mathrm{~mA} . . .5 \mathrm{~A}$		$10 \mathrm{~mA} . . .0$.	5 A
Operating range factor of the control supply voltage, rated value										
- At AC										
- At 50 Hz		--				1... 1	--		1... 1	
- At 60 Hz		--				$1 . . .1$	--		$1 . . .1$	
- At DC		$1 . . .1$								
Active power input	W	0.3			0.25	0.3			0.5	
Thermal current	A	0.5	2			3	5		0.5	
Article number		3RQ3...-1...				3RQ3...	-2...			
Type of electrical connection for auxiliary and control circuits		(๑) Screw te	rminals			00 Sp	ring-type te	rminals (pu	h-in)	
Type of connectable conductor cross-sections										
- Solid		$1 \times(0.25 \ldots 2.5)$	5) $\mathrm{mm}^{2}$							
- Finely stranded										
- Without end sleeves		--				$1 \times(0.25$	... 2.5) $\mathrm{mm}^{2}$			
- With end sleeves		$1 \times(0.25 \ldots 1.5)$	5) $\mathrm{mm}^{2}$							
- Solid for AWG cables		1x (20 ... 14)								

Ambient temperature

Current carrying capacity of the semiconductor output

Operating range factor of the control supply voltage, rated value

- At AC


## Coupling Relays

## Coupling Relays - Narrow Design

SIRIUS 3RQ3

## Selection and ordering data

Type of voltage	Control supply voltage			Number of CO contacts for auxiliary contacts	Material of switching contacts	SD	Article No.	Price per PU	(UNIT, SET, M)	PS*
	At AC		At DC							
	$\begin{aligned} & \text { At } \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { At } \\ & 60 \mathrm{~Hz} \end{aligned}$								
	V	V	V			d				

Coupling relays with relay output (not plug-in)


Output coupling links

AC/DC	24	24	24	1	AgSnO2	2	3RQ3018-■AB00	1	5 units
					AgSnO2 hard gold-plated	2	3RQ3018-पAB01	1	5 units
	115	115	115	1	AgSnO2	2	3RQ3018-पAE00	1	5 units
	230	230	230	1	AgSnO2	2	3RQ3018-■AF00	1	5 units
DC	--	--	24	1	AgSnO2	2	3RQ3018-2AM08-0AA0	1	5 units
			110	1	AgSnO2	2	3RQ3018-2AN08-0AA0	1	5 units
Input	upli	nks							
AC/DC	24	24	24	1	AgSnO2	2	3RQ3038-■AB00	1	5 units
					AgSnO2 hard gold-plated	2	3RQ3038-■AB01	1	5 units
	115	115	115	1	AgSnO2	2	3RQ3038-DAE00	1	5 units
					AgSnO2 hard gold-plated	2	3RQ3038-पAE01	1	5 units
	230	230	230	1	AgSnO2	2	3RQ3038-■AF00	1	5 units
					AgSnO2 hard gold-plated	2	3RQ3038-■AF01	1	5 units

Coupling relays with plug-in relay
Output coupling links
3RQ30.8
ling link


AC/DC	24	24	24	1	AgSnO2   $A g S n O 2$	2


$\left.\begin{array}{llllll} & & 115 & 115 & 115 & 1\end{array}\right]$| Ag |
| :--- |
|  |
|  |

Type of electrical connection

- Screw terminals
- Spring-type terminals (push-in)


## Coupling Relays

## Coupling Relays - Narrow Design

SIRIUS 3RQ3

## Accessories



1) PC labeling system for individual inscription of unit labeling plates available from Conta-Clip Verbindungstechnik GmbH.

Coupling relays with plug-in relay	Control supply voltage	Material of switching contacts	Number of CO contacts for auxiliary contacts	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
Type	V			d				
dules for 3RQ3118 coupling relays with plug-in relay								
3RQ3118-.AM00	24 DC	AgSnO2	1	2	3TX7014-7BM00		1	15 units
3RQ3118-.AM01		AgSnO2 hard gold-plated		2	3TX7014-7BM02		1	15 units
3RQ3118-.AB00	24 AC/DC	AgSnO2	1	2	3TX7014-7BM00		1	15 units
3RQ3118-.AB01		AgSnO2 hard gold-plated		2	3TX7014-7BM02		1	15 units
3RQ3118-.AE00	115 AC/DC	AgSnO2	1	2	3TX7014-7BP00		1	15 units
3RQ3118-.AF00	230 AC/DC	AgSnO2						
3RQ3118-.AE01	115 AC/DC	AgSnO2 hard gold-plated	1	2	3TX7014-7BP02		1	15 units
3RQ3118-.AF01	230 AC/DC	AgSnO2 hard gold-plated						

## Coupling Relays

## Coupling Relays with Industrial Enclosure

SIRIUS 3RQ2 NEW

## Overview



SIRIUS 3RQ2 coupling relays, screw terminals, 3 changeover contacts

## More information

Homepage, see www.siemens.com/relays
Industry Mall, see www.siemens.com/product?3RQ2
For the conversion tool, e.g. from 3RS18 to 3RQ2, see
www.siemens.com/sirius/conversion-tool
3RQ2 coupling relays in their 22.5 mm industrial enclosure serve to couple control signals to and from a controller and replace the 3RS18 coupling relays. The 3RQ2 has an impressively highquality industrial enclosure finished in modern titanium gray so that it fits in visually with the SIRIUS series of relays.
The series consists of devices with up to three changeover contacts with screw or spring-type terminals (push-in) and, with its wide voltage range from 24 to $240 \mathrm{~V} \mathrm{AC/DC}$, is a genuine highlight in the coupling relay market.

Thanks to terminal assignment that is identical to the previous version, existing products can easily be converted.
The reduced variety of components simplifies product selection and standardization.
Numerous accessories are available for the 3RQ2 coupling relays, for example replacement terminals, push-in lugs for wall mounting and coding pins.

Article No. scheme

Product versions		Article number	
Coupling relays, standard		3RQ2000 - ㅁㅁㅁ 0	
Connection methods	Screw terminals	1	
	Spring-type terminals (push-in)	2	
Outputs	1 CO contact	A	
	2 CO contacts	B	
	3 CO contacts	C	
Rated control supply voltage	$24 . . .240$ V AC/DC	w	
Material of switching contacts	0 = AgSnO2		
	$1=\mathrm{AgNi}+\mathrm{Au}$		
Example		3RQ2000-1 C W 0	

Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## Benefits

- Permanent wiring thanks to removable terminals in screw or spring-type technology (push-in)
- Replacement of individual terminals minimizes wiring effort
- A product for all voltages from 24 to 240 V AC/DC
- Reduced costs thanks to fewer versions
- Especially high contact reliability even at low currents thanks to versions with hard gold-plated contacts
- International standards and certifications including CE, UL/CSA, EAC and confirmations for rail, and more


## Application

- Electrical separation between the input and output circuit
- Adjustment of different signal levels
- Signal amplification
- Contact multiplication


Application example motor controller

## Coupling Relays with Industrial Enclosure

## SIRIUS 3RQ2 NEW

## Technical specifications

More information			
Technical specifications, see https://support.industry.siemens.com/cs/ww/en/ps/25158/td		Operating instructions, see https://support.industry.siemens.com/cs/ww/en/ps/25158/man	
Type		3RQ2000-.AW00 3RQ2000-.BW00 3RQ2000-.CW00	3RQ2000-.CW01
General data			
Dimensions (W x H x D)	mm	$22.5 \times 100 \times 90$	
Insulation voltage for overvoltage category III acc. to IEC 60664 for pollution degree 3	V	300	
Max. permissible voltage for protective separation between control circuit and auxiliary circuit acc. to IEC 60947-1	V	300	
Ambient temperature			
- During operation	${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$	
- During storage	${ }^{\circ} \mathrm{C}$	-40 ... +80	
Degree of protection		IP20	
Control circuit			
Control supply voltage	V	24 ... 240 AC/DC; $50 / 60 \mathrm{~Hz}$	
Operating range factor of control supply voltage		0.7 ... 1.1	
Load circuit			
Thermal current of the non-solid-state contact blocks, maximum	A	5	
Current carrying capacity of the output relay			
- At AC-15 at 250 V	A	3	
- At DC-13 at 24 V	A	1	
- At DC-13 at 125 V	A	0.2	
- At DC-13 at 250 V	A	0.1	
Mechanical endurance (operating cycles) typical		10000000	
Electrical endurance (operating cycles) for AC-15 at 230 V , typical		100000	
Material of switching contacts		AgSnO2	$\mathrm{AgNi}+\mathrm{Au}$
Article number		3RQ2000-1	3RQ2000-2
Type of electrical connection		Screw terminals	Spring-type terminals (push-in)
Type of connectable conductor cross-sections			
- Solid	$\mathrm{mm}^{2}$	$1 \times\left(0.5 \ldots 4.0 \mathrm{~mm}^{2}\right), 2 \times\left(0.5 \ldots 2.5 \mathrm{~mm}^{2}\right)$	$1 \mathrm{x}\left(0.5 \ldots 4 \mathrm{~mm}^{2}\right)$
- Finely stranded with end sleeve	$\mathrm{mm}^{2}$	$1 \times\left(0.5 \ldots 4 \mathrm{~mm}^{2}\right), 2 \times\left(0.5 \ldots 1.5 \mathrm{~mm}^{2}\right)$	$1 \times\left(0.5 \ldots 2.5 \mathrm{~mm}^{2}\right)$
- Solid for AWG cables	AWG	$1 \times(20 \ldots 12), 2 \times(20 \ldots 14)$	$1 \times(20 . . .12)$
Tightening torque	Nm	0.6 ... 0.8	--

Insulation voltage for overvoltage category
acc. to IEC 60664 for pollution degree 3
between control circuit and auxiliary circuit acc. to IEC 60947-1
Ambient temperature

## Coupling Relays

## Coupling Relays with Industrial Enclosure

SIRIUS 3RQ2 NEW

Selection and ordering data

```
PU (UNIT, SET, M) = 1
PS* \(=1\) UNIT
```

		Control su   at AC   at 50 Hz	ply voltage At DC	Number of CO contacts for auxiliary contacts	Material of switching contacts	SD	Screw terminals	(	SD	Spring-type terminals (push-in)	$\begin{aligned} & \infty \\ & \square \end{aligned}$
		V	V	W		d	Article No.	Price per PU		Article No.	Price per PU
Coupling relays in industrial enclosure, 22.5 mm											
		$24 . .240$	$24 . .240$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	AgSnO2   AgSnO2   AgSnO2   $\mathrm{AgNi}+\mathrm{Au}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 3RQ2000-1AW00 } \\ & \text { 3RQ2000-1BW00 } \\ & \text { 3RQ2000-1CW00 } \\ & \text { 3RQ2000-1CW01 } \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	3RQ2000-2AW00 3RQ2000-2BW00 3RQ2000-2CW00 3RQ2000-2CW01	

## Accessories

## More information

Operating instructions, see
Conversion tool, e.g. from 3RS18 to 3RQ2, see
https://support.industry. siemens.com/cs/ww/en/ps/25158/man

	Version	SD   d	Article No.	Price per PU		PS*
Terminals for SIRIUS devices in the industrial standard mounting rail enclosure						
	Removable terminals		Screw terminals	(1)		
	- 2-pole, up to $1 \times 4 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$	2	3ZY1122-1BA00		1	6 units
			Spring-type terminals (push-in)	$\infty$		
3ZY1122-1BA00	- 2-pole, up to $1 \times 4 \mathrm{~mm}^{2}$ or $2 \times 1.5 \mathrm{~mm}^{2}$	2	3ZY1122-2BA00		1	6 units
Accessories for enclosures						
	Hinged cover replacement cover, without terminal labeling, titanium gray, 22.5 mm wide	2	3ZY1450-1AB00		1	5 units
3ZY1450-1AB00						
	Push-in lugs For wall mounting	2	3ZY1311-0AA00		1	10 units
3ZY1440-1AA00	Coding pins   For removable terminals of SIRIUS devices in the industrial standard mounting rail enclosure; they enable the mechanical coding of terminals	2	3ZY1440-1AA00		1	12 units
Tools for opening spring-type terminals						
	Screwdrivers   For all SIRIUS devices with spring-type terminals		Spring-type terminals (push-in)	$\infty$		
3RA2908-1A	$3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, length approx. 200 mm , titanium gray/black, partially insulated	2	3RA2908-1A		1	1 unit

## Coupling Relays

## Coupling Relays with Industrial Enclosure

## SIRIUS 3RQ2 NEW

## More information

## Code conversion table

SIRIUS 3RS18 coupling relays				Comparison type SIRIUS 3RQ2 coupling relays			
Screw terminals	Spring-type terminals	Version	Contacts	Screw terminals	Spring-type terminals (push-in)	Version	Contacts
3RS1800-1AQ00	3RS1800-2AQ00	24 V AC/DC; 110 ... 120 V AC	$\begin{aligned} & 1 \mathrm{CO} \\ & \text { contact } \end{aligned}$	3RQ2000-1AW00	3RQ2000-2AW00	$24 . .240$ V AC/DC	1 CO contact
3RS1800-1AP00	3RS1800-2AP00	24 V AC/DC; 220 ... 240 V AC					
3RS1800-1BW00	3RS1800-2BW00	$24 . .240$ V AC/DC	$\begin{aligned} & 2 \mathrm{CO} \\ & - \text { contacts } \end{aligned}$	3RQ2000-1BW00	3RQ2000-2BW00	$24 . .240$ V AC/DC	$2 \mathrm{CO}$ contacts
3RS1800-1BQ00	3RS1800-2BQ00	$24 \mathrm{~V} \mathrm{AC/DC;} 110$... 120 V AC					
3RS1800-1BP00	3RS1800-2BP00	24 V AC/DC; $220 . . .240$ V AC					
3RS1800-1HW00	3RS1800-2HW00	$24 . .240$ V AC/DC	3 CO contacts	3RQ2000-1CW00	3RQ2000-2CW00	$24 . .240$ V AC/DC	$3 \mathrm{CO}$contacts
3RS1800-1HQ00	3RS1800-2HQ00	$24 \mathrm{~V} \mathrm{AC/DC;} 110$... 120 V AC					
3RS1800-1HP00	3RS1800-2HP00	$24 \mathrm{~V} \mathrm{AC/DC;} 220 . . .240 \mathrm{~V}$ AC					
3RS1800-1HW01	3RS1800-2HW01	$24 . .240$ V AC/DC	$3 \mathrm{CO}$   contacts, hard goldplated	3RQ2000-1CW01	3RQ2000-2CW01	$24 . .240$ V AC/DC	$3 \mathrm{CO}$   contacts, hard goldplated
3RS1800-1HQ01	3RS1800-2HQ01	$24 \mathrm{~V} \mathrm{AC/DC;} 110 \ldots 120 \mathrm{~V}$ AC					
3RS1800-1HP01	3RS1800-2HP01	24 V AC/DC; 220 ... 240 V AC					

## Relays

## Coupling Relays and Signal Converters/Interface Converters

SIRIUS 3RS70 signal converters

## Overview



SIRIUS 3RS70 signal converters

## More information

Homepage, see www.siemens.com/relays Industry Mall, see www.siemens.com/product?3RS70 For the conversion tool, e.g. from 3RS17 to 3RS70, see www.siemens.com/sirius/conversion-tool

Signal converters perform the coupling function for analog signals on both the input side and the output side. They are indispensable when processing analog values with electronic controls. Under harsh industrial conditions in particular, it is often necessary to transmit analog signals over long distances. Electrical separation is then needed as a result of the different power supplies. The resistance of the wiring causes potential differences and losses which must be prevented.

Electromagnetic disturbance and overvoltages can affect the signals on the input side in particular or even destroy the analog modules. All terminals of the 3RS70 signal converters are safe up to a voltage of 30 V DC and protected against switching poles. Short-circuit protection is an especially important function for the outputs.
The devices are EMC-tested according to

- IEC 61000-6-4 (generic standard for emitted interference)
- IEC 61000-6-2 (generic standard for interference immunity)

The analog signals comply with

- IEC 60381-1/2


## Article No. scheme



Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## Coupling Relays and Signal Converters/Interface Converters

## SIRIUS 3RS70 signal converters

## Benefits

- Narrow width
- Easy-to-set universal converters
- Converters with frequency output
- All ranges are fully calibrated
- Universal family of devices - the perfect solution for every application
- Integrated manual/automatic switch with a setpoint generator
- Outputs are short-circuit-proof
- Up to 30 V - protected against damage caused by wiring errors


## Application

Signal converters are used in analog signal processing for

- Electrical separation
- Conversion of normalized and non-normalized signals
- Amplification and impedance adaptation
- Conversion to a frequency for processing by a digital input
- Overvoltage and EMC protection
- Short-circuit protection of the outputs


## 3RS7025 manual/automatic converter

For special applications in which analog signals have to be simulated, or during plant commissioning when the actual process value is not yet available, the 3RS7025 devices feature an adjustable potentiometer for manual setpoint selection and a manual/automatic switch.
The potentiometer for the 3RS7025 devices is used to simulate analog output signals when the changeover switch is set to "Manual" and the control supply voltage is applied, without the need for an analog input signal. The scale ranges from 0 ... 100\%.
Example: When it is set for an output of $4 \ldots 20 \mathrm{~mA}$, the left stop on the potentiometer represents an output current of 4 mA and the right stop represents an output current of 20 mA . In the "Auto" switch position, the output signal follows the input signal proportionally regardless of the potentiometer setting.


Application example of analog signal processing

## Relays

## Coupling Relays and Signal Converters/Interface Converters

SIRIUS 3RS70 signal converters

## Technical specifications

More information
Technical specifications, see Circuit diagrams, see
https://support.industry.siemens.com/cs/ww/en/ps/16691/td
Operating instructions, see
https://support.industry.siemens.com/cs/ww/en/view/109475738


## Coupling Relays and Signal Converters/Interface Converters

SIRIUS 3RS70 signal converters


## Relays

## Coupling Relays and Signal Converters/Interface Converters

SIRIUS 3RS70 signal converters

| Article number |  | 3RS7006-.FE00 | 3RS7006-.FW00 |
| :--- | :--- | :--- | :--- | :--- |
| Product designation <br> Product version | Switchable universal converters, <br> active |  |  |
| General data: |  |  |  |
| Width $\mathbf{x}$ height $\mathbf{x}$ depth |  |  |  |


Article number	3RS70..-1....	3RS70..-2....
Type of electrical connection	$\bigoplus$ Screw terminals	Spring-type terminals (push-in)
Type of connectable conductor cross-sections   - Solid   - Finely stranded	1 x (0.25 ... $2.5 \mathrm{~mm}^{2}$ )	$1 \times\left(0.25 \ldots 2.5 \mathrm{~mm}^{2}\right)$
- Without end sleeves   - With end sleeves   - Solid for AWG cables	$\begin{aligned} & 1 \times\left(0.25 \ldots 1.5 \mathrm{~mm}^{2}\right) \\ & 1 \times(20 \ldots 14) \end{aligned}$	$\begin{aligned} & 1 \times\left(0.25 \ldots 2.5 \mathrm{~mm}^{2}\right) \\ & 1 \times\left(0.25 \ldots 1.5 \mathrm{~mm}^{2}\right) \\ & 1 \times(20 \ldots 14) \end{aligned}$

## Coupling Relays and Signal Converters/Interface Converters

SIRIUS 3RS70 signal converters

Selection and ordering data


3RS7005-1FW00
Multi-range converters
Active, with manual/automatic switch and setting
potion

## Universal converters



Active, switchable
Type of electrical isolation, 3-way

## Relays

## Coupling Relays and Signal Converters/Interface Converters

SIRIUS 3RS70 signal converters

## Accessories



## Coupling Relays and Interfaces

## 3TG10 power relays

## Overview

Version
The 3TG10 contactors with 4 main contacts are available with screw-type terminals or with 6.3 mm to 0.8 mm tab connectors. The designs with screw-type terminals are suitable for use in any climate and safe from touch to
DIN VDE 0106 Part 100.
The 3TG10 contactors have a compact design. Their overall width is 36 mm .

## Application

They are suitable for use in household appliances as well as for distribution boards in offices and residential buildings, owing to their hum-free construction. They can further be used in all areas where there is only a limited amount of space available, e.g. in air conditioners, heating systems, pumps and fans - basically in all simple electrical controls.

## AC and DC operation

EN 60 947-4-1
(VDE 0660 Part 102).

## Surge suppression

The 3TG10 contactors are fitted with an integrated protective circuit for damping opening surges.

Overload and short-circuit protection
The 3UA7 overload relay can be used for overload protection (see NS E catalogue, available in German). This applies both for contactor mounting and for mounting as a single unit.
The data for short-circuit protection of the contactors without using an overload relay are provided in the technical data.

Selection and ordering data


## With tab connectors $6.3 \times 0.8 \mathrm{~mm}, 4$-pin

for screwing and snapping onto 35 mm standard mounting rail • hum-free

- AC operation

3TG10 ..-1	16	5	8.4	4	_	$\begin{gathered} 230 \mathrm{~V}, 45-450 \mathrm{~Hz} \\ 110 \mathrm{~V}, 45-450 \mathrm{~Hz} \\ 24 \mathrm{~V}, 45-450 \mathrm{~Hz} \end{gathered}$	3TG10 10-1 AL2   3TG10 10-1AG2   3TG10 10-1AC2	0.14	10
				3	1	$\begin{gathered} 230 \mathrm{~V}, 45-450 \mathrm{~Hz} \\ 110 \mathrm{~V}, 45-450 \mathrm{~Hz} \\ 24 \mathrm{~V}, 45-450 \mathrm{~Hz} \end{gathered}$	3TG10 01-1AL2   3TG10 01-1AG2   3TG10 01-1AC2	0.14	10
- DC operation									
	16	5	8.4	4 3	$\overline{1}$	$\begin{aligned} & \text { DC } 24 \mathrm{~V} \\ & \text { DC } 24 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 3TG10 10-1BB4 } \\ & \text { 3TG10 01-1BB4 } \end{aligned}$	0.14	10

1) The links for paralleling can be reduced by one pole. The rated operational currents are valid for each pole. The links for paralleling are insulated.

Function Relays, Interfaces and Converters

## Coupling Relays and Interfaces

3TG10 power relays

Technical data

| General data |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Mechanical endurance |  |  |

1) If the three main conducting paths are loaded with 20 A and $I>10 \mathrm{~A}$ for the fourth conducting
path: the permissible ambient temperature is $40^{\circ} \mathrm{C}$.

## Coupling Relays and Interfaces

3TG10 power relays

## Technical data

## Load ratings with AC

## AC-2 and AC-3 utilisation categories

Rated operational currents $I_{\mathrm{e}}$ up to 400 V
Ratings of motors with slipring or squirrel-cage rotor at

A	8.4
kW	4

50 Hz and 60 Hz and at 400 V
AC-5a utilisation category (permissible supply impedance: $\geq 0.5 \Omega$ )
Switching gas discharge lamps
per main conducting path at 50 Hz 230 V
Rating per lamp

Rated operational current per lamp	A
Number of lamps	unit

Switching gas discharge lamps with correction, electronic ballast per main conducting path at 50 Hz 230 V
Rating per lamp
Capacitor
Rated operational current per lamp
Number of lamps

AC-5b utilisation category, switching incandescent lamps

	Parallel correction			Electr. ballast, 1 lamp			Electr. ballast, 2 lamps		
W	18	36	58	18	36	58	18	36	58
$\mu \mathrm{F}$	4.5	4.5	7	6.8	6.8	10	10	10	22
A	0.11	0.21	0.32	0.10	0.18	0.27	0.18	0.35	0.52
unit	15	15	10	39	39	26	$2 \times 26$	$2 \times 26$	$2 \times 1$
kW	1.6								

per main conducting path at 50 Hz 230 V

Load ratings with DC					
DC-1 utilisation category, switching resistive load ( $\frac{L}{R} \leq 1 \mathrm{~ms}$ )					
Rated operational current $I_{\mathrm{e}} \quad$ Conducting paths connected in series		1	2	3	4
$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} / 240 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \\ & 2 \\ & 0.8 \end{aligned}$	$\begin{gathered} 16 \\ 16 \\ 6 \\ 1.6 \end{gathered}$	$\begin{array}{r} 18 \\ 18 \\ 16 \\ 6 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$
DC-3 and DC-5 utilisation categories, shunt and series motors$\left(\frac{L}{R} \leq 15 \mathrm{~ms}\right)$					
Rated operational current $I_{\mathrm{e}} \quad$ Conducting paths connected in series		1	2	3	4
$\begin{array}{r} \text { up to } 24 \mathrm{~V} \\ 60 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} / 240 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 0.5 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 16 \\ & 5 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 10 \\ & 1.75 \end{aligned}$	$\begin{array}{r} 18 \\ 16 \\ 10 \\ 2 \end{array}$
Conductor cross-sections for designs					
with screw connections   Screw connection   Finely stranded with end sleeve (DIN 46 228, style A/D/C)   Solid   with tab connectors	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & \text { M3 } \\ & 2 \times(0.75 \text { to } 2.5) \\ & 2 \times(1 \text { to } 2.5) \\ & 1 \times 4 \\ & 0.5 \text { to } 1 \\ & 1 \text { to } 2.5 \end{aligned}$			
(13) and (1) ratings (screw connection)					
Rated insulation voltage AC	V	600			
Conventional thermal   Free air and enclosed current	A	20			
Maximum horsepower ratings   (ब. and ©-approved values)   Ratings of three-phase motors	hp hp hp hp hp	1-phase      $1 / 2$   1   $1 / 1 / 2$   -   -	3-phase - 3 3 5 5		

## Coupling Relays and Interfaces

3TG10 power relays

Accessories						
For contactor	Design		Order No.	List Price \$	Weight approx	Pack
	Max. rated operational currents $I_{\mathrm{e}} /$ AC-1 $\left(\right.$ at $55^{\circ} \mathrm{C}$ ) of contactors	Max. conductor cross-sections				
Type	A	$\mathrm{mm}^{2}$	PG 101		kg	Units
Links for paralleling (star jumpers)						
- 3-pole without terminal ${ }^{1}{ }^{2}$ )						
3TG10	16   Star jumpers can be reduced by one pole	-	3RT1 916-4BA31		0.004	1
- 3-pole with terminal ${ }^{1}{ }^{3}$ )						
3TG10	40	25	3RT1 916-4BB31		0.013	1
- 4-pole with terminal $\left.{ }^{1}\right)^{4}$ )						
3TG10	50	25	3RT1 916-4BB41		0.02	1

## Circuit diagrams

Position of terminals

3TG10 10
1 NO


3TG10 01
1 NC


Internal circuit diagram


Dimension drawings

AC and DC operation
3TG10 ..-0.
with screw connections


3TG10 ..-1..
with tab connectors


Accessories for 3TG10
3RT19 16-4BB41 links for paralleling, 4-pole, with terminal


1) The links for paralleling can be reduced by one pole. The rated operational currents are valid for each pole. The links for paralleling are insulated.
2) Replacement type for 3 TX44 90-2C.
3) Replacement type for $3 T \times 4490-2 \mathrm{~A}$.
4) Replacement type for $3 T X 4490-2 B$.
5) Can be snapped onto 35 mm standard mounting rails.

## Coupling Relays and Interfaces

3TX71 and LZS plug-in relays

Selection and ordering data
Siemens offers two lines of plug-in style relays to meet your industrial needs - 3TX71 and LZS.


3TX71 relays are available as open power, enclosed power and plug-in style relays. The plug-in family includes basic, premium and bifurcated styles, screw terminals only, and must be ordered as individual components; the selection guide shows which base and accessories belong with which relay. Basic style relays are the most economical and are equipped with a mechanical flag indicator only. Premium style relays offer LED and mechanical flag indication, push-to-test and a latching function for testing without power to the coil. Premium Bifurcated style relays are ideal for low minimum holding current requirements on the contacts ( 3 mA vs. 100 mA ).


LZS plug-in relays can be ordered as complete units or as individual components and are available with screw or push-in terminals. Complete unit order numbers include the relay, base, LED (with surge suppression in 24VDC version) and retainer/ ejector clip and are available with changeover contacts ( 1 CO to 4 CO ) and coil voltages from 12VDC to 230VAC. PT \& MT versions have a push-to-test and a latching function for testing without power to the coil. RT versions are miniature, only 15 mm wide and feature 1 CO or 2CO contacts. MT versions are 11 -pin octal base relays, with 3CO contacts with or without LED and components must be ordered individually.

Square Base (Narrow)

Contacts	Contact   Rating (A)	Coil Voltage	Basic Relay	Premium Relay	Uses Socket 3TX7144-	Uses Clip 3TX7144-	Socket Access Set	Panel Mount Adaptor 3TX7144-	DIN Rail Mount Adaptor 3TX7144-
SPDT	15	12VDC	3TX7110-5BB03C	3TX7110-5JB03	4E7	1L7	B	3L5	3L4
		24 VDC	3TX7110-5BC03C	3TX7110-5JC03	4E7	1L7	B	3L5	3L4
		24 VAC	3TX7110-5BC13C	3TX7110-5JC13	4E7	1L7	B	3L5	3L4
		120 VAC	3TX7110-5BF13C	3TX7110-5JF13	4E7	1L7	B	3L5	3L4
		240 VAC	-	3TX7110-5JG13	4E7	1L7	B	3L5	3L4

Square Base (Standard)

Contacts	Contact Rating (A)	Coil Voltage	Basic Relay	Premium Relay	Uses Socket 3TX7144-	Uses Clip 3TX7144-	Socket Access Set	Panel Mount   Adaptor   3TX7144-
DPDT	12	24 VDC	3TX7111-3DC03C	3TX7111-3LC03	4E5	1L11	B	3L7
		24 VAC	3TX7111-3DC13C	3TX7111-3LC13	4E5	1L11	B	3L7
		120 VAC	3TX7111-3DF13C	3TX7111-3LF13	4E5	1L11	B	3L7
DPDT	15	12 VDC	3TX7114-5DB03C	3TX7114-5LB03	4E6	1L11	B	3L7
		24VDC	3TX7114-5DC03C	3TX7114-5LC03	4E6	1L11	B	3L7
		24VAC	3TX7114-5DC13C	3TX7114-5LC13	4E6	1L11	B	3L7
		120 VAC	3TX7114-5DF13C	3TX7114-5LF13	4E6	1L11	B	3L7
		240 VAC	-	3TX7114-5LH13	4E6	1L11	B	3L7
DPDT	10	12 VDC	3TX7115-5DB03C	-	4E4	1L12	A	-
		24VDC	3TX7115-5DC03C	3TX7115-5LC03	4E4	1L12	A	-
		24VAC	3TX7115-5DC13C	3TX7115-5LC13	4E4	1L12	A	-
		120 VAC	3TX7115-5DF13C	3TX7115-5LF13	4E4	1L12	A	-


Option	Basic	Premium
Mechanical Flag	$\checkmark$	$\checkmark$
Push To Test		$\checkmark$
Lock Down Door		$\checkmark$
LED		$\checkmark$

Selection and ordering data

Square Base (Standard)

Contacts	Contact Rating (A)	Coil Voltage	Basic Relay	Premium Relay	Premium Bifurcated	Uses Socket 3TX7144-	Uses Clip 3TX7144-	Socket   Access   Set	Panel   Mount   Adaptor   3TX7144-	DIN Rail Mount Adaptor 3TX7144-
3PDT	15	24VDC	3TX7116-5FC03C	3TX7116-5NC03	-	4E8	1L9	A	1M3	1M4
		24VAC	3TX7116-5FC13C	3TX7116-5NC13	-	4E8	1L9	A	1M3	1M4
		120 VAC	3TX7116-5FF13C	3TX7116-5NF13	-	4E8	1L9	A	1M3	1M4
3PDT	10	24VDC	3TX7115-5FC03C	3TX7115-5NC03	-	4E4	1L12	A	-	-
		120 VAC	3TX7115-5FF13C	3TX7115-5NF13	-	4E4	1L12	A	-	-
4PDT	6A for Basic and Premium and 3 A for Bifurcated	24VDC	3TX7111-3HC03C	3TX7111-3PC03	3TX7111-5PC03B	4E5	1L11	B	3L7	-
		24VAC	3TX7111-3HC13C	3TX7111-3PC13	3TX7111-5PC13B	4E5	1L11	B	3L7	-
		120 VAC	3TX7111-3HF13C	3TX7111-3PF13	3TX7111-5PF13B	4E5	1L11	B	3L7	-
		240 VAC	-	3TX7111-3PG13	-	4E5	1L11	B	3L7	-
4PDT	15	24VDC	3TX7117-5HC03C	3TX7117-5PC03	-	4E9	1L10	A	1M5	1M6
		24VAC	3TX7117-5HC13C	3TX7117-5PC13	-	4E9	1L10	A	1M5	1M6
		120 VAC	3TX7117-5HF13C	3TX7117-5PF13	-	4E9	1L10	A	1M5	1M6


Option	Basic	Premium	Premium Bifurcated
Mechanical Flag	$\checkmark$	$\checkmark$	$\checkmark$
Push To Test		$\checkmark$	$\checkmark$
Lock Down Door		$\checkmark$	$\checkmark$
LED		$\checkmark$	$\checkmark$

## Function Relays, Interfaces and Converters

## Coupling Relays and Interfaces

## 3TX71 plug-in relays

Selection and ordering data

Standard Octal Base

Contacts	Contact   Rating (A)	Coil Voltage	Basic Relay	Premium Relay	Uses Socket 3TX7144-	Uses Clip 3TX7144-	Socket Access Set
DPDT	10	12 VDC	3TX7112-1DB03C	3TX7112-1LB03	4E2	1L14	A
		24VDC	3TX7112-1DC03C	3TX7112-1LC03	4E2	1L14	A
		24VAC	3TX7112-1DC13C	3TX7112-1LC13	4E2	1L14	A
		120 VAC	3TX7112-1DF13C	3TX7112-1LF13	4E2	1L14	A
		240 VAC	3TX7112-1DG13C	3TX7112-1LG13	4E2	1L14	A
3PDT	10	24VDC	3TX7112-1FC03C	$3 T X 7112-1$ NC03	4E3	1L14	A
		24VAC	3TX7112-1FC13C	3 TX7112-1NC13	4E3	1L14	A
		120 VAC	3TX7112-1FF13C	$3 T X 7112-1$ NF13	4E3	1L14	A
		240 VAC	-	3TX7112-1NG13	4E3	1L14	A

Hermetically Sealed

Contacts	Contact   Rating (A)	Coil Voltage	Basic Relay	Uses Socket 3TX7144-	Uses Clip 3TX7144-	Socket Access Set
DPDT	12	24 VDC	3TX7127-5HC00	4E2	1L12	A
4PDT	3	24VDC	3TX7127-3HC00	4E5	1L11	B
		24VAC	3TX7127-3HC10	4E5	1L11	B
		120 VAC	3TX7127-3HF10	4E5	1L11	B
4PDT	5	12 VDC	3TX7127-3HB03	4E5	1L11	B
		24VDC	3TX7127-3HC03	4E5	1L11	B
		120 VAC	3TX7127-3HF13	4E5	1L11	B

Socket Accessories

Access. Series	MOV	MOV	R/C	R/C	Diode
	24VAC/DC	120VAC/DC	$6-24 V A C / D C$	$110-240 V A C / D C$	$6-250 V D C$
A	$3 T X 7144-\mathrm{H} 1$	$3 T X 7144-\mathrm{H} 20$	$3 T X 7144-\mathrm{H} 4$	$3 T X 7144-\mathrm{H} 5$	3 TX7144-H6
B	$3 T X 7144-\mathrm{H} 9$	$3 T X 7144-\mathrm{H} 17$	-	-	$3 T X 7144-\mathrm{H} 12$

Function Relays, Interfaces and Converters
Coupling Relays and Interfaces
3TX71 plug-in relays

Selection and ordering data
Open Power Relays

Contacts	Contact   Rating (A)	Coil   Voltage	Basic Relay	Metal Cover 7144-
SPST NO-DM	40	24VAC	3TX7130-0AC13	1M0
SPST NO-DM		120 VAC	3TX7130-0AF13	1M0
SPST NO-DM		240 VAC	3TX7130-0AH13	1M0
SPST NC-DM	40	120 VAC	3TX7130-0QF13	1M0
SPDT		24 VAC	3TX7130-0BC13	1M0
SPDT		120 VAC	3TX7130-0BF13	1M0
SPDT		240 VAC	3TX7130-0BH13	1M0
SPDT		277 VAC	3TX7130-0BS13	1M0
DPDT	40	24 VAC	3TX7130-0DC13	1M0
		120 VAC	3TX7130-0DF13	1M0
		240 VAC	3TX7130-0DH13	1M0
		277 VAC	3TX7130-0DS13	1M0
		12 VDC	3TX7130-0DB03	1M0
		24 VDC	3TX7130-0DC03	1M0
		48 VDC	3TX7130-0DD03	1M0
		110 VDC	3TX7130-0DF03	1M0
DPST NO	40	24 VAC	3TX7130-0CC13	1M0
		120 VAC	3TX7130-0CF13	1M0
		240 VAC	3TX7130-0CH13	1M0
		12 VDC	3TX7130-0CB03	1M0
		24 VDC	3TX7130-0CC03	1M0
		48 VDC	3TX7130-0CD03	1M0
DPDT   (Mag Blowout)	40	120 VAC	3TX7130-0RF13	1M0
		12 VDC	3TX7130-0RB03	1M0
		24 VDC	3TX7130-0RC03	1M0
		48 VDC	3TX7130-0RD03	1M0
		110 VDC	3TX7130-0RF03	1M0



Enclosed Power Relays

Contacts	Contact Rating   (A)	Coil Voltage	Basic Relay
DPST-NO	30	24VAC	3 TX7131-4CC13
		120 VAC	3 TX7131-4CF13
		230 VAC	$3 \mathrm{TX7131-4CH13}$
DPDT	$\begin{aligned} & 30 \mathrm{NO} / \\ & 3 \mathrm{NC} \end{aligned}$	12 VDC	3 3X7131-4DB03
		24 VDC	3TX7131-4DC03
		24VAC	3 TX7131-4DC13
		120 VAC	3 TX7131-4DF13
		230 VAC	3TX7131-4DH13



## Coupling Relays and Interfaces

## 3TX71 plug-in relays

General specifications

Contact Characteristics		Units	3 TX7110		$3 T X 7111$			
Number and Type of Contacts			SPDT	SPDT	DPDT	DPDT	4PDT	4PDT
Contact Material			Silver Alloy					
Thermal (Carrying) Current		A	15	3 (Bifurcated)	12	3 (Bifurcated)	6	3 (Bifurcated)
Maximum Switching Voltage		V	300	300	300	300	300	300
Switching Current at Voltage		Resistive	15A @240V	3A @240V	-	3 A @240V	6A @240V	3 A @240V
		Resistive	15A @120V	-	12A @120V	3A@120V	6A @120V	3A @120V
		Resistive	15A @ 28	-	12A @ 28	3A @ 30	6A @ 28	3A@30
		HP	1/2 @ 120VAC	-	1/3@ 120VAC	1/16 @ 120VAC	1/3@ 120VAC	1/16 @ 120VAC
		HP	1 @ 240VAC	-	-	-	1 @ 240VAC	-
		Pilot Duty	B300	-	B300	-	B300	-
Minimum Switching Requirement		mA	100 @ 5VDC (.5W)	3 @ 17VDC (.4W)	100 @ 5VDC (.5W)	3 @ 17VDC (.4W)	100 @ 5VDC (.5W)	3 @ 17VDC (.4W)
Coil Characteristics								
Voltage Range	AC	V	6...240	6... 240	6... 240	6...240	6... 240	6... 240
	DC	V	6... 125	6... 125	6... 125	$6 . .125$	6... 125	6... 125
Operating Range	AC	\%	85 to 110					
	DC	\%	80 to 110					
Average Consumption	AC	VA	0.9	0.9	1.2	1.2	1.2	1.2
	DC	W	0.7	0.7	0.9	0.9	0.9	0.9
Drop-out Voltage Threshold	AC	\%	15	15	15	15	15	15
	DC	\%	10	10	10	10	10	10
Performance Characteristics								
Electrical Life (UL508)	Operations @ Rated Current	(Resistive)	100,000	100,000	200,000	200,000	200,000	200,000
$\begin{array}{\|l\|} \hline \text { Mechanical Life } \\ \hline \text { Operating Time (response time) } \end{array}$	Unpowered		10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000
		ms	20	20	20	20	20	20
Dialectric Strength	Between Coil and Contact	V(rms)	2500	2500	2500	2500	2500	2500
	Between Poles	V(rms)	1500	1500	1500	1500	1500	1500
	Between Contacts	V(rms)	1500	1500	1500	1500	1500	1500
Environment								
Product Certifications	Standard Version		UL,RoHS	UL,RoHS	UL,RoHS	UL,RoHS	UL,RoHS	UL,ROHS
Ambient Air Temperature	Storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	-40... 85	-40... +85	-40... 85	$-40 \ldots+85$	$-40 \ldots+85$
around the Device	Operational	${ }^{\circ} \mathrm{C}$	$-40 \ldots+55$	$-40 \ldots+55$	-40...+55	-40...+55	-40... +55	$-40 \ldots+55$
Vibration Resistance	Operational	g-n	3, $10-55 \mathrm{~Hz}$					
Shock Resistance		g-n	10	10	10	10	10	10
Degree of Protection			\|P40	1 P 40	1P40	1 P 40	1P40	P40
Weight		grams	29	29	36	36	36	36


Contact Characteristics		Units	3 TX7112		3 TX7114	3 TX7115		3 TX7116	3 TX7117
Number and Type of Contacts			DPDT	3PDT	DPDT	DPDT	3PDT	3PDT	4PDT
Contact Material			Silver Alloy						
Thermal (Carrying) Current		A	10	10	15	10	10	15	15
Maximum Switching Voltage		V	300	300	300	300	300	300	300
Switching Current at Voltage		Resistive	10A @240V	10A @240V	12A @277V	10A @277V	10A @277V	12A @277V	12A @277V
		Resistive	10A@120V	10A @120V	15A @120V	10A @120V	10A @120V	15A @120V	15A @120V
		Resistive	10A @ 28	10A @ 28	12A @ 28	10A @ 28	10A @ 28	12A @ 28	12A @ 28
		HP	1/3 @ 120VAC	1/3@ 120VAC	1/2 @ 120VAC	1/3@ 120VAC	1/3@ 120VAC	1/2 @ 120VAC	1/2 @ 120VAC
		HP	1/2 @ 240VAC	1/2 @ 240VAC	1 @ 240VAC	1/2 @ 240VAC	1/2 @ 240VAC	3/4@ 240VAC	3/4@ 240VAC
		Pilot Duty	B300						
Minimum Switching Requirement		mA	100 @ 5VDC (.5W)						
Coil Characteristics									
Voltage Range	AC	V	6...240	6...240	6...240	6...240	6... 240	6...240	6...240
	DC	V	6... 125	6... 125	6... 125	6... 125	6... 125	6... 125	6... 125
Operating Range	AC	\%	85 to 110						
	DC	\%	80 to 110						
Average Consumption	AC	VA	1.2	1.2	1.2	1.2	1.2	1.5	1.5
	DC	W	0.9	0.9	0.9	0.9	0.9	1.4	1.5
Drop-out Voltage Threshold	AC	\%	15	15	15	15	15	15	15
	DC	\%	10	10	10	10	10	10	10
Performance Characteristics									
Electrical Life (UL508)	Operations @ Rated Current	(Resistive)	200,000	200,000	100,000	100,000	100,000	200,000	200,000
Mechanical Life Operating Time (response time)	Unpowered		10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000	10,000,000
		ms	20	20	20	20	20	20	20
Dialectric Strength	Between Coil and Contact	V(rms)	2500	2500	2500	2500	2500	2500	2500
	Between Poles	V(rms)	1500	1500	1500	1500	1500	2500	2500
	Between Contacts	V(rms)	1500	1500	1500	1500	1500	1500	2500
Environment									
Product Certifications	Standard Version		UL,RoHS						
Ambient Air Temperature	Storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+85$	$-40 \ldots+85$	$-40 \ldots+85$	-40...+85	$-40 \ldots+85$	$-40 \ldots+85$	-40...+85
around the Device	Operational	${ }^{\circ} \mathrm{C}$	$-40 \ldots+55$						
Vibration Resistance	Operational	g-n	3, $10-55 \mathrm{~Hz}$	3, $10-55 \mathrm{~Hz}$	3, $10-55 \mathrm{~Hz}$	3, 10 - 55 Hz	3, $10-55 \mathrm{~Hz}$	3, $10-55 \mathrm{~Hz}$	3, $10-55 \mathrm{~Hz}$
Shock Resistance		g-n	10	10	10	10	10	10	10
Degree of Protection Weight			IP40	1 P 40	\|P40	\|P40	\|P40	1 P 40	1 P 40
		grams	89	89	36	88	88	60	60

## Function Relays, Interfaces and Converters

Coupling Relays and Interfaces
3TX71 plug-in relays

General specifications

Contact Characteristics		Units	3 TX7127			3TX7130
Number and Type of Contacts			DPDT	4PDT	4PDT	All
Contact Material			Silver Alloy	Fine Silver	Silver Alloy	Silver Alloy
Thermal (Carrying) Current		A	12	3	5	40
Maximum Switching Voltage		V	300	300	300	600
Switching Current at Voltage		Resistive	12A @ 240 V	3A @240V	12A @ 240 V	40A @277V
		Resistive	12A @120V	3A @120V		-
		Resistive	12A @ 28	3A @ 30		40A @ 28
		HP	1/3@ 120VAC	1/16 @ 120VAC	-	-
		HP	1/2 @ 240VAC	1/10 @ 240VAC	-	-
		Pilot Duty	B300	-	-	-
Minimum Switching Requirement		mA	100 @ 5VDC (.5W)	10 @ 5VDC (.5W)	100 @ 5VDC (.5W)	1000 @ 12VAC/DC
Coil Characteristics						
Voltage Range	AC	V	6...240	6...240	6... 240	6... 600
	DC	V	6...125	6...125	6...125	6... 600
Operating Range	AC	\%	85 to 110	85 to 110	85 to 110	85 to 110
	DC	\%	80 to 110	80 to 110	80 to 110	80 to 110
Average Consumption	AC	VA	1.2	1.2	1.2	10
	DC	W	0.9	0.9	0.9	4
Drop-out Voltage Threshold	AC	\%	15	15	15	10
	DC	\%	10	10	10	10
Performance Characteristics						
Electrical Life (UL508)	Operations @ Rated Current	(Resistive)	100,000	100,000	100,000	100,000
Mechanical Life	Unpowered		10,000,000	10,000,000	10,000,000	1,000,000
Operating Time (response time)		ms	20	20	20	30
Dialectric Strength	Between Coil and Contact	V(rms)	1,500	1240	1240	2200
	Between Poles	V (ms)	1,500	1240	1240	2200
	Between Contacts	V(rms)	1500	500	500	1500
Environment						
Product Certifications	Standard Version		UL,RoHS	UL,RoHS	UL,RoHS	UL
Ambient Air Temperature	Storage	${ }^{\circ} \mathrm{C}$	-40... 85	$-40 \ldots+85$	-40... 85	-40... 85
around the Device	Operational	${ }^{\circ} \mathrm{C}$	-40...+55	$-40 \ldots+70$	-40... +70	$-40 \ldots+70$
Vibration Resistance	Operational	g-n	3, 10-55 Hz	3, 10-55 Hz	$3,10-55 \mathrm{~Hz}$	$3,10-55 \mathrm{~Hz}$
Shock Resistance		g-n	10	10	10	-
Degree of Protection			1P67	\|P67	IP67	Open
Weight		grams	130	45	45	227 to 312


Contact Characteristics		Units	3TX7131			3 TX7132
Number and Type of Contacts			DPST-N0	DPDT	DPDT	SPDT
Contact Material			Silver Alloy	Silver Alloy	Silver Alloy	Silver Alloy
Thermal (Carrying) Current		A	30	30 DPDT-N0	3 DPDT-NC	30 SPDT-N0
Maximum Switching Voltage		V	600	300	300	300
Switching Current at Voltage		Resistive	20A @300V	30A @277V	3A @277V	30A @277V
		Resistive	-	-	-	-
		Resistive	20A @ 28	20A@ 28	3 A @ 28	10A@ 28
		HP	1/3@ 120VAC	1 @ 120VAC	-	1 @ 120VAC
		HP	1/2 @ 600VAC	3 @ 240VAC	-	2 @ 240VAC
		Pilot Duty	-	-	-	-
Minimum Switching Requirement		mA	500 @ 12VAC/DC	500 @ 12VAC/DC	500 @ 12VAC/DC	1000 @ 12VAC/5VDC
Coil Characteristics						
Voltage Range	AC	V	12... 240	12... 240	12... 240	12...277
	DC	V	6...110	6... 110	6...110	5...110
Operating Range	AC	\%	85 to 120	85 to 120	85 to 120	85 to 120
	DC	\%	75 to 120	75 to 120	75 to 120	75 to 120
Average Consumption	AC	VA	4	4	4	2.8
	DC	W	1.7	1.7	1.7	1
Drop-out Voltage Threshold	AC	\%	10	10	10	10
	DC	\%	10	10	10	10
Performance Characterist						
Electrical Life (UL508)	Operations @ Rated Current	(Resistive)	100,000	100,000	100,000	100,000
Mechanical Life	Unpowered		5,000,000	5,000,000	5,000,000	10,000,000
Operating Time (response time)		ms	15	15	15	15
Dialectric Strength	Between Coil and Contact	V (mms)	4000	4000	4000	2500
	Between Poles	V (rms)	2000	2000	2000	1500
	Between Contacts	V (rms)	1500	1500	1500	1500
Environment						
Product Certifications	Standard Version		UL	UL	UL	UL
Ambient Air Temperature	Storage	${ }^{\circ} \mathrm{C}$	-40... 85	-40... +85	$-40 \ldots+85$	-40... +85
around the Device	Operational	${ }^{\circ} \mathrm{C}$	$-40 \ldots+55$	$-40 \ldots+55$	$-40 \ldots+55$	$-40 \ldots+55$
Vibration Resistance	Operational	g-n	3, $10-55 \mathrm{~Hz}$	$3,10-55 \mathrm{~Hz}$	3, 10-55 Hz	$3,10-55 \mathrm{~Hz}$
Shock Resistance		g-n	10	10	10	10
Degree of Protection			-	-	-	-
Weight		grams	86	86	86	33

## Coupling Relays and Interfaces

## 3TX71 plug-in relays



## Coupling Relays and Interfaces

Circuit diagrams

3TX7116
3PDT

${ }^{134}$ Mell ${ }^{14}$
$3 T X 7117$
4PDT


131 にl 14

3TX7127 (DPDT)


## 3TX7130

SPST-NO

$3 T X 7130$
SPST-NC


SPST-NC-DB

## 3TX7130

SPDT


3 XX7130 (DPDT)


3TX7130
DPST-NO


3TX7131 (DPST-NO) (AC)


## Coupling Relays and Interfaces

## 3TX71 plug-in relays

Circuit diagrams				
3TX7131 (DPST-NO) (DC)	$3 T X 7131$ (DPDT) (AC)	3TX7131 (DPDT) (DC)		
$\mathrm{A}^{2}(0)-800 \\|^{\mathrm{Al}_{1}(1)}$		$\mathrm{A}^{\text {2 (0) }} \boldsymbol{\\|}$		
	${ }^{22(3)}$ - ${ }^{\circ}{ }^{12(7)}$	${ }^{22(3)}$ - $\nabla^{12(7)}$		
${ }^{21(4)}=\uparrow \uparrow={ }^{11(8)}$	${ }^{214}{ }^{24}(2) \sim 4{ }^{11(8)}$	${ }^{21(4)}=4{ }^{11(8)}$		
${ }^{24(2)}=-={ }^{14(6)}$	${ }^{24(2)}=-\quad{ }^{14(6)}$	${ }^{24}(2)=-1{ }^{14}(6)$		

## Function Relays, Interfaces and Converters

## Coupling Relays and Interfaces

3TX71 plug-in relays

Dimension drawings

3TX7110 SPDT


3TX7111 DPDT


3TX7111 4PDT

$3 T X 7112$ DPDT


## Coupling Relays and Interfaces

## 3TX71 plug-in relays

Dimension drawings

## 3TX7114 DPDT

3 XX7115 (DPDT) (clear cover)


## $3 T X 7115$ (DPDT) (full feature)



3TX7115 3PDT


3TX7116 3PDT


## 3TX7117 4PDT



Dimension drawings
3TX7127 (DPDT)


## 3TX7127 3PDT



3TX7130 SPST NC

$3 T X 7127$ 4PDT


3TX7130 SPST NO


## Coupling Relays and Interfaces

3TX71 plug-in relays

Dimension drawings
3TX7130 SPDT


3TX7130 DPDT


3TX7131 (DPST-NO)


3TX7130 DPST NO


3TX7130 DPDT with magnetic blowout


3TX7131 (DPDT)


## Coupling Relays and Interfaces

3TX71 plug-in relays

Dimension drawings
3TX7144-1E2


3TX7144-1E4


3TX7144-1E3



## Coupling Relays and Interfaces

## 3TX71 plug-in relays

Dimension drawings

3TX7144-1E5


3TX7144-4E1


3TX7144-4E3


3TX7144-1E6


## 3TX7144-4E2




## Coupling Relays and Interfaces

3TX71 plug-in relays

## Dimension drawings

3TX7144-4E4


3TX7144-4E6


3TX7144-4E8


远


3TX7144-4E7


## 3TX7144-4E9



## Relays

## Coupling Relays

LZS coupling relays with plug-in relays

Selection and ordering data


Note:
Logical separation: The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for the coil. Logical separation is not necessarily protective separation.

Protective separation: Protective separation prevents voltage of one circuit affecting another circuit with sufficient protection (IEC 61140).

## Relays

## Coupling Relays

LZS coupling relays with plug-in relays


1) The push-to-test is designed to be non-latching. If the push-to-test is pressed further until $90^{\circ}$ has been reached, two small lugs break off and the push-to-test can be latched in position.

Note:
Logical separation: The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for the coil. Logical separation is not necessarily protective separation.

Protective separation: Protective separation prevents voltage of one circuit affecting another circuit with sufficient protection (IEC 61140).

## Coupling Relays

LZS coupling relays with plug-in relays


## Note:

Logical separation: The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for the coil. Logical separation is not necessarily protective separation.

Protective separation: Protective separation prevents voltage of one circuit affecting another circuit with sufficient protection (IEC 61140).

## Relays

## Coupling Relays

LZS coupling relays with plug-in relays


## Note:

Logical separation: The terminals for the contacts and the terminals for the coil are arranged on separate levels, e.g. above for contacts and below for the coil. Logical separation is not necessarily protective separation.
Protective separation: Protective separation prevents voltage of one circuit affecting another circuit with sufficient protection (IEC 61140).

## Coupling Relays

LZS coupling relays with plug-in relays


## Relays

## Coupling Relays

LZS coupling relays with plug-in relays

## Technical specifications



- Finely stranded with end sleeve
$\mathrm{mm}^{2} 1 \times(0.75 \ldots 1.0), 2 \times 0.75,1 \times 1.5$
${ }^{\text {1) }}$ AC voltages, 50 Hz ; for 60 Hz operation, the lower response value must be increased by 10\%; the power loss will decrease slightly.


## Coupling Relays

LZS coupling relays with plug-in relays

Relay type		LZX:RT print relay, 8-pin, ( 12.7 mm ) 1 CO / 2 CO				LZX:PT industrial relay, 8-, 11- and 14-pin, ( 22.5 mm ) $2 \mathrm{CO} / 3 \mathrm{CO} / 4 \mathrm{CO}$			
Rated control supply voltage $U_{S}{ }^{1}$ )	V	24 DC	24 AC	115 AC	230 AC	24 DC	24 AC	115 AC	230 AC
Control side									
Operating range factor		$0.9 \ldots 1.4$	$0.9 \ldots 1$			$0.9 \ldots 1.4$	$0.9 \ldots 1.1$		
Power consumption at $U_{\text {s }}$									
- AC	VA	--	0.75			--	1		
- DC	W	0.4	--			0.75	--		
Release voltage	V	2.4	7.2	34.5	69	3.6	7.2	34.5	69
Protection circuit		Freewheel diode for complete unit	--			Freewheel diode in LED module	--		
Load side									
Switching voltage AC/DC	V	$24 . .250$							
Rated currents ${ }^{\text {2 }}$									
- Conventional thermal current $I_{\text {th }}$   - 1 CO contact   - 2 CO contacts   - 3 CO contacts   - 4 CO contacts	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 16 \\ & 6 \\ & -- \end{aligned}$				$\begin{aligned} & 12 \\ & 10 \\ & 6 \end{aligned}$			
- Rated operational current $I_{\mathrm{e}} / \mathrm{AC}-15$ acc. to utilization categories (IEC 60947-5-1)	A	RT3 (1 CO   RT4 (2 CO	ontact) ontacts)			PT2 (2 CO   PT3 (3 CO   PT5 (4 CO	ontacts ontacts: ontacts:	C coils	C coils)
- Rated operational current $I_{\mathrm{e}}$ DC-13 with suppressor diode acc. to utilization categories (IEC 60947-5-1)	A	$\begin{aligned} & 2 \text { at } 24 \mathrm{~V}, \\ & 0.27 \text { at } 230 \end{aligned}$				PT2, PT3, 4 at 24 V , 0.5 at 230	55:		
Short-circuit protection									
Short-circuit test with fuse links of operational class gG with short-circuit current $I_{\mathrm{k}}=1 \mathrm{kA}$ acc. to IEC 60947-5-1									
- DIAZED, type 5SB	A	10				6			
Min. contact load (reliability: 1 ppm )		Standard hard gold-	$\begin{aligned} & \mathrm{V}, 10 \mathrm{~m} \\ & \text { lated } 17 \end{aligned}$	$1 \mathrm{~mA}$		Standard hard gold-	$\mathrm{V}, 10 \mathrm{~m}$ $\text { lated } 20$		
Mechanical endurance	Operating cycles	$30 \times 10^{6}$	$10 \times 10$						
Electrical endurance (resistive load at 250 V AC)	Operating cycles	$1 \times 10^{5}$							
1) AC voltages, 50 Hz ; for 60 Hz operation, the lower response value must be increased by $10 \%$; the power loss will decrease slightly.									

## Relays

## Coupling Relays

LZS coupling relays with plug-in relays


## Limit Switches and Safety



## contents

Introduction 13/4-13/6

## SIRIUS 3SE5 mechanical position switches

General data 13/7-13/13
3SE5, plastic enclosures

- Enclosure width 31 mm according to EN 50047 13/14-13/19
- Enclosure width 40 mm according to EN 50041 13/20-13/23
- Enclosure width 50 mm 3SE5, metal enclosures 13/24-13/27

3SE5, metal enclosures

- Enclosure width 31 mm according to EN 50047 13/28-13/31
- Enclosure width 40 mm according to EN 50041 13/32-13/35
- Enclosure width 56 mm 13/36-13/39
- Enclosure width 56 mm, XL 13/40-13/42
- Compact design 13/43-13/44

3SE5, open-type design

- Enclosure width 30 mm

13/45
Accessories and spare parts 13/46-13/48
SIRIUS 3SE5, 3SE2 mechanical safety switches
With separate actuator
General data 13/49-13/50

3SE5, plastic enclosures 13/51-13/53
3SE5, metal enclosures 13/54-13/55
Accessories 13/56
3SE2, plastic enclosures 13/57
With tumbler
General data 13/58-13/60
3SE5, plastic enclosures, locking force greater than 1200 N 13/61-13/62
3SE5, metal enclosures, locking force greater than $2000 \mathrm{~N} \quad 13 / 63$
Accessories 13/64-13/65
SIRIUS 3SE5, 3SE2 mechanical safety hinge switches
General data 13/66
3SE5, plastic enclosures 13/67
3SE5, metal enclosures $\quad 13 / 68$
3SE2, plastic enclosures

- with integrated hinge

13/69-13/70
SIRIUS 3SE5 mechanical position switches
for ambient temperatures down to $-40{ }^{\circ} \mathrm{C}$
Shock and vibration test
SIRIUS 3SE5 mechanical position switches

- 3SE5, plastic enclosures 13/71
SIRIUS 3SE5 mechanical safety switches with tumbler
- 3SE5, plastic enclosures 13/72
SIRIUS 3SE5 mechanical safety hinge switches
- 3SE5, plastic enclosures 13/73
Shock and vibration test according to railway standard
SIRIUS 3SE5 mechanical position switches
- 3SE5, plastic enclosures 13/74-13/77
- 3SE5, metal enclosures 13/78-13/82

SIRIUS 3SE5 mechanical safety switches with separate actuator

- 3SE5, plastic enclosures 13/83
SIRIUS 3SE5 mechanical safety switches with tumbler
- 3SE5, plastic enclosures


## Limit Switches and Safety

## contents（cont．）

SIRIUS 3SF1 mechanical safety switches for AS－Interface

General data	$13 / 85-13 / 86$
3SF1，plastic enclosures	$13 / 87-13 / 91$

> 12/87 3SF1, metal enclosures

With separate actuator

General data	$13 / 92-13 / 93$
3SF1，plastic enclosures	$13 / 94$
3SF1，metal enclosures	$13 / 95$
Acessor	

Accessories 13／96

With tumbler
General data 13／97
3SF1，plastic enclosures with locking force greater than $1200 \mathrm{~N} \quad$ 13／98
3SF1，metal enclosures with locking force greater than 2000 N 13／99
Safety hinge switches
3SF1，plastic enclosures 13／100
3SF1，metal enclosures 13／101

SIRIUS 3SE6 non－contact safety switches
Magnet
3SE66，3SE67 magnetically operated switches 13／102－13／107
RFID
3SE63 RFID safety switches 13／108－13／111

3SE03 North American（NEMA）Limit Switches
Plug－in and NEMA 6P Submersible

Overview	$13 / 114$
Technical specifications，modular plug－in and	
NEMA Type 6P submersible	$13 / 115$
Ordering and selection data：	$13 / 116$
Modular，plug－in metal housing	$13 / 117$
NEMA type 6P submersible，prewired cable	$13 / 118$
NEMA type 6P submersible，prewired receptacle	$13 / 119$
Modular，Plug－in and NEMA 6P sumbersible as components	$13 / 120-13 / 121$
Levers for plug－in and NEMA type 6P submersible	$13 / 122$
Wiring Diagrams	$13 / 123-13 / 125$
Dimension Diagrams	
Metal Enclosure	$13 / 126-13 / 127$
Ordering and selection data	$13 / 126-13 / 127$
Specifications	$13 / 127$
Technical Data	$13 / 126-13 / 127$
Dimension drawings	



## Limit Switches and Safety


contents (cont.)
3SE Mechanical Safety
3SE7 Cable-operated Switches
Overview, technical data and travel diagrams 13/128
Selection and ordering data
13/129-13/131
3SB3 Two-hand Control.
3SB3, selection and ordering data 13/132

## Safety relays

SIRIUS 3SK safety relays
General data 13/133-13/139
Basic units

- SIRIUS 3SK1 Standard basic units	$13 / 140$
- SIRIUS 3SK1 Advanced basic units	$13 / 141$
- SIRIUS 3SK2 basic units	$13 / 142$

Expansion units
$\begin{array}{ll}\text { - Output expansions } & \text { 13/144 }\end{array}$

- Input expansions 13/145
Accessories 13/146-13/148


## SIRIUS 3TK28 safety relays

With special functions	$13 / 149-13 / 150$
Accessories	$13 / 151$

SIRIUS 3RK3 Modular Safety System

General data	$13 / 152-13 / 159$
3RK31 central units	$13 / 160$
3RK32, 3RK33 expansion modules	$13 / 161$
3RK35 interface modules	$13 / 161$
Accessories	$13 / 162$

SIRIUS 3RK and 3SK Safety Software
SIRIUS Safety ES
$13 / 163-13 / 165$

## Introduction

## Overview

	$\begin{aligned} & \text { 3SE523., } \\ & \text { 3SE521., } \\ & \text { 3SF12.4 } \end{aligned}$	$\begin{aligned} & \text { 3SE524., } \\ & \text { 3SF1244 } \end{aligned}$	3SE513., 3SE511., 3SF1114	$\begin{aligned} & \text { 3SE512., } \\ & \text { 3SF1124 } \end{aligned}$	3SE516.	$\begin{aligned} & \text { 3SE5413, } \\ & \text { 3SE5423 } \end{aligned}$	3SE5250
	Position switches, standard					Compact design	Open-type
Enclosure   Plastic   Metal   Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ ) in mm   Degree of protection	$31 \times 68 \times 33$   IP65, IP66/IP67	$50 \times 53 \times 33$   IP66/IP67	$40 \times 78 \times 38$   IP66/IP67	$56 \times 78 \times 38$   IP66/IP67	$56 \times 100 \times 38$   IP66/IP67	$\begin{aligned} & 30 \times 50 \times 16 \\ & 40 \times 50 \times 16 \\ & \text { IP66/IP67 } \end{aligned}$	$\begin{aligned} & 30 \times 48.5 \times 20 \\ & \text { IP10 or IP20 } \end{aligned}$
Standards   IEC 60947-5-1	Mounting and operating points acc. to EN 50047	Operating points acc. to EN 50047	Mounting and operating points acc. to EN 50041	Operating points acc. to EN 50041	Operating points acc. to EN 50041		Mounting and operating points acc. to EN 50047
Approvals	CE, TÜV, UL, C	CSA, CCC	CE, TÜV, UL, C	CSA, CCC		$\begin{aligned} & \text { CE, UL, CSA, } \\ & \text { CCC } \end{aligned}$	CE, TÜV, UL, CSA, CCC
Contact blocks							
2 slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC} ;$		$1 \mathrm{NO}+1 \mathrm{NC} ;$	2 NC	$2 \times(1 \mathrm{NO}+1 \mathrm{NC})$	)	$1 \mathrm{NO}+1 \mathrm{NC}$
2 snap-action contacts   - Short stroke   - With $2 \times 2 \mathrm{~mm}$ contact gap	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$		$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \boldsymbol{\checkmark} \\ & \boldsymbol{\checkmark} \end{aligned}$		$2 \times(1 \mathrm{NO}+1 \mathrm{NC})$	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \checkmark \\ & \checkmark \end{aligned}$
3 slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC} ;$	$2 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NO}+2 \mathrm{NC} ;$	$2 \mathrm{NO}+1 \mathrm{NC}$		--	$\begin{aligned} & 1 \mathrm{NO}+2 \mathrm{NC} ; \\ & 2 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$
- With make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$		$1 \mathrm{NO}+2 \mathrm{NC}$		$2 \times(1 N O+2 N C)$	--	$1 \mathrm{NO}+2 \mathrm{NC}$
3 snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$		$1 \mathrm{NO}+2 \mathrm{NC}$		--	--	$1 \mathrm{NO}+2 \mathrm{NC}$
Special features   LED status display Increased corrosion protection ASIsafe integrated					--	--	--
Electrical specifications   Insulation voltage $U_{i}$ Conventional thermal current $I_{\text {th }}$	$\begin{aligned} & 400 \mathrm{~V} \\ & 6 \mathrm{~A} / 10 \mathrm{~A}(3-/ 2-1 \end{aligned}$	-pole)	$\begin{aligned} & 400 \mathrm{~V} \\ & 6 \mathrm{~A} / 10 \mathrm{~A}(3-/ 2-1 \end{aligned}$	-pole)		$\begin{aligned} & 400 \mathrm{~V} \\ & 6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~V} \\ & 6 \mathrm{~A} \end{aligned}$
Connections   Cable entry   M12 plug, 4-, 5- or 8-pole   Plug, 6-pole + PE   Molded cables	$1 \times \mathrm{M} 20 \times 1.5$	$2 \times \mathrm{M} 20 \times 1.5$	$\begin{aligned} & 1 \times \mathrm{M} 20 \times 1.5 \\ & \checkmark \\ & \checkmark \\ & -- \end{aligned}$	$3 \times \mathrm{M} 20 \times 1.5$	$\begin{aligned} & 3 \times \mathrm{M} 20 \times 1.5 \\ & \checkmark \\ & -- \\ & -- \end{aligned}$	--      -	--
Actuators							
Rounded plungers and roller plungers	$\checkmark$		$\checkmark$		$\checkmark$	--	--
Roller levers and angular roller levers	$\checkmark$		$\checkmark$		$\checkmark$	--	--
Spring rod	$\checkmark$		$\checkmark$		--	--	--
Twist levers and rod actuators	$\checkmark$		$\checkmark$		$\checkmark$	--	--
Fork lever	--		$\checkmark$		--	--	--
Hinge switches	--		--		--	--	--
Plungers, twist levers	--		--		$\checkmark$	$\checkmark$	$\checkmark$
Page   Complete units   Modular system   Ambient temperature $-40^{\circ} \mathrm{C}$ ASIsafe	$\begin{aligned} & 13 / 14,13 / 28 \\ & 13 / 18,13 / 30 \\ & 13 / 71,13 / 74 \\ & 13 / 87,13 / 89 \end{aligned}$	$\begin{aligned} & 13 / 24 \\ & 13 / 26 \\ & 13 / 74 \\ & 13 / 87 \end{aligned}$	$\begin{aligned} & 13 / 20,13 / 32 \\ & 13 / 22,13 / 34 \\ & 13 / 77 \\ & 13 / 91 \end{aligned}$	$\begin{aligned} & 13 / 36 \\ & 13 / 38 \\ & 13 / 80 \\ & 13 / 91 \end{aligned}$	$\begin{aligned} & 13 / 40 \\ & 13 / 41 \\ & 13 / 81 \\ & - \end{aligned}$	$\begin{aligned} & 13 / 43 \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 13 / 45 \\ & - \\ & - \\ & - \end{aligned}$

$\checkmark$ Available
-- Not available

$\checkmark$ Available
-- Not available

len

$\checkmark$ Available
-- Not available

1) CCC not required for voltages $<36 \mathrm{~V}$.

## SIRIUS 3SE5 Mechanical Position Switches

## General data

Overview

## More information

Homepage, see www.siemens.com/sirius
Industry Mall, see www.siemens.com/product?3SE
Configurator, see www.siemens.com/sirius/configurators System Manual, see
https://support.industry.siemens.com/cs/ww/en/view/43920150 Conversion tool, see www.siemens.com/sirius/conversion-tool

The innovative SIRIUS 3SE5 position switches are modern in design, compact, modular and simple to connect. They save time and increase flexibility during installation of a whole range of switch variants. In principle it is possible to combine any enclosure with any operating mechanism, paying due consideration to the EN 50041 and EN 50047 standards where necessary.

## Complete units

Popular versions of the position switches in standard enclosures are available as complete units.


3SE5 position switches with plastic and metal enclosures

## Modular system

The 3SE5 series is the modular system comprising different sizes of the basic switch and an actuator which must be ordered separately. Thanks to the modular design of the switch the user can select the right solution for his application from numerous versions and install it himself in a very short time.
Simple plug-in mounting enables fast replacement of the actuator heads.


Examples of selection options in the modular system

## Design

All enclosure variants have an integrated chlorinated rubber diaphragm for high functional safety in cold and aggressive environments.

## Enclosure sizes

The 3SE5 switches are available in five different enclosure sizes with 2 or 3 contacts and with the XL enclosure:

- Open-type position switch IP20 or IP10
- Plastic enclosures according to EN 50047, 31 mm wide, IP65, 1 cable entry
- Metal enclosures according to EN 50047, 31 mm wide, IP66/IP67, 1 cable entry
- Plastic and metal enclosures according to EN 50041, 40 mm wide, IP66/IP67, 1 cable entry
- Plastic enclosures, 50 mm wide, IP66/IP67, 2 cable entries
- Metal enclosures, 56 mm wide, IP66/IP67, 3 cable entries
- XL metal enclosures with 4 to 6 contacts, 56 mm wide, IP66/IP67, 3 cable entries


## Enclosure versions

Various basic switches can be selected for the enclosures of the 3SE5 series:

- With contact blocks with two or three contacts (screw terminals) designed as slow-action or snap-action contacts; the slow-action contacts also with make-before-break
- Optional LED status display
- With mounted 4- or 5-pole M12 device plug (available for the wide enclosures as an accessory for self-assembly)
- With 6-pole device plug + PE on the metal enclosures
- Versions with increased corrosion protection
- Versions for operating temperatures down to $-40^{\circ} \mathrm{C}$
- AS-Interface version with integrated ASIsafe electronics for all enclosure designs (see page 13/85)


## Actuator variants

All operating mechanisms can be rotated around the axis in increments of $22.5^{\circ}$. The following actuator variants are available:

- Plain, rounded and roller plungers
- Roller levers and angular roller levers
- Spring rod
- Twist levers and rod actuators with twist actuator
- Fork levers with twist actuator

The actuator rollers are available with various materials and diameters.


Twist actuator for twist levers and rod levers,
with setting of switching direction to right, left or right/left (standard for all twist actuators except fork levers)

## SIRIUS 3SE5 Mechanical Position Switches

## General data

## Cover design

The mechanical position switches have a turquoise cover and the mechanical safety switches have a yellow cover.


On request the switches can be delivered ex works with a yellow cover. The cover has no effect on the mode of operation.
Both versions can be used in safety applications, (see also
nade 13/16).

## Diverse contact types

Exchangeable two- and three-pole contact blocks for all enclosure sizes


The three-pole contact block with snap-action or slow-action contacts is regularly available for all enclosure forms. The same installation space is required as for a two-pole block. The version with $1 \mathrm{NO}+2 \mathrm{NC}$ offers, for example, more safety through redundant shutdowns (2 NC contacts) with simultaneous signaling (NO contact). The three-pole blocks are also available with make-before-break and with $2 \mathrm{NO}+1 \mathrm{NC}$.

## Contact reliability

The contact blocks ensure an extremely high contact stability. This applies even when the devices are switching low voltages and currents, e.g. 1 mA at 5 VDC .

## Positive opening $\Theta$

The NC contacts of the switch are forced open mechanically, positively-driven and reliably by the plunger. This is referred to as "positive opening".

## Mounting

Easy plug-in method for fast replacement of the actuator heads


Open the cover (1)
Actuate the locking lever (2)
Replace the head (turnable by $16 \times 22.5^{\circ}$ ) (3)
Lock and close the cover (4)

## Quick-connect technology

For plastic enclosure with a width of 31 mm


These position switches can be wired quickly and easily as an added customer benefit. The connecting cable is first connected to the terminals of the contact block and then guided through a slit into the cable gland opening. The time saved through this new connection method is approx. 20 to $25 \%$.
A cable gland with seal must be used with the quick-connect method.

## Optional LED indicators

LED indicators are available for all enclosure sizes except for XL. The enclosures are supplied with an LED signaling indicator $(1 \times$ green $+1 \times$ yellow). This is the first time that optical signaling equipment is also available for small standard enclosures according to EN 50047. The LEDs are implemented in 24 V DC and 230 V AC.

Article No. scheme


## Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## Benefits

The 3SE5 position switches differ from the previous series through the following new characteristics:

- The modular design of the product range allows a number of versions with a smaller number of bearing types for enclosures and operating mechanisms.
- All actuators can be turned around the axis in increments of $22.5^{\circ}$ (see picture, page 13/8).
- Rounded and roller plungers according to EN 50041 with 3 mm overtravel (total travel 9 mm ) for greater tolerance when switching.
- All enclosure sizes - now also including the small enclosure 31 mm wide - are optionally available with an LED signaling indicator (see nicture, nade 13/8).
- All enclosure variants have an integrated chlorinated rubber diaphragm for high functional safety in cold and aggressive environments.
- All contact blocks are replaceable (see page 13/47).
- The three-pole contact blocks are available for all enclosure sizes (see picture, page 13/8).
- Elements with 1 NO +2 NC slow-action contacts with make-before-break and $2 \mathrm{NO}+1 \mathrm{NC}$.
- The short-stroke contact block $1 \mathrm{NO}+1 \mathrm{NC}$ improves the precision of the switching operation through a reduced actuation path.
- The contact block with $1 \mathrm{NO}+1 \mathrm{NC}$ snap-action contacts with $2 \times 2 \mathrm{~mm}$ contact opening is suitable for simultaneous shutdown and signaling, particularly in the elevator industry.
- XL metal enclosures for accommodating two 2- or 3-pole contact blocks.
- The plastic enclosure with a width of 31 mm has simple and fast wiring equipment which makes it possible to save approx. 20 to $25 \%$ of the time when connecting (see picture, page 13/8),


## Application

With the standard position switches, mechanical positions of moving machine parts are converted into electrical signals. Through their modular and uniform design and large number of variants, the devices can comply with practically all requirements in industry.
Devices are available with enclosure versions to suit the particular ambient conditions. Different control tasks can be performed with the contact blocks best suited for the particular purpose. And many different actuator variants are available to match the mechanical configuration of the moving machine parts. Dimensions, fixing points and characteristics are largely in accordance with the EN 50041 or EN 50047 standards.

The devices are suitable for use in any climate.

## Standards

IEC/EN 60947-5-1
The protective measure of "total insulation" by the molded-plastic enclosure is ensured by the use of molded-plastic screw glands.

## Safety position switches

For controls according to IEC/EN 60204-1, the devices can be used as a safety position switch. They comply with the standard EN ISO 14119. A TÜV certificate is available. To secure position switches against changes in their position, keyed techniques must be employed on installation.

## Safety circuits

The IEC/EN 60947-5-1 standard requires positive opening of the NC contacts. In other words, for the purposes of personal safety, the assured opening of NC contacts is expressly stipulated for the electrical equipment of machines in all safety circuits and marked in accordance with the standard IEC 60947-5-1 with the symbol $\Theta$.
Category 2 according to EN ISO 13849-1 can be attained with 3SE5 position switches with $\Theta$, and category 3 or 4 when using an additional position switch, if the corresponding fail-safe evaluation units are selected and correctly connected. Example: 3SK or 3TK28 safety relays or the corresponding devices from the ASIsafe, SIMATIC or SINUMERIK programs. The operating mechanisms (actuators) must also be connected to the enclosure by keyed techniques. The corresponding operating mechanisms are marked in the catalog with $\Theta$.

## SIRIUS 3SE5 Mechanical Position Switches

## General data

## Contacts for every application

- Snap-action contacts: NC and NO contacts switch simultaneously - regardless of the actuating speed ( $v_{\text {min }}=0.01 \mathrm{~m} / \mathrm{s}$ ) and contact erosion.
- Slow-action contacts: Difference in travel between "NC contact opens" and "NO contact closes"; the switching speed is the same as or proportional to the actuating speed ( $v_{\text {min }}=0.4 \mathrm{~m} / \mathrm{s}$ ).
- Slow-action contacts with make-before-break: e.g. suitable for adding a second function to a sequence control.


## Operating mechanisms for every application

Standard, rounded and roller plungers

- Operation in direction of the plunger axis or in case of roller plunger with bar at right angles to the plunger axis.
- The roller plunger is recommended for lateral actuation and relatively long overtravel.


## Roller levers and angular roller levers

- For actuators made of finely ground steel in the form of cams, straight-edges (approach angle $30^{\circ}$ ) or cam disks.


## Monitoring with fail-safe evaluation units from the 3SK and 3RK3 series



## Note: <br> Note:

Taking account of certain fault exclusions (e.g. actuator breakage), use of just one hinge switch or a switch with separate actuator with or without tumbler up to SIL 2 or $\mathrm{PL} d$ is possible as described in the table.
Since the machine manufacturer must provide proof of fault exclusion, the component manufacturer is unable to carry out a definitive assessment of the measures taken.

## Spring rod

- Can be used for undefined actuations and changing starting conditions
- Starting from any direction is possible

Twist levers and rod actuators

- For high starting speeds ( $v=1.5 \mathrm{~m} / \mathrm{s}$ )
- Variety of starting options
- Insensitive to oil, grinding dust and coarse-grained material
- Adjustment of the lever in increments of $10^{\circ}$
- Can be adjusted with left or right switching


## Fork lever

- Switchable in two directions
- Latching actuator
- For reciprocating movements

For more information, see
https://support.industry.siemens.com/cs/ww/en/view/35443942.
The maximum achievable SIL or PL always depends on other assumptions as well. Factors to be taken into account include the DC (declaration), the CCF, and the number of actuations.
For information on the safe evaluation units and an introduction to safety systems, see page 13/133 onwards.

## SIRIUS 3SE5 Mechanical Position Switches

## General data

## Technical specifications

Type		3SE51.. ${ }^{1)}$, 3SE52.. ${ }^{1}$ )	3SE541.	3 SE542.
General data				
Standards		IEC/EN 60947-5-1, EN ISO 14119		
Rated insulation voltage $U_{i}$ Degree of pollution according to IEC 60664-1	V	$400^{2)}$   Class 3	400   Class 3	
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6	4	
Rated operational voltage $U_{e}$	V	400 AC ; over 300 V AC same potential only ${ }^{3}$ )	300 AC	
Conventional thermal current $I_{\text {th }}$	A	10	10	
Rated operational current $I_{\mathrm{e}}$   - For alternating current $50 / 60 \mathrm{~Hz}$   - At 24 V   - At 120 V   - At 240 V   - At 400 V   - For direct current   - At 24 V   - At 125 V   - At 250 V   - At 400 V	$\begin{aligned} & A \\ & A \end{aligned}$	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{AC}-15 \\ & 6 \\ & 6 \\ & 6 \\ & 4 \\ & I_{\mathrm{e}} / \mathrm{DC}-13 \\ & 3 \\ & 0.55 \\ & 0.27 \\ & 0.12 \end{aligned}$	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{AC}-15 \\ & 6 \\ & 6 \\ & 3 \\ & -- \\ & I_{\mathrm{e}} / \mathrm{DC}-13 \\ & 3 \\ & 0.55 \\ & 0.27 \end{aligned}$	
Short-circuit protection ${ }^{4)}$   - With DIAZED fuse links, utilization category gG   - With miniature circuit breaker, C char. $\left(I_{\mathrm{K}}<400 \mathrm{~A}\right)$	A A		$\begin{aligned} & 10 \\ & 3 \end{aligned}$	
Mechanical endurance   - Basic switch   - With spring rod, 3SE5...-..R..   - With fork lever, 3SE51..-..T..		$15 \times 10^{6}$ operating cycles $10 \times 10^{6}$ operating cycles $1 \times 10^{6}$ operating cycles	$10 \times 10^{6}$ operating cycles	$10 \times 10^{6}$ operating cycles
Electrical endurance   - With 3RH.1, 3RT contactors in size S00, S0   - For utilization category AC-15 when switching off $I_{\mathrm{e}} / \mathrm{AC}-15$ at 240 V   - With utilization category DC-12/DC-13		$10 \times 10^{6}$ operating cycles   100000 operating cycles   For direct current depending on	500000 operating cycles 100000 operating cycles   the loading of the switch	500000 operating cycles 100000 operating cycles
Switching frequency With 3RH.1, 3RT contactors in size S00, S0		6000 operating cycles/h	1800 operating cycles/h	
Switching accuracy   - For repeated switching, measured at the plunger of the contact block   - With twist actuators	mm	$\begin{aligned} & 0.05 \\ & 1^{\circ} \end{aligned}$	$\begin{aligned} & 0.05 \\ & 1^{\circ} \end{aligned}$	
Rated data according to ©, ©(4) and 7\}   - Rated voltage   - Uninterrupted current   - Switching capacity	V		$\begin{aligned} & 300 \\ & 10 \\ & \text { A 300/Q } 300 \end{aligned}$	

${ }^{\text {1) }}$ Special versions, see data sheet. $\quad$ 3) For slow-action contacts $1 \mathrm{NO}+2 \mathrm{NC}$ with make-before-break ("M") and 2) For slow-action contacts $1 \mathrm{NO}+2 \mathrm{NC}$ with make-before-break ("M") $2 \mathrm{NO}+1 \mathrm{NC}$ ("P") the following applies: Over 250 VAC same potential only. and $2 \mathrm{NO}+1 \mathrm{NC}($ "P") the following applies: 250 V .
4) Without any welds according to IEC 60947-5-1.

${ }^{1)}$ For actuator heads with spring rod and rod actuators: IP65/IP67.

## Position and Safety Switches

## SIRIUS 3SE5 Mechanical Position Switches

## General data

## Circuit diagrams

Enclosure widths 31, 40, 50 and 56 mm


Slow-action contacts
$2 \mathrm{NO}+1 \mathrm{NC}$
3SE5...-.P...


XL enclosures, width 56 mm

Slow-action contacts
$2 \times(1 \mathrm{NO}+1 \mathrm{NC})$
3SE5162-0B..


Slow-action contacts $2 \times(1 \mathrm{NO}+2 \mathrm{NC})$ with make-before-break, 3SE5162-0D...

3SE5 pin assignment

M12 device plug, 4-pole

## 3SY3127




M12 device plugs, 5 -pole 3SY3128


Snap-action contacts
1 NO + 1 NC
3SE5...-.C..., -.F..., -.G..., -.H..., -.N...
$\left.a\right|_{13} ^{14}$

Snap-action contacts
1 NO + 2 NC
3SE5...-.L...

Slow-action contacts
1 NO + 2 NC with make-before-break, $1 \mathrm{NO}+1 \mathrm{NC}$
Snap-action contacts $2 \times(1 \mathrm{NO}+1 \mathrm{NC})$ 3SE5162-0C...

3SE5162-0E...


M12 device plugs, 8-pole 3SX5100-1SS08



Device plugs, 6-pole + PE 3SY3131



## SIRIUS 3SE5 Mechanical Position Switches

## General data

## Options

On the following pages you will find selection tables for complete units as well as components of the modular system.

## Complete units

## Modular system

The differences between the units are indicated in the selection and ordering data by the symbols shown on orange backgrounds

Using the modular system you can assemble switch variants which are not available as complete units. Each complete unit can also be supplied as a module.

A basic switch for the modular system comprises an enclosure with a contact block and a cover. Among the basic switches the following versions, for example, can be selected:

- Basic enclosure with teflon plunger
- Version with increased corrosion protection
- Version with M12 device plug and/or with 2 LEDs
- Version with M12 device plug or 6-pole + PE


## Support functions

The 3SE5/3SF1 position and safety switches can also be ordered using an online configurator.
This also enables a complete documentation to be prepared:

- Product data sheets
- Dimension drawings
- Operating travel diagrams
- CAD data in 2D and 3D model images
- Ordering data
- Product photos

For online configurator, see www.siemens.com/sirius/configurators.

## Complete units

## Ordering example

Required:

- Position switch according to EN 50047 in a plastic enclosure
- Contact block with slow-action contacts 1 NO + 1 NC
- Angular roller lever, metal lever and plastic roller


## Modular system

Ordering example 1
Required:

- Position switch according to EN 50047 in a plastic enclosure
- Contact block with slow-action contacts 1 NO + 1 NC
- Angular roller lever, metal lever and plastic roller

To be ordered separately:


## Ordering example 2

Required:

- Position switch according to EN 50047 in a plastic enclosure
- Contact block with slow-action contacts $1 \mathrm{NO}+1$ NC
- Twist levers, high-grade steel lever and plastic roller

To be ordered separately:


## Basic switches • Enclosure width 31 mm



With teflon plunger
Slow-action contacts 3SE5232-0BC05 $1 \mathrm{NO}+1 \mathrm{NC}$
(5232-0BC05

## Selection and ordering data

## Complete units for installation in control cabinets

2 contacts • Degree of protection IP40 • Cable entry by means of a locking plug with $\varnothing 6 \mathrm{~mm}$

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) The control cabinet types are not basic switches for the modular system.
2) Subsequent replacement of contact blocks is not possible.

## 3SE5, Plastic Enclosures

## Enclosure width 31 mm according to EN 50047

## Complete units

2 or 3 contacts • Degree of protection IP65 • Cable entry M20 $\times 1.5^{1)}$

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.
${ }^{1)}$ A cable gland with seal must be used with the quick-connect method.
2) Popular versions.
3) Subsequent replacement of contact blocks is not possible.
4) The 3SE5234-....-1AE2 position switches, prewired with an M12 plug, 5 -pole, have the same pin assignment as all compact block I/O modules with a PROFINET connection in the SIMATIC ET 200eco PN,
ET 200eco PN-F and ET 200AL series with IP65/IP67 degree of protection for cabinet-free installation directly at the machine.

## 3SE5, Plastic Enclosures

2 or 3 contacts • Degree of protection IP65 • Cable entry M20 $\times 1.5^{1)}$


## 3SE5, Plastic Enclosures

## Enclosure width 31 mm according to EN 50047

2 or 3 contacts • Degree of protection IP65 • Cable entry M20 $\times 1.5^{1)}$


## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Plastic Enclosures

## Enclosure width 31 mm according to EN 50047

## Modular system

2 or 3 contacts • Degree of protection IP65 • Cable entry M20 $\times 1.5^{1)}$

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K, or positively driven actuator, necessary in safety circuits.
${ }^{1)}$ A cable gland with seal must be used with the quick-connect method.
2) For enclosures with widths of 31 mm , the basic switch is a complete unit with rounded plungers.
3) Subsequent replacement of contact blocks is not possible.
4) Use corresponding high-grade steel lever.
5) The 3SE5234-.....-1AE2 position switches, prewired with an M12 plug, 5 -pole, have the same pin assignment as all compact block I/O modules with a PROFINET connection in the SIMATIC ET 200eco PN, ET 200eco PN-F and ET 200AL series with IP65/IP67 degree of protection for cabinet-free installation directly at the machine.
Note:
For the selection aid, see page 13/13

## 3SE5, Plastic Enclosures

## Enclosure width 31 mm according to EN 50047

	Version	Diameter		SD	Modular system	$\square$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		mm		d	Article No.	$\begin{aligned} & \text { Price } \\ & \text { per PU } \end{aligned}$		
	Roller plungers, type C, acc. to EN 50047							
	Plastic rollers	10	$\Theta$		3SE5000-0AD03		1	1 unit
	High-grade steel rollers	10	$\Theta$	5	3SE5000-0AD04		1	1 unit
	Roller plungers with central fixing							
	Plastic rollers	10	$\Theta$		3SE5000-0AD10		1	1 unit
	High-grade steel rollers	10	$\Theta$	5	3SE5000-0AD11		1	1 unit
3SE5000-OAD10	Roller levers, type E, acc. to EN 50047							
	Metal lever, plastic roller	13	$\Theta$	2	3SE5000-0AE10		1	1 unit
	Metal lever, high-grade steel roller	13	$\Theta$	5	3SE5000-0AE11		1	1 unit
	High-grade steel lever, plastic roller	13	$\Theta$	5	3SE5000-0AE12		1	1 unit
	High-grade steel lever, high-grade steel roller	13	$\Theta$	5	3SE5000-0AE13		1	1 unit
3SE5000-0AE10	Angular roller levers							
	Metal lever, plastic roller	13	$\Theta$	2	3SE5000-04F10		1	1 unit
	Metal lever, high-grade steel roller	13	$\Theta$	5	3SE5000-0AF11		1	1 unit
	High-grade steel lever, plastic roller	13		2	3SE5000-0AF12		1	1 unit
3SE5000-0AF10	High-grade steel lever, high-grade steel roller	13	$\Theta$	5	3SE5000-0AF13		1	1 unit
	Spring rods							
	Plunger made of plastic, spring of high-grade steel:	7						
	- Length 142.5 mm (spring 50 mm , plunger 50 mm )			5	3SE5000-0AR01		1	1 unit
	- Length 76 mm (spring 23.5 mm , plunger 10 mm )			5	3SE5000-0AR03		1	1 unit
	- Length 242.5 mm (spring 150 mm , plunger 50 mm )			5	3SE5000-0AR04		1	1 unit
	Plunger and spring made of high-grade steel:	7						
3SE5000-0AR01	- Length 142.5 mm (spring 50 mm , plunger 50 mm )			5	3SE5000-0AR02		1	1 unit
	Twist actuators, for 31 mm/50 mm, EN 50047 Switching right and/or left, adjustable		$\Theta$	2	3SE5000-0AK00		1	1 unit
	Levers							
	Twist levers $\mathbf{2 1 ~ m m , ~ s t r a i g h t , ~ t y p e ~ A ~ a c c . ~ t o ~ E N ~} 500$							
3SE5000-OAK00	Metal lever, plastic roller	19	$\Theta$		3SE5000-0AA21		1	1 unit
	Metal lever, high-grade steel roller	19	$\Theta$		3SE5000-0AA22		1	1 unit
	Metal lever, high-grade steel roller with ball bearing	19	$\Theta$	5	3SE5000-0AA23		1	1 unit
	Metal lever, plastic roller	30	$\Theta$	5	3SE5000-0AA25		1	1 unit
	High-grade steel lever, plastic roller	19	$\stackrel{\square}{ }$	5	3SE5000-0AA31		1	1 unit
	High-grade steel lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA32		1	1 unit
3SE5000-OAA21	Twist levers $\mathbf{3 0} \mathbf{~ m m}$, straight							
-	Metal lever, plastic roller	19	$\Theta$		3SE5000-0AA24		1	
	Metal lever, plastic roller	30	$\Theta$	5	3SE5000-0AA26		1	1 unit
	Twist levers, adjustable length, with grid hole							
	Metal lever, plastic roller	19	$\Theta$	5	3SE5000-0AA60		1	1 unit
	Metal lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA61		1	1 unit
-	Metal lever, plastic roller	50		5	3SE5000-0AA67		1	1 unit
	Metal lever, rubber roller	50	$\Theta$	5	3SE5000-0AA68		1	1 unit
	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA62		1	1 unit
3SE5000-OAA60	High-grade steel lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA63		1	1 unit
3SE5000-0AA50	Twist levers, adjustable length							
	Metal lever, plastic roller	19		2	3SE5000-0AA50		1	1 unit
	Metal lever, high-grade steel roller	19			3SE5000-0AA51		1	1 unit
	Metal lever, plastic roller	30		5	3SE5000-0AA55		1	1 unit
	Metal lever, plastic roller	50		5	3SE5000-0AA57		1	1 unit
	Metal lever, rubber roller	50		5	3SE5000-0AA58		1	1 unit
	High-grade steel lever, plastic roller	19		5	3SE5000-0AA52		1	1 unit
	High-grade steel lever, high-grade steel roller	19		5	3SE5000-0AA53		1	1 unit
	Rod actuator							
	Aluminum rod, length 200 mm	6		5	3SE5000-0AA80		1	1 unit
3SE5000-0AA80	Spring rod, length 200 mm	6		5	3SE5000-0AA81		1	1 unit
	Plastic rod, length 200 mm	6		5	3SE5000-0AA82		1	1 unit

$\Theta$ Positively driven actuator, necessary in safety circuits.

## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Plastic Enclosures

## Selection and ordering data

## Complete units

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$

	Version	Contacts	LEDs		SD	Complete units	$\square$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
					d	Article No.	Price per PU		
Complete units ${ }^{1)}$ • Enclosure width 40 mm									
-	Plain plungers								
cal	With high-grade steel plunger								
- $0^{5}$	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5132-0BB01		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5132-0CB01		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5132-0KB01		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5132-0LB01		1	1 unit
3SE5132-0BB01	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5132-0PB01		1	1 unit



Rounded plungers, type B, acc. to EN 50041
With plastic plunger
Slow-action contacts

3SE5132-0BC03
Snap-action contacts
Slow-action contacts
Snap-action contacts
Slow-action contacts

Roller plungers, type C, acc. to EN 50041
 With plastic roller 13 mm
Slow-action contacts

1 NO + 1 NC	--	$\Theta$	5	3SE5132-0BD05	1	1 unit
1 NO + 1 NC --	$\Theta$	2	3SE5132-0CD05	1	1 unit	
1 NO + $2 N C--$	$\Theta$	5	3SE5132-0KD05	1	1 unit	
1 NO + $2 N C--$	$\Theta$	5	3SE5132-0LD05	1	1 unit	
$2 N O+1 N C ~--~$	$\Theta$	5	3SE5132-0PD05	1	1 unit	

3SE5132-0BD05
Snap-action contacts
Slow-action contacts
Snap-action contacts
Slow-action contacts

## Roller levers

With metal lever and plastic roller 22 mm


Slow-action contacts
$1 \mathrm{NO}+1$
Snap-action contacts
Slow-action contacts
Snap-action contacts
Slow-action contacts
3SE5132-0BE05

## Angular roller lever

With metal lever and plastic roller 22 mm

Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$

Snap-action contacts
$1 \mathrm{NO}+2 \mathrm{NC}$
$\Theta \quad 5 \quad$ 3SE5132-0BE05$1 \mathrm{NO}+2 \mathrm{NC}--\quad \Theta 5 \quad$ 3SE5132-0KE05
3SE5132-0CE05 ..... 1 uni1 unit
$1 \mathrm{NO}+2 \mathrm{NC}-\mathrm{S} \quad \Theta \quad$ 3SE5132-0LE05 ..... 1 unit3SE5132-0PE051 unit

Slow-action contacts
$1 \mathrm{NO}+1 \mathrm{NC}--\quad \Theta 5 \quad$ 3SE5132-0BF05
3SE5132-0BF05
3SE5132-0CF05
3SE5132-0LF05
$\Theta$ 3SE5132-0CF051 unit


## Spring rod

## Length 142.5 mm , with plastic plunger 50 mm

Snap-action contacts 1 NO + 1 NC -- $\quad 5 \quad$ 3SE5132-0CR01 $\quad 1$ unit

| Snap-action contacts | 1 NO +2 NC | -- | 5 | 3SE5132-0LR01 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
1 \text { NO + } 2 \text { NC }--\quad 5
$$

[^114][^115]1) Popular versions.

## 3SE5, Plastic Enclosures

## Enclosure width 40 mm according to EN 50041

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$


SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Plastic Enclosures

Enclosure width 40 mm according to EN 50041

## Modular system

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$


## 3SE5, Plastic Enclosures

Enclosure width 40 mm according to EN 50041


## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Plastic Enclosures

## Enclosure width 50 mm

## Selection and ordering data

## Complete units

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry $2 \times(\mathrm{M} 20 \times 1.5)$

	Version	Contacts	LEDs		SD	Complete units		PU (UNIT, SET, M)	PS*
					d	Article No.	Price per PU		
Complete units ${ }^{1} \cdot$ Enclosure width 50 mm									
3SE5242-0BC05	Rounded plungers								
	With teflon plunger								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5242-0BC05		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0CC05		1	1 unit
	Snap-action contacts, integrated ${ }^{2}$ )	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	$\checkmark$	3SE5242-0HC05		1	1 unit
	Snap-action contacts   - Short stroke, integrated ${ }^{2)}$	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	15	3SE5242-0FC05		1	1 unit
	Snap-action contacts   - $2 \times 2 \mathrm{~mm}$ contact gap	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	30	3SE5242-0GC05		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0KC05		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0LC05		1	1 unit
	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0MC05		1	1 unit
	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5242-0PC05		1	1 unit
With increased corrosion protection									
3SE5242-0BC05-1CA0	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0BC05-1CAO		1	1 unit
	Snap-action contacts, integrated ${ }^{2}$ )	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	30	3SE5242-0HC05-1CAO		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0KC05-1CAO		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0LC05-1CAO		1	1 unit
	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0MC05-1CAO		1	1 unit
	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0PC05-1CAO		1	1 unit
,	With 2 LEDs, yellow/green								
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5242-1KC05		1	1 unit
-	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5242-1LC05		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	230 V AC	$\Theta$	5	3SE5242-3KC05		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	230 V AC	$\Theta$	5	3SE5242-3LC05		1	1 unit
3SE5242-1KC05									
	Roller plunger   With plastic roller 10 mm								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0BD03		1	1 unit
	Snap-action contacts, integrated ${ }^{2}$ )	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0HD03		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0LD03		1	1 unit
3SE5242-0BD03									

[^116]2) Subsequent replacement of contact blocks is not possible.

## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Plastic Enclosures

## Enclosure width 50 mm

	Version	Contacts	LEDs		SD	Complete units	$\square$	PU (UNIT, SET, M)	PS*
					d	Article No.	Price per PU		
Complete units ${ }^{1}$ • Enclosure width 50 mm									
	Roller levers								
	With metal lever and plastic roller 13 mm								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--		5	3SE5242-0BE10		1	1 unit
	Snap-action contacts, integrated ${ }^{2}$ )	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5242-0HE10		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0LE10		1	1 unit
	With M12 device plug, 4-pole right (250 V, 4 A)								
	Snap-action contacts	2 NC	--	$\Theta$	5	3SE5244-0LE10-1AE0		1	1 unit
	Twist levers								
	With metal lever 21 mm and plastic roller 19 mm								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--		5	3SE5242-0BK21		1	1 unit
	Snap-action contacts, integrated ${ }^{2}$ )	$1 \mathrm{NO}+1 \mathrm{NC}$	--		5	3SE5242-0HK21		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--			3SE5242-0LK21		1	1 unit
	Twist levers, adjustable length								
	With metal lever and plastic roller 19 mm								
	Snap-action contacts, integrated ${ }^{2}$	$1 \mathrm{NO}+1 \mathrm{NC}$	--		5	3SE5242-0HK50		1	1 unit
3SE5242-0HK50									
Positive opening according to IEC 60947-5-1, Appendix K.   1) Popular versions.   2) Subsequent replacement of contact blocks is not possible.				dev Mod	ice   dular	you require is not ava system, page 13/26	e as a co	mplete un	

## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Plastic Enclosures

## Enclosure width 50 mm

## Modular system

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry $2 \times(\mathrm{M} 20 \times 1.5)$

	Version	Contacts	LEDs	SD   d		Modular system	$\Delta$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
						Article No.	Price per PU		
Basic switches - Enclosure width 50 mm (with rounded plunger ${ }^{\text {1) }}$ )									
Teflon plungers									
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5242-0BC05		1	1 unit
	Snap-action contacts	$1 N O+1 N C$	--	$\Theta$	5	3SE5242-0CC05		1	1 unit
	Snap-action contacts, integrated ${ }^{2}$ )	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	-	3SE5242-0HC05		1	1 unit
	Snap-action contacts   - Short stroke, integrated ${ }^{2)}$	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	15	3SE5242-0FC05		1	1 unit
3SE5242-0BC05	Snap-action contacts   - $2 \times 2$ mm contact gap	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	30	3SE5242-0GC05		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0KC05		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0LC05		1	1 unit
	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0MC05		1	1 unit
	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5242-0PC05		1	1 unit
	Increased corrosion protection ${ }^{3}$								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0BC05-1CAO		1	1 unit
	Snap-action contacts, integrated ${ }^{2}$ )	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	30	3SE5242-0HC05-1CAO		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0KC05-1CAO		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0LC05-1CAO		1	1 unit
3SE5242-0BC05-1CA0									
	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0MC05-1CA0		1	1 unit
	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5242-0PC05-1CAO		1	1 unit
2 LEDs yellow/green									
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5242-1KC05		1	1 unit
(2)	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5242-1LC05		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	230 V AC	$\Theta$	5	3SE5242-3KC05		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	230 V AC	$\Theta$	5	3SE5242-3LC05		1	1 unit
3SE5242-1KC05									

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K, or positively driven actuator, necessary in safety circuits.

1) For enclosures with widths of 50 mm , the basic switch is a complete unit with rounded plungers.
2) Subsequent replacement of contact blocks is not possible
3) Use corresponding high-grade steel lever.

Note:
For the selection aid, see page 13/13

	Version	Diameter		SD	Modular system	V	PU (UNIT, SET, M)	PS*
		mm		d	Article No.	Price per PU		
Operating mechanisms								
	Roller plungers, type C, acc. to EN 50047   Plastic rollers   High-grade steel rollers	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \Theta \\ & \Theta \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	3SE5000-0AD03 3SE5000-0AD04		1 1	1 unit   1 unit
	Roller plungers with central fixing							
	Plastic rollers	10	$\Theta$	2	3SE5000-0AD10		1	1 unit
	High-grade steel rollers	10	$\Theta$	5	3SE5000-0AD11		1	1 unit

$\Theta$ Positively driven actuator, necessary in safety circuits.

## Enclosure width 50 mm



[^117]
## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Metal Enclosures

## Selection and ordering data

## Complete units

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$


[^118]
## 3SE5, Metal Enclosures

## Enclosure width 31 mm according to EN 50047

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$

Version	Contacts	LEDs	SD	Complete units		$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
			d	Article No.	Price per PU		

Complete units ${ }^{11}$ • Enclosure width 31 mm


## Roller levers, type E acc. to EN 50047



With metal lever and plastic roller 13 mm

Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0BE10
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0CE10
Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0KE10
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0LE10

3SE5212-0BE10

## Angular roller lever

With metal lever and plastic roller 13 mm

Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0BF10	1
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0CF10	1
Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0KF10	1 unit
Snap-action contacts	1 NO + 2 NC	--	$\Theta$	5	3SE5212-0LF10	1
				1 unit	1 unit	

3SE5212-0BF10

## Twist levers, type A, acc. to EN 50047



With metal lever 21 mm and plastic roller 19 mm
Slow-action contacts $1 \mathrm{NO}+1 \mathrm{NC}$

Snap-action contacts $\quad 1 \mathrm{NO}+1 \mathrm{NC}--\quad \Theta 5 \quad$ 3SE5212-0CK21
Slow-action contacts $1 \mathrm{NO}+2 \mathrm{NC}--\quad \Theta 5 \quad$ 3SE5212-0KK21
Snap-action contacts $\quad 1$ NO +2 NC $--\quad \Theta \quad 5 \quad$ 3SE5212-0LK21 $\quad 1$ unit
1 unit
1 unit
11 unit

Twist levers, adjustable length


3SE5212-0CK60
With metal lever with grid hole and plastic roller 19 mm

Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0CK60	1	1 unit
Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0KK60	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5212-0LK60	1	1 unit
With metal lever and plastic roller 19 mm							
Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--		5	3SE5212-0BK50	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--		5	3SE5212-0CK50	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--		5	3SE5212-0LK50	1	1 unit

[^119]Note:
If the device you require is not available as a complete unit, see Modular system, page 13/30.

## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Metal Enclosures

## Enclosure width 31 mm according to EN 50047

## Modular system

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$


3SE5214-1BC05-1AF3
$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K, or positively driven actuator, necessary in safety circuits.

1) For enclosures with widths of 31 mm , the basic switch is a complete unit with rounded plungers.
2) Use corresponding high-grade steel lever.

	Version	Diameter		SD	Modular system	$\square$	$\begin{gathered} \text { PU (UNIT, } \\ \text { SET, M) } \end{gathered}$	PS*
		mm		d	Article No.	Price per PU		
Operating mechanisms								
	Plain plungers   High-grade steel plunger	10	$\Theta$	2	3SE5000-0AB01		1	1 unit
	Roller plungers, type C, acc. to EN 50047							
	Plastic rollers	10	$\Theta$	2	3SE5000-0AD03		1	1 unit
	High-grade steel rollers	10	$\Theta$	5	3SE5000-0AD04		1	1 unit

$\Theta$ Positively driven actuator, necessary in safety circuits

Note:
For the selection aid, see page 13/13

## Enclosure width 31 mm according to EN 50047


$\Theta$ Positively driven actuator, necessary in safety circuits.

## Selection and ordering data

## Complete units

2 or 3 contacts $\cdot$ Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$


## Roller plungers, type C, acc. to EN 50041



## Plain plungers

## Rounded plungers, type B, acc. to EN 50041

 high-grade steel plungers, with 3 mm overtrave

3SE5112-0BE01


3SE5112-0BF01


With high-grade steel roller 13 mm , with 3 mm overtravel

Slow-action contacts		$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0BD02	1	1 unit
Snap-action contacts		$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	-	3SE5112-0CD02	1	1 unit
Snap-action contacts ${ }^{2}$ )		$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0CD02-1AA7	1	1 unit
Slow-action contacts		$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0KD02	1	1 unit
Snap-action contacts		$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0LD02	1	1 unit
Snap-action contacts ${ }^{2}$ )		$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0LD02-1AA7	1	1 unit
Slow-action contacts ${ }^{2}$ )		$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0PD02-1AA7	1	1 unit
With M12 device plug, 5-pole (125 V, 4 A)								
Snap-action contacts with 2 LEDs		$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5114-1CD02-1AF3	1	1 unit
Snap-action contacts with 2 LEDs	NEW	$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5114-1CD02-1AF5	1	1 unit
Snap-action contacts without LED		$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5114-0CD02-1AC5	1	1 unit
Snap-action contacts without LED ${ }^{2) 3}$ )		$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5114-0CD02-1ALO	1	1 unit
With M12 device plug, 5-pole (125 V, 4 A), with pin assignment as for SIMATIC ET 200 ${ }^{3}$								
Snap-action contacts without LED	[NEW	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	X	3SE5114-0LD02-1AE3	1	1 unit

## Roller levers

With metal lever and plastic roller 22 mm

Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0BE01	1
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	-	3SE512-0CE01	1
Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0KE01	1 unit
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0LE01	1 unit
					1 unit	

## Angular roller lever

With metal lever and plastic roller 22 mm

			1 unit			
Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0BF01	1
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE512-0CF01	1 unit
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0LF01	1

## Spring rod

Length 142.5 mm , with plastic plunger 50 mm
Snap-action contacts

[^120]3) The 3SE5114-....-1AE3 position switches, prewired with an M12 plug, 5 -pole, have the same pin assignment as all compact block I/O modules with a PROFINET connection in the SIMATIC ET 200eco PN, ET 200eco PN-F and ET 200AL series with IP65/IP67 degree of protection for cabinet-free installation directly at the machine.

## 3SE5, Metal Enclosures

## Enclosure width 40 mm according to EN 50041

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$


## Complete units ${ }^{11}$. Enclosure widith 40 mm



## Twist levers, type A, acc. to EN 50041

With metal lever 27 mm and plastic roller 19 mm

Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0BH01	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	$\checkmark$	3SE5112-0CH01	1	1 unit
Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0KH01	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0LH01	1	1 unit
With M12 device plug, 5-pole (125 V, 4 A)							
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5114-0CH01-1AC5	1	1 unit
With M12 device plug, 5-pole (125 V, 4 A), with pin assignment as for SIMATIC ET 2003)							
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	X	3SE5114-0LH01-1AE3	1	1 unit
With M12 device plug, 5-pole (125 V, 4 A), and 2 LEDs							
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5114-1CH01-1AF3	1	1 unit
With metal lever 27 mm and high-grade steel roller 19 mm							
Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0BH02	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5112-0CH02	1	1 unit
With M12 device plug, 5-pole (125 V, 4 A), and 2 LEDs							
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5114-1CH02-1AF3	1	1 unit
With metal lever $\mathbf{3 0} \mathbf{~ m m}$ and plastic roller 19 mm							
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	-	3SE5112-0CH24	1	1 unit

## Twist levers, adjustable length

Metal lever, grid hole and plastic roller 19 mm

Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NO}$	--	$\Theta$	5	3SE5112-0BH60	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NO}$	--	$\Theta$	,	3SE5112-0CH60	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0LH60	1	1 unit
Metal lever, grid hole with high-grade steel roller $\mathrm{N}^{\text {a }}$ W W							
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--		X	3SE5114-0CH61-1AC5	1	1 unit
With metal lever and plastic roller 19 mm							
Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NO}$	--		5	3SE5112-0BH50	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NO}$	--		,	3SE5112-0CH50	1	1 unit
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NO}$	--		5	3SE5112-0LH50	1	1 unit
With M12 device plug, 5-pole (125 V, 4 A), and 2 LEDs							
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NO}$	24 V DC		5	3SE5114-1CH60-1AF3	1	1 unit
With M12 device plug, 8-pole ( $\mathbf{3 0} \mathrm{V}, 2 \mathrm{~A}$ ), and 2 LEDs							
Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NO}$	24 V DC		5	3SE5114-1LH50-1AD4	1	1 unit
With metal lever and high-grade steel roller 19 mm							
Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--		5	3SE5112-0CH51	1	1 unit

## Fork levers, latching

With metal lever and 2 plastic rollers 19 mm
3SE5112-0CT11

Rod actuators, type D, acc. to EN 50041

## $\Theta$ Positive opening according to IEC 60947-5-1, Appendix K

1) Popular versions.
2) Start switch triggerable via one-hand operation (during operation)
3) The 3SE5114-.....-1AE3 position switches, prewired with an M12 plug, 5 -pole, have the same pin assignment as all compact block I/O modules with a PROFINET connection in the SIMATIC ET 200eco PN,
ET 200eco PN-F and ET 200AL series with IP65/IP67 degree of protection for cabinet-free installation directly at the machine.

## 3SE5, Metal Enclosures

Enclosure width 40 mm according to EN 50041

## Modular system

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$

	Version	Contacts	LEDs		SD	Modular system	$\Delta$	$\begin{gathered} \text { PU (UNIT, } \\ \text { SET, M) } \end{gathered}$	PS*
					d	Article No.	Price per PU		
Basic switches • Enclosure width 40 mm									
	Connecting thread M20 $\times 1.5$								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0BA00		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5112-0CA00		1	1 unit
	- Gold-plated contacts			$\Theta$	5	3SE5112-0CA00-1AC1		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	2	3SE5112-0KA00		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	2	3SE5112-0LA00		1	1 unit
	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	2	3SE5112-0MA00		1	1 unit
	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5112-0PA00		1	1 unit
	Increased corrosion protection ${ }^{1 /}$								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0BA00-1CAO		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0CA00-1CAO		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0KA00-1CAO		1	1 unit
3SE5112-0BA00-1CA0	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0LA00-1CAO		1	1 unit
	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0MA00-1CAO		1	1 unit
	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5112-0PA00-1CAO		1	1 unit
	M12 device plug, 5-pole (125 V, 4 A )								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5114-0BA00-1AC5		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5114-0CA00-1 AC5		1	1 unit
3SE5114-0BA00-1AC5	Slow-action contacts	2 NC	--	$\Theta$	5	3SE5114-0KA00-1AE1		1	1 unit
	Snap-action contacts	2 NC	--	$\Theta$	5	3SE5114-0LA00-1AE1		1	1 unit
	With M12 device plug, 5-pole (125 V, 4 A), with pin assignment as for SIMATIC ET 200²)								
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	X	3SE5114-0LA00-1AE3		1	1 unit
	Device plug, 6-pole + PE (250 V, 10 A )								
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5115-0KA00-1AD1		1	1 unit
3SE5115-OKA00-1AD1	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5115-0LA00-1AD1		1	1 unit
	Device plug, 6-pole + PE (250 V, 10 A), and quick-release device								
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5115-0CA00-1ADO		1	1 unit
	2 LEDs, yellow/green								
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5112-1KA00		1	1 unit
3SE5112-1KA00	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5112-1LA00		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	230 V AC	$\Theta$	5	3SE5112-3KA00		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	230 V AC	$\Theta$	5	3SE5112-3LA00		1	1 unit
	M12 device plug, 5-pole (125 V, 4 A), and 2 LEDs								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5114-1BA00-1AF3		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5114-1CA00-1AF3		1	1 unit
3SE5114-1BA00-1AF3 M12 device plug, 8-pole (30 V 2 A), and 2 LEDs									
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5114-1LA00-1AD4		1	1 unit
	Device plug, 6-pole + PE (10 A), and 2 LEDs								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5115-1BA00-1AF2		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5115-1CA00-1AF2		1	1 unit
3SE5115-1BA00-1AF2	Snap-action contacts	2 NC	24 V DC	$\Theta$	5	3SE5115-1LA00-1AD2		1	1 unit

Use corresponding high-grade steel lever.
2) The 3SE5114-....-1AE3 position switches, prewired with an M12 plug, 5-pole, have the same pin assignment as all compact block I/O modules with a PROFINET connection in the SIMATIC ET 200eco PN ET 200eco PN-F and ET 200AL series with IP65/IP67 degree of protection for cabinet-free installation directly at the machine.

[^121]
$\Theta$ Positively driven actuator, necessary in safety circuits.

## 3SE5, Metal Enclosures

## Enclosure width 56 mm

## Selection and ordering data

## Complete units

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry $3 \times(\mathrm{M} 20 \times 1.5)$

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) Popular versions.
2) Increased operation or restoring force 30 N ; only available as complete unit, no modular design

## 3SE5, Metal Enclosures

## Enclosure width 56 mm

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry $3 \times(\mathrm{M} 20 \times 1.5)$


## 3SE5, Metal Enclosures

## Enclosure width 56 mm

## Modular system

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry $3 \times(\mathrm{M} 20 \times 1.5)$

	Version	Contacts	LEDs	SD   d		Modular system	$\square$	PU (UNIT, SET, M)	PS*
						Article No.	Price per PU		
Basic switches • Enclosure width 56 mm									
-n	With $\mathbf{3} \times$ connection thread M20 $\times 1.5$								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5122-0BA00		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5122-0CA00		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5122-OKA00		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	2	3SE5122-0LA00		1	1 unit
3SE5122-0BA00	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	2	3SE5122-0MA00		1	1 unit
	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	2	3SE5122-0PA00		1	1 unit
	With increased corrosion protection ${ }^{1)}$								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5122-0BA00-1CAO		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5122-0CA00-1CAO		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5122-0KA00-1CAO		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5122-0LA00-1CAO		1	1 unit
3SE5122-0BA00-1CAO	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	--	$\Theta$	5	3SE5122-0MA00-1CA0		1	1 unit
	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	--	$\Theta$	5	3SE5122-0PA00-1CAO		1	1 unit
2	With 2 LEDs, yellow/green								
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5122-1KA00		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	24 V DC	$\Theta$	5	3SE5122-1LA00		1	1 unit
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	230 V AC	$\Theta$	5	3SE5122-3KA00		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	230 V AC	$\Theta$	5	3SE5122-3LA00		1	1 unit
3SE5122-1KA00									

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K, or positively driven actuator, necessary in safety circuits.

1) Use corresponding high-grade steel lever.

Note:
For the selection aid, see page $13 / 13$

	Version	Diameter		SD	Modular system	$\theta$	PU (UNIT, SET, M)	PS*
		mm		d	Article No.	Price per PU		
Operating mechanisms								
$8$	Plain plungers   High-grade steel plungers	10	$\Theta$	2	3SE5000-0AB01		1	1 unit
	Rounded plungers, type B, acc. to EN 50041 High-grade steel plungers, with 3 mm overtravel	10	$\Theta$	5	3SE5000-0AC02		1	1 unit
3SE5000-0AC02 3SE5000-0AD02	Roller plungers, type C, acc. to EN 50041 High-grade steel roller, with 3 mm overtravel	13	$\Theta$	5	3SE5000-0AD02		1	1 unit
3SE5000-0AD02	Roller levers							
	Metal lever, plastic roller	22	$\Theta$	2	3SE5000-0AE01		1	1 unit
	Metal lever, high-grade steel roller	22	$\Theta$	5	3SE5000-0AE02		1	1 unit
	High-grade steel lever, plastic roller	22	$\Theta$	5	3SE5000-0AE03		1	1 unit
	High-grade steel lever, high-grade steel roller	22	$\Theta$	5	3SE5000-0AE04		1	1 unit
3SE5000-0AE01	Angular roller levers							
	Metal lever, plastic roller	22	$\Theta$	2	3SE5000-0AF01		1	1 unit
	Metal lever, high-grade steel roller	22	$\Theta$	5	3SE5000-0AF02		1	1 unit
	High-grade steel lever, plastic roller	22	$\Theta$	5	3SE5000-0AF03		1	1 unit
	High-grade steel lever, high-grade steel roller	22	$\Theta$	5	3SE5000-0AF04		1	1 unit
3SE5000-0AF01	Spring rods (for switches with snap-action contacts o	only)						
	Plunger made of plastic, spring of high-grade steel:   - Length 142.5 mm (spring 50 mm , plunger 50 mm )			5	3SE5000-0AR01		1	1 unit
	- Length 76 mm (spring 23.5 mm , plunger 10 mm )			5	3SE5000-0AR03		1	1 unit
	- Length 242.5 mm (spring 150 mm , plunger 50 mm )			5	3SE5000-0AR04		1	1 unit
	Plunger and spring made of high-grade steel:   - Length 142.5 mm (spring 50 mm , plunger 50 mm )	$7$		5	3SE5000-0AR02		1	1 unit

## Enclosure width 56 mm

	Version	Diameter		SD	Modular system	$\Delta$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		mm		d	Article No.	Price per PU		
Twist actuators								
3SE5000-0AH00	Twist actuators, for 40/56/56 XL mm EN 50041   - For twist levers and rod actuators, switching right and/or left, adjustable   - For fork levers, latching		$\Theta$ $\Theta$		$\begin{aligned} & \text { 3SE5000-0AH00 } \\ & \text { 3SE5000-0AT10 } \end{aligned}$		1 1	1 unit   1 unit
	Levers							
	Twist levers 27 mm, offset, type A, acc. to EN 50041							
	Metal lever, plastic roller	19	$\Theta$	2	3SE5000-0AA01		1	1 unit
	Metal lever, high-grade steel roller	19	$\Theta$	2	3SE5000-0AA02		1	1 unit
	Metal lever, high-grade steel roller with ball bearing	19	$\Theta$	5	3SE5000-0AA03		1	1 unit
	Metal lever, 2 plastic rollers	19	$\Theta$	5	3SE5000-0AA04		1	1 unit
	Metal lever, plastic roller	30	$\Theta$	5	3SE5000-0AA05		1	1 unit
	Metal lever, plastic roller	50	$\Theta$	5	3SE5000-0AA07		1	1 unit
	Metal lever, rubber roller	50	$\Theta$	5	3SE5000-0AA08		1	1 unit
	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA11		1	1 unit
	High-grade steel lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA12		1	1 unit
	Twist levers 35 mm , offset							
	Metal lever, plastic roller	19	$\Theta$	5	3SE5000-0AA15		1	1 unit
	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA16		1	1 unit
	Twist levers $\mathbf{3 0} \mathbf{m m}$, straight (can be mounted rotated by $\mathbf{1 8 0}^{\circ}$ )							
	Metal lever, plastic roller	19	$\Theta$	5	3SE5000-0AA24		1	1 unit
	Metal lever, plastic roller	30	$\Theta$	5	3SE5000-0AA26		1	1 unit
	Twist levers, adjustable length, with grid hole							
	Metal lever, plastic roller	19	$\Theta$	5	3SE5000-0AA60		1	1 unit
	Metal lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA61		1	1 unit
	Metal lever, plastic roller	50	$\Theta$	5	3SE5000-0AA67		1	1 unit
	Metal lever, rubber roller	50	$\Theta$	5	3SE5000-0AA68		1	1 unit
	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA62		1	1 unit
	High-grade steel lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA63		1	1 unit
	Twist levers, adjustable length							
	Metal lever, plastic roller	19		2	3SE5000-0AA50		1	1 unit
3SE5000-0AA60 3SE5000-0AA50	Metal lever, high-grade steel roller	19		5	3SE5000-0AA51		1	1 unit
	Metal lever, plastic roller	30		5	3SE5000-0AA55		1	1 unit
	Metal lever, plastic roller	50		5	3SE5000-0AA57		1	1 unit
	Metal lever, rubber roller	50		5	3SE5000-0AA58		1	1 unit
	High-grade steel lever, plastic roller	$19$		5	3SE5000-0AA52		1	1 unit
	High-grade steel lever, high-grade steel roller	19		5	3SE5000-0AA53		1	1 unit
	Fork levers (for switches with snap-action contacts only)							
	2 metal levers, 2 plastic rollers	19	$\Theta$	5	3SE5000-0AT01		1	1 unit
	2 metal levers, 2 high-grade steel rollers	19	$\Theta$	5	3SE5000-0AT02		1	1 unit
	2 high-grade steel levers, 2 plastic rollers	19	$\Theta$	5	3SE5000-0AT03		1	1 unit
	2 high-grade steel levers, 2 high-grade steel rollers	19	$\Theta$	5	3SE5000-0AT04		1	1 unit
	Rod actuators, type D, acc. to EN 50041							
	Aluminum rod, length 200 mm	6		5	3SE5000-0AA80		1	1 unit
	Spring rod, length 200 mm	6		5	3SE5000-0AA81		1	1 unit
7	Plastic rod, length 200 mm	6		5	3SE5000-0AA82		1	1 unit

## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Metal Enclosures

## Enclosure width 56 mm, XL

## Selection and ordering data

## Complete units

4 or 5 contacts • Degree of protection IP66/IP67 • Cable entry $3 \times(\mathrm{M} 20 \times 1.5)$



3SE5162-0CF01


Angular roller lever
With metal lever and plastic roller 22 mm

Snap-action contacts	$2 \times(1 \mathrm{NO}+1 \mathrm{NC})-$	$\Theta$	5	3SE5162-0CF01	1	1 unit
Twist levers						
With metal lever 27 mm and plastic roller 19 mm						
Snap-action contacts	$2 \times(1 \mathrm{NO}+1 \mathrm{NC})$	$\Theta$	2	3SE5162-0CH01	1	1 unit
With high-grade steel lever 27 mm and high-grade steel roller 19 mm , increased corrosion protection						
Snap-action contacts (gold contacts)	$2 \times(1 \mathrm{NO}+1 \mathrm{NC})$	$\Theta$	5	3SE5162-0CH12-1CC1	1	1 unit

## Twist levers, adjustable length

High-grade steel lever with grid hole and high-grade steel roller 19 mm , increased corrosion protection
3SE5162-0CH01 Adapter 3SX5100-3B included
Snap-action contacts $2 \times(1 \mathrm{NO}+1 \mathrm{NC})--\quad \Theta 5 \quad$ 3SE5162-0CH63-1AN4 $\quad 1$ unit (gold contacts)

## Note:

If the device you require is not available as a complete unit, see Modular system, page 13/41

## Enclosure width 56 mm , XL

## Modular system

4 or 6 contacts • Degree of protection IP66/IP67 • Cable entry $3 \times(\mathrm{M} 20 \times 1.5)$

$\Theta$ Positively driven actuator, necessary in safety circuits.

## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Metal Enclosures

Enclosure width 56 mm , XL

	Version	Diameter		SD	Modular system	$\square$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		mm		d	Article No.	Price per PU		
Twist actuators								
	Twist actuators, for 40/56/56 XL mm EN 50041   - For twist levers and rod actuators, switching right and/or left, adjustable   - For fork levers, latching		$\Theta$ $\Theta$		3SE5000-0AH00 3SE5000-0AT10		1 1	1 unit 1 unit
3SE5000-0AH00   3SE5000-0AA01	Levers							
	Twist levers 27 mm, offset, type A, acc. to EN 50041							
	Metal lever, plastic roller	19	$\Theta$	2	3SE5000-0AA01		1	1 unit
	Metal lever, high-grade steel roller	19	$\Theta$	2	3SE5000-0AA02		1	1 unit
	Metal lever, high-grade steel roller with ball bearing	19	$\rightarrow$	5	3SE5000-0AA03		1	1 unit
	Metal lever, 2 plastic rollers	19	$\Theta$	5	3SE5000-0AA04		1	1 unit
	Metal lever, plastic roller	30	$\Theta$	5	3SE5000-0AA05		1	1 unit
	Metal lever, plastic roller	50	$\Theta$	5	3SE5000-0AA07		1	1 unit
	Metal lever, rubber roller	50	$\Theta$	5	3SE5000-0AA08		1	1 unit
	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA11		1	1 unit
	High-grade steel lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA12		1	1 unit
	Twist levers $\mathbf{3 5} \mathbf{~ m m}$, offset							
	Metal lever, plastic roller	19	$\Theta$	5	3SE5000-0AA15		1	1 unit
	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA16		1	1 unit
	Twist levers $\mathbf{3 0} \mathbf{~ m m}$, straight							
	Metal lever, plastic roller	19	$\Theta$	5	3SE5000-0AA24		1	1 unit
	Metal lever, plastic roller	30	$\Theta$	5	3SE5000-0AA26		1	1 unit
	Twist levers, adjustable length, with grid hole							
	Metal lever, plastic roller	19	$\Theta$	5	3SE5000-0AA60		1	1 unit
	Metal lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA61		1	1 unit
	Metal lever, plastic roller	50	$\Theta$	5	3SE5000-0AA67		1	1 unit
	Metal lever, rubber roller	50	$\Theta$	5	3SE5000-0AA68		1	1 unit
	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA62		1	1 unit
	High-grade steel lever, high-grade steel roller	19	$\Theta$	5	3SE5000-0AA63		1	1 unit
	Twist levers, adjustable length							
	Metal lever, plastic roller	19		2	3SE5000-0AA50		1	1 unit
$\begin{aligned} & \text { 3SE5000-0AA60 } \\ & \text { 3SE5000-0AA50 } \end{aligned}$	Metal lever, high-grade steel roller	19		5	3SE5000-0AA51		1	1 unit
	Metal lever, plastic roller	30		5	3SE5000-0AA55		1	1 unit
	Metal lever, plastic roller	50		5	3SE5000-0AA57		1	1 unit
	Metal lever, rubber roller	50		5	3SE5000-0AA58		1	1 unit
	High-grade steel lever, plastic roller	19		5	3SE5000-0AA52		1	1 unit
	High-grade steel lever, high-grade steel roller	19		5	3SE5000-0AA53		1	1 unit
	Fork levers (for switches with snap-action contacts only)							
	2 metal levers, 2 plastic rollers	19	$\Theta$	5	3SE5000-0AT01		1	1 unit
	2 metal levers, 2 high-grade steel rollers	19	$\rightarrow$	5	3SE5000-0AT02		1	1 unit
	2 high-grade steel levers, 2 plastic rollers	19	$\rightarrow$	5	3SE5000-0AT03		1	1 unit
	2 high-grade steel levers, 2 high-grade steel rollers	19	$\Theta$	5	3SE5000-0AT04		1	1 unit
	Rod actuators, type D, acc. to EN 50041							
	Aluminum rod, length 200 mm	6		5	3SE5000-0AA80		1	1 unit
	Spring rod, length 200 mm	6		5	3SE5000-0AA81		1	1 unit
7	Plastic rod, length 200 mm	6		5	3SE5000-0AA82		1	1 unit
	Plastic rod, length 330 mm	6		5	3SE5000-0AA83		1	1 unit

[^122]
## Compact design

## Overview



Compact design in width 30 mm
Particularly in harsh environments or on equipment with limited space, the small 3SE54 position switches in compact design with a depth of 16 mm and a weight of only 80 g (without cable) are ideal. Above all the versions with molded cable can be mounted in the most confined spaces.
3SE54 compact position switches are available in two different widths as complete units:

- The 3SE5413 series complies with the EU standard and features a $30-\mathrm{mm}$-wide enclosure with drilled holes at a distance of 20 mm .
- The 3SE5423 series meets the requirements of the US market and features a $40-\mathrm{mm}$-wide enclosure with drilled holes at a spacing of 25 mm .
Both the enclosure and the actuator head are made of metal and comply with the high IP67 degree of protection. The following actuators are available:
- Rounded plungers
- Rounded plungers with central fixing
- Rounded plungers with external seal
- Roller plungers
- Roller plungers with central fixing
- Twist levers

The contact block is designed with snap-action contacts $1 \mathrm{NO}+1 \mathrm{NC}$. The NC contact complies with the requirements for positive opening acc. to IEC 60947-5-1.
Use in safety circuits up to category 4 according to EN ISO 13849-1.
Connection:

- With molded cable, 2 m or 5 m long
- With M12 device plug


## Benefits

- Very compact yet with the same rating as the 3SE51 standard switches, for notable space savings in confined installation conditions
- Various actuator versions available
- Roller plungers can be rotated through $90^{\circ}$
- Twist levers can be rotated through $180^{\circ}$; twist levers can be adjusted in $15^{\circ}$ increments
- Time is saved when mounting the fully assembled unit
- With metal enclosure of degree of protection IP67, ideal for use in rough industrial environments
- Insensitive to electromagnetic interference


## SIRIUS 3SE5 Mechanical Position Switches

## 3SE5, Metal Enclosures

## Compact design

## Selection and ordering data

2 snap-action contacts 1 NO +1 NC $\cdot$ Degree of protection IP67 $\cdot$ With connecting cable or M12 device plug

Operating mechanism	Enclosure width	SD	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
	mm	d				

Complete units • Enclosure width 30 or 40 mm

## Rounded plungers

- Standard mounting

- With 2 m cable $5 \times 0.75 \mathrm{~mm}^{2}$
- With 5 m cable $5 \times 0.75 \mathrm{~mm}^{2}$
- With M12 device plug, 5-pole

3SE5413-0CC20-1EA2


- With central fixing M12 $\times 1$ - With 2 m cable $5 \times 0.75 \mathrm{~mm}^{2}$

3SE5413-0CC21-1EA2


- With external seal
- With 2 m cable $5 \times 0.75 \mathrm{~mm}^{2}$

$\Theta$	5	$3 S E 5413-0 C C 22-1 E A 2$
$\Theta$	5	$3 S E 5423-0 C C 22-1 E A 2$

1 unit
3SE5423-0CC22-1EA2
1 unit


## Roller plungers

- Standard mounting
- With 2 m cable $5 \times 0.75 \mathrm{~mm}^{2}$
- With 5 m cable $5 \times 0.75 \mathrm{~mm}^{2}$
- With M12 device plug, 5-pole

3SE5413-0CD20-1EA2


3SE5413-0CD23-1EA2


3SE5413-0CN20-1EA2

## Twist levers

- Standard mounting

- With 2 m cable $5 \times 0.75 \mathrm{~mm}^{2}$	30	$\Theta$	2	3SE5413-0CN20-1EA2	1
	40	$\Theta$	5	3SE5423-0CN20-1EA2	1
- With 5 m cable $5 \times 0.75 \mathrm{~mm}^{2}$	30	$\Theta$	2	3SE5413-0CN20-1EA5	1
- With M12 device plug, 5-pole	30	$\Theta$	2	3SE5413-0CN20-1EB1	1
	40	$\Theta$	5	3SE5423-0CN20-1EB1	1
- Twist levers with a smaller mounting depth and lower height					
- With 2 m cable $5 \times 0.75 \mathrm{~mm}^{2}$	30	$\Theta$	5	3SE5413-0CP20-1EA2	1
- Twist levers, adjustable length					
- With 2 m cable $5 \times 0.75 \mathrm{~mm}^{2}$	30	$\Theta$	$x$	3SE5413-0CQ20-1EA2	1

[^123]
## Overview



Open-type design

Their compact design makes these switches particularly suitable for use in confined conditions. The fixing dimensions and operating points are according to EN 50047.
The switches are equipped with two or three contacts in snap-action, slow-action or slow-action with make-before-break versions. The stroke is 6 mm .
The empty enclosure can be equipped with all contact block versions, (see page 13/47).

## Improved version

The switches have a robust metal plunger with increased abrasion resistance (instead of the teflon plunger). This enables the switch to be approached from a $30^{\circ}$ angle.

## Selection and ordering data

2 or 3 contacts • Degree of protection IP20 (2 contacts), IP10 (3 contacts)

	Version	Contacts		SD	Article No.	Price per PU	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
	d							
Plastic enclosures • Enclosure width 30 mm								
With metal plunger								
	Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	$\Theta$	2	3SE5250-0BC05	1 unit		
	Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	$\Theta$	$\checkmark$	3SE5250-0CC05			
	Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	$\Theta$	5	3SE5250-0KC05		1	1 unit
	Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	$\Theta$	$\checkmark$	3SE5250-0LC05		1	1 unit
	Slow-action contacts with make-before-break	$1 \mathrm{NO}+2 \mathrm{NC}$	$\Theta$	2	3SE5250-0MC05		1	1 unit
3ies	Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	$\Theta$	2	3SE5250-0PC05		1	1 unit
	Empty enclosures without contact block	--	$\Theta$	5	3SE5250-0AC05		1	1 unit
	Contact blocks with 2 contacts For open-type design ${ }^{1)}$							
$\cdots$	- Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	$\Theta$	5	3SE5050-0BA00		1	1 unit
	- Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$						
	- Standard		$\Theta$	5	3SE5050-0CA00		1	1 unit
	- $2 \times 2 \mathrm{~mm}$ switching interval		$\Theta$	30	3SE5050-0GA00		1	1 unit
3SE5050-0BA00	- Short stroke		$\Theta$	30	3SE5050-0NA00		1	1 unit

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) Contact blocks with 3 contacts, see page $13 / 47$.

## SIRIUS 3SE5 Mechanical Position Switches

## Accessories and spare parts

## Selection and ordering data

The quick-release devices and plug-in connections are used for fast installation and replacement of position switches.


## SIRIUS 3SE5 Mechanical Position Switches

## Accessories and spare parts

	Version	Color/ contacts		SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*
				d				
Optional acces	for 3SE51, 3SE52							
	Protective caps   For rounded plungers acc. to EN 50047, 3SE5...-..C05	Black		2	3SE5000-0AC30		1	1 unit
	Adapters with screw ${ }^{1)}$			5	3SX5100-3B		1	1 unit
$3 \mathrm{SX5100-3B}$	For an increase in the mounting depth on the 3SE5000-0AH00 twist actuator, in combination with twist lever with adjustable length or rod actuator							
	Mounting plate			5	3SX5100-1A		1	1 unit
	Suitable for 3SE523. and 3SE521. position switches with a width of 31 mm (in particular for control cabinet types)							
3SX5100-1A								
Spare parts for	1, 3S=52							
	Empty enclosures, plastic	Turquoise						
	Enclosure width 31 mm			5	3SE5232-0AC05		1	1 unit
	- With increased corrosion protection			5	3SE5232-0AC05-1CAO		1	1 unit
	Enclosure width 40 mm			5	3SE5132-0AA00		1	1 unit
	Enclosure width 50 mm			5	3SE5242-0AC05		1	1 unit
	- With increased corrosion protection			5	3SE5242-0AC05-1CAO		1	1 unit
3SE5232-0AC05								
$a>$	Empty enclosures, metal	Turquoise						
	Enclosure width 31 mm			5	3SE5212-0AC05		1	1 unit
	-With increased corrosion protection			5	3SE5212-0AC05-1CAO		1	1 unit
	Enclosure width 40 mm			5	3SE5112-0AA00		1	1 unit
	- With increased corrosion protection			5	3SE5112-0AA00-1CAO		1	1 unit
	Enclosure width 56 mm			5	3SE5122-0AA00		1	1 unit
3SE5212-0AC05	- With increased corrosion protection			5	3SE5122-0AA00-1CAO		1	1 unit
	Enclosure width $56 \mathrm{~mm}, \mathrm{XL}^{2}$ )			5	3SE5162-0AA00		1	1 unit
	Contact blocks with 2 contacts ${ }^{3}$							
	- Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$		5	3SE5000-0BA00		1	1 unit
3 के	- Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$						
	- Standard		$\Theta$	5	3SE5000-0CA00		1	1 unit
5	- Gold-plated contacts		$\Theta$	5	3SE5000-0CA00-1AC1		1	1 unit
	- $2 \times 2 \mathrm{~mm}$ switching interval		$\Theta$	30	3SE5000-0GA00		1	1 unit
3SE5000-0BA00	- Short stroke		$\Theta$	5	3SE5000-0NA00		1	1 unit
	Contact blocks with 3 contacts							
	- Slow-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$					1	
We	- Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	$\Theta$	5	3SE5000-0LA00		1	1 unit
	- Slow-action contacts with make-beforebreak	$1 \mathrm{NO}+2 \mathrm{NC}$	$\Theta$	2	3SE5000-0MA00		1	1 unit
	- Slow-action contacts	$2 \mathrm{NO}+1 \mathrm{NC}$	$\Theta$	2	3SE5000-0PA00		1	1 unit
	Contact blocks for XL enclosure ${ }^{2)}$							
	- Slow-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	$\Theta$	5	3SE5060-0BA00		1	1 unit
\% \&	- Snap-action contacts	$1 N O+1 N C$	$\Theta$	5	3SE5060-0CA00		1	1 unit
	- Slow-action contacts with make-beforebreak	$1 \mathrm{NO}+2 \mathrm{NC}$	$\Theta$	30	3SE5060-0MA00		1	1 unit

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K

1) Possibly required for the conversion from 3SE21 to 3SE51
2) Equip XL enclosures only with contact combinations, see pages $13 / 12$, $13 / 40$ and $13 / 41$
3) Unsuitable for open-type position switches, see page 13/45.

## Position and Safety Switches

## SIRIUS 3SE5 Mechanical Position Switches

Accessories and spare parts

	Version	Rated voltage LED	SD	Article No.	Price per PU	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		V	d				
Spare parts for 3S=51, 3S=52							
	Covers for plastic enclosures, width 31 mm						
0	- Turquoise with LED	24 DC	5	3SE5230-1AA00		1	1 unit
Etame		230 AC	5	3SE5230-3AA00		1	1 unit
. 10	- Yellow	--	5	3SE5230-0AA00-1AG0		1	1 unit
	- Yellow with LED	24 DC	5	3SE5230-1AA00-1AG0		1	1 unit
		230 AC	5	3SE5230-3AA00-1AGO		1	1 unit
3SE5230-1AA00							
	Covers for plastic enclosures, width 40 mm						
\&	- Turquoise with LED	24 DC	5	3SE5130-1AA00		1	1 unit
$2$		230 AC	5	3SE5130-3AA00		1	1 unit
16	- Yellow	--	5	3SE5130-0AA00-1AG0		11 unit	
	- Yellow with LED	24 DC	5	3SE5130-1AA00-1AG0		11 unit	
		230 AC	5	3SE5130-3AA00-1AGO		1	1 unit
3SE5130-1AA00-1AG0							
	Covers for plastic enclosures, width 50 mm						
	- Turquoise with LED	24 DC	5	3SE5240-1AA00		11 unit	
-8)		230 AC	5	3SE5240-3AA00		11 unit	
	- Yellow	--	5	3SE5240-0AA00-1AG0		11 unit	
2	- Yellow with LED	24 DC	5	3SE5240-1AA00-1AGO		11 unit	
		230 AC	5	3SE5240-3AA00-1AGO		11 unit	
3SE5240-1AA00 $\quad$ Covers for metal enclosures, width 31 mm							
	Covers for metal enclosures, width 31 mm						
	- Turquoise with LED	24 DC	5	3SE5210-1AA00		11 unit	
		230 AC	5	3SE5210-3AA00		11 unit	
	- Yellow	--	5	3SE5210-0AA00-1AGO		11 unit	
	- Yellow with LED	24 DC	5	3SE5210-1 AA00-1AGO		11 unit	
		230 AC	5	3SE5210-3AA00-1AGO		11 unit	
3SE5210-1AA00							
	Covers for metal enclosures, width 40 mm						
	- Turquoise with LED	24 DC	5	3SE5110-1AA00		1	1 unit
		230 AC	5	3SE5110-3AA00		11 unit	
	- Yellow	--	5	3SE5110-0AA00-1AGO		11 unit	
	- Yellow with LED	24 DC	5	3SE5110-1AA00-1AGO   3SE5110-3AA00-1AGO		11 unit	
		230 AC	5			11 unit	
3SE5110-1AA00							
	Covers for metal enclosures, width $56 \mathbf{~ m m}$						
	- Turquoise with LED	24 DC	5	3SE5120-1AA00		11 unit	
		230 AC	5	3SE5120-3AA00		11 unit	
	- Yellow	--	5	3SE5120-0AA00-1AGO		11 unit	
	- Yellow with LED	24 DC	5	3SE5120-1AA00-1AGO 3SE5120-3AA00-1AGO		11 unit	
		230 AC	5			1	1 unit
3SE5120-0AA00-1AG0							
	Covers for XL metal enclosures, width 56 mm						
	- Yellow	--	5	3SE5160-0AA00-1AGO		1	1 unit

## With Separate Actuator

## With Separate Actuator

## Overview

Safety switches with separate actuator are used where the position of doors, covers or protective grilles must be monitored for safety reasons.
3SE5 safety switches with separate actuator have the same enclosures as the 3SE5 position switches (modular system).


3SE5 safety switches with head for separate actuator

## Design

## Enclosure sizes

The 3SE5 safety switches are available in four different enclosure sizes:

- Plastic enclosures according to EN 50047, 31 mm wide, IP65, 1 cable entry
- Metal enclosures according to EN 50047, 31 mm wide, IP66/IP67, 1 cable entry
- Plastic and metal enclosures according to EN 50041, 40 mm wide, IP66/IP67, 1 cable entry
- Plastic enclosures, 50 mm wide, IP66/IP67, 2 cable entries
- Metal enclosures, 56 mm wide, IP66/IP67, 3 cable entries

Also available are safety switches in the 3SE2 series which have been developed in this form according to general market requirements:

- Molded-plastic enclosures outside of the standards, enclosure width 52 mm , IP67


## Enclosure versions

Various basic versions can be selected for the enclosures of the 3SE5 series:

- Available with two- or three-pole contact blocks designed as slow-action contacts
- Optional LED status display
- With mounted four or five-pole M12 device plug (available for the wide enclosures as an accessory for self-assembly)
- With 6-pole device plug + PE on the metal enclosures
- Similarly with a combination of plug and LED indicators
- AS-Interface version with integrated ASIsafe electronics for all enclosure designs (see page 13/93).
For a description of the basic switches, (see nace 13/7).


## Operation

The actuator head is included in the scope of supply. For actuation from four directions it can be adjusted through $4 \times 90^{\circ}$. The switches can also be approached from above.
The actuator heads of the 3SE2243 and 3SE2257 switches with special enclosures cannot be changed. The switches can be approached from the two broad sides and from above.
The actuator is not included in the scope of supply of the safety switches and must be ordered separately from a choice of different versions to suit the application (see page 13/56).
The actuator is encoded. Simple overruling by hand or auxiliary devices is impossible.
Radius actuators
The safety switches with radius actuators are particularly suitable for rotary protective devices. The movable actuation key allows even small radii to be approached. Damage to the switch and the actuator due to inaccurate approach is prevented.

## Locking devices

A high-grade steel blocking insert for attaching up to eight padlocks is available for even more security (see page 13/56).


Blocking inserts with padlock

## Dust protection

For use in dusty environments, a rubber cap is offered that protects the actuator entries of the actuator head from contamination (see page 13/56).

## Contact reliability

The contact blocks ensure an extremely high contact stability. This applies even when the devices are switching low voltages and currents, e.g. 1 mA at 5 V DC.

## Positive opening $\Theta$

The NC contacts of the switch are forced open mechanically, positively-driven and reliably by the plunger. This is referred to as "positive opening".

## With Separate Actuator

3SE5, plastic enclosures, enclosure width 31 mm according to EN 50047

## Benefits

The 3SE5 safety switches with separate actuator differ from the previous series through the following new properties:

- All enclosure sizes with increased corrosion protection are optionally available with an LED signaling indicator.
- The three-pole contact block $1 \mathrm{NO}+2 \mathrm{NC}$ is available for all enclosure sizes.
- The plastic enclosure has simple and fast wiring equipment which makes it possible to save approx. 20 to $25 \%$ of the time when connecting.
- The ASIsafe electronics are integrated in the enclosure for the versions with AS-Interface connection (see page 13/93);


## Application

Safety switches with separate actuator are used where the position of doors, covers or protective grilles must be monitored for safety reasons.
The safety switch can only be operated with the matching coded actuator. Simple overruling by hand or auxiliary devices is impossible.

Devices are available with enclosure versions to suit the particular ambient conditions. The high-grade steel actuator IP69K with optimized geometry is suitable for extreme environmental conditions as low as $-40^{\circ} \mathrm{C}$. Different control tasks can be performed with the best contact blocks suited for the particular purpose. Dimensions and fixing points of the enclosure are in accordance with EN 50041 or EN 50047 standards. The devices are suitable for use in any climate.

## Standards

IEC/EN 60947-5-1
The protective measure of "total insulation" by the molded-plastic enclosure is ensured by the use of molded-plastic screw glands.

## Safety position switches

For controls according to IEC/EN 60204-1, the devices can be used as a safety position switch. They comply with the standard EN ISO 14119. A TÜV certificate is available. To secure position switches against changes in their position, keyed techniques must be employed on installation.

## Safety circuits

The IEC/EN 60947-5-1 standard requires positive opening of the NC contacts. In other words, for the purposes of personal safety, the assured opening of NC contacts is expressly stipulated for the electrical equipment of machines in all safety circuits and marked in accordance with the standard IEC 60947-5-1 with the symbol $\Theta$.
Category 3 according to EN ISO 13849-1 can be attained with a safety switch with separate actuator if the corresponding fail-safe evaluation units are selected and correctly installed, e.g. the 3SK, 3TK28 safety relays or matching units from the ASI-safe, SIMATIC or SINUMERIK product ranges.
Category 4 can be achieved when using an additional 3SE5 safety switch.

## Technical specifications

Type		3SE51..-..V.., 3SE52..-..V..	3SE2257-.XX..		3SE2243-.XX..	
General data						
Standards		IEC 60947-5-1, EN 60947-5-1, EN ISO 14119				
Rated insulation voltage $U_{i}$	V	400500				
Degree of pollution according to IEC 60664-1		Class 3	Class 3			
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6				
Rated operational voltage $U_{e}$	V	$400 \mathrm{AC} ;$   over 300 V AC   same potential only	500 AC;   over 380 V AC   same potential only			
Conventional thermal current $I_{\text {th }}$	A	6	10			
Rated operational current $I_{\mathrm{e}}$			1-pole		3 -pole	
- With alternating current $50 / 60 \mathrm{~Hz}$   - At 24 V	A	$6$	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{AC}-12 \\ & 10 \end{aligned}$	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{AC}-15 \\ & 10 \end{aligned}$	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{AC}-12 \\ & 10 \end{aligned}$	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{AC}-15 \\ & 10 \end{aligned}$
- At 120 V	A	6	10	10	10	10
- At 240 V	A	4	10	6	10	4
- At 400 V	A	4	10 - 4		10	4
- At 500 V	A	--	10	3	10	3
- For direct current - At 24 V	A	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{DC}-13 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{e}} / \mathrm{DC}-12 \\ & 10 \end{aligned}$	$10$	$10$	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{DC}-13 \\ & 10 \end{aligned}$
- At 125 V	A	0.55	--	--	--	--
- At 250 V	A	0.27	--	--	--	--
- At 110 V	A	--	4	1	4	$\begin{aligned} & 1 \\ & 0.4 \\ & -\mathbf{0 . 2} \end{aligned}$
- At 220 V	A	--	1	0.4	1	
- At 400 V	A	0.12	--	--	--	
- At 440 V	A	--	0.5	0.2	0.5	
Short-circuit protection						
- With DIAZED fuse links, operational class gG	A	6	6			
- With fuse links, quick	A	--	10			
- With miniature circuit breaker, C char. ( $I_{\mathrm{K}<400 \mathrm{~A}}$ )	A	1	--			
Mechanical endurance		$1 \times 10^{6}$ operating cycles				
Electrical endurance						
- With 3RH.1, 3RT contactors in size S00, S0		$1 \times 10^{6}$ operating cycles 100000 operating cycles	$>1 \times 10^{6}$ operating cycles 500000 operating cycles			
- For utilization category AC-15 when switching off $I_{\mathrm{e}} / \mathrm{AC}-15$ at 240 V						
Switching frequency		6000 operating cycles/h				
With 3RH.1, 3RT contactors in size S00, S0						
Minimum pull-out force for positive opening	N	20	10		30	

## With Separate Actuator

## 3SE5, plastic enclosures, enclosure width 40 mm according to EN 50041

## Selection and ordering data

2 or 3 contacts • 5 directions of approach • Degree of protection IP65 • Cable entry M20 $\times 1.5$

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) Supplied without actuator. Please order separately (see page 13/56).
2) The 3SE5234-.....-1AE2 position switches, prewired with an M12 plug, 5-pole, have the same pin assignment as all compact block I/O modules with a PROFINET connection in the SIMATIC ET 200eco PN,
ET 200eco PN-F and ET 200AL series with IP65/IP67 degree of protection for cabinet-free installation directly at the machine.

## With Separate Actuator

3SE5, plastic enclosures, enclosure width 40 mm according to EN 50041

Selection and ordering data
2 or 3 contacts • 5 directions of approach • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) Supplied without actuator. Please order separately (see page 13/56)

## With Separate Actuator

3SE5, plastic enclosures, enclosure width 50 mm

## Selection and ordering data


$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) Supplied without actuator. Please order separately (see page 13/56).

## With Separate Actuator

3SE5, metal enclosures, enclosure width 31 mm according to EN 50047

Selection and ordering data
2 or 3 contacts • 5 directions of approach • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.
${ }^{1)}$ Supplied without actuator. Please order separately (see page 13/56)

## With Separate Actuator

## 3SE5, metal enclosures, enclosure width 40 mm according to EN 50041 / 56 mm

## Selection and ordering data

2 or 3 contacts • 5 directions of approach • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$


[^124]1) Supplied without actuator. Please order separately (see page $13 / 56$ ).
2) The 3SE5114-.....-1AE3 position switches, prewired with an M12 plug, 5 -pole, have the same pin assignment as all compact block I/O modules with a PROFINET connection in the SIMATIC ET 200eco PN, ET 200eco PN-F and ET 200AL series with IP65/IP67 degree of protection for cabinet-free installation directly at the machine.

## With Separate Actuator

## Accessories

Selection and ordering data


## With Separate Actuator

## Selection and ordering data

1 or 3 contacts • 3 directions of approach • Degree of protection IP67


[^125]
## With Tumbler

## General data

## Overview

The safety switches with tumbler are exceptional safety-related devices which prevent an unforeseen or intentional opening of protective doors, protective grilles or other covers as long as a dangerous situation is present (i.e. follow-on motion of the switched-off machine).


3SE5 safety switch with tumbler
The safety switches with tumbler are comprised of a switch part with electromechanical tumbler and a mechanical actuator which has to be ordered separately.
They are rugged protective devices that enable the greatest possible safety for man and machine.
The safety switches with tumbler are offered in plastic or metal enclosures.
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$ ): $54 \mathrm{~mm} \times 185 \mathrm{~mm} \times 43.5 \mathrm{~mm}$

## Operation

The actuator head is included in the scope of supply. For actuation from four directions it can be adjusted through $4 \times 90^{\circ}$. The switches can also be approached from above.
The actuator is not included in the scope of supply of the safety switches and must be ordered separately from a choice of different versions to suit the application (see page 13/64).
Actuation data:

- Maximum actuating speed $v_{\max }=1.5 \mathrm{~m} / \mathrm{s}$
- Minimum actuating speed $v_{\text {min }}=0.4 \mathrm{~mm} / \mathrm{s}$
- Minimum force in the direction of actuation $F_{\text {min }}=30 \mathrm{~N}$

The actuator is encoded. Simple overruling by hand or auxiliary devices is impossible.

## Radius actuators

The safety switches with radius actuators are particularly suitable for rotary protective devices. The movable actuation key allows even small radii to be approached. Damage to the switch and the actuator due to inaccurate approach is prevented.

## Locking devices

A high-grade steel locking device for attaching up to eight padlocks is available for even more security (see page 13/65).
Dust protection
A rubber cap to protect the actuator entry of the actuator head from contamination is available for operation in dusty environments (see page 13/65).

## Tumbler

There are two versions for interlocking the actuator:

- Spring-actuated lock (closed-circuit principle) with various release mechanisms
- Solenoid-locked (open-circuit principle)

The spring-actuated lock switch is equipped with an auxiliary release for emergency situations or setup mode. Available as options:

- Escape release or
- Emergency release


## Contact blocks

The safety switches with tumbler have one switching block each for:

- Monitoring the actuator or the position of the protective door
- Monitoring the position of the solenoid

The mechanical design of the switches corresponds to the requirements of the fail-safe principle according to EN ISO 14119.

## Optical signaling equipment

The safety switches with tumbler are available with an optional optical signaling device.
The signaling device indicates the switch position of the interlock and the protective device optically by means of 2 LEDs on the front.

| Protective device | Tumbler | Display | Meaning |
| :--- | :--- | :--- | :--- | :--- |
| Closed | Released | Locked | Actuator <br> able to be pulled <br> Iocked |
| Closed | Released |  | Actuator <br> pulled |
| Open |  |  |  |

Internal wiring:

- The yellow LED is pre-wired to the solenoid monitoring NO contact.
- The green LED is pre-wired to the actuator monitoring NC contact.
- LED ground is pre-wired to the ground of the solenoid.

Note:

- The operational voltage must be connected to the corresponding contacts by the customer.
- This voltage for the LEDs must match the operational voltage of the solenoid (same potential).


## General data

## Benefits

The new generation of 3SE53 safety switches offers:

- More safety through higher locking forces:
- 1300 N with plastic enclosure
- 2600 N with metal enclosure
- Various release mechanisms: lock release, escape release and emergency release
- Two contact blocks each with three contacts as standard equipment, hence fewer versions needed
- Same dimensions for all enclosure versions: Plastic, metal or with integrated ASIsafe
- An extensive range of actuators
- An optional LED status display 24 V DC, 115 V or 230 V AC for all switch versions
- Devices with ASIsafe electronics integrated in the enclosure/ wired to 8-pole M12 device plug (see page 13/97).
- 3SE5322-1S.21-1AG4 series with high degree of protection IP69, IP69K in accordance with IEC 60529, cover with foamed seal


## Application

The safety switches with tumbler are exceptional safety-related devices which prevent an unforeseen or intentional opening of protective doors, protective grilles or other covers as long as a dangerous situation is present (i.e. follow-on motion of the switched-off machine).
The safety position switches with tumbler have the following functions:

- Enabling the machine or process with closed and locked protective device
- Locking the machine or process with opened protective device
- Position monitoring of the protective device and tumbler


## Standards

The switches comply with the standards IEC 60947-1 (Low-Voltage Controlgear, General) and IEC 60947-5-1 (Electromechanical Control Devices).
The mechanical design of the switch corresponds to the requirements of the fail-safe principle according to EN ISO 14119.

## Approvals

The switches are approved for use with locking devices according to EN ISO 14119 and EN 292, Parts 1 and 2.
Category 3 according to EN ISO 13849-1 can be attained with a safety switch with tumbler if the corresponding fail-safe evaluation units are selected and correctly installed, e.g. the 3SK or 3TK28 safety relays or matching units from the ASIsafe, SIMATIC or SINUMERIK product ranges.
Category 4 can be achieved when using an additional 3SE5 safety switch.
These switches are approved according to UL 508, UL 50 and UL 746-C.

## Tumbler

The separate actuator works like a key using coding and protects against manipulation. It transmits the locking force to the protective device and helps to monitor its position.

There are two versions of locking:
Spring-actuated lock (closed-circuit principle)

- In the standard version, the safety switch locks by means of spring force and releases by means of electromagnetic force. In the case of voltage failure, it reliably prevents the protective device from opening when machine parts are still moving.
- The switch is equipped with an auxiliary release for emergency situations or setup mode.
- An auxiliary release which can be secured with a lock to prevent misuse is available as a version.


The 3SE5 3 safety switches are also available with an escape release or emergency release.

- Personnel working inside the hazard zone can use the escape release feature to manually release the tumbler without tools from the escape side (hazardous area side) so that they can exit the hazard area. An intentional act (in this case pulling the gray actuator) is required to release the locking mechanism and restore the normal operating state.
- The emergency release enables someone in an emergency situation to manually release the tumbler without tools from the access side (outside the hazardous area). Releasing the lock and restoring the normal operating state must require effort which is comparable to repair activity: in this case disassembly of the red actuator and resetting of the mechanical lock.


Escape release from the front Emergency release from the back
Solenoid-locked (open-circuit principle)

- The second version offers locking by means of electromagnetic force and release by means of spring force. This version has an advantage when it is necessary to quickly access the machine after a power failure occurs, or in the case of very short coasting times.


## With Tumbler

## General data

Technical specifications

${ }^{1)}$ Without any welds according to IEC 60947-5-1.

## Circuit diagrams

## Monitoring the actuator

Slow-action contacts $1 \mathrm{NO}+2 \mathrm{NC}$


## Monitoring the solenoid

Slow-action contacts $1 \mathrm{NO}+2 \mathrm{NC}$


Operating travel

## Monitoring the actuator

Slow-action contacts $1 \mathrm{NO}+2 \mathrm{NC}$


## With Tumbler

## 3SE5, plastic enclosures with locking force greater than 1200 N

## Selection and ordering data

6 slow-action contacts 5 directions of approach Degree of pr otection IP66/IP67 Cable entry $3 \times \mathrm{M} 20 \times 1.5$ Locking force 1300 N

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) Supplied without actuator. Please order separately (see page 13/64).

## With Tumbler

## 3SE5, plastic enclosures with locking force greater than 1200 N

6 slow-action contacts $\cdot 5$ directions of approach $\cdot$ Degree of protection IP69K Cable entry $3 \times$ M20 $\times 1.5 \cdot$ Locking force 1300 N

- With foamed seal and special cover

Tumbler ${ }^{1)}$	LEDs		SD	Complete units   Position monitoring:   Actuators: $1 \mathrm{NO}+2 \mathrm{NC}$   Solenoid: $1 \mathrm{NO}+2 \mathrm{NC}$		$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		Solenoid, rated operational voltage					
		V	d	Article No.	Price per PU		

1300 N locking force • Enclosure width 54 mm - Degree of protection IP69K


## Spring-actuated locks

- With auxiliary release

Yellow/Green 24 DC


- With auxiliary release
with lock

Yellow/Green 24 DC
$\Theta 5 \quad$ 3SE5322-1SE21-1AG4 $\quad 1 \quad 1$ unit with lock

3SE5322-1SE21-1AG4


3SE5322-1SF21-1AG4


- With escape release from the Yellow/Green 24 DC back and auxiliary release from the front

3SE5322-1SG21-1AG4

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) Supplied without actuator. Please order separately (see page 13/64).

## Accessories



## With Tumbler

3SE5, metal enclosures with locking force greater than 2000 N

## Selection and ordering data

6 slow-action contacts $\cdot 5$ directions of approach $\cdot$ Degree of protection IP66/IP67 • Cable entry $3 \times$ M20 $\times 1.5 \cdot$ Locking force 2600 N


[^126]
## With Tumbler

## Accessories

Selection and ordering data

	Version		Article No.	Price per PU	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		d				
IP66/IP67						
	Standard actuator   - Length 75.6 mm	-	3SE5000-0AV01		1	1 unit
3SE5000-0AV01	- With vertical fixing, length 53 mm	5	3SE5000-0AV02		1	1 unit
3SE5000-0AV02						
	- With transverse fixing, length 47 mm	5	3SE5000-0AV03		1	1 unit
	High-grade steel actuator, IP69K ${ }^{\text {1) }}$   - Length 75.6 mm	5	3SE5000-0AW51		1	1 unit
3SE5000-0AW51						
	- With vertical fixing, length 53 mm	5	3SE5000-0AW52		1	1 unit
	- With transverse fixing, length 47 mm	5	3SE5000-0AW53		1	1 unit
	Radius actuator, length 51 mm					
	- Direction of approach from the left	2	3SE5000-0AV04		1	1 unit
	- Direction of approach from the right	5	3SE5000-0AV06		1	1 unit
3SE5000-0AV06						
$\because$	Universal radius actuator   - Length 77 mm   - Length 77 mm , tab rotated $90^{\circ}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SE5000-0AV05 3SE5000-0AV05-1AA6		1 1	1 unit   1 unit
	Universal radius actuator, heavy duty					
	- Length 67 mm	2	3SE5000-0AV07-1AK2		1	1 unit
		5	3SE5000-0AV07		1	1 unit
3SE5000-0AV07						

For further plug versions, see page 13/46.
${ }^{1)}$ With optimized geometry and suitable for extreme environmental conditions such as $-40^{\circ} \mathrm{C}$

## With Tumbler

## Accessories



For further plug versions, see page 13/46.

## Overview

3SE5 hinge switches have the same enclosures as the 3SE5 position switches (modular system).


Hinge switches

## Design

## Enclosure sizes

The 3SE5 switches are available as complete units in two enclosure sizes:

- Plastic enclosures according to EN 50047, 31 mm wide, IP65, 1 cable entry
- Metal enclosures according to EN 50047, 31 mm wide, IP66/IP67, 1 cable entry
- Plastic and metal enclosures according to EN 50041, 40 mm wide, IP66/IP67, 1 cable entry


## Enclosure versions

Various basic versions can be selected for the enclosures:

- With two or three-pole switching elements designed as snap-action contacts
- AS-Interface version with integrated ASIsafe electronics for all enclosure designs (see page 13/100).
For a description of the basic switches, (see page 13/7).
Operating mechanism
The hinge switches are provided for mounting on hinges.
The actuator head is included in the scope of supply. There are two versions:
- Operating mechanism with hollow shaft, inner diameter 8 mm , outer 12 mm
- Operating mechanism with solid shaft, diameter 10 mm


## 3SE2283 hinge switches

The 3SE2283 hinge switches with integrated hinge are available in a special design. They are particularly suitable for use in machine doors and flaps.

## Benefits

The 3SE5 hinge switches differ from the previous series through the following new characteristics:

- All actuators can be turned around the axis in increments of $22.5^{\circ}$ (see picture, page 13/8).
- The new three-pole contact block $1 \mathrm{NO}+2 \mathrm{NC}$ is available for all enclosure sizes (see picture, page 13/8).
- The plastic enclosure with a width of 31 mm has simple and fast wiring equipment which makes it possible to save approx. 20 to $25 \%$ of the time when connecting (see picture, page 13/8).
- The ASIsafe electronics are integrated in the enclosure for the versions with AS-Interface connection (see page 13/85); an additional adapter is not required.


## Application

The hinge switches are used in those areas where the position of swiveling protective devices such as doors or flaps must be monitored. With these switches, the position of the doors and flaps is converted into electric signals. The switches allow shutdown and signaling without delay in the event of a small opening angle through the snap-action contacts with an operating angle of $10^{\circ}$.

Devices are available with enclosure versions to suit the particular ambient conditions. Different control tasks can be performed with the contact blocks best suited for the particular purpose. Dimensions and fixing points of the enclosures are in accordance with EN 50041 or EN 50047 standards.
The devices are suitable for use in any climate.

## Standards

IEC/EN 60947-5-1
The protective measure of "total insulation" by the plastic enclosure is ensured by the use of molded-plastic screw glands.

## Safety position switches

For controls according to IEC/EN 60204-1, the devices can be used as a safety position switch. To secure position switches against changes in their position, keyed techniques must be employed on installation.

## Safety circuits

The IEC/EN 60947-5-1 standard requires positive opening of the NC contacts. In other words, for the purposes of personal safety, the assured opening of NC contacts is expressly stipulated for the electrical equipment of machines in all safety circuits and marked in accordance with IEC 60947-5-1 with the symbol $\Theta$.
Category 4 according to EN ISO 13849-1 can be attained with the 3SE5 hinge switches with $\Theta$ if the corresponding fail-safe evaluation units are selected and correctly installed, e.g. the 3SK or 3TK28 safety relays or matching devices from the ASIsafe, SIMATIC or SINUMERIK product ranges.

## 3SE5, Plastic Enclosures

## Enclosure width 31 mm acc. to EN 50047 / 40 mm according to EN 50041

## Technical specifications

The technical specifications are the same as for the standard switches, (see page 13/11).

## Selection and ordering data

## Complete units

2 or 3 contacts • Degree of protection IP65 (31 mm) or IP67/IP68 (40 mm) • Cable entry M20 $\times 1.5$

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K
${ }^{1)}$ Contact blocks permanently integrated, replacement not available

## Spare parts



3SE5000-0AU22
Note: The respective actuators are included in the scope of supply for the complete units.

## 3SE5, Plastic Enclosures

Enclosure width 31 mm acc. to EN 50047 / 40 mm according to EN 50041

## Selection and ordering data

## Complete units

3 contacts • Degree of protection IP66/IP67 • Cable entry M20 × 1.5

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

## Spare parts

	Version	SD	Article No.	Price per PU	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
	d					
Actuator heads						
	With hollow shaft Operating angle $10^{\circ}$	5	3SE5000-0AU21		1	1 unit
3SE5000-0AU21						
	With solid shaft					
	Operating angle $10^{\circ}$	5	3SE5000-0AU22		1	1 unit
3SE5000-0AU22						
Note: The respective actuators are included in the scope of supply for the complete units.						

## 3SE2, Plastic Enclosures

With integrated hinge

## Overview

The 3SE2283 hinge switches with built-in hinge are particularly suitable for use in doors and flaps of machines that must be closed to ensure the safety of operating personnel. Their thin profile and the compact design allow them to be directly mounted on a hinged protective cover and the stable frame.

## Benefits

- Easy mounting through use of versions with integrated hinge
- Versions with small operating angle of $4^{\circ}$ or $8^{\circ}$
- Protection against personal injury provided by positively driven NC contacts according to IEC 60947-5-1
- Simultaneous shutdown and signaling by $1 \mathrm{NO}+2 \mathrm{NC}$ contacts


## Technical specifications

Type		3SE2283
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	250
Conventional thermal current $\boldsymbol{I}_{\mathbf{t h}}$	A	2.5
Rated operational current $\boldsymbol{I}_{\mathbf{e}}$		
- At AC-15, 120 V	A	4.2
- At AC-15, 250 V	A	2
- At DC-13, 24 V	A	1
Min. make-break capacity		$>5 \mathrm{~V} / 1 \mathrm{~mA}$
Short-circuit protection	A	2
- Operational class gG		$>1 \times 10^{6}$ operating cycles
Mechanical endurance		200 mm after opening point
Switching frequency	Plastic	
Positive opening	IP 65	
Enclosure material	${ }^{\circ} \mathrm{C}$	$-25 \ldots+65$
Degree of protection	$30 \mathrm{~g} / 18 \mathrm{~ms}$	
Ambient temperature	$20 \mathrm{~g} / 10 \ldots 200 \mathrm{~Hz}$	
Shock resistance	$2 \times(\mathrm{M} 20 \times 1.5)$	
Resistance to vibrations	$0.5 \ldots 1.5 \mathrm{~mm} / \mathrm{AWG} 15$	
Cable entry		

## 3SE2, Plastic Enclosures

with integrated hinge

## Selection and ordering data

3 contacts $\cdot$ Degree of protection IP65 • Cable entry $2 \times(\mathrm{M} 20 \times 1.5)$

$\rightarrow$ Positive opening according to IEC 60947-5-1, Appendix K.

## Accessories/spare parts

Version	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	d				
Additional hinge   (Scope of supply includes fixing accessories)					
- Made of aluminum	10	3SX3225		1	1 unit

## Selection and ordering data


$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K, or positively driven actuator, necessary in safety circuits.

1) Popular versions.

Selection and ordering data
6 slow-action contacts $\cdot 5$ directions of approach $\cdot$ Degree of protection IP66/IP67 • Cable entry $3 \times \mathrm{M} 20 \times 1.5 \cdot$ Locking force 1300 N


Accessories/spare parts


[^127]
## Selection and ordering data



[^128]1) With optimized geometry and suitable for extreme environmental conditions such as $-40^{\circ} \mathrm{C}$

## Selection and ordering data

## Complete units

2 or 3 contacts $\cdot$ Degree of protection IP65 or IP66/IP67 • Cable entry M20 $\times 1.5$, with increased corrosion protection


## SIRIUS 3SE5 Mechanical Position Switches, Shock \& Vibration Railway Standard

3SE5, plastic enclosures, enclosure width 31 mm according to EN 50047 / 50 mm

## Modular system

2 or 3 contacts • Degree of protection IP65 or IP66/IP67 • Cable entry M20 $\times 1.5$, with increased corrosion protection

	Version	Contacts	LEDs	SD   d		Modular system   Article No.	Priceper PU	PU (UNIT, SET, M)	PS*
Basic switches • Enclosure width 31 mm (with rounded plunger ${ }^{1)}$ )									
	With teflon plunger   Snap-action contacts Slow-action contacts Snap-action contacts	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+2 \mathrm{NC} \\ & 1 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$		$\begin{aligned} & \Theta \\ & \Theta \\ & \Theta \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3SE5232-0CC05-1 AJO } \\ & \text { 3SE5232-0KC05-1 AJ0 } \\ & \text { 3SE5232-0LC05-1 AJO } \end{aligned}$		1 1 1	1 unit   1 unit   1 unit
3SE5232-0CC05-1AJ0									
Basic switches • Enclosure width 50 mm (with rounded plunger ${ }^{1}$ )								$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit   1 unit
	With teflon plunger   Slow-action contacts   Snap-action contacts, integrated ${ }^{2}$ )	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$		$\begin{aligned} & \Theta \\ & \Theta \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SE5242-0BC05-1AJO 3SE5242-0HC05-1AJO			
Positive opening according to IEC 60947-5-1, Appendix K, or positively driven actuator, necessary in safety circuits.   1) For enclosures with widths of 31 and 50 mm , the basic switch is a complete unit with rounded plungers.   2) Subsequent replacement of contact blocks is not possible.			Note:   For the selection aid, see page 13/13						

SIRIUS 3SE5 Mechanical Position Switches for Ambient Temperatures down to -40 ${ }^{\circ} \mathrm{C}$

## SIRIUS 3SE5 Mechanical Position Switches, Shock \& Vibration Railway Standard

3SE5, plastic enclosures, enclosure width 31 mm according to EN 50047 / 50 mm


## Selection and ordering data

## Modular system

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$, with increased corrosion protection

$\Theta$ Positively driven actuator, necessary in safety circuits.

SIRIUS 3SE5 Mechanical Position Switches for Ambient Temperatures down to - $40^{\circ} \mathrm{C}$
SIRIUS 3SE5 Mechanical Position Switches, Shock \& Vibration Railway Standard
3SE5, metal enclosures, enclosure width 31 mm according to EN 50047

## Selection and ordering data

## Complete units

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$, with increased corrosion protection


## Modular system

2 or 3 contacts • Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$, with increased corrosion protection


## Selection and ordering data

## Complete units

2 or 3 contacts $\cdot$ Degree of protection IP66/IP67 • Cable entry M20 $\times 1.5$, with increased corrosion protection


3SE5112-0CC02-1AJ0


Roller plungers, type C, acc. to EN 50041 With high-grade steel plungers, with 3 mm overtravel Snap-action contacts $1 \mathrm{NO}+2 \mathrm{NC}$
Rounded plungers, type B, acc. to EN 50041
Complete units • Enclosure width 40 mm
Snap-action contacts $\quad 1 \mathrm{NO}+1 \mathrm{NC} \quad \Theta \quad$ 3SE5112-0CC02-1AJO $\quad 1$ unit

Twist levers, type A, acc. to EN 50041
With high-grade steel lever 27 mm and plastic roller 19 mm

Snap-action contacts	$1 \mathrm{NO}+2 \mathrm{NC}$	$\Theta 5$	3SE5112-0LH11-1AJO	1	1 u

With high-grade steel lever 27 mm and
high-grade steel roller 19 mm


Twist levers, adjustable length
With high-grade steel lever with grid hole
and plastic roller 19 mm
Snap-action contacts $\quad 1 \mathrm{NO}+1 \mathrm{NC} \quad \Theta \quad 5 \quad$ 3SE5112-0CH62-1AJO $\quad 1$ unit

3SE5112-0CH62-1AJO

## Complete units • Enclosure width 56 mm , XL, $3 \times \mathrm{M} 20 \times 1.5$



## Twist levers, adjustable length

With metal lever with grid hole and plastic roller 19 mm

Snap-action contacts	$1 \mathrm{NO}+1 \mathrm{NC}$	-5	3SE5162-0CH60-1AJO	1
1 unit				

With high-grade steel lever and high-grade steel roller 19 mm


[^129]$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K or positively driven actuator, necessary in safety circuits.

Note:
If the device you require is not available as a complete unit, see Modular system, page 13/81.

## Selection and ordering data

## Modular system



SIRIUS 3SE5 Mechanical Position Switches for Ambient Temperatures down to - $40^{\circ} \mathrm{C}$
SIRIUS 3SE5 Mechanical Position Switches, Shock \& Vibration Railway Standard
3SE5, metal enclosures, enclosure width 40 mm according to EN 50041 / $56 \mathrm{~mm} / 56 \mathrm{~mm}$, XL

	Version	Diameter		SD	Modular system	$\Delta$	$\begin{gathered} \text { PU (UNIT, } \\ \text { SET, M) } \end{gathered}$	PS*
		mm		d	Article No.	Price per PU		
Operating mechanisms								
	Rounded plungers, type B, acc. to EN 50041						1	1 unit
	Roller plungers, type C, acc. to EN 50041						1	1 unit
	Roller levers							
	Metal lever, plastic roller	13	$\Theta$		3SE5000-0AE01-1AJO		1	1 unit
	High-grade steel lever, plastic roller	13	$\Theta$		3SE5000-0AE03-1AJO		1	1 unit
	Angular roller levers							
	Metal lever, plastic roller	13	$\Theta$		3SE5000-0AF01-1AJ0		1	1 unit
	High-grade steel lever, plastic roller	13	$\Theta$	5	3SE5000-0AF03-1AJO		1	1 unit
3SE5000-0AF01-1AJ0								
Twist actuators								
	Twist actuators, for 40/56/56 XL mm EN 50041						1	1 unit
	Levers							
	Twist levers, type A, acc. to EN 50041							
	Metal lever, plastic roller	19			3SE5000-0AA01-1AJO		1	1 unit
	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA11-1AJO		1	1 unit
	Twist levers, adjustable length, with grid hole							
	Metal lever, plastic roller	19	$\Theta$	5	3SE5000-0AA60-1AJO		1	1 unit
*	High-grade steel lever, plastic roller	19	$\Theta$	5	3SE5000-0AA62-1AJO		1	1 unit
3SE5000-0AA60-1AJO								
$\Theta$ Positively driven actu	ator, necessary in safety circuits.							

SIRIUS 3SE5 Mechanical Position Switches for Ambient Temperatures down to -40 ${ }^{\circ} \mathrm{C}$
SIRIUS 3SE5 Mechanical Safety Switches, Separate Actuator, Shock \& Vibration Railway Std
3SE5, plastic enclosures, enclosure width 31 mm according to EN 50047

## Selection and ordering data

## Complete units

2 or 3 contacts • 5 directions of approach • Degree of protection IP65 ( 31 mm ) or IP66/IP67 (50 mm) • Cable entry M20 $\times 1.5$


1) With optimized geometry and suitable for extreme environmental conditions such as $-40^{\circ} \mathrm{C}$

SIRIUS 3SE5 Mechanical Position Switches for Ambient Temperatures down to -40 ${ }^{\circ} \mathrm{C}$
SIRIUS 3SE5 Mechanical Safety Switches with Tumbler, Shock \& Vibration Railway Std

## Selection and ordering data

6 slow-action contacts $\cdot 5$ directions of approach • Degree of protection IP66/IP67 • Cable entry $3 \times \mathrm{M} 20 \times 1.5 \cdot$ Locking force 1300 N

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

1) Supplied without actuator. Please order separately.

Accessories/spare parts


## Overview

The 3SF1 position switches with safety-related communication can be directly connected using the AS-Interface bus system. The safety functions no longer have to be wired up conventionally.
With the 3SF1 position switches the ASIsafe electronics are integrated in the switch enclosure.


Examples of selection options in the modular system

## Modular system

The position switches of the 3SF11.4 and 3SF12.4 series are designed as a modular system comprising different versions of the basic switch and an actuator which must be ordered separately. Thanks to the modular design of the switch the end users can select the right solution for their application from numerous versions and install it themselves in a very short time.

## Design

The 3SF1 switches are available in four different enclosure sizes:

- Plastic and metal enclosures according to EN 50047, 31 mm wide, with M12 device plug
- Metal enclosures according to EN 50041, 40 mm wide, with M12 device plug
- Plastic enclosures, 50 mm wide, with M12 device plug and M12 socket
- Metal enclosures, 56 mm wide, with M12 device plug and M12 socket


## Display

The switches have a status display with three LEDs:

- LED 1 (yellow): F-IN1
- LED 2 (yellow): F-IN2
- LED 3 (green/red):AS-i/FAULT


## Connection

Connection to the AS-Interface is by means of a 4-pole M12 device plug (plastic version) connected to the yellow AS-Interface bus cable.
The wide enclosures ( 50 or 56 mm ) also have an M12 socket for connecting a second position switch. Category 4 according to EN ISO 13849-1 is thus achieved.

## Benefits

The new generation of 3SF1 position switches offers:

- ASIsafe electronics integrated in the enclosure, with low power consumption < 60 mA
- An extensive range of actuators
- Status display with three LEDs
- Can be integrated easily via TIA Portal


## Application

With the standard position switches, mechanical positions of moving machine parts are converted into electrical signals. Through their modular and uniform design and large number of variants, the devices can comply with practically all requirements in industry.
Devices are available with enclosure versions to suit the particular ambient conditions. Different control tasks can be performed with the contact blocks best suited for the particular purpose. And many different actuator variants are available to match the mechanical configuration of the moving machine parts. Dimensions, fixing points and characteristics are largely in accordance with the EN 50041 or EN 50047 standards.

The devices are suitable for use in any climate.

## Standards

The switches comply with the standards IEC 60947-1 (Low-Voltage Controlgear, General) and IEC 60947-5-1 (Electromechanical Control Devices).
The mechanical design of the switch corresponds to the requirements of the fail-safe principle according to EN ISO 14119.

## Approvals

AS-Interface according to EN 50295 and IEC 62026-2.
With a 3SF1 position switch it is possible to achieve Category 2 according to EN ISO 13849-1 or SIL 1 according to IEC 61508.
Categories 3 or 4 according to EN ISO 13849-1 or SIL 2 or 3 according to IEC 61508 can be achieved by using a second 3SE5 position switch.
The 3SF1 position switches are approved according to UL 508, UL 50 and UL 746-C.

## General data

Technical specifications

Type		3SF11.., 3SF12..
General data		
Standards		IEC/EN 60947-5-1, EN ISO 14119
According to AS-Interface specification		
- I/O configuration/ID configuration		0/B
- ID1 code/ID2 code (Hex)		F/F
- Power consumption, overall	mA	$\leq 60$
Inputs		
- Low signal range		Contact open
- High signal range		Contact closed, $I_{\text {in }}$ dynamic ( $\left(I_{\text {peak }} \geq 5 \mathrm{~mA}\right.$ )
Status display		Green/red dual LED
Rated impulse withstand voltage $U_{\text {imp }}$	kV	0.6
EMC strength		
- IEC 61000-1-2	kV	4
- IEC 61000-4-3	V/m	10
- IEC 61000-4-4 (A/B)	kV	1/2
Mechanical endurance		
- Basic switch		$15 \times 10^{6}$ operating cycles
- With separate actuator, 3SF1......V..		$1 \times 10^{6}$ operating cycles
PFF value		
Probability of failure upon request of the safety function, with 1 actuation per hour and $B 10=5 \times 10^{6}$		
- Basic switch	1/h	$4 \times 10^{-9}$
- With separate actuator, 3SF1......V..	1/h	$2 \times 10^{-9}$
- Hinge switches, 3SF1......U..	1/h	$2 \times 10^{-9}$
Shock resistance acc. to IEC 60068-2-27		$30 \mathrm{~g} / 11 \mathrm{~ms}$



## Pin assignment

M12 device plug, 4-pole
M12 socket, 4-pole

## 1 ASi +

2 Not assigned
3 ASi -
4 Not assigned


1 Channel 2
2 Channel 2
3 Not assigned
4 Not assigned

LEDs
Status display (operating state)

| LED | No voltage on <br> AS-Interface <br> chip | Communica- <br> tion OK | Communica- <br> tion failed |
| :--- | :--- | :--- | :--- | | Slave has |
| :--- |
| address "0" |

Safe inputs

LED	Not actuated	Actuated
F-IN1   (YE)	$O$	
F-IN2   (YE)		

## 3SF1, plastic enclosures, enclosure width 31 mm according to EN 50047 / 50 mm

## Selection and ordering data

## Modular system

For the ASIsafe version of the position switch, the basic switch and actuator must be ordered separately.
1 or 2 contacts • 3 LEDs • Degree of protection IP65 (31 mm) or IP66/IP67 (50 mm) • M12 device plug


For the selection aid, see page 13/13

3SF1, plastic enclosures, enclosure width 31 mm according to EN $50047 / 50 \mathrm{~mm}$

$\Theta$ Positively driven actuator, for use in safety circuits.
${ }^{1)}$ Can be clinch mounted (turned through $180^{\circ}$, rear of lever).

## 3SF1, metal enclosures, enclosure width 31 mm according to EN 50047

## Selection and ordering data

## Modular system

For the ASIsafe version of the position switch, the basic switch and actuator must be ordered separately.
2 contacts • 3 LEDs • Degree of protection IP66/IP67 • M12 device plug

Version	Contacts	LEDs	SD	Modular system	$\square$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
			d	Article No.	Price per PU		

Basic switches (with rounded plunger ${ }^{1}$ ) • Enclosure widith 31 mm acc. to EN 50047

## With plunger

With M12 device plug, 4-pole, channel 1 on NC contact, channel 2 on NC contact

| Slow-action contacts | 2 NC | 24 VDC | $\Theta$ | 5 | 3SF1214-1KC05-1BA1 | 1 | 1 unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Snap-action contacts | 2 NC | 24 VDC | $\Theta$ | 5 | 3SF1214-1LC05-1BA1 | 1 | 1 unit |

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K, or positively driven actuator, for use in safety circuits.

1) For enclosures with widths of 31 mm , the basic switch is a complete unit with rounded plungers

Note:
For the selection aid, see page 13/13

$\Theta$ Positively driven actuator, for use in safety circuits.
${ }^{1)}$ Can be clinch mounted (turned through $180^{\circ}$, rear of lever).

## 3SF1, metal enclosures, enclosure width 40 mm according to EN 50041 / 56 mm

## Selection and ordering data

## Modular system

For the ASIsafe version of the position switch, the basic switch and actuator must be ordered separately.
1 or 2 contacts • 3 LEDs • Degree of protection IP66/IP67 • M12 device plug


	Version	Roller diameter		SD	Modular system	$\Delta$	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		mm		d	Article No.	Price per PU		
Operating mechanisms								
$18$	Plain plungers   High-grade steel plunger	10	$\Theta$		3SE5000-0AB01		1	1 unit
	Rounded plungers, type B, acc. to EN 50041							
	High-grade steel plunger, with 3 mm overtravel	10	$\Theta$		3SE5000-0AC02		1	1 unit
	Roller plungers, type C, acc. to EN 50041							
	High-grade steel roller, with 3 mm overtravel	13	$\Theta$		3SE5000-0AD02		1	1 unit

$\Theta$ Positively driven actuator, for use in safety circuits.

$\Theta$ Positively driven actuator, for use in safety circuits.
${ }^{1)}$ Can be clinch mounted (turned through $180^{\circ}$, rear of lever)

## With Separate Actuator

## General data

## Overview

The 3SF1 safety switches with safety－related communication can be directly connected using the AS－Interface bus system．The safety functions no longer have to be wired up conventionally．
With the 3SF1 safety switches the ASIsafe electronics are inte－ grated in the switch enclosure．


3SF1 safety switches with head for separate actuator and with integrated ASIsafe electronics
3SF1 safety switches with separate actuator have the same enclosures as the 3SF1 position switches．

## Operation

The actuator head is included in the scope of supply．For actuation from four directions it can be adjusted through $4 \times 90^{\circ}$ ． The switches can also be approached from above．
The actuators are not included in the scope of supply of the safety switch and must be ordered separately from a choice of different versions to suit the application，（see page 13／96）．
The actuator is encoded．Simple overruling by hand or auxiliary devices is impossible．
A high－grade steel blocking insert for attaching up to eight padlocks is available for even more safety．
A rubber cap to protect the actuator head from contamination is available for operation in dusty environments．

## Display

The switches have a status display with three LEDs：
－LED 1 （yellow）：F－IN1
－LED 2 （yellow）：F－IN2
－LED 3 （green／red）：AS－i／FAULT

## Connection

Connection to the AS－Interface is by means of a 4－pole M12 device plug（plastic version）connected to the yellow AS－Interface bus cable．
The wide enclosures（ 50 or 56 mm ）also have an M12 socket for connecting a second safety switch．Category 4 according to EN ISO 13849－1 is thus achieved．

## Benefits

The new generation of 3SF1 safety switches with separate actuator offers
－ASIsafe electronics integrated in the enclosure，with low power consumption＜ 60 mA
－An extensive range of actuators
－Status display with three LEDs

## Application

Safety switches with separate actuator are used where the position of doors，covers or protective grilles must be monitored for safety reasons．
The safety switch can only be operated with the matching coded actuator．Simple overruling by hand or auxiliary devices is impossible．
Devices are available with enclosure versions to suit the particular ambient conditions．Different control tasks can be performed with the contact blocks best suited for the particular purpose．Dimensions and fixing points of the enclosure are in accordance with EN 50041 or EN 50047 standards．
The devices are suitable for use in any climate．

## Standards

The switches comply with the standards IEC 60947－1 （Low－Voltage Controlgear，General）and IEC 60947－5－1 （Electromechanical Control Devices）．
The mechanical design of the switch corresponds to the requirements of the fail－safe principle according to EN ISO 14119.

## Approvals

AS－Interface according to EN 50295 and IEC 62026－2．
With a 3SF1 safety switch it is possible to achieve Category 3 according to EN ISO 13849－1 or SIL 2 according to IEC 61508.
Category 4 according to EN ISO 13849－1 or SIL 3 according to IEC 61508 can be achieved by using an additional 3SE5 safety switch．
The 3SF1 safety switches are approved according to UL 508， UL 50 and UL 746－C．

## With Separate Actuator

3SF1, plastic enclosures, enclosure width 31 mm according to EN 50047 / 50 mm

## Overview

- Contacts: 1 or 2 slow-action contacts
- Status display with 3 LEDs 24 V DC;

1: F-IN1, 2: F-IN2, 3: AS-i/FAULT

- Degree of protection IP65 (31 mm) or IP66/IP67 (50 mm)

Selection and ordering data


[^130]${ }^{1)}$ Supplied without actuator. Please order separately (see page 13/96)

## With Separate Actuator

## 3SF1, metal enclosures, enclosure width 31 mm according to EN 50047 / 40 mm according to EN 50041 / 56 mm

## Overview

- Contacts: 1 or 2 slow-action contacts
- Status display with 3 LEDs 24 V DC;

1: F-IN1, 2: F-IN2, 3: AS-i/FAULT

- Degree of protection IP66/IP67


## Selection and ordering data



[^131]
## With Separate Actuator

Accessories

## Selection and ordering data

	Version	SD	Article No.	Price per PU	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$	PS*
		d				
Actuators						
	Standard actuator					
	- Length 75.6 mm	-	3SE5000-0AV01		1	1 unit
- With vertical fixing,length 53 mm						
3SE5000-0AV02						
	- With transverse fixing, length 47 mm	5	3SE5000-0AV03		1	1 unit
3SE5000-0AV03						
	- With transverse fixing, plastic ${ }^{11}$, length 40 mm	5	3SE5000-0AW11		1	1 unit
	Radius actuators					
	- Length 51 mm, direction of approach from the left	2	3SE5000-0AV04		1	1 unit
3SE5000-0AV04						
	- Length 51 mm, direction of approach from the right	5	3SE5000-0AV06		1	1 unit
3SE5000-0AV06						
d	Universal radius actuator   - Length 77 mm   - Length 77 mm , tab rotated $90^{\circ}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3SE5000-0AV05 3SE5000-0AV05-1AA6		1 1	1 unit 1 unit
	Universal radius actuator, heavy duty					
	- Length 67 mm	2	3SE5000-0AV07-1AK2		1	1 unit
	- Length 77 mm	5	3SE5000-0AV07		1	1 unit
3SE5000-0AV07						
Optional accessories						
3SE5000-0AV08-1AA2	Protective caps, black rubber   For the actuator head, to protect the actuator openings from contamination   (Only for enclosure width 40 mm or 56 mm )	5	3SE5000-0AV08-1AA2		1	1 unit
3SE5000-0AV08-1AA3	Blocking inserts, high-grade steel, for actuator head For up to eight padlocks	5	3SE5000-0AV08-1AA3		1	1 unit

${ }^{1)}$ Not suitable for safety switches with tumbler.

## With Tumbler

## General data

## Overview

The 3SF1 safety switches with safety-related communication can be directly connected using the AS-Interface bus system. The safety functions no longer have to be wired up conventionally.
With the 3SF1 safety switches the ASIsafe electronics are integrated in the switch enclosure.


3SF1 safety switch with tumbler and with integrated ASIsafe electronics

## Operation

The actuator head is included in the scope of supply. For actuation from four directions it can be adjusted through $4 \times 90^{\circ}$. The switches can also be approached from above.
The actuators are not included in the scope of supply of the safety switch and must be ordered separately from a choice of different versions to suit the application, (see page 13/96).
The actuator is encoded. Simple overruling by hand or auxiliary devices is impossible.
A high-grade steel blocking insert for attaching up to eight padlocks is available for even more safety.
A rubber cap to protect the actuator entry of the actuator head from contamination is available for operation of the enclosures in dusty environments.

## Tumbler

There are two versions for interlocking the actuator:

- Spring-actuated lock (closed-circuit principle) with various release mechanisms
- Solenoid-locked (open-circuit principle)

For more explanations, (see page 13/59).

## Display

The switches have a status display with four LEDs:

- LED 1 (green): AS-i
- LED 2 (red): FAULT
- LED 3 (yellow): F-IN1
- LED 4 (yellow): F-IN2


## Connection

Connection to the AS-Interface is by means of a 4-pole M12 device plug (plastic version) connected to the yellow AS-Interface bus cable (no additional supply of auxiliary power is required thanks to the low current consumption of the solenoid of max. 170 mA ).

## Benefits

The new generation of 3SF13 safety switches with tumbler offers:

- More safety through higher locking forces:
-1300 N for the plastic version
-2600 N for the metal version
- Various release mechanisms: lock release, escape release and emergency release
- ASIsafe electronics integrated in the enclosure; connected through 4-pole M12 device plug
- Current consumption of the solenoid no more than 170 mA
- Two contact blocks as standard equipment, hence fewer versions needed
- Same dimensions for all enclosure versions: plastic, metal
- An extensive range of actuators
- Status display with four LEDs
- 3SF1324-1S.21-1BK4 series with high degree of protection IP69K, IP69 in accordance with IEC 60529, cover with foamed seal


## Application

The safety switches with tumbler are exceptional safety-related devices which prevent an unforeseen or intentional opening of protective doors, protective grilles or other covers as long as a dangerous situation is present (i.e. follow-on motion of the switched-off machine).
The safety switches with tumbler have the following functions:

- Enabling the machine or process with closed and locked protective device
- Locking the machine or process with opened protective device
- Position monitoring of the protective device and tumbler


## Standards

The switches comply with the standards IEC 60947-1 (Low-Voltage Controlgear, General) and IEC 60947-5-1 (Electromechanical Control Devices).
The mechanical design of the switch corresponds to the requirements of the fail-safe principle according to EN ISO 14119.

## Approvals

AS-Interface according to EN 50295 and IEC 62026-2
The switches are approved for use with locking devices according to EN ISO 14119 and EN 292, Parts 1 and 2.
3SF13 safety switches with tumbler have a VDE test mark.
With a 3SF13 safety switch with tumbler it is possible to achieve Category 3 according to EN ISO 13849-1 or SIL 2 according to IEC 61508.
Category 4 according to EN ISO 13849-1 or SIL 3 according to IEC 61508 can be achieved by using an additional 3SE5 safety switch.
The 3SF1 safety switches are approved according to UL 508, UL 50 and UL 746-C.

## With Tumbler

3SF1, plastic enclosures with locking force greater than 1200 N

## Overview

## Versions

- 1BA1: ASIsafe channel 1 on 1 NC contact from the actuator, and channel 2 on 1 NC contact from the solenoid
- 1BA3: ASIsafe channel 1 on the first NC contact from the actuator and channel 2 on the second NC contact from the actuator
- 1BA4: ASIsafe channel 1 on 2 NC contacts (two-channel) from the actuator, and channel 2 on 1 NC contact from the solenoid. The position switch transfers the information of actuators to a transfer channel because the discrepancy of the two actuator contacts is already evaluated in the switch.
The 3SF1324-1S.21-1BA4 safety switches are also recommended where there are several protective door tumblers and reliable diagnostics and quick restart capability of equipment is required.
- A response is received from the solenoid.
- No opening of the doors required after the solenoid is unlocked.

In connection with an ASIsafe MSS modular safety system or an ET 200SP F-CM AS-i Safety ST module, it is possible to achieve SIL 2 according to IEC 61508 or PL d according to ISO 13849-1. They comply with the standard EN ISO 14119. A TÜV certificate is available.

## Features:

- Slow-action contacts
- 5 directions of approach
- Solenoid: Rated operational voltage 24 V DC
- 1300 N locking force
- Degree of protection IP66/IP67 (IP69K)
- Status display with 4 LEDs 24 V DC; 1: AS-i, 2: FAULT, 3: F-IN1, 4: F-IN2


## Comparison of versions

Safety switches Type	Contacts   Actuator/solenoid	Achievable safety level	Diagnostics   Feedback from the solenoid	Reclosing condition after unlocking the solenoid (depending on the type of evaluation)
3SF1324-1S.21-1BA1	1 NC/1 NC 1 NC/1 NC	$\begin{aligned} & \text { SIL 1/PL c } \\ & \text { SIL 2/PL d } \end{aligned}$	$\checkmark$ $6$ $\checkmark$	Door does not have to be opened Door must be opened
3SF1324-1S.21-1BA3	2 NC/--	SIL 2/PL d	--	Door does not have to be opened
3SF1324-1S.21-1BA4	2 NC/1 NC	SIL 2/PL d	$\checkmark$	Door does not have to be opened
3SF1324-1S.21-1BK4 (IP69K)	2 NC/1 NC	SIL 2/PL d	$\checkmark$	Door does not have to be opened

$\checkmark$ Available -- Not available
Selection and ordering data

	Tumbler ${ }^{1)}$	Contacts Actuator/ solenoid		SD	Complete units		PU (UNIT,SET, M)	PS*							
				d	Article No.	Price per PU									
1300 N locking force - Enclosure width 54 mm															
	Spring-actuated locks														
	- With auxiliary release	$1 \mathrm{NC} / 1 \mathrm{NC}$	$\Theta$	5	3SF1324-1SD21-1BA1		1	1 unit							
		2 NC/--	$\Theta$	5	3SF1324-1SD21-1BA3		1	1 unit							
		$2 \mathrm{NC} / 1 \mathrm{NC}$	$\Theta$	5	3SF1324-1SD21-1BA4		1	1 unit							
	- Degree of protection IP69 acc. to 60529; IP69K acc. to DIN 40050	$2 \mathrm{NC} / 1$ NC	$\Theta$	5	3SF1324-1SD21-1BK4		1	1 unit							
	- With auxiliary release with lock	$1 \mathrm{NC/1} \mathrm{NC}$	$\Theta$	5	3SF1324-1SE21-1BA1		1	1 unit							
3SF1324-1SD21-1BA1															
	- With escape release from the front	$1 \mathrm{NC} / 1 \mathrm{NC}$	$\Theta$	5	3SF1324-1SF21-1BA1		1	1 unit							
		$2 \mathrm{NC} / 1$ NC	$\Theta$	5	3SF1324-1SF21-1BA4		1	1 unit							
3SF1324-1SF21-1BA1	- Degree of protection IP69 acc. to 60529; IP69K acc. to DIN 40050	$2 \mathrm{NC/1} \mathrm{NC}$	$\Theta$	5	3SF1324-1SF21-1BK4		1	1 unit							
	- With escape release from the back and auxiliary release from the front	$1 \mathrm{NC} / 1 \mathrm{NC}$	$\Theta$	5	3SF1324-1SG21-1BA1		1	1 unit							
		$2 \mathrm{NC} / 1 \mathrm{NC}$	$\Theta$	5	3SF1324-1SG21-1BA4		1	1 unit							
	- Degree of protection IP69 acc. to 60529; IP69K acc. to DIN 40050	$2 \mathrm{NC/1} \mathrm{NC}$	$\Theta$	5	3SF1324-1SG21-1BK4		1	1 unit							
	- With emergency release from the back and auxiliary release from the front	$1 \mathrm{NC} / 1 \mathrm{NC}$	$\Theta$	5	3SF1324-1SJ21-1BA1		1	1 unit							
	Solenoid-locked	$1 \mathrm{NC} / 1 \mathrm{NC}$	$\Theta$	5	3SF1324-1SB21-1BA1		1	1 unit							
		$2 \text { NC/-- }$	$\Theta$	5	3SF1324-1SB21-1BA3		1	1 unit							
3SF1324-1SB21-1BA1		1) Supplied without actuator. Please order separately. For actuators and optional accessories, see page 13/64.													

## With Tumbler

## 3SF1, metal enclosures with locking force greater than 2000 N

## Overview

## Version

- 1BA1: ASIsafe channel 1 on 1 NC contact from the actuator, and channel 2 on 1 NC contact from the solenoid


## Features

- Slow-action contacts
- Solenoid: Rated operational voltage 24 V DC
- 2600 N locking force
- Degree of protection IP66/IP67
- Status display with 4 LEDs 24 V DC; 1: AS-i, 2: FAULT, 3: F-IN1, 4: F-IN2

Comparison of versions

Safety switches	Contacts	Achievable   safety level	Diagnostics	Reclosing condition   after unlocking the solenoid   (depending on the type of evaluation)
Type	Actuator/solenoid		Feedback from the solenoid	Door does not have to be opened

$\checkmark$ Available

## Selection and ordering data


$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.
${ }^{1)}$ Supplied without actuator. Please order separately.

For actuators and optional accessories, see page 13/64.

## Safety Hinge Switches

3SF1, plastic enclosures, enclosure width 31 mm according to EN 50047 / 50 mm

## Overview

The 3SF1 safety hinge switches with safety-related communication can be directly connected using the AS-Interface bus system. The safety functions no longer have to be wired up conventionally.
With the 3SF1 hinge switches the ASIsafe electronics are integrated in the switch enclosure.
The hinge switches are provided for mounting on hinges.
There are two actuator variants here:

- Hollow shaft, inner diameter 8 mm , outer 12 mm
- Solid shaft, diameter 10 mm

For the ASIsafe version of the hinge switch, the basic switch and actuator head must be ordered separately. The basic switches correspond to the 3SF1 position switches (use only versions with snap-action contacts).
The provisions and approvals are the same as for the 3SF1 standard switches, see page 13/85.

## Selection and ordering data

## Modular system

1 or 2 contacts $\cdot 3$ LEDs $\cdot$ Degree of protection IP65 ( 31 mm ) or IP66/IP67 ( 50 mm ) $\cdot$ M12 device plug

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

## Safety Hinge Switches

3SF1, metal enclosures, enclosure width 31 mm according to EN 50047 / 40 mm according to EN 50041 / 56 mm

## Overview

The 3SF1 safety hinge switches with safety-related communication can be directly connected using the AS-Interface bus system. The safety functions no longer have to be wired up conventionally.
With the 3SF1 hinge switches the ASIsafe electronics are integrated in the switch enclosure.
The hinge switches are provided for mounting on hinges.
There are two actuator variants here:

- Hollow shaft, inner diameter 8 mm , outer 12 mm
- Solid shaft, diameter 10 mm


## Selection and ordering data

## Modular system

1 or 2 contacts • 3 LEDs • Degree of protection IP66/IP67 • M12 device plug

$\Theta$ Positive opening according to IEC 60947-5-1, Appendix K.

## Magnet

3SE66, 3SE67 magnetically operated switches

## Overview



3SE66 contact blocks and 3SE67 switching magnets
A magnetically operated switch comprises a coded switching magnet and a contact block (sensor unit). The switch must be connected to a safety relay, e.g. SIRIUS 3SK1, or a bus system, e.g. SIMATIC ET 200SP, for evaluation. The switches use reed contacts as mechanical contacts. The status of the contacts is monitored using an evaluation unit.


3SE66 contact blocks and 3SE67 switching magnets, supplementary range in new design

## Safety relays

3SK safety relays can be used worldwide since they possess all the required certification. Since they satisfy the most exacting safety requirements, they are suitable for all kinds of safety applications.
The following can be selected:

- 3SK1 Standard basic units: simple and compact to satisfy all the essential requirements of safety sensor monitoring systems
- 3SK1 Advanced basic units: multifunctional series with relay enabling circuits, semiconductor outputs or time-delay outputs
- 3SK2 basic units:
multifunctional series whose functionality is parameterized using software. The basic units have solid-state outputs. Relay outputs from the 3SK1 portfolio can also be connected via device connectors.
- Expansion units for inputs and outputs

The 3SE6806 safety relay is also available with two floating enabling circuits (safe circuits) as NO contact circuits and one floating signaling circuit as an NC contact circuit.

## Benefits

## Standard range

- Non-contact round, rectangular, small ( $25 \mathrm{~mm} \times 33 \mathrm{~mm}$ ) and larger ( $25 \mathrm{~mm} \times 88 \mathrm{~mm}$ ) versions
- Small, compact, safe
- Simple mounting with alignment of sensor and actuator, and concealed installation also easy
- Suitable for restricted spaces


## Supplementary range

- New design for rectangular shape
- More functionality
- Greater switching intervals and a larger horizontal or vertical displacement
- Various mounting positions possible (e.g. at $90^{\circ}$ offset)
- SIL 3 and PL e diagnostics possible because there are two safety contacts and one signaling contact
- LED variant
- Fast connection possible using plug-in variants


## Magnet

## Application

SIRIUS 3SE6 magnetically operated switches are designed for mounting on movable protective guards (hoods, hinged covers, doors, etc.). Evaluation can be performed by means of a safety relay or through connection to a bus system.
The 3SE66 non-contact, magnetically operated safety switches stand out due to their enclosed design with degree of protection IP67. Since they are coded, they do not have to be concealed when installed. They are particularly suitable therefore for areas exposed to contamination, cleaning or disinfecting.
A magnetic monitoring system comprises one or more magnetically operated switches and an evaluation unit, e.g. a safety relay. When contact blocks $1 \mathrm{NO}+1 \mathrm{NC}(+1 \mathrm{NC}$ signaling contact) or 2 NC (+ 1 NC signaling contact) are used, the 3SK safety relay, for example, provides a high degree of protection against manipulation and can be installed in safety circuits up to SIL 3 according to IEC 62061 and PL e according to EN ISO 13849-1.


Non-contact safety magnetically operated switches (with plug or cable) for right-hinged door


## Magnet

3SE66, 3SE67 magnetically operated switches
Combination of monitoring units and magnetically operated switches


## Magnet

3SE66, 3SE67 magnetically operated switches

## Selection and ordering data


${ }^{1)}$ The NC is a signaling contact, not a safety contact.

## Magnet

3SE66, 3SE67 magnetically operated switches


## Magnet

3SE66, 3SE67 magnetically operated switches


1) Only when up to 5 3SK1220 expansion units are used, see page $13 / 25$.

For more monitoring units, see page 13/109.

## Overview



Non-contact RFID safety switches with maximum tamper resistance RFID 3SE63 non-contact safety switches comply with the highest safety requirements, SIL 3 or Cat. 4, for monitoring the positions of movable protective devices.
An RFID safety switch consists of a coded RFID switch with an 8 -pole M12 connection plug and an identical RFID actuator.

The switch is available in several versions:

- Family coded with M12 plug or with additional 18 N magnetic catch as an option
- Individually coded, programmable once, with M12 plug or with additional 18 N magnetic catch as an option
- Individually coded, programmable more than once (an unlimited number of times), with M12 plug or variant with additional 18 N magnetic catch
The actuator is therefore available in two versions:
- Standard
- With 18 N magnetic catch

The magnetic catch keeps doors and hinge switches closed with permanent magnets.

## Mounting and maintenance

Various options for mounting save on enclosure variants:

- Mounting of the switch on the right or left side
- The actuator can be mounted on all sides

Quick and easy mounting thanks to universal mounting holes:

- Standard gauge/holes for 3SE6 magnetically operated switches
- Fine adjustment thanks to slotted holes

Little adjustment or maintenance required:

- Threshold indication by LED display on the switch for quick and easy adjustment during mounting and maintenance
- Molded switch allows it to be used as an end stop for small and medium-sized doors


## Note:

- Keep metal parts and cuttings away from the vicinity of the switch
- Minimum distance between two switches 100 mm


## Optional accessories (mounting)

- Covers for sealing mounting holes, also suitable for tamperproofing screw fixings
- Spacers (approx. 3 mm high) to facilitate cleaning under the installation surface when using high-pressure cleaners, for example


## Coding

Family coded
These safety switches are delivered ready to use, i. e. no programming is necessary.
Individually coded, programmable once
The assignment of safety switch and actuator thus created is irreversible.
The actuator is programmed simply by routine during startup, thus permanently preventing any form of tampering by means of a replacement actuator.

## Individually coded, programmable several times

The procedure for programming a new actuator can be repeated an unlimited number of times. When a new actuator is programmed the previous code becomes invalid. A protected coding process allows new actuators to be programmed for service purposes.
After this, a ten-minute lockout provides increased tamper protection. The green LED flashes until the lockout time has ended and the new actuator has been detected. If the operational voltage is interrupted during this time, the ten-minute guard time is restarted.

## Programming procedure for individual coding

1. Apply operational voltage to safety sensor
2. Move actuator into detection range:
red LED lights up, yellow LED flashes ( 1 Hz )
3. After 10 s it changes to a shorter flashing frequency $(3 \mathrm{~Hz})$. In this state switch off operational voltage.
4. After the next time the operational voltage is switched on, the actuator is detected again to activate the programmed actuator code. The activated code is thus stored permanently.

## Diagnostics

The RFID safety switch indicates its operating state including faults by means of the LED indicator in the switch and the short-circuit proof diagnostics output. The signals can then be used for central displays or non-safety-related control tasks.
There are the following diagnostics functions:

- Crossover monitoring
- Open-circuit monitoring
- External voltage monitoring
- Ambient temperature too high
- Wrong or defective actuator
- Switching interval threshold identification with LED display

The signal combination "diagnostics output switched off" and "safety outputs still switched on" can be used to move the machine into a controlled stop position.

Any crossover or a fault that is not currently compromising the safe function of a safety switch results in the disconnection of the safety channels after a 30 -minute delay. However, the diagnostics output switches off instantaneously.

## Mode of operation of the diagnostics LEDs

The safety switch indicates not only its operating state, but also faults by means of LEDs in three colors at the ends of the RFID switch.

- The green LED indicates readiness for operation when the control supply voltage is connected.
- The yellow LED indicates that there is an actuator in detection range. If the actuator is in the switching interval threshold, this is indicated by flashing. This flashing can be used to identify a change in the distance between sensor and actuator at an early stage (e.g. as a result of the sagging of a protective door). The installation should be tested before the distance increases further, the safety outputs switch off and the machine stops.
- The red LED indicates the individual causes of the fault by means of defined flashing frequencies.


## Benefits

- Maximum tamper resistance by means of individual coding of switches and actuators at the highest safety level
- Plastic enclosure with integrated plug
- Two solid-state short-circuit proof safety outputs, each 250 mA
- Integrated crossover, open circuit and external voltage monitoring, with series circuit as far as the control cabinet
- Safety and diagnostics signals can be connected in series
- Series connection of safety circuits in Cat. 4/PL e/SIL 3
- LED status indication including switching interval threshold indication for quick and easy adjustment during installation and maintenance
- Short-circuit proof conventional diagnostics output
- Optional version with magnetic catch for interlocking hinge switches or small doors even when de-energized
- Highly rugged thanks to the use of tested enclosure materials, resistant to aggressive cleaning products, with a degree of protection of up to IP69K
IP69 does not automatically mean that it can be used outdoors.
The devices must be installed with corresponding protection for this purpose. UV radiation additionally affects the enclosure
- Fine adjustment thanks to slotted holes
- Little adjustment or maintenance required
- Molded switch allows it to be used as an end stop for small and medium-sized doors


## Application

RFID non-contact safety switches are designed for use in safety circuits, and are used to monitor the positions of movable protective devices. They monitor the positions of rotating, laterally sliding or removable protective devices using the coded electronic actuator.
Their high degree of protection (IP69K) and the use of cleaning-product-resistant materials means that these switches are optimized for use under extreme environmental conditions.
Their electronic operating principle makes these switches ideal for metalworking machinery.
The switches have a larger switching interval and switching displacement than mechanical switches, improve the mounting tolerance of the protective door, and offer a wide range of diagnostics options.
The RFID switches can be connected to all standard evaluation units suitable for solid-state inputs and in which the built-in crossover monitoring function can be deactivated, e.g.:

Monitoring units	
Relay output	
SIRIUS safety relays	3SK1111-.AB30, 3SK1121
SIRIUS safety relays	3TK2826-.BB4.
Solid-state outputs	
SIRIUS safety relays	3SK1112, 3SK1122, 3SK2112,
SIRIUS safety relays	3SK2122
	3TK2841, 3TK2842, 3TK2845
	3TK2853-.BB40
Modular Safety System (MSS)	3RK3 (safe inputs)
SIMATIC ET 200S	6ES7138-4FAO.-0AB0
	6ES7138-4FCO.-0AB0
SIMATIC ET 200M	6ES7326-1BK0.-OAB0
SIMATIC ET 200eco	6ES7148-3FA00-0XB0
SIMATIC ET 200pro	6ES7148-4F.00-0AB0
SIMATIC ET 200SP	6ES7136-6BA00-0CA0
	6ES7136-6PA00-0BC0
SIMATIC ET 200MP	6ES7526-3BH00-0AB0
SIMATIC S7-1200F	6ES7226-6BA32-0XB0

These safety categories can be achieved in safety circuits:

- Category 4 according to EN ISO 13849-1
- PL e according to EN ISO 13849-1
- SIL 3 according to IEC 61508


## Technical specifications

Type	3SE63
General data	IEC 60947-5-3,   IEC 61508,   Standards      EN ISO 13849-1,   EN ISO 14119
Enclosure material	Glass-fiber reinforced   thermoplast,   self-extinguishing
Degree of protection	IP65/IP67/IP69K
Ambient temperature	${ }^{\circ} \mathrm{C}$
- During operation	${ }^{\circ} \mathrm{C}$


Type		3SE63
Electrical specifications		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	32
Degree of pollution according to IEC 606		3
Rated impulse withstand voltage $U_{\text {imp }}$	V	800
Rated conditional short-circuit current	A	100
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ (PELV acc. to EN 60204-1)	V DC	24-15/+10\%
Protection class		II
Overvoltage category		III
Rated operational current $I_{\mathrm{e}}$	A	0.6
Lowest operating current $I_{\mathrm{m}}$	mA	0.5
No-load current $I_{0}$	mA	35


Type		3SE63
Inputs/outputs		
Safety inputs X1/X2   - Input voltage   - Power consumption per input	$\begin{aligned} & \text { V DC } \\ & \mathrm{mA} \end{aligned}$	$\begin{aligned} & 24-15 /+10 \% \\ & 5 \end{aligned}$
Safety outputs OSSD1/OSSD2		p operation
- Max. rated operating current $I_{\text {e max }}$	A	0.25
- Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-12 / \mathrm{DC}-13$ at $U_{e}$	A	0.25
- Voltage drop $U_{\mathrm{e}}$	V	< 1
- Switching frequency	Hz	1
- Response time, max.	ms	100
- Risk time, max.	ms	200
- Recovery, max.	$s$	5
Diagnostics output		p operation
- Max. rated operating current $I_{\mathrm{e} 2 \text { max }}$	A	0.05
- Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-12 / \mathrm{DC}-13$ at $U_{\text {e }}$	A	0.05
- Voltage drop $U_{\text {e }}$	V	< 2
- Operational current	mA	150
- Conductor capacity, max.	nF	50

## Pin assignment



IC10_00090

Pin 1: A1 rated operational voltage 24 V DC
Pin 2: X1 safety input 24 V DC
Pin 3: A2 grounding
Pin 4: OSSD1 safety output
Pin 5: OUT conventional diagnostics output
Pin 6: X2 safety input 24 V DC
Pin 7: OSSD2 safety output
Pin 8: Not used

## Pin assignment

## Directions of approach and switching interval

The side area permits a maximum height offset of the switch and actuator of $\pm 8 \mathrm{~mm}$ (e.g. mounting tolerance or due to sagging of the protective door). The transverse offset also equals max.
$\pm 18 \mathrm{~mm}$.


Switching interval: Output signal with hysteresis


Switching interval: Output signal with OFF delay

## Dimension drawings

## RFID switch

3SE6315


RFID actuator
3SE6310


## RFID

3SE63 RFID safety switches

## Selection and ordering data



1) Not connectable via AS-i modules.

For more monitoring units, see page 13/10G.

## Position and Safety Switches

## SIRIUS 3SE5 Mechanical Position Switches

## General data

Type		3SE63
Inputs/outputs		
Safety inputs X1/X2		
- Input voltage	V DC	$24-15 /+10 \%$
- Power consumption per input	mA	5
Safety outputs OSSD1/OSSD2	p operation	
- Max. rated operating current $I_{\mathrm{e}}$ max	A	0.25
- Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-12 / \mathrm{DC-13}$	A	0.25
$\quad$ at $U_{\mathrm{e}}$	V	$<1$
- Voltage drop $U_{\mathrm{e}}$	Hz	1
- Switching frequency	ms	100
- Response time, max.	ms	200
- Risk time, max.	s	5
- Recovery, max.	A	p operation
Diagnostics output	A	0.05
- Max. rated operating current $I_{\mathrm{e} 2} \max$		
- Rated operational current $I_{\mathrm{e}} / \mathrm{DC}-12 / \mathrm{DC}-13$		
at $U_{\mathrm{e}}$	V	$<2$
- Voltage drop $U_{\mathrm{e}}$	mA	150
- Operational current	nF	50
- Conductor capacity, max.		

Pin assignment


IC10_00090

Pin 1: A1 rated operational voltage 24 V DC
Pin 2: X1 safety input 24 V DC
Pin 3: A2 grounding
Pin 4: OSSD1 safety output
Pin 5: OUT conventional diagnostics output
Pin 6: X2 safety input 24 V DC
Pin 7: OSSD2 safety output
Pin 8: Not used

## Pin assignment

## Directions of approach and switching interval

The side area permits a maximum height offset of the switch and actuator of $\pm 8 \mathrm{~mm}$ (e.g. mounting tolerance or due to sagging of the protective door). The transverse offset also equals max. $\pm 18 \mathrm{~mm}$.


Switching interval: Output signal with hysteresis


Switching interval: Output signal with OFF delay

## Dimension drawings

## RFID switch

3SE6315


RFID actuator
3SE6310


## SIRIUS 3SE5 Mechanical Position Switches

## General data

## Selection and ordering data



1) Not connectable via AS-i modules.

For more monitoring units, see page 13/10G

## Features

Modular plug-in


## Product Description

These heavy duty switches define the industry standard with versatility of design and high reliability for low maintenance, installation and inventory costs. Standard Viton gaskets, seals and boots and a zinc die cast enclosure provide exceptional chemical resistance to the common coolants, cleansing agents, and hydraulic fluids found in machine tool, automotive, waste water treatment and other heavy duty industrial applications. Mounting dimensions accommodate both U.S. and DIN standards for easy retrofit installations.

## Features

- Manufactured to take the physical and environmental abuse (including cutting fluids and chemicals) of harsh industrial environments
- Modular, plug-in components (head and switch body) provide application flexibility, reduced inventory and less downtime
- Chemical resistant Viton gaskets, seals and boots are standard, and so are captive, posi-drive screws
- A special internal seal on the switch body prevents fluid from entering even when the operating head is not attached
- 600 V rating, ridge-topped contacts and wiping action assure continuity even to logic level circuits
- Factory wired cable features a 350 pound pullout capacity
- Keyed, four direction head positioning. Standard $5^{\circ}$ pre-travel and $90^{\circ}$ total travel
- Rotary heads are field convertible CW, CCW, or both, without special tools


## Standards and Certifications

- UL Listed
- CSA certified
- CE (single pole only)
- RoHS Compliant

Factory Sealed


## Product Description

These heavy duty switches were specifically designed to withstand the penetrating properties of cutting fluids and coolants, such as those used in the automotive industry, as well as extreme shock, vibration and temperature fluctuations. The one-piece, epoxy filled switch body is prewired at the factory to ensure leak-proof, submersible performance. This unique construction positively stops fluid from finding its way to any and all critical connections. Our 6P+switches can be ordered in separate components or as complete assembled devices. They are available with prewired 16 AWG cables or mini-connectors. Standard and custom cable lengths are available, and these switches use the same operating heads as the standard 3SE03 switches.

## Features

- Manufactured to take the physical and environmental abuse (including cutting fluids and chemicals) of harsh industrial environments
- Modular, plug-in components (head and switch body) provide application flexibility, reduced inventory and less downtime
- Chemical resistant Viton gaskets, seals and boots are standard, and so are captive, posi-drive screws
- A special internal seal on the switch body prevents fluid from entering even when the operating head is not attached
- 600 V rating, ridge-topped contacts and wiping action assure continuity even to logic level circuits
- Factory wired cable features a 350 pound pullout capacity
- Keyed, four direction head positioning. Standard $5^{\circ}$ pre-travel and $90^{\circ}$ total travel
- Rotary heads are field convertible CW, CCW, or both, without special tools


## !! DANGER !! <br> THIS SENSOR IS NOT A SAFETY DEVICE AND IS NOT INTENDED TO BE USED AS A SAFETY DEVICE.

3SE03 switches are designed only to detect and read certain data in an electronic manner and perform no use apart from that, specifically no safety-related use. This sensor product does not include self-checking redundant circuitry, and the failure of this sensor product could cause either an energized or de-energized output condition, which could result in death, serious bodily injury, or property damage.

For safety-rated limit switches, see page 13/7.

## 3SE03 Heavy Duty Limit Switches

## Modular, plug-in and NEMA type 6P submersible

Technical data


## Operating temperature $\left.{ }^{1}\right)^{2}$ )

Temperature rating	Operation		Temperature range	
	Type	Return	Without cable	With cable
1	Side rotary ${ }^{3}$ )	Momentary CW only or CCW only	$\begin{array}{\|l\|} \hline 10^{\circ} \mathrm{F} \text { to } 200^{\circ} \mathrm{F} \\ -12^{\circ} \mathrm{C} \text { to } 94^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & 10^{\circ} \mathrm{F} \text { to } 200^{\circ} \mathrm{F} \\ & -12^{\circ} \mathrm{C} \text { to } 94^{\circ} \mathrm{C} \end{aligned}$
2	Center neutral   Side rotary   Side plunger   Two-sided plunger   Roller side plunger ${ }^{4}$ )	Momentary CW or CCW   Maintained   Momentary   Maintained   Momentary	$\begin{aligned} & 14^{\circ} \mathrm{F} \text { to } 200^{\circ} \mathrm{F} \\ & -10^{\circ} \mathrm{C} \text { to } 94^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 14^{\circ} \mathrm{F} \text { to } 200^{\circ} \mathrm{F} \\ & -10^{\circ} \mathrm{C} \text { to } 94^{\circ} \mathrm{C} \end{aligned}$
3	Top plunger Top roller plunger ${ }^{4}$ ) Wobble head	Momentary Momentary Momentary	$\begin{aligned} & 14^{\circ} \mathrm{F} \text { to } 250^{\circ} \mathrm{F} \\ & -10^{\circ} \mathrm{C} \text { to } 121^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 14^{\circ} \mathrm{F} \text { to } 221^{\circ} \mathrm{F} \\ & -10^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C} \end{aligned}$

1) Temperature ranges below $+32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ are based on absence of freezing moisture or water.
2) For temperature rating of specific switch, refer to page 13/70, Operating Heads.
3) For CW only or CCW only
operation, upper temperature limit increases to $250^{\circ} \mathrm{F}$ $\left(121^{\circ} \mathrm{C}\right.$ ) without cable, and $221^{\circ} \mathrm{F}\left(105^{\circ} \mathrm{C}\right)$ with pre-wired cable.
4) Roller direction can be converted in the field.

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

Modular, plug-in metal housing

Complete switches without lever - threaded cable entry:

	Plug-In module type			Center neutral Double pole $2 \mathrm{NO}+2 \mathrm{NC}$ (3SEO3-SN)		
	Receptacle ty surface moun			Center neutral (3SE03-RB)		
Operating head type				Composite catalog number consisting of head, module and receptacle		
				DT	Catalog Number	List Price \$ 1 unit
$\sqrt{6}$	Side rotary (momentary)	Center   Neutral	$\begin{aligned} & \text { (3SE03-DN1) } \\ & (3 S E 03-D N 2) \end{aligned}$	$\stackrel{\square}{\square}$	$\begin{aligned} & \text { 3SE03-NN1(1) } \\ & \text { 3SE03-NN2® } \end{aligned}$	

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

NEMA type 6P submersible, prewired cable

Complete switches without lever - prewired cable:

Switch body type—prewired cable with 8 foot cable	Single pole   $1 \mathrm{NO}+1 \mathrm{NC}$ (3SE03-SA6P)   Cable color code   1 - White   2 - Black   3 - Red   4 - Orange   5 - Green		Double pole    2 NO +2 NC    (3SE03-SB6P)        Cable color code    1 - White 6 - Pink   2 - Black 7 - Yellow   3- Red 8 - Blue   4- Orange $9-$ Green   5- Brown	
	$\begin{aligned} & 5 \\ & 9 \\ & \hline \end{aligned}$			9  


Operating head type			Composite catalog number consisting of head and switch body				
			DT	Catalog Number	List Price \$ 1 unit	Catalog Number	List Price \$ 1 unit
$6$	Side rotary   CW and CCW operation convertible to CW only or CCW only	Standard momentary (3SEO3-DR1) (3SE03-DR1)	-	3SE03-AR16P		3SE03-BR16P	
		$\begin{aligned} & \text { Standard maintained } \\ & \text { (3SE03-DM1) } \end{aligned}$		3SE03-AM16P		3SE03-BM16P	
		Low torqued momentary (3SE03-DL1)		3SE03-AL16P		3SE03-BL16P	
	Plain side plunger	Momentary (3SE03-DS1)		3SE03-AS16P		3SE03-BS16P	
	Roller side plunger	Momentary (3SE03-DS3)		3SE03-AS36P		3SE03-BS36P	
	Two-sided plunger	Maintained (3SE03-DH1)		3SE03-AH16P		Not available	
番	Plain top plunger	Momentary (3SE03-DT1)		3SE03-AT16P		3SE03-BT16P	
	Roller top plunger	Momentary (3SE03-DT3)		3SE03-AT36P		3SE03-BT36P	
	Wobble head (without lever)	Momentary (3SE03-DW1)		3SE03-AW16P		3SE03-BW16P	

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

NEMA type 6P submersible, prewired receptacle

Complete switches without lever - prewired receptacle with pin connector:


Operating head type			Composite catalog number consisting of head and switch body				
			DT	Catalog Number	List Price \$ 1 unit	Catalog Number	List Price \$ 1 unit
$6$	Side rotary   CW and CCW operation convertible to CW only or CCW only	Standard momentary (3SE03-DR1)	-	3SE03-AR16PC		3SE03-BR16PC	
		Standard maintained (3SEO3-DM1)		3SE03-AM16PC		3SE03-BM16PC	
		$\begin{aligned} & \text { Low torqued momentary } \\ & \text { (3SEO3-DL1) } \end{aligned}$		3SE03-AL16PC		3SE03-BL16PC	
$10$	Plain side plunger	Momentary (3SE03-DS1)		3SE03-AS16PC		3SE03-BS16PC	
$\sqrt{8}$	Roller side plunger	Momentary (3SE03-DS3)		Not available		3SE03-BS36PC	
$\sqrt{9}$	Two-sided plunger	$\begin{aligned} & \hline \text { Maintained } \\ & \text { (3SEO3-DH1) } \end{aligned}$		3SE03-AH16PC		3SE03-BH16PC	
6	Plain top plunger	Momentary (3SE03-DT1)		3SE03-AT16PC		3SE03-BT16PC	
	Roller top plunger	Momentary (3SE03-DT3)		3SE03-AT36PC		3SE03-BT36PC	
$\frac{8}{6}$	Wobble head (without lever)	Momentary (3SE03-DW1)		3SE03-AW16PC		3SE03-BW16PC	

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

## Modular, plug-in and NEMA type 6P submersible

Components:

Plug-in   module	Plug-in module	DT	Catalog Number	List Price \$



Switch body-NEMA type 6P submersible:


Operating heads ${ }^{(2)}$ :


Operating head type			Nominal operating data								
			Total travel	Pretravel	Operating force	Release position	Minimum return force	Operating temp range ${ }^{(4)}$	DT	Catalog   Number	List Price \$ 1 unit
Side rotary ${ }^{(5)}$		Standard momentary ${ }^{(6)}$	$90^{\circ}$	$5^{\circ}$	$3 \mathrm{lb}-\mathrm{in}$.	$2^{\circ}$	4.5 oz-in.	1	-	3SE03-DR1	
		Low torqued momentary ${ }^{(6)}$	$90^{\circ}$	$15^{\circ}$	$1.5 \mathrm{lb}-\mathrm{in}$.	$6^{\circ}$	2.5 oz-in.	1	$\checkmark$	3SE03-DL1	
		Standard maintained	$90^{\circ}$	$50^{\circ}$	3 lb -in.	$50^{\circ}$	-	2	-	3SE03-DM1	
$60^{3}$	Plain side plunger	Momentary	0.25 in .	0.065 in .	4 lbs	0.03 in .	8 oz.	2	-	3SE03-DS1	
$6$	Roller side plunger	Momentary ${ }^{(7)}$	0.25 in .	0.065 in .	4 lbs	0.03 in .	80 oz.	2	$\checkmark$	3SE03-DS3	
	Two-sided plunger	Maintained	0.32 in .	0.2 in .	5 lbs	0.13 in .	5 lbs	2	-	3SE03-DH1	
	Plain top plunger	Momentary	0.28 in.	0.04 in .	4 lbs	0.02 in .	80 oz .	3	-	3SE03-DT1	
	Roller top plunger	Momentary	0.28 in.	0.04 in.	4 lbs	0.02 in .	80 oz .	3	-	3SE03-DT3	
	Wobble head (5)8	Momentary	$15^{\circ}$	$10^{\circ}$	$2 \mathrm{lb}-\mathrm{in}$.	$6^{\circ}$	2.4 oz-in.	3	-	3SE03-DW1	
$\sqrt{Q}$	Center neutral (5) ${ }^{(2)}$	Momentary	$\begin{aligned} & 90^{\circ} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} & 5^{\circ} \\ & 15^{\circ} \end{aligned}$	$1.8 \mathrm{lb}-\mathrm{in}$.   $1.8 \mathrm{lb}-\mathrm{in}$.	$\begin{aligned} & 2^{\circ} \\ & 2^{\circ} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{oz}-\mathrm{in} . \\ & 2.5 \mathrm{oz} \text {-in. } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\stackrel{\rightharpoonup}{\square}$	$\begin{array}{\|l\|} \text { 3SE03-DN1 } \\ \text { 3SE03-DN2 } \end{array}$	

[^132](4) Refer to "Operating Temperature", Catalog page 13/118 for Temperature Ranges.
(5) Without Operating Levers
(6) CW and CCW operation. Convertible to CW or CCW op-
(7) Convertible-Horizontal to Vertical.
(8) Requires Lever.
(9) For use with 3SEO3-SN plug-in module only

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

Modular, plug-in metal housing

Levers for plug-in and non-plug-in versions-most widely used


Levers for plug-in and non-plug-in versions:

Operator	Length ${ }^{(1)}$	Roller			Max required ${ }^{2}$ return torque (oz-in.)	Catalog Number			List Price \$ 1 unit
		Type	Diameter	Face (width)		Stainless steel	DT	Cast aluminum	
	1.37 (35)	Metal	0.75 (19)	0.31 (8)	0.95	-	$\checkmark$	3SX03-KL40	
Standard lever	1.50 (38)	Nylatron Ball bearing Without roller	$\begin{array}{\|l\|} \hline 0.75(19) \\ 0.69(17) \\ - \\ \hline \end{array}$	$\begin{aligned} & \hline 1.00(25) \\ & 0.25(6) \\ & -\quad \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.92 \\ & 0.77 \\ & 0.32 \end{aligned}$	\|-	-	$\begin{aligned} & \text { 3SX03-KL337 } \\ & \text { 3SX03-KL531 } \\ & \text { 3SX03-KL32 } \end{aligned}$	
	2.00 (51)	Nylatron   Nylatron   Metal   Ball bearing	$\begin{aligned} & \hline 0.75(19) \\ & 0.75(19) \\ & 0.75(19) \\ & 0.69(17) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.31(8) \\ 1.00(25) \\ 0.31(8) \\ 0.25(6) \end{array}$	$\begin{array}{\|l\|} \hline 0.71 \\ 1.45 \\ 1.5 \\ 1.1 \end{array}$	\|-	$\stackrel{\rightharpoonup}{*}$	$\begin{aligned} & \text { 3SX03-KL546 } \\ & \text { 3SX03-KL572 } \\ & \text { 3SX03-KL549 } \\ & \text { 3SX03-KL552 } \end{aligned}$	
	250 (64)	Nylatron   Nylatron   Nylatron   Metal   Ball bearing	$\begin{array}{\|l\|} \hline 0.75(19) \\ 0.75(19) \\ 1.5(38) \\ 0.75(19) \\ 0.69(17) \end{array}$	$\begin{array}{\|l\|} \hline 0.31(8) \\ 1.00(25) \\ 0.28(7) \\ 0.31(8) \\ 0.25(6) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.0 \\ 1.8 \\ 1.4 \\ 2.0 \\ 1.5 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}\right.$	$\checkmark$	$\begin{aligned} & \text { 3SX03-KL547 } \\ & \text { 3SX03-KL573 } \\ & \text { 3SX03-KL575 } \\ & \text { 3SX03-KL550 } \\ & \text { 3SX03-KL553 } \end{aligned}$	
Cast aluminum	3.00 (76)	Nylatron   Nylatron   Nylatron   Metal   Ball bearing	$\begin{aligned} & \hline 0.75(19) \\ & 0.75(19) \\ & 1.5(38) \\ & 0.75(19) \\ & 0.69(17) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.31(8) \\ 1.00(25) \\ 0.28(7) \\ 0.31(8) \\ 0.25(6) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1.3 \\ 2.3 \\ 1.8 \\ 2.5 \\ 1.8 \end{array}$	$\left\lvert\, \begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}\right.$		$\begin{aligned} & \text { 3SX03-KL548 } \\ & \text { 3SX03-KL574 } \\ & \text { 3SX03-KL576 } \\ & \text { 3SX03-KL551 } \\ & \text { 3SX03-KL554 } \end{aligned}$	

All dimensions shown in inches and (millimeters).
For reference purposes only. Not to be used for de sign or construction purposes.
(1) Roller lever: Length from the operating shaft axis to the roller axis
All other: Length from the operating shaft axis to the tip.

2 Caution-When selecting lever, required return torque should not exceed minimum return torque in operating head.
(3) Cap screw accommodates $3 / 64$ inch Allen wrench
(4) By re-assembling lever minimum can be reduced another 0.50 (13)
(5) Applies when lever extended to maximum dimension (b) See dimensions page $13 / 76$

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

Modular, plug-in and NEMA type 6P submersible

Levers for plug-in and non-plug-in versions-most widely used

Operator		Length ${ }^{(1)}$ Inches (mm)	Roller			Min. required returntorque Oz-in (5)	Catalog Number				
		Type	Diameter In. (mm)	Face width in. (mm)	DT		Stainless steel	Cast aluminum	List Price \$ 1 unit		
Roller levers											
Cast aluminum	Roller on reverse side		1.50 (38)	Nylatron Nylatron Ball bearing	$\begin{array}{\|l} \hline 0.75(19) \\ 1.5(38) \\ 0.69(17) \end{array}$	$\begin{array}{\|l\|} \hline 0.31(8) \\ 0.28(7) \\ 0.25(6) \end{array}$	$\begin{array}{\|l\|} \hline 0.53 \\ 0.96 \\ 0.77 \end{array}$	-		$\begin{aligned} & 3 \mathrm{SXO3-KL310} \\ & 3 \mathrm{SX03-KL536} \\ & 3 \mathrm{SX03-KL580} \end{aligned}$	
Stainless steel	Offset lever (Inboard roller shown)	1.50 (38) Inboard roller	Nylatron Metal	$\begin{aligned} & 0.75(19) \\ & 0.75(19) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.31(8) \\ 0.31(8) \end{array}$	$\begin{aligned} & \hline 0.65 \\ & 1.20 \end{aligned}$	$\stackrel{\rightharpoonup}{\nabla}$	$\begin{aligned} & \text { 3SX03-KL24 } \\ & \text { 3SX03-KL25 } \end{aligned}$			
		1.50 (38) outboard roller	Nylatron   Metal   Ball bearing   Nylatron	$\begin{array}{\|l} \hline 0.75(19) \\ 0.75(19) \\ 0.69(17) \\ 0.75(19) \end{array}$	$\begin{array}{\|l\|} \hline 0.31(8) \\ 0.31(8) \\ 0.25(6) \\ 1(25) \end{array}$	$\begin{array}{\|l\|} \hline 0.65 \\ 1.20 \\ 0.90 \\ 1.10 \end{array}$	-	$\begin{aligned} & 3 S X 03-K L 27 \\ & 3 S X 03-K L 28 \\ & 3 S X 03-K L 29 \\ & 3 S X 03-K L 30 \end{aligned}$	$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$		
	Bantam lever	0.69 (18)	Metal	0.88 (22)	0.19 (5)	0.45	$\stackrel{\rightharpoonup}{ }$	3SX03-KL532			
	Precision adjustment	$1.50(38)^{(2)}$	Nylatron   Metal   Ball bearing	$\begin{array}{\|l\|} \hline 0.75(19) \\ 0.75(19) \\ 0.69(17) \end{array}$	$\begin{array}{\|l\|} \hline 0.31(8) \\ 0.31(8) \\ 0.25(6) \end{array}$	$\begin{array}{\|l\|} \hline 0.65 \\ 1.20 \\ 0.90 \end{array}$	$\checkmark$	$\begin{aligned} & 3 \mathrm{SXO3}- \\ & 3 \mathrm{SX03-} \\ & 3 \mathrm{SX03} \end{aligned}$	$\begin{aligned} & -K L 340 \\ & -K L 465 \\ & -K L 535 \end{aligned}$		
	Adjustable roller	$\begin{array}{\|l\|} \hline 1-3.75(25-95)^{3} \\ 1-3.75(25-95)^{3} \\ 1.62-3.75(41-95)^{3} \\ 0.50-3.75(13-95) \\ 1-3.75(25-95)^{3} \\ 0.50-3.75(13-95) \\ \hline \end{array}$	Nylatron Nylatron   Nylatron   Large nylatron   Ball bearing   Without roller	$\begin{array}{\|l} \hline 0.75(19) \\ 0.75(19) \\ 1.5(38) \\ 4(102) \\ 0.69(17) \end{array}$	$0.5(13)$ $1(25)$ $0.28(7)$ $0.11(3)$ $0.25(6)$ -	$\begin{aligned} & \hline 1.90^{4} \\ & 3.10^{4} \\ & 2.50^{4} \\ & 4.50^{4} \\ & 2.50^{4} \\ & 1.20^{4} \end{aligned}$		3SX03 3SX03 3SX03 3SX03 3SX03 3SX03	$\begin{aligned} & -K L 599 \\ & -K L 537 \\ & -K L 443 \\ & -K L 598 \\ & -K L 539 \\ & \hline-K L 31 \end{aligned}$		
	Fork lever both rollers one side	1.50 (38)	Nylatron   Metal   Ball bearing	$\begin{array}{\|l\|} \hline 0.75(19) \\ 0.75(19) \\ 0.69(17) \end{array}$	$\begin{array}{\|l\|} \hline 1(25) \\ 0.31(8) \\ 0.25(6) \end{array}$			$\begin{aligned} & 3 \mathrm{~S} \times 03- \\ & 3 \mathrm{Sx03-} \\ & 3 \mathrm{~S} \times 03- \end{aligned}$	$\begin{aligned} & -K L 543 \\ & -K L 544 \\ & -K L 545 \end{aligned}$		
	Fork lever _ both rollers outside, one side	1.50 (38)	Nylatron   Metal   Ball bearing	$\begin{array}{\|l\|} \hline 0.75(19) \\ 0.75(19) \\ 0.69(17) \end{array}$	$\begin{array}{\|l\|} \hline 0.31(8) \\ 0.31(8) \\ 0.25(6) \end{array}$		$\stackrel{ }{ }$	$\begin{aligned} & 3 \mathrm{SX03}- \\ & 3 \mathrm{SX03}- \\ & 3 \mathrm{SX03} \end{aligned}$	$\begin{aligned} & -K L 203 \\ & -K L 541 \\ & -K L 542 \end{aligned}$		

Levers for plug-in and non-plug-in versions:

Operator		Length ${ }^{(1)}$ Inches (mm)	Description   Inches (mm)	Min. required return force oz-in. ${ }^{5}$	DT	Catalog Number	List Price \$ 1 unit
	Adjustable rod	$\begin{array}{\|l} \hline 5.50 \text { (140) Max. } \\ 5.50 \text { (140) Max. } \\ 8.75 \text { (222) Max } \\ 12 \text { (305) Max. } \\ - \\ - \\ \hline \end{array}$	Nylon Rod-0.19 (5) Dia.   Metal Rod-0.12 (3) Dia.   Metal Rod (Square)—0.12 (3) Max.   Steel (Formable) Rod-0.12 (3) Dia.   Clamp Only-0.19 (5) Hole   Clamp Only-0.12 (3) Hole	$\begin{aligned} & \hline 0.40^{4} \\ & 0.92^{4} \\ & 2.20^{44} \\ & 5.00^{44} \end{aligned}$		$\begin{aligned} & \text { 3SX03-KL399 } \\ & \text { 3SX03-KL202 } \\ & \text { 3SX03-KL581 } \\ & \text { 3SX03-KL226 } \\ & \text { 3SX03-KL35 } \\ & \text { 3SX03-KL36 } \end{aligned}$	
	Spring rod	11.62 (295)	Metal rod	2.80		3SX03-KL421	
	Adjustable wire	$12.12 \text { (308) }$ max.	Nylon covered wire	$1.50{ }^{(4)}$	-	3SX03-KL533	
	Adjustable wide roller lever	3.9 (99)	0.75 (19) Dia. Nylatron Roller 0.19 (30) Dia. Rod	$4.50{ }^{(4)}$	-	3SX03-KL37	
Wobble head operators							
See dimensions page 13/76	Stainless steel rod	-	Rod diameter - 0.06 (2)	-	$\checkmark$	3SX03-KW3	

(1) Length from operating shaft axis to the roller axis.
(2) Maximum dimensions, precision adjustable to lesser dimensions.
(3) By re-assembling lever minimum can be reduced by $1 / 2$ in
(4) Applies when lever extended to maximum dimension.
(5) Caution-When selecting lever, required return torque should not exceed minimum return force in operating head.

All dimensions shown in inches and (millimeters). For reference purposes only. Not to be used for design or construction purposes.

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

Modular, plug-in and NEMA type 6P submersible

## Wiring diagrams



Modular, plug-in and prewired cable


## Prewired receptacle with pin connector

Typical connector cable (supplied by user)

Cable length ft.	Manufacturers part number		Molex (Industrial Interface)	Lumberg USA
	Daniel Woodhead Brad Harrison	Cooper Crouse-Hinds		
5 Pin connector cable				
$\begin{array}{\|l\|} \hline 3 \\ 6 \\ 12 \end{array}$	$\begin{aligned} & \text { 105000A01F030 } \\ & \text { 105000A01F060 } \\ & \text { 105000A01F120 } \end{aligned}$	$\begin{array}{\|l\|} 5000111-3- \\ 5000111-4- \\ 5000111-5- \end{array}$	$\begin{aligned} & 14541 \\ & 14542 \\ & 14544 \end{aligned}$	$\begin{aligned} & \text { RK50-77/1M } \\ & \text { RK50-77/2M } \\ & \text { RK50-77/4M } \end{aligned}$
9 Pin connector cable				
3   6   12	$\begin{aligned} & \hline \text { 309000A01F030 } \\ & \text { 309000A01F060 } \\ & \text { 309000A01F120 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { X8990-3 } \\ \text { X8990-4 } \\ \text { X8990-5 } \end{array}$	-	-

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

Modular, plug-in and NEMA type 6P submersible

## Dimension drawings



Rotary lever operators

	Catalog Number	Dimensions						Catalog Number	Dimensions					
		A	B	C	D	E	F		A	B	C	D	E	F
	3SX03-KL200	$\begin{array}{\|l} \hline 1.50 \\ (38.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.44 \\ (11.2) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.20 \\ (5.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \\ \hline \end{array}$	3SX03-KL554	$\begin{array}{\|l\|} \hline 3.00 \\ (76.2) \end{array}$	$\begin{array}{\|l\|} \hline 0.688 \\ (17.5 \end{array}$	$\begin{aligned} & \hline 0.25 \\ & (6.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.42 \\ & (10.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.12 \\ (3.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.18 \\ (4.6) \\ \hline \end{array}$
	3SX03-KL355	$\begin{array}{\|l\|} \hline 1.50 \\ (38.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.44 \\ (11.2) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.20 \\ (5.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \\ \hline \end{array}$	3SX03-KL572	$\begin{array}{\|l\|} \hline 2.00 \\ (50.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.00 \\ (25.4) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.42 \\ & (10.7) \end{aligned}$	$\begin{aligned} & \hline 0.90 \\ & (22.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.90 \\ (22.9 \\ \hline \end{array}$
	3SX03-KL531	$\begin{array}{\|l} 1.50 \\ (38.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} 0.688 \\ (17.5) \\ \hline \end{array}$	$\begin{aligned} & 0.25 \\ & (6.4) \end{aligned}$	$\begin{array}{\|l} 0.44 \\ (11.2) \\ \hline \end{array}$	$\begin{aligned} & 0.12 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	3SX03-KL573	$\begin{array}{\|l\|} \hline 2.50 \\ (63.5) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l\|} \hline 1.00 \\ (25.4) \end{array}$	$\begin{aligned} & 0.42 \\ & (10.7) \end{aligned}$	$\begin{aligned} & \hline 0.90 \\ & (22.9 \end{aligned}$	$\begin{aligned} & \hline 0.90 \\ & (22.9 \end{aligned}$
	3SX03-KL546	$\begin{array}{\|l\|} \hline 2.00 \\ (50.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.42 \\ (10.7) \end{array}$	$\begin{array}{\|c} \hline 0.20 \\ (5.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \\ \hline \end{array}$	3SX03-KL574	$\begin{array}{\|l\|} \hline 3.00 \\ (76.2) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l\|} \hline 1.00 \\ (25.4) \\ \hline \end{array}$	$\begin{aligned} & 0.42 \\ & (10.7) \end{aligned}$	$\begin{aligned} & \hline 0.90 \\ & (22.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.90 \\ (22.9 \\ \hline \end{array}$
	3SX03-KL547	$\begin{array}{\|l} \hline 2.50 \\ (63.5) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.42 \\ (10.7) \end{array}$	$\begin{array}{\|l\|} \hline 0.20 \\ (5.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \\ \hline \end{array}$	3SX03-KL575	$\begin{array}{\|l\|} \hline 2.50 \\ (63.5) \end{array}$	$\begin{array}{\|l\|} \hline 1.50 \\ (38.1) \end{array}$	$\begin{aligned} & \hline 0.29 \\ & (7.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.42 \\ (10.7) \end{array}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \end{array}$
	3SX03-KL548	$\begin{array}{\|l} \hline 3.00 \\ (76.2) \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.42 \\ (10.7) \end{array}$	$\begin{array}{\|l\|} \hline 0.20 \\ (5.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \\ \hline \end{array}$	3SX03-KL576	$\begin{array}{\|l\|} \hline 3.00 \\ (76.2) \end{array}$	$\begin{array}{\|l\|} \hline 1.50 \\ (38.1) \end{array}$	$\begin{aligned} & \hline 0.29 \\ & (7.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.42 \\ (10.7) \end{array}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \end{array}$
	3SX03-KL549	$\begin{array}{\|l} \hline 2.00 \\ (50.8) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.75 \\ & (19.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.42 \\ & (10.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.20 \\ (5.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \\ \hline \end{array}$	With rollers on reverse side						
	3SX03-KL550	$\begin{array}{\|l} \hline 2.50 \\ (63.5) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l} 0.42 \\ (10.7) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.20 \\ (5.1) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.24 \\ (6.1) \\ \hline \end{array}$	3SX03-KL310	$\begin{array}{\|l\|} \hline 1.50 \\ (38.1) \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l\|} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.44 \\ (11.2) \end{array}$	$\begin{aligned} & 0.34 \\ & (8.6) \end{aligned}$	$\begin{aligned} & \hline 0.38 \\ & (\text { (9.7) } \end{aligned}$
	3SX03-KL551	$\begin{array}{\|l} \hline 3.00 \\ (76.2) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l} 0.42 \\ (10.7) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0.20 \\ (5.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.24 \\ (6.1) \\ \hline \end{array}$	3SX03-KL536	$\begin{array}{\|l\|} \hline 1.50 \\ (38.1) \end{array}$	$\begin{array}{\|l\|} \hline 1.50 \\ (38.1) \end{array}$	$\begin{array}{\|l\|l\|} \hline 0.28 \\ (7.1) \end{array}$	$\begin{array}{\|l\|} \hline 0.44 \\ (11.2) \end{array}$	$\begin{aligned} & 0.30 \\ & (7.6) \end{aligned}$	$\begin{aligned} & \hline 0.38 \\ & (\text { (9.7) } \end{aligned}$
	3SX03-KL552	$\begin{array}{\|l\|} \hline 2.00 \\ (50.8) \end{array}$	$\begin{aligned} & 0.688 \\ & (17.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.25 \\ (6.4) \end{array}$	$\begin{aligned} & \hline 0.42 \\ & (10.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.12 \\ (3.0) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 0.18 \\ (4.6) \end{array}$	3SX03-KL579	$\begin{array}{\|l\|} \hline 1.50 \\ (38.1) \end{array}$	$\begin{array}{\|l\|} \hline 0.75 \\ (19.0) \end{array}$	$\begin{array}{\|l} \hline 0.32 \\ (8.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.44 \\ (11.2) \end{array}$	$\begin{array}{\|l\|} \hline 0.34 \\ (8.6) \end{array}$	$\begin{aligned} & \hline 0.38 \\ & (\text { (9.7) } \end{aligned}$
	3SX03-KL553	$\begin{aligned} & 2.50 \\ & (63.5) \end{aligned}$	$\begin{aligned} & 0.688 \\ & (17.5) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (6.4) \end{aligned}$	$\begin{aligned} & \begin{array}{l} 0.42 \\ (10.7) \end{array} \end{aligned}$	$\begin{aligned} & 0.12 \\ & (3.0) \end{aligned}$	$\begin{aligned} & \hline 0.18 \\ & (4.6) \end{aligned}$	3SX03-KL580	$\begin{array}{\|l\|} \hline 1.50 \\ (38.1) \end{array}$	$\begin{array}{l\|} \hline 0.688 \\ (17.5 \end{array}$	$\begin{array}{\|l\|} \hline 0.25 \\ (6.4) \end{array}$	$\begin{aligned} & \hline 0.44 \\ & (11.2) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (6.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.31 \\ (7.9) \end{array}$

All dimensions shown in inches and (millimeters). For reference purpose only. Not to be used
for design or construction purposes.
(1) Can accommodate both U.S. 1.16 (29.4) $\times 2.34$ (59.5) and DIN 1.18 (30.0) $\times$
2.36 (60.0) mounting dimensions.

## Limit Switches

## 3SE03 Heavy Duty Limit Switches

Modular, plug-in and NEMA type 6P submersible

Dimension drawings


## Offset roller levers

Catalog   Number	Dimensions				
	A	B	C		
	Outboard roller				
3SX03-KL27	$0.75(19)$	$0.32(8)$	$0.03(1)$		
3SX03-KL28	$0.75(19)$	$0.32(8)$	$0.03(1)$		
3SX03-KL29	$0.69(18)$	$0.25(6)$	$0.04(1)$		
3SX03-KL30	$0.75(19)$	$1.0(25)$	-		
Inboard roller					
3SX03-KL24	$0.75(19)$	$0.32(8)$	$0.03(1)$		
3SX03-KL25	$0.75(19)$	$0.32(8)$	$0.03(1)$		



Fork lever, one roller inside,
one roller outside

$\begin{array}{l}\text { Catalog } \\ \text { Number }\end{array}$	Dimensions					
	A	B	C	D	E	F
3SX03-KL203	$\begin{array}{l}0.75 \\ (19)\end{array}$	$\begin{array}{l}0.32 \\ (8)\end{array}$	$\begin{array}{l}0.16 \\ (4)\end{array}$	$\begin{array}{l}\text { (20 } \\ (5)\end{array}$	$\begin{array}{l}0.73 \\ (19)\end{array}$	$\begin{array}{l}0.77 \\ (20)\end{array}$
3SX03-KL541	$\begin{array}{l}0.75 \\ (19)\end{array}$	$\begin{array}{l}0.32 \\ (8)\end{array}$	$\begin{array}{l}0.16 \\ (4)\end{array}$	$\begin{array}{ll}0.20 \\ (5)\end{array}$	$\begin{array}{l}0.73 \\ (19)\end{array}$	0.77
$(20)$						

Fork lever - Both rollers on one side

Catalog   Number	Dimensions			
	A	B	C	D
3SX03-KL204	0.75   $(19)$	0.32   $(8)$	0.16   $(4)$	0.20   $(5)$
3SX03-KL543	0.75   $(19)$	1.0   $(25)$	0.86   $(22)$	0.86   $(22)$
3SX03-KL544	0.75   $(19)$	0.32   $(8)$	0.16   $(4)$	0.20   $(5)$
3SX03-KL545	0.69   $(18)$	0.25   $(6)$	0.08   $(2)$	0.1   $(3)$

## Bantam roller lever




## Precision adjustment roller lever

	Dimensions					
Catalog Number	A	B	C	D	E	F
3SX03-KL340	$0.69(18)$	$0.75(19)$	$0.32(8)$	$0.48(12)$	$0.24(6)$	$0.28(7)$
3SX03-KL465	$0.69(18)$	$0.75(19)$	$0.32(8)$	$0.48(12)$	$0.24(6)$	$0.28(7)$
3SX03-KL535	$0.69(18)$	$0.69(18)$	$0.25(6)$	$0.48(12)$	$0.16(4)$	$0.22(6)$

[^133]
## Adjustable roller lever

Catalog Number	Dimensions			
	A	$\mathbf{B}$	$\mathbf{C}$	$\mathbf{D}$
3SX03-KL201	$0.75(19)$	$0.32(8)$	$0.29(7)$	$0.33(8)$
3SX03-KL443	$1.5(38)$	$0.29(7)$	$0.26(7)$	$0.32(8)$
3SX03-KL537	$0.75(19)$	$0.32(8)$	$0.29(7)$	$0.33(8)$
3SX03-KL538	$0.69(18)$	$0.25(6)$	$0.21(5)$	$0.27(7)$
3SX03-KL539	$0.69(18)$	$0.25(6)$	$0.21(5)$	$0.27(7)$
3SX03-KL598	$0.39(10)$	$0.11(3)$	$0.11(3)$	$0.19(5)$
3SX03-KL599	$0.75(19)$	$0.5(13)$	$0.46(12)$	$0.47(12)$

## 3SE03 Heavy Duty Limit Switches

Modular, plug-in and NEMA type 6P submersible

## Dimension drawings

Nylon Spring Rod Actuator 3SX03-KL556


Nylon Covered Wire Actuator 3SX03-KL533


Stainless Steel Spring Actuator 3SX03-KL421


Adjustable Rod Actuator


Adjustable rod actuators

Catalog   Number	Material	Dimensions	
		B	
3SX03-KL202	Steel-Round	5.50   $(140)$	0.120   $(3)$
3SX03-KL581	Steel-Square	8.75   $(222)$	0.125   $(3)$
3SX03-KL399	Nylon	5.50   $(140)$	0.190   $(5)$
3SX03-KL220	Stainless Steel	9.00   $(229)$	0.190   $(5)$
3SX03-KL226	Plated Steel	12.0   $(305)$	)0.120   $(3)$


Wobble head	3SE03-DW1
with stainless steel rod	3SX03-KW3



All dimensions shown in inches and (millimeters). For reference purposes only. Not to be used for design or construction purposes.

Nylatron Loop Actuator 3SX03-KL142


Adjustable Wire Roller Actuator 3SX03-KL37


Wobble head	3SE03-DW1
with coil spring	3SX03-KW4

with coil spring

3SX03-KW4
3SE03-DW1 3SX03-KW2


## Limit Switches

## 3SE03 Precision Limit Switches

3SE03 Metal enclosure

## Description

## Features

- NEMA 1 Enclosed Aluminum Die Cast Housing
- Screw Terminals
- Booted versions for added protection
- 1/2" Conduit Entrance
- NEMA A600, R300 Contacts
- UL Recognized
- CSA Certified
- INO/INC Snap-action contacts (form c)


## Application

These switches are designed for accurate repeatability. Their compact size makes them ideal for use in space-restricted areas.

Typical applications include overhead, folding and elevator doors, sliding gates and other automated equipment.

Specifications © DT

## Catalog

List Price \$

OF Max. - 8.82-12.3 oz. (250-350 g)
RF Min. 4.02 oz. (114 g)
PT Max. - 0.016 in. ( 0.4 mm )
OT Min. - 0.217 in. ( 5.5 mm )
MD Max. - 0.002 in. ( 0.05 mm )
OP - 1.504 in. ( 38.2 mm )

## Booted plunger

OF Max. - 28.22 oz. (800 g) RF Min. 8.46 oz. (240 g) PT Max. - 0.079 in. ( 2.0 mm ) OT Min. - 0.197 in. ( 5.0 mm )
MD Max. - 0.004 in. ( 0.1 mm )
OP - 1.803 in. ( 45.8 mm )
 1

## 3SE03 Precision Limit Switches

3SE03 Metal enclosure

Dimension drawings

Specifications
DT
Catalog Number

## List Price \$ 1 unit



OF Max. - 9.92-12.3 oz.
(250-350 g)
RF Min. 4.02 oz . ( 114 g )
PT Max. - 0.02 in. ( 0.5 mm )
OT Min. - 0.142 in. ( 3.6 mm )
MD Max. - 0.002 in. ( 0.05 mm )
OP - 1.957 in. ( 49.7 mm )

Booted roller plunger


OF Max. - 17.64 oz. ( 500 g ) RF Min. 3.53 oz. ( 100 g ) PT Max. - 0.039 in. ( 1.0 mm ) OT Min. - 0.138 in. ( 3.5 mm ) MD Max. - 0.006 in. ( 0.12 mm ) OP - 1.957 in. ( 49.7 mm )

Technical data								
Mechanical Life	3,000,000 operations maximum							
Electrical Life	500,000 operations minimum							
Operating Speed	$0.01 \mathrm{~m} /$ second to $1 \mathrm{~m} / \mathrm{second}$							
Cable Entry	1/2" NPT							
Temperature Range	$-15^{\circ}$ to $80^{\circ}\left(5^{\circ}\right.$ to $176^{\circ} \mathrm{F}$ )							
Degree of Protection	NEMA 1							
Mounting	Any Position							
NEMA Rating	A600, R300							
Rated Voltage (V) ${ }^{1 / 2)}$	Non-Inductive Load (A)			Inductive load (A)			Inrush current (A)	
	Resistive load	Lamp load		Inductive load	Motor load			
	NC-NO	NO	NC	NC-NO	NO	NC	NO	NC
125 VAC	15	3	1.5	15	5	2.5	30 maximum	15 maximum
250 VAC	15	2.5	1.25	15	3	1.5		
500 VAC	3	1.5	0.75	2.5	1.5	0.75		
8 VDC	15	3	1.5	15	5	2.5		
14 VDC	15	3	1.5	10	5	2.5		
30 VDC	6 (2)	3	1.5	5	5	2.5		
125 VDC	0.4	0.4	0.4	0.05	0.05	0.05		
250 VDC	0.2	0.2	0.2	0.03	0.03	0.03		

1) Inductive load has power factor of 0.04 minimum (AC) and a time of $7 \mathrm{~m} /$ second (DC)
2) Lamp load has an inrush current of 6 times steady-state current.

## SIRIUS 3SE7 Cable-Operated Switches

3SE7 metal enclosures

## Overview



3SE7 cable-operated switches

## More information

Industry Mall, see www.siemens.com/product?3SE7
For Manual, see
https://support.industry.siemens.com/cs/ww/en/view/107194954
The cable-operated switches are used for monitoring or as EMERGENCY STOP devices on particularly endangered system components.
As the effective range of a cable-operated switch is only limited by the length of the trip-wire, large systems can also be protected. Cable-operated switches (requiring pulling at both ends) and conveyor belt unbalance trackers are used primarily for monitoring very long belt systems.

## Contact blocks

The switches for wire lengths up to 50 m are supplied with $1 \mathrm{NO}+1 \mathrm{NC}$ or 2 NC contacts and those up to 75 m with $1 \mathrm{NO}+3 \mathrm{NC}$ contacts. The switches for wire lengths of $2 \times 75 \mathrm{~m}$ and the conveyor belt unbalance tracker are supplied with 2 NO +2 NC contacts.
The NC contacts of the cable-break or cable-pull signaling are positive opening. The NO contact can be used, for example, for signaling purposes.

## Free position and display

Cable-operated switches with one-side operation are held in free position by the pre-tension on the turnbuckle.

On switches with interlocking, with a pre-tensioned cable, the locking must be deactivated beforehand in order to return the cable-operated switch to its original position.
The cable-operated switch and the conveyor belt unbalance tracker can be supplied optionally with a factory-fitted LED (red, 24 V DC). This light in innovative chip-on-board technology allows the operating state of the switch to be visible at a distance of at least 50 m .

## Application

## Standards

The switches are equipped with latching mechanism and positive NC contacts and are thus suitable for operation in EMERGENCY STOP devices according to EN ISO 13850.

Technical specifications

Type	3SE7120	3SE7150	3SE7140	3SE7141	3SE7160	3SE7310
General data						
Standards	IEC/EN 60947-5-1   IEC/EN 60204-1, EN ISO 13850					
Approvals	UL/CSA					
Electrical design	Contacts electrically isolated from each other					
Electrical load						
- 2-pole, at AC-15	400 V AC		400 V AC, 6 A	240 V AC, 2 A	400 V AC, 6 A	--
- 3-pole, at AC-15	240 V AC		--	--	--	--
- 4-pole, at AC-15	--		--	--	400 V AC, 6 A	400 V AC, 6 A
- Minimum	$24 \mathrm{~V} \mathrm{AC/DC}$,					
Short-circuit protection A	6 (slow)					
Mechanical endurance	> 100000 operating cycles					
Contact material	Fine silver					
Operation	By pulling or breaking of wire					
Wire length, maximum m	10	25	50	75	$2 \times 100$	-
Distance between wire supports, max. m	3		5		4	-
Enclosures						
Enclosure material	GD Al alloy, coated (color), dark black RAL 9005					
Cover	Shock-resistant thermoplast					
Degree of protection acc. to IEC 605291)	IP65			IP67	IP65	
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$					
Mounting	Designed for M5					
Fixing spacing mm	30 and 40					
Cable entry	$2 \times(\mathrm{M} 20 \times 1.5)$			$3 \times(\mathrm{M} 20 \times 1.5)$	$2 \times(\mathrm{M} 25 \times 1.5)$	
Connection type	Screw terminals M3.5, self-lifting clamp terminal					

1) IP54 for versions with key-operated release

## SIRIUS 3SE7 Cable-Operated Switches

3SE7 metal enclosures

Selection and ordering data

$\Theta$ Positive opening according to IEC 60947-5-1, Annex K.

## Mechanical Safety

## SIRIUS 3SE7 Cable-Operated Switches

$35 E 7$ metal enclosures


## Accessories

## Configuration of the cable-operated switches

Short lengths of wire up to $\mathbf{2 5} \mathbf{~ m}$


Long lengths of wire up to 50 m


Note:
Large temperature fluctuations require corresponding compensation springs. For reliable connection the PVC sheath must be removed from the clamping area of the
steel bowden wire. Bowden wire supports must be used at the recommended intervals.

## SIRIUS 3SE7 Cable-Operated Switches

$35 E 7$ metal enclosures


## Enclosures

## Overview

## Equipment

The two-hand operation consoles are pre-equipped with commanding devices. In the case of plastic enclosures the command points are equipped as standard with actuators and indicators made of plastic and in the case of metal enclosures they are equipped with actuators and indicators made of metal.

The standard equipment comprises:

- 2 black mushroom pushbuttons, diameter 40 mm , $1 \mathrm{NO}+1 \mathrm{NC}$
- 1 red EMERGENCY STOP mushroom pushbutton according to ISO 13850, diameter 40 mm , with positive latching, 2 NC

The plastic version can be retrofitted with up to 8 customized command points. The surface of the console has premachined breaking points for this purpose.

## Selection and ordering data

## Application

The two-hand operation consoles are required for use with machines and systems that have hazardous areas, in order to direct both hands of the operator to one position.
The operation consoles are primarily used on presses, stamping machines, printing presses and paper converting machines, in the chemical industry and in the rubber and plastics industries.
The control command is given by pressing the two mushroom pushbuttons on the sides simultaneously (within 0.5 s of each other) and must be maintained for as long as a hazard exists.
For the further processing of control commands, evaluation units are used, e.g. 3SK11 safety relays or the 3RK3, 3SK2 Modular Safety System.

## Standards

The two-hand operation consoles comply with the requirements of EN 574 .

Version of actuating element/ unlatching method/ operating principle	Color of	Number		SD	Article No.	Price	PU	PS*
	actuating element	NO contacts	NC contacts	d		per PU	$\begin{aligned} & \text { (UNIT, } \\ & \text { SET, M) } \end{aligned}$	

## Two-hand operation consoles

Plastic



Metal
None

## 3SU1853-3AA00-0AA1



A = Mushroom pushbutton/ momentary contact
$B=E M E R G E N C Y$ STOP
mushroom pushbutton/ rotate to unlatch
3SU1853-3NB00-1AA1
C = Mushroom pushbutton/ momentary contact


3SU1853-3NB00-1AD1


## Overview



SIRIUS 3SK safety relays

## More information

Homepage, see www.siemens.com/safety-relays
Industry Mall, see www.siemens.com/product?3SK
Conversion tool, e.g. from 3TK28 to 3SK, see
www.siemens.com/sirius/conversion-tool
SIRIUS 3SK safety relays are the key elements of a consistent, cost-effective safety chain. Whether you need EMERGENCY STOP functionality, protective door monitoring, light arrays, laser scanners or the protection of presses or punches - slimline SIRIUS safety relays enable all safety applications to be implemented in the best possible way in terms of engineering and price.

The following safety-related functions are available:

- Monitoring the safety functions of sensors
- Monitoring the sensor leads
- Monitoring the correct device function of the safety relay
- Monitoring the actuators in the shutdown circuit
- Safety-related disconnection when dangers arise

SIRIUS 3SK safety relays are approved for applications up to SIL 3 (IEC 61508/IEC 62061) or PL e (EN ISO 13849-1).

## Device series

SIRIUS 3SK safety relays stand out due to their flexibility for both parameterization and system designs with several evaluation units. This reduces device variance, thus bringing advantages in terms of device selection and spare parts management. Optimized solutions when selecting components and reduced spare part inventory requirements are facilitated by a clearly structured component range:
The following device series are available:

- 3SK1 Standard basic units
- 3SK1 Advanced basic units
- 3SK2 basic units
- 3SK1 output expansions
- 3SK1 input expansions
- Accessories


## 3SK1 Standard basic units

The 3SK1 Standard basic units are characterized by the following features:

- Compact design
- Simple operation
- Relay and semiconductor outputs
- Economical solution

3SK1 Advanced basic units
The 3SK1 Advanced basic units also offer:

- Universal application possibilities thanks to multifunctionality
- Time-delayed outputs
- Expansion of inputs and outputs

3SK2 basic units
The 3SK2 basic units also offer:

- Up to six fail-safe, independent shutdown functions
- Flexible in use thanks to software parameterization
- Powerful semiconductor outputs
- Convenient diagnostics using diagnostics display and configuration software
- Communication via PROFINET/PROFIBUS by means of communication module

In the case of 3SK1 Advanced basic units or 3SK2 basic units, the 3ZY12 device connector allows safety functions involving several sensors and actuators to be constructed very quickly.


System configuration example

## Safety Relays

## SIRIUS 3SK Safety Relays

## General data

The 3SK1 Standard and Advanced and 3SK2 series are a high-quality replacement for the 3TK28 safety relays. In their narrower design, and equipped with greater functionality, they
can replace every 3TK28 device. The only exception to this are the 3TK2810 devices.

## Overview of functions of the $3 S K$ series

Type	3SK1 Standard basic units		3SK1 Advanced basic units			
					22.5 mm	45 mm
	Safe relay outputs	Safe semiconductor outputs	Safe relay outputs	Safe semiconductor outputs	Safe semiconductor outputs	Safe semiconductor outputs
Sensors						
- Mechanical   - Non-floating   - Antivalent   - Expandable	$\checkmark$   $\mathbf{J}^{1)}$   --   --	$\checkmark$   $\checkmark$ by means of cascading		$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$		
Inputs	$2 \times$ single-channel, $1 \times$ two-channel	Freely configurable: $10 \times$ single-channel, $5 \times$ two-channel	Freely configurable: $20 \times$ single-channel, $10 \times$ two-channel			
Parameters						
- Start (auto/monitored)   - Sensor connection $2 \times$ single-channel/ $1 \times$ two-channel   - Cross-circuit detection   - Start test ON/OFF   - Monitoring of two-hand operation consoles according to EN 574   - Pressure-sensitive mat	$\checkmark$ by means of wiring   $\checkmark$ by means of wiring ----	$\checkmark$   $\checkmark$   $\checkmark$   $\checkmark$	$\checkmark$   $\checkmark$   $\checkmark$   $\checkmark$   $\checkmark$		A variety of functions input/output by mean parameterization.	can be set for each s of software
Safe outputs						
- Instantaneous   - Time-delayed   - Expandable with safe relay outputs   - Independent   - Device connectors	by means of wiring $\qquad$   --	$\checkmark$ by means of wiring		$\begin{gathered} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ - \\ - \end{gathered}$	Configurable Configurable $\checkmark$   $\boldsymbol{J}^{4)}$   $\checkmark$	Configurable Configurable $\checkmark$   $\boldsymbol{J}^{5)}$   $\checkmark$
Options						
- External memory module   - Display on the device   - External diagnostics module can be connected		--		--		
Control supply voltage						
- 24 V DC   - 110 ... 240 V AC/DC	$\begin{aligned} & \mathbf{J}^{2)} \\ & \boldsymbol{\checkmark} \end{aligned}$	$\begin{aligned} & \mathbf{J} \\ & \mathbf{J}^{6)} \end{aligned}$	$\begin{aligned} & \mathbf{J}^{3)} \\ & \mathbf{N}^{3} \end{aligned}$	$\begin{aligned} & \checkmark \\ & \mathbf{J}^{3)} \end{aligned}$	$\checkmark$	$\checkmark$

$\checkmark$ Available
-- Not available

1) 24 V basic units only.
2) $24 \mathrm{~V} \mathrm{AC/DC}$
3) Possible using 3SK1230 power supply via device connector.
4) Up to four independent safe outputs, two of which via device connectors
5) Up to six independent safe outputs, two of which via device connectors.
${ }^{6)}$ Possible using 3SK1230 power supply by means of wiring.

## SIRIUS 3SK Safety Relays

## General data

## Parameter assignment

## 3SK112 and 3SK1112 with DIP switch

The 3SK112 and 3SK1112 safety relays are configurable safety relays. They are used as evaluation units for typical safety chains (detect, evaluate, react). A number of functions can be set using the DIP switches on the front. 3SK112 and 3SK1112 are therefore universally applicable.

DIP switch   No.	OFF	ON	Schematic
1	Sensor input   Autostart	Sensor input   Monitored start	$\square$ ON
2	Without crossover   monitoring	With crossover   monitoring	
3	$2 \times$ single-channel   sensor connection	$1 \times$ two-channel   sensor connection	$\square$   2
4	With start test	Without start test	$\square$

## 3SK2 with software

The 3SK2 safety relays are configured with the SIRIUS Safety ES software. The behavior of a 3SK2 device as well as the functioning of the individual safe outputs can thus be parameterized simply and conveniently in the logic diagram. In addition, the configuration can be printed out for documentation purposes. The software also supports users in commissioning and troubleshooting by means of online diagnostics and the option of "forcing" signals in the logic diagram. The 3SK2 safety relays thus offer maximum flexibility and universal application options.

Note:
SIRIUS Safety ES, see page 13/163


Enclosure concept

(1) Connecting terminals
(2) Labeled terminal covers
(3) LED status display
(4) DIP switches

(5) SET/RESET button
(6) Sealable cover

(7) Device interface
(8) Data matrix code
(9) Memory module

(10) Device display

IC01_00431b

Innovative enclosure concept for SIRIUS 3SK safety relays

## Connection methods

The 3SK safety relays are available with screw or spring-type terminals (push-in).
Spring-type terminals (push-in)
Push-in connections are a form of spring-type terminals allowing fast wiring without tools for rigid conductors or conductors equipped with end sleeves.

As with other spring-type terminals, a screwdriver (with $3.0 \times 0.5 \mathrm{~mm}$ blade) is required to disconnect the conductor. The same tool can also be used to wire finely stranded or stranded conductors with no end finishing.
The advantages of the push-in terminals are found, as with all spring-type terminals, in speed of assembly and disassembly and vibration-proof connection. There is no need for the checking and tightening required with screw terminals.

## Safety Relays

## SIRIUS 3SK Safety Relays

## General data

## Seamlessly integrated safety right through to the main circuit



Problem-free integration of functional safety into the main circuit through the simple combination of 3RM1 and 3SK1 devices

Functional safety in the main circuit needs to be both simple and flexible
The unique compatibility of hybrid 3RM1 fail-safe motor starters and 3SK safety relays means that integrated functional safety right through to the main circuit is no longer a problem.
Their compact design allows the motor starters to be installed to the right of the safety relay in a simple manner, just like an output expansion. The wiring of the safety-related signals to the relay can be performed simply, quickly and in an error-free manner using the device connector.
The ergonomically designed enclosure with removable terminals and terminal labeling in the hinged cover allows for the cables to be conveniently diagonally mounted from the front. Either screw or spring-type terminals with push-in technology are available.
Highlights

- Fail-safe disconnection of motors up to 3 HP
- Problem-free combination of fail-safe motor starters and safety relays
- End-to-end system, simple setup using device connectors
- Ergonomic enclosure

Note:
SIRIUS 3RM1 motor starters, see Section 6 Hybrid Motor Starters

## Article No. scheme



Product versions		Article number				
3SK2 safety relays		3SK2	1 $\mathrm{Q}^{2}$ -		$\square$ A A 10	
Device variants	$10 \mathrm{~F}-\mathrm{DI}, 2 \mathrm{~F}-\mathrm{DQ}$, width 22.5 mm			1		
	20 F-DI, 4 F-DQ, width 45 mm			2		
Connection type	Screw terminals				1	
	Spring-type terminals (push-in)				2	
Example		3SK2	1	12 -		

Note:
The Article No. schemes show an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

## Benefits

## General

- Approved for all safety applications because of its compliance with the highest safety requirements (SIL 3 and PL e)
- Universally usable thanks to adjustable parameters
- Usable worldwide thanks to globally valid certificates
- Compact SIRIUS design
- Device connectors with standard rail mounting for flexible connectability and expandability
- Removable terminals for greater plant availability
- Yellow terminal covers clearly identify the device as a safety component
- Sensor cable up to 2000 m long allows it to be used in extensive plants


## Relay outputs

- Different voltages can be switched through the floating contacts
- The relay contacts allow currents of up to 5 A at $\mathrm{AC}-15 / \mathrm{DC}-13$ to be connected


## Semiconductor outputs

- Wear-free
- Suitable for operation in frequently switching applications
- Insensitive to vibrations and dirt
- Good electrical endurance


## Power outputs (3SK1213 output expansion)

- Different voltages can be switched through the floating contacts
- With the power relay contacts currents up to 10 A AC-15/6 A DC-13 can be switched
- High mechanical and electrical endurance
- Protective separation between safe outputs and electronics


## Expansion option by adding the 3RM1 motor starter

SIRIUS 3SK safety relays are ideal for combining with the SIRIUS 3RM1 motor starters.

Combinations are made by means of

- SIRIUS 3ZY12 device connectors (in combination with 3SK1 Advanced/3SK2) or
- Conventional wiring (for all 3SK1 and 3SK2 basic units)

This makes collective shutdown very easy in assemblies. The wiring, and ultimately the shutting down of the control supply voltage for the expansion components in EMERGENCY STOP situations, is performed via the device connector. There is no further need for complex looping of the connecting cables between the safety relay and the motor starters.

The 3RM1 motor starter combines the benefits of semiconductor technology and relay technology. This combination is also known as hybrid technology.
The hybrid technology in the motor starter is characterized by the following features:

- The inrush current in the case of motorized loads is conducted briefly via the semiconductors. Advantages include protection of the relay contacts and a long service life due to low wear.
- The uninterrupted current is conducted via relay contacts. Advantages include lower heat losses compared with the semiconductor.
- Shutdown is implemented again via the semiconductor. The contacts are only slightly exposed to arcs, and this results in a longer service life.
- Integrated overload protection

Note:
SIRIUS 3RM1 motor starters, see Section 6 Hybrid Motor Starters

## 3ZY12 device connectors

Using 3ZY12 device connectors to combine devices reduces the time required to configure and wire the components. At the same time errors are avoided during wiring, and this considerably reduces the testing required for the fully-assembled application.

## Configuration and stock keeping

Variable setting options by means of DIP switches or software, a wide voltage range (3SK1111) and a special power supply unit (3SK1 only) reduce the cost of keeping stocks and the considerations involved in configuration where the evaluation units to be selected are concerned.

## Communication

The 3SK2 safety relays can be easily integrated in the overall application via PROFINET or PROFIBUS using optionally available interface modules.
This provides the following advantages:

- Exchange of signals and information with the plant controller
- Read-out and visualization of diagnostics information of the safety relay via the controller supports troubleshooting and reduces plant downtimes
- Access with the Safety ES engineering software via the fieldbus for parameterization, commissioning and diagnostics


## Simulation

The SIRIUS Sim simulation tool for 3SK2 can be used to quickly and easily test configurations that have been created without real devices. The configurations thus created can then be loaded directly into the real devices. Time and costs for engineering are thus reduced, see https://support.industry.siemens.com/cs/document/109763750

## Safety Relays

## SIRIUS 3SK Safety Relays

## General data

## Application

## 3SK1 safety relays

SIRIUS 3SK1 safety relays are used mainly in autonomous safety applications which are not connected to a safety-related bus system. Their function here is to evaluate the sensors and the safety-related shutdown of hazards. Also they check and monitor the sensors, actuators and safety-related functions of the safety relay.

## 3SK2 safety relays

SIRIUS 3SK2 safety relays are used primarily in autonomous, more complex safety applications for which the functional scope of the 3SK1 devices is no longer sufficient, such as in the implementation of independent shutdown functions or integration into higher-level control systems for diagnostics via fieldbus. Their function here is to evaluate the sensors and the safety-related shutdown of hazards. Also they check and monitor the sensors, actuators and safety-related functions of the safety relay.

Technical specifications

## More information

Manual 3SK1, see
https://support.industry.siemens.com/cs/ww/en/view/67585885

Manual 3SK2, see
https://support.industry.siemens.com/cs/ww/en/view/67585885
https://support.industry.siemens.com/cs/ww/en/ps/16388/td
https://support.industry.siemens.com/cs/ww/en/view/109444336
FAQs, see
https://support.industry.siemens.com/cs/ww/en/ps/16382/faq

## SIRIUS 3SK1 safety relays

Article number	$\begin{aligned} & \text { 3SK11111- } \\ & \text {.AB30, } \\ & \text { 3SK1211- } \\ & \text {.BB00, } \\ & \text { 3SK1211- } \\ & \text {.BB40 } \end{aligned}$	3SK1111-   .AW20, 3SK1121, 3SK1211.BW20	3 SK1112	3 SK1120	3SK1122	3SK1213	3SK1220
General data:							
Width x height x depth   mm   $\rightarrow$ W	$22.5 \times 100 \times 121.6$		$\begin{aligned} & 22.5 \times 100 \times \\ & 91.6 \end{aligned}$	$\begin{aligned} & 17.5 \times 100 x \\ & 121.6 \end{aligned}$	$\begin{aligned} & 22.5 \times 100 x \\ & 121.6 \end{aligned}$	$\begin{aligned} & 90 \times 100 \times \\ & 121.6 \end{aligned}$	$\begin{aligned} & 17.5 \times 100 \times \\ & 121.6 \end{aligned}$
Ambient temperature   - During operation   - During storage	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+80 \end{aligned}$						
Installation altitude at height above sea level, maximum	2000						
Air pressure acc. to SN 31205	90.. 106						
Shock resistance	$10 \mathrm{~g} / 11 \mathrm{~ms}$					$5 \mathrm{~g} / 10 \mathrm{~ms}$	$10 \mathrm{~g} / 11 \mathrm{~ms}$
Vibration resistance according to IEC 60068-2-6	$5 \ldots 500 \mathrm{~Hz}: 0.75 \mathrm{~mm}$						
Degree of protection of the enclosure	IP20						
Touch protection against electric shock	Finger-safe						
Insulation voltage, rated value	300		50			300	50
Impulse withstand voltage, rated value	4000		800			4000	800
Safety integrity level (SIL) according to IEC 61508	3						
Performance level (PL) according to EN ISO 13849-1	e						
T1 value for proof test interval or $y$ service duration according to IEC 61508	20						
EMC emitted interference	$\begin{array}{ll} \text { IEC 60947-5-1, } & \text { IEC 60947-5-1, } \\ \text { class B } & \text { class A } \end{array}$					IEC 60947-5-1, class B	$\begin{aligned} & \text { IEC 60947-5-1, } \\ & \text { class A } \end{aligned}$
Certificate of suitability   - UL certification   - TÜV approval	Yes Yes						

## Safety Relays

## SIRIUS 3SK Safety Relays

## General data



SIRIUS 3SK2 safety relays

Article number	$\begin{aligned} & \text { 3SK2112- } \\ & . A A 10 \end{aligned}$	$\begin{aligned} & \text { 3SK2122- } \\ & \text {.AA10 } \end{aligned}$
General data:		
Width x height $x$ depth mm	$22.5 \times 100 \times 124.5$	$45 \times 100 \times 124.5$


Ambient temperature   - During operation   - During storage	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+60 \\ & -40 \ldots+80 \end{aligned}$	
Installation altitude at height above sea level, maximum	m	2000	
Air pressure acc. to SN 31205	kPa	90.. 106	
Shock resistance		$15 \mathrm{~g} / 11 \mathrm{~ms}$	
Vibration resistance acc. to IEC 60068-2-6		$5 \ldots 500 \mathrm{~Hz}: 0.75 \mathrm{~mm}$	
Degree of protection of the enclosure		IP20	
Touch protection against electric shock		Finger-safe	
Insulation voltage, rated value	V	50	
Impulse withstand voltage, rated value	V	800	
Safety integrity level (SIL) according to IEC 61508		3	
Performance level (PL) according to EN ISO 13849-1		e	
T1 value for proof test interval or service duration according to IEC 61508	y	20	
EMC emitted interference according to IEC 60947-1		Class A	
Certificate of suitability   - UL certification   - TÜV approval		Yes Yes	
Switching capacity current of the semiconductor outputs at DC-13 at 24 V	A	4	
PFHD at high demand rate according to EN 62061	1/h	$1.0 \times 10^{-8}$	$1.2 \times 10^{-8}$
PFDavg at low demand rate according to IEC 61508		$1.5 \times 10^{-5}$	$1.8 \times 10^{-5}$

## Safety Relays <br> SIRIUS 3SK Safety Relays, Basic Units

SIRIUS 3SK1 Standard basic units

Article number	3SK2511-.FA10
Transmission type for   Industrial Ethernet	PROFINET with 100 Mbps full duplex (100BASE-TX)
Number of interfaces acc. to   PROFINET	1
Type of interface   Ethernet interface	Yes
Type of interface 1 RJ45   (Ethernet)	Yes
PROFINET Conformance Class	B
Network load class according to   PROFINET	1
Volume of cyclic user data for   PROFINET IO   - For outputs   For inputs	bit

## Overview



The 3SK111 Standard basic units are characterized by simple, variable functionality. These devices are recommended for safety functions requiring only a few sensors and a small number of outputs on the safety relay.

Note:
Use of device connectors not possible.

3SK111 Standard basic units

## Selection and ordering data



3SK1111-1AB30


3SK1111-1AW20


3SK1112-1BB40


## Type of electrical connection

- Screw terminals
- Spring-type terminals (push-in)


## Overview



The 3SK112 Advanced basic units form an innovative system landscape that allows even complex safety functions with large numbers of sensors and outputs to be built up using the device connectors. It is possible to increase both the number of inputs for sensors and the number of safe outputs of the basic unit without the need for wiring outlay between the devices.

## Note:

Use of device connectors possible.

3SK112 Advanced basic units

## Selection and ordering data



3SK1121-1AB40


3SK1120-1AB40


3SK1122-1AB40


3SK1122-1CB41

Control supply voltage at DC	Number of outputs as contacting contact block			as contactless semiconductor contact block			Adjustable OFF-delay time	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	as NO contact, instantaneous switching	as NO contact, delayed switching	as NC contact for signaling function, instantaneous switching	instantaneous switching	delayed switching	for signaling function, instantaneous switching						
V							s	d				
Advanced basic units												
24	3	0	1	0	0	0	--	-	3SK1121-■AB40		1	1 unit
	2	2	0	0	0	0	0.05 ... 3	2	3SK1121-■CB41		1	1 unit
							0.5 .. 30	1	3SK1121-■CB42		1	1 unit
							5... 300	5	3SK1121-■CB44		1	1 unit
24	0	0	0	1	0	0	--	2	3SK1120-■AB40		1	1 unit
				3	0	1	--	2	3SK1122-■AB40		1	1 unit
				2	2	0	0.05 ... 3	5	3SK1122-■CB41		1	1 unit
							0.5 ... 30	2	3SK1122-■CB42		1	1 unit
							5.. 300	5	3SK1122-■CB44		1	1 unit

Type of electrical connection

- Screw terminals
- Spring-type terminals (push-in)


## SIRIUS 3SK Safety Relays, Basic Units

SIRIUS 3SK2 basic units

## Overview



## 3SK2 basic units

The 3SK2 basic units have a large number of inputs and outputs within a narrow width. In addition, demanding safety applications can be implemented simply with several independent safety functions. Flexible application options are enabled by powerful semiconductor outputs, as well as by expandability with additional 3SK output expansions and 3RM1 Failsafe motor starters. Flexible time functions and diagnostics options are available. The $22.5-\mathrm{mm}$-wide version of the 3SK2 basic units has $10 x$ single-channel ( $5 x$ two-channel) inputs, while the $45-\mathrm{mm}$-wide 3SK2 version comes with $20 \times$ single-channel ( $10 \times$ two-channel) inputs.


PROFINET Starter Kit

## 3SK2 (45 mm) PROFINET Starter Kit

The Starter Kit is a favourably-priced complete package for the simple creation of complex safety applications and comprises:

- 3SK2122 basic unit, 45 mm wide
- PROFINET interface module
- SIRIUS Safety ES Premium software for configuring, commissioning, operating and diagnosing
- Connecting cable between the basic unit and the PROFINET interface
- Ethernet cable


Starter Kit

## 3SK2 (22.5 mm) Starter Kit

The Starter Kit is a favorably-priced complete package for the simple creation of complex safety applications and comprises:

- 3SK2112-2AA10 basic unit, 22.5 mm wide, with spring-type terminals (push-in)
- SIRIUS Safety ES Standard software for configuring, commissioning, operating and diagnosing
- USB PC cable for easy transmission of the configuration to the device by means of USB


SIRIUS Sim 3SK2

## SIRIUS Sim 3SK2

The SIRIUS 3SK2 simulation tool can be used to quickly and easily test functions and configurations in an office environment. These configurations can then be loaded directly into real devices. Time and costs for engineering are reduced.

SIRIUS Sim 3SK2 is available free of charge as a download, see https://support.industry.siemens.com/cs/ww/en/view/109763750.

SIRIUS 3SK Safety Relays, Basic Units

## SIRIUS 3SK2 basic units

\section*{Selection and ordering data <br> 3SK2112 <br>  <br> 3SK2122 <br>  <br> | Control supply voltage at $D C$ | Number of outputs as contactless semiconductor contact block, safety-related, two-channel | Number of outputs as contactless semiconductor contact block, non-safety-related, two-channel | Number of outputs to the device connector, safety-related | Width | SD | Article No. | Price per PU | $\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$ | PS* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V |  |  |  | mm | d |  |  |  |  |
| 3SK2 basic units |  |  |  |  |  |  |  |  |  |
| 24 | 2 | 1 | 2 | 22.5 | 2 | 3SK2112-■AA10 |  | 1 | 1 unit |
|  | 4 | 2 | 2 | 45 | 2 | 3SK2122-■AA10 |  | 1 | 1 unit |

Type of electrical connection

- Screw terminals
- Spring-type terminals (push-in)

3SK2511-1FA10
Interface module NEW

| For connecting 3SK2 and 3RK3 safety relays via PROFINET | 22.5 | 2 | 3SK2511-ロFA10 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Type of electrical connection

- Screw terminals
- Spring-type terminals (push-in)

Note:
The 3UF7930-0AA00-0 connection cable is not included in the scope of supply and must be ordered separately, see page 13/196.

Control supply voltage at $D C$	Number of outputs as contactless semiconductor contact block, safety-related, two-channel	Number of outputs as contactless semiconductor contact block, non-safety-related, two-channel	Number of outputs to the device connector, safety-related	Width	SD	Spring-type terminals (push-in)   Article No.	Price per PU		PS*
V				mm	d				
Starter Kit									
Contains 3SK2122-2AA10 basic unit, PROFINET Interface Module, SIRIUS Safety ES Premium, PROFINET connection cable and Ethernet cable									
24	4	2	2	45	2	3SK2942-2AA10		1	1 unit
Contains 3SK2112-2AA10 basic unit, SIRIUS Safety ES Standard and 3UF7941-0AA00-0 USB PC cable									
24	2	1	2	22.5	2	3SK2941-2AA10		1	1 unit

## SIRIUS 3SK Safety Relays，Expansion Units

## Output expansions

## Overview



3SK121 output expansion
The 3SK121 output expansions can be used to expand all 3SK basic units．

## 3SK1211 output expansion

The 3SK1211 output expansion is used to expand the safe out－ puts of a basic unit by adding another four safe outputs．These outputs have a switching capacity of AC－15 5 A at a switching voltage of 230 V ．The devices can be connected to any 3SK basic unit by means of wiring．In addition，the devices with a 24 V DC control supply voltage can also be connected to 3SK1 Advanced basic units and 3SK2 basic units by means of the 3ZY12 device connectors．

## 3SK1213 output expansion

The 3SK1213 output expansion is used to expand the safe outputs of a basic unit by adding three safe outputs with high switching capacity．These outputs have a switching capacity of AC－15 10 A at a switching voltage of 230 V ．The devices can be connected to any 3SK basic unit by means of wiring．As with the 3SK1211，the devices with a 24 V DC control supply voltage can also be connected to 3SK1 Advanced and 3SK2 basic units by means of the 3ZY12 device connectors．

Note：
It is only possible to expand the Standard basic units by means of wiring．Advanced basic units and 3SK2 basic units can be expanded using the 3ZY12 device connector．

## Benefits

－Perfect adaptation of the number of outputs
－Simple expansion of instantaneous and time－delayed safe outputs of the Advanced basic units using device connectors
－When using the device connector the outputs on the terminals of the basic device can still be used
－Another two freely configurable shutdown functions on 3SK2 basic units when using device connectors
－Expansion with power contacts for high AC－15／DC－13 currents in the control circuit
－No wiring of the feedback circuit to the basic units is required when using device connectors
－Shorter installation times
－Less configuring and testing required

## Selection and ordering data



3SK1211－1BB40


3SK1213－1AB40

Control supply voltage		Number of outputs as contacting contact block			$3 Z Y 12$   device	SD	Article No．	Price per PU	PU   （UNIT，	PS＊
at AC   at 50 Hz	at DC	as NO contact， instantaneous switching	as NO contact， delayed switch－ ing	as NC contact instantaneous switch－ ing for feedback circuit						
V	V					d				
Output expansions										
24	－－	4	0	1	No	5	3SK1211－पBB00		1	1 unit
－－	24	4	0	1	Yes	1	3SK1211－ロBB40		1	1 unit
110 ．．． 240	110．．． 240	4	0	1	No	2	3SK1211－口BW20		1	1 unit
－－	24	3	0	1	Yes	5	3SK1213－पAB40		1	1 unit
115	－－	3	0	1	No	5	3SK1213－■AJ20		1	1 unit
230	－－	3	0	1	No	5	3SK1213－口AL20		1	1 unit

## Type of electrical connection

－Screw terminals
－Spring－type terminals（push－in）

SIRIUS 3SK Safety Relays, Expansion Units

## Input expansions

## Overview



3SK1220 sensor expansion
With the input expansions

- 3SK1220 sensor expansion
- 3SK1230 power supply
the 3SK1 Advanced basic units can be made more flexible.


## 3SK1220 sensor expansion

The 3SK1220 input expansion allows additional sensors to be integrated easily and flexibly. The device monitors two singlechannel sensors or one two-channel sensor, whatever their output technology (floating/single-ended).

## Note:

The 3SK1220 sensor expansion can only be connected to the 3SK1 Advanced basic units by means of the 3ZY12 device connector, see page 13/146.

## 3SK1230 power supply

The 3SK1230 power supply makes the 3SK1 devices universally usable, whatever control supply voltage is to be used.

## Note:

Alongside the 3ZY12 device connector, the 3SK1230 power supply can also be wired to act as a power supply for 3SK1 devices.

## Benefits

- A wide voltage range of $110 \ldots 240 \mathrm{~V}$ AC/DC allows the devices to be used worldwide
- Low stock keeping due to little variance
- Flexible expansion of the number of sensors without the need for additional wiring between the devices
- Perfect adaptation of the number of inputs to suit the application
- Universal use thanks to the wide range of adjustable parameters for sensor expansion (parameters as for 3SK1 Advanced basic units)

Selection and ordering data


3SK1220-1AB40


3SK1230-1AW20

Version	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
d					
Sensor expansions					
For safety-related expansion of the 3SK1 Advanced basic units by adding a further twochannel sensor or two single-channel sensors	2	3SK1220-■AB40		1	1 unit
Power supply					
For supplying 3SK1 Advanced basic units via 3ZY12 device connectors at voltages of 110 ... 240 V AC/DC	2	3SK1230-■AW20		1	1 unit
Type of electrical connection					
- Screw terminals		1			
- Spring-type terminals (push-in)		2			

SIRIUS 3SK Safety Relays

## Accessories

## Overview

Numerous accessories are available for 3SK, such as device connectors, terminals, cables, adapters, covers, memory and diagnostics modules or software.

## Device connectors for 3SK112., 3SK12.. and 3SK2

The device connector can be used to connect devices of the 3SK/3RM1 system together, with the last device in a system configuration being placed on a device termination connector. Use of device connectors not possible with 3SK1 standard.

Device connectors are available in various versions specifically for the 3SK safety relays:

For type	Device connectors				Device termination connectors	
	$\begin{aligned} & \text { 3ZY1212- } \\ & \text { 1BA00 } \\ & \text { (for 3SK1, } \\ & \text { width } \\ & 17.5 \mathrm{~mm} \text { ) } \end{aligned}$	$\begin{aligned} & \text { 3ZY1212- } \\ & \text { 2BA00 } \\ & \text { (for 3SK1, } \\ & \text { width } \\ & 22.5 \mathrm{~mm} \text { ) } \end{aligned}$	$\begin{aligned} & \text { 3ZY1212- } \\ & \text { 2GA00 } \\ & \text { (for 3SK2, } \\ & \text { width } \\ & 22.5 \mathrm{~mm} \text { ) } \end{aligned}$	$\begin{aligned} & \text { 3ZY1212- } \\ & \text { 4GA01 } \\ & \text { (for 3SK2, } \\ & \text { width } \\ & 45 \mathrm{~mm} \text { ) } \end{aligned}$	3ZY1212-   2DA00   (for 3SK1,   width   22.5 mm )	$\begin{aligned} & \text { 3ZY1212- } \\ & \text { OFA01 } \\ & \text { (for 3SK1, } \\ & \text { set for } \\ & \text { enclo- } \\ & \text { sures } \\ & \geq 45 \mathrm{~mm} \text { ) } \end{aligned}$
3SK1 Advanced basic units						
3SK1120	$\checkmark$	--	--	--	--	--
3SK1121	--	$\checkmark$	--	--	$\checkmark$	--
3SK1122	--	$\checkmark$	--	--	$\checkmark$	--
3SK2 basic units						
3SK2112	--	--	$\checkmark$	--	--	--
3SK2122	--	--	--	$\checkmark$	--	--
Output expansions						
3SK1211	--	$\checkmark$	--	--	$\checkmark$	--
3SK1213	--	--	--	--	--	$\checkmark$
Input expansions						
3SK1220	$\checkmark$	--	--	--	--	--
3SK1230	--	$\checkmark$	--	--	--	--
$\checkmark$ Available						

## Removable terminals for 3SK

The following removable terminals are available for the 3SK safety relays for pre-wiring of the terminals in the control cabinet, or for replacing terminals:

For type	Removable terminals			
	Screw terminals		Spring-type terminals (push-in)	
	2-pole   3ZY1121-   1BA00	3-pole   3ZY1131-   1BA00	2-pole   3ZY1121-   2BA00	3-pole   3ZY1131-   2BA00
3SK1 basic units				
3SK1111	--	$\checkmark$	--	$\checkmark$
3SK1112	$\checkmark$	--	$\checkmark$	--
3SK1120	--	$\checkmark$	--	$\checkmark$
3SK1121	--	$\checkmark$	--	$\checkmark$
3SK1122	$\checkmark$ bottom	$\checkmark$ top	$\checkmark$ bottom	$\checkmark$ top

3SK2 basic units

3 3SK2112	--	$\checkmark$	-
3SK2122	--	$\boldsymbol{J}^{1)}$	--

## Output expansions

3SK1211	$\checkmark$	-	$\checkmark$	-
3SK1213 --	--	--	-	

Input expansions

3SK1220	--	$\checkmark$ top	--	$\checkmark$ top
3SK1230	$\checkmark$ bottom	--	$\boldsymbol{\sigma}$ bottom	--

$\checkmark$ Available
-- Not available

1) Two sets of terminals are required for 3 SK 2122 .

## Selection and ordering data



SIRIUS 3SK Safety Relays

## Accessories



Safety Relays
SIRIUS 3SK Safety Relays

## Accessories

	Version	$\begin{aligned} & S D \\ & d \end{aligned}$	Article No.	Price per PU	$\begin{aligned} & \text { PU (UNIT, } \\ & \text { SET, M) } \end{aligned}$
Accessories for enclosures					
	Sealing covers   - 17.5 mm (for 3SK1120 and 3SK1220)   - 22.5 mm (for all 3SK1 devices except 3SK1120 and 3SK1220)	$2$ $2$	3ZY1321-1AA00 3ZY1321-2AA00		1 1
	Push-in lugs For wall mounting	2	3ZY1311-0AA00		1
	Coding pins   For removable terminals of SIRIUS devices in the industrial standard mounting rail enclosure; they enable the mechanical coding of terminals, see Manual "3SK1"	2	3ZY1440-1AA00		1
	Hinged cover [NEW   Replacement cover, without terminal labeling				
	- Titanium gray   - 22.5 mm wide (for 3SK1230)   - Yellow	2	3ZY1450-1AB00		1
3ZY1450-1AB00	- 17.5 mm wide (for 3SK1220, 3SK1120)	2	3ZY1450-1BA00		1
	```- 22.5 mm wide (for 3SK11 except 3SK1120, 3SK1211, 3SK2112) - 45 mm wide (for 3SK2122)```	2 2	3ZY1450-1BB00   3ZY1450-1BC00		1 1
3ZY1450-1BB00					
Blank labels					
	Unit labeling plates For SIRIUS devices $20 \mathrm{~mm} \times 7 \mathrm{~mm}$, titanium gray ${ }^{1)}$	20	3RT2900-1SB20		100
Tools for opening spring-type terminals					
	Screwdrivers For all SIRIUS devices with spring-type terminals; $3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$; length approx. 200 mm , titanium gray insulated	2	Spring-type terminals (push-in) 3RA2908-1A	0	1

Overview

SIRIUS 3TK2810 safety relays

3TK2810-0 standstill monitors

The standstill monitor increases safety in hazardous areas. Without a sensor, it detects motor stoppage from the residual magnetization of the rotating motor. When an adjustable threshold value is undershot, it uses its outputs to allow access to hazardous areas, for example by unlocking a protective door.

3TK2810-1 speed monitors

The speed monitor combines two safety functions in one unit by continuously monitoring machines and plants for standstill and speed.
Through simple parameterization and permanent diagnosis on the display, faults can be quickly remedied at any time - often before they cause plant downtimes.
In addition to standstill and speed monitoring, the unit also features an integrated monitoring function of a protective door with spring-type interlocking. Therefore, an additional evaluation unit is not needed.

More information
Homepage, see www.siemens.com/safety-relays
Industry Mall, see
https://mall.industry.siemens.com/mall/en/us/Catalog/Products/8260001
Article No. scheme

Product versions		Article number			
Safety relays with special functions		3TK2810 - $\square \square$ A $\square \square$			
Device version	Standstill monitor		0		
	Speed monitor for NPN/PNP proximity switches and encoders		1		
Type of control supply voltage	24 V DC		B		
	230 V AC, $50 / 60 \mathrm{~Hz}$		G		
	400 V AC, $50 / 60 \mathrm{~Hz}$		J		
	120 ... 240 V AC/DC; $50 / 60 \mathrm{~Hz}$		K		
Time delay	$0.2 \ldots 6 \mathrm{~s}$ (standstill)			0	
	$0 \ldots 999 \mathrm{~s}$ (release delay)			4	
Connection type	Screw terminals			1	
	Spring-type terminals (push-in)			2	
Version	Speed monitor for NAMUR proximity switches and encoders				A A 0
Example		3TK2810 -	0 B A	01	

Note:
The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

Benefits

3TK2810-0 standstill monitors

- No additional sensors required
- Signaling of faults with diagnostics display
- Standstill time can be set
- Unit can be used with frequency converters

3TK2810-1 speed monitors

- Menu-prompted, easy parameterization
- Direct diagnosis on the display means shorter downtimes thanks to early fault detection
- Integrated protective door monitoring means greater safety because access to the plant is allowed only in the safe state
- Suitable for all standard sensors, i.e. high flexibility

SIRIUS 3TK28 Safety Relays

With special functions

Technical specifications

More information

Operating instructions 3TK2810-0, see
https://support.industry.siemens.com/cs/ww/en/view/25437254
Manual 3TK2810-1, see
https://support.industry.siemens.com/cs/ww/en/view/43707376

Type	3TK2810-0 standstill monitors	3TK2810-1 speed monitors
Sensors		
- Inputs	3	4
- Electronic	--	3
- With contacts	--	1
- Without sensors (measuring inputs)	3	--
- Magnetically operated switch (Reed contacts)	--	--
Safety mats	--	--
Start		
- Auto	\checkmark	\checkmark
- Monitored	--	\checkmark
Cascading input 24 V DC	--	--
Key-operated switch	--	--
Enabling circuit, floating		
- Stop category 0	$3 \mathrm{NO}+1 \mathrm{NC}$	2
- Stop category 1	--	--
Enabling circuit, electronic		
- Stop category 0	--	--
- Stop category 1	--	--

Type	3TK2810-0 standstill monitors	3TK2810-1 speed monitors
Signaling outputs - Floating - Electronic	$\begin{gathered} 1 \mathrm{CO} \\ 2 \end{gathered}$	2
Standards	$\begin{gathered} \text { IEC 60204-1, } \\ \text { EN ISO 12100, } \\ \text { EN ISO 13849-1, } \\ \text { IEC } 61508 \end{gathered}$	$\begin{gathered} \text { IEC 60947-5-1, } \\ \text { EN ISO 13849-1, } \\ \text { IEC 60204-1, } \\ \text { IEC } 61508 \end{gathered}$
Test certificates	TÜV, UL, CSA	TÜV, UL, CSA
SIL level max. acc. to IEC 61508	3	3
Performance level PL acc. to EN ISO 13849-1	e	e
Probability of a dangerous failure per hour ($\mathrm{PFH}_{\mathrm{d}}$)	$1.5 \times 10^{-8} 1 / \mathrm{h}$	$3.38 \times 10^{-9} 1 / \mathrm{h}$
Rated control supply voltage - 24 V DC - 230 V AC - 400 V AC - 120 ... 240 V AC/DC		$\begin{aligned} & \checkmark \\ & -- \\ & -- \\ & \checkmark \end{aligned}$

Stop category
\checkmark Available
-- Not available

Selection and ordering data

PU (UNIT, SET, M) = 1
PS*

$$
=1 \text { unit }
$$

Rated control supply voltage U_{S}	Times	SD	Screw terminals	(1)	SD	Spring-type terminals	00
V	S	d	Article No.	Price per PU	d	Article No.	Price per PU
Standstill monitors							
3TK2810-0							
- 24 DC - 230 AC - 400 AC	0.2 ... 6 (standstill) 0.2 ... 6 (standstill) 0.2 ... 6 (standstill)	$\begin{aligned} & 5 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { 3TK2810-0BA01 } \\ & \text { 3TK2810-0GA01 } \\ & \text { 3TK2810-0JA01 } \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	3TK2810-0BA02 3TK2810-0GA02 3TK2810-0JA02	
Speed monitors							
3TK2810-1 for NPN/PNP proximity switches and encoders							
- 24 DC - 120 ... $240 \mathrm{AC} / \mathrm{DC}$	0 ... 999 (release delay) 0 ... 999 (release delay)	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3TK2810-1BA41 } \\ & \text { 3TK2810-1KA41 } \end{aligned}$		$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3TK2810-1BA42 } \\ & \text { 3TK2810-1KA42 } \end{aligned}$	
3TK2810-1 for NAMUR proximity switches and encoders							
- 24 DC - 120 ... $240 \mathrm{AC} / \mathrm{DC}$	0 ... 999 (release delay) 0 ... 999 (release delay)	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3TK2810-1BA41-0AA0 3TK2810-1KA41-0AA0		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3TK2810-1BA42-0AAO 3TK2810-1KA42-0AAO	

SIRIUS 3TK28 Safety Relays

Accessories

Selection and ordering data

General data

Overview

SIRIUS 3RK3 Modular Safety System

More information

Industry Mall, see
https://mall.industry.siemens.com/mall/en/us/Catalog/Products/10041776

The 3RK3 Modular Safety System (MSS) is a freely configurable modular safety relay. Depending on the external circuit version, safety-related applications up to performance level e according to EN ISO 13849-1 or SIL 3 according to IEC 62061 can be realized.
The modular safety relay enables the interconnection of several safety applications.
The comprehensive error and status diagnostics provides the possibility of finding errors in the system and localizing signals from sensors. Plant downtimes can be reduced as the result.
The MSS comprises the following system components:

- Central units
- Expansion modules
- Interface modules
- Diagnostics modules
- Parameterization software
- Accessories

Central units

MSS Basic
The 3RK3 Basic central unit is used wherever several safety functions need to be evaluated and the wiring parameterization of safety relays would involve significant cost and effort. It reads in inputs, controls outputs and communicates through an interface module with higher-level control systems. An application's entire safety program is processed in the central unit. The 3RK3 Basic central unit is the lowest expansion level and fully functional on its own, without the optional expansion modules.

MSS Advanced

The 3RK3 Advanced central unit is the logical expansion of the Basic central unit with the functionality of an AS-i safety monitor. In addition to having a larger volume of project data and scope of functionality it can be integrated in AS-Interface and therefore make use of the many different possibilities offered by this bus system. The function can be optionally activated in the central unit.

The service-proven insulation piercing method of AS-Interface enables not only the distributed expansion of the project data volume using safe AS-i outputs, safe AS-i sensors and other MSS Advanced or safety monitors (F cross traffic) but also a highly flexible adaptation of the application, e.g. very fast connection of AS-i outputs, EMERGENCY STOP command devices, position switches with and without tumbler, or light curtains.
Safety-related disconnection using MSS or by distributed means using safe AS-i outputs and the formation of switch-off groups can be realized very easily. The same applies for any subsequent modifications. They are now possible by simply readdressing, meaning that rewiring is no longer necessary.
The AS-i bus is connected directly to the central unit.

MSS ASIsafe

The MSS ASIsafe basic and MSS ASIsafe extended central units are a logical development of the AS-i safety monitors based on the 3RK3 Modular Safety System.
Like MSS Advanced, MSS ASIsafe detects - in a comparable way to the safety monitors - safe sensor technology on the AS-i bus and switches actuators off in a safety-related manner via a configurable safety logic. It stands out by virtue of its greater project data volume, wider range of functions and the possibility of increasing the integrated I/O project data volume by means of expansion modules from the MSS system family. In this case the range of functions, such as the number and type of the logic elements that can be interconnected, is equivalent to that of MSS Advanced.

Expansion modules

With the optional expansion modules, both safety-related and standard, the system is flexibly adapted to the required safety applications.

Interface modules

The DP interface module is used for transferring diagnostics data and device status data to a higher-level PROFIBUS network, e.g. for purposes of visualization using HMI. When using the Basic central unit, 32-bit cyclic data can be exchanged with the control system. If an Advanced/ASIsafe central unit is used, the number is doubled to 64-bit cycle data. In acyclic mode, both central units can call up diagnostic data.

Diagnostics modules

Actuated sensors or faults, e.g. cross-circuit, are indicated directly on the diagnostics display. The fault is diagnosed directly in plain text by the detailed alarm message. The device is fully functional upon delivery. No programming is required.

Parameterization software

Using the SIRIUS Safety ES graphical parameterization tool, it is very easy to create the safety functions as well as their logical links on the PC. You can define disconnection ranges, ON-delays, OFF-delays and other dependencies for example.
SIRIUS Safety ES also offers comprehensive functions for diagnostics and commissioning. Documentation of the MSS hardware configuration and the parameterized logic is created automatically.

SIRIUS 3RK3 Modular Safety System

General data

System design of MSS with Basic central unit

System design of MSS with Advanced central unit

System design of MSS as a combination of various central units with AS-Interface

SIRIUS 3RK3 Modular Safety System

General data

Article No. scheme

Note:

The Article No. schemes show an overview of product versions for better understanding of the logic behind the article numbers.

For your orders, please use the article numbers quoted in the selection and ordering data.

SIRIUS 3RK3 Modular Safety System

General data

Benefits

- More functionality and flexibility through freely configurable safety logic
- Suitable for all safety applications thanks to compliance with the highest safety standards in production automation
- For use all over the world through compliance with all productrelevant, globally established certifications
- Modular hardware configuration
- Parameterization by means of software instead of wiring
- Removable terminals for greater plant availability
- Distributed detection of sensors and disconnection of actuators through AS-Interface
- All logic functions can also be used for AS-Interface, e.g. muting, protective door with tumbler
- Up to 12 independent safe switch-off groups on the AS-i bus
- Volume of project data can be greatly increased by means of AS-Interface
- Up to 50 two-channel enabling circuits per system

Communication via PROFIBUS

The 3RK3 Modular Safety System can be connected to PROFIBUS through the DP interface and exchange data with higher-level control systems.

The MSS supports among other things:

- Baud rates up to 12 Mbps
- Automatic baud rate detection
- Cyclic services (DPVO) and acyclic services (DPV1)
- Exchange of 32-bit cyclic data with MSS Basic or 64-bit cyclic data with MSS Advanced/MSS ASIsafe
- Diagnostics using data record invocations

AS-Interface communication

Using the Advanced and ASIsafe "basic" and "extended" central units, the 3RK3 Modular Safety System can be integrated in AS-Interface.

- MSS can read and evaluate the I/O data of up to 31 AS-i modules
- Up to 12 safe output signals per MSS can be placed on the AS-i bus for switching safe AS-i output modules or for fail-safe cross traffic between multiple MSS stations
- Safe cross traffic between multiple MSS stations or between one MSS and AS-i safety monitors
- Standard signals, e.g. for acknowledgment, can also be output on the AS-i bus

Notes:
MSS with communication function, see page 13/160 onwards. Accessories, see page 13/162 onwards.
SIRIUS Safety ES, see page 13/163.

SIRIUS 3RK3 Modular Safety System

General data

Application

The 3RK3 Modular Safety System can be used for all safety-related requirements in the manufacturing industry and offers the following safety functions:

| | Symbol | MSS Basic |
| :--- | :--- | :--- | | MSS Advanced, |
| :--- |
| MSS ASIsafe |,

Monitoring functions

Universal monitoring
Evaluation of any binary signals from single-channel and two-channel sensors

Symbol	MSS Basic	MSS Advanced, MSS ASIsafe

Logic operation functions

AND	\&	\checkmark	\checkmark
OR		\checkmark	\checkmark
XOR		\checkmark	\checkmark
NAND		\checkmark	\checkmark
NOR		\checkmark	\checkmark
Negation		\checkmark	\checkmark
Flip-flop		\checkmark	\checkmark

Counting functions

Counter 0 -> 1	$\frac{211}{\Omega}$	\checkmark	\checkmark
Counter 1 -> 0	$\frac{211}{2}$	\checkmark	\checkmark
Counter 0 -> 1/1-> 0	$\begin{aligned} & 2 / 1 \\ & \sqrt{2} \end{aligned}$	\checkmark	\checkmark

Timer functions

With ON-delay	-	\checkmark	\checkmark
Passing make contact	Θ_{\square}	\checkmark	\checkmark
With OFF-delay		\checkmark	\checkmark
Clock-pulsing	$\begin{aligned} & \mathrm{O} \\ & \Omega \\ & \hline \end{aligned}$	\checkmark	\checkmark

Start functions

Monitored start		\checkmark	\checkmark
	Ω		
Manual start	$\mathbf{\Omega}$	\checkmark	\checkmark
	ζ		

Output functions

Standard output	Q	\checkmark	\checkmark
F output			
AS-i output function	Q	\checkmark	\checkmark
	\mathbf{Q}		-

Status functions
Element status

Available
-- Not available

Safety Relays

SIRIUS 3RK3 Modular Safety System

General data

Technical specifications

More information

Manual, see	FAQs, see
https://support.industry. siemens.com/cs/ww/en/view/26493228	https://support.industry.siemens.com/cs/ww/en/ps/16392/faq
Technical specifications, see	

https://support.industry.siemens.com/cs/ww/en/ps/16392/td
Central units and expansion modules

Type		Central units				Expansion modules						
		Basic	Advanced	ASIsafe basic	ASIsafe extended	4/8F-DI	$\begin{aligned} & \text { 2/4 F-DI } \\ & 1 / 2 \text { F-RO } \end{aligned}$	$\begin{aligned} & \text { 2/4 F-DI } \\ & \text { 2F-DO } \end{aligned}$	4/8 F-RO	4 F-DO	8 DI	8 DO
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)												
- Screw terminals - Spring-type terminals	mm mm	$\begin{aligned} & 45 \times 11 \\ & 45 \times 11 \end{aligned}$				$\begin{aligned} & 22.5 \times 11 \\ & 22.5 \times 11 \end{aligned}$	$\begin{aligned} & 1 \times 124 \\ & 3 \times 124 \end{aligned}$		$\begin{aligned} & 45 \times 111 \times 124 \\ & 45 \times 113 \times 124 \end{aligned}$	$\begin{aligned} & 22.5 \times 11 \\ & 22.5 \times 11 \end{aligned}$	$\begin{aligned} & 11 \times 124 \\ & 13 \times 124 \end{aligned}$	
Device data												
Shock resistance (sine pulse)	g / ms	15/11										
Touch protection acc. to IEC 60529		IP20										
Permissible mounting position		Vertical deviatin	unting surfa mounting pos	$\text { ace }(+10 \%$ sitions are	$\left.10^{\circ}\right),$ permitted for	reduced	mbient tem	perature				
Minimum distances		For hea	ssipation throur	ough conv	ection from the	he devices	25 mm to t	the ventila	on openings (top	and bottom	om)	
Permissible ambient temperature - During operation - During storage and transport												
Number of sensor inputs (single-channel) - Fail-safe - Not fail-safe		8	8	$\begin{aligned} & 2 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	8	4	4	--	--	$\overline{8}$	--
Number of test outputs		2							--			
Number of outputs - Relay outputs - Single-channel - Two-channel - Electronic outputs - Single-channel - Two-channel		- 1 --	-- 1 -	$\begin{gathered} --1 \\ -1 \\ -1 \end{gathered}$	$\begin{gathered} --1 \\ -- \\ \hline 1 \end{gathered}$		$\begin{aligned} & 2 \\ & -- \\ & -- \\ & -- \end{aligned}$	2	$\begin{gathered} 8 \\ -- \\ -- \\ -- \end{gathered}$	$\begin{gathered} -- \\ -- \\ \hline- \\ \hline \end{gathered}$		
Weight	g	300				160			400	135	125	160
Installation altitude above sea level	m	2000										
Environmental data												
EMC interference immunity		IEC 60947-5-1										
Vibrations - Frequency - Amplitude	Hz mm	$\begin{aligned} & 5 \ldots 500 \\ & 0.75 \end{aligned}$										
Climatic withstand capability		IEC 60068-2-78										

SIRIUS 3RK3 Modular Safety System

General data

1) Device current supply through a power supply unit according to IEC 60536 protection class III (SELV or PELV).

Safety Relays

SIRIUS 3RK3 Modular Safety System

General data

Interface and diagnostics modules

Type		Interface modules	Diagnostics modules
Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$			

3RK31 central units

Selection and ordering data

Central units with safety-related inputs and outputs

- 8 fail-safe inputs
- 1 two-channel relay output
- 1 two-channel electronic output

Max. 7 expansion modules can be connected
Note:
Memory module 3RK3931-0AA00 is included in the scope of supply.

3RK3 Advanced

Central units for connecting to AS-Interface with safety-related inputs and outputs
and extended functional scope

- 8 fail-safe inputs
- 1 two-channel relay output
- 1 two-channel electronic output

Max. 9 expansion modules can be connected
Note:
Memory module 3RK3931-0AA00 is included in the scope of supply.

3RK3 ASIsafe

Central units for connecting to AS-Interface
with safety-related inputs and outputs
and extended functional scope

- 1 two-channel relay output
- 1 two-channel electronic output
"Basic" version
- 2 fail-safe inputs
- 6 non-fail-safe inputs

No expansion modules can be connected

"Extended" version

- 4 fail-safe inputs
- 4 non-fail-safe inputs

Max. 2 expansion modules can be connected
Note:
Memory module 3RK3931-0AA00 is included in the scope of supply.

Type of electrical connection

- Screw terminals
- Spring-type terminals (push-in)

3RK3121- $\square \mathbf{A C O O}$	1	1 unit
3RK3122- $\square \mathbf{A C 0 0}$	1	1 unit

3RK3122-■AC0
$1 \quad 1$ unit

SIRIUS 3RK3 Modular Safety System
3RK32, 3RK33 expansion modules, 3RK35 interface modules

Selection and ordering data

3RK3211-1AA10 3RK3221-1AA10 3RK3231-1AA10 3RK3242-1AA10

3RK3251-1AA10

3RK3311-1AA10 3RK3321-1AA10

3RK3511-1BA10

Version	SD	Article No.	Price per PU	PU (UNIT, SET, M)	PS*
	d				
3RK32, 3RK33 expansion modules					
4/8 F-DI	2	3RK3211- \square AA10		1	1 unit
Safety-related input module - 8 inputs					
2/4 F-DI 1/2 F-RO	2	3RK3221- \square AA10		1	1 unit
Safety-related input/output module - 4 inputs - 2 single-channel relay outputs					
2/4 F-DI 2F-DO	2	3RK3231- \square AA10		1	1 unit
Safety-related input/output module - 4 inputs - 2 two-channel electronic outputs					
4/8 F-RO	2	3RK3251- \square AA10		1	1 unit
Safety-related output module - 8 single-channel relay outputs					
4 F-DO	2	3RK3242-■AA10		1	1 unit
Safety-related output module - 4 two-channel electronic outputs					
8 DI	2	3RK3321- \square AA10		1	1 unit
Standard input module - 8 inputs					
8 DO	2	3RK3311- \square AA10		1	1 unit
Standard output module - 8 electronic outputs					
3RK35 interface modules					
PROFINET Interface \square NEW PROFINET interface, 100 Mbps , 32-bit cycle data exchange with Basic central unit or 64-bit with Advanced and ASIsafe central unit, acyclic exchange of diagnostics data	2	3RK2511-■FA10		1	1 unit
DP interface	2	3RK3511-■BA10		1	1 unit
PROFIBUS DP interface, $12 \mathrm{Mbps}, \mathrm{RS} 485$, 32-bit cyclic data exchange with Basic central unit or 64-bit with Advanced and ASIsafe central unit, acyclic exchange of diagnostics data					
Type of electrical connection - Screw terminals - Spring-type terminals (push-in)		$\begin{aligned} & 1 \\ & 2 \end{aligned}$			

Notes:
For the required connection cable, see page 13/162

SIRIUS 3RK3 Modular Safety System

Accessories

Selection and ordering data

Overview

More information

Technical specifications, see
https://support. industry.siemens.com/cs/ww/en/ps/21192/td
Programming and Operating Manual, see
https://support.industry.siemens.com/cs/ww/en/view/109444445.
SIRIUS Safety ES is the engineering software for the configuration, startup and diagnostics of the 3RK3 Modular Safety System and 3SK2 safety relays. The software combines the configuring of the hardware, the parameterization of the safety functions, and the testing and diagnostics of the safety system.

Efficient engineering with three program versions

The SIRIUS Safety ES software program is available in three versions which differ in their user-friendliness, scope of functions and price.

SIRIUS Safety ES	Basic	Standard	Premium
Access via the local interface on the device	\checkmark	\checkmark	\checkmark
Parameter assignment	\checkmark	\checkmark	\checkmark
Operating	\checkmark	\checkmark	\checkmark
Diagnostics	\checkmark	\checkmark	\checkmark
Test	--	\checkmark	\checkmark
Integrated graphics editor	\checkmark	\checkmark	\checkmark
Importing/exporting parameters	--	\checkmark	\checkmark
Comparison functions	--	\checkmark	\checkmark
Comfort functions Terminal designator Work on sub-diagrams	--	\checkmark	\checkmark
Standard-compliant printout according to EN ISO 7200	--	\checkmark	\checkmark
Downloading parameterization via PROFIBUS	--	\checkmark	\checkmark
Online diagnostics using PROFIBUS	--	\checkmark	\checkmark
Creating, importing and exporting macros	--	--	\checkmark
Function available Function not available	--	\checkmark	

Additional functions

Language selection
The program interface language can be switched during use between German, English and French

Help function

A context-sensitive help function provides useful assistance with questions concerning the use of the program

Consistency check

A consistency check provides clear information about function assignment errors and users are taken directly to errors when the corresponding message is clicked on. Checks are carried out automatically when a project is saved and during the configuration test, but they can also be initiated manually.
Lists
Lists of symbols and cross-references can be issued for effective processing of the project file

Standard-compliant printouts

The programs of the SIRIUS ES software family make machine documentation far easier. They enable parameterization printouts according to EN ISO 7200. The elements to be printed are easy to select and group as required.

Hardware configuration

The device configuration of the 3RK3 or 3SK2 systems is defined in the configuration dialog. The available modules are simply selected from the clearly laid out hardware catalog and positioned in the workspace. Depending on the device system used (3RK3 or 3SK2), only the permitted devices are shown in the hardware catalog in each case. In addition, in the case of the 3RK3, the quantity framework on the AS-i bus can be determined online or configured manually from the AS-i library. For each module, it is optionally possible to issue an equipment ID which is shown in the logic diagram for identification of the inputs and outputs.

Definition of the hardware layout
Graphic parameterizing of the safety logic via drag \& drop
The functionality of the safety logic is laid down with a graphics editor designed for intuitive operation. Safe monitoring functions (EMERGENCY STOP, non-contact protective devices/light arrays, protective doors, etc.), output functions and logic functions (AND/OR operations, counting function, time functions, etc.), non-safety-related input/output functions, device status functions and control functions can be dragged from the extensive functions catalog onto the work interface by drag \& drop. Depending on the version, each function has several input and output connecting points through which the functions can be interconnected by simple mouse clicks. Double-clicking on a function symbol opens the related features dialog window in which all the parameters can be displayed and configured: Scope of the function's inputs and outputs, configuring the channel type (single-/two-channel, NC contact/NO contact), activating crossover detection, defining start options, assigning the hardware inputs and outputs, etc. Of course each function can be issued with an individual name so that e.g. the position of a safety switch in the plant can be documented.

SIRIUS 3RK and 3SK Safety Software

SIRIUS Safety ES

The safety logic can be divided into several diagrams in order to enable structured processing of the entire plant．The user can freely position the functions on a quasi infinitely large drawing board，whereby the connecting lines are drawn automatically． If there is not enough space，more pages are automatically added to the diagram in horizontal or vertical direction．Connect－ ing lines extending over several pages are automatically issued with cross－references during print－out．If required in the interest of clarity，the user can divide a connecting line manually into two segments，whereby the mutual reference is marked by reference arrows．For further documentation，freely compilable comment texts can be placed at any point in the diagram．Every point in the logic diagram can be processed with ease by dragging and zooming．
Every project can be saved as a file and be password－protected from unauthorized access．

Processing the safety functions in the graphics editor

AS－Interface

Evaluation of the AS－i slaves connected to the AS－i bus is also parameterized using the tried and tested method described above．
In order to be able to use the AS－i functionalities，a 3RK3 Advanced central unit or 3RK3 ASIsafe central unit （basic／extended）must be used．

User prompting during startup and maintenance

To start up the relevant safety system，the created project file is uploaded to the device．There are two ways of doing this：
－Connect the USB interface of the PC to the device using an appropriate connection cable．
－Use the DP interface to download the parameterization via any PROFIBUS node．

Access to the device can be restricted using a password concept that includes different protection levels．
After the project is loaded，the user switches the device by means of the software from configuring mode to test mode in which the safety functions can be tested．
Activating the diagnostics shows the status of the individual functions in the graphic logic diagram by means of different colors and symbols．In addition，more detailed information about each function element can be displayed in the logic diagram For the purpose of testing the logic diagram，it is also possible to manually overwrite the signal state of each function element （＂forcing＂）．
If the test is completed successfully，the user releases the configuration and switches the device to protection mode， in which case＂forcing＂is automatically deactivated
Service personnel can activate the graphic diagnostics in protection mode as well．The I\＆M（Identification \＆Maintenance） data saved in the device facilitate maintenance．

Benefits

－Convenient parameterization，operation，monitoring and testing by means of a user－friendly and clear－cut user interface
－Reliable diagnostic tool
－All functions，such as safety and logic functions，are available as modules，and are easy to link to one another
－Automatic creation of comprehensive documentation of safety functions

SIRIUS 3RK and 3SK Safety Software

SIRIUS Safety ES

Selection and ordering data

SIRIUS Safety ES parameterization, start-up and diagnostics software

- Delivered without PC cable

| Version | SD Article No. | Price
 per PU | PU
 (UNIT,
 SET, M) |
| :--- | :---: | :---: | :---: | :---: |

SIRIUS Safety ES Basic

Floating license for one user
Engineering software in limited-function version for diagnostics purposes,
software and documentation on CD,
3 languages (German/English/French), communication via system interface

- License key on USB flash drive, Class A

2 3ZS1316-4CC10-0YA5 $\quad 1 \quad 1$ unit

- License key download, Class A

3ZS1316-4CC10-0YA5
SIRIUS Safety ES Standard

Floating license for one user
Engineering software,
software and documentation on CD,
3 languages (German/English/French),
communication via system interface

- License key on USB flash drive, Class A

3ZS1316-5CC10-0YA5	1	1 unit
37S1316-5CE10-0YB5		

- License key download, Class A

3ZS1316-5CC10-0YA5

SIRIUS Safety ES Premium

Floating license for one user

Engineering software
software and documentation on CD,
3 languages (German/English/French),
communication via PROFIBUS or system interface
online diagnostics via PROFIBUS,
creating, importing and exporting macros

- License key on USB flash drive, Class A

5 3ZS1316-6CC10-0YA5
unit

- License key download, Class A

3ZS1316-6CE10-0YB5

1 unit
3ZS1316-6CC10-0YA5
Notes:
PC cable ordered separately, see Accessories page 13/164. For a description of the software versions, see page 14/22.

Accessories

Limit Switches and Safety

Communication

contents

Introduction	
AS-Interface	$14 / 3-14 / 12$
IO-Link	$14 / 13-14 / 17$

AS-Interface

Introduction

Communication overview 14/18
System components 14/19
AS-Interface specification

- Specification V3.0	14/20
AS-i Pow	$14 / 21$

- AS-i Power24V 14/21

ASIsafe

Introduction	$14 / 22-14 / 23$
AS-Interface safety monitors	$14 / 24$
AS-Interface safety modules	$14 / 25-14 / 27$

Masters

Masters for SIMATIC S7

- CM 1243-2	$14 / 28-14 / 29$
- CP 343-2P/CP 343-2	$14 / 30-14 / 31$

Masters for SIMATIC ET 200

- CM AS-i Master ST for SIMATIC ET 200SP $\quad 14 / 32-14 / 35$
- F-CM AS-i Safety ST for SIMATIC ET 200SP $14 / 36$ - 14/38

Routers

DP/AS-i Link Advanced $\quad 14 / 39$ - 14/42
DP/AS-Interface Link 20E $\quad 14 / 43-14 / 45$
IE/AS-i Link PN IO $14 / 46$ - 14/49

Slaves

I/O modules for use in the field, high degree of protection

- Digital I/O modules, IP67 - Introduction	$14 / 50$
- Digital I/O modules, IP67 - K60	$14 / 51-14 / 52$
- Digital I/O modules, IP68/IP69K - K60R	$14 / 53-14 / 55$
- Digital I/O modules, IP67 - K45	$14 / 56-14 / 57$
- Digital I/O modules, IP67 - K20	$14 / 58-14 / 59$
- Analog I/O modules, IP67 - K60	$14 / 60-14 / 62$

I/O modules for use in the control cabinet

- Introduction	$14 / 63$
- SlimLine Compact	$14 / 64-14 / 67$
- F90 module	$14 / 68$
- Flat module	$14 / 69$
Modules with special functions	$14 / 70$
- Counter modules	$14 / 71$
- Ground-fault detection modules	$14 / 72$

[^134]
Communication

contents (cont.)

Power supply units and data decoupling modules

AS-Interface power supply units 14/73-14/74
30 V power supply units 14/75-14/76
S22.5 data decoupling modules 14/77-14/78

Data decoupling modules for S7-1200

- DCM 1271 data decoupling module 14/79-14/81

Transmission media
AS-Interface shaped cable 14/82
System components and accessories

Repeaters	$14 / 83$
Extension plugs	$14 / 84$
Addressing units	$14 / 85-14 / 86$
Analyzer	$14 / 87-14 / 90$
Miscellaneous accessories	$14 / 91-14 / 92$

Communication

AS-Interface

Introduction

Overview

More information

Homepage, see www.siemens.com/as-interface

AS-Interface

AS-Interface - the smart communication standard for universal connection of the field level to the control system

The AS-Interface (AS-i) - the Actuator-Sensor-Interface, to be more precise - is a smart bus system for the field level that connects all the sensors and actuators in the field to the higherlevel control system more simply, flexibly and efficiently than any other.

The structure of a complex automation system is not always clear at first glance. The field level in particular, with its large numbers of devices with real-time requirements, needs a clear structure.
That is exactly what the AS-i fieldbus delivers: Via a simple two-wire cable - the yellow AS-i cable - in an AS-i network up to 62 bus nodes can be connected to the AS-i master and simultaneously supplied with power. The standard here is robust data transmission in a rugged environment with a high degree of protection for the AS-Interface.

Industry Mall, see www.siemens.com/product?as-interface

\section*{AS-i = simple!
 - Only one cable for data and energy
 - Time-saving assembly/installation
 - Engineering in the TIA Portal
 - User-friendly maintenance
 | AS-i = flexible! | AS-i = efficient! |
| :--- | :--- |
| - Flexible topologies | - User-friendly
 addressing |
| - Open standard | - Fast device
 replacement
 - Expandability
 - Safety engineering
 Ruggedness and
 stability
 - Device and
 network diagnostics
 Ic01_00210 |}

AS-i from Siemens has everything in its favor

- Complete AS-i product range for bus-based standard and safety technology from a single source
- System-wide integration of the AS-i devices into SIMATIC, SINUMERIK and the TIA Portal engineering framework
- Integration of ASIsafe applications into SIMATIC F controller safety programming
- Central configuration of standard and safety technology in the TIA Portal and in STEP7 Classic - just one engineering framework for controller, AS-i master and safety
- Quick diagnostics of master and slave components via web browser, HMI or TIA Portal
- Planning, calculation and verification of the whole safety chain based on AS-i Safety in the Safety Evaluation Tool (TÜV-approved)
- Integration of lower-level AS-i networks into the PCS 7 process control system
- Global spare parts logistics, consulting and service

		Article No.	Page
ASIsafe			
	ASIsafe enables integration of safety-related components in an AS-Interface network, for example: - EMERGENCY STOP pushbuttons - Protective door switches - Cable-operated switches - Other AS-i safety sensors Your advantage: The simple wiring of AS-Interface is maintained.		
	AS-i Master and AS-i Safety module for ET 200SP	6ES7	From 14/32
	The CM AS-i Master ST and F-CM AS-i Safety ST modules are plugged into an ET 200SP configuration and connect an AS-i network, including safety-related inputs and outputs, with the controller.		
	- Single, double and multiple masters possible		
	- Per CM AS-i Master ST module up to 496 DI / 496 DQ / 124 AI / 124 AQ possible		
	- Per F-CM AS-i Safety ST module up to 31 safe input signals (two-channel) / 16 safe output channels possible - Configuring with TIA Portal or STEP 7 Classic		
AS-i Master and AS-i Safety module	- Plant-wide safety programming of the F-CPU via SIMATIC Distributed Safety/ Safety Advanced/F systems		
	- Integrated diagnostics		
	- No other programming tools required		
	Your advantage: Modular connection of fail-safe AS-i networks with system-wide programming in SIMATIC and SINUMERIK controllers.		

Communication

AS-Interface

Introduction

ASIsafe (continued)
Brema
3RK3
Modular Safety System

SIRIUS 3RK3 Modular Safety System

Supplementing the service-proven concept of safety monitors, the 3RK3 Modular Safety System (MSS) offers, for example, the following functions for ASIsafe:

- Up to 50 enabling circuits including muting function
- Expandable fail-safe and non-fail-safe inputs/outputs
- Control of up to 12 ASIsafe outputs or 12 fail-safe independent switch-off groups
- Memory module for parameters, e.g. for device replacement
- Optional PROFIBUS interface for diagnostics and parameterization
- SIRIUS Safety ES, the intuitive graphic parameterization and diagnostics software
- AS-i Power24V capability

Your advantage: Easy to configure safety functions up to Category 4, PL e, SIL 3.

Safety monitor

K45F

SC17.5F

S45F SlimLine module, safe AS-i output

EMERGENCY STOP mushroom pushbutton in enclosure

SIRIUS 3SF1 mechanical safety switches for AS-Interface

- ASIsafe electronics integrated into the enclosure
- Available with separate actuator, with or without tumbler

Your advantage: Conventional wiring of safety functions no longer required.

SIRIUS ACT EMERGENCY STOP mushroom pushbuttons for AS-Interface

- Degree of protection IP66/IP67/IP69K
- Metal or plastic version
- Connection of an EMERGENCY STOP device according to EN ISO 13850 to AS-Interface
- Safety-related AS-Interface module is snapped onto the commanding device from behind
- Can be used up to PL e, SIL 3

Your advantage: Easy direct connection of control elements to ASIsafe.

Communication

AS-Interface

Introduction

Communication

AS-Interface

Introduction

Communication

AS-Interface

Introduction

3RT203.-1 1 BB30-0CC0

SIRIUS 3RA2712 function module for AS-Interface

3RA61 compact starter

SIRIUS M200D motor starter

Contactors and contactor assemblies

SIRIUS 3RT contactors 3-pole
STRIUS 3RA23 reversing contactor assemblies
STRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting

- Notable reduction of wiring in the control circuit
- Integrated mechanical interlocking
- Prevention of wiring errors in the main circuit

SIRIUS 3RA27 function modules for AS-Interface

- Connection of 3RT20 power contactors with communication capability, 3RA23 reversing contactor assemblies, and 3RA24 contactor assemblies for star-delta (wye-delta) starting to AS-Interface
- Reduction of control current wiring through plug-in design and integrated monitoring of circuit breaker/motor starter protector and contactor
- Reduced space requirement in the control cabinet through fewer digital inputs and outputs in the control system
- Easy configuration through operation of feeders instead of individual contactors
- Enhanced operational reliability and quick wiring thanks to spring-loaded terminals
- Small number of variants through use of identical modules for size S00 to S3 contactors Your advantage: Shortening of mounting and startup times.
Motor starters for use in the control cabinet

SIRIUS 3RA6 compact starters	3RA6
3RA61 direct-on-line starters, 3RA62 reversing starters	3RA6

- Degree of protection IP20
- Very compact load feeders with the integrated functionality of an electronic overload relay
- As direct-on line or reversing starters for motors up to $30 \mathrm{HP} / 600 \mathrm{~V}$
- Easy expansion into a communication-capable load feeder using AS-i add-on modules
- On-site safe disconnection also possible using AS-i add-on modules
- Standardized integration of the loads in higher-level control systems using AS-i

Your advantage: Compact solution with minimum wiring outlay for actuating direct-on-line and reversing starters in the control cabinet.

Motor starters for use in the field, high degree of protection

SIRIUS M200D motor starters for AS-Interface

- High degree of protection IP65 for cabinet-free design
- As direct-on-line or reversing starters for motors up to $10 \mathrm{HP} / 600 \mathrm{~V}$
- Mechanical or electronic switching for high switching frequencies
- Optional with manual operation and brake control
- Expanded diagnostics and parameterization possible through AS-Interface
- Easy and consistent integration in STEP 7 through AS-Interface

Your advantage: The correct solution for all simple applications in conveyor systems with spatially distributed drives.

See Catalog
Section 2
3RT20
3RA23
3RA24

3RA2712
See Catalog
Section 2

See Catalog
Section 4

Communication

AS-Interface

Introduction

SINAMICS G110M frequency inverter

SINAMICS G110D frequency inverter

AS-Interface module

Signaling column

AS-Interface adapter element

SINAMICS G110M distributed inverters

 Wide power range from 0.37 to 4 kW- Preconfigured with SIMOGEAR
- Rugged, with IP65/IP66 degree of protection, up to $55^{\circ} \mathrm{C}$ ambient temperature
- Local commissioning via DIP switch, standard USB interface and potentiometer or Intelligent Operator Panel (IOP)
- Integrated safety functions (STO locally via F-DI or via PROFIsafe)
- Integrated, specific software functionality for conveyor systems
- Quick stop function for fast reaction times to sensors
- Limit switch functionality, e.g. for rotary table, corner transfer unit

Your advantage: The simple solution for compact drives with safety requirements in conveyor technology

SINAMICS G110D distributed inverters 6SL3511
 High degree of protection IP65 for cabinet-free installation

- Wide power range from 0.75 to 7.5 kW ($1.0-10 \mathrm{HP}$)
- Easy commissioning and maintenance thanks to standardized plug-in connections for bus, energy and I/Os
- Expanded diagnostics and parameterization through AS-Interface
- Optional maintenance switch
- Optional manual local operation
- Same plugs used as for the M200D motor starter

Your advantage: Easy, consistent implementation of distributed system concepts thanks to scaling of SINAMICS G110D, SINAMICS G120D and SIRIUS M200D products.

Commanding and signaling devices

SIRIUS ACT pushbuttons and indicator lights for AS-Interface

- Modular configuration based on individual specifications, or as enclosure with standard components
- AS-Interface modules for base mounting or mounting in enclosure
- Up to six command points for standard signals or EMERGENCY STOP
- Degree of protection IP66/IP67/IP69K
- Metal or plastic version
- Indicator lights with integrated LED
- Any change of equipment possible even after installation

Your advantage: Complete operating system with simple AS-Interface connection for your plant.
SIRIUS 8WD4 signaling columns

- Many optical and acoustic elements can be combined
- Up to four signaling elements can be connected using an AS-Interface adapter element
- with integrated LEDs or with BA 15d base for LEDs/incandescent lamps
- for fastening to connection elements (screw or spring-loaded terminals)
- 24 V DC, diameters 50 mm and 70 mm
- Connection with bayonet mechanism

Your advantage: Signaling columns for monitoring production sequences and for visual or acoustic warnings in emergency situations, with easy AS-Interface connection.

Communication

AS-Interface

Introduction

		Article No.	Page
Power supply units and data decoupling modules			
	AS-Interface power supply units generate a controlled direct voltage of 30 V DC with high stability and low residual ripple in conjunction with data decoupling. They are an integral component of the AS-Interface network and enable the simultaneous transmission of data and energy on one cable. In conjunction with data decoupling modules, AS-Interface can also be operated with standard power supply units.		
$\text { IP20, } 3 \text { A }$ $\text { IP20, } 8 \text { A }$	AS-Interface power supply units - With wide performance spectrum from 2.6 to 8 A - Degree of protection IP20 - Separation of data and energy by means of the integrated data decoupling - UL/CSA approval means the power supplies can be used worldwide, 2.6 A version with output power restricted to max. 100 W (for Class 2 circuits in accordance with NEC) - Certified for global use - Integrated ground-fault and overload detection save the need for additional components and make applications reliable - Diagnostics memory, remote signaling and remote RESET allow fast detection of faults in the system - Ultra-wide input range enables single- and two-phase applications (8 A version) Your advantage: Optimum performance for each application.	3RX9	14/73

PSN130S
30 V DC, 8 A

SITOP PSU100M, 24 V DC, 20 A

S22.5 data decoupling module

DCM 1271 data decoupling module Transmission media

30 V power supply units

Standard 30 V power supply units without data decoupling
From 14/75

- Power spectrum 3 A, 4 A and 8 A
- Overload and short-circuit proof in every performance class
- Diagnostics: With output voltage > 26.5 V DC LED and signaling contact for output voltage 30 V O.K.
- Primary-side connection to 120/230 V AC (single-phase) with automatic range selection Your advantage: Economical alternatives in conjunction with data decoupling modules while making full use of the maximum AS-Interface cable length.

24 V power supply units

Standard 24 V power supply units (SITOP), without data decoupling

- Power spectrum 2.5 to 40 A
- Overload and short-circuit proof in every performance class
- Add-on modules for signaling, redundancy, buffering and UPS
- Single-phase, two-phase and three-phase versions

Your advantage: Economical alternatives in conjunction with data decoupling modules.

S22.5 data decoupling modules

3RX9

- Degree of protection IP20, narrow design 22.5 mm
- Supply of several AS-i networks with a single power supply unit
- Single and double data decoupling
- Operation with 24 V DC or 30 V DC

Your advantage: Cost-effective installation of AS-i networks in conjunction with standard power supply units.

DCM 1271 data decoupling module for SIMATIC S7-1200

3RK7	From 14/79

- Simple data decoupling in IP20 design
- Supply of several AS-i networks with a single power supply unit
- Operation with 24 V DC or 30 V DC

Your advantage: Cost-effective installation of AS-i networks in conjunction with standard power supply units in the design of a SIMATIC S7-1200 module.

AS-Interface shaped cable for connection of network stations

AS-Interface shaped cable

- No polarity reversal thanks to trapezoidal shape
- Cables made of optimized material for different operating conditions
- Special version according to UL CLASS 2 available

Your advantage: Fast replacement and connection to AS-Interface by piercing method.

Introduction

	Article No.	Nage

Communication

AS-Interface
Introduction

		Article No.	Page
Diagnostics			
	The following diagnostics block with visualization via HMI or web browser for AS-Interface can be downloaded free of charge in the Industry Online Support Portal: Diagnostics blocks - For CM AS-i Master ST and F-CM AS-i Safety ST in ET 200SP, see https://support.industry.siemens.com/cs/ww/en/view/109479103 - For other Siemens AS-i master and links, see https://support.industry.siemens.com/cs/ww/en/view/50897766	--	
Diagnostics for AS-Interface via HMI panels	Your advantage: Detailed diagnostic display for fast fault analysis and short downtimes for easy integration into STEP 7 projects.		
Software			
AS-Interface block library for PCS 7	AS-Interface block library for SIMATIC PCS 7 - Engineering and runtime software - Easy connection of AS-Interface to PCS 7 - Engineering work reduced to positioning and connecting the blocks in the CFC - No additional configuring steps required for connection to the PCS 7 Maintenance Station, diagnostics for the AS-i system optimally guaranteed - See Support Site for more information https://support.industry.siemens.com/cs/document/109759605 Your advantage: Easy connection of AS-Interface to PCS 7, little engineering and configuration.		

Overview

More information

Homepage, see www.siemens.com/io-link	For important topics at a glance, see
https://support.industry. siemens.com/cs/ww/en/view/109737170	

Engineering and visualization

IO-Link - more than just another interface

IO-Link is an open communication standard for sensors and actuators - defined by the IO-Link Consortium.
IO-Link is a smart concept for the uniform connection of actuators and sensors to the control level by means of a low-cost point-to-point connection.

As an open interface, IO-Link can be integrated into all standard fieldbus and automation systems.
The IO-Link communication standard below fieldbus level enables central error diagnostics and localization down to actuator/sensor level, and facilitates both startup and maintenance by allowing parameter data to be dynamically changed directly from the application.
The increasing intelligence of field devices and their integration into automation as a whole now allows data to be accessed right down to the lowest field level. The result: greater plant availability and less engineering work.

Transparency in the process through IO-Link

High system availability and data transparency are market requirements that must also be met by the connecting of innovative control technology to a control system. A systematic diagnostics concept and efficient handling of parameter data are required for this purpose in automation.
With the aid of the IO-Link communication standard, a communication link is established between switchgear and controller, and this allows data to be exchanged efficiently. Based on a standard cable, it is therefore possible to integrate parameter, process and diagnostic data and measured values into the plant automation with ease. For example, the available diagnostic data allow potential errors to be detected quickly, thus avoiding lengthy plant downtimes.
As a consequence of their basic function, such as overload protection (SIRIUS 3RB24 electronic overload relays for IO-Link), many controls have measured values. The availability of these via IO-Link now allows conclusions to be drawn at an early stage concerning wear and tear in the application.
At the same time the option of parameterizing via IO-Link supports the device not just when parameters concerning operating time are changed, but also when the device is replaced. In the case of a spare part, for example, the parameters can be quickly transmitted to a new device via the communication system.

CM 8xIO-Link for SIMATIC S7-1500

SM 1278 4xIO-Link for SIMATIC S7-1200

CM 4xIO-Link for ET 200SP

IO-Link master module for ET 200pro

	Article No.	Page
The IO-Link master modules form the heart of the IO-Link system.		
IO-Link master module for SIMATIC S7-1500	Catalog ST 70	
CM 8xIO-Link communication module	6ES7	$14 / 101$
- Communication module for connecting up to 8 IO-Link devices (three-wire connections) or		
8 standard sensors according to IO-Link specification V1.1		
- Can be used directly downstream of an S7-1500 CPU or distributed in ET 200MP via		
PROFINET or PROFIBUS		
- Simple replacement of sensors/actuators without time-consuming parameterization		
- Data transmission rates COM1 (4.8 kBd), COM2 (38.4 kBd), COM3 (230.4 kBd)		
Your advantage: Easy connection of IO-Link connections to the SIMATIC S7-1500.		

IO-Link master module for SIMATIC S7-1200

SM 1278 4xIO-Link master

- IO-Link master as serial communication module with four ports (channels) according to IO-Link specification V1.1
- Easy device exchange with automatic data recovery without engineering for IO-Link device
- Up to four IO-Link devices (3-wire connections) can be connected to each IO-Link master module
- Data transmission rates COM1 (4.8 kBd), COM2 (38.4 kBd), COM3 (230.4 kBd), automatic adjustment to the data transmission rate supported by the device
Your advantage: Easy connection of IO-Link connections to the SIMATIC S7-1200.

IO-Link master modules for ET 200SP

CM 4xIO-Link communication module

- IO-Link master as serial communication module with four ports (channels) according to IO-Link specification V1.1
- Module replacement with automatic data recovery without engineering for IO-Link master and device
- Up to four IO-Link devices (3-wire connections) can be connected to each IO-Link master module.
- Data transmission rates COM1 (4.8 kBd), COM2 (38.4 kBd), COM3 (230.4 kBd), automatic adjustment to the data transmission rate supported by the device
Your advantage: Easy connection of IO-Link connections to distributed I/Os

IO-Link master module for ET 200pro

4 IO-Link HF electronic module

- IO-Link master as serial communication module with four ports (channels) according to IO-Link specification V1.1
- Easy device exchange with automatic data recovery without engineering for IO-Link device
- Up to four IO-Link devices can be connected to each IO-Link master module
- Support of IO-Link port class B
- Data transmission rates COM1 (4.8 kBd), COM2 (38.4 kBd), COM3 (230.4 kBd), automatic adjustment to the data transmission rate supported by the device
Your advantage: Easy connection of sensors and actuators to the I/Os directly in the machine's field area.

IO-Link master module for ET 200eco PN

ET 200eco PN IO-Link master

- 4 IO-L + $8 \mathrm{DI}+4 \mathrm{DO} 24 \mathrm{~V}$ DC/1.3 A
- Up to four IO-Link devices (IO-Link port class A) can be connected
- Up to eight standard sensors (8 DI) and up to four standard actuators (4 DO) can be additionally connected
Enclosure width 60 mm
- 4 IO-L
- Up to four IO-Link devices (IO-Link port class B) can be connected
- Enclosure width 30 mm

Your advantage: Easy connection of sensors and actuators to the I/Os directly in the machine's field area.

IO-Link master module for ET 200AL

6ES7
From 14/106

CM IO-Link communication module

- IO-Link master as serial communication module with four ports (channels) according to IO-Link specification V1.1
- Easy device exchange with automatic data recovery without engineering for IO-Link device
- Up to four IO-Link devices can be connected to each IO-Link master module
- Support of IO-Link port class B
- Data transmission rates COM1 (4.8 kBd), COM2 $(38.4 \mathrm{kBd})$, COM3 $(230.4 \mathrm{kBd})$, automatic adjustment to the data transmission rate supported by the device
Your advantage: Easy connection of sensors and actuators to the I/Os directly in the machine's field area.

		Article No.	Page
Input modules			
	IO-Link input modules make full use of the potential of IO-Link and are a more attractive solution economically than a direct sensor connection.		
\square IO-Link module K20 with eight digital inputs	K20 IO-Link modules - Four or eight digital inputs - Degree of protection IP65/IP67 - Connection sockets in M8/M12 - Contacting protected against polarity reversal Your advantage: Reduction of mounting and startup times by up to 40%.	3RK5	14/107
Industrial controls			
	Starters and contactor assemblies for direct-on-line, reversing and star-delta (wye-delta) starting can be connected to IO-Link through function modules without any additional, complicated wiring.		
	Contactors and contactor assemblies		
SIRIUS contactor 3RT201.-1B...-0CC0	SIRIUS 3RT contactors, 3-pole SIRIUS 3RA23 reversing contactor assemblies SIRIUS 3RA24 contactor assemblies for star-delta (wye-delta) starting - Notable reduction of wiring in the control circuit - Integrated mechanical interlocking - Prevention of wiring errors in the main circuit	$\begin{aligned} & \text { 3RT20 } \\ & \text { 3RA23 } \\ & \text { 3RA24 } \end{aligned}$	See Catalog Section 2
SIRIUS 3RA2711 function module for IO-Link	SIRIUS 3RA27 function modules - Connection of 3RT20 power contactors with communication capability, 3RA23 reversing contactor assemblies, and 3RA24 contactor assemblies for star-delta (wye-delta) starting to IO-Link - Reduction of control current wiring through plug-in technology, feeder groups and integrated monitoring of circuit breaker/motor starter protector and contactor - Reduced space requirement in the control cabinet through fewer digital inputs and outputs in the control system - Simple user program through operation of feeders instead of individual contactors - Enhanced operational reliability and quick wiring thanks to spring-loaded terminals - Can be flexibly combined with many automation solutions using the open, standardized IO-Link wiring system - Small number of variants through use of identical modules for size S00 to S3 contactors Your advantage: Shortening of mounting and startup times	3RA2711	See Catalog Section 2
SIRIUS 3RB24 overload	Overload relays SIRIUS 3RB24 electronic overload relays for IO-Link for high-feature applications - Diagnostics and current value transmission via IO-Link - Current measuring modules (3RB29) for current values from 0.3 to 630 A - Controlling direct-on-line, reversing and wye-delta starters via IO-Link in conjunction with contactors - Full motor protection through PTC connection Your advantage: Communication-capable overload relay enables remote diagnostics and preventative maintenance.	3RB24	See Catalog Section 3
SIRIUS 3RA64 compact starter	Motor starters for use in the control cabinet SIRIUS 3RA64, 3RA65 compact starters for IO-Link - Integrated functionality of a circuit breaker, contactor and electronic overload relay and various functions of optional mountable accessories - Can be used for direct starting of standard induction motors up to 32 A (approx. $30 \mathrm{HP} / 600 \mathrm{~V}$) - Compact design offers enormous savings in space and wiring in the control cabinet - Low variance of devices thanks to wide setting ranges for the rated current and wide voltage ranges Your advantage: The diagnostics data of the process collected by the 3RA6 compact starter, e.g. short circuit, end of service life, limit position, etc., are not only indicated on the compact starter itself but also transmitted to the higher-level control system through IO-Link.	$\begin{aligned} & \hline \text { 3RA6 } \\ & \text { 3RA64 } \\ & \text { 3RA65 } \end{aligned}$	See Catalog Section 4

Communication

IO-Link

IO-Link

Communication

AS-Interface Introduction

Communication overview

Overview

AS-Interface is an open, international standard according to IEC/EN 62026-2 for process and field communication. Leading manufacturers of actuators and sensors all over the world support the AS-Interface. Interested companies are provided with the electrical and mechanical specifications by the AS-Interface Association.

AS-Interface is a single master system. For automation systems from Siemens, there are communications processors (CPs), communication modules (CMs) and routers (links) that control the process or field communication as masters, and actuators and sensors that are activated as AS-Interface slaves.

AS-Interface in the SIMATIC NET communications landscape

Benefits

An important characteristic of the AS-Interface technology is the use of a shared two-wire cable for data transmission and distribution of auxiliary power to the sensors and actuators. An AS-i power supply unit or alternatively a standard power supply unit that meets the requirements of the AS-Interface transmission method and has an external AS-i data decoupling module is used for the distribution of auxiliary power. The AS-Interface cable used for the wiring is mechanically coded and hence protected against polarity reversal and can be easily contacted by the insulation piercing method.
Elaborately wired control cables in the control cabinet and marshaling racks can be replaced by AS-Interface.

The AS-Interface cable can be connected to any points thanks to a specially developed cable and connection by the insulation piercing method.
With this concept you become extremely flexible and achieve high savings.

Application

I/O data exchange

The AS-i master automatically transfers the inputs and outputs between the controller and the digital and analog AS-Interface slaves. Slave diagnostics information is forwarded to the control system when required.

The latest AS-Interface masters according to the AS-Interface specification V3.0 support integrated analog value processing. This means that data exchange with analog AS-Interface slaves is just as easy as with digital slaves.

Command interface

In addition to I/O data exchange with binary and analog AS-Interface slaves, the AS-Interface masters can provide a number of other functions through the command interface.
Hence it is possible, for example, for slave addresses to be issued, parameter values transferred or configuration information read out from user programs.

Communication

AS-Interface Introduction

System components

Overview

To implement communication, the following components of a system installation are available:

- AS-i modules for central control units such as SIMATIC S7, ET 200M/ET 200SP distributed I/Os, or network transitions from PROFIBUS or PROFINET to AS-Interface
- AS-i power supply unit or alternatively a standard power supply unit in combination with an AS-i data decoupling module for the power supply to the slaves and sensors
- AS-Interface shaped cables
- Network components such as repeaters and extension plugs (cannot be used for AS-i Power24V)
- I/O modules (AS-i slaves) for connection of standard sensors/actuators
- Actuators and sensors with integrated AS-i slave
- Safe I/O modules (ASIsafe slaves) for transmitting safety-related data through AS-Interface
- Addressing device for setting slave addresses during commissioning

Example of a configuration with the system components
Features

Standard	IEC/EN 62026-2
Topology	Line, star or tree structure (same as electrical wiring)
Transmission medium	Unshielded twisted pair $\left(2 \times 1.5 \mathrm{~mm}^{2}\right)$ for data and auxiliary power
Connection methods	Contacting of the AS-Interface cable by insulation piercing method
Maximum cable length	- 100 m without repeater
	- 200 m with extension plug
	- 300 m with two repeaters in series connection
	e 600 m with extension plugs and two repeaters
parallel swithed	
	Longer cable lengths also possible through
	parallel switching of more repeaters.

Maximum cycle time	- 5 ms in maximum configuration with 31 standard addresses - 10 ms in maximum configuration with 62 A/B addresses - Profile-specific for slaves with extended data, e.g. analog slaves
Number of stations per AS-Interface line	- Up to 62 slaves (A/B addressing) - Integrated analog value transmission
Number of binary sensors and actuators	max. 496 DI / 496 DQ
Access control	- Cyclic polling master/slave procedure - Cyclic data acceptance from host (PLC, PC)
Error safeguard	Identification and repetition of faulty message frames

AS-Interface Introduction

AS-Interface specification > Specification V3.0

Overview

Scope of AS-Interface specification V3.0

Maximum number of slaves		Number of digital inputs	Number of digital outputs
Digital	Analog	ASIsafe	DI

Basic data

- AS-Interface specification 3.0 describes a fieldbus system with an AS-i master and up to 62 AS-i slaves.
- Every AS-i slave with standard addressing occupies one AS-i address (1...31).
- Slaves with extended addressing divide an AS-i address into an A address (1A...31A) and a B address (1B...31B). Up to 62 A/B slaves can be connected accordingly to one AS-Interface network.
- Mixed operation of slaves with standard addressing and extended addressing (A / B slaves) is possible without difficulty. The AS-i master identifies automatically which type of slave is connected, so no special adjustments are required of the user.
- One digital AS-i slave typically has up to four digital inputs and four digital outputs.
- Transmission of the digital input/output data requires max. 5 ms cycle time for 31 slaves; for further values, see "Communication cycle".
- Integrated analog value transmission permits access to both analog values and digital values without the need for any special function blocks.

Communication cycle

Maximum cycle time (digital signals)

- 5 ms with 31 slaves
- 10 ms with 62 slaves
- Up to 20 ms for slaves with A/B address 4 DI / 4 DQ
- Up to 40 ms for slaves with A/B address $8 \mathrm{DI} / 8 \mathrm{DQ}$

Each address is queried in max. 5 ms cycle time. If two A / B slaves are operated on one basic address (e.g. 12A and 12B), a maximum of 10 ms will be required to update the data of both slaves.

Slaves with A/B addressing transmit max. 4 DI / 3 DQ in one cycle.

Slaves with A/B addressing and 4 DQ or 4 DI / 4 DQ transmit the output data in two consecutive cycles. The double transmission time of these outputs has no effect in typical applications. The transmission procedure is performed automatically by the AS-i master in accordance with AS-i specification V3.0. These slaves are identified in the selection data with addressing type A/B (spec. V3.0).

Slaves with a single A/B address and $8 \mathrm{DI} / 8 \mathrm{DQ}$ transmit the input and output data in four consecutive cycles. The transmission time of the inputs/outputs of these slaves increases accordingly. The transmission procedure is performed automatically by the AS-i master in accordance with AS-i specification V3.0.

The slaves offered by Siemens with 8 DI or 8 DI / 2 DQ use two AS-i addresses so that the time-consuming procedure is not needed and a fast data update is ensured.
All slave types can be mixed and used on a single AS-Interface network.

For more information, such as the addressing type used by the AS-interface slave (standard or A/B address), see the "Selection and ordering data" for the relevant slave.

More information

System Manual "AS-Interface", see https://support.industry.siemens.com/cs/ww/en/view/26250840

AS-Interface product range

AS-Interface products from Siemens use the current AS-Interface specification V3.0, which is standardized internationally as IEC/EN 62026-2.

The alternating pulse modulation developed more than 20 years ago for AS-Interface has proven to be a reliable transmission method with which the direct voltage supply for the bus modules and the connected sensors is provided on the standard two-wire line.

Multiple development stages were implemented to produce the proven-in-use system components with optimum EMC properties available today. The extensive product range with AS-Interface specification V3.0 undergoes constant innovation and is extremely cost-efficient, both to install and operate.
The bus cable can be retrofitted with repeaters of AS-Interface specification V3.0, and the modules function without any reciprocal interference. Master modules from Siemens enable ideal integration into the SIMATIC environment, in particular for the AS-Interface master of the ET 200SP distributed I/O system.
The underlying industrial requirements for the system concept are still applicable today: Numerous individual digital input and output signals are spatially distributed in the machine. Rather than having to install thick cable harnesses from the control cabinet to the sensors and actuators, smaller, more manageable AS-i modules are simply inserted in situ onto the bus cable in the IP67 enclosure, and the sensors and actuators connected with short M12 cables.

An additional AS-i module is installed in proximity to the next sensor to ensure that the length of the M12 cables is kept as short as possible. As analog signals are likewise transmitted without any problems, the AS-Interface also replaces the long, shielded analog cables.
Depending on requirements, the switching devices can also be connected to AS-i modules with terminal connection or conveniently used with the integrated AS-i connection. Motor controllers with digital and analog inputs and outputs are also offered with the current AS-Interface specification V3.0.
Safety signals are also transmitted simply and flexibly by the AS-Interface. The safety-related sensors for protective doors and EMERGENCY STOP buttons can be installed and retrofitted in any position.

The AS-i Safety functionality from Siemens has been continuously optimized and complies with the proven AS-Interface specification V3.0.
For industrial components which require greater transmission capacities, Siemens provide respective solutions with the suitable communication systems.
The AS-Interface system from Siemens continues to provide an ideal and consistent solution for a multitude of simple sensors and actuators, including safety technology and special applications.

Available masters with the latest AS-Interface specification V3.0

- CM AS-i Master ST, F-CM AS-i Safety ST (ET 200SP)
- CM 1243-2 (S7-1200)
- CP 343-2P / CP 343-2 (S7-300 / ET 200M)
- DP/AS-i Link Advanced, DP/AS-Interface Link 20E
- IE/AS-i Link PN IO

AS-Interface Introduction

Overview

More information

For a complete overview of AS-i Power24V-capable devices currently available from Siemens, see
https://support.industry.siemens.com/cs/ww/en/view/42806066 For details of AS-i Power24V, see "AS-Interface" System Manual, https://support.industry.siemens.com/cs/ww/en/view/26250840

AS-Interface data decoupling modules for AS-i Power24V Left: S22.5 data decoupling module,
Right: DCM 1271 data decoupling module for SIMATIC S7-1200
Parallel wiring frequently dominates, above all, in applications with very few I/Os. AS-Interface can, however, also replace extensive parallel wiring in small applications at a favorable price.

AS-i Power24V enables an already existing standard 24 V DC power supply unit to be used for the AS-i network.

Data and power in the standard AS-Interface network

One of the great advantages of AS-Interface is the ability to convey not only data, but also the power needed for the connected slaves and sensors over the same unshielded two-conductor cable. This is owed to the service-proven AS-Interface power supply units which provide integrated data decoupling as well as overload and short-circuit protection and integrated ground-fault monitoring.

AS-i Power24V

Instead of the AS-Interface power supply unit (with 30 V output voltage and integrated data decoupling) the AS-i cable is supplied via a data decoupling module from a 24 V standard power supply unit. The communication technology of AS-Interface works at the same high level of quality with an operating voltage of both 30 V DC and 24 V DC.

	Key data of AS-i Power24V
Number of slaves	Up to 62 slaves and up to 31 safe slaves
Topology	Any
Range	Up to 50 m
Components	- 24 V power supply unit with low residual ripple and
	limitation to max. 40 V
	- AS-i Power24V-capable data decoupling with integrated ground-fault detection
	- AS-i Power24V-capable masters, slaves and components

Requirements for operation of an AS-i Power24V network

- When 24 V power supply units are used, the maximum network range of 50 m must be observed to reach slaves and sensors with a sufficient level of voltage (at least 18 V).
- The power supply units must comply with the PELV (Protective Extra Low Voltage) or SELV (Safety Extra Low Voltage) standard, have a residual ripple of $<250 \mathrm{mVpp}$, and must limit the output voltage to a maximum of 40 V in the event of a fault. We recommend SITOP power supplies, see SITOP Catalog or KT10.1, https://support.industry.siemens.com/cs/ww/en/view/109745655.
- When used in conjunction with standard 24 V power supply units, each AS-Interface network requires AS-i Power24Vcapable data decoupling, see page 14/77 onwards.
- For reliable operation of an AS-i network with 24 V voltage, it is important that the masters, slaves and other components are approved for AS-i Power24V. AS-i Power24V-capable AS-i components can also be used without restriction in standard 30 V AS-i networks.
- Use of repeaters or extension plugs in AS-i Power24V networks is not permitted.

Benefits

In small control cabinets the AS-i power supply unit can be replaced by an AS-i data decoupling module that is connected to an existing 24 V power supply unit.

- The advantages of the AS-i communication system in terms of commissioning, maintenance and diagnostics can be fully exploited.
- If a double data decoupling module is used, two AS-i networks can be supplied.

Application

Configuration of an AS-i Power24V network

Configuration of an AS-i Power24V network with an AS-Interface DCM 1271 data decoupling module and S7-1200 (simple network)

Overview

More information

For further information and typical circuit diagrams on safety engineering, see https://support.industry.siemens.com/cs/ww/en/view/83150405

ASIsafe - Safety is included

ASIsafe enables the integration of safety-related components such as EMERGENCY STOP pushbuttons, protective door switches, cable-operated switches or other AS-i safety sensors in an AS-Interface network. These are fully compatible with the familiar AS-Interface components (masters, slaves, power supplies, repeaters, etc.) in accordance with IEC/EN 62026-2 and are operated in conjunction with them on the yellow AS-Interface cable.

Tested safety

- Protective door switches
- Cable-operated switches
- Other AS-i safety sensors

The transmission method for safety-related signals is released for applications up to PL e according to EN ISO 13849-1 and up to SIL 3 (IEC 61508/EN 62061).

Higher-level control

As usual, nodes on the AS-Interface bus are controlled in operation by the standard program of the higher-level SIMATIC (F) CPU or by a SINUMERIK control.

Configuring safety functions

In order to implement safe functions, the information from the safe and standard nodes must be combined logically and further parameters set. The configuration of the safety functions depends on which safety solution is being used:

- AS-i safety solution with F-CPU: In conjunction with the modular safety AS-i master, which is formed by combining the CM AS-i Master ST and F-CM AS-i Safety ST modules in an ET 200SP station, all safety functions and combinations are configured via STEP 7 and processed in the controller (F-CPU) by the fail-safe program.
- In the case of the AS-i safety solution with local evaluation by MSS: In conjunction with the Modular Safety System all safety functions and combinations are configured using the SIRIUS Safety ES software and processed in the MSS central unit.

AS-i safety solution with F-CPU

AS-Interface configuration with AS-i master modules in the ET 200SP

The AS-i communication modules in the ET 200SP facilitate the use of AS-Interface under fail-safe SIMATIC or SINUMERIK controllers.
The allocation of tasks is as follows:

- Acquisition of safety-related signals via safe input slaves on the AS-Interface bus. Further signals can be detected through other F-DI modules of the SIMATIC.
- Evaluation and processing of signals via the fail-safe SIMATIC or SINUMERIK control
- Reacting by means of safety output modules on the AS-Interface bus or other SIMATIC F-DQ modules

Simple combination of the CM AS-i Master ST and
F-CM AS-i Safety ST modules in one ET 200SP station results in a powerful, safety-oriented network transition between PROFINET (or PROFIBUS) and AS-Interface, which can be expanded further in a modular fashion with further I/O modules of the ET 200SP.
Using these design methods, it is possible to create configurations for virtually any application. Besides the single AS-i master, double, triple or generally multiple masters can be realized with or without fail-safe functionality.

AS-Interface: ASIsafe

Introduction

AS-i safety solution with local evaluation by MSS

AS-Interface design with 3RK3 Modular Safety System (MSS)

The local AS-i safety solution uses the 3RK3 Modular Safety System (MSS) for safety-related processing. In this case, one standard controller (i.e. no F-CPU) and one standard AS-i master are sufficient.

The allocation of tasks is as follows:

- Acquisition of safety-related signals via safe input slaves on the AS-Interface bus.
Further signals can be acquired via F-DI inputs of the central unit or the expansion modules of the MSS.
- Evaluation and processing of signals via the central unit of the MSS
- Reaction via safe output modules on the AS-Interface bus or via F-DQ outputs of the central unit or expansion modules of the MSS

SIRIUS 3RK3 Modular Safety System, see Catalog Section 13

Benefits

- Simple system structure thanks to standardized AS-Interface technique
- Safety-related and standard data on the same bus
- Existing systems can be expanded quickly and easily
- Optimum integration in TIA (Safety Diagnostics) and Safety Integrated
- Inclusion of the safety signals in the plant diagnostics, also on existing HMI panels
- Approved to PL e according to EN ISO 13849-1 or SIL 3 according to IEC 61508
- ASIsafe is certified by TÜV (Germany), NRTL (USA) and INRS (France)

Application

Integrated safety technology in the AS-Interface system can be used wherever EMERGENCY STOP buttons, safety gate interlocks, safety switches, light grids and two-hand operation are installed.

Communication

AS-Interface: ASIsafe

AS-Interface safety monitors

Selection and ordering data

	Version	SD	Article No.			PS*
	d					
3RK1105-1BE04-0CA0	Basic safety monitors Version 3 With screw terminals, removable terminals, width 45 mm		Screw terminals	\bigoplus		
	- 1 enabling circuit (monitor type 1)	2	3RK1105-1AE04-0CA0		1	1 unit
	- 2 enabling circuits (monitor type 2)	2	3RK1105-1BE04-0CA0		1	1 unit
	Expanded safety monitors Version 3 With screw terminals, removable terminals, width 45 mm					
	- 1 enabling circuit (monitor type 3)	2	3RK1105-1AE04-2CA0		1	1 unit
	- 2 enabling circuits (monitor type 4)	2	3RK1105-1BE04-2CA0		1	1 unit
	Expanded safety monitor with integrated safe slave Version 3 With screw terminals, removable terminals, width 45 mm					
	- 2 enabling circuits including control of a safe AS-i output/safe coupling (monitor type 6)	2	3RK1105-1BE04-4CA0		1	1 unit
	Basic safety monitors Version 3 With spring-loaded terminals, removable terminals, width 45 mm		Spring-loaded terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$		
	- 1 enabling circuit (monitor type 1)	2	3RK1105-1 AG04-0CA0		1	1 unit
	- 2 enabling circuits (monitor type 2)	2	3RK1105-1BG04-0CA0		1	1 unit
	Expanded safety monitors Version 3 With spring-loaded terminals, removable terminals, width 45 mm					
	- 1 enabling circuit (monitor type 3)	2	3RK1105-1AG04-2CA0		1	1 unit
	- 2 enabling circuits (monitor type 4)	2	3RK1105-1BG04-2CA0		1	1 unit
	Expanded safety monitor with integrated safe slave Version 3 With spring-loaded terminals, removable terminals, width 45 mm					
	- 2 enabling circuits including control of a safe AS-i output/safe coupling (monitor type 6)	2	3RK1105-1BG04-4CA0		1	1 unit

Accessories

AS-Interface: ASIsafe

Overview

AS-Interface safety modules: K45F (left), K20F (center) and SC17.5F (right)

S45F SlimLine module, safe AS-i output
Safety modules for AS-Interface (ASIsafe modules) are available for field use in degree of protection IP67 (K20F and K45F compact modules) and for the control cabinet (SC17.5F SlimLine Compact modules) in degree of protection IP20.
A very compact module with an optimum price/performance ratio is thus available for every application.
All modules for the connection of (mechanical) switches and safety sensors with contacts feature crossover monitoring of the connected sensor line.

AS-Interface safety modules

The following modules are available for selection:

K20F compact safety modules for operation in the field

Being only 20 mm wide, the K20F module is particularly well suited for applications where modules need to be arranged in the most confined of spaces. The K20F modules are connected to the AS-Interface with a round cable with M12 cable box instead of with the AS-Interface flat cable. This enables extremely compact installation. The flexibility of the round cable means that it can also be used on moving machine parts without any problems. The K20 modules are also ideal for such applications as their non-encapsulated design makes them particularly light in weight.

K45F compact safety modules for use in the field

The platform of the K45F modules covers the connection of ("mechanical") switches/safety sensors with contacts:

- K45F 2 F-DI: Two safety-related inputs in operation up to Category 2 according to EN ISO 13849-1. If Category 4 is required, a two-channel input is available on the module.
- K45F 2 F-DI / 2 DQ: There are also two standard outputs in addition to the safe inputs. Supplied from the yellow AS-i cable
- K45F 2 F-DI / 2 DQ $U_{\text {aux: }}$ same as K45F 2 F-DI/2 DQ, but supplied from the black 24 V DC cable
- K45F 4 F-DI: Four safety-related inputs in operation up to Category 2, two for Category 4. Extremely compact double slave (uses two standard AS-i addresses)
SC17.5F SlimLine Compact safety modules with a width of just 17.5 mm for use in control cabinets and local control boxes

With a width of only 17.5 mm , the safe SC17.5F SlimLine Compact modules are ideal for space-saving use in a control cabinet. The modules have more than two safety inputs for connecting signals to ASIsafe networks in the control cabinet. For operation up to Category 2, both inputs can be separately assigned; if Category 4 is required, a two-channel input is available on the module.

There are also two module variants which have two standard outputs in addition to the two safety inputs. The outputs are supplied either from the yellow AS-Interface cable alone, or via auxiliary voltage from the black 24 V DC cable. The supply voltage is set via a slide switch on the rear of the device.
When using several modules, they can be connected simply via the optional device connector. This simplifies the wiring. The yellow AS-i bus cable and the 24 V DC auxiliary voltage $U_{\text {aux }}$ then only need to be connected to one module.

Communication

AS-Interface: ASIsafe

AS-Interface safety modules

S45F SlimLine safety modules with safety outputs for the safe distributed disconnection of actuators

With the S45F SlimLine safety module, a safe output signal of the ET 200SP module F-CM AS-i Safety ST can be used for distributed safety-related disconnection via ASIsafe.
To this end, the S45F module has a safety-related two-channel relay output. As an additional possibility the module offers normal switching of the output using an AS-i standard output bit.

The module has three digital inputs and two digital outputs for the additional connection of sensors and actuators. These can be used, among other things, for the required monitoring of downstream contactors of the feedback circuit.

The S45F module can also be controlled in a safety-related manner, for example by the modular 3RK3 ASIsafe/Advanced safety system. The module contains an AS-i slave for the non-safety-related inputs/outputs.

Selection and ordering data

Communication

AS-Interface: ASIsafe

AS-Interface safety modules

Accessories

More information
For the Equipment Manual "SlimLine Compact Modules", see
https://support.industry.siemens.com/cs/ww/en/view/109481489

nects AS-i bus cable and 24 V DC auxiliary power supply $U_{\text {aux }}$ when
Compact modules)
mm
Device termination connectors
Required for the last module in the network

- Push-in terminals up to $2 \times 1.5 \mathrm{~mm}^{2}$

Blank labels

- $10 \mathrm{~mm} \times 7 \mathrm{~mm}$, titanium gray

Overview

CM 1243-2 communication module for S7-1200

More information
 Manuals, see https://support.industry.siemens.com/cs/ww/en/ps/15750/man For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
 https://support.industry.siemens.com/cs/ww/en/view/61892138

The CM 1243-2 communication module is the AS-Interface master for the SIMATIC S7-1200 and has the following features:

- Connection of up to 62 AS-Interface slaves
- Integrated analog value transmission
- Supports all AS-Interface master functions in accordance with the AS-Interface specification V3.0
- Indication of the operating state on the front of the device displayed via LED
- Display of operating mode, AS-Interface voltage faults, configuration faults and peripheral faults via LED behind the front panel
- Compact enclosure in the design of the SIMATIC S7-1200
- Suitable for AS-i Power24V and for AS-Interface with 30 V voltage: A standard 24 V power supply unit can be used in combination with the optional DCM 1271 data decoupling module.
- Configuration and diagnostics via the TIA portal

Design

The CM 1243-2 communication module is positioned to the left of the S7-1200 CPU and linked to the S7-1200 via lateral contacts.
It has:

- Terminals for two AS-i cables (internally jumpered) via two screw terminals each respectively
- One terminal for connection to the functional ground
- LEDs for indication of the operating state and fault statuses of the connected slaves
The screw terminals (included in scope of supply) can be removed to facilitate installation.

Function

The CM 1243-2 supports all specified functions of the AS-Interface specification V3.0.
The values of the digital AS-i slaves can be activated via the process image of the S7-1200. During configuration of the slaves in the TIA Portal, the values of the analog AS-i slaves can also be accessed directly in the process image.

It is also possible to exchange all data of the AS-i master and the connected AS-i slaves with the S7-1200 via the data record interface.

Changeover of the operating mode, automatic application of the slave configuration and the re-addressing of a connected AS-i slave can be implemented via the control panel of the CM 1243-2 in the TIA Portal.

The optional DCM 1271 data decoupling module (see "Accessories", page 14/29) has an integrated detection unit for detecting ground faults on the AS-Interface cable. The integrated overload protection also disconnects the AS-Interface cable if the drive current required exceeds 4 A . For more information on DCM 1271, see page 14/79.
Notes on security:
In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.

For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

To configure CM 1243-2, you require STEP 7 V11 + SP2 or higher.
For STEP 7 V11 + SP2 or higher, the additional Hardware Support Package for CM 1243-2 is required. This is available via the Industry Online Support Portal, see
https://support.industry.siemens.com/cs/ww/en/view/72341852.
The software enables user-friendly configuration and diagnostics of the AS-Interface master and any connected slaves.
Alternatively, you can also apply the AS-Interface ACTUAL configuration at the "touch of a button" via the control panel integrated in the TIA Portal/STEP 7.
When operated on an S7-1200 CPU with firmware version V4.0 or higher, the firmware version V1.1 (or higher) is required for the CM 1243-2.

Benefits

- More flexibility and versatility in the use of SIMATIC S7-1200 as the result of a significant increase in the number of digital and analog inputs/outputs available
- Very easy configuration and diagnostics of the AS-Interface via the TIA Portal (STEP 7 V11+SP2 or higher)
- Simple operation with AS-Interface power supply (see page 14/73) possible without restrictions.
- Alternatively: No need for the AS-i power supply unit with AS-i Power24V. The AS-Interface cable is supplied through an existing 24 V DC PELV power supply unit. For decoupling, the AS-i DCM 1271 data decoupling module is required, see "Accessories" and page 14/79.
- LEDs for indication of fault statuses for fast diagnostics
- Monitoring of AS-Interface voltage facilitates diagnostics

AS-Interface: Masters

Masters for SIMATIC S7 > CM 1243-2

Application

The CM 1243-2 is the AS-Interface master connection for the $12 x x$ CPUs of the SIMATIC S7-1200. Through connection to AS-Interface, the number of digital inputs and outputs available for the S7-1200 is greatly increased (max. $496 \mathrm{DI} / 496 \mathrm{DQ}$ on the AS-Interface per CM).
The integrated analog value processing also makes the analog values available at the AS-Interface for the S7-1200.
Up to 31 analog slaves with a standard address (each with up to four channels) or up to 62 analog slaves with an A/B address (each with up to two channels) are possible per CM.

Operating conditions

- The CM 1243-2 communication module exchanges data with the S7-1200 CPU with a cycle time of 10 ms .
- The AS-i cycle time depends on the AS-i bus capacity and is up to 5 ms in the case of 31 slaves addresses; for more information, see Equipment Manual "AS-i Master CM 1243-2 and AS-i DCM 1271 data decoupling module", https://support.industry.siemens.com/cs/ww/en/view/57358958.
- For calculation of the maximum switching frequency at inputs/outputs of AS-i slaves, these cycle times and the runtime of the user program must be added up.

Selection and ordering data

	Version	SD	Screw terminals	(1)	PU SET, M)	PS*
			Article No.			
	CM 1243-2 communication module	2	3RK7243-2AA30-0XB0		1	1 unit
	- AS-Interface masters for SIMATIC S7-1200					
	- Corresponds to AS-Interface specification V3.0					
	- With screw terminals, removable terminals (included in the scope of supply)					
	- Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D} / \mathrm{mm}$) : $30 \times 100 \times 75$					

Note:
The CM 1243-2 communication module is available as a SIPLUS version under Article No. 6AG1243-2AA30-7XBO in the extended temperature range (from -25 to $70^{\circ} \mathrm{C}$) and for use in harsh environmental conditions (coated according to environment standard IEC 60721).
For more information, see www.siemens.com/siplus-extreme.

Accessories

	Version	SD	Screw terminals	(1)		PS*
		d	Article No.			
	DCM 1271 data decoupling module - With screw terminals, removable terminals (included in the scope of supply) - Dimensions (W $\times \mathrm{H} \times \mathrm{D} / \mathrm{mm}$): $30 \times 100 \times 75$	2	3RK7271-1AA30-0AA0		1	1 unit
	Screw terminals (replacement) -5-pole For AS-i master CM 1243-2 and AS-i DCM 1271 data decoupling module	5	3RK1901-3MA00		1	1 unit
3RK7271-1AA30-0AA0	- 3-pole For AS-i DCM 1271 data decoupling module for connecting the power supply unit	5	3RK1901-3MB00		1	1 unit

Overview

CP 343-2P/CP 343-2

More information

Manuals, see https://support.industry.siemens.com/cs/ww/en/ps/15754/man For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/61892138
AS-Interface block library for SIMATIC PCS 7 for easy connection of AS-Interface to PCS 7, see Catalog KT10.1 - SITOP Power Supply

The CP 343-2P communications processor is the AS-Interface master for the SIMATIC S7-300 and the ET 200M distributed I/O station, with user-friendly parameterizing options.
The CP 343-2 is the basic version of the module.
The CP 343-2P/CP 343-2 has the following characteristics:

- Connection of up to 62 AS-Interface slaves
- Integrated analog value transmission
- Support of all AS-Interface master functions in accordance with the AS-Interface specification V3.0
- Status displays of operating states and indication of the readiness for operation of connected slaves by means of LEDs in the front panel
- Fault indications (including AS-Interface voltage errors, configuration errors) by means of LEDs on the front plate.
- Compact enclosure in the design of the SIMATIC S7-300
- Suitable for AS-i Power24V (from product version 2 / firmware version 3.1) and for AS-Interface with 30 V voltage
- Additionally for CP 343-2P: Supports the configuration of the AS-Interface network with STEP 7 V5.2 and higher

Design

The CP 343-2P/CP 343-2 is connected like an I/O module to the S7-300. It has:

- Two terminal connections for connecting the AS-Interface cable directly.
- LEDs in the front panel for indicating the operating state and the readiness for operation of all connected and activated slaves
- Pushbuttons for switching over the master operating state and for adopting the existing ACTUAL configuration of the AS-i slave as the TARGET configuration

Function

The CP 343-2P/CP 343-2 support all specified functions of the AS-Interface specification V3.0.

The CP 343-2P/CP 343-2 each occupy 16 bytes in the I/O address area of the SIMATIC S7-300. The digital I/O data of the standard slaves and A slaves is saved in this area. The digital I/O data of the B slaves and the analog I/O data can be accessed with the S 7 system functions for read/write data records.
If required, master calls can be performed with the command interface, e.g. read/write parameters, read/write configuration.
For more information, see
https://support.industry.siemens.com/cs/ww/en/view/51678777.
Notes on security:
In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

All connected AS-Interface slaves are configured at the press of a button. No further configuration of the CP is required.
Additionally for CP 343-2P
The CP 343-2P also supports configuring of the AS-Interface network with STEP 7 V5.2 and higher. Specifying the AS-i configuration in HW-Config facilitates the setting of slave parameters and documentation of the plant. Uploading the ACTUAL configuration of an already configured AS-Interface network is also supported. The saved configuration cannot be overwritten at the press of a button and is therefore tamper-proof.

Benefits

- Shorter startup times through simple configuration at the press of a button
- Design of flexible machine-related structures using the ET 200M distributed I/O system
- Provides diagnostics of the AS-Interface network
- Well suited also for complex applications thanks to connection options for 62 slaves and integral analog value processing
- Reduction of standstill and servicing times in the event of a fault thanks to the LED indicators:
- Status of the AS-Interface network
- Slaves connected and their readiness for operation
- Monitoring of the AS-Interface voltage
- Lower costs for stock keeping and spare parts inventory because the CP can be used for the SIMATIC S7-300 and also for the ET 200M
- Additionally for CP 343-2P: Improved plant documentation and support for service assignments thanks to a description of the AS-Interface configuration in the STEP 7 project
- Simple operation with AS-Interface power supply (see page 14/73) possible without restrictions.
- Alternatively: No need for the AS-i power supply unit with AS-i Power24V. The AS-Interface cable is supplied through an existing 24 V DC PELV power supply unit. An S22.5 AS-i data decoupling module (e.g. 3RK1901-1DE12-1AAO) is required for the decoupling, see page 14/77.

Communication

AS-Interface: Masters

Masters for SIMATIC S7 > CP 343-2P/CP 343-2

Application

The CP 343-2P/CP 343-2 is the AS-Interface master connection for the SIMATIC S7-300 and the ET 200M.

Through connection to AS-Interface it is possible to access max. 248 DI/248 DQ per CP, using 62 A/B slaves with 4 DI/4 DQ each.

With the integrated analog value processing, it is easy to transmit analog signals. Up to 62 analog slaves with an A / B address (each with up to two channels) or up to 31 analog slaves with a standard address (each with up to four channels) are possible per CP.

The CP 343-2P is the further development of the CP 343-2 and contains its entire functionality. An existing STEP 7 user program for a CP 343-2 can thus be used without restrictions with a CP 343-2P. It is only in STEP 7 HW-Config that the two modules are configured differently, with the CP 343-2P offering additional options. This is why the CP 343-2P is recommended.

Selection and ordering data

	Version	SD	Article No.		PS*
	d				
6GK7343-2AH11-0XA0	CP 343-2P communications processors - Device version with expanded configuration options for connection of SIMATIC S7-300 and ET 200M to AS-Interface - Configuration of the AS-i network using the SET key or STEP 7 (V5.2 and higher) - Without front connector - Corresponds to AS-Interface specification V3.0 - Dimensions (W x H x D/mm): $40 \times 125 \times 120$	\checkmark	6GK7343-2AH11-0XA0	1	1 unit
	CP 343-2 communications processors - Basic version for connection of SIMATIC S7-300 and ET 200M to AS-Interface - Configuration of the AS-i network using the SET key - Without front connector - Corresponds to AS-Interface specification V3.0 - Dimensions (W x H x D/mm): $40 \times 125 \times 120$	-	6GK7343-2AH01-0XA0	1	1 unit

Accessories

Version		SD	Article No.	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	d				
Front connector, 20-pole					
- With screw terminals	(1)	1	6ES7392-1AJ00-0AAO	1	1 unit
- With spring-loaded terminals	00	1	6ES7392-1BJ00-0AAO	1	1 unit

Overview

CM AS-i Master ST for SIMATIC ET 200SP

More information

SIMATIC ET 200SP Manual Collection, see
https://support.industry.siemens.com/cs/ww/en/view/84133942
Diagnostics blocks with visualization, see
https://support.industry.siemens.com/cs/ww/en/view/109479103 AS-Interface block library for SIMATIC PCS 7 for easy connection of AS-Interface to PCS 7, see Catalog KT10.1 - SITOP Power Supply Released combinations of the AS-i modules for ET 200SP, see
https://support.industry.siemens.com/cs/ww/en/view/103624653
The CM AS-i Master ST communication module is designed for use in the SIMATIC ET 200SP distributed I/O system and has the following features:

- Connection of up to 62 AS-Interface slaves
- Supports all AS-Interface master functions according to the AS-Interface specification V3.0
- User-friendly configuration with graphic display of the AS-i line in TIA Portal V12 or higher, or via GSD in other systems
- Supply via AS-Interface cable
- Suitable for AS-i Power24V and for AS-Interface with 30 V voltage
- Integrated ground-fault monitoring for the AS-Interface cable
- Through connection to AS-Interface, the number of digital inputs and outputs available for the control system is greatly increased (max. 496 DI/496 DQ on the AS-Interface per CM AS-i Master ST).
- Integrated analog value processing

ET 200SP distributed IVO system

The SIMATIC ET 200SP is a scalable and highly flexible distributed I/O system for connecting the process signals to a central control system via PROFIBUS or PROFINET.
Up to eight CM AS-i Master STs can be plugged into a SIMATIC ET 200SP with the IM 155-6 PN standard interface module.
More information, see the SIMATIC ET 200SP Manual Collection.

Design

The CM AS-i Master ST module has an ET 200SP module enclosure with a width of 20 mm . A C0 type BaseUnit (BU) is required for use in the ET 200SP.

The communication module has LED indicators for diagnostics, operation, AS-i voltage and AS-i slave status and offers informative front-side module inscription for

- Plain-text marking of the module type and function class
- 2D matrix code (Article No. and serial number)
- Circuit diagram
- Color coding of the CM module type: Light gray
- Hardware and firmware version
- Complete article number

Function

The CM AS-i Master ST communication module supports all specified functions of the AS-Interface specification V3.0.
The input/output values of the digital AS-i slaves can be activated via the cyclic process image. The values of the analog AS-i slaves are accessible via the cyclic process image (firmware V1.1 or higher) or via data record transfer.
If required, master calls can be performed with the command interface, e.g. read/write parameters, read/write configuration.
Changeover of the operating mode, automatic application of the slave configuration and the re-addressing of a connected AS-i slave can be implemented via the control panel of the CM AS-i Master ST in STEP 7.
Expansions as from firmware version V1.1
For the implementation of modular machine concepts, the AS-i slaves can be activated or deactivated via the PLC program (option handling). The configuration of AS-i slaves can be modified while being executed, thus enabling variable machine setups and tool changing with integrated input/output modules during ongoing operation. AS-i input/output modules can be added to the system without deactivating the controller.
An existing AS-i installation can be read into the STEP 7 hardware configuration and adapted and documented in the project. Analog values are transmitted via the cyclic process image, the length of which is adjustable and extendable up to 288 bytes (depending on the interface module (IM) used).
Diagnostic information is accessed via automatic alarm indications, via the process image or data record reading in the user program or in the STEP 7 engineering system in a graphical overview matrix. The transmission quality of the AS-i network can also be read out. To avoid configuration errors, duplicate addresses can be detected on the AS-i network.
The new functions are available with TIA Portal STEP 7 V13 SP1 or with STEP 7 V 5.5 with HSP 2092 V3.0 ${ }^{1}$. Configuration is possible with SIMATIC CPUs S7-300 up to S7-1500 and with a SINUMERIK 840D sl or other controller.

In the network view, the AS-i slaves' online diagnostics status can be displayed directly on the slaves (for S7-1500 CPUs with firmware version V2.0 or higher, with TIA Portal STEP 7 V14 or higher).

[^135]
AS-Interface: Masters

Masters for SIMATIC ET 200 > CM AS-i Master ST for SIMATIC ET 200SP

Notes on security:

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.

For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

The following software is required for configuration of the CM AS-i Master ST module:

- STEP 7 (TIA Portal) V12 or higher or V13 SP1 or higher (for firmware V1.1) or
- STEP 7 (classic) V5.5 SP3 HF4 or higher with HSP 2092 or HSP 2092 V3.0 (for firmware V1.1) or
- the GSD file of the ET 200SP with STEP 7 or another engineering tool
STEP 7 enables user-friendly configuration and diagnostics of the AS-i master and any connected slaves.
Alternatively, you can also apply the AS-Interface ACTUAL configuration as the TARGET configuration at the "touch of a button" via the control panel integrated in the TIA Portal or an optional expansion button. Configuration with the GSD file is possible only with the button.

The CM AS-i Master ST module occupies up to 288 input bytes and up to 288 output bytes in the I/O data of the ET 200SP station. The I/O assignment depends on the configuration in STEP 7.
Together with an ET 200SP CPU 1510SP/1512SP (firmware V1.8 or higher) or 1515SP PC, preprocessing of safe AS-i signals directly in the ET 200SP station and setting up of an independent AS-i Safety station without a higher-level CPU are possible (TIA Portal V13 SP1 Update 4 and higher).

Configuration of an AS-Interface network with CM AS-i Master ST via the TIA Portal

Benefits

The CM AS-i Master ST for ET 200SP communication module enables modular, simple and high-performance expansion of AS-interface networks via engineering in the TIA Portal.
Up to eight CM AS-i Master ST units can be plugged into one ET 200SP station with IM 155-6 PN Standard. The maximum configuration depends on the interface module used.
Multiple masters as well as single masters can thus be implemented in the ET 200SP depending on the number of modules.
Together with the interface module, a scalable PROFINET/AS-i Link or PROFIBUS/AS-i Link can be assembled.
Using STEP 7, the AS-i network is consistently configured and programmed with only one configuration tool.
The PRONETA PC program (for ET 200SP with PROFINET interface module) is available for convenient input/output testing during the commissioning of an AS-i network without a CPU; see www.siemens.com/proneta.

For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see https://support.industry.siemens.com/cs/ww/en/view/109479103.

CM AS-i Master ST diagnostics block

Communication

AS-Interface: Masters

Masters for SIMATIC ET 200 > CM AS-i Master ST for SIMATIC ET 200SP

Application

Configuration examples of AS-Interface networks with CM AS-i Master ST for SIMATIC ET 200SP

Configuration of AS-Interface networks under a SIMATIC ET 200SP
Selection and ordering data

	Version	SD	Article No.		PS*
	d				
		2	3RK7137-6SA00-0BC1	1	1 unit
	- AS-Interface master for SIMATIC ET 200SP, can be plugged onto BaseUnit type C0 - Corresponds to AS-Interface specification V3.0 - Dimensions (W $\times \mathrm{H} \times \mathrm{D} / \mathrm{mm}$): $20 \times 73 \times 58$				

Communication

AS-Interface: Masters

Masters for SIMATIC ET 200 > CM AS-i Master ST for SIMATIC ET 200SP

Overview

F-CM AS-i Safety ST for SIMATIC ET 200SP

More information

SIMATIC ET 200SP Manual Collection, see
https://support.industry.siemens.com/cs/ww/en/view/84133942
Diagnostics blocks with visualization, see
https://support.industry.siemens.com/cs/ww/en/view/109479103
Released combinations of the AS-i modules for ET 200SP, see
https://support.industry.siemens.com/cs/ww/en/view/103624653
The F-CM AS-i Safety ST fail-safe communication module supplements an AS-Interface network without additional wiring to produce a safety-related AS-i network.
Important features:

- Fail-safe communication module for the ET 200SP
- 31 fail-safe input channels in the process image
- 16 fail-safe output channels in the process image
- Certified up to SIL 3 (IEC 61508/EN 62061), PL e (EN ISO 13849-1)
- Parameterization conforms with other fail-safe I/O modules of the ET 200SP
- The communication module supports PROFIsafe in PROFINET and PROFIBUS configurations. Can be used with fail-safe SIMATIC S7-300F/S7-400F CPUs and
S7-1500F CPUs and also the fail-safe versions of the ET 200SP station with ET 200SP F-CPU 1510SP F/1512SP F (firmware V1.8 or higher) or 1515SP PC F.
- For reading up to 31 fail-safe AS-i input slaves
- Two sensor inputs/signals for each fail-safe AS-i input slave
- Adjustable evaluation of sensor signals: two-channel or $2 \times$ single-channel
- Integrated discrepancy evaluation in the case of two-channel signals
- Integrated AND operation in the case of $2 \times$ single-channel signals
- Input delay can be parameterized
- Start-up test can be set
- Sequence monitoring can be activated
- For control of up to 16 fail-safe AS-i output circuit groups
- The output circuit groups are controlled independently of one another.
- One output circuit group can act on one or more actuators (e.g. to switch drives simultaneously).
- An actuator (e.g. a contactor) is interfaced via a fail-safe AS-i output module (e.g. safe SlimLine module S45F, Article No. 3RK1405-1SE15-0AA2, see page 14/36).
- Simple fault acknowledgment via the process image
- Simple module replacement thanks to automatic importing of the safety parameters from the coding element
- Comprehensive diagnostic options
- Can be plugged onto type C1 or type C0 BaseUnits (BU)
- Informative automatic alarm indications (firmware V1.0.1 or higher)
- Supply via AS-Interface voltage
- Eight LED indicators for diagnostics, operating state, fault indication and supply voltage
- Informative front-side module inscription
- Plain-text marking of the module type and function class
- 2D matrix code (Article No. and serial number)
- Circuit diagram
- Color coding of the CM module type: Light gray
- Hardware and firmware version
- Complete article number
- Optional labeling accessories
- Labeling strips
- Reference identification label

Design

The fail-safe F-CM AS-i Safety ST module has an ET 200SP module enclosure with a width of 20 mm .
One AS-i master according to the AS-i specification V3.0 and safe AS-i input slaves and/or safe AS-i output modules are needed for operation. The CM AS-i Master ST communication module (Article No. 3RK7137-6SA00-0BC1) is recommended as the AS-i master for the ET 200SP, see from page 14/32 onwards.
Simple combination of the CM AS-i Master ST and F-CM AS-i Safety ST modules in one ET 200SP station results in a powerful, safety-oriented network transition between PROFINET (or PROFIBUS) and AS-Interface, which can be expanded further in a modular fashion.

Combination of an ET 200SP interface module, CM AS-i Master ST and F-CM AS-i Safety ST
With the digital and analog I/O modules of the ET 200SP, additional local inputs and outputs can be realized so as to ensure that the modular AS-i router complies precisely with customer requirements. Expansion variants for almost every application are possible thanks to the selection of standard and fail-safe I/O modules.
Besides the single AS-i master, double, triple or generally multiple masters can be realized with or without fail-safe functionality.

AS-Interface: Masters

Masters for SIMATIC ET 200 > F-CM AS-i Safety ST for SIMATIC ET 200SP

Supported BaseUnits

With the combination of the CM AS-i Master ST and F-CM AS-i Safety ST modules, the CM module is plugged onto a light type CO BaseUnit and, immediately to the right of it, the F-CM module is plugged onto a dark type C1 BaseUnit. The AS-i cable is connected only on the light BaseUnit of the CM module.

Notes on security:

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

The following software is required for configuration of the F-CM AS-i Safety ST module:

- STEP 7 (TIA Portal) V13 and higher with HSP 0070 ${ }^{1)}$ and Safety Advanced.
STEP 7 V13 SP1 is required for connection to the S7-1500F. When configuring with STEP 7 V13 SP1, the latest version of HSP 0070 V2.0 (or higher) is an essential prerequisite. STEP 7 Safety V13 SP1 Update 4 and HSP 0070 V3.0 (or higher) are needed for configuration of the F-CM AS-i Safety ST module in an ET 200SP station with ET 200SP F-CPU 1510SP F/1512SP F (firmware V1.8 or higher) or 1515SP PC F.
or
- STEP 7 (classic) V5.5 SP3 HF4 or higher with HSP $2093^{2)}$ and Distributed Safety V5.4 SP5 or F-Configuration Pack SP11 or SIMATIC S7 F/FH Systems
Configuration and programming are done entirely in the STEP 7 user interface. No additional configuration software is needed for commissioning.
Data management - together with all other configuration data of the SIMATIC - is realized completely in the S 7 project.

The input and output channels are assigned to the process image automatically and manual linking via configuration blocks is not necessary.
If the F-CM AS-i Safety ST module is replaced, all necessary settings are automatically imported into the new module.
The F-CM AS-i Safety ST module occupies 16 input bytes and 8 output bytes in the I/O data of the ET 200SP station.
For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/109479103.

Diagnostics block for F-CM AS-i Safety ST

1) For HSP 0070 , see
https://support.industry.siemens.com/cs/ww/en/view/72341852.
2) For HSP 2092, see
https://support.industry.siemens.com/cs/ww/en/view/23183356.

Application

Thanks to use of the fail-safe module in the ET 200SP, it is possible to fulfill the safety-related application requirements in a manner that is integrated in the overall automation solution.
The safety functions required for fail-safe operation are integrated in the modules. Communication with the fail-safe SIMATIC S7 CPUs is realized via PROFIsafe.
The safety application is programmed in the SIMATIC S7 F-CPU with Distributed Safety/S7 F/FH Systems/Safety Advanced. The fail-safe input signals of the ASIsafe slave modules are read via the AS-i bus line and are combined with any chosen further signals in the fail-safe program.

The fail-safe output signals can be output via safe SIMATIC output modules or also directly via AS-i - with the help of safe AS-i output modules, e.g. safe SlimLine S45F modules, Article No. 3RK1405-1SE15-OAA2 (see page 14/26). No special functions are required for this in the program.
Operation with SINUMERIK 840D sl is possible with SINUMERIK software version V4.7 SP2 HF1 or higher.
Together with an ET 200SP station with ET 200SP F-CPU 1510SP F/1512SP F (firmware V1.8 and higher) or 1515SP PC F, pre-processing of safe AS-i signals directly in the ET 200SP station is possible, as well as the configuration of an autonomous AS-i Safety station without a higher-level CPU.

Communication

AS-Interface: Masters

Masters for SIMATIC ET 200 > F-CM AS-i Safety ST for SIMATIC ET 200SP

Configuration examples of AS-Interface networks with CM AS-i Master ST and F-CM AS-i Safety ST for SIMATIC ET 200SP

AS-Interface configuration comprising an ET 200SP station with CM AS-i Master ST and F-CM AS-i Safety ST modules

Selection and ordering data

	Version	SD	Article No.		PS*
	d				
es	F-CM AS-i Safety ST communication module	2	3RK7136-6SC00-0BC1	1	1 unit
	- Fail-safe module for SIMATIC ET 200SP, can be plugged onto BaseUnit type C1 (alternatively type C0) - Operation requires an AS-i master, e.g. CM AS-i Master ST (see page 14/34)				
	- Can be used up to SIL 3 (IEC 62061/IEC 61508), PL e (EN ISO 13849-1)				
	- Coding element type H (included in scope of supply)				
	- Dimensions (W \times H \times D/mm): $20 \times 73 \times 58$				
3RK7136-6SC00-0BC1					

Accessories

	Version	SD d	Spring-loaded terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$		PS*
			Article No.			
	BaseUnit BU20-P6+A2+4B - BaseUnit (dark), BU type C1 - Suitable for the F-CM AS-i Safety ST fail-safe communication module - Continuation of an AS-i network, connection with the AS-i voltage of the left-hand module	1	6ES7193-6BP20-0BC1		1	1 unit
6ES7193-6BP20-0BC1	Coding element type H (spare part) - For the ET 200SP modules F-CM AS-i Safety ST and CM 4xIO-Link - Packing unit 5 items	1	6ES7193-6EH00-1AA0		1	5 units

More accessories, see page 14/35.

Overview

DP/AS-i Link Advanced
More information
AS-Interface block library for SIMATIC PCS 7 for easy connection of AS-Interface to PCS 7, see Catalog KT10.1 - SITOP Power Supply Manual, see https://support.industry.siemens.com/cs/ww/en/ps/24507/man

The DP/AS-i Link Advanced is a compact router between PROFIBUS (DP slave) and AS-Interface, with the following features:

- Single and double AS-Interface master (according to AS-Interface specification V3.0) for connection of 62 AS-Interface slaves or 124 AS-Interface slaves (with a double master)
- Integrated analog value transmission
- Integrated ground-fault monitoring for the AS-Interface cable
- User-friendly local diagnostics and startup by means of a full graphic display and control keys or through a web interface with a standard browser on the PC screen
- Vertical integration (standard web interface) through Industrial Ethernet
- Supply voltage from the AS-Interface cable or alternatively with 24 V DC (optional)
- Suitable for AS-i Power24V (from product version 4 / firmware version 2.2) and for AS-Interface with 30 V voltage
- Module exchange without entering the connection parameters (e.g. PROFIBUS address) using C-PLUG (optional)

Design

- Compact plastic enclosure in degree of protection IP20 for standard rail mounting
- COMBICON plug-in screw terminals
- Compact design:
- Pixel graphics display in the front panel for detailed display of the operating state and readiness for operation of all connected AS-Interface slaves
- 6 pushbuttons for starting up and testing the AS-Interface line directly on the DP/AS-i Link Advanced
- LED indication of the operating state of PROFIBUS DP and AS-Interface
- Integrated Ethernet port (RJ45 socket) for user-friendly startup, diagnostics and testing of DP/AS-i Link Advanced through a web interface using a standard browser
- Small mounting depth thanks to recessed plug mounting
- Operation without fans and batteries

Functionality

Communications

The DP/AS-i Link Advanced enables a PROFIBUS DP master to cyclically access the I/O data of all the slaves of a lower-level AS-Interface segment.
The DP/AS-i Link Advanced occupies the following address space:

- As a single master: 32 bytes of input data and 32 bytes of output data in which the I/O data of the connected AS-Interface slaves (standard and A/B addressing) of an AS-i line is stored.
- As double master, double the number of bytes
- Optional additional I/O bytes for data from analog slaves

The size of the input/output image can be compressed so that only the actually required I/O address area is occupied in the system of the DP master. The integrated evaluation of analog signals is just as easy as access to digital values because the analog process data also lie directly in the I/O address area of the CPU.
PROFIBUS DP-V1 Masters also provide the option of triggering AS-Interface master calls over the acyclic PROFIBUS services (e.g. write parameters, amend addresses, read diagnostic values). Using an operating display in AS-i Link it is possible to fully commission the lower-level AS-Interface line even without a CPU.
DP/AS-i Link Advanced is equipped with an additional Ethernet port, which enables use of the integrated web server. The web server can be called up with any standard web browser (e.g. Internet Explorer) without additional software. It allows all diagnostics information, the set bus configuration and parameters and, if applicable, any adjustments to be displayed on the PC. Firmware updates are also possible using this port.
The optional C-PLUG supports module exchange without entering the connection parameters (PROFIBUS address etc.), keeping downtimes to a minimum in the event of a fault.

AS-Interface: Routers

DP/AS-i Link Advanced

Diagnostics

The following diagnostics is possible using LEDs, the display and control keys, web interface or STEP 7:

- Operating state of the DP/AS-i Link Advanced
- Status of the link as a PROFIBUS DP slave
- Diagnostics of the AS-Interface network
- Message frame statistics
- Standard diagnostics pages in the web interface for fast diagnostics access through Ethernet using a standard browser
- For the use of the web interfaces no network settings are necessary on the PC (Zeroconf procedure)
- The reporting of diagnostic events is optionally possible via email or SNMP Trap. The integrated diagnostic buffer saves the events including time stamp

Notes on security:

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

The DP/AS-i Link Advanced can be configured as follows:

- With STEP 7 (TIA Portal) V12 or higher or STEP 7 (classic) V5.4 or higher: In the case of STEP 7 configuration, the AS-Interface configuration can be uploaded in STEP 7. Furthermore, AS-Interface slaves can also be conveniently configured in HW-Config (slave selection dialog)
- By adopting the ACTUAL configuration of the AS-Interface on the display
- Alternatively DP/AS-i Link Advanced can be integrated into the engineering tool using the PROFIBUS GSD file (e.g. STEP 7 versions earlier than V5.4 or engineering tools from non-Siemens suppliers)

Benefits

- Short startup times through simple configuration at the press of a button and testing of the AS-Interface line using the display or web interface
- Reduction of standstill and servicing times in the event of a slave failure thanks to user-friendly diagnostics using the display or web interface and through simple module exchange with the help of the C-PLUG exchange medium
- Reduced amount of engineering work thanks to user-friendly configuration of Siemens slaves using the slave catalog in HW-Config (STEP 7)
- Costs saved by the double AS-Interface master when large volumes of project data are involved
- Simple operation with AS-Interface power supply unit (see page 14/73) possible without restrictions, no additional operating voltage is required.
- Alternatively: No need for the AS-i power supply unit with AS-i Power24V. The AS-Interface cable is supplied through an existing 24 V DC PELV power supply unit. An S22.5 AS-i data decoupling module (e.g. 3RK1901-1DE12-1AA0) is required for the decoupling, see page 14/77.
- For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/618921

AS-Interface: Routers

DP/AS-i Link Advanced

Application

The DP/AS-i Link Advanced is a PROFIBUS DP-V1 slave (according to IEC 61158/IEC 61784) and an AS-Interface master (based on AS-Interface specification V3.0 according to IEC/EN 62026-2). It enables transparent data access to AS-Interface from PROFIBUS DP.

Exchanging data with the PROFIBUS DP master

PROFIBUS DP masters (DP-V0) can exchange I/O data cyclically with the AS-Interface. DP masters with acyclic services (DP-V1) are additionally able to initiate AS-Interface master calls (e.g. reading/writing the AS-i configuration during normal operation). As such, the DP/AS-i Link Advanced is particularly well-suited for a distributed construction and for connection of a lower-level AS-Interface network.

Single master

For applications with typical volumes of project data, it is sufficient to use the DP/AS-i Link Advanced in its version as an AS-Interface single master. The single master can operate up to 248 DI / 248 DQ, using 62 A/B slaves with 4 DI / 4 DQ each.

Double master

The AS-Interface double master version of DP/AS-i Link Advanced is suitable for applications with large volumes of data. In this case, twice the volume of project data can be used on two AS-Interface lines running independently of each other. The double master can operate up to 496 DI / 496 DQ, using two AS-i networks each with 62 A/B slaves with 4 DI / 4 DQ each.

[^136]
Communication

AS-Interface: Routers

DP/AS-i Link Advanced

Selection and ordering data

Accessories

Version	SD	Article No.	PU (UNIT, SET, M)	PS*
	d			
C-PLUG	1	6GK1900-0AB00	1	1 unit
Exchange medium for the simple exchange of devices in the event of a fault; for accommodating configuration and application data; can be used in SIMATIC NET products with a C-PLUG slot				
PROFIBUS FastConnect standard cable GP	1	6XV1830-0EH10	1	1 M
FastConnect standard type with special design for fast installation, 2-core, shielded				
PROFIBUS FastConnect RS 485 bus connector with diagonal cable outlet (35°)				
With insulation displacement connection, the max. transmission rate is 12 Mbps , activatable terminating resistor is integrated				
- Without PG connection socket	1	6ES7972-0BA61-0XAO	1	1 unit
- With PG connection socket	1	6ES7972-0BB61-0XA0	1	1 unit
PROFIBUS FastConnect stripping tool	1	6GK1905-6AA00	1	1 unit
Preset stripping tool for speedy stripping of PROFIBUS FastConnect bus cables				
IE FC RJ45 Plug 90				
RJ45 plug-in connector for Industrial Ethernet, with robust metal enclosure and integrated insulation displacement contacts for connection of Industrial Ethernet FC installation cables; with 90° cable feeder				
-1 pack = 1 unit	1	6GK1901-1BB20-2AA0	1	1 unit
- 1 pack = 10 units	1	6GK1901-1BB20-2AB0	1	10 units
- 1 pack $=50$ units	1	6GK1901-1BB20-2AE0	1	50 units

Overview

DP/AS-Interface Link 20E manual

More information

Manual "DP/AS-Interface Link 20E", see
https://support.industry.siemens.com/cs/ww/en/view/5281638

PN	DP-M	DP-S	AS-i M		
		\bullet	\bullet		
		\bullet			

DP/AS-Interface Link 20E connects PROFIBUS DP to AS-Interface and has the following features:

- PROFIBUS DP slave and AS-Interface master
- Up to 62 AS-Interface slaves, each with four digital inputs and four digital outputs as well as analog slaves can be connected
- Integrated analog value transmission
- Supports all AS-Interface master functions according to the AS-Interface specification V3.0
- Supply from AS-Interface cable; hence no additional power supply required
- Suitable for AS-i Power24V (from product version 2 / firmware version 3.1) and for AS-Interface with 30 V voltage
- Supports uploading of the AS-Interface configuration in STEP 7 V5. 2 and higher

Design

- Compact plastic enclosure in degree of protection IP20 for standard rail mounting
- LEDs in the front panel for indicating the operating state and functional readiness of all connected slaves
- Setting of PROFIBUS DP address is possible by pressing a button
- LED indication of the PROFIBUS DP slave address, PROFIBUS DP bus faults and diagnostics
- Two pushbuttons for switching over the operating state and for adopting the existing ACTUAL configuration as the TARGET configuration

Functionality

Communications

The DP/AS-Interface Link 20E enables a DP master to access all the slaves of an AS-Interface network.
The DP/AS-Interface Link 20E occupies a standard 32 bytes of input data and 32 bytes of output data in which the digital I/O data of the connected AS-Interface slaves (standard and A / B addressing) of an AS-i line is stored.
The size of the input/output image can be compressed so that only the actually required I/O address area is occupied in the system of the PROFIBUS DP master.
The analog I/O data can be accessed with the S 7 system functions for read/write data records.

Configuration

The DP/AS-Interface Link 20E is configured as follows:

- With STEP 7 (TIA Portal) from V12 or STEP 7 (classic) from V5.1 SP2:
In the case of STEP 7 configuration, the AS-Interface configuration can be uploaded from STEP 7 V5.2. Furthermore, AS-Interface slaves from Siemens can also be conveniently configured in HW Config (slave selection dialog).
- By adopting the ACTUAL configuration of the AS-Interface by using the SET pushbutton on the front panel.
- Alternatively, DP/AS-Interface Link 20E can be integrated by means of the PROFIBUS GSD file in the engineering tool (e.g. for STEP 7 V5.1 and lower or for non-Siemens engineering tools).

Benefits

- Reduction of installation costs because the power is supplied entirely via the AS-Interface cable, which means that no additional power supply is required
- Short startup times thanks to easy configuration at the touch of a button
- The LED indicators help reduce downtime and service times if a slave fails
- Quick and easy commissioning by reading the AS-Interface configuration
- For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/61892138.

Communication

AS-Interface: Routers

DP/AS-Interface Link 20E

Application

The DP/AS-Interface Link 20E is a PROFIBUS DP slave (according to IEC 61158/IEC 61784) and an AS-Interface master (according to IEC/EN 62026-2). It enables the AS-Interface to be operated on PROFIBUS DP.
Up to 248 DI / 248 DQ can be operated via the DP/AS-Interface Link 20E using 62 A/B slaves with 4 DI / 4 DQ each.

PROFIBUS DP masters (DP-V0) can exchange digital I/O data cyclically with the AS-Interface.
PROFIBUS DP masters with acyclic services (DP-V1) are additionally able to exchange analog I/O data and initiate AS-Interface master calls (e.g. reading/writing the AS-i configuration during normal operation).

Transition from PROFIBUS DP to AS-Interface using DP/AS-Interface Link 20E

Selection and ordering data

	Version	SD	Article No.			PS*
	d					
DP/AS-Interface Link 20E					1	1 unit
	Router between PROFIBUS DP and AS-Interface in degree of protection IP20; including screw terminals for connection of the AS-Interface cable; corresponds to AS-Interface specification V3.0; dimensions $(W \times H \times D / m m): 90 \times 80 \times 60$ (dimensions without fixing lugs)	-	Screw terminals 6GK1415-2AA10	$\begin{aligned} & \infty \\ & \square \end{aligned}$		

AS-Interface: Routers

DP/AS-Interface Link 20E

Accessories

Version	SD	Article No.	PU (UNIT, SET, M)	PS*
	d			
PROFIBUS FC standard cable GP	1	6XV1830-0EH10	1	1 M
FastConnect standard type with special design for fast installation, 2-core, shielded				
PROFIBUS FastConnect bus connector				
With insulation displacement connection, max. transmission rate 12 Mbps , activatable terminating resistor integrated				
- RS 485 bus connector with 90° cable feeder				
- Without PG connection socket	1	6ES7972-0BA52-0XAO	1	1 unit
- With PG connection socket	1	6ES7972-0BB52-0XAO	1	1 unit
- RS 485 bus connector with diagonal cable outlet (35°)				
- Without PG connection socket	1	6ES7972-0BA61-0XAO	1	1 unit
- With PG connection socket	1	6ES7972-0BB61-0XA0	1	1 unit
PROFIBUS FastConnect stripping tool	1	6GK1905-6AA00	1	1 unit
Preset stripping tool for speedy stripping of PROFIBUS FastConnect bus cables				

Overview

IE/AS-i Link PN IO
Single master (picture on left) and double master (picture on right)

More information

Manual, see https://support.industry.siemens.com/cs/ww/en/view/22712154 AS-Interface block library for SIMATIC PCS 7 for easy connection of AS-Interface to PCS 7, see Catalog KT10.1- SITOP Power Supply

The IE/AS-i Link PN IO is a compact router between PROFINET and AS-Interface, with the following features:

- Single and double AS-Interface master (according to AS-Interface specification V3.0) for connection of 62 or 124 AS-Interface slaves (with a double master)
- Integrated analog value transmission
- Integrated ground-fault monitoring for the AS-Interface cable
- User-friendly local diagnostics and startup by means of a full graphic display and control keys or through a web interface with a standard browser on the PC screen
- Vertical integration (standard web interface) through Industrial Ethernet
- Supply via AS-Interface cable or with 24 V DC
- Suitable for AS-i Power24V and for AS-Interface with 30 V voltage
- Module exchange without entering the PROFINET connection parameters when using the C-PLUG (optional)
- Costs saved by the double AS-Interface master when large volumes of project data are involved

Note:

As an alternative to the IE/AS-i Link PN IO, a high-performance router can be set up between PROFINET and AS-Interface by combining the CM AS-i Master ST and F-CM AS-i Safety ST modules in an ET 200SP station (for safety-related applications), see pages 14/34 and 14/38.

Design

- Compact plastic enclosure in degree of protection IP20 for standard rail mounting
- COMBICON plug-in screw terminals
- Compact design
- Pixel graphics display in the front panel for detailed display of the operating state and readiness for operation of all connected AS-Interface slaves
- Six pushbuttons for starting up and testing the AS-Interface line directly on the IE/AS-i Link PN IO
- LED display of the operating state of PROFINET IO and AS-Interface
- Integrated 2-port switch (RJ45 socket) for connection to Industrial Ethernet
- Small mounting depth thanks to recessed plug mounting
- Operation without fans and batteries

Functionality

Communications
The IE/AS-i Link PN IO enables a PROFINET IO controller to cyclically access the I/O data of all the slaves of a lower-level AS-Interface segment. Also supported are the expanded slave types with higher I/O data volume according to AS-i specification V3.0.

The IE/AS-i Link PN IO occupies the following address space:

- As a single master with full expansion: 62 bytes of input data and 62 bytes of output data in which the I/O data of the connected AS-Interface slaves (standard and A/B addressing) of an AS-i line is stored.
- As double master, double the number of bytes
- Optional additional I/O bytes for data from analog slaves

The size of the input/output image can be compressed so that only the actually required I/O address area is occupied in the system of the IO controller.
The integrated evaluation of analog signals is just as easy as access to digital values because the analog process data also lie directly in the I/O address area of the CPU.
PROFINET IO controllers are additionally able to initiate AS-Interface master calls (e.g. to write parameters, change addresses, read diagnostic values) through the acyclic PROFINET services.
Using an operating display in AS-Interface Link it is possible to fully commission the lower-level AS-i line.
The IE/AS-i Link PN IO is equipped with two Ethernet ports, which are connected by an internal switch. With the Ethernet it is possible in addition to use the integrated web server.
The web server can be called up with any standard web browser (e.g. Internet Explorer) without additional software. It enables the PC to present all diagnostics information and to display the set bus configuration and parameters as well as their adaptation where applicable. Firmware updates are also possible using this port.
The optional C-PLUG supports module replacement without manually entering the connection parameters (PROFINET device name), keeping downtimes to a minimum in the event of a fault.

AS-Interface: Routers

IE/AS-i Link PN IO

Diagnostics

The following diagnostics is possible using the display and control keys, web interface or STEP 7:

- Operating state of the IE/AS-i Link PN IO
- State of the link as a PROFINET IO device
- Diagnostics of the AS-Interface network
- Message frame statistics
- Standard diagnostics pages in the web interface for fast diagnostics access through Ethernet using a standard browser
- Reporting of diagnostic events is optionally possible via e-mail or SNMP trap. The integrated diagnostic buffer saves the events including time stamp

Notes on security:

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens products and solutions represent only one component of such a concept.
For more information about the subject of Industrial Security, see www.siemens.com/industrialsecurity.

Configuration

The IE/AS-i Link PN IO is configured as follows:

- With STEP 7 (TIA Portal) from V15 or STEP 7 (classic) from V5.4: In the case of STEP 7 configuration, the AS-Interface configuration can be uploaded from STEP 7 V5.4 SP2. Furthermore, AS-Interface slaves from Siemens can also be conveniently configured in HW-Config (slave selection dialog)
- Alternatively, IE/AS-i Link PN IO can be integrated by means of the PROFINET GSD file in the engineering tool (e.g. for TIA Portal versions earlier than V15 or for STEP 7 versions earlier than V5.4 SP2, or for non-Siemens engineering tools).

Benefits

- Short startup times through simple configuration at the press of a button and testing of the AS-Interface line using the display or web interface
- Reduction of standstill and servicing times in the event of a slave failure thanks to user-friendly diagnostics using the display or web interface
- Costs saved by the double AS-Interface master when large volumes of project data are involved
- Simple operation with AS-Interface power supply unit (see page 14/73) possible without restrictions, no additional operating voltage is required.
- Alternatively: No need for the AS-i power supply unit with AS-i Power24V. The AS-Interface cable is supplied through an existing 24 V DC PELV power supply unit. An S22.5 AS-i data decoupling module (e.g. 3RK1901-1DE12-1AAO) is required for the decoupling, see page 14/77.
- For diagnostics during ongoing operation, diagnostics blocks with clearly arranged visualization on the SIMATIC HMI panel are available or can be downloaded free of charge via a web browser, see
https://support.industry.siemens.com/cs/ww/en/view/618921

Communication

AS-Interface: Routers

IE/AS-i Link PN IO

Application

The IE/AS-i Link PN IO is a PROFINET IO device (according to IEC 61158/IEC 61784) and an AS-Interface master (based on AS-Interface specification V3.0 according to IEC/EN 62026-2). It enables transparent data access to AS-Interface from PROFINET.

Exchanging data with PROFINET IO controllers

PROFINET IO controllers can exchange I/O data with AS-Interface in cyclic mode and can perform AS-i master calls in addition with acyclic services (e.g. reading/writing the AS-i configuration during normal operation). The IE/AS-i Link PN IO is therefore suitable for distributed configurations and for integrating a lower-level AS-Interface network.

Single master

The AS-i single master version of IE/AS-i i Link PN IO is suitable for applications with typical volumes of data. The single master can operate up to 248 DI / 248 DQ, using 62 A/B slaves with 4 DI / 4 DQ each.

Double master

The AS-i double master version of IE/AS-i Link PN IO is suitable for applications with large volumes of data. In this case, twice the volume of project data can be used on two AS-i lines running independently of each other. The double master can operate up to 496 DI / 496 DQ, using two AS-i networks each with 62 A/B slaves with 4 DI / 4 DQ each.

Integration of AS-Interface on PROFINET through IE/AS-i Link PN IO as single/double master

Communication

AS-Interface: Routers

IE/AS-i Link PN IO

Wireless communication

Using an upstream IWLAN client module, e.g. SCALANCE W748-1 RJ45, an AS-Interface line can be integrated in the PROFINET world by wireless means.

Sample uses are applications which up to now have been performed with fault-prone tow chain or collector wire technology. Maintenance costs are thus reduced.

Wireless communication between Industrial Ethernet and AS-Interface components

Selection and ordering data

$\left.\begin{array}{l|l|l|l}\text { Version } & \text { SD } & \text { Article No. } & \begin{array}{c}\text { PU } \\ \text { (UNIT, }\end{array} \\ \text { SET, M) }\end{array}\right]$

Accessories

Version	SD	Article No.	PU (UNIT, SET, M)	PS*
	d			
C-PLUG	1	6GK1900-0AB00	1	1 unit
Exchange medium for simple exchange of devices in the event of a fault; for accommodating configuration and application data; can be used in SIMATIC NET products with a C-PLUG slot				
IE FC RJ45 Plug 90				
RJ45 plug-in connector for Industrial Ethernet, with robust metal enclosure and integrated insulation displacement contacts for connection of Industrial Ethernet FC installation cables; with 90° cable feeder				
-1 pack = 1 unit	1	6GK1901-1BB20-2AA0	1	1 unit
- 1 pack $=10$ units	1	6GK1901-1BB20-2AB0	1	10 units
- 1 pack $=50$ units	1	6GK1901-1BB20-2AE0	1	50 units

AS-Interface: Slaves

Overview

K60

K45

K20
Three coordinated series of AS-Interface compact modules with digital and analog compact modules and a high degree of protection are available for use in the field:

- Digital modules with a high degree of protection
- Series K60, see pages $14 / 52$ and $14 / 54$
- Series K45, see page 14/57
- Series K20, see page 14/58
- Analog modules with a high degree of protection
- Series K60, see page 14/61

All compact modules are characterized by particularly simple handling. The K60 and K45 modules are mounted with a mounting plate. The mounting plate is used to mount the AS-Interface flat cables and enables mounting on a wall or standard mounting rail.
The particularly narrow K20 modules are directly mounted without a mounting plate and connected to the AS-Interface using a round cable.

Connection types

For flexible connection of different sensors and actuators, the following PIN assignments are available on the I/O modules with M12 sockets:

Standard assignment

With the standard assignment, one sensor/actuator is connected per M12 socket. In this case the signal for the outputs is acquired at PIN4 while the signal for the inputs is acquired at PIN4 and PIN2. As the result, sensors can be connected directly to PIN2 and PIN4.
Y-assignment
With the Y-assignment, two sensors or two actuators can be connected to one M12 socket. In this case, both PIN4 and PIN2 are provided for one sensor signal and one actuator signal on each M12 socket.

Y-II assignment

The Y-II assignment offers the following options:

- Individual connection of a sensor/actuator to one M12 socket
- Connection of two sensors/actuators to one M12 socket as follows:
- The signal of the first sensor/actuator is connected to PIN4 of the first socket.
- The signal of the second sensor/actuator is connected to PIN2 of the first socket and to PIN4 of the second socket. In this case, the second socket is not required and is closed with a sealing cap.

Overview of digital compact modules

The following table provides an overview of the important features of the digital compact modules.

Version	K60	K45	K20
8 inputs/2 outputs	\checkmark	--	--
8 inputs	\checkmark	\checkmark	--
4 inputs/4 outputs	\checkmark	\checkmark	\checkmark
4 inputs/3 outputs	\checkmark	--	--
4 inputs/2 outputs	\checkmark	--	--
4 inputs	\checkmark	\checkmark	\checkmark
2 inputs/2 outputs	--	\checkmark	\checkmark
4 outputs	\checkmark	\checkmark	\checkmark
3 outputs	--	\checkmark	--
AS-Interface connection	Flat cable / round cable	Flat cable	Round cable
I/O connection method	M12	M12/M8	M12/M8
Pin assignment	Standard/Y-II/Y	Standard/ Y	Standard/Y
Degree of protection	IP65/IP67/IP68/IP69K	IP65/IP67	IP65/IP67
Addressing type A/B address	\checkmark	\checkmark	\checkmark
\checkmark Available -- Not available			
Safety modules for AS-Interface, see page 14/26.			

AS-Interface: Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - K60

Overview

The K60 digital AS-Interface compact modules are characterized by optimized handling characteristics and user-friendliness. They permit the mounting times and startup times of AS-Interface to be reduced by up to 40%.

Mounting and connection of the AS-Interface shaped cables

Assembly of the K60 modules is performed with a mounting plate which accommodates the AS-Interface shaped cables. Two different mounting plates are offered for

- Wall mounting
- Standard rail mounting

The mounting plate and the compact module are joined together by means of a screw, with simultaneous contacting of the AS-Interface cable by the service-proven insulation piercing method.

Addressing and connection of the sensors/actuators

Addressing of the K60 modules is performed using an addressing socket integrated in the compact module. The addresses can also be assigned after installation.
K60 modules with a maximum of four digital inputs and outputs
These compact modules contain the M12 standard connections for inputs and outputs. Using M12 standard plugs, a maximum of four sensors and four actuators can be connected to the compact module.
K60 compact modules with a maximum of eight digital inputs
These modules have eight digital inputs for connection through M12 plugs.

The module requires two AS-Interface addresses for processing all eight inputs. The addressing can thus be performed through a double addressing socket integrated in the module.

K60 data couplers

An AS-Interface data coupler has been added to the K60 compact module range. Integrated in this module are two AS-i slaves which are connected to two different AS-i networks. Each of the two integrated slaves has four virtual inputs and four virtual outputs. The bidirectional data transmission of four data bits between two AS-i networks is thus possible in a simple and costeffective manner. The data coupler needs its own address in each AS-i network. The data coupler is supplied with power directly from the AS-i cable.
Each AS-i network works with a different cycle time depending on the number of stations. Hence two AS-i networks are not necessarily synchronous. For this reason, the AS-i data coupler can be used to transmit only standard data and no safety data.

Communication

AS-Interface: Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - K60

Selection and ordering data

	Version					$\begin{aligned} & \text { SD } \\ & d \end{aligned}$	Article No.	$\begin{array}{r} \text { PU (UNIT, } \\ \text { SET, M) } \\ \hline \end{array}$	PS*
	Digital I/O modules, IP67 - K60 - PNP transistor - Width 60 mm - Connection method: M12 - Modules supplied without mounting plate			Pin assignment	Sensor power supply via				
$\begin{aligned} & \text { 3RK1400- } \\ & \text { 1DQ00-0AA3 } \end{aligned}$	8 inputs/ 2 outputs ${ }^{1)}$	2 A	A/B	Special	AS-i	2	3RK2400-1HQ00-0AA3	1	1 unit
	8 inputs ${ }^{1)}$	--	Standard	Y-II	AS-i	-	3RK1200-0DQ00-0AA3	1	1 unit
		--	A/B	Y-II	AS-i	-	3RK2200-0DQ00-0AA3	1	1 unit
		--	A/B	Y-II	$U_{\text {aux }}$	5	3RK2200-1DQ00-1AA3	1	1 unit
	4 inputs/	2 A	Standard	Y-II	AS-i	\checkmark	3RK1400-1DQ00-0AA3	1	1 unit
	4 outputs	2 A	Standard	Standard	AS-i	\checkmark	3RK1400-1CQ00-0AA3	1	1 unit
		1 A	Standard	Y-II	AS-i	2	3RK1400-1DQ01-0AA3	1	1 unit
		1 A	Standard	Standard	AS-i	-	3RK1400-1DQ03-0AA3	1	1 unit
		2 A	A/B (spec. V3.0)	Y-II	AS-i	2	3RK2400-1DQ00-0AA3	1	1 unit
		2 A	A/B (spec. V3.0)	Y-II	$U_{\text {aux }}$	2	3RK2400-1DQ00-1AA3	1	1 unit
	4 inputs/ 3 outputs	2 A	A/B	Y-II	AS-i	-	3RK2400-1FQ03-0AA3	1	1 unit
	4 inputs/ 2 outputs	2 A	Standard	Y-II	AS-i	-	3RK1400-1MQ00-0AA3	1	1 unit
	4 inputs	--	Standard	Y-II	AS-i	-	3RK1200-0CQ00-0AA3	1	1 unit
		--	A/B	Y-II	AS-i	2	3RK2200-0CQ00-0AA3	1	1 unit
	2×2 inputs/ 2×2 outputs	1 A	Standard	Y	AS-i	15	3RK1400-1DQ02-0AA3	1	1 unit
	4 outputs	2 A	Standard	Y-II	--	-	3RK1100-1CQ00-0AA3	1	1 unit
		2 A	A/B (spec. V3.0)	Y-II	--	2	3RK2100-1CQ00-0AA3	1	1 unit
	Digital I/O modules, IP67 - K60 data couplers Modules supplied without mounting plate								
	Type	Current carrying capacity of outputs	Slave addressing type	Pin assignment	Sensor power supply via				
	Data coupler 4 inputs/4 outputs (virtual)	--	Standard	--	--	10	3RK1408-8SQ00-0AA3	1	1 unit
${ }^{1)}$ Module occupies two AS-Interface addresses					Safety modules for AS-Interface, see page 14/26 onwards.				

Accessories

	Version	$\begin{aligned} & \text { SD } \\ & \mathrm{d} \end{aligned}$	Article No.	$\begin{array}{r} \text { PU (UNIT, } \\ \text { SET, M) } \\ \hline \end{array}$	PS*
3RK1901-0CA00	K60 mounting plates Suitable for all K60 compact modules - Wall mounting - Standard rail mounting	$\stackrel{\rightharpoonup}{\nabla}$	$\begin{aligned} & \text { 3RK1901-0CA00 } \\ & \text { 3RK1901-0CB01 } \end{aligned}$	1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$
	AS-Interface sealing caps M12 For free M12 sockets	-	3RK1901-1KA00	100	10 units
	Sealing sets - For K60 mounting plate and standard distributor - Cannot be used for K45 mounting plate - One set contains one straight and one shaped seal	2	3RK1902-0AR00	100	5 units

Overview

Operation in particularly harsh environments

K60R module in degree of protection IP68/IP69K
Modules with degree of protection IP67 cannot be used in areas exposed to permanently high levels of humidity, in applications with drilling emulsions and cutting oils or when cleaning with high-pressure cleaners. The answer for these applications is provided by the expansion of the K60 compact modules with the K60R module with degree of protection IP68/IP69K.
The K60R modules are connected instead of the AS-Interface flat cable using a round cable with M12 cable box. The AS-Interface bus cable and the 24 V DC auxiliary power supply are routed in this case in a shared round cable.
Degree of protection IP68 permits many new applications that were impossible with the former field modules with degree of protection IP67. In applications such as filling plants or machine tools, the K60R with degree of protection IP68 enables the module to be used directly in zones exposed to permanent loading by humidity. It is thus possible to make even more rigorous savings in wiring with AS-Interface. For more information on IP68 test conditions, see "IP68/IP69K tests" on page 14/54.
Cleaning with high-pressure cleaners, such as is regularly performed in the food and drinks industry for instance, is possible without difficulty (IP69K).
In applications with tow chains, many users rely on placing the AS-Interface bus cable in a round cable. With the K60R module, a round cable connection is possible for direct connection to a round cable. No adapter is required.

Mounting

The same mounting plates are used as for the K60 modules. Instead of using flat cables, the K60R is connected using a 4 -pole round cable with an M12 connection. With the K60R the mounting plate thus serves only as a fixture and ground terminal.

Addressing

Addressing is performed using the same socket as for the bus connection. Connecting the module to the addressing unit takes place over a 3-pole standard M12 cable.
When the mounting is finished, the module is connected with the addressing cable to the addressing unit and addressed. The addressing cable is then removed and the module connected to the bus cable.

Connection

K60R connection options
In the IP67 environment, the service-proven standard components are connected using flat cables. Spur lines are laid into the IP68 environment by means of an AS-Interface M12 feeder (3RK1901-2NR..). The module is connected with a round cable to an M12 cable box. For this purpose, the module has an M12 bus connection instead of the former addressing socket. The AS-Interface bus cable and the 24 V DC auxiliary voltage are routed together in a 4 -pole round cable. There must be no ground conductor in this round cable. Connection to ground is made through the mounting plate.
In the IP68 environment, only cables with extruded M12 plugs may be used.
Please note the following conditions:

- The configuration guidelines for AS-Interface apply. For all M12 connecting cables, the maximum permissible current is limited to 4 A . The cross-section of these cables is just $0.34 \mathrm{~mm}^{2}$. For connection of the K60R modules, the aforementioned M12 connecting cables can be used for the spur lines. The voltage drop caused by the ohmic resistance (approx. $0.11 \Omega / \mathrm{m}$) must be taken into account.
- For round cable connections with shared AS-i and $U_{\text {aux }}$ in a single cable, the following maximum lengths apply:
- Per spur line from feeder to module: max. 5 m
- Total of all round cable segments in an AS-Interface network: max. 20 m

Communication

AS-Interface: Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP68/IP69K - K60R

IP68/IP69K tests

K60R modules were tested with the following tests:

- Stricter test than IP67: 90 min at 1.8 m depth of water (IP67: 30 min at 1 m depth of water)
- Salt water test: Five months in salt water, 20 cm deep, at room temperature
- Test with particularly creepable oil: Five months completely under oil at room temperature
- Test with drilling emulsion: Five months at room temperature (components of the drilling emulsion: Anionic and non-ionic emulsifiers, paraffinic low-aromatic mineral oil, boric acid alkanolamines, corrosion inhibitors, oil content 40\%)
- Test in oil bath (Excellence 416 oil) with alternating oil bath temperature: 130 cycles of 15 to $55^{\circ} \mathrm{C}$, two months
- Cleaning with a high-pressure cleaner according to IP69K: 80 to 100 bar, 10 to 15 cm distance, time per side > 30 s , water temperature $80^{\circ} \mathrm{C}$

To simulate requirements as realistically as possible, the modules were artificially aged prior to the tests by 15 temperature cycles of $-25 /+85^{\circ} \mathrm{C}$. During the test, the modules were connected to 3 RX1 connecting cables. Unassigned connections were closed with 3RK1901-1KA00 sealing caps.
Note:
Sealing caps and M12 connections must be tightened with the correct torque.

Selection and ordering data

	Version	SD	Article No.	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
		d			
(2)* 0	Digital I/O modules, IP68/IP69K - K60R - 4 inputs/4 outputs	2	3RK1400-1CR00-0AA3	1	1 unit
- 0	- Width 60 mm				
© $\cdot 1$	- IP68/IP69K				
	- Standard assignment				
.	- Current carrying capacity				
$: 0$	- 200 mA (inputs)				
	- 2 A (outputs)				
3RK1400-1CR00-	- Slave addressing type: Standard address				
OAA3	- Modules supplied without mounting plate				

Communication

AS-Interface: Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP68/IP69K - K60R

Accessories

	Version				SD	Article No.	PU (UNIT, SET, M)	PS*
					d			
	K60 mounting plates Suitable for all K60 and K60R compact modules - Wall mounting - Standard rail mounting				$\stackrel{\rightharpoonup}{\nabla}$	3RK1901-0CA00 3RK1901-0CB01	1	1 unit 1 unit
4	AS-Interface sealing caps M12 For free M12 sockets				-	3RK1901-1KA00	100	10 units
	AS-Interface M12 feeders, current carrying capacity up to 4 A							
	For flat cable	For	Cable length	Cable end in feeder				
	$\begin{aligned} & \text { AS-i } / U_{\text {aux }} \\ & \text { AS-i } / U_{\text {aux }} \\ & \text { AS-i } / U_{\text {aux }} \end{aligned}$	M12 socket M12 cable box M12 cable box	$\begin{aligned} & 1 \mathrm{~m} \\ & 2 \mathrm{~m} \end{aligned}$	Not available Not available Not available	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	3RK1901-2NR20 3RK1901-2NR21 3RK1901-2NR22	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	1 unit 1 unit 1 unit
3RK1901-2NR21	AS-Interface M12 feeders, 4-fold, current carrying capacity up to 4 A							
	For flat cable	For	Cable length	Cable end in feeder				
	AS-i/ $/ U_{\text {aux }}$	4-fold M12 socket, delivery includes mounting plate (for wall and standard rail mounting)	--	Not available	2	3RK1901-1NR04	1	1 unit
3RK1902-4PB15-3AA0	M12 connecting cables -3-pole - For addressing AS-i slaves with M12 bus connection - Cable length 1.5 m				5	3RK1902-4PB15-3AA0	1	1 unit

AS-Interface: Slaves

Overview

Compact modules K45
The K45 series of compact modules supplements the large K60 compact modules which have a proven track record in industry. They are the logical consequence for rounding off the bottom end of the existing product range.
The acclaimed advantages of the existing K60 compact modules are fully emulated by the K45 modules. The K45 modules have a substantially smaller basic area and installation depth, however.
Yet in spite of these small dimensions all the modules have large labels and an integrated addressing socket.
Two mounting plates are offered for the K45 compact modules:

- Mounting plate for wall mounting

This has a hole pattern that is identical to that of the K60 compact modules. This means that K60 compact modules can be mounted together with K45 modules in an aligned arrangement. The shaped cables can be inserted in the recesses of the mounting plates where they cause no hindrance.

- Mounting plate for standard rail mounting

Connection of the AS-Interface shaped cables

The mounting plate and the compact module are joined together by means of a screw, with simultaneous contacting of the AS-Interface cable by the service-proven insulation piercing method.
Now, mounting the AS-Interface shaped cables is in fact easier than ever. The yellow and black AS-Interface shaped cable can be inserted into the mounting plates from the left or right regardless of the position of the coding lug. The correct polarity of the applied voltages is thus guaranteed.

Addressing and connection of the sensors/actuators

Addressing of the K45 compact modules is performed using an addressing socket integrated in the module. The addresses can be assigned even when mounted.
K45 modules with a maximum of four digital inputs and outputs
These compact modules contain up to four M12 standard connections or M8 standard connections for inputs and outputs. Using M12 or M8 standard connectors, a maximum of four sensors and four actuators can be connected to the compact module. Depending on the module, the sockets can be assigned in duplicate.
Pin assignment: Y - i.e. via a socket, two sensors or one sensor/one actuator are connected.

K45 modules with a maximum of eight digital inputs

These modules have eight digital inputs for connection through M12 plugs. The sockets have duplicate assignments.
Pin assignment: Y - i.e. via a socket, two sensors or one sensor/one actuator are connected.

The module requires two AS-Interface addresses for processing all eight inputs. The addresses can be assigned through a double addressing socket integrated in the module.

Communication

AS-Interface: Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - K45

Selection and ordering data

	Version						$\begin{aligned} & \text { SD } \\ & \text { d } \end{aligned}$	Article No.	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	Digital I/O modules, IP67 - K45 - PNP transistor - Width 45 mm - Current carrying capacity of the inputs: 200 mA - Modules supplied without mounting plate									
	Type	Current carrying capacity of outputs	Slave addressing type	Pin assignment	$\begin{aligned} & U_{\text {aux }} \\ & 24 \mathrm{~V} \end{aligned}$	Connection methods				
R	8 inputs ${ }^{1)}$	--	A/B	Y	--	M12	2	3RK2200-0DQ20-0AA3	1	1 unit
3RK1400-0GQ20-0AA3	4 inputs	--	Standard	Standard	--	M12	-	3RK1200-0CQ20-0AA3	1	1 unit
		--	Standard	Standard	--	M8	2	3RK1200-0CT20-0AA3	1	1 unit
		--	A/B	Standard	--	M12	\bigcirc	3RK2200-0CQ20-0AA3	1	1 unit
		--	A/B	Standard	--	M8	5	3RK2200-0CT20-0AA3	1	1 unit
	2×2 inputs	--	A/B	Y	--	M12	2	3RK2200-0CQ22-0AA3	1	1 unit
	2 inputs/ 2 outputs	$2 A^{2}$	Standard	Standard	\checkmark	M12	-	3RK1400-1BQ20-0AA3	1	1 unit
	$2 \times$ (1 input/ 1 output)	0.2 A	Standard	Y	--	M12	2	3RK1400-0GQ20-0AA3	1	1 unit
	$4 \times$ (1 input/ 1 output)	0.2 A	A/B (spec. V3.0)	Y	--	M12	5	3RK2400-0GQ20-0AA3	1	1 unit
		0.5 A	A/B (spec. V3.0)	Y	\checkmark	M12	5	3RK2400-1GQ20-1AA3	1	1 unit
	4 outputs	1 A	$\begin{aligned} & \text { A/B } \\ & \text { (spec. V3.0) } \end{aligned}$	Standard	\checkmark	M12	2	3RK2100-1CQ20-0AA3	1	1 unit
	3 outputs	1 A	A/B	Standard	\checkmark	M12	-	3RK2100-1EQ20-0AA3	1	1 unit
	4 outputs	1 A	Standard	Standard	\checkmark	M12	\checkmark	3RK1100-1CQ20-0AA3	1	1 unit
	2 outputs/ 2 inputs	2 A	A/B	Standard	\checkmark	M12	2	3RK2400-1BQ20-0AA3	1	1 unit
\checkmark Available -- Not available						1) Module occupies two AS-Interface addresses 2) The typical current carrying capacity per output increases with version "E12" from 1.5 to 2 A (available since approx. 07/2003).				
						Safety modules for AS-Interface, see page 14/26 onwards.				

Accessories

	Version	$\begin{aligned} & \text { SD } \\ & \mathrm{d} \end{aligned}$	Article No.		PS*
	K45 mounting plates - For wall mounting - For standard rail mounting		3RK1901-2EA00 3RK1901-2DA00	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	Cable termination pieces For sealing of open cable ends (shaped AS-Interface cable) in IP67	-	3RK1901-1MN00	1	10 units
	AS-Interface sealing caps - For free M12 sockets - For free M8 sockets	2	3RK1901-1KA00 3RK1901-1PN00	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	10 units 10 units
3RK1901-1KA00 3RK1901-1PN00					

AS-Interface: Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - K20

Overview

Digital I/O modules, IP67 - K20
The K20 compact module series rounds off the AS-Interface compact modules with a particularly slim design and only $20-\mathrm{mm}$ width. Thanks to its extremely compact dimensions, these modules are particularly suited for handling machine applications in the field of production engineering where modules need to be arranged in the smallest of spaces.

Robotics is yet another application area. The K20 modules are connected to the AS-Interface with a round cable with M12 cable box instead of with the AS-Interface flat cable. The AS-Interface bus cable and the 24 V DC auxiliary energy are routed in this case in a shared round cable. This enables extremely compact installation.

The flexibility of the round cable means that it can also be used on moving machine parts without any problems. The K20 modules are also ideal for such applications as their non-encapsulated design makes them particularly light in weight.

In applications with tow chains, many users rely on placing the AS-Interface bus cable in a round cable. In this case, the K20 modules support direct connection to the round cable. No flat to round cable adapter is required.
The K20 compact module range includes standard AS-Interface modules, as well as an ASIsafe version for the connection of safety-related sensors, such as EMERGENCY STOP pushbuttons or protective door monitoring.
For particularly space-saving dimensions, the sensors and actuators are connected over M8 plug-in connectors. Alternatively, M12 connectors with Y-assignment can be used.

Selection and ordering data

	Version					SD	Article No.		PS*
		d							
	Digital I/O modules, IP67-K20								
	Type	Current carrying capacity of outputs	Slave addressing type	Pin assignment	Connection methods				
$\begin{aligned} & \text { 3RK2200- } \\ & \text { OCT30-0AA3 } \end{aligned}$	4 inputs	--	A/B	Standard	M8	2	3RK2200-0CT30-0AA3	1	1 unit
		--	A/B		M12	5	3RK2200-0CQ30-0AA3	1	1 unit
	2 inputs/ 2 outputs	1	A/B	Standard	M8	2	3RK2400-1BT30-0AA3	1	1 unit
$\begin{aligned} & \text { 3RK2200- } \\ & \text { OCT30-0AA3 } \end{aligned}$		1	A/B	Y	M12	2	3RK2400-1BQ30-0AA3	1	1 unit
	4 outputs	1	A/B (spec. V3.0)	Standard	M8	2	3RK2100-1CT30-0AA3	1	1 unit
	4 inputs/	1	Standard	Standard	M8	10	3RK1400-1CT30-0AA3	1	1 unit
	4 outputs	1	A/B (spec. V3.0)	Standard	M8	2	3RK2400-1CT30-0AA3	1	1 unit
	2 safe inp	--	Standard	Y-II	M12	2	3RK1205-0BQ30-0AA3	1	1 unit

Safety modules for AS-Interface, see nage 14/26 onwards

Communication

AS-Interface: Slaves

I/O modules for use in the field, high degree of protection > Digital I/O modules, IP67 - K20

Accessories

AS-Interface: Slaves

Overview

K60 analog compact module
More information
For the Manual "AS-Interface Analog Modules Profile 7.3/Profile 7.A.9", see https://support.industry.siemens.com/cs/ww/en/view/7643815

AS-Interface analog modules from the K60 compact series detect or issue analog signals locally. These modules are linked to the higher-level controller through an AS-Interface master according to specification V2.1 or specification V3.0.
The analog modules are divided into the following groups:

- Input modules for
- Sensors with current sensor
- Sensors with voltage signal
- Sensors with thermal resistor
- Output modules for
- Current actuators
- Voltage actuators

The input modules according to profile 7.3/7.4 are available with two or four input channels. It is possible in addition to convert the two-channel module to using only one input channel, thus enabling very short times before the analog value is available. The conversion is effected by means of a jumper plug at socket 3. The transmission times achieved with analog modules according to Profile 7.A. 9 are twice as fast as those achieved with profile 7.3/7.4. Operation is adjustable in this case, e.g. it is possible to choose with the ID1 code whether the module is operated with one or two channels.
The output modules are configured as two-channel modules as standard.

The input and output channels are electrically separated from the AS-Interface network. If sensors with a higher power requirement are to be connected, more power can be supplied through the auxiliary voltage as an alternative to the internal supply.
In the manual "AS-Interface Analog Modules Profile 7.3/Profile 7.A.9", the modules are presented in great detail along with their technical specifications and in-depth notes on operation. Sample function blocks round off the manual, see
"More information" above.

Benefits

- Analog modules are just as easy to integrate in AS-Interface as digital modules
- Analog values can be easily detected and issued locally
- Preprocessing of the analog value transfer in the master enables rapid evaluation of the analog values
- Up to four values can be detected using one analog module
- Faster transmission and conversion of analog values thanks to the new option for switching to single-channel operation
In addition, specification V3.0 now also offers:
- A/B technology, now also with analog modules
- On average, double fast transmission times (only 3 or 4 cycles, depending on the resolution selected)
- Variable adjustable mode: 12-bit or 14-bit resolution, single-channel or two-channel, selectable via the ID1 code

Communication

AS-Interface: Slaves

I/O modules for use in the field, high degree of protection > Analog I/O modules, IP67 - K60

Selection and ordering data

1) Some modules are available in the extended temperature range (from - 25 to $70^{\circ} \mathrm{C}$) and for use in difficult environmental conditions (coated according to environment standard IEC 60721).

Description

SIPLUS AS-Interface 2AA, IP67 SIPLUS AS-Interface 2AI, IP67 SIPLUS AS-Interface 2AI, IP67

SIPLUS article number

6AG1107-1BQ40-7AA3 6AG1207-1BQ40-7AA3 6AG1207-3BQ40-7AA3

Corresponds to module

3RK1107-1BQ40-0AA3
3RK1207-1BQ40-0AA3
3RK1207-3BQ40-0AA3

For more information, see www.siemens.com/siplus-extreme

Communication

AS-Interface: Slaves
I/O modules for use in the field, high degree of protection > Analog I/O modules, IP67 - K60

Accessories

	Version	SD	Article No.		PS*
		d			
	K60 mounting plates - Wall mounting - Standard rail mounting		3RK1901-0CA00 3RK1901-0CB01	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit
	M12 sealing caps	-	3RK1901-1KA00	100	10 units
3RK1902-0AR00	Sealing sets - For K60 mounting plate and distributor - Cannot be used for K45 mounting plate - One set contains one straight and one shaped seal	2	3RK1902-OAR00	100	5 units
3RK1901-1AA00	Jumper plugs For changing over the two channel input modules	2	3RK1901-1AA00	1	1 unit

AS-Interface: Slaves

I/O modules for use in the control cabinet > Introduction

Overview

SC17.5F, SC17.5 and SC22.5 SlimLine Compact modules

F90 module

Flat module

For AS-Interface applications inside control cabinets, there are various module series for the most diverse requirements:

- SlimLine Compact - particularly slim design ideal for space-saving use in the control cabinet
- F90 module - particularly flat design for flat control boxes
- Flat module - special design for integration into customerspecific solutions

The existing SlimLine series of modules S22.5 and S45 are being replaced by the innovative new devices in the SlimLine Compact SC17.5, SC17.5F and SC22.5 series. The previous SlimLine modules are still available as replacements for existing systems.

Available versions

The following table provides an overview of the key features of the different series of control cabinet modules.

Feature	SlimLine Compact	F90 module	Flat module
Digital I/O	\checkmark	\checkmark	\checkmark
Analog I/O	\checkmark	--	--
Safe inputs	\checkmark	--	--
Relay outputs	\checkmark	--	--
Addressing method A/B address	--	--	
Mounting onto TH 35 standard mounting rail according to IEC 60715	\checkmark	-	--
Wall mounting using push-in lugs	\checkmark	--	--
Integrated lugs for screw fixing	--	--	\checkmark
Width in mm	17.5 or 22.5	90	80

\checkmark Available

-- Not available

Communication

AS-Interface: Slaves

I/O modules for use in the control cabinet > SlimLine Compact

Overview

SlimLine Compact modules

SC17.5 and SC22.5 SlimLine Compact modules with screw terminals
The AS-Interface module series for the control cabinet SlimLine Compact with degree of protection IP20 creates space in the cabinet and in distributed local control boxes. A width of just 17.5 mm or 22.5 mm ensures considerable space savings in the control cabinet.
The SlimLine Compact module series comprises not only digital and analog I/O modules but also ASIsafe modules with safe inputs. Digital outputs are available as solid-state and relay outputs.

Sensors and actuators, as well as the AS-Interface bus cable, are connected by means of removable screw or push-in springloaded terminals. Device connectors available as accessories offer the possibility of looping through the AS-Interface bus cable and the 24 V DC power supply $U_{\text {aux }}$ from one module to additional modules. This significantly simplifies the wiring, as the AS-Interface bus cable and $U_{\text {aux }}$ only have to be connected to one device.

SlimLine Compact module SC22.5 with connector with screw terminals
All devices for the connection of 3-wire sensors offer the option of supplying the sensors either from the AS-Interface bus cable or alternatively from the 24 V DC voltage supply $U_{\text {aux }}$ depending on the requirements of the particular application. A slide switch is used to make the selection. If supply via $U_{\text {aux }}$ is selected, the wiring of the sensor terminals remains unchanged. This means that no external supply is required for the sensors.
All modules have LEDs on the front that provide diagnostics information and indicate the status of the module inputs and outputs. Devices with semiconductor outputs indicate the status of each output by means of a dual LED. Thus the status (on/off/overload) is displayed for each output. An addressing socket integrated at the front enables the module to be addressed also when it is installed. Integrated adapters permit mounting onto a standard mounting rail - either directly for the module or for the device connector. Alternatively, the modules can also be screw-mounted using push-in lugs (accessories). These lugs for screw fastening must be ordered separately.

Communication

AS-Interface: Slaves

//O modules for use in the control cabinet > SlimLine Compact

Selection and ordering data

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
PS^{*}	$=1$ unit

More information
For the Equipment Manual "SlimLine Compact Modules", see
https://support.industry.siemens.com/cs/ww/en/view/109481489

Version I/O type	Width	Inputs	Outputs	SD	Screw terminals		SD	Spring-loaded terminals (push-in)	O
	mm			d	Article No.		d	Article No.	

SC17.5 and SC22.5 digital SlimLine Compact modules

Slave addressing type: A/B address

4 inputs	17.5	2-wire	--	2
	22.5	3 -wire	--	2
4 outputs	22.5	--	2A solid-state	2
4 inputs/ 2 outputs, relays	22.5	3 -wire	Relay (change-over contact)	2
4 inputs/ 4 outputs, relays	22.5	3-wire	Relay (NO contacts)	2
4 inputs/	22.5	3 -wire	2A solid-state	2

Slave addressing type: Standard address

4 inputs/
4 outputs 2AA2
SC22.5 analog SlimLine Compact modules
Slave addressing type: Standard address

3RK2200-0CE00-2AA2	2	3RK2200-0CG00-2AA2
3RK2200-2CE00-2AA2	2	3RK2200-2CG00-2AA2
3RK2100-1CE00-2AA2	2	3RK2100-1CG00-2AA2
3RK2402-2ME00-2AA2	2	3RK2402-2MG00-2AA2
3RK2402-2CE00-2AA2	2	3RK2402-2CG00-2AA2
3RK2400-2CE00-2AA2	2	3RK2400-2CG00-2AA2

4 outputs
2 outputs,
relays
4 outputs,
relays
inputs/
outputs

SC17.5F ASIsafe SlimLine Compact modules

Slave addressing type: Standard address

| 2 safe inputs | 17.5 | For
 mechanical
 contacts | -- | 2 | 3RK1205-0BE00-2AA2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 3RK1205-0BG00-2AA2

Safety modules for AS-Interface, see page 14/26 onwards.

Communication

AS-Interface: Slaves

I/O modules for use in the control cabinet > SlimLine Compact

Accessories

${ }^{1)} \mathrm{PC}$ labeling system for individual inscription of unit labeling plates available from: murrplastik Systemtechnik GmbH (see page 16/15).

AS-Interface: Slaves

I/O modules for use in the control cabinet > SlimLine Compact

More information

SlimLine modules S45 (picture on left) and S22.5 module (picture on right) with spring-loaded terminals

The existing SlimLine series of I/O modules for use in the control cabinet is being replaced by the new, innovative SlimLine Compact series. We recommend that these new devices are used in future.
The Cross reference table indicates the best options for replacing the existing SlimLine devices with SlimLine Compact devices.
Note:
The previous SlimLine devices are still available for use as replacements in existing systems. As a result of the innovation, the new SlimLine Compact devices are not fully compatible in terms of either mechanical dimensions or electrical properties.
The Cross reference table below links the existing S22.5, S22.5F and S45 SlimLine modules with the new SC17.5, SC17.5F and SC22.5 SlimLine Compact devices.

Cross reference table

S22.5, S22.5F and S45 SlimLine			Comparison type: SC17.5, SC17.5F and SC22.5 SlimLine Compact		
Screw terminals	Spring-loaded terminals	Version	Screw terminals	Spring-loaded terminals	Version
3RK1200-0CE00-0AA2	3RK1200-0CG00-0AA2	4 DI, 2-wire, standard address	3RK2200-0CE00-2AA2	3RK2200-0CG00-2AA2	4 DI, 2-wire, A/B address
3RK2200-0CE02-0AA2	3RK2200-0CG02-0AA2	$\begin{aligned} & 4 \mathrm{DI}, \\ & \text { A/B address } \end{aligned}$	3RK2200-2CE00-2AA2	3RK2200-2CG00-2AA2	$4 \mathrm{DI},$ A/B address
3RK1200-0CE02-0AA2	3RK1200-0CG02-0AA2	4 DI, standard address			
3RK1400-0BE00-0AA2	3RK1400-0BG00-0AA2	2 DI / 2 DQ, standard address	3RK1400-2CE00-2AA2	3RK1400-2CG00-2AA2	4 DI / 4 DQ, standard address
3RK1402-0BE00-0AA2	3RK1402-0BG00-0AA2	2 DI / 2 DQ relay, standard address	3RK2402-2ME00-2AA2	3RK2402-2MG00-2AA2	4 DI / 2 DQ relay, A/B address
3RK1100-1CE00-0AA2	3RK1100-1CG00-0AA2	$\begin{aligned} & 4 \mathrm{DQ}, \\ & \text { standard address } \end{aligned}$	3RK2100-1CE00-2AA2	3RK2100-1CG00-2AA2	$\begin{aligned} & 4 \mathrm{DQ}, \\ & \text { A/B address } \end{aligned}$
3RK2400-1CE01-0AA2	3RK2400-1CG01-0AA2	4 DI / 4 DQ, A/B address	3RK2400-2CE00-2AA2	3RK2400-2CG00-2AA2	4 DI / 4 DQ, A / B address
3RK2400-1FE00-0AA2	3RK2400-1FG00-0AA2	4 DI / 3 DQ, A/B address			
3RK1400-1CE00-0AA2	3RK1400-1CG00-0AA2	4 DI / 4 DQ, 1A solid-state, standard address	3RK1400-2CE00-2AA2	3RK1400-2CG00-2AA2	4 DI / 4DQ, 2A solid-state, standard address
3RK1400-1CE01-0AA2	3RK1400-1CG01-0AA2	4 DI / 4 DQ, 2A solid-state, standard address			
3RK1402-3CE01-0AA2	3RK1402-3CG01-0AA2	$\begin{aligned} & 4 \mathrm{DI} / 4 \mathrm{DQ} \\ & \text { (sensor supply from } U_{\text {aux }} \text {), } \\ & \text { standard address } \end{aligned}$			
3RK1402-3CE00-0AA2	3RK1402-3CG00-0AA2	4 DI / 4 DQ relay, standard address	3RK2402-2CE00-2AA2	3RK2402-2CG00-2AA2	4 DI / 4 DQ relay, A/B address
3RK1205-0BE00-0AA2	3RK1205-0BG00-0AA2	2 F-DI, standard address	3RK1205-0BE00-2AA2	3RK1205-0BG00-2AA2	2 F-DI, standard address
3RK1405-0BE00-0AA2	3RK1405-0BG00-0AA2	$\begin{aligned} & 2 \text { F-DI / } 2 \mathrm{DQ}, \\ & \text { standard address } \\ & \text { (outputs supplied from U USI } \end{aligned}$	3RK1405-2BE00-2AA2	3RK1405-2BG00-2AA2	2 F-DI / 2 DQ, standard address (supply $U_{\text {ASI }} / U_{\text {aux }}$ selectable)
3RK1405-1BE00-0AA2	3RK1405-1BG00-0AA2	$\begin{aligned} & 2 \text { F-DI / } 2 \mathrm{DQ}, \\ & \text { standard address } \\ & \text { (outputs supplied from } U_{\text {aux }} \text {) } \end{aligned}$			

Communication

AS-Interface: Slaves

I/O modules for use in the control cabinet > F90 module

Selection and ordering data

	Version				SD	Article No.	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
				d				
	F90 module - Slave addressing type: Standard address - Width 90 mm - With COMBICON version: Delivery without COMBICON plug							
	Type	Connection	Inputs	Outputs				
3RG9002-0DB00	4 inputs/ 4 outputs	Screw	2- and 3-wire PNP transistor	PNP transistor 1 A	5	3RG9002-0DB00	1	1 unit
			2- and 3-wire PNP transistor	PNP transistor 2 A	5	3RG9002-0DA00	1	1 unit
			2- and 3-wire PNP transistor floating	PNP transistor 2 A	5	3RG9002-0DC00	1	1 unit
		$\text { COMBICON }{ }^{1}$	2- and 3-wire PNP transistor	PNP transistor 1 A	5	3RG9004-0DB00	1	1 unit
			2- and 3-wire PNP transistor	PNP transistor $2 \mathrm{~A}$	5	3RG9004-0DA00	1	1 unit
			2- and 3-wire PNP transistor floating	PNP transistor 2 A	5	3RG9004-0DC00	1	1 unit

1) Scope of supply does not include COMBICON connector set 3RX9810-0AA00, this must be ordered separately, see "Accessories".

Accessories

Version	SD	Article No.	PU (UNIT, SET, M)	PS*
	d			
COMBICON connector sets	5	3RX9810-0AA00	1	1 unit
For 4I/4O modules with COMBICON connection; one set comprises:				
- 4×5-pole plug for connection				
- Standard sensors/actuators				
- 2×4-pole plug for AS-Interface and external auxiliary voltage				

Communication

AS-Interface: Slaves

I/O modules for use in the control cabinet > Flat module

Overview

Flat module $41 / 40$

The flat module for the control cabinet in degree of protection IP20 has four inputs and four outputs.
The module is fitted at the front with an LED which indicates the module's status.

With the integrated lugs, the modules can be screwed on.
An integrated addressing socket enables the module to be addressed when it is installed.

Standard sensors/actuators and the AS-Interface cable can be connected using screw terminals.

Selection and ordering data

| Version | SD | Screw terminals | PU
 (UNIT, |
| :--- | :--- | :--- | :--- | :--- |

Communication

AS-Interface: Slaves

Modules with special functions > Counter modules

Overview

Counter module with spring-loaded terminals
The counter module is used to send hexadecimally coded count values (LSB=D0, MSB=D3) to a higher-level controller. The count value is increased by 1 for each valid count pulse at terminal 8. Beginning at 0, the module counts up to 15 and then begins again at 0 . The controller adopts the current value and determines the number of pulses between two host invocations through subtraction from the previous value. The total number of count pulses is determined by adding these differences.

For the values sent to be unambiguous, no more than 15 count values are allowed between two host invocations or AS-Interface master invocations at terminal 8. The maximum permissible transmission frequency is calculated from these times:
$f_{\text {TRmax }}=15 / T_{\text {max }}$
$T_{\text {max }}$: max. possible transmission time from the slave to the host
A further condition for the maximum frequency is the required pulse shape. For the counter to accept a pulse as valid, a Low must have been applied at the input for at least $300 \mu \mathrm{~s}$ and a High for at least 1 ms .

This results in a maximum frequency of
$f_{\text {Zmax }}=1 / 1.3 \mathrm{~ms}=769 \mathrm{~Hz}$ independently of the control system (see figure below).

Maximum frequency for the counter module
If the time criterion stipulated in the figure is violated, the count value is rejected.

The counter is active only for the reset parameter P2 (default). The counter is deleted when P2 is set, and the incoming count pulses are not registered until after P2 is reset again.

Note:
A customized function block is necessary or must be programmed.

Counter module connection options

Selection and ordering data

	Version		SD	Article No.	PU (UNIT, SET, M)	PS*
	d					
	Counter modules					
	Slave addressing type: Standard address					
	Width 22.5 mm					
	-With screw terminals		10	3RK1200-0CE03-0AA2	1	1 unit
	- With spring-loaded terminals	$\begin{gathered} 00 \\ \square \square \end{gathered}$	10	3RK1200-0CG03-0AA2	1	1 unit

AS-Interface: Slaves

Modules with special functions > Ground-fault detection modules

Overview

Ground-fault detection module with spring-loaded terminals
"Ground faults in any control circuit must not lead to unintentional starting or potentially hazardous movements or prevent the machine from stopping." (IEC 60204-1 / VDE 0113-1).
The AS-Interface ground-fault detection module is used to meet these requirements. Using this module from the SlimLine series, ground faults in AS-Interface systems can be reliably detected and reported.
The following ground faults are detected:

- Ground fault from AS-i "+" to ground
- Ground fault from AS-i "-" to ground
- Ground fault on sensors and actuators that are supplied from the AS-Interface voltage

Note:

Not suitable for AS-i Power24V.
Check whether the AS-i power supply unit or the AS-i master module, etc. features integrated ground-fault detection, and therefore whether a separate ground fault detection module can be omitted.

It should be noted that an AS-i cable segment behind an AS-i repeater requires its own ground-fault monitoring.

Selection and ordering data

	Version		SD	Article No.		PS*
	d					
	Ground-fault detection modules					
	Module does not require an AS-i address					
	Width 22.5 mm					
	- With screw terminals	\bigoplus	5	3RK1408-8KE00-0AA2	1	1 unit
	- With spring-loaded terminals	$\begin{array}{r} \infty 0 \\ \square \\ \hline \end{array}$	5	3RK1408-8KG00-0AA2	1	1 unit

Communication

AS-Interface: Slaves

Modules with special functions > Overvoltage protection modules

Overview

AS-Interface overvoltage protection module
The AS-Interface overvoltage protection module (protection module) protects downstream AS-Interface devices or individual sections in AS-i networks from conducted overvoltages which can be caused by switching operations and remote lightning strikes. The location of the protection module forms the transition from zone 1 to $2 / 3$ within the lightning protection zone concept. Direct lightning strikes must be coped with using additional protective measures at the transitions from lightning protection zone OA to 1.

With the AS-Interface overvoltage protection module, it is now also possible to integrate AS-Interface in the overall overvoltage protection concept of a plant or machine.
The module has the same design and degree of protection (IP67) as the AS-Interface K45 compact modules. It is a passive module and as such does not need its own address on the AS-Interface network. The module can be used to protect the AS-Interface cable and the cable for the auxiliary voltage from overvoltage. Overvoltages are discharged through a ground cable with a green/yellow oil-proof outer sheath. This cable is fixed in the module and must be connected with low resistance to the system's ground.

Rated discharge current $I_{\text {sn }}$

The rated discharge current is the peak value of a surge current of the form $8 / 20 \mu \mathrm{~s}$ (microseconds), for which the protection module is designed in accordance with a specified test program. With an $8 / 20$ waveform, 100% of the value is achieved after $8 \mu \mathrm{~s}$ and 50% after $20 \mu \mathrm{~s}$.

Protection level U_{p}

The protection level of a protection module is the highest momentary value of the voltage at the terminals, established in individual tests and characterizes the capability of a protection module to limit overvoltages to a residual level.

Configuration guidelines

The grounding of protection modules and the units to be protected must be effected through a shared grounding point.

If insulated devices are protected, their mounts must be included in the grounding points.

Sample application

Selection and ordering data

	Version	SD	Article No.	PU (UNIT,
		SET, M)		
	AS-Interface overvoltage protection module Module does not require an AS-i address			

AS-Interface: Power Supply Units and Data Decoupling Modules

AS-Interface power supply units

Overview

AS-Interface power supply unit for 3 A

More information

Operating instructions for AS-i power supply units, see https://support.industry.siemens.com/cs/ww/en/view/21489904 and https://support.industry.siemens.com/cs/ww/en/view/22317836
AS-Interface power supply units feed 30 V DC into the AS-Interface cable and supply the AS-Interface components. They include power-optimized data decoupling for the separation of communication signals and supply voltage. As the result, AS-Interface is able to convey both data and power along a single line. The power supply units are resistant to overload and short circuits.

Dimensions

AS-Interface power supply units have compact dimensions in widths of 50/70/120 mm. No distances from other devices need to be observed when mounting the power supply units.

Features

- Higher rating: The power supply units deliver currents of 2.6 to 8 A.
- Integrated data decoupling: As the result, AS-Interface is able to convey both data and power along a single line.
- Integrated ground-fault detection: The power supply units perform the reliable detection and signaling of ground faults according to IEC 60204-1. The AS-Interface voltage can be disconnected automatically in the event of a ground fault.
- Integrated overload detection: An output overload is detected and reported over a diagnostics LED.
- Diagnostics memory: Any ground faults or overloads on the output side are stored in a diagnostics memory until the device is RESET.
- Remote RESET and remote signaling: Using relay contacts, a ground fault can be signaled and evaluated by a central controller and/or indicator light.
- Diagnostics LEDs: Three different LEDs indicate the status of the AS-Interface power supply locally at the power supply unit.
- Ultra-wide input range/two-phase connection: The ultra-wide input range of 120 to 500 V of the 8 A version means that the supply units can be used in virtually any network worldwide. In addition, this version dispenses with the need for an N conductor as the device can be connected directly between 2 phases of a network.
- Operation with 24 V DC: The 3 A power supply unit is also available as a version with a 24 V DC input. This power supply unit is suitable for use in battery-powered systems or in systems with UPS (uninterruptible power supply).
- Removable terminal blocks with spring-loaded terminals: For easy exchanging of devices, each power supply unit has three removable terminal blocks: for the input side, for the output side and for Signal/RESET connections.

Benefits

- Complete solution for supplying AS-Interface networks while making full use of the maximum possible cable length per AS-i segment
- Only AS-i masters and AS-i slaves need to be connected to the AS-Interface cable in order to operate AS-Interface
- Compact, space-saving dimensions
- Reliable power supply even for large numbers of AS-Interface modules with a high power requirement
- Integrated ground-fault and overload detection saves the need for additional components and enhances safety
- Fast fault detection and reduced downtimes thanks to diagnostics memory, remote signaling and remote RESET
- Reduced downtimes as the result of removable terminal blocks which enable the fast exchanging of devices
- Ultra-wide input range of the 8 A version permits single-phase and two-phase operation and removes the need for an N conductor
- Can be used world-wide thanks to, for example, UL/CSA approval (UL 508)
- With the 2.6 A version, the output power is restricted to max. 100 W for use in Class 2 circuits in accordance with NEC (National Electrical Code)

Communication

AS-Interface: Power Supply Units and Data Decoupling Modules
AS-Interface power supply units

Selection and ordering data

	Version		SD	Spring-loaded terminals	0		PS*
			d	Article No.			
	AS-Interface power supply units, IP20 - AS-i single output 30 V DC - With integrated ground-fault detection - Ambient temperature during operation $-10 \ldots+70^{\circ} \mathrm{C}$ - 2.6 A version with output power restricted to max. 100 W (for Class 2 circuits in accordance with NEC) - Dimensions: Width: $50 \mathrm{~mm}(2.6 \mathrm{~A} / 3 \mathrm{~A}), 70 \mathrm{~mm}(5 \mathrm{~A}), 120 \mathrm{~mm}(8 \mathrm{~A})$; Height: 125 mm ; Depth: 125 mm						
	Output current	Input voltage					
	3 A	120/230 V AC (selectable)	-	3RX9501-0BA00		1	1 unit
	5 A	120/230 V AC (selectable)	-	3RX9502-0BA00		1	1 unit
	8 A	$\begin{aligned} & 120 / 230 \ldots 500 \mathrm{~V} \text { AC } \\ & \text { (selectable) } \end{aligned}$	\checkmark	3RX9503-0BA00		1	1 unit
	For special applications						
	3 A	24 V DC	\checkmark	3RX9501-1BA00		1	1 unit
	2.6 A/max. 100 W	120/230 V AC (selectable)	2	3RX9501-2BA00		1	1 unit

AS-Interface: Power Supply Units and Data Decoupling Modules

Overview

PSN130S 30 V power supply units for $3 \mathrm{~A}, 4 \mathrm{~A}$ and 8 A

More information

For operating instructions and other technical information, see
https://support.industry.siemens.com/cs/ww/en/view/64364000 and
https://support.industry.siemens.com/cs/ww/en/view/44030789

The PSN130S 30 V power supplies feed 30 V DC into the AS-Interface cable and supply the AS-Interface components, but do not include data decoupling. Data decoupling modules are needed in addition therefore to separate communication signals and control supply voltage, see page 14/77 or 14/79.
The power supply units are resistant to overload and short circuits.

Dimensions

The 30 V power supply units have compact dimensions with widths of 50 and 70 mm . No distances from other devices need to be observed when mounting the power supply units.

Features

- Primary clocked power supply units for connection to a single-phase AC network
- Power for currents of $3 \mathrm{~A}, 4 \mathrm{~A}$ and 8 A
- The output voltage is floating, and resistant to short-circuits and no-load operation. If there is an overload, the output voltage is reduced or cut-off. After a short-circuit or overload, the devices start up again automatically.
- In the event of a device fault, the output voltage will be limited to max. 37 V .
- Modular installation devices in degree of protection IP20 and safety class I
- Diagnostics: With an output voltage $>26.5 \mathrm{~V}$ DC, the green LED (30V O.K.) is lit and the signaling contact $13-14$ is closed.

Benefits

- Low-cost alternative solution for supplying AS-Interface networks while making full use of the maximum possible cable length per AS-i segment
- Cost advantage particularly for multiple networks
- Compact, space-saving dimensions
- Reliable power supply even for large numbers of AS-Interface modules with a high power requirement
- Can be used world-wide thanks to, for example, UL/CSA approval (UL 508)

Application

Configuration examples of AS-Interface networks with a 30 V power supply unit

Configuration of AS-Interface multiple networks with one PSN130S 30 V power supply unit (examples with schematic representation):
Left: Double network based on the S22.5 double data decoupling module and a SIMATIC ET 200SP with two CM AS-i Master ST modules
Right: Triple network based on the SIMATIC S7-1200 with DCM 1271 data decoupling modules and CM 1243-2 communication processors

Communication

AS-Interface: Power Supply Units and Data Decoupling Modules
30 V power supply units

Technical specifications

PSN130S 30 V DC power supply unit		3 A	4 A	8 A
Input data				
- Input voltage, rated value $U_{\text {e }}$	V AC	120/230 V, single-phase, automatic selection		
- Range of input voltage	VAC	85 ... 132/174 ... 264		
- Mains frequency	Hz	50/60		
- Power consumption at full load, typ.		103	139	270
Output data				
- Output voltage, rated value U_{a}	V DC	30		
- Residual ripple	$m V_{p p}$	< 150		
- Output current, rated value at $-20 \ldots+60^{\circ} \mathrm{C}$	A	3	4	8
- Max. output current at $+60 \ldots+70^{\circ} \mathrm{C}$	A	3	3	4
Degree of efficiency in rated conditions				
- Degree of efficiency	\%	87	88	90
- Power loss, typ.	W	12	17	25
Protection and monitoring				
- Output overvoltage protection	V	<37		
- Current limiting, typ.	A	4	5.5	11
Safety				
- Primary/secondary electrical separation		Output voltage PELV/SELV according to IEC 60950 and EN 50178		
- Protection class		I		
- Degree of protection		IP20		

PSN130S 30 V DC power supply unit		3 A	4 A	8 A
Approvals - UL - Pollution degree - Overvoltage category and electrical separation		UL 508/CSA 22.2 IEC 60950 EN 50178 and IEC 61558		
EMC - Emitted interference (class B) - Line harmonics limit - Interference immunity		IEC IEC IEC	$\begin{aligned} & 0-6-3 \\ & 0-3-2 \\ & 0-6-2 \end{aligned}$	
Operating data Ambient temperature - Operation - Transport/storage Pollution degree Humidity class	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	-20 -40 2 Clim DIN hum con	lass 0, rel max. ation	ding to air without
Dimensions and weight - Width - Height x depth - Weight	mm mm kg	50 125 0.4	$\begin{aligned} & 50 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 70 \\ & 0.7 \end{aligned}$

Selection and ordering data

Overview

AS-Interface S22.5 double data decoupling module:
Screw terminal version (picture left),
Spring-loaded terminal version (picture right)

More information

Operating instructions, see
https://support.industry.siemens.com/cs/ww/en/view/44030789
More information on AS-i Power24V, see System Manual "AS-Interface", https://support.industry.siemens.com/cs/ww/en/view/26250840
With the aid of the S22.5 data decoupling module, the AS-Interface network can also be supplied with 24 V DC or 30 V DC from a standard power supply unit and the transmission of data and power can be realized along one cable.
The combination of data decoupling modules and standard power supply units is therefore a cost-efficient alternative to the service-proven AS-Interface power supply units.
The quality of the data signals and the reliable operation of the AS-i network are not negatively affected as the result.

Features of the S22.5 data decoupling unit

- Degree of protection IP20
- Narrow design: 22.5 mm wide
- Version with screw or spring-loaded terminals
- Versions for single and double data decoupling
- Supply of several AS-i networks with a single power supply unit
- Operation with 24 V DC or 30 V DC, grounded or non-grounded
- Adjustable current limiting up to $2 \times 4 \mathrm{~A}$
- Integrated ground-fault detection with fault storage, display can optionally be switched off
- Diagnostics LEDs and signaling contacts
- RESET by button or remote RESET

Ground-fault detection

The integrated ground-fault detection works with a grounded and non-grounded supply: The connection of negative pole and ground (upstream from the data decoupling module) customary with 24 V DC power supplies is permitted. A ground fault to the negative or positive pole on the AS-Interface network (downstream from the data decoupling module) is detected and stored as a fault and will be signaled using LEDs and a relay contact.
Using the ground-fault detection in the AS-i master is recommended for non-grounded supply. In this case, the ground-fault indicator can be deactivated in the data decoupling unit to avoid any unwanted LED messages.

Benefits

- Compatible expansion of the AS-Interface system
- An existing standard power supply unit with 24 V DC or 30 V DC can be used for supplying AS-i networks
- The AS-Interface system can also be used in tightly budgeted applications because no AS-Interface power supply unit needs to be purchased
- Applications benefit in addition from the advantages of a modern bus system:
- High level of standardization
- Additional diagnostics and maintenance information
- Faster commissioning
- Easy and cost-efficient design of single and multiple networks is possible

Application

The AS-Interface data decoupling module is designed for AS-Interface networks with 30 V or 24 V supply (AS-i Power24V).
Operation of an AS-i network with the data decoupling module and a 30 V standard power supply unit is technically equivalent to the use of an AS-Interface power supply unit and offers the service-proven features of AS-Interface for all applications.

AS-Interface Power24V uses a 24 V power supply unit in conjunction with a data decoupling module and is particularly suitable for:

- Compact machines using AS-Interface input/output modules
- Applications in the control cabinet for AS-Interface integration of SIRIUS 3RT2 contactors using 3RA27 function modules
When using the double data decoupling module or other data decoupling units, several AS-Interface networks can be operated with a single power supply unit. This results in an additional cost advantage.

Note:

The power supply units must comply with the PELV (Protective Extra Low Voltage) or SELV (Safety Extra Low Voltage) standards, have a residual ripple of $<250 \mathrm{mV}$ pp , and in the event of a fault must limit the output voltage to a maximum of 40 V .
We recommend

- SITOP power supplies, see Catalog KT10.1 https://support.industry.siemens.com/cs/ww/en/view/109745655
- PSN130S 30 V power supply units, see page 14/75

Note on AS-i Power24V:

The length of an AS-i Power24V network is restricted to 50 m in order to limit the voltage drop along the cable.
AS-i masters, AS-i slaves and the sensors and actuators supplied through the AS-i cable must be designed for the reduced voltage. Sensors and actuators for the standard voltage range of 10 to 30 V can be supplied with sufficient voltage.
Please also observe the requirements specified in "Extension of AS-i Power24V" for implementation of AS-i Power24V, see page 14/21.
For more information on AS-i Power24V, see
"AS-Interface System Manual",
https://support.industry.siemens.com/cs/ww/en/view/26250840.

Communication

AS-Interface: Power Supply Units and Data Decoupling Modules
S22.5 data decoupling modules
Construction of an AS-i Power24V network with an AS-Interface S22.5 data decoupling module

Left: single network, right: Multiple network

Selection and ordering data

AS-Interface: Power Supply Units and Data Decoupling Modules

Overview

DCM 1271 data decoupling module for SIMATIC S7-1200

More information

Equipment Manual AS-i Master CM 1243-2 and AS-i Data Decoupling Unit DCM 1271 for SIMATIC S7-1200, see
https://support.industry.siemens.com/cs/ww/en/view/44030789
More information on AS-i Power24V, see System Manual "AS-Interface", https://support.industry.siemens.com/cs/ww/en/view/26250840

With the aid of the DCM 1271 data decoupling module, the AS-Interface network can also be supplied with 24 V DC or 30 V DC from a standard power supply unit and the transmission of data and power can be realized along one cable.

The DCM 1271 data decoupling module has the same enclosure design as the S7-1200 module and is therefore ideal for combining with the CM 1243-2 AS-i master.

The DCM 1271 data decoupling module has no connection to the backplane bus of the SIMATIC S7-1200 and is not counted as a communication module when calculating the maximum configuration.
Features of the DCM 1271 data decoupling module

- Design: S7-1200, 30 mm wide, degree of protection IP20
- Detachable terminals (scope of supply)
- Single data decoupling
- Supply of several AS-i networks with a single power supply unit
- Operation with 24 V DC or 30 V DC, grounded or non-grounded
- Current limiting at 4 A
- Integrated ground-fault detection
- Diagnostics LEDs for ground faults and overloads
- Signaling contacts for ground-fault detection

Ground-fault detection

The integrated ground-fault detection works with a grounded and non-grounded supply: The connection of negative pole and ground (upstream from the data decoupling module) customary with 24 V DC power supplies is permitted. A ground fault to the negative or positive pole on the AS-Interface network (downstream of the data decoupling module) is identified and signaled via LED and a transistor output.

Benefits

- An existing standard power supply unit with 24 V DC or 30 V DC can be used for supplying AS-i networks
- The AS-Interface system can also be used in tightly budgeted applications because no AS-Interface power supply unit needs to be purchased
- Applications benefit in addition from the advantages of a modern bus system:
- High level of standardization
- Additional diagnostics and maintenance information
- Faster commissioning

AS-Interface: Power Supply Units and Data Decoupling Modules

Data decoupling modules for S7-1200 > DCM 1271 data decoupling module

Application

The AS-Interface data decoupling module is designed for AS-Interface networks with 30 V or 24 V supply (AS-i Power24V).
Operation of an AS-i network with the data decoupling module and a 30 V standard power supply unit is technically equivalent to the use of an AS-Interface power supply unit and offers the service-proven features of AS-Interface for all applications.
AS-i Power24V uses a 24 V power supply unit in conjunction with a data decoupling module and is particularly suitable for

- Compact machines using AS-Interface input/output modules
- Applications in the control cabinet for AS-Interface integration of SIRIUS 3RT2 contactors using 3RA27 function modules

Note:

The power supply units must comply with the PELV (Protective Extra Low Voltage) or SELV (Safety Extra Low Voltage) standards, have a residual ripple of $<250 \mathrm{mV}$ pp , and in the event of a fault must limit the output voltage to a maximum of 40 V .
We recommend

- SITOP power supplies, see Catalog KT10.1 https://support.industry.siemens.com/cs/ww/en/view/109745655
- PSN130S 30 V power supply units, see page 14/75

Note on AS-i Power24V:
The length of an AS-i Power24V network is restricted to 50 m in order to limit the voltage drop along the cable.
AS-i masters, AS-i slaves and the sensors and actuators supplied through the AS-i cable must be designed for the reduced voltage. Sensors and actuators for the standard voltage range of 10 to 30 V can be supplied with sufficient voltage.
Please also observe the requirements specified in
"AS-i Power24V" for the operation of AS-i Power24V, see page 14/21.
For more information on AS-i Power24V, see
"AS-Interface System Manual",
https://support.industry.siemens.com/cs/ww/en/view/26250840.

Configuration of an AS-i Power24V network with DCM 1271 AS-Interface data decoupling unit

Communication

AS-Interface: Power Supply Units and Data Decoupling Modules

Data decoupling modules for S7-1200 > DCM 1271 data decoupling module

Selection and ordering data

Accessories

[^137]
Overview

AS-Interface shaped cable
The actuator-sensor interface - the networking system used for the lowest field area - is characterized by very easy mounting and installation. A new connection method was developed specially for AS-Interface.
The stations are connected using the AS-Interface cable. This two-wire AS-Interface shaped cable has a trapezoidal shape, thus ruling out polarity reversal.
Connection is effected by the insulation piercing method. In other words, male contacts pierce the shaped AS-Interface cable and make reliable contact with the two wires. Cutting to length and stripping are superfluous. Consequently,
AS-Interface stations (e.g. I/O modules, intelligent devices) can be connected in the shortest possible time and exchanging devices is quick.

To enable use in the most varied ambient conditions (e.g. in an oily environment), the AS-Interface cable is available in different materials (rubber, TPE, PUR).
For special applications it is also possible to use an unshielded standard round cable H05VV-F $2 \times 1.5 \mathrm{~mm}^{2}$ according to AS-i specification. With AS-Interface, data and energy for the sensors (e.g. proximity switches) and actuators (e.g. indicator lights) are transmitted over the yellow AS-Interface cable.

The black AS-Interface cable must be used for actuators with a 24 V DC supply (e.g. solenoid valves) and a high power requirement.

Suitable for operation in tow chains

The use of the AS-Interface shaped cables with TPE and PUR outer sheath was checked in a tow chain test with the following conditions:

Chain length	m	6
Travel	m	10
Bending radius	mm	75
Travel speed	m / s	4
Acceleration	$\mathrm{m} / \mathrm{s}^{2}$	4
Number of cycles		10 million
Duration of test		approx. 3 years (11000 cycles per day)

After termination of the 10 million cycles only slight wear was visible due to the lugs of the tow chain. No damage to the cores and core insulation could be detected.
Note:
When using a tow chain, the cables must be installed in such a way that they are not subject to tensile forces. On no account may the cables be twisted, but they must be routed flat through the tow chain.

Selection and ordering data

AS－Interface：System Components and Accessories

Repeaters

Overview

AS－Interface repeater
The AS－Interface repeater is used to extend the AS－Interface cable．
－In its basic version，an AS－i network comprises one segment with a maximum cable length of 100 m ．An extension plug （see page 14／84）can be used to increase the cable length for a segment to a maximum of 200 m ．
－If this is insufficient，however，you can use one or more repeaters
－A repeater adds an extra segment to an existing segment．The extra segment can have a cable length of up to 100 m （without extension plug）or up to 200 m （with an extension plug in the extra segment）
－Each segment requires a separate AS－i power supply unit
－Electrical separation of the two AS－Interface shaped cable lines
－Slaves can be used on both sides of the repeater
－The additional power supply can increase the current infeed for slaves／sensors and lower the voltage drop on the AS－i cable
－Separate display of the correct AS－Interface voltage for each segment
－Installed in K45 module enclosure IP67 with mounting plate
－Easy mounting

Benefits

－More possibilities of use and greater freedom for plant planning through extension of the AS－Interface network
－Reduced downtime and servicing times in the event of a fault thanks to separate display of the correct AS－Interface voltage for each side

Design of an AS－Interface network with repeaters

－Parallel switching of several repeaters possible （star configuration）
－Combination of series and parallel switching possible
The following conditions apply：
－When used without an extension plug no more than two repeaters are permitted between AS－i master and slave （repeaters connected in series）
－When used with an extension plug no more than one repeater is permitted between AS－i master and slave

In safety－related applications the following also applies：
－When used without an extension plug，no more than two repeaters are permitted between evaluation unit（e．g．MSS ASIsafe Modular Safety System，F－CM AS－i Safety ST for ET 200SP）and ASIsafe input slave or safe output module．
－When used with an extension plug，no more than one repeater is permitted between the evaluation unit（e．g．MSS ASIsafe Modular Safety System，F－CM AS－i Safety ST for ET 200SP） and ASIsafe input slave or safe output module．

Design of an example AS－Interface network with repeaters （without extension plug）

Note：

The AS－Interface repeater is not suitable for AS－i Power24V networks．It is recommended for use in AS－Interface networks with AS－Interface power supply units（e．g．3RX9501－OBA00）．

Application

The repeater is used to extend the AS－Interface network．In this case there are AS－Interface slaves and one AS－Interface power supply unit on each side of the repeater．

In the case of a line topology with two repeaters and three extension plugs，the maximum possible size of the AS－Interface network is 600 m ，see example configuration with extension plug on page 14／84．

Selection and ordering data

	Version	SD d	Article No．	PU（UNIT，
	Repeaters for AS－Interface			
	For cable extension， scope of supply includes mounting plate （for wall and standard rail mounting）， module does not require an AS－i address	5	6GK1210－0SA01	

Communication

AS-Interface: System Components and Accessories

Extension plugs

Overview

AS-Interface extension plug compact
With the extension plug it is possible to double the cable length possible in an AS-Interface segment from 100 to 200 m .
Only one power supply unit is needed to supply power to the slaves on the up to 200 m long segment.
The extension plug compact can be installed directly onto an AS-i shaped cable. A separate M12 feeder, as was required for earlier extension plug versions, is no longer required with extension plug compact.

Design of an AS-Interface segment with an extension plug

To construct an AS-Interface segment with a cable length of more than 100 m and up to a maximum of 200 m , the extension plug is installed in a radius of around $\pm 10 \mathrm{~m}$ at the point of the network that is furthest from the power supply unit. The extension plug is not allowed to be used in AS-Interface networks smaller than 100 m . As with all AS-Interface networks, any network structure (line, tree, star) is possible when using the extension plug. Only one extension plug is required per 200 m segment even with a tree or star structure.

Note:

The AS-i bus cable must not terminate in the extension plug compact. The AS-Interface shaped cable can be terminated by means of a cable terminating piece to provide degree of protection IP67 where required, see "Miscellaneous accessories" on page 14/91.
The AS-Interface extension plug is not suitable for AS-i Power24V networks.

Maximum network size with repeaters and extension plug (master at center of network)

Selection and ordering data

	Version	SD	Article No.		PS*
	d				
	AS-Interface extension plug compact - Doubling of the cable length to 200 m per AS-Interface segment - With direct connection to AS-Interface shaped cable - Module does not require an AS-i address	2	3RK1901-1MX02	1	1 unit

Accessories

Overview

The innovated addressing unit for AS-Interface of the AS-i specification V3.0

The addressing unit is used to assign an address during commissioning to each AS-Interface slave. The device detects a connected slave module or a complete AS-i network and displays the found module in the LCD display. Each address can be individually set using the Up/Down keys. By turning the rotary switch, further commissioning functions are selected intuitively. The innovative device has been adapted to the current AS-i specification V3.0 and can now also handle the I/O data of the latest slaves.

Functionality

- Reading out and adjusting the slave address 0 to 31 or 1 A to $31 \mathrm{~A}, 1 \mathrm{~B}$ to 31 B , with automatic addressing aid and prevention of double addresses
- Reading out the slave profile (IO, ID, ID2)
- Reading out and adjusting the ID1 code
- Input/output test when commissioning the slaves: Read input signals and write outputs with all digital and analog slaves according to AS-Interface specification V3.0, including safe input slaves and complex CTT2 slaves
- Measuring the voltage on the AS-Interface cable (measuring range from 2 to 35 V)
- Display of the operational current in case of direct connection of an AS-i slave (measuring range from 0 to 150 mA)
- Storage of complete network configurations (profiles of all slaves) to simplify the addressing
- Adjusting the slave parameters for commissioning
- Reading out the identification and diagnostics of CTT2 slaves
- Reading out the code table of safe input slaves (ASIsafe)

Note:

For operation of the addressing unit on an AS-Interface cable with connected power supply unit, the following applies: The AS-Interface addressing unit is suitable for standard AS-i networks and AS-i Power24V networks (min. operational voltage on the AS-Interface cable 19 V).

Benefits

- Increased power supply to the slaves to 150 mA
- Better utilization of the battery capacity thanks to improved circuitry
- Support for the current AS-i specification V3.0
- Expanded display for simultaneously displaying input and output states
- Clearly recognizable display of status of digital inputs/outputs in binary format (0/1), optionally also available as hexadecimal values
- Intuitive display of analog data either as decimal, hexadecimal or as a percentage (e.g. 100\% corresponds to input/output value 20 mA)
- I/O data of complex slaves (CTT2 profile) can be displayed
- Decoded display of the input data of safe input slaves, including code table
- Simplification of the operating steps when setting the slave address with automatic read back of the set address
- Addressing cable, ready for operation even without screwing in tight into the M12 socket, thus faster availability of the addressing unit
- Proven compact housing with smooth keys and rotary switch
- Connection of standard AS-i networks possible with 30 V as well as Power24V networks
- Complex slaves with high operating currents can be addressed without external supply
- Longer operating time by automatic shutdown after approx. 5 minutes (or approx. 1 minute when data exchange is active) after last operation
- Can be used with all types of digital and analog slaves
- Comprehensive and fast input/output test of plants, even for A/B slaves with $4 \mathrm{DI} / 4 \mathrm{DQ}$ and current analog modules with an A/B address
- Faster and more reliable commissioning of the AS-Interface modules
- One-hand operation possible, with unique selection of the functions
- Connection via M12 socket (pin 1: ASI+; pin 3: ASI-; pins 2, 4, 5: not used)
- Universal applicability for all AS-i networks

Selection and ordering data

	Version	$\begin{aligned} & \text { SD } \\ & d \end{aligned}$	Article No.	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
3RK1904-2AB02	AS-Interface addressing unit V3.0 - For AS-Interface modules and sensors and actuators with integrated AS-Interface according to AS-i specification V3.0 - for setting the AS-i address of slaves with standard addresses, and slaves with extended addressing mode (A/B slaves) - With input/output test function and many other commissioning functions - Battery operation with four type AA batteries (IEC LR6, NEDA 15) - Degree of protection IP40 - Dimensions (W x H x D) mm: $84 \times 195 \times 35$ - Scope of supply: - Addressing unit with 4 batteries - Addressing cable, with M12 plug to addressing plug	2	3RK1904-2AB02	1	1 unit

Communication

AS-Interface: System Components and Accessories
Addressing units

Accessories

	Version	SD	Article No.	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
	d				
3RK1902-4PB15-3AA0	Addressing cable, with M12 plug to M12 socket ${ }^{1)}$ - For addressing slaves with M12 connection, e.g. K20 or K60R modules or light curtains - Length 1.5 m , 3 -pole, $3 \times 0.34 \mathrm{~mm}^{2}$	5	3RK1902-4PB15-3AA0	1	1 unit
	AS-Interface M12 3RX feeder - Transition of AS-Interface cable to a standard round cable - Insulation piercing method for connection of AS-Interface cable - M12 socket for connection of standard round cable - Current carrying capacity up to 2 A	-	3RX9801-0AA00	1	1 unit
3RK1901-2NR10	AS-Interface M12 3RK feeder - AS-Interface cable transition without $U_{\text {aux }}$, with M12 socket - Insulation piercing method for connection of AS-Interface cable - M12 socket for connection of standard round cable	2	3RK1901-2NR10	1	1 unit
	M12 cable plug ${ }^{2}$) - Extruded M12 plug (angled cable feeder 90°), other cable end open - Length: 5 m, 5-pole, color: Black	5	3RK1902-4HB50-5AA0	1	1 unit
	M12 plug, straight ${ }^{\text {2 }}$ - For screw fixing, 5-pole screw terminal, max. $0.75 \mathrm{~mm}^{2}$ - A-coded, max. 4 A	5	3RK1902-4BA00-5AA0	1	1 unit

1) Not included in scope of supply of the 3RK1904-2AB02 addressing unit.
2) For connecting the addressing unit to an AS-i network via AS-Interface M12 feeder, a connecting cable (M12 plug to M12 connector) must be produced and requires the following wiring:

- M12 cable plug: Pin 1 / core brown \leftrightarrow M12 plug: Pin 1
- M12 cable plug: Pin 3 / core blue \leftrightarrow M12 plug: Pin 3
- Pin 2, 4, 5 not connected

AS-Interface: System Components and Accessories

Analyzer

Overview

AS-Interface analyzer
The AS-Interface analyzer is used to test AS-Interface networks. Installation errors, e.g. loose contacts or EMC interference under extreme loads, can be revealed by this device.
Thanks to the easy-to-use software the user can assess the quality of complete networks even if he lacks detailed specialist knowledge of AS-Interface. In addition it is an easy matter with the AS-Interface analyzer to create test logs from the records produced, thus providing documentation for startups and service assignments.
For advanced AS-Interface users there are trigger functions for detailed diagnostics.

Connection

Connection of AS-Interface analyzer to PC and AS-Interface network
The AS-Interface analyzer follows the communication on the AS-Interface network as a passive station. The unit is supplied simultaneously from the AS-Interface cable.
This analyzer interprets the physical signals on the AS-Interface network and records the communication.
The data thus obtained is transferred through an RS 232 interface to a PC such as a notebook, for evaluation with the supplied diagnostics software.

Benefits

- Simple and user-friendly operation enables diagnostics of AS-Interface networks without help from specialists
- Speedy troubleshooting thanks to intuitive display in statistics mode
- Test logs provide verification of the state and quality of the installation for service and approval
- Recorded logs facilitate remote diagnostics by Technical Support
- Comprehensive trigger functions enable exact analysis
- Process data can be monitored online

AS-Interface: System Components and Accessories

Analyzer

Application

Online statistics

Online statistics, overview

Online statistics, details, e.g. here a fault on slave 5
This mode provides a quick overview of the existing AS-Interface system. The error rates are displayed per slave in a traffic-light function (green, yellow, red).
The bus configuration and the currently transmitted data of the slaves are shown in a well arranged presentation.

With the expanded statistics function, it is possible to determine the error rates as the number of transmitted or faulty bus message frames.
The bundle error overview shows in steps how many multiple repetitions of message frames occurred in order to enable a selective and look-ahead assessment of the transmission quality.

Data mode

Presentation of the I/O data: Safety data

Presentation of the I/O data: Analog values
In this mode, the analyzer shows not only the digital input/output values but also the current analog values and the input status of the safety slaves.

AS-Interface: System Components and Accessories

Analyzer

Trace mode

Presentation of message frames in trace mode
The presentation of message frames in the style of a classic fieldbus analyzer is indispensable for complex troubleshooting. Extensive trigger functions and recording and viewing filters are available for this purpose. An external trigger input and trigger output round off the scope of functions in order to find even the most difficult errors.
For troubleshooting in connection with ASIsafe applications, changes of status in the code tables of safety slaves are identified and assessed.
The AS-i analyzer can be used with an AS-i master in accordance with AS-Interface specification V3.0 or a predecessor version.

The analyzer does not automatically decode the process values for type CTT2 - CTT5 AS-i slaves. As for other slave types, the message frames are recorded and evaluated in the statistics. If required, decoding can also be performed by the user manually.
More information, see
https://support.industry.siemens.com/cs/ww/en/view/109746763.

Test log

Example of a test log
The recorded data of the online statistics are easy to output and document using a test log. Verification of the state of the plant can thus be provided for approvals or service assignments.
The integrated measurement assistant records the bus signals for a variable duration, thereby triggering creation of an automatic test log. A standardized quality test of AS-i plants is thus possible.

Note:
The AS-Interface analyzer is suitable for standard AS-i networks and AS-i Power24V networks (min. operating voltage 20 V).

Selection and ordering data

Note:
Download the current version of the diagnostics software for PC
with Windows operating system, see
https://support.industry.siemens.com/cs/ww/en/view/109750259.

AS-Interface: System Components and Accessories
Analyzer

Accessories

	Version	SD	Article No.		PS*
	d				
	AS-Interface M12 3RX feeder - Transition of shaped AS-Interface cable to a standard round cable - Insulation piercing method for connection of AS-Interface cable - M12 socket for connection of standard round cable - Current carrying capacity up to 2 A - Degree of protection IP67	\checkmark	3RX9801-0AA00	1	1 unit
	AS-Interface M12 3RK feeder - AS-Interface cable transition without $U_{\text {aux }}$, with M12 socket - Insulation piercing method for connection of AS-Interface cable - M12 socket for connection of standard round cable - Max. 4 A - Degree of protection IP67/IP68/IP69K	2	3RK1901-2NR10	1	1 unit
 3RK1902-4HB50-5AA0	M12 cable plugs - PUR cable, 5-pole - Length 5 m - Color black - Extruded M12 plug (angled cable feeder 90°), other cable end open	5	3RK1902-4HB50-5AA0	1	1 unit

Communication

AS-Interface: System Components and Accessories

Miscellaneous accessories

Selection and ordering data

Communication

AS-Interface: System Components and Accessories

Miscellaneous accessories

IO-Link Introduction

Communication overview

Overview

IO-Link is an open communication standard for sensors and actuators - defined by the PROFIBUS User Organization (PNO). IO-Link technology is based on the point-to-point connection of sensors and actuators to the control system.

Parameter and diagnostics data are transmitted in addition to the cyclic operating data for the connected sensors/actuators. The simple, unshielded three-wire cable customary for standard sensors is used for this purpose.

IO-Link in the SIMATIC NET communications landscape

Benefits

Engineering

- Standardized, open system for greater flexibility (non-Siemens IO-Link devices can be integrated in engineering)
- Uniform, transparent configuring and programming through integrated engineering (SIMATIC STEP 7)
- Unassigned SIMATIC function blocks for easy parameterization, diagnostics and read-out of measured values
- Efficient engineering thanks to pre-integration into SIMATIC HMI
- Low error rate in CAD circuit diagram design as a result of reduced control current wiring

Installation and commissioning

- Faster assembly with minimized error rate as a result of reduced control current wiring
- Less space required in the control cabinet
- Low-cost circuitry where there are several feeders by making full use of existing components

Operation and maintenance

- High transparency in the system right down to field level and integration into power management systems
- Reduction in downtimes and maintenance times thanks to system-wide diagnostics and faster fault correction
- Support of predictive maintenance
- Shorter changeover times, even for field devices, by means of parameter and recipe management

Application

IO-Link can be used in the following main applications:

- Easy connection of complex IO-Link sensors/actuators with a large number of parameters and diagnostics data to the control system
- Replacement of sensor boxes for connecting binary sensors with the IO-Link input modules optimized in terms of cabling
- Optimized cable connection of switching devices to the control system
- Simple transmission of energy values from the device to the control system for integration into a user program or power management

In these cases, all the diagnostics data are transmitted to the higher-level control system through IO-Link. The parameter settings can be changed during operation.

Integration in STEP 7

Integration of the device configuration in the STEP 7 environment guarantees:

- Quick and easy engineering
- Consistent data storage
- Quick localization and rectification of faults

Communication

IO－Link Introduction

System components

Overview

More information

Homepage，see www．siemens．com／io－link	$\begin{array}{l}\text { For important topics at a glance，see } \\ \text { https：／／support．industry．siemens．com／cs／ww／en／view／109737170 }\end{array}$

IO－Link product family
To implement communication，a system installation has the following main components：
－An IO－Link master
－One or more IO－Link devices，such as sensors （e．g．RFID systems），actuators or combinations thereof
－A standard 3 －wire sensor／actuator cable

Example of a configuration with the system components

IO-Link Introduction

System components

IO-Link compatibility

IO-Link ensures compatibility between IO-Link-capable modules and standard modules as follows:

- IO-Link sensors can generally be operated both on IO-Link modules (masters) and standard input modules.
- IO-Link sensors/actuators as well as today's standard sensors/actuators can be used on IO-Link masters.
- If conventional components are used in the IO-Link system, then of course only the standard functions are available at this point.

Analog signals

Another advantage of IO-Link technology is that analog signals are already digitized in the IO-Link sensor itself and are digitally transmitted via IO-Link communication. As the result, faults are prevented and there is no extra cost for cable shielding.

Enhancement with IO-Link input modules

IO-Link compatibility also permits connection of standard sensors/actuators, i.e. conventional sensors/actuators can also be connected to IO-Link. This is particularly cost-effective with the IO-Link input modules, which allow several sensors to be connected at one time via a cable to the controller.

Overload relays

A starter combination, for example, consists of one or more SIRIUS 3RT contactors and one 3RB24 electronic overload relay for IO-Link plus its 3RB29 current measuring module.

3RB24 overload relays with IO-Link are basically designed to provide current-dependent protection for loads against inadmissibly high temperature rises due to overload, phase asymmetry or phase failure.
Direct-on-line starters can, therefore, as shown in the image, be connected to the control system via IO-Link without much wiring. Remote control of connected contactors, current value transmission and immediate remote fault diagnosis are just some examples of the large number of functions that can be implemented with this device.

It is also possible to directly address a drive on-site via IO-Link using the optional hand-held device.

Connection of an IO-Link-capable overload relay to a SIMATIC S7-1200 controller

Load feeders and motor starters

Through IO-Link it is possible to control not only sensors but also actuators in the form of load feeders and motor starters.

Possibilities for connecting load feeders and motor starters to IO-Link or in the conventional way

Communication

IO-Link Introduction

System components

Monitoring relays

By using monitoring relays with IO-Link it is now possible to send data that has already been recorded and evaluated in the devices directly to the controller. This avoids the use of duplicated sensors.

Possibilities for interfacing conventional 3UG46 monitoring relays (in comparison with 3UG48)

Possibilities of interfacing 3UG48 monitoring relays for IO-Link

Communication

IO-Link Introduction

System components

Wireless communication

Using an upstream IWLAN client module, such as SCALANCE W722-1 RJ45, allows IO-Link to be integrated into the PROFINET world via a distributed I/O. Possible uses include acting as an alternative to fault-prone cable carrier or collector wire technology.

The individual diagnostics options offered by the various IO-Link devices provide greater transparency for the production process. Just like the parameter data for a device, these diagnostics data can be evaluated remotely using the possibilities offered by SIMATIC. This supports remote maintenance down to the lowest level in the field.

[^138]
Communication

IO-Link Introduction

System components

IO-Link components

IO-Link masters

CM 8xIO-Link for S7-1500

Masters

IO-Link master module for S7-1500

- CM 8xIO-Link communication module, see page 14/102
IO-Link master module for S7-1200
- SM 1278 4xIO-Link signal module, see page 14/102

IO-Link master module for ET 200SP

- CM 4xIO-Link communication module, see page 14/103
IO-Link master module for ET 200pro
- 4 IO-Link HF electronic module, see page 14/104

O-Link master module for ET 200eco PN

- IO-Link master 4 IO-L + 8DI + 4DO 24 V DC/1.3 A
- IO-Link master 4 IO-L

See page 14/105
IO-Link master module for ET 200AL

- CM IO-Link communication module, see page 14/106

For full product range, see Catalog ST 70.

IO-Link devices

Detection with IO-Link

IO-Link input modules
K20 input module

- 4 inputs, M12 connections
- 8 inputs, standard M8 connections

See page 14/108

Switching with IO-Link

SIRIUS 3RA2711 function module for IO-Link

SIRIUS 3RA64 direct-on-line starter

SIRIUS 3RB24 overload relay

Contactors and contactor assemblies

- SIRIUS 3RT contactors, 3-pole up to 250 kW
- SIRIUS 3RA23 reversing contactor assemblies, up to 55 kW
- SIRIUS 3RA24 contactor assemblies for wye-delta starting, up to 90 kW
- SIRIUS 3RA27 function modules for direct-on-line, reversing, and star-delta (wye-delta) starting
See Cataloa Section 2

Motor starters for use in the control cabinet
SIRIUS 3RA64, 3RA65 compact starters for IO-Link, infeed systems and accessories
See Catalog Section 4

Contactors with IO-Link

Overload relays

SIRIUS 3RB24 electronic overload relays for IO-Link

- Evaluation modules
- Current measuring modules from 0.3 to 630 A
- Controlling direct-on-line, reversing and star-delta starters via IO-Link in conjunction with contactors
- Full motor protection
- Diagnostics and current value transmission via IO-Link

See Catalog Section 2

IO-Link devices (continued)

Monitoring with IO-Link

SIRIUS 3RR24 monitoring relays for mounting onto

 3RT2 contactors for IO-Link- Monitoring of current, phase failure, open circuit and phase sequence
- Designed for mounting on 3RT2 contactors
- Terminal supports for stand-alone installation for separate mounting
See Catalog Section 2
SIRIUS 3UG48 monitoring relays for stand-alone installation for IO-Link
- Monitoring the supply system, voltage, current, power factor and active current, residual current or speed depending on device design
- On/tripping delay time can be adjusted

See Catalog Section 12

SIRIUS 3RS14, 3RS15 temperature monitoring relays for IO-Link

- Temperature monitoring with connected sensors
- Two limit values, can be adjusted separately

See Catalog Section 12
SIRIUS 3RS14 temperature monitoring relay

SIRIUS ACT 3SU1 ID keyoperated switch

SIRIUS ACT 3SU1 electronic module

Signaling column

Actuating and indicating with IO-Link
 SIRIUS ACT 3SU1 ID key-operated switches for IO-Link
 - Access system and selection system for four authorization levels
 - Authentication of groups and persons
 - Five ID keys with different coding
 - Option for individual coding via IO-Link
 - For installation in enclosures or fastening on front plate
 - Electronic module for ID key-operated switches must be ordered separately.
 See Catalog Section 11

SIRIUS ACT 3SU1 electronic modules for IO-Link

- Eight digital inputs and outputs possible
- DI and DQ freely selectable (programmable)
- Input and output functions parameterizable
- Connection method (push-in)
- For fastening on front plate, see Catalog Section 11
- For installation in enclosure, see Catalog Section 11

8WD44 IO-Link adapter element

- Up to five signaling elements can be connected using an IO-Link adapter element
- 24 V DC, diameter 70 mm
- Connection with bayonet mechanism
- For fastening on feet, 8WD44
- Connection elements with screw or spring-loaded terminals or connection element with 5-pole M12 plug See Catalog Section 11

IO-Link Introduction

System components

RFID system for IO-Link

SIMATIC RF200 RFID system in the HF range
Products SIMATIC RF210R, SIMATIC RF220R, SIMATIC RF240R, SIMATIC RF250R, SIMATIC RF260R

- Simple identification tasks such as reading an ID number (UID)
- Reading of user data
- Writing of user data
- No RFID-specific programming, ideal for those new to RFID
- Simple connection via master modules for IO-Link, such as SIMATIC S7-1200, ET 200SP, ET 200pro, ET 200eco PN and ET 200AL
- Use with the tried and tested ISO 15693 transponders (MDS xxx)
See Catalog ID 10
IO-Link Device Description (IODD)

IODD files for IO-Link

ODDfinder for IO-Link

IODD files

These files provide the device description for IO-Link devices.

- Comprehensive IODD catalog of SIEMENS IO-Link devices
- Freely available for download from

Industry Online Support, see
https://support.industry.siemens.com/cs/ww/en/ps/15851

IODDfinder

The entire world of IO-Link under one roof
The IODDfinder is a service provided by the IO-Link community. It is a central cross-vendor database for descriptive files (IODDs). In addition, the platform provides an overview of the available IO-Link devices.
For more information, see
https://ioddfinder.io-link.com/\#/.

IO-Link software

STEP 7 PCT (Port Configuration Tool)

Engineering software for configuring the IO-Link master modules for SIMATIC S7-1200, ET 200SP, ET 200pro, ET 200eco PN and ET 200AL

STEP 7 PCT

- Available as a stand-alone version or integrated into STEP 7 (V5.5 SP1 or higher) and TIA (V12 or higher)
- Engineering of the IO-Link devices connected to the master
- Monitoring of the process image of the IO-Link devices
- Open interface for importing further IODDs
- Freely available for download from

Industry Online Support, see
https://support.industry.siemens.com/cs/mw/en/Niew/32469496

IO-Link device function block

[^139]
Overview

Principles of the IO-Link specification

According to the IO-Link specification, communication functions as follows:

- Transmission takes place via an unshielded three-wire cable no more than 20 m long, of the kind normally used for standard sensors
- Digital communication from 0 to 24 V on the so-called C / Q cable
- Most of the values transmitted are measured values from the sensors
- The sensors and actuators are described by the IO Device Description (IODD)
- As a matter of principle, one IO-Link device can be connected to one IO-Link port of the master (point-to-point connection)
- The transmission rates between IO-Link master and the devices are as follows:
- Via COM1: 4800 Bd
- Via COM2: 38400 Bd
- Via COM3: 230400 Bd
- The average cycle time is 2 ms for the reading/writing of 16 data bits at a transmission rate of 38400 Bd

IO-Link protocol

The IO-Link protocol supports both the Standard IO mode (SIO) and the IO-Link communication mode (COM).

Interface hardware:

Compatible with sensors according to IEC 60947-5-2 and actuators Communication and switching possible alternately

The structure of the protocol and its message frames depends on the types of data to be transmitted.

Data types

The IO-Link specification makes a distinction between the following data types:

Process data

The process data of the devices are transferred cyclically in a data frame, with the process data width defined by the device. Process data of 0 to 32 bytes are possible per device (input and output in each case). The consistency width of the transmission is not fixed and therefore depends on the master.

Value status

Each port has a value status (PortQualifier). The value status indicates whether the process data are valid or invalid. The value status can be transferred cyclically with the process data.

Device data

Device data can be parameters, identification data and diagnostics information. Device data replacement is acyclic and in response to an inquiry from the IO-Link master. Device data can be written into the device (Write) and also read from the device (Read).

Events

When an event occurs, the device sends a signal to the master to report that an event is active. The master then reads out the event. Events can be fault messages (e.g. short-circuit) and warnings/maintenance data (e.g. contamination, overheating). Fault messages are transferred from the device via the IO-Link master to the controller or HMI. The IO-Link master can also transfer events and states. Events include, for example, cable break or communication breakdown.

Device parameters and events are sent independently of the cyclic transmission of process data. The transmissions do not affect or impair each other.

Data storage

As of specification V1.1, a data storage concept has been created for IO-Link. In this concept, the IO-Link device initiates storage of its data on a higher-level parameter server. In the event that a device is replaced, the parameter server can restore the original parameterization. It is therefore possible to replace the devices without re-parameterization.
The IO-Link master contains the parameter server. The parameter server can also be implemented centrally in the PLC or in a system server. In this case the data must be downloaded to the control system by means of the function blocks provided.

IO-Link masters

The IO-Link master is the interface to higher-level control systems. The IO-Link master presents itself to the fieldbus as a normal fieldbus node, and is integrated into the appropriate network configurator via the relevant device description (GSD file).

IO Device Description (IODD)

The IO Device Description (IODD) has been defined to provide a full, transparent description of system characteristics as far as the IO-Link device.

The IODD contains information on communication characteristics, device parameters, identification, process and diagnostics data, and is supplied by the manufacturer. The design of the IODD is the same for all devices from all manufacturers, and is always presented in the same way by the IODD Interpreter Tools. This therefore ensures that the handling is the same for all IO-Link devices, whatever the manufacturer.

New in IO-Link specification V1.1

The IO-Link specification is currently available in Version 1.1, and standardized in accordance with IEC 61131-9.
Specification V1.1 offers the following new features compared with the previous specification V1.0:

- Transmission of up to 32 bytes of process data in one cycle
- Parameter server function

Overview

CM 8xIO-Link master

- Communication module for connecting up to 8 IO-Link devices (three-wire connection) or 8 standard sensors
- Can be used directly downstream of an S7-1500 CPU or distributed in ET 200MP via PROFINET or PROFIBUS
- Powerful diagnostics functions facilitate preventive maintenance to avoid plant standstills
- Simple replacement of sensors/actuators without time-consuming parameterization

Application

IO-Link makes it easy to change the parameters for manufacturing and processing different product versions and batches, even during CPU runtime, down to the sensor/actuator level. Easy, much more detailed diagnostics are also possible down to the sensor or actuator, including remote diagnostics.
The CM 8xIO-Link enables direct connection of up to 8 IO-Link devices directly to SIMATIC S7-1500 and ET 200MP. This makes external stations unnecessary.
This results in savings on wiring, engineering and commissioning, because everything can be configured centrally with the CPU.

Design

- Fastening to the S7-1500 mounting rail with a single screw
- 40-pole front connector, optionally with screw terminals or push-in terminals
- Front flap with expandable cable compartment

Included in the scope of supply:

- One U connector
- Front door

Function

Overview of functions

- Suitable for connecting up to 8 IO-Link devices (three-wire connection) or 8 standard sensors
- IO-Link master according to IO-Link specification V1.1
- Data transmission rates COM1 (4.8 kBd), COM2 (38.4 kBd), COM3 (230.4 kBd)
- Parameterizable diagnostics can be set for each channel
- Master backup with "IO_Link_MASTER_8" function block
- Replacement of the IO-Link device (for V1.1 devices only)
- Support for firmware updating of IO-Link devices
- Variable address range for I/O data with up to 240 byte inputs and 240 byte outputs; expansion limits:
- Max. 32 bytes of input data and 32 bytes of output data per port
- Max. 240 bytes of input data and 240 bytes of output data per module
- Port Qualifier Information (PQI)
- IO-Link port configuration with S7-PCT
- IO-Link port configuration with STEP 7 or GSD (without S7-PCT)
- Standard system functions of SIMATIC ET 200MP:
- Identification and maintenance data IMO
- Firmware update
- Unequivocal, front-side module inscription

Configuration

The IO-Link master of the S7-1500 can be conveniently configured using the graphical user interface in the free S7-Port Configuration Tool (S7-PCT, V3.5 and higher, SP1).
In addition to this configuration, commissioning without S7-PCT is also possible. In this case, the port is configured by means of either the TIA Portal or GSD file. The following port modes are supported:

- Operation in "IO-Link autostart" mode (default)
- Operation in "IO-Link manual" mode
- Operation as DI
- Deactivated

Selection and ordering data

Communication

IO-Link: Masters

Overview

SM 1278 4xIO-Link master
Module for connecting up to four IO-Link devices in accordance with the IO-Link specification V1.1. The IO-Link parameters are configured by means of the Port Configuration Tool (PCT) with version V3.2 and higher.

Application

The SM 1278 module enables an exchange of data with up to four external IO-Link devices through one three-wire cable each or four standard actuators or standard encoders. Control can be flexibly adapted to the communication partners using the comprehensive parameter assignment options. Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.

Design

- Expansion limits
- Cable length: Max. 20 m
- Max. 32 bytes of input data and 32 bytes of output data per port
- Max. 32 bytes of input data and 32 bytes of output data per module

LED displays

- DIAG: Operating state display (green/red) of the module
- C1..C4: Port status display (green) for ports 1, 2, 3 and 4
- Q1..Q4: Channel status display (green) for ports 1, 2, 3 and 4
- F1..F4: Port error display (red) for ports 1, 2, 3 and 4

Depending on the CPU type used, up to 8 SM 1278 units can be used on one S7-1200 CPU.

Function

Supported functions

- I\&M identification data
- Firmware update
- SIO Mode (standard IO mode)
- IO-Link parameter assignment with the S7-PCT interface configuration tool, TIA Portal from V13 and an S7-1200 CPU V4.0 or higher
Supported data transmission rates
- COM1 (4.8 kBd)
- COM2 (38.4 kBd)
- COM3 (230.4 kBd)

Selection and ordering data

Accessories

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10231178.

IO-Link: Masters

IO-Link master module for ET 200SP > CM 4xIO-Link

Overview

CM 4xIO-Link communication module

- CM 4xIO-Link communication module Serial communication module for connecting up to four IO-Link devices in accordance with the IO-Link specification V1.0 and V1.1. The IO-Link parameters are configured by means of the Port Configuration Tool (PCT) with version V3.0 and higher.
- Time-based IO

Time-based IO ensures that signals are output with a precisely defined response time. By combination of inputs and outputs, products passing by, for example, can be measured exactly or liquids can be perfectly dosed.

- Supported data transmission rates
- COM1 (4.8 kBd)
- COM2 (38.4 kBd)
- СОМЗ (230.4 kBd)
- Expansion limits
- Cable length: Max. 20 m
- Max. 32 bytes of input data and 32 bytes of output data per port
- Max. 144 bytes of input data and 128 bytes of output data per module
- ET 200SP system functions supported
- Exchange of IO-Link device parameters (V1.1 devices only) and of IO-Link master parameters without a PG including automatic backup recovery without an engineering tool by means of redundant parameter storage on the e-coding element
- Reparameterization during ongoing operation
- I\&M identification data
- Firmware update
- PROFlenergy
- Can be plugged onto type A0 BaseUnits (BU) with automatic e-coding
- LED displays
- DIAG: Operating state display (green/red) of the module
- C1..C4: Port status display (green) for ports 1, 2, 3 and 4
- Q1..Q4: Channel status display (green) for ports 1, 2, 3 and 4
- F1..F4: Port error display (red) for ports 1, 2, 3 and 4
- PWR: Supply voltage display (green)
- Informative front-side module inscription
- Plain-text marking of the module type and function class
- 2D matrix code (Article No. and serial number)
- Circuit diagram
- CM module class color coding: Silver
- Hardware and firmware version
- Complete article number
- Optional accessories
- Labeling strips
- Reference identification label
- Color-coded label with color code CCO4
- Optional system-integrated shield connection

Application

- The CM 4x IO-Link communication module enables an exchange of data with up to 4 external IO-Link devices through one three-wire cable each.
- Control can be flexibly adapted to the communication partners using the comprehensive parameter assignment options.
- Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.

Selection and ordering data

	Version	SD	Article No.		PS*
		d			
	CM 4xIO-Link V1.1 Standard communication module - Serial communication module for connecting up to 4 IO-Link devices, time-based IO, BU type AO, color code CC04	1	6ES7137-6BD00-0BA0	1	1 unit

For more information, see https://mall. industry.siemens.com/mall/en/ww/Catalog/Products/10205200.

Communication

IO-Link: Masters

10-Link master module for ET 200pro > IO-Link master modules

Overview

4 IO-Link HF electronic module

Application

The 4 IO-Link HF electronic module enables the exchange of data with up to 4 IO-Link devices.

- 45-mm-wide 4 IO-Link HF electronic module
- 4 IO-Link ports according to IO-Link specification V1.1
- Port class B
- The IO-Link parameters are configured using the Port Configuration Tool (S7-PCT), version V3.4 and higher

Design

The 4 IO-Link HF electronic module is used together with the CM IO-Link 4 X M12 P connection module. Sensors and actuators are integrated using commercially available 3- or 5-pole M12 plugs on the CM IO-Link 4 X M12 P.

Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.

IO-Link devices (e.g. sensors) with a class A port are interconnected by means of a 3-wire cable. IO-Link devices that require an additional supply voltage and have a class B port (e.g. actuators) are interconnected by means of a 5 -wire cable.

Selection and ordering data

	Version	SD	Article No.		PS*
		d			
6, 4	4 IO-Link HF electronic module	1	6ES7147-4JD00-0AB0	1	1 unit
	- 4 IO-Link ports acc. to IO-Link specification V1.1				
-	- Port class B				
-9:	- High Feature				
	- Channel diagnostics				
	- Including bus module				
- $)^{\prime}$	- Connection module must be ordered separately				
「ब					
6ES7147-4JD00-0AB0					

Accessories

Version	SD	Article No.	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*
d				
CM IO-Link 4 X M12 P connection module	1	6ES7194-4CA20-0AA0	1	1 unit
4 M12 sockets for connection of IO-Link devices to ET 200pro 4 IO-Link HF electronic module				
Module labeling plates	1	6ES7194-4HA00-0AAO	1	500 units
For color coding of CM IOs in the colors white, red, blue and green; pack of 100				
M12 sealing caps	-	3RX9802-0AA00	100	10 units
For protection of unused M12 terminals on ET 200pro				

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10304039.

Overview

ET 200eco PN IO-Link master modules

The ET200eco PN IO-Link master modules belong to the ET 200eco PN compact block I/O device family and are distinguished by the following features:

- Compact block I/O devices for connection of IO-Link devices and connection to the PROFINET bus system
- Design without a control cabinet in IP67 degree of protection with M12 connection technology
- Very rugged and resistant encapsulated metal enclosure
- Compact module in an enclosure width of 30 mm or 60 mm
- PROFINET connection: $2 \times \mathrm{M} 12$ and automatic PROFINET addressing
- 100 Mbps data transmission rate
- LLDP neighborhood detection without PG
- Supply and load voltage connection: $2 \times$ M12
- Channel-exact diagnostics

Application

IO-Link enables easy integration of sensors and actuators from different manufacturers. ET200eco PN IO-Link master modules enable an exchange of data with up to 4 IO-Link devices. Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.
With a high degree of protection, ruggedness and small dimensions, the IO-Link master modules are especially well-suited for use at the machine level in confined spaces. They have adjustable parameters and diagnostic functions and can therefore be flexibly adapted to individual process requirements.

The following IO-Link masters are available:

- Compact module in an enclosure width of 30 mm for connecting up to 4 IO-Link devices in accordance with the IO-Link specification V1.0 and V1.1 and port class B
- Compact module in an enclosure width of 60 mm for connecting up to 4 IO-Link devices in accordance with the IO-Link specification V1.0 and port class A and an additional 8 digital inputs and 4 digital outputs.

Design

The IO-Link master modules have a screw mounting hole at the front and side, and can be mounted in any position. As a result, they are extremely flexible to install on either a level surface or on aluminum mounting rails using sliding blocks.
ET 200eco PN IO-Link masters are compact modules with M12 connection technology.

Two load power supplies (4 A each) are available that can be used by the compact module or also be looped through to another compact module (line topology). PROFINET is connected via an M12 connection and can be looped through to a further PROFINET device. The maximum cable length to the IO-Link device is 20 m .

Selection and ordering data

		Version	SD	Article No.		PS*
		d				
		ET 200eco PN IO-Link master				
		- 4 IO-L + $8 \mathrm{DI}+4 \mathrm{DQ}, 24 \mathrm{VDC} / 1.3 \mathrm{~A}$; $8 \times$ M12, degree of protection IP67, enclosure width 60 mm ; for connecting up to 41 O -Link devices according to IO-Link specification V1.0 and port class A as well as 8 digital inputs and 4 digital outputs	1	6ES7148-6JA00-0AB0	1	1 unit
		- 4 IO-L $4 \times \mathrm{M} 12$, degree of protection IP67, enclosure width 30 mm ; for connecting up to 4 IO-Link devices according to IO-Link specification V1.0 and V1.1 and port class B	1	6ES7148-6JD00-0AB0	1	1 unit
$\begin{aligned} & \text { 6ES7148- } \\ & \text { 6JAOO-OABO } \end{aligned}$	6ES7148-6JD00-0AB0					

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10046858.

Overview

CM IO-Link communication module

- 30-mm-wide CM IO-Link communication module
- For connecting up to 4 IO-Link devices in accordance with the IO-Link specification V1.0 and V1.1 and port class B
- The IO-Link parameters are configured by means of the Port Configuration Tool S7-PCT with version V3.2 and higher.

Application

The CM IO-Link communication module supports data exchange between up to four IO-Link devices. IO-Link devices (e.g. sensors) with a class A port are interconnected by means of a 3 -wire cable. IO-Link devices that require an additional supply voltage and have a class B port (e.g. actuators) are interconnected by means of a 5 -wire cable.
Since IO-Link is compatible with standard sensors, commercially available sensors compliant with IEC 61131 Type 1 can also be operated on the IO-Link master.
The 30-mm-wide I/O modules are ideally suited for use in extremely confined spaces. They have adjustable parameters and diagnostic functions and can therefore be flexibly adapted to individual process requirements.
The following IO-Link masters are available:

- CM 4xIO-Link communication modules, 4XM12

Selection and ordering data

For more information, see https://mall.industry.siemens.com/mall/en/ww/Catalog/Products/10233997.

IO-Link: Input Modules

General data

Overview

IO-Link input modules

Using IO-Link technology, it is basically possible to connect standard sensors to IO-Link masters. However, connecting standard sensors directly to the IO-Link master does not exploit the full potential of IO-Link.

The solution lies in the technology of the IO-Link modules. Their use is a more economically attractive solution in comparison to the direct connection of a sensor.

The IO-Link input module technology enhances IO-Link via a pure point-to-point cable connection towards decentralized structures. The maximum cable length of an IO-Link connection between an IO-Link module and an IO-Link master is 20 m . The use of sensor boxes with accordingly complex and error-prone wiring is no longer necessary.

Transmission of parameter and diagnostic signals

The IO-Link input modules also offer the possibility of transmitting parameters and diagnostic signals. This enables for example the inputs of modules to be parameterized as NC contacts or NO contacts through IO-Link. An overload or short-circuit in the sensor supply is signaled to the control system through the IO-Link master.

M8 and M12 terminals

M8 and M12 terminals are available for connecting the sensors. Connection to the IO-Link master is made using a standard M12 connecting cable.

Benefits

Benefits of using IO-Link input modules:

- Economical use of innovative IO-Link technology also for binary sensors
- Optimum use of all ports of the IO-Link master
- Connection of several binary sensors/actuators to one port of the IO-Link master, hence low-cost connection also of binary sensors/actuators to the control system through IO-Link
- Reduction of digital input modules in the peripheral station
- Use of parameters also for binary sensors (e.g. NC contacts, NO contacts and input delay can be parameterized)
- Reduction of cabling and hence less risk of wiring errors by dispensing with sensor boxes
- Expansion toward distributed structures using pure point-to-point wiring
- Easy and elegant integration of sensors within a radius of 20 m around an IO-Link master, e.g. in an ET 200 station
- Possibility of transmitting parameter and diagnostic signals (e.g. sensor supply overload)
- Can also be used in harsh ambient conditions thanks to a very compact design and degree of protection IP67

Application

IO-Link input modules are particularly used where sensor boxes had previously been used for the connection of binary sensors.

Application example:

Replacement of sensor boxes by using IO-Link input modules

Former technology with sensor boxes

Technology with IO-Link input modules

Communication

IO-Link: Input Modules

K20 IO-Link modules

Selection and ordering data

		Type	Pin assignment	Connection	SD	Article No.		PS*
					d			
\vdots \vdots 0 \vdots 3RK5010- \vdots OBA10- \vdots OAAO 3RK5010- OCAOO- OAAO		K20 IO-Link modules						
		- 4 inputs	Y	M12	5	3RK5010-0BA10-0AA0	1	1 unit
		- 8 inputs	Standard	M8	5	3RK5010-0CA00-0AAO	1	1 unit

Accessories

Appendix - General Information

Contents
UL and CSA file and guide numbers 15/2
On-line References for
Industrial Control Products 15/3
General Information
NEMA enclosure descriptions 15/4
IEC enclosure descriptions 15/5
IEC contactor utilization categories 15/6
Control circuit classifications 15/7
Ampere ratings for 3 phase AC induction motors 15/8
Metric to US conversions 15/9
Electical formulas and grounding requirements 15/10
NEMA and IEC terminal markings 15/11
Electrical symbols 15/12
Control circuit schematics 15/13
Control circuit schematics and wiring diagrams 15/14
Pilot control 15/15
Spring Loaded Terminal Technique 15/16
Software licences NEW 15/17
Standard Terms \& Conditions of Sale 15/19

Appendix

Standards and Approvals

UL and CSA file numbers and guide card numbers

Most control equipment listed in this catalog is designed, manufactured and tested in accordance with the relevant UL and CSA standards as listed on pages 19/2 and 19/3.

Equipment	$\begin{aligned} & \text { U } \\ & \text { W } \end{aligned}$	CSA © Guide No.	File No.	UL-listed (1) Guide No.	c(1)	File No.	UL-recogniz TI Guide No.	${ }_{c}^{d}$	File No.
3RV motor starter protectors	1	Class 321105	LR 12730	NLRV	NLRV7	E 47705	-	-	-
3RV as self-protected controller (Type E)	1	Class 321108	LR 12730	NKJH	NKJH7	E 156943	-	-	-
3RV17, 18, 27 \& 28 as circuit breakers	1	Class 143201	LR 12730	DIVQ	DIVQ7	E 235044	-	-	-
3RA13 \& 23 reversing contactors	2	Class 321104	LR 12730	NLDX	NLDX7	E31519	NLDX2	NLDX8	E31519
3RH control relays	2	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
3RT contactors	2	Class 321104	LR 12730	NLDX	NLDX7	E31519	NLDX2	NLDX8	E31519
3TB contactors	2	Class 321104	LR 12730	NLDX	NLDX7	E31519	NLDX2	-	E31519
3TC4 DC Contactors	2	-	-	NLDX	NLDX7	E31519	-	-	-
3TC5 DC Contactors	2			NLDX	-	E31519			
3TF6 contactors	2	Class 321104	LR 12730	NLDX	NLDX7	E31519	NLDX2	-	E31519
3TX7 surge suppressors	2	Class 321103	LR 12730	-	-	-	NKCR2	NKCR8	E31519
3RB20 / 21 solid-state overload relay	3	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
3RB22, 23 \& 24 solid-state overload relay	3	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
3RB30 / 31 solid-state overload relay	3			NKCR	NKCR7	E 44653			
3RU21 thermal overload relay	3	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
3UF7 SIMOCODE intelligent overload relay	3	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
$3 \mathrm{RA}^{* 1}$ \& *2 combination starters	4	Class 321105	LR12730	NLDX	NLDX7	E31519	-	-	-
3RA6 compact starter as manual motor controller	4	Class 321105	LR 12730	NLRV	NLRV7	E 47705	-	-	-
3RA6 compact starter as self protected controller (Type E)	4	Class 321108	LR 12730	NKJH	NKJH7	E 156943	-	-	-
8US1 busbar components	5			NMTR	NMTR7	E328403			
8US1 busbar adapter shoes	5	2)	${ }^{2)}$	-	-	-	NMTR2	NMTR8	E 328403
FB busbar adapter system	5	${ }^{2)}$	${ }^{2}$	-	-	-	NMTR2	NMTR8	E 160776
3RM1 hybrid motor starter	6			NMFT	NMFI7	E 143112			
3RW30 Soft starters	7	Class 321106	LR 12730	NMFT	NMFT7	E 143112	-	-	-
3RW30/31 Soft starters	7	Class 321106	LR 12730	NMFT	NMFT7	E 143112	-	-	-
3RW40/44 Soft starters	7	Class 321106	-	NMFT	NMFT7	E 143112	-	-	-
73 enclosed soft starters	7	-	-	NJAV	NJAV7	E 43399	-	-	-
74 combination soft starters	7	-	-	NJAV	NJAV7	E 43399	-	-	-
3RF20, 21 \& 22	8			NMFT	NMFT7	E 143112	NRNT2	NRNT8	E44653
3RF23 \& 24	8			NRNT	NRNT7	E44653			
3RF24 \& 34 solid-state contactors	8	Class 321107	LR12730	NMFT	-	E 143112	-	-	-
11 manual starters	9	Class 3211	LR 6535	NLVR	NLRV7	E 10590	-	-	-
14, 22, 30, 40, 43 starters \& contactors	9	Class 3211	LR 6535	NLDX	NLDX7	E 14900	-	-	-
17, 18, 25, 26, 32 combination starters	9	Class 3211	LR 6535	NKJH	NKJH7	E 185287	-	-	-
36,37 reduced voltage starters	9	Class 3211	LR 6535	NLDX	NLDX7	E14900	-	-	-
83, $84,85,87,88$ pump control panels	9	Class 3211	LR 6535	NKJH	NKJH7	E 185287	-	-	-
48, 958 overload relays ESP200	9	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
49 field kits	9	Class 3211	ELR 535	NLDX	-	E14900	NLDX2	-	E14900
CLM lighting contactors	9			NRNT	NRNT7	E27683			
LC lighting contactors - open	9			NLDX	NLDX7	E 14900			
LC lighting contactors - enclosed	9			NRNT	NRNT7	E 27683			
LENOOB, C, D, E lighting - open	9			NLDX		E31519			
LENOOF, G, H, lighting - open	9			NRNT	NRNT7	E27683			
LE lighting contactors - enclosed	9			NRNT	NRNT7	E27683			
MMS manual switches	9			NLRV		E10590	NLRV2	-	E10590
SMF manual starters	9			NLRV		E10590	NLRV2	-	E10590
3SB2 16 mm pushbuttons and indicator lights	10	Class 321103	LR 12730	-	-	-	NKCR2	-	E44653
3SU1 22mm pushbuttons and indicator lights	10	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
50 standard duty pilot devices	10	Class 3211	LR 6535	NKCR	NKCR7	E 22655	NKCR2	NKCR8	E22655
51 hazardous location pilot devices	10	Class 3218	LR 23889	NOIV	NOIV7	E 39935	-	-	-
5230 mm pilot devices	10	Class 3211	LR 6535	NKCR	NKCR7	E 22655	-	-	-
8WD signal columns				NMTR	NMTR7	E 148698			
3RN1 thermistor motor protection	11	Class 321103	LR 12730	NKCR	NKCR7	E44653	-	-	-
3RP2 electronic time-delay relay	11	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
3RQ3 coupling relays \& interfaces	11	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
3RS10, 11, 20 \& 21 temperature monitoring relay	11	-	-	NKCR	NKCR7	E 44653	-	-	-
3RS17 interface converter	11	${ }^{1)}$	1)	NKCR	NKCR7	E 44653	-	-	-

${ }^{1)}$ c(1) listing for Canada, instead of CSA certification.
${ }^{2}$) $\mathrm{C} \mathbf{\pi I}$ recognition for Canada, instead of CSA certification.

Appendix

Standards and Approvals

UL and CSA file numbers and guide card numbers / On-line resources for Industrial Control products

Equipment	岀	CSA © Guide No.	File No.	UL-listed Guide No.	c(1)	File No.	\|UL-recogr T1 Guide No	$\mathrm{C} \boldsymbol{\pi}$	File No.
3RS18 coupling relays	11			NKCR	NKCR7	E 44653			
3RS70 signal converters	11	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
3TG10 power relay	11	1)	1)	NLDX	NLDX7	E31519	-	-	-
3TX71 plug-in relays	11	-	-	-	-	-	NLDX2	NLDX8	E 14900
3TX71 sockets	11	-	-	-	-	-	SWIV2	SWIV8	E 196786
3UG monitoring relay	11	1)	1)	NKCR	NKCR7	E 44653	-	-	-
7PV time-delay relay	11	Class 221103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
8WA1 Terminal blocks	12	-	-	-	-	-	XCFR2	-	E 80027
8WA2 \& 8WH Terminal blocks	12	Class 3211	LR50181	-	-	-	XCFR2	XCFR8	E 80027
3RK3 MSS	13	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
3SE03 North American NEMA) limit switches	13	-	-	NKCR	-	E 47512	-	-	-
3SE2 hinge switches	13			NKCR	NKCR7	E 44653			
3SE5 limit switches	13	Class 321103	LR 12730	NKCR	NKCR7	E 44653	NKCR2	NKCR8	E44653
3SE6 magnetic monitoring system	13			NKCR	NKCR2	E 44653			
3SE7 rope pull switches	13	1)	${ }^{1)}$	NKCR	-	E 44653	-	-	-
3SK safety relays	13			NKCR	NKCR7	E 44653			
3TK28 safety relay	13	1)	1)	NKCR	NKCR7	E 44653	-	-	-
AS-Interface components for control circuits, e.g. AS-Interface modules, gateways	14	Class 321103	LR 12730	NKCR	NKCR7	E 44653	-	-	-
AS-Interface components for power cir-cuits, e.g. AS-Interface motor starters, PROFIBUS motor starters	14	Class 321104	LR 12730	NLDX	NLDX7	E 31519	-	-	-
6ED1 programmable relays	15			NRAQ	NRAQ7	E217227			
6EP1 DC power supplies	15	1)	1)	NRAQ	NRAQ7	E 143289	NRAQ2	NRAQ8	E143289
6GK5 ethernet switches	15			NWGQ	NWGQ7	E 115352			
5SJ4 circuit breakers	16	-	-	DIVQ	DIVQ7	E 243414	-	-	-
5ST Aux switch, fault signal contact, shunt trip,busbar	16	-	-	DIHS	DIHS7	E 321559	DIHS2	DIHS8	E 321559
5SY4 supplementary protectors	16	${ }^{2}$	${ }^{2}$	-	-	-	QVNU2	QVNU8	E116386
3NW70 Fuse Holder	16	-	-	-	-	-	IZLT2	IZLT8	E 171267
3NW75 Class CC Fuse Holder	16	-	-	IZLT	IZLT7	E 171267	-	-	-
Sentron circuit breakers	17	Class 1432-01	LR 13077	DIVQ	DIVQ7	E 10848	DKPU2	-	3) E10848
VL circuit breakers	17	Class 1432-01	LR 13077	DIVQ	DIVQ7	E 10848	DKPU2	-	3) E10848
WL circuit breakers	17	-	-	DIVQ	DIVQ7	E 231263	-	-	-
3LD2 disconnect switches	18	1)	230576	NLRV	NLRV7	E 47705	-	-	-
CFS fusible disconnect switches	18	-	222227	WHTY	-	E 121152	WHTY2	-	E121152
LBR and LBT disconnect switches	18	-	${ }^{1)}$	NLRV	-	E 191706	-	-	-
MCS disconnect switches	18	-	154852	-	-	-	WHTY2	-	E 121152
VBII disconnect switches	18	-	154852	-	-	-	WHTY2	-	E 121152
VBII safety switches	18	-	4)	WIAX	WIAX7	E4776	-	-	-

1) C © listing for Canada, instead of CSA certification.
2) $\mathrm{C} \boldsymbol{\top}$ recognition for Canada, instead of CSA certification.
3) Instantaneous only circuit breakers (ETI or MCP).
${ }^{4)}$ CSA labeled Sws available on request.

On-Line Resources for Industrial Control Products

Controls Website

- with links to all sites listed below plus much more

Siemens Industrial Controls Catalog

www.usa.siemens.com/controls
www.usa.siemens.com/iccatalog
www.usa.siemens.com/industrymall

Siemens Industry Mal

Quickly search for Siemens control products
Configure products for your application

- Create and export a complete Bill of Material for your system

Find helpful technical Information, such as:

* Instruction Sheets \& Manuals
* 2D \& 3D Dimension Drawings

Industrial Control Panels for North America

www.usa.siemens.com/controlpaneldesign

- Learn the secrets of control panel design
- Improve efficiency in construction and operation of your control panels

Short Circuit Current Ratings (SCCR) to meet UL508A \& NEC

- Find the latest High Short Circuit testing for combinations of Siemens Power Distribution \& Control Products

Siemens Service and Support Website

Get answers to technical and application questions

- Receive training on the latest innovations
http://www.usa.siemens.com/sccr
http://support.automation.siemens.com/US

NEMA Standard Publications

No. 250-1979

Type 1
Type 1 enclosures are intended for indoor use primarily to provide a degree of protection against contact with the enclosed equipment in locations where unusual service conditions do not exist. The enclosures shall meet the rod entry and rust resistance design tests.

Type 3

Type 3 enclosures are intended for outdoor use, primarily to provide a degree of protection against windblown dust, rain and sleet, and to be undamaged by the formation of ice on the enclosure. They shall meet rain, external icing, dust, and rust resistance design tests. They are not intended to provide protection against conditions such as internal condensation or internal icing.

Type 3R

Type 3R enclosures are intended for outdoor use, primarily to provide a degree of protection against falling rain, and to be undamaged by the formation of ice on the enclosure. They shall meet rod entry, rain, external icing, and rust resistance design tests. They are not intended to provide protection against conditions such as dust, internal condensation, or internal icing.

Type 4

Type 4 enclosures are intended for indoor or outdoor use, primarily to provide a degree of protection against windblown dust and rain, splashing water, and hose directed water, and to be undamaged by the formation of ice on the enclosure. They shall meet hosedown, external icing, and rust resistance design tests. They are not intended to provide protection against conditions such as internal condensation or internal icing.

Type 4X

Type 4X enclosures are intended for indoor or outdoor use, primarily to provide a degree of protection against corrosion, windblown dust and rain, splashing water, and hosedirected water, and to be undamaged by the formation of ice on the enclosure. They shall meet hosedown, external icing, and corrosion resistance design tests. They are not intended to provide protection against conditions such as internal condensation or internal icing.
Shall be manufactured of American Iron and Steel Institute Type 304 Stainless steel, polymerics, or materials with equivalent corrosion resistance to provide a degree of protection against specific corrosive agents.

Type 6

Type 6 enclosures are intended for indoor or outdoor use, primarily to provide a degree of protection against the entry of water during occasional temporary submersion at a limited depth.
Type 6P enclosures are intended for indoor or outdoor use primarily to provide a degree of protection against the entry of water during prolonged submersion at a limited depth.

Type 7

Type 7 enclosures are for indoor use in locations classified as Class I, Groups C or D, as defined in the National Electrical Code.
Type 7 enclosures shall be capable of withstanding the pressures resulting from an internal explosion of specified gases and contain such an explosion sufficiently that an explosive gas-air mixture existing in the atmosphere surrounding the enclosure will not be ignited. Enclosed heat generating devices shall not cause external surfaces to reach temperatures capable of igniting explosive gas-air mixtures in the
surrounding atmosphere. Enclosures shall meet explosion, hydrostatic, and temperature design tests.

Type 9

Type 9 enclosures are intended for indoor use in locations classified as Class II Groups E, F or G, as defined in the National Electrical Code.

Type 9 enclosures shall be capable of preventing the entrance of dust. Enclosed heat generating devices shall not cause external surfaces to reach temperatures capable of igniting or discoloring dust on the enclosure or igniting dust-air mixtures in the surrounding atmosphere. Enclosures shall meet dust penetration and temperature design tests, and aging of gaskets (if used).

Class I-Flammable gases or vapors.

Class II-Combustible dust.
Class III-Ignitable fibers or flyings.
Division I-Normal situation; the hazard would be expected to be present in everyday repair and maintenance.
Division II-Abnormal situation; the material is expected to be confined within closed containers or closed systems and will be present only during accidental rupture, breakage or unusual faulty operation.

Groups

Class I-Gases and vapors are designed for use in groups C and D , depending on the ignition temperature of the substance, its explosion pressure and other flammable characteristics.

Class II-Dust locations are designed for use in groups E, F, and G , according to the ignition temperature and conductivity of the hazardous substance.

Type 12
Type 12 enclosures are intended for indoor use primarily to provide a degree of protection against dust, falling dirt, and dripping non-corrosive liquids. They shall meet drip, dust, and rust resistance design tests. They are not intended to provide protection against conditions such as internal condensation.
Siemens NEMA 12 may be field modified for outdoor use. NEMA 3 requires the use of watertight conduit hubs. NEMA 3R requires the use of watertight conduit hubs at a level above the lowest live part and drain holes of $1 / 8^{\prime \prime}$ diameter shall be added at the bottom of the enclosure.

Type 13

Type 13 enclosures are intended for indoor use primarily to provide a degree of protection against dust, spraying of water, oil and non-corrosive coolant. They shall meet oil explosion and rust resistance design tests. They are not intended to provide protection against conditions such as internal condensation.

Type 1

Type 3/3R

Type 4/4X

Type 4X

Type 3, 4, 7 \& 9

Type 12 \& 13

Appendix

General Information

IEC enclosure descriptions

Comparison of NEMA Enclosures

This table summarizes the information pro-
vided on the previous page.

Provides a Degree of Protection Against the Following Environmental Conditions	1	3R	4	4X	12	13
Incidental contact with the enclosed equipment	\times	\times	\times	\times	\times	\times
Rain, snow, and sleet	-	\times	\times	\times	-	-
Windblown dust	-	-	\times	\times	-	-
Falling dirt	\times	-	\times	\times	\times	\times
Falling liquids and light splashing	-	-	\times	\times	\times	\times
Circulating dust, lint, fibers, and flyings	-	-	\times	\times	\times	\times
Settling airborne dust, lint, fibers, and flyings	-	-	\times	\times	\times	\times
Hosedown and splashing water	-	-	\times	\times	-	-
Oil and coolant seepage	-	-	-	-	\times	\times
Oil or coolant spraying and splashing	-	-	-	-	-	\times
Corrosive agents	-	-	-	\times	-	-

IEC Environmental Enclosure Ratings for clobal Applications

IEC enclosures use a two digit numbering system to define the degree of protection they provide. The first digit specifies the degree of protection against incidental contact and penetration of solid objects. The second digit specifies the level of protection against the ingress of water.

Example: An IP65 enclosure is dust tight and protected against water jets. An IP66 enclosure is dust tight and protected against powerful water jets.

First Numeral
Protection of persons against access to hazardous parts and
Second Numeral
protection against penetration of solid foreign objects.

0	Non-protected	0	Non-protected
1	Back of hand; objects greater than 50 mm in diameter	1	Vertically falling drops of water
2	Finger; objects greater than 12.5 mm in diameter	2	Vertically falling drops of water with enclosure tilted 15 degrees
3	Tools or objects greater than 2.5 mm in diameter	3	Spraying water
4	Tools or objects greater than 1 mm in diameter	4	Splashing water
5	Dust-protected (Dust may enter but must not interfere with operation of the equipment or impair safety)	5	Water jets
6	Dust tight (No dust observable inside enclosure at end of test)	6	Powerful water jets
		7	Temporary submersion
		8	Continuous submersion

Comparison of NEMA Type Numbers to IEC Classification Designations
This table shows the IP classification designation to which NEMA enclosures may be applied. The table cannot be used to convert IEC designations to NEMA type numbers.

NEMA Enclosure Type Number
IEC Enclosure Classification Designation

1	IP10
3	IP54
3R	IP54
4 and 4X	IP56
6 and 6P	IP67
12	IP52
13	IP54

General Information

IEC contactor utilization catagories

Contactors designed for international applications are tested and rated per IEC 947-4. The IEC rating system is broken down into different utilization categories that define the value of the current that the contactor must make, maintain, and break. The following category definitions are the most commonly used for IEC Contactors.
Ratings for Siemens contactors per these categories can be found in Section 3.

AC Categories

AC-1
This applies to all AC loads where the power factor is at least 0.95 . These are primarily non-inductive or slightly inductive loads. Breaking remains easy.

AC-3

This category applies to squirrel cage motors where the breaking of the power contacts would occur while the motor is running. On closing, the contactor experiences an inrush which is 5 to 8 times the nominal motor current, and at this instant, the voltage at the terminals is approximately 20% of the line voltage. Breaking remains easy.

AC-4
This applies to the starting and breaking of a squirrel cage motor during an inch or plug reverse. On energization, the contactor closes on an inrush current approximately 5 to 8 times the nominal current. On de-energization, the contactor breaks the same magnitude of nominal current at a voltage that can be equal to the supply voltage. Breaking is severe.

DC Categories

DC-1
This applies to all DC loads where the time constant (L/R) is less than or equal to one msec. These are primarily noninductive or slightly inductive loads.

DC-2

This applies to the breaking of shunt motors while they are running. On closing, the contactor makes the inrush current around 2.5 times the nominal rated current. Breaking is easy.

DC-3

This applies to the starting and breaking of a shunt motor during inching or plugging. The time constant shall be less than or equal to 2 msec . On energization, the contactor sees current similar to that in Category DC-2. On de-energization, the contactor
will break around 2.5 times the starting current at a voltage that may be higher than the line voltage. This would occur when the speed of the motor is low because the back e.m.f. is low. Breaking is severe.

DC-5

This applies to the starting and breaking of a series motor during inching or plugging. The time constant being less than or equal to 7.5 msec . On energization, the contactor sees about 2.5 times the nominal full load current. On deenergization, the contactor breaks the same amount of current at a voltage which can be equal to the line voltage. Breaking is severe.

Special Contactor Utilization Categories

Some contactors also have ratings for the fol-
lowing specialty utilization categories.

For specific applications, please contact your local Siemens sales office.

Kind of Current	Utilization Categories	Typical Applications
AC	AC-2	Slip-ring motors: starting, switching off
	AC-5a	Switching of electric discharge lamp controls
	AC-5b	Switching of incandescent lamps
	AC-6a	Switching of transformers, welders
	AC-6b	Switching of capacitor banks
	AC-7a	Slightly inductive loads in household appliances and similar applications
	AC-7b	Motor-loads for household applications
	AC-8a	Hermetic refrigerant compressor motor ${ }^{1}$) control with manual resetting of overload releases
	AC-8b	Hermetic refrigerant compressor motor ${ }^{1}$) control with automatic resetting of overload releases
DC	DC-6	Switching of incandescent lamps

Electrical Quantities Symbols According to DIN, VDE and IEC

Symbol	Characteristic Electrical Quantity	Symbol	Characteristic Electrical Quantity
U_{i}	Rated insulation voltage to DIN VDE 0110/DIN VDE 0660	$\mathrm{I}_{\text {cw }}$	Rated short-time current withstand capacity to IEC 947-1
$U_{\text {e }}$	Rated operational voltage	P$l_{\text {p }}$$i_{n}$$i_{p}$	Test current (general) to DIN VDE 0660, prospective current to DIN VDE 0636 Breaking current (r.m.s. value) to DIN VDE 0102 Peak short-circuit current (maximum instantaneous value) to DIN VDE 0102
$U_{\text {c }}$	Rated control voltage (IEC 947-1) at which an operating mechanism or release is rated, e.g. coil voltage to DIN VDE 0660 Part 102		
$U_{\text {s }}$	Rated control supply voltage (Control voltage) to DIN VDE 0660 Part 102, IEC 947-1		Sustained (symmetrical) short-circuit current (r.m.s. value), DIN VDE 0102.
$U^{\text {s }}$	No-load voltage to IEC 947-2, -3, -5		Rated short-time withstand current to DIN VDE 0660
U_{r}	Power-frequency recovery voltage (IEC 947-.)	i_{p}	Let-through current of fuses and rapidly operating switching devices (maximum instantaneous value during the break time) to DIN VDE 0102
U	Transformer no-load voltage to DIN VDE 0532		
$\cup_{\text {¢ }}{ }^{\circ}$	Short-circuit impedance voltage to DIN VDE 0532	1 。	No-load current at the input side of a transformer (unloaded output side) to DIN VDE 0532
U_{kr}	Rated value of the impedance voltage in \% to DIN VDE 0102, 01.90		
I_{n}	Rated current to IEC 947-.	$\mathrm{I}_{\text {x }}$	Current carrying capacity (ampacity)
$\mathrm{I}_{\text {th }}$	Eight-hour-current to DIN VDE 0660, conventional free-air thermal	$\mathrm{l}_{\text {sr }}$	Rated rotor operational current (DIN VDE 0660, IEC 947-1)
	current to IEC 947- (defined as eight-hour-current) thermally equivalent		Setting current ("current setting") to DIN VDE 0660
	short-time current (r.m.s. value) to DIN VDE 0103	R	Take-over current
$\mathrm{I}_{\text {the }}$	Conventional enclosed thermal current	R	Ohmic resistance
	Rated uninterrupted current to IEC 947-1	$S^{\prime \prime}{ }_{k}$	Initial symmetrical AC short-circuit power (simplified: apparent short-circuit power)
	Rated operational current	X	Reactance, reactive impedance
	Selectivity (discrimination) limit current (DIN VDE 0660, IEC 947-1)	Z	Impedance (apparent resistance)
1 cm	Rated short-circuit making capacity to IEC 947-1	x	Factor to determine the peak short-circuit current ip

1) Hermetic refrigerant compressor motor is a combina-
tion consisting of a compressor and a motor, both of which are enclosed in the same housing, with no external shaft or shaft seals, the motor operating in the refrigerant.

General Information

NEMA and IEC control circuit classifications

AC-Control Circuit Classifications-NEMA
NEMA designates Control Circuit Rating with
a code letter (for current) and a voltage code.
Ratings \& Test Values for AC Control Circuit Contacts at 50 or $\mathbf{6 0 H z}$

Contact Rating Designation	Thermal Continuous Test Current, Amperes	Maximum Current, Amperes								Voltamperes	
		120 Volts		240 Volts		480 Volts		600 Volts			
		Make	Break								
A150	10	60	6	-	-	-	-	-	-	7200	720
A300	10	60	6	30	3	-	-	-	-	7200	720
A600	10	60	6	30	3	15	1.5	12	1.2	7200	720
B150	5	30	3	-	-	-	-	-	-	3600	360
B300	5	30	3	15	1.5	-	-	-	-	3600	360
B600	5	30	3	15	1.5	7.5	0.75	6	0.6	3600	360
C150	2.5	15	1.5	-	-	-	-	-	-	1800	180
C300	2.5	15	1.5	7.5	0.75	-	-	-	-	1800	180
C600	2.5	15	1.5	7.5	0.75	3.75	0.375	3	0.3	1800	180
D150	1	3.6	0.6	-	-	-		-		432	72
D300	1	3.6	0.6	1.8	0.3	-	-	-	-	432	72
E150	0.5	1.8	0.3	-	-	-	-	-	-	216	36

DC-Control Circuit Classifications-NEMA
Rating codes for DC Control Circuit Contacts

Contact Rating Designation ${ }^{1}$)	Thermal Continuous Test Current, Amperes	Maximum Make or Break ${ }^{2}$) Current, Amperes			Maximum Make or Break Voltamperes at 300 Volts or Less
		125 Volt	250 Volt	301 to 600 Volt	
N150	10	2.2	-	-	275
N300	10	2.2	1.1	-	275
N600	10	2.2	1.1	0.4	275
P150	5	1.1	-	-	138
P300	5	1.1	0.55	-	138
P600	5	1.1	0.55	0.2	138
Q150	2.5	0.55	-	-	69
Q300	2.5	0.55	0.27	-	69
Q600	2.5	0.55	0.27	0.1	69
R150	1	0.22	-	-	28
R300	1	0.22	0.11	-	28

Control Circuit Classifications-IEC ${ }^{3}$)

IEC 947-5-1 Uses Utilization Categories AC-15 to Specify Control Circuit Ranges.

Current at each voltage is specified by the manufacturer, not by the standard.

AC Control Circuit Utilization Categories per IEC 947-5-1	Make		Break		DC Control Circuit Utilization Categories per IEC 947-5-1	Make		Break	
	I/I ${ }_{\text {e }}$	$\mathbf{U} / \mathbf{U}_{\mathbf{e}}$	I/Ie	$\mathbf{U} / \mathbf{U}_{\text {e }}$		I/Ie	$\mathbf{U} / \mathbf{U}_{\text {e }}$	I/Ie	$\mathbf{U} / \mathbf{U}_{\text {e }}$
AC-12	1	1	1	1	DC-12	1	1	1	1
AC-13	2	1	1	1	DC-13	1	1	1	1
AC-14	6	1	1	1	DC-14	10	1	1	1
AC-15	10	1	1	1					

Example of a Typical IEC Control Circuit Ratings Table ${ }^{4}$)

AC

DC

I/AC-12 (Continuous Amps)	U AC Voltage	$\mathrm{I}_{\mathrm{e}} / \mathrm{AC}-15$ Amps	Voltage	$\mathrm{I}_{\mathrm{e}} / \mathrm{DC-12}$	$\mathrm{I}_{\text {e }} /$ DC-13
10	24 V	6A	24	6A	3A
	110 V	6A	60	5A	1.5A
	220/230V	6A	110	2.5A	0.7A
	380/440V	4A	230	1A	0.3A

1)The numerical suffix designates the maximum voltage design values, which are to be 600, 300, and 150 volts for suffixes 600,300 , and 150 respectively. Test voltage shall be 600, 250 , or 125 volts. MLLDLL.
2)For maximum ratings at 300 volts or less, the maximum make and break ratings are to be obtained by dividing the volt-ampere rating by the application voltage, but the current value is not to exceed the thermal continuous test current.
3) I Rated operational current
U. Rated operational voltage
${ }^{\text {e }}$ Current to be made or broken U Voltage before make
4)Example: A control circuit contact having an AC-15 rating of 6 amps at 230 volts is capable of making 60 amps and breaking 6 amps at 230 volts. KRE.

Appendix

General Information

Ampere ratings for 3 phase AC induction motors

3 Phase					
Amperes 60Hz					
Hp	Syn Speed RPM	200 Volts	$\begin{aligned} & 230 \\ & \text { Volts } \end{aligned}$	460 Volts	575 Volts
1/4	$\begin{array}{r} 1800 \\ 1200 \\ 900 \\ \hline \end{array}$	$\begin{aligned} & 1.09 \\ & 1.61 \\ & 1.84 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.95 \\ & 1.40 \\ & 1.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.70 \\ & 0.80 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.56 \\ & 0.64 \\ & \hline \end{aligned}$
1/3	$\begin{array}{r} 1800 \\ 1200 \\ 900 \end{array}$	$\begin{aligned} & 1.37 \\ & 1.83 \\ & 2.07 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.59 \\ & 1.80 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.80 \\ & 0.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.64 \\ & 0.72 \end{aligned}$
1/2	$\begin{array}{r} 1800 \\ 1200 \\ 900 \end{array}$	$\begin{aligned} & 1.98 \\ & 2.47 \\ & 2.74 \end{aligned}$	$\begin{aligned} & 1.72 \\ & 2.15 \\ & 2.38 \end{aligned}$	$\begin{aligned} & \hline 0.86 \\ & 1.08 \\ & 1.19 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.86 \\ & 0.95 \end{aligned}$
$3 / 4$	$\begin{array}{r} 1800 \\ 1200 \\ 900 \\ \hline \end{array}$	$\begin{aligned} & 2.83 \\ & 3.36 \\ & 3.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.46 \\ & 2.82 \\ & 3.26 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.46 \\ & 1.63 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.98 \\ & 1.17 \\ & 1.30 \\ & \hline \end{aligned}$
1	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.22 \\ & 4.09 \\ & 4.32 \\ & 4.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.80 \\ & 3.56 \\ & 3.76 \\ & 4.30 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.78 \\ & 1.88 \\ & 2.15 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.12 \\ & 1.42 \\ & 1.50 \\ & 1.72 \\ & \hline \end{aligned}$
$11 / 2$	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \end{array}$	$\begin{aligned} & 5.01 \\ & 5.59 \\ & 6.07 \\ & 6.44 \end{aligned}$	$\begin{aligned} & 4.36 \\ & 4.86 \\ & 5.28 \\ & 5.60 \end{aligned}$	$\begin{aligned} & 2.18 \\ & 2.43 \\ & 2.64 \\ & 2.80 \end{aligned}$	$\begin{aligned} & 1.74 \\ & 1.94 \\ & 2.11 \\ & 2.24 \end{aligned}$
2	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.44 \\ & 7.36 \\ & 7.87 \\ & 9.09 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.60 \\ & 6.40 \\ & 6.84 \\ & 7.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.80 \\ & 3.20 \\ & 3.42 \\ & 3.95 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.24 \\ & 2.56 \\ & 2.74 \\ & 3.16 \\ & \hline \end{aligned}$
3	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \end{array}$	$\begin{aligned} & \hline 9.59 \\ & 10.8 \\ & 11.7 \\ & 13.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.34 \\ & 9.40 \\ & 10.2 \\ & 11.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.17 \\ & 4.70 \\ & 5.12 \\ & 5.70 \end{aligned}$	$\begin{aligned} & \hline 3.34 \\ & 3.76 \\ & 4.10 \\ & 4.55 \end{aligned}$
5	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \\ \hline \end{array}$	$\begin{aligned} & 15.5 \\ & 16.6 \\ & 18.2 \\ & 18.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13.5 \\ & 14.4 \\ & 15.8 \\ & 15.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.76 \\ & 7.21 \\ & 7.91 \\ & 7.92 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.41 \\ & 5.78 \\ & 6.32 \\ & 6.33 \\ & \hline \end{aligned}$
$71 / 2$	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \end{array}$	$\begin{aligned} & \hline 22.4 \\ & 24.7 \\ & 25.1 \\ & 26.5 \end{aligned}$	$\begin{aligned} & \hline 19.5 \\ & 21.5 \\ & 21.8 \\ & 23.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.79 \\ & 10.7 \\ & 10.9 \\ & 11.5 \end{aligned}$	$\begin{aligned} & \hline 7.81 \\ & 8.55 \\ & 8.70 \\ & 9.19 \end{aligned}$
10	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \\ \hline \end{array}$	$\begin{aligned} & 29.2 \\ & 30.8 \\ & 32.2 \\ & 35.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25.4 \\ & 25.8 \\ & 28.0 \\ & 30.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 12.7 \\ & 13.4 \\ & 14.0 \\ & 15.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.1 \\ & 10.7 \\ & 11.2 \\ & 12.2 \\ & \hline \end{aligned}$
15	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \end{array}$	$\begin{aligned} & \hline 41.9 \\ & 45.1 \\ & 47.6 \\ & 51.2 \end{aligned}$	$\begin{aligned} & \hline 36.4 \\ & 39.2 \\ & 41.4 \\ & 44.5 \end{aligned}$	$\begin{aligned} & \hline 18.2 \\ & 19.6 \\ & 20.7 \\ & 22.2 \end{aligned}$	$\begin{aligned} & \hline 14.5 \\ & 15.7 \\ & 16.5 \\ & 17.8 \end{aligned}$
20	$\begin{array}{r} 3600 \\ 1800 \\ 1200 \\ 900 \end{array}$	$\begin{aligned} & 58.0 \\ & 58.9 \\ & 60.7 \\ & 63.1 \end{aligned}$	$\begin{aligned} & 50.4 \\ & 51.2 \\ & 52.8 \\ & 54.9 \end{aligned}$	$\begin{aligned} & 25.2 \\ & 25.6 \\ & 26.4 \\ & 27.4 \end{aligned}$	$\begin{aligned} & 20.1 \\ & 20.5 \\ & 21.1 \\ & 21.9 \end{aligned}$

Full load ampere ratings of motors vary depending upon a number of factors. The full load currents listed above are "average values" for horsepower rated motors of several manufacturers at the most commonly rated voltages and speeds. These "average values" along with the similar values listed in the N.E.C. should be used as a guide only for selecting suitable components for the motor branch circuit. The rated full load current shown on the motor nameplate
may vary considerably from the listed value, depending on the specified motor design.

Note: RPM shown for $\mathbf{6 0 H z}$ motors. For 50 Hz motors, multiply the 60HZ FLA value by 1.2. Overload Relay Selection Multi-Speed/Part-Winding/Wye-Delta
Special attention should be given to the selection of the overload relay adjustment range for multispeed, part-winding and wye-delta controllers, as follows:

Amperes 60Hz					
Hp	Syn Speed RPM	$\begin{aligned} & 200 \\ & \text { Volts } \end{aligned}$	230 Volts	$\begin{aligned} & 460 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 575 \\ & \text { Volts } \end{aligned}$
25	3600	69.9	60.8	30.4	24.3
	1800	74.5	64.8	32.4	25.9
	1200	75.4	65.6	32.8	26.2
	900	77.4	67.3	33.7	27.0
30	3600	84.8	73.7	36.8	29.4
	1800	86.9	75.6	37.8	30.2
	1200	90.6	78.8	39.4	31.5
	900	94.1	81.8	40.9	32.7
40	3600	111	96.4	48.2	38.5
	1800	116	101	50.4	40.3
	1200	117	102	50.6	40.4
	900	121	105	52.2	41.7
50	3600	138	120	60.1	48.2
	1800	143	124	62.2	49.7
	1200	145	126	63.0	50.4
	900	150	130	65.0	52.0
60	3600	164	143	71.7	57.3
	1800	171	149	74.5	59.4
	1200	173	150	75.0	60.0
	900	177	154	77.0	61.5
75	3600	206	179	89.6	71.7
	1800	210	183	91.6	73.2
	1200	212	184	92.0	73.5
	900	222	193	96.5	77.5
100	3600	266	231	115	92.2
	1800	271	236	118	94.8
	1200	275	239	120	95.6
	900	290	252	126	101
125	3600	-	292	146	116
	1800	-	293	147	117
	1200	-	298	149	119
	900	-	305	153	122
150	3600	-	343	171	137
	1800	-	348	174	139
	1200	-	350	174	139
	900	-	365	183	146
200	3600	-	458	229	184
	1800	-	452	226	181
	1200	-	460	230	184
	900	-	482	241	193
250	3600	-	559	279	223
	1800	-	568	284	227
	1200	-	573	287	229
	900	-	600	300	240
300	1800	-	278	339	271
	1200	-	684	342	274
400	1800	-	896	448	358

Multi-Speed Controllers: Each speed requires a separate set of overloads. The adjustment range must be selected on the basis of the full-load current for each particular speed.
Part-Winding Controllers: Each winding of the motor must have its own set of overloads. The adjustment range should be selected on the basis of one-half the motor fullload current; that is, the full load current of each winding current.

Wye-Delta Controllers: Only one set of overloads is required. Since the overload relay is located electrically "inside the delta connection," the adjustment range must be selected on the basis of the full-load motor current (delta connection) divided by 1.73.
Single Phase: See page 9/120 for ampere ratings of single phase $A C$ induction motors.

General Information

Metric to US conversions

Wire Conversion Table
Comparison of Cross-sectional Areas to Metric and US Standards

Other Conversions

Power Conversions		
1 kilowatt (kW)	$=$	1.341 horsepower (hp)
1 horsepower (hp)	$=$	0.7457 kilowatt (kW)

Dimensions Conversions		$=$
1 inch (in.)	$=$	25.4 millimeters (mm)
1 inch (in.)	$=$	2.54 centimeters (cm)
1 centimeter (cm)	$=$	0.3937 inches (in.)
1 meter (m)	$=$	39.37 inches (in.)
Weight Conversions	$=$	28.35 grams (g)
1 ounce (oz.)	$=$	0.454 kilograms (kg)
1 pound (lb.)		2.205 pounds (lbs.)
1 kilogram (kg)		

Temperature Conversions

100 Celsius	$=$	212 Fahrenheit
80 Celsius	$=$	176 Fahrenheit
60 Celsius	$=$	140 Fahrenheit
40 Celsius	$=$	104 Fahrenheit
20 Celsius	$=$	68 Fahrenheit
0 Celsius		32 Fahrenheit
Torque	$=$	8.85 pound-inches (lb. in.)
1 Newton-meter (Nm)		

Appendix

General Information

Electrical formulas and grounding requirements
Electrical Formulas for Finding Amperes, Horsepower, Kilowatts and kVA

To Find	Single-Phase	Alternating Current Two-Phase ${ }^{1}$), Four-Wire	Three-Phase	Direct Current
Kilowatts	$\frac{1 \times \mathrm{E} \times \mathrm{pf}}{1000}$	$\frac{1 \times \mathrm{E} \times 2 \times \mathrm{pf}}{1000}$	$\frac{\mathrm{I} \times \mathrm{E} \times 1.73 \times \mathrm{pf}}{1000}$	$\frac{1 \times E}{1000}$
kVA	$\frac{I \times E}{1000}$	$\frac{1 \times E \times 2}{1000}$	$\frac{I \times E \times 1.73}{1000}$	-
Horsepower (Output)	$\frac{1 \times \mathrm{E} \times \% \mathrm{EFF} \times \mathrm{pf}}{746}$	$\frac{1 \times \mathrm{E} \times 2 \times \% \mathrm{EFF} \times \mathrm{pf}}{746}$	$\frac{1 \times \mathrm{E} \times 1.73 \times \% \mathrm{EFF} \times \mathrm{pf}}{746}$	$\frac{1 \times \mathrm{E} \times \% \mathrm{EFF}}{746}$
Amperes when Horsepower is Known	$\frac{\mathrm{HP} \times 746}{\mathrm{E} \times \% \mathrm{EFF} \times \mathrm{pf}}$	$\frac{\mathrm{HP} \times 746}{2 \times \mathrm{E} \times \% \mathrm{EFF} \times \mathrm{pf}}$	$\frac{\mathrm{HP} \times 746}{1.73 \times \mathrm{E} \times \% \mathrm{EFF} \times \mathrm{pf}}$	$\frac{\mathrm{HP} \times 746}{\mathrm{E} \times \% \mathrm{EFF}}$
Amperes when Kilowatts is Known	$\frac{\mathrm{KW} \times 1000}{\mathrm{E} \times \mathrm{pf}}$	$\frac{\mathrm{KW} \times 1000}{2 \times \mathrm{E} \times \mathrm{pf}}$	$\frac{\mathrm{KW} \times 1000}{1.73 \times \mathrm{E} \times \mathrm{pf}}$	$\frac{K W \times 1000}{E}$
Amperes when kVA is Known	$\frac{\mathrm{kVA} \times 1000}{\mathrm{E}}$	$\frac{\mathrm{kVA} \times 1000}{2 \times \mathrm{E}}$	$\frac{\mathrm{kVA} \times 1000}{1.73 \times \mathrm{E}}$	-

Average Efficiency and Power Factor Values of Motors

When the actual efficiencies and power factors of the motors to be controlled are not known, the following approximations may be used.

Efficiencies ${ }^{3}$)

Type	Power Factor
DC motors, 35 horsepower and less	80% to 85%
DC motors, above 35 horsepower	85% to 90%
Synchronous motors (at 100\% power factor)	92% to 95%
"Apparent" Efficiencies (= Efficiency \times Power Factor); Three-phase induction motors, 25 horsepower and less	70%
Three-phase induction motors above 25 horsepower	80%

Fault-Current Calculation on

 Low-Voltage AC SystemsIn order to determine the maximum interrupting rate of the circuit breakers in a distribution system, it is necessary to calculate the current which could flow under a three-phase bolted short circuit condition. For a three-phase system the maximum available fault current at the secondary side of the transformer can be obtained by use of the formula:

$$
\mathrm{I}_{\mathrm{sc}}=\frac{\mathrm{kVA} \times 100}{\mathrm{KV} \times \sqrt{ } 3 \times \% \mathrm{Z}}
$$

where:
$I_{\mathrm{sc}}=$ Symmetrical RMS amperes of fault current.
$\mathrm{kVA}=$ Kilovolt-ampere rating of transformers.
$\mathrm{KV}=$ Secondary voltage in kilovolts.
\% $Z=$ Percent impedance of primary line and transformer.

Minimum Size Grounding Conductors
for Grounding Raceways and
Equipment (From NEC Table 250-95)

Eq)

Grounding Electrode Conductor for AC Systems (From NEC Table 250-94)²)
Size of Largest Service Entrance Conductor or
Size of Largest Service Entrance Conduc
Equivalent Area for Parallel Conductors

Equivalent Area for Parallel Conductors		Size of Grounding Electrode Conductor	
Copper	Aluminum or Copper Clad Aluminum	Copper	Aluminum or Copper Clad Aluminum
2 or smaller	1/0 or smaller	8	6
1 or 1/0	2/0 or 3/0	6	4
2/0 or 3/0	$4 / 0$ or 250 kcmil	4	2
Over 3/0 to 350 kcmil	Over 250 kcmil to 500 kcmil	2	1/0
Over 350 kcmil to 600 kcmil	Over 500 kcmil to 900 kcmil	1/0	3/0
Over 600 kcmil to 1100 kcmil	Over 900 kcmil to 1750 kcmil	2/0	4/0
Over 1100 kcmil	Over 1750 kcmil	3/0	250 kcmil

1)In three-wire, two-phase circuits the current in the common conductor is 1.41 times that in either other conductor.
$\mathrm{E}=$ Volts $\mathrm{I}=$ Amperes
\% EFF $=$ Percent Efficiency pf $=$ Power Factor
2)Additional information and exceptions are stated in

Article 250-Grounding, National Electric Code.
3)These figures may be decreased slightly for singlephase and two-phase induction motors.

General Information

NEMA and IEC terminal markings
Symbols and Terminal Markings-IEC

Per DIN standards, the terminals of auxiliary contacts on contactors and control devices are marked with a two digit number. Terminals that belong together are marked with the same location digit (first digit).

The second digits (called the function digits) identify the function of each contact per the following designation.

Type of Contact	Function Digits
Normally Open	3 and 4
Normally Closed	1 and 2
Normally Open (Special Function) Normally Closed (Special Function)	5 and 6 i.e. Time-Delay or Overload 7 and 8 Contacts

Symbols and Terminal Markings

Control Circuits	NEMA	IEC
Normally Open (NO)		
Normally Closed (NC)		
Time Delay Circuits Normally Open (Timed Closed) Normally Closed (Timed Open)		
Off Delay Normally Open (Timed Open)		
Normally Closed (Timed Closed)	?	

Example:

1. The numbers 13 and 14 represent an auxiliary contact
2. The number 1 identifies that this is the first contact in the sequence
3. The numbers 3 and 4 identify this as a normally open contact
4. The numbers 21 and 22 represent another auxiliary contact
5. The number 2 identifies that this is the second contact in the sequence
6. The numbers 1 and 2 identify this as a normally closed contact

NEMA and IEC Comparisons Contactor/Starter Markings

Control Circuit Schematic

Power Circuit Schematic

Appendix

General Information

Electrical symbols

Disconnect | Circuit | Circuit Breaker | Limit Switch-Spring Return | Normally Open | Normally Closed | Neutral Position |
| :--- | :--- | :--- | :--- | :--- | :--- |

Liquid Level
Normelly Open Normally Closed
Normally Open Normally Closed

Push Buttons Normally Open	Normally Closed	Double Circuit	Mushroom Head	Maintaned	Foot Switch Normally Open	Normally Closed
$\frac{1}{00}$			$\frac{0}{0} 0$		S_{0}	$0-70$

General Contacts
Normally Open Normally Closed Not Connected Conductors
Ground Full Wave Rectifier Horn, Siren Onerload Relay
Auto Transformer

General Information

Control circuit schematics

Figure 1 Three Wire Control Giving Low Voltage Protection Using Single Two Button Station
STOP 2 START

Figure 2 Three Wire Control Giving Low Voltage Protection Using Multiple Two Button Stations

Figure 3 Three Wire Control Giving Low Voltage Protection with Safe-Run Selector Switch

Figure 4 Three Wire Control for Jog or Run Using Start Stop Push Buttons and Jog-Run Selector Switch
4

Figure 5 Control for Jog or Run Using Stop Push Button and Jog-Run Selector Push Selector Switch. Selector Push Contacts are Shown for "Run" (Three Wire Operation). Rotate Switch Sleeve and Selector Contact Opens Between "2" and "Stop" Button (Two Wire Operation)

Figure 6 Three Wire Control for Jogging, Start, Stop Using Push Buttons

Figure 8 Two Wire Control for Reversing Jogging Using Single Two Button Station

Figure 9 Three Wire Control for Instant Reversing Applications Using Single Three Button Station

Figure 10 Three Wire Control for Reversing After Stop Using Single Three Button Station

Figure 11 Control for Three Speed with Selective Circuitry to Insure the Stop Button is Pressed Before Going to a Lower Speed

Figure 12 Three Wire Control for Two Speed with a Compelling Relay to Insure Starting on Slow Speed

Figure 7 Two Wire Control Giving Low Voltage Release Only
Using Hand-Off-Auto Selector Switch

Appendix

General Information

Control circuit schematics and wiring diagrams with transformers

Figure 13 Control for Three Speed with a Compelling Relay to Insure Starting on Low Speed

Figure 14 Control for Two Speed to Provide Automatic Acceleration from Low to High Speed

Figure 15 Control for Two Speed to Provide Automatic Deceleration from High to Low Speed

Figure 16 Control for Two Speed Reversing Starter Using Forward, Reverse, Stop Push Buttons and High-Low-Off Selector Switch

Size 0-2½ Starter with Transformer and 3 Position Selector Switch

Size 0-2½ Starter with Transformer and 2 Position Selector Switch

Size 0-2½ Starter with Transformer and START-STOP Push Button

General Information

Pilot control

AC Coil-NEMA Size 0-4

DC Coil-NEMA Size 0-4

Non Reversing Pilot Control Terminal Markings shown in () indicate IEC Style. For separate control voltage source remove Jumper A shown individual in wiring diagrams. Connect separate voltage source to terminal 1 on the pilot device as shown and to the terminal $\mathbf{X 2}$ on the overload relay, or $\mathbf{W}(\mathbf{A} 2)$ on the coil if there is no overload.

Reversing Pilot Control For Separate control voltage source remove Jumper A shown in individual wiring diagrams. Connect separate voltage source to terminal 1 on the pilot device as shown and to the terminal $\mathbf{X 2}$ on the overload relay, or $\mathbf{W}(\mathbf{A 2})$ on the coil if there is no overload.

Connection Technology

Spring loaded terminal technique
Spring Loaded Terminals

As an alternative to screw-type terminals, many products may be supplied with spring loaded terminals. With this screwless connection technique, the wires are clamped securely against shock and vibration by a spring clamp. Solid, stranded and finely-stranded wires can be connected with or without end sleeves.

Each terminal connection is equipped with two independently operated spring clamps. Each spring can accept one wire. The clamping force of the spring automatically adjusts to the size of the wire and compensates for any deformation of the wire, such as settling
of the strands. The flat clamping face of the spring presses the wire against the current bar without damaging the wire. To prevent stranded or finely-stranded wire from being divided, the end can be tinned or amalgamated using ultrasound.

The terminal is opened by inserting the screwdriver. The wire is then inserted and will remain clamped after the screwdriver is removed (see below). The chromium-nickel steel of the spring clamp provides corrosion-resistant contact of the wire-end in the clamp.

- Quick: The connection is made easily with-
out the need to add on wire end sleeves or torque down terminal screws-reducing wiring time
- Reliable: The terminal is gas-tight and resistant to shock and vibration-for maximum contact reliability
- Maintenance-free: With the spring loaded terminals, there is no need to inspect the connections following transport-eliminating time-consuming and costly inspection

Step 1:
Insert screwdriver; spring opens.

Step 2:
The screwdriver holds the spring open; insert the wire.

Advantages:

Overview

Software types

Software requiring a license is categorized into types.
The following software types have been defined:

- Engineering software
- Runtime software

Engineering software

This includes all software products for creating (engineering) user software, e.g. for configuring, programming, parameterizing, testing, commissioning or servicing.
Data generated with engineering software and executable programs can be duplicated for your own use or for use by thirdparties free-of-charge.

Runtime software

This includes all software products required for plant/machine operation, e.g. operating system, basic system, system expansions, drivers, etc.
The duplication of the runtime software and executable programs created with the runtime software for your own use or for use by third-parties is subject to a charge.
You can find information about license fees according to use in the ordering data (e.g. in the catalog). Examples of categories of use include per CPU, per installation, per channel, per instance, per axis, per control loop, per variable, etc.
Information about extended rights of use for parameterization/configuration tools supplied as integral components of the scope of supply can be found in the readme file supplied with the relevant product(s).

License types

Siemens Industry Automation \& Drive Technologies offers various types of software license:

- Floating license
- Single license
- Rental license
- Rental floating license
- Trial license
- Demo license
- Demo floating license

Floating license

The software may be installed for internal use on any number of devices by the licensee. Only the concurrent user is licensed. The concurrent user is the person using the program. Use begins when the software is started.
A license is required for each concurrent user.

Single license

Unlike the floating license, a single license permits only one installation of the software per license.
The type of use licensed is specified in the ordering data and in the Certificate of License (CoL). Types of use include for example per instance, per axis, per channel, etc.
One single license is required for each type of use defined.

Rental license

A rental license supports the "sporadic use" of engineering software. Once the license key has been installed, the software can be used for a specific period of time (the operating hours do not have to be consecutive).
One license is required for each installation of the software.

Rental floating license

The rental floating license corresponds to the rental license, except that a license is not required for each installation of the software. Rather, one license is required per object (for example, user or device).

Trial license

A trial license supports "short-term use" of the software in a nonproductive context, e.g. for testing and evaluation purposes. It can be transferred to another license.

Demo license

The demo license support the "sporadic use" of engineering software in a non-productive context, for example, use for testing and evaluation purposes. It can be transferred to another license. After the installation of the license key, the software can be operated for a specific period of time, whereby usage can be interrupted as often as required.
One license is required per installation of the software.

Demo floating license

The demo floating license corresponds to the demo license, except that a license is not required for each installation of the software. Rather, one license is required per object (for example, user or device).

Certificate of License (CoL)

The CoL is the licensee's proof that the use of the software has been licensed by Siemens. A CoL is required for every type of use and must be kept in a safe place.

Downgrading

The licensee is permitted to use the software or an earlier version/release of the software, provided that the licensee owns such a version/release and its use is technically feasible.

Delivery versions

Software is constantly being updated.
The following delivery versions

- PowerPack
- Upgrade
can be used to access updates.
Existing bug fixes are supplied with the ServicePack version.

PowerPack

PowerPacks can be used to upgrade to more powerful software. The licensee receives a new license agreement and CoL (Certificate of License) with the PowerPack. This CoL, together with the CoL for the original product, proves that the new software is licensed.
A separate PowerPack must be purchased for each original license of the software to be replaced.

Upgrade

An upgrade permits the use of a new version of the software on the condition that a license for a previous version of the product is already held.
The licensee receives a new license agreement and CoL with the upgrade. This CoL, together with the CoL for the previous product, proves that the new version is licensed.
A separate upgrade must be purchased for each original license of the software to be upgraded.

Software licenses NEW

Overview

ServicePack

ServicePacks are used to debug existing products.
ServicePacks may be duplicated for use as prescribed according to the number of existing original licenses.

License key

Siemens Industry Automation \& Drive Technologies supplies software products with and without license keys.
The license key serves as an electronic license stamp and is also the "switch" for activating the software (floating license, rental license, etc.)
The complete installation of software products requiring license keys includes the program to be licensed (the software) and the license key (which represents the license)

Software Update Service (SUS)

As part of the SUS contract, all software updates for the respective product are made available to you free of charge for a period of one year from the invoice date. The contract will automatically be extended for one year if it is not canceled three months before it expires.
The possession of the current version of the respective software is a basic condition for entering into an SUS contract.

You can download explanations concerning license conditions from
www.siemens.com/automation/salesmaterial-as/catalog/en/
terms_of_trade_en.pdf

Siemens standard terms and conditions of sale for products

1. APPLICABLE TERMS. This Agreement governs the sale of equipment, components, parts, and materials provided by Siemens ("Products"). Any applicable addenda, these terms, Siemens proposal, price quote, purchase order, or acknowledgement issued by Siemens form the parties' final agreement ("Agreement"). In the event of a conflict between these documents, precedence shall apply in accordance with the order listed in the previous sentence. Siemens' proposal, offer or acceptance is conditioned on Buyer's acceptance of this Agreement. Any additional or conflicting terms in Buyer's request for proposal, specifications, purchase order or any other written or oral communication are not binding on Siemens unless separately signed by Siemens. Siemens' failure to object to Buyer's additional or conflicting terms does not operate as a waiver of any terms contained in this Agreement.
2. PRICING \& PAYMENT. Prices and payment terms are: (i) as stated in Siemens' proposal, or if none are stated; (ii) Siemens' standard prices in effect when Siemens receives Buyer's purchase order; or if neither (i) or (ii) apply, then Siemens' standard prices in effect when the Products ship.
(a) Payment. Unless stated in Siemens' proposal, all payments are due net thirty (30) days from the invoice date in Canadian Dollars.
(b) Credit Approval. All orders are subject to credit approval by Siemens Siemens may modify, suspend or withdraw the credit amount or payment terms at any time. If there is doubt as to Buyer's financial condition, Siemens may withhold manufacturing or shipment, require cash payments, or require other satisfactory security. Siemens may recover shipped Products from the carrier pending such assurances.
(c) Installment Shipment. Where Products are delivered in shipments or only part of a shipment fails to comply with this Agreement, the Buyer may only reject the non-compliant portion. Buyer will separately pay for each shipment. If Siemens holds or stores Products for Buyer, it shall do so at Buyer's sole risk and expense.
(d) Taxes, Shipping, Packing, Handling. Unless stated in writing by Siemens, Siemens' prices exclude charges for freight, unloading, storage, insurance, taxes, excises, fees, duties or other government charges related to the Products. Buyer will pay these amounts or reimburse Siemens. If Buyer claims a tax or other exemption or direct payment permit, Buyer will provide a valid exemption certificate or permit and indemnify, defend and hold Siemens harmless from any taxes, costs and penalties arising from same. Siemens' prices include the costs of its standard domestic packing only. Any packing deviationwill be charged to Buyer. Increases, changes (including in application), adjustments or surcharges which may be incurred are for Buyer's account.
(e) Late Payments. Late payments shall bear interest at an annual percentage rate of twelve percent (12\%) or the highest rate allowed by law, whichever is lower.
(f) Disputed Invoice. If Buyer disputes all or any portion of an invoice, it must first deliver written notice to Siemens of the disputed amount and the basis for the dispute within twenty-one (21) days of receiving the invoice. Failure of Buyer to timely notify Siemens of any dispute constitutes a waiver of Buyer's claim. If Buyer only disputes a portion of the invoice, Buyer must pay the undisputed portion in accordance with Article 2(a). Upon resolution of the dispute, Buyer must pay the invoice or the remainder of the invoice, plus any accrued interest on the late payment.
(g) Suspension/Termination Right. Siemens may suspend work if an undisputed invoice is more than thirty (30) days past due. Siemens may terminate this Agreement if an undisputed invoice is more than sixty (60) days past due Unless prohibited by law, Siemens may also terminate this Agreement immediately in the event of a material adverse change in Buyer's financial condition including, but not limited to, bankruptcy, insolvency, liquidation or similar financial condition.
3. DELIVERY; TITLE; RISK OF LOSS. Products will be delivered F.O.B. Siemens point of shipment with title and risk of loss or damage passing to Buyer at that point. Buyer is responsible for all transportation, insurance and related expenses. The related expenses shall include any taxes, duties or documentation fees. Siemens may make partial shipments. Any shipping, delivery and installation dates are estimated dates only. Siemens is not liable for any loss or expense incurred by Buyer or Buyer's customers if Siemens fails to meet its delivery schedule.
4. DEFERMENT AND CANCELLATION. Buyer has no right to defer shipment but may cancel this Agreement on thirty (30) days written notice if Siemens has not already performed. If Buyer cancels this Agreement, it shall pay all cancellation charges including, without limitation: (i) the full price for any finished Product;
(ii) for partially completed product, the portion of the price determined to be due by Siemens based on its percentage of completion of the Product; (iii) reasonable overhead and profit; and (iv) any payments due to subcontractors and/or suppliers for any materials, components or products ordered which cannot be cancelled, refunded, or redirected for other beneficial use.

5. TRANSPORTATION AND STORAGE.

(a) When Products are ready for shipment, Siemens will: (i) inform Buyer, and Buyer will then promptly give shipping instructions to Siemens; (ii) determine the method of transportation and shipment routing; and (iii) ship the Products with freight prepaid by normal transportation. If Buyer fails to provide timely shipping instructions, Siemens will ship the Products by normal transportation means to Buyer or to a storage location selected by Siemens. Buyer will pay or reimburse any excess transportation charges for special or expedited transportation.
(b) If Products are placed into storage, delivery occurs and risk of loss transfers to Buyer when the Products are placed on the carrier for shipment to the storage location. If the Products are to be stored in the facility where manufactured, delivery occurs and risk of loss transfers to Buyer when placed in the storage location.

Buyer will pay all Siemens' storage expenses, including but not limited to, preparation for and placement into storage, handling, freight, storage, inspection, preservation, maintenance, taxes and insurance, upon receipt of an invoice(s) from Siemens. When conditions permit and upon payment to Siemens of all amounts due, Buyer must arrange, at its expense, to remove the Products from storage. Buyer bears the risk of loss, damage or destruction to Products in storage.
6. FORCE MAJEURE / DELAYS. If Siemens' performance is delayed by any cause beyond its reasonable control (regardless of whether the cause was foreseeable), including without limitation acts of God, strikes, labor shortage or disturbance, fire, accident, war or civil disturbance, delays of carriers, cyber-attacks, terrorist attacks, failure of normal sources of supply, or acts or inaction of government, Siemens' time of performance will be extended by a period equal to the length of the delay plus any consequences of the delay. Siemens will notify Buyer within a reasonable time after becoming aware of any such delay.
7. BUYER'S REQUIREMENTS. Siemens' performance is contingent upon Buyer timely fulfilling all of its obligations under this Agreement. These obligations include the Buyer supplying all documents and approvals needed for Siemens to perform, including but not limited to technical information and data, drawing and document approvals, and necessary commercial documentation. Siemens may request a change order for an equitable adjustment in prices and times for performance, as well as for any additional costs or any delay resulting from the failure of Buyer or Buyer's contractors, successors or assigns to meet these obligations.
8. INDEMNITY. Siemens and Buyer (each as an "Indemnitor") shall indemnify the other ("Indemnitee") from and against all third party claims alleging bodily injury, death or damage to a third party's tangible property, but only to the extent caused by the Indemnitor's negligent acts or omissions. If the injury or damage is caused by the parties' joint or contributory negligence, the loss and/or expenses shall be borne by each party in proportion to its degree of fault. No part of the Product(s) or Buyer's site is considered third party property.

Indemnitee shall provide the Indemnitor with prompt written notice of any third party claims covered by this Article. Indemnitor has the unrestricted right to select and hire counsel and the exclusive right to conduct the legal defense and/ or settle the claim on the Indemnitee's behalf. The Indemnitee shall not make any admission(s) which might be prejudicial to the Indemnitor and shall not enter into a settlement without the express permission of the Indemnitor.

9. WARRANTIES.

(a) Warranties. Siemens warrants that: (i) each Product is free from defects in material and workmanship; (ii) each Product materially conforms to Siemens' specifications that are attached to, or expressly incorporated into this Agreement; and (iii) at the time of delivery, Siemens has title to each Product free and clear of liens and encumbrances (collectively, the "Warranties"). The Warranties do not apply to software furnished by Siemens. The sole and exclusive warranties for any software are set forth in the applicable Software License/Warranty Addendum.
(b) Conditions to the Warranties. The Warranties are conditioned on: (i) no repairs, modifications or alterations being made to the Product other than by Siemens or its authorized representatives; (ii) Buyer handling, using, storing, installing, operating and maintaining the Product in compliance with any parameters or instructions in any specifications attached to, or incorporated into this Agreement; (iii) compliance with all generally accepted industry standards; (iv)

Buyer discontinuing use of the Product after it has, or should have had, knowledge of any defect; (v) Buyer providing prompt written notice of any warranty claims within the warranty period described below; (vi) at Siemens' discretion, Buyer either removing and shipping the Product or non-conforming part thereof to Siemens, at Buyer's expense, or granting Siemens reasonable access to the Products to assess the warranty claims; (vii) Product not having been subjected to accident (including force majeure), alteration, abuse or misuse; and (viii) Buyer not being in default of any payment obligation.
(c) Exclusions from Warranty Coverage. The Warranties do not apply to any equipment not provided by Siemens under this Agreement.
Any Product that is described as being experimental, developmental, prototype, or pilot is specifically excluded from the Warranties and is provided to Buyer "as is" with no warranties of any kind. Normal wear and tear is excluded, including any expendable items that comprise part of the Product (such as fuses, light bulbs and lamps). Siemens does not warrant or guarantee that any Product will be secure from cyber threats, hacking or similar malicious activity. Products that are networked, connected to the internet, or otherwise connected to computers or other devices must be appropriately protected by Buyer and/or end user against unauthorized access.
(D) WARRANTY PERIOD. Buyer must provide written notice of any claims for breach of Warranties by the earlier of twelve (12) months from initial operation of the Product or eighteen (18) months from shipment. Additionally, absent written notice within the warranty period, any use or possession of the Product after expiration of the warranty period is conclusive evidence that the Warranties have been satisfied.
(e) Remedies. Buyer's sole and exclusive remedies for breach of the Warranties are limited, at Siemens' discretion, to repair or replacement of the Product, or its non-conforming parts, within a reasonable time period, or refund of all or part of the purchase price. The warranty on repaired or replaced parts is limited to the remainder of the original warranty period. Unless Siemens agrees otherwise in writing, Buyer will be responsible for any costs associated with: (i) gaining access to the Product; (ii) removal, disassembly, replacement, installation, or reinstallation of any equipment, materials or structures to permit Siemens to perform its warranty obligations; (iii) transportation to and from the Siemens factory or repair facility; and (iv) damage to equipment components or parts resulting in whole or in part from non-compliance by the Buyer with Article 9(b) or from their deteriorated condition. All exchanged Products replaced under this Warranty will become the property of Siemens.
(f) Transferability. The Warranties are only transferable during the warranty period and only to the Product's initial end-user.
(g) THE WARRANTIES IN THIS ARTICLE 9 ARE SIEMENS' SOLE AND EXCLUSIVE WARRANTIES, CONDITIONS AND GUARANTEES AND ARE SUBJECT TO THE LIMITS OF LIABILITY IN ARTICLE 10 BELOW. SIEMENS MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, COURSE OF DEALING AND USAGE OF TRADE.
10. LIMITATION OF LIABILITY. NOTWITHSTANDING ANYTHING IN THIS AGREEMENT TO THE CONTRARY, SIEMENS IS NOT LIABLE, WHETHER BASED IN CONTRACT (INCLUDING FUNDAMENTAL BREACH), WARRANTY, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY, INDEMNITY OR ANY OTHER LEGAL OR EQUITABLE THEORY, FOR: LOSS OF USE, REVENUE, SAVINGS, PROFIT, INTEREST, GOODWILL OR OPPORTUNITY, COSTS OF CAPITAL, COSTS OF REPLACEMENT OR SUBSTITUTE USE OR PERFORMANCE, LOSS OF INFORMATION AND DATA, LOSS OR DAMAGE TO PROPERTY OR EQUIPMENT, LOSS OF POWER, VOLTAGE IRREGULARITIES OR FREQUENCY FLUCTUATION, CLAIMS ARISING FROM BUYER'S THIRD PARTY CONTRACTS, OR FOR ANY TYPE OF INDIRECT, SPECIAL, LIQUIDATED, PUNITIVE, EXEMPLARY, COLLATERAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, OR FOR ANY OTHER LOSS OR COST OF A SIMILAR TYPE.
SIEMENS' MAXIMUM LIABILITY UNDER THIS AGREEMENT IS THE ACTUAL PURCHASE PRICE RECEIVED BY SIEMENS FOR THE PRODUCT THAT GAVE RISE TO THE CLAIM.
THE LIMITATIONS OF LIABILITY IN THIS AGREEMENT REPRESENT THE AGREED AND BARGAINED FOR UNDERSTANDING OF THE PARTIES. BUYER AGREES THAT THE EXCLUSIONS AND LIMITATIONS IN THIS ARTICLE 10 WILL PREVAIL OVER ANY CONFLICTING TERMS AND CONDITIONS IN THIS AGREEMENT AND MUST BE GIVEN FULL FORCE AND EFFECT, WHETHER OR NOT ANY OR ALL SUCH REMEDIES ARE DETERMINED TO HAVE FAILED OF THEIR ESSENTIAL PURPOSE. THESE LIMITATIONS OF LIABILITY ARE

EFFECTIVE EVEN IF SIEMENS HAS BEEN ADVISED BY BUYER OF THE POSSIBILITY OF SUCH DAMAGES. THE WAIVERS AND DISCLAIMERS OF LIABILITY, RELEASES FROM LIABILITY AND LIMITATIONS ON LIABILITY EXPRESSED IN THIS ARTICLE 10 EXTEND TO SIEMENS' AFFILIATES, PARTNERS, PRINCIPALS, SHAREHOLDERS, DIRECTORS, OFFICERS, EMPLOYEES, SUPPLIERS, AGENTS, AND SUCCESSORS AND ASSIGNS.
11. PATENT AND COPYRIGHT INFRINGEMENT. Siemens will, at its option and expense, defend or settle any suit or proceeding brought against Buyer based on an allegation that any Product or use thereof for its intended purpose constitutes an infringement of any Patent Cooperation Treaty country member's patent or misappropriation of a third party's trade secret or copyright in the country where the Product is delivered by Siemens. Buyer will promptly give Siemens written notice of the suit or proceeding and the authority, information, and assistance needed to defend the claims. Siemens shall have the full and exclusive authority to defend and settle such claim(s) and will pay the damages and costs awarded in any suit or proceeding so defended. Buyer shall not make any admission(s) which might be prejudicial to Siemens and shall not enter into a settlement without Siemens' consent. Siemens is not responsible for any settlement made without its prior written consent. If the Product, or any part thereof, as a result of any suit or proceeding so defended is held to constitute infringement or its use by Buyer is enjoined, Siemens will, at its option and expense, either: (i) procure for Buyer the right to continue using said Product; (ii) replace it with substantially equivalent non-infringing Product; or (iii) modify the Product so it is non-infringing.
Siemens will have no duty or obligation under this Article 11 if the Product is: (i) supplied according to Buyer's design or instructions and compliance therewith has caused Siemens to deviate from its normal course of performance; (ii) modified by Buyer or its contractors after delivery; or (iii) combined by Buyer or its contractors with devices, methods, systems or processes not furnished hereunder and by reason of said design, instruction, modification, or combination a suit is brought against Buyer. In addition, if by reason of such design, instruction, modification or combination, a suit or proceeding is brought against Siemens, Buyer must protect Siemens in the same manner and to the same extent that Siemens has agreed to protect Buyer under this Article 11.
THIS ARTICLE 11 IS AN EXCLUSIVE STATEMENT OF SIEMENS' DUTIES AND BUYER'S REMEDIES RELATING TO PATENTS, TRADE SECRETS AND COPYRIGHTS, AND DIRECT OR CONTRIBUTORY INFRINGEMENT THEREOF.

12. CONFIDENTIALITY.

(a) Both during and after the term of this Agreement, the parties will treat as confidential all information obtained from the disclosing party and all information compiled or generated by the disclosing party under this Agreement for the receiving party, including but not limited to business information, manufacturing information, technical data, drawings, flow charts, program listings, software code, and other software, plans and projections. Neither party may disclose or refer to the work to be performed under this Agreement in any manner that identifies the other party without advance written permission. However, Siemens has the right to share confidential information with its affiliates and subcontractors, provided those recipients are subject to the same confidentiality obligations set forth herein.
(b) Nothing in this Agreement requires a party to treat as confidential any information which: (i) is or becomes generally known to the public, without the fault of the receiving party; (ii) is disclosed to the receiving party, without obligation of confidentiality, by a third party having the right to make such disclosure; (iii) was previously known to the receiving party, without obligation of confidentiality, which fact can be demonstrated by means of documents which are in the possession of the receiving party upon the date of this Agreement; (iv) was independently developed by receiving party or its representatives, as evidenced by written records, without the use of discloser's confidential information; or (v) is required to be disclosed by law, except to the extent eligible for special treatment under an appropriate protective order, provided that the party required to disclose by law will promptly advise the originating party of any requirement to make such disclosure to allow the originating party the opportunity to obtain a protective order and assist the originating party in so doing.
(c) It is Siemens' policy not to unlawfully or improperly receive or use confidential information, including trade secrets, belonging to others. This policy precludes Siemens from obtaining, directly or indirectly from any employee, contractor, or other individual rendering services to Siemens confidential information of a prior employer, client or any other person which such employee, contractor, or individual is under an obligation not to disclose. Buyer agrees to abide by this policy.

Siemens Canada Ltd. (Seller)

Siemens standard terms and conditions of sale for products

13. COMPLIANCE WITH LAWS. The parties agree to comply with all applicable laws and regulations, including but not limited to those relating to the manufacture, purchase, resale, exportation, transfer, assignment or use of the Products.
14. CHANGES IN WORK. No change will be made to the scope of work unless Buyer and Siemens agree in writing to the change and any resulting price, schedule or other contractual modifications. If any change to any law, rule, regulation, order, code, standard or requirement impacts Siemens' obligations or performance under this Agreement, Siemens may request a change order for an equitable adjustment in the price and time of performance.
15. NON-WAIVER. Any waiver by a party of strict compliance with this Agreement must be in writing, and any failure by the parties to require strict compliance in one instance will not waive its right to insist on strict compliance thereafter.
16. MODIFICATION OF TERMS. This Agreement may only be modified by a written instrument signed by authorized representatives of both parties.
17. ASSIGNMENT. Neither party may assign all or part of this Agreement, or any rights or obligations under this Agreement, without the prior written consent of the other; but either party may assign its rights and obligations, without recourse or consent, to any parent, wholly owned subsidiary, or affiliate or affiliate's successor organization (whether as a result of reorganization, restructuring or sale of substantially all of a party's assets). However, Buyer shall not assign this Agreement to: a competitor of Siemens; an entity in litigation with Siemens; or an entity lacking the financial capability to satisfy Buyer's obligations. Any assignee expressly assumes the performance of any obligation assigned. Siemens may grant a security interest in this Agreement and/or assign proceeds of this Agreement without Buyer's consent.
18. APPLICABLE LAW AND JURISDICTION. This Agreement is governed by and construed in accordance with the laws of the Province of Ontario and the federal laws of Canada applicable therein, without regard to its conflict of laws principles. The application of the United Nations Convention on Contracts for the International Sale of Goods is excluded. Each party agrees that claims and disputes arising out of this Agreement must be decided exclusively in a federal or provincial court of competent jurisdiction located in a province in which either Buyer or Siemens maintains its principal place of business. Each party submits to the personal jurisdiction of such courts for the purpose of litigating any claims or disputes.
19. SEVERABILITY. If any provision of this Agreement is held invalid, illegal or unenforceable, the remaining provisions will not in any way be affected or impaired. A court may modify the invalid, illegal or unenforceable provision to reflect, as closely as possible, the parties' original intent.
20. EXPORT / IMPORT COMPLIANCE. Buyer acknowledges that Siemens is required to comply with applicable export / import laws and regulations relating to the sale, export, import, transfer, assignment, disposal and use of the Products, including any export / import license requirements. Buyer agrees that Products will not at any time directly or indirectly be used, exported, imported, sold, transferred, assigned or otherwise disposed of in a manner which will result in non-compliance with any applicable Canadian or, to the extent permissible under Canadian law, U.S. export / import laws and regulations. Siemens' continuing performance hereunder is conditioned on compliance with such export / import laws and regulations at all times.
21. PRODUCT RETURNS. Prior to the return of any Product to Siemens, Buyer must identify the Product or portion thereof and obtain written authorization and shipping instructions from Siemens. Siemens has the right, in its sole discretion, to permit or reject any such return. Siemens' authorization to return any Product to Siemens does not relieve Buyer of its obligation to pay for such Product. Upon receipt, inspection, and acceptance of the Product by Siemens, Siemens will issue a credit memo to Buyer, less applicable re-stocking fees. Siemens reserves the right to reject any hazardous material.
22. NUCLEAR. Unless expressly authorized in writing by Siemens, the Products must not be used in or in connection with a nuclear facility or application. If Buyer uses any Product in connection with any nuclear facility or activity, it does so at its own risk and Buyer will indemnify, defend and hold Siemens harmless, and waives and will require its insurers to waive all right of recovery against Siemens for any damage, loss, destruction, injury or death resulting from a "nuclear incident," as defined in the Nuclear Liability and Compensation Act, as amended, whether or not due to Siemens' negligence. Siemens' consent to Buyer's use of the Product in connection with any nuclear facility or application will be subject to additional terms and conditions that Siemens deems necessary to protect its interests.
23. SURVIVAL. The articles titled "Patent and Copyright Infringement," "Limitation of Liability," "Confidentiality," "Delivery; Title; Risk of Loss," "Export / Import Compliance," and "Nuclear" survive termination, expiration or cancellation of this Agreement.

Notes

Siemens Canada Limited
Industrial Controls
1577 North Service Road East
Oakville, ON L6H OH6
Customer Interaction Centre (888) 303-3353
cic.ca@siemens.com

All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.

Subject to change without prior notice.
Printed in Canada.
©2021 Siemens Canada Limited
Order No.: CP-0049-0107

[^0]: 1) For more information, see www.siemens.com/safety-integrated. Application Manual "SIRIUS Safety Integrated", see
 https://support.industry.siemens.com/cs/ww/en/view/81366718
[^1]: Refer to page $1 / 23$ when using as upstream protection of a Manual Motor Controller or a Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations.

[^2]: 1) I > 14 A, note derating; see the system manual "SIRIUS Innovations" Chapter "Motor Starter Protectors".
 2) $\mathrm{I}>16 \mathrm{~A}$, note derating; see the system manual "SIRIUS Innovations", Chapter "Motor Starter Protectors"
[^3]: ${ }^{1)} \mathrm{HP}$ rating = Power rating in horse power (maximum motor rating).
 2) $\mathrm{FLA}=$ Full Load Amps/Motor full load current.
 ${ }^{3)}$ Corresponds to "short-circuit breaking capacity" according to UL/CSA.
 ${ }^{4)}$ The values in brackets only apply to 3RV2. 23 motor starter protectors.

[^4]: 1) HP rating = Power rating in horse power (maximum motor rating)
 2) FLA $=$ Full Load Amps/Motor full load current.
 ${ }^{3)}$ Complies with "short-circuit breaking capacity" according to UL.
[^5]: 1) Complies with "short-circuit breaking capacity" according to UL
[^6]: For further vacuum contactors, 500 Hp and
 $700 \mathrm{Hp}(3 T F 68 / 69)$, see page 2/55.
 For auxiliaries and accessories, see page 2/70
 For spare parts, see page 2/100-2/101.
 For technical data, see page 2/157-2/162.
 For int. circuit diagrams, see page 2/201
 For dimension drawings, see page 2/221.

[^7]: All specs and technical specs not mentioned here are identical
 to those of the standard contactors for switching motors.

[^8]: 3) at upper limit $=1.1 \times U_{S}$
[^9]: For technical data, see page 2/176.
 For int. circuit diagrams, see page 2/195-2/200.
 For dimension drawings, see page 2/214.

[^10]: For technical data, see page 2/176
 For int. circuit diagrams, see page 2/195-2/200
 For dimension drawings, see page 2/214.

[^11]: Note:
 When the function modules are used, no other auxiliary switches are allowed to be mounted on the basic units.

[^12]: Availability signal through voltage pick-off

[^13]: 1) Suitable only for communication through IO-Link.
[^14]: Availability signal through voltage pick-off

[^15]: The wye-delta starters listed here are assembled from individual
 contactors which are UL Listed. The overall assembly Catalog

 1) Coil operating range
[^16]: The wye-delta starters listed here are assembled from individual ${ }^{1)}$ Coil operating range at 50 Hz : contactors which are UL Listed. The overall assembly Catalog

[^17]: 1) Coil voltage tolerance
 at $50 \mathrm{~Hz}: 0.8$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$
 at $60 \mathrm{~Hz}: 0.85$ to $1.1 \times \mathrm{U}_{\mathrm{s}}$
[^18]: 1) The link for paralleling can be reduced by one pole
[^19]: 1) Main contact kits for size 3 TC48 and larger include springs. Smaller sizes do not.
 2) On DC operated contactors the maximum number of auxiliary contacts is $2 \mathrm{NO}, 2 \mathrm{NC}$.
 3) For use in dusty atmosphere and electronic circuits with rated operational currents $\mathrm{Ie}_{\mathrm{e}} \mathrm{AC}-14$ and DC -13 from 1 mA to 300 mA at 3 V to 60 V . With 1 changeover contact.
 4) Discount Code: DC Contactors
 5) Can only be mounted on AC-operated contactors.
[^20]: 1) The connection piece for mounting the surge suppressor must be bent slightly.
 2) Includes the peak value of the alternating voltage on the $D C$ side.
 3) Not for DC economy circuit.
[^21]: EN50005 and EN50012 designate the markings of the auxiliary terminal numbers.
 For position of the terminals see pages 2/207-2/211
 For int. circuit diagrams see page 2/195.
 3RH29 aux blocks are not intended for use with 3RT1 or 3RH1 contactors and relays.
 3RH19 aux blocks are not intended for use with 3RT2 or 3 RH 2 contactors and relays.
 For auxiliary switch blocks for 3RH2140 and 3RH2440 see page 2/53.

[^22]: EN50005 and EN50012 designate the markings of the auxiliary terminal numbers.
 For position of the terminals see pages 2/207-2/211. For int. circuit diagrams see page 2/195

[^23]: 1) Can be used for AC operation for $50 / 60 \mathrm{~Hz}$.

 Please inquire about further voltages.

[^24]: 1) Exception: contactors and contactor relays with auxiliary switch block mounted onto the front.
[^25]: 1) Refer to the note on page $2 / 142$, conductor cross-sections
[^26]: 1) Can also be used for size S3 4-pole contactors.
[^27]: 3) Also requires quantity (1) 3RA2816-0EW20 function module set for all control functions See page 2/47.
 4) The 3RT19 56-4EA1 (S6) or 3RT19 66-4EA1 (S10, S12) cover can be used for shock-hazard protection.
[^28]: For 3RT contactors, see page $2 / 8$.
 For 3RA reversing, see pages 2/39.
 For thermal overloads, see page 3/10.
 For solidstate overloads, see pages $3 / 22$.
 For enclosure dimensions, see figures 1, 2, and 3 on page 9/150.

[^29]: 1) Exception:

 The mechanical interlock between the delta and WYE contactors is included in the installation kit for size SOO contactor assemblies.

[^30]: 1) Ambient temperature $50^{\circ} \mathrm{C}$ for 3RT14 76-N contactor
[^31]: 1) Combinations according to EN 50012, EN 50011 and IEC 60947-5-1
 are in bold print. All combinations comply with EN 50005.
[^32]: 1) Combinations according to EN 50012, EN 50011 and IEC 60947- \quad 2) Terminals from the top or bottom.
 $5-1$ are in bold print. All combinations comply with EN 50005.
[^33]: ${ }^{1)}$ Combinations according to EN 50012, EN 50011 and IEC 60947-5-1 are in bold print. All combinations comply with EN 50005.

[^34]: 1) Combinations according to EN 50012, EN 50011 and IEC 60947-

 5-1 are in bold print. All combinations comply with EN 50005.

[^35]: ${ }^{1)}$ Combinations according to EN 50012 , EN 50011 and IEC 60947-$5-1$ are in bold print. All combinations comply with EN 50005.

[^36]: 1） 3 RH29 auxiliaries are intended to be used only with 3 RT2 or 3 RH 2 base devices
 3RH19 auxiliaries are intended to be used only with 3RT1 or 3RH1 base devices．
 2）Not for 3RT12．vacuum contactors

[^37]: SO "OFF" button
 S1 "Clockwise ON" button
 S2 "Counterclockwise ON" button
 S "CW-OFF-CCW" button
 K1 Clockwise contactor
 K2 Counterclockwise contactor
 F1 Fuses for main circuit
 F3 Fuses for control circuit
 F2 Overload relay

[^38]: Terminal designations according to EN 50012.

[^39]: 1) Note the location digit.

 Can only be used if no 4-pole auxiliary
 switch block is snapped onto the front.

[^40]: For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

[^41]: For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

[^42]: The assemblies shown on this page are for customer assembly with individual components.

[^43]: 1) With box terminals for laminated copper bars (accessories).
[^44]: For specific dimensions, 2D / 3D CAD files and technical data, please visit www.siemens.com/cax

[^45]: For description, see pages 3/36-3/37.
 For technical data, see pages 3/39-3/44.
 For dimension drawings, see pages 3/45-3/46.
 For schematic diagrams, see page $3 / 47$.

[^46]: ${ }^{1)}$ For more safety data, see System Manual "SIMOCODE pro Safety Fail-Safe Digital Modules".

[^47]: 1) For push-in lugs and auxiliary switches, see Accessories on pages $4 / 44$ and $4 / 52$.
 2) Selection depends on the motor full load amps. HP ratings for reference only.
 3) According to ordering option:
 $\mathrm{RH}=$ assembly kit for reversing duty with standard rail mounting adapter in size SO.
 RS = assembly kit for reversing duty with 8US Fast Bus busbar mounting.
 4) With standard rail mounting or screw fixing, the 3RA29 13-2AA1 wiring kit is required for size SOO.
[^48]: 1) A spacer for height compensation on $A C$ contactors with spring-type terminals, size SO is optionally available, see page 4/52.
[^49]: 1) See selection and ordering data on pages $4 / 36$ to $4 / 43$.
[^50]: When mounting the combinations, observe the installation guidelines (page 4/60-4/61).

[^51]: When mounting the combinations, observe the installation guidelines (page 4/60-4/61).

[^52]: When mounting the combinations, observe the installation guidelines (page quidelines 4/60-4/64).

[^53]: 1) Branch Circuit Protective Device for 480 V-Ratings: The appropriate BCPD need to be determined in accordance with the National Electrical Code, Article $430-53$ and the application. The following devices are permitted

 Fuses: Classes RK1, RK5, J, G, T, CC or Circuit breakers: Listed Siemens type, with a marked short-circuit rating equal or larger than the available short-circuit
 current rating. These devices were tested for group installation use at the above levels without any upstream branch circuit device.
 2) 3RA2 used as Manual Motor Controller; Branch Circuit Protective Device for 600V-Ratings: Max. Class J 50A
 3) Starter sizes SOO,S0 and S3 require additional type E line side terminal adaptors on the MSP for type F applications. See section 1 accessories

[^54]: 8US12 13-4AH00

[^55]: 3RW55 soft starter with screw terminals for operational voltage up to 480 V ： Standard delivery time SD＝ 1 day（d）．

[^56]: 3RW52 soft starter with screw terminals for operational voltage up to 600 V ： Standard delivery time SD＝ 2 days（d）．

[^57]: Simulation Tool for Soft Starters (STS), see page 7/7 or https://support.industry.siemens.com/cs/ww/en/view/101494917
 SIRIUS Soft Starter ES (TIA Portal), see page 7/7

[^58]: 1) In the case of deviations, please observe derating, see Equipment Manual
[^59]: (1) Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor.

 HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.

[^60]: (1) Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor.
 (2) Starter selection is dependent on type of application. Im = FLA rating of motor.

[^61]: Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor (2) Starter selection is dependent on type of application. Im = FLA rating of motor

[^62]: (1) Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor.

[^63]: (1) Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor.
 (2) Starter selection is dependent on type of application. Im = FLA rating of motor. HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.

[^64]: (1) Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor.

[^65]: (1) Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor.

 HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.
 (2) Starter selection is dependent on type of application. Im = FLA rating of motor.

[^66]: (1) Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor.

 HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.

[^67]: (1) Starter size is dependent on the nameplate Full Load Amps (FLA) rating of the motor.

 HPs are for reference only. Enclosed ratings are at $40^{\circ} \mathrm{C}$.

[^68]: 1) The type current provides information about the performance of the solidstate contactor. The actual permitted rated operational current I_{e} can be smaller depending on the connection method and installation conditions. For derating characteristic curves, see page $8 / 55$, "More information".
[^69]: 1) Please note: Use overvoltage protection device; max. cut-off-voltage 6000 V ; min. energy handling capability 100 J .
[^70]: 1) To order with mounted 3RF29 00-0RA88 cover, add -OKH0 to part number.
[^71]: * You can order this quantity or a multiple thereof.

[^72]: 1) Applies to the version "Low Power" 3RF21 ..-.AA..-OKNO
 2) Only for zero-point-switching devices.
[^73]: 1) Type of coordination "2" according to EN 60947-4-1:
 in the event of a short-circuit, the controls in the load feeder must not endanger persons or the installation. They must be suitable for further operation. For fused configurations, the protective device must be replaced.
 2) For use only with operational voltage U_{e} up to 400 V .
 ${ }^{3)}$ For use only with operational voltage U_{e} up to 506 V .
 ${ }^{4)}$ These fuses have a smaller rated current than the solid-state relays.
 3) These versions can also be protected against short-circuits with miniature circuit breakers as described in the notes on "SIRIUS Solid-State Contactors \boxtimes Special Version Short-Circuit Resistant".
[^74]: 1) Identical current/temperature curves for individual and side-by-side mounting.
[^75]: — $I_{\text {max }}$ Thermal limit current for individual mounting

 - - $I_{\max }$ Thermal limit current for side-by-side mounting
 —— $I_{\text {IEC }}$ Current acc. to IEC 947-4-3 for individual mounting
 — — — $I_{\text {IEC }}$ Current acc. to IEC 947-4-3 for side-by-side mounting

 1) Identical current/temperature curves for individual and side-by-side mounting.
[^76]: (1) One heater element required.
 (2) Furnished with (1) $3 / 4^{4}$ NPT Outlet in bottom (reversible for top feed).

[^77]: (4) Order Open Type starter plus separate handle guard kit.

[^78]: (1) Manual switches do not include overloads.
 (2) Furnished with (1) 3/4" NPT outlet in bottom (reversible for top feed). In order to obtain a $3 / 4$ " NPT outlet in top and bottom, add suffix letter " H " to type number with List Price adder.

[^79]: (3) Do not use as replacement interiors for NEMA Type 4 metallic enclosures. For replacement unit, order
 Type MMSK01 or MMSK02 and separate pilot light kit.

[^80]: (4) For switches that contain a pilot light, a Red light is standard. For a Green pilot light add "G" to the end of the catalog number.

[^81]: (1) Instantaneous Magnetic Trip will occur at 13 times the maximum FLA dial setting or rated switch current (2) Product Category: IEC

[^82]: (3) Shaded Ratings apply for Manual Motor Controllers Only! These Ratings do not apply as UL Listed Manua Combination Starters.

[^83]: Note: All starter sizes carry one maximum Hp rating (per

[^84]: (1) G coil is not available with a 600 v disconnect

[^85]: Note: All starter sizes carry one maximum Hp rating (per the National Electric Code).

[^86]: (1) Not available on 200-400A contactors
 (2) Type 4 painted enclosure through 100 Amp only.

[^87]: (1) 24 volt coils are not available on 20 and 300 amp contactors. Use solid state control module on 20 amp size.

[^88]: (2) 600 volt coils are not available on 20 amp

[^89]: (1) 100% on time.
 (2) 5 sec. max. on time
 (4) Compatible for use in dusty atmospheres. Contacts rated for $1-300 \mathrm{~mA} @ 3-60 \mathrm{~V}$.

[^90]: (1) These kits are only for use with 20A mechanically held
 lighting contactors.

[^91]: (1) Product Category: IEC.

[^92]: (1) Dual voltage coils not available in size 5-8 starters.

[^93]: (1) Auxiliary contacts will be added evenly across contactors. (i.e. Class 22, G02 suffix will add 2 NC contacts (one per contactor).

[^94]: (1) On 3-phase controls, all 3-poles should be replaced 3 kits required.

[^95]: (1) Selector switch is on the left, increases overall depth to $3.50 \mathrm{in} .(89 \mathrm{~mm})$.
 (2) Only one pilot light (located on right) is used on MRS switches.

[^96]: Note: Dimensions for reference, not for construction.

[^97]: Note: Dimensions are in inches.

[^98]: (1) Control relay is required for 2-wire and Hand/Off/Auto Control, as shown in diagram.

[^99]: Note:
 ID Key Switches requires the use of a plastic holder only!
 Purchase 3SU1500-0AA10-0AA0 Holder Separately.

[^100]: Θ Positive opening according to IEC 60947-5-1, Annex K. Can be used with 3SK11 safety relays or the 3RK3 Modular Safety Sỵstem, see Section 13 Limit Switches and Safety.

[^101]: ${ }^{1)}$ Only for use with SIRIUS commanding and signaling devices.

[^102]: ${ }^{1)}$ Only for use with SIRIUS commanding and signaling devices.

[^103]: 1) Only 3SU185, Metal Enclosure adaptors available to convert Metric Conduit Opening to 1/2" NPT Conduit:
 > 3SX1998, 1/2" NPT Metal Adaptor for metal enclosures with M20 x 1.5 (IP65 Max.)
 > 3SX1999, 1/2" NPT Metal Adaptor for metal enclosures with M25 x 1.5 (IP65 Max.)
[^104]: 3SU1950-0DV80-0AA0

[^105]: ${ }^{1)}$ In addition, a 3SU1400-2AA10- BA0 contact module is required.

[^106]: Application example

[^107]: 1 EMERGENCY-STOP control devices according to IEC 60947-5-5 when provided with red operating head and positively driven NC contact blocks.
 Positive opening contacts according to IEC 60947-5-1, Appendix K,
 2 Blocks cannot be interchanged (stop-start circuit - pull to start, push to stop).
 3 Default bulb type is incandescent. For LED options, append field g. LED option not available on units sold "no head".
 4 LED voltages apply to table g option code B and Y .
 5 Not available in 120 V or 240 V .

[^108]: 1 EMERGENCY－STOP control devices according to IEC 60947－5－5 when provided with red operating head and positively driven NC contact blocks Positive opening contacts according to IEC 60947－5－1，Appendix K．

 2 For operator without contact blocks leave position flank．

[^109]: 1 Default bulb type is incandescent. For LED options, append field f
 LED option not available on units sold "No Lens".
 2 LED voltages apply to table f option code XB and XY .
 3 Not available in 120 V or 240 V .

[^110]: Note: $\mathrm{X}=$ Closed $/ \mathrm{O}=$ Open

 1) Readily available items are in bold.

 This is a small representation of stocked items.

[^111]: All dimensions shown in inches and (millimeters). For

 1) Grounding stud in body of enclosure.
 reference purposes only. Not to be used for design or
 2) For stainless steel add 1.75 (45) to depth.
[^112]: Note:
 Conversion tool e.g. from 3RP15 to 3RP25, see
 www.siemens.com/sirius/conversion-tool.

[^113]: 3RP2505-.C (M)
 Retriggerable interval relay with activated control signal (watchdog)

[^114]: 3SE5132-0CR01

[^115]: Θ Positive opening according to IEC 60947-5-1, Appendix K.

[^116]: Θ Positive opening according to IEC 60947-5-1, Appendix K.

 1) Popular versions.
[^117]: Θ Positively driven actuator, necessary in safety circuits.

[^118]: Θ Positive opening according to IEC 60947-5-1, Appendix K. 1) Popular versions.

[^119]: Θ Positive opening according to IEC 60947-5-1, Appendix K.

 1) Popular versions.
[^120]: Θ Positive opening according to IEC 60947-5-1, Appendix K.

 1) Popular versions.
 2) Increased operation or restoring force 30 N ; only available as complete unit, no modular design
[^121]: Θ Positive opening according to IEC 60947-5-1, Appendix K, or positively driven actuator, necessary in safety circuits.

 Note:
 For the selection aid, see page $13 / 13$

[^122]: Θ Positively driven actuator, necessary in safety circuits

[^123]: Positive opening according to IEC 60947-5-1, Appendix K.

[^124]: Θ Positive opening according to IEC 60947-5-1, Appendix K.

[^125]: Θ Positive opening according to IEC 60947-5-1, Appendix K

 1) Supplied without actuator.
[^126]: Θ Positive opening according to IEC 60947-5-1, Appendix K.
 ${ }^{1)}$ Supplied without actuator. Please order separately (see page 13/64).

[^127]: ${ }^{1)}$ With optimized geometry and suitable for extreme environmental conditions such as $-40^{\circ} \mathrm{C}$

[^128]: Θ Positive opening according to IEC 60947-5-1, Appendix K.

[^129]: 3SE5162-0CH60-1AJO

[^130]: Θ Positive opening according to IEC 60947-5-1, Appendix K.

[^131]: Θ Positive opening according to IEC 60947-5-1, Appendix K.
 ${ }^{1)}$ Supplied without actuator. Please order separately (see page 13/96).

[^132]: (1) For use with 3SE03-DN1,-DN2 operating heads and 3SE03-RB receptacle only.
 (2) For use with modular, Plug-in and NEMA Type 6P.

[^133]: All dimensions shown in inches and (millimeters). For
 reference purposes only. Not to be used for design or construction purposes.

[^134]: continued on next page

[^135]: 1) For HSP 2092, see
 https://support.industry.siemens.com/cs/ww/en/view/23183356.
[^136]: Integration of AS-Interface on PROFIBUS through DP/AS-i Link Advanced as single/double master

[^137]: 3RK7243-2AA30-0XB0

[^138]: Wireless communication between Industrial Ethernet and IO-Link components

[^139]:

 Siemens IO-Link Devices" block library

