

Journey to the Digital Mine July, 23rd, Germany - Santiago de Chile

Unrestricted © Siemens AG 2019

siemens.com/mining siemens.com/cement

Pictures of the Future – Mining 4 Sub-Scenarios shaping the future of the Mining Industry in 2030

DIGITAL MINE

Digitalization is the major key for increasing cost-efficiency and automation of operations and processes in the mining industry, especially in hazardous and hard to reach environments.

VALUE MINING NETWORKS

Five fundamental drivers in the Mining Industry

Handling lower ore grades will be the major challenge in mining industry in the future

Digital Solutions in Mining – Relevant Use Cases Mine Engineering

Integrated Engineering and Integrated Operations

From Integrated Engineering

- A common data-base for all engineering design, based on modularization of templates, improving efficiently and quality during engineering phase.
- Take the same data base as single point of configuration of process automation and simulation, in order to for faster and easier commissioning of automation systems and reduction of overall project implementation schedule.

Establish baseline for **improved operations management across the mine lifecycle**, by building up asset management modules based on engineering data.

Digitalization Focus Area **"Digital Mine" Initiative**

Integrated plant database for the entire life cycle of the mine Faster development of process control system Cost savings for following projects

Project SIC (Short Interval Control, South Africa)

- Project start Dec. 2016, current open engineering contract
- Vertical integration from field to ERP, in operation in first mine
- Roll out to other mines planned also to South America ψ

Project Digital Mine (Peru)

- Complete horizontal integration from engineering (COMOS)
 to operation (SIMIT/PCS7)
- Integrated engineering approach
- Roll out of SIC System intended
- Potential approach for all greenfield and expansion projects

VALE S.A., Brazil

Enterprise Manufacturing Execution System for Mining Operations

nnology&rID=1007&sII

Customer benefits

Integration of existing systems to automate the data extraction and transparent KPIs updated in real time. Proven Customer value: Saving US\$70 m up to 2020

irce: Vale Newsroom http://saladeimprensa.vale.com/en/Paginas/Articl ing_more_than_USD_70_million_with_innovation_&s=Innovation__Tec Development and implementation of the new MES system in all units of iron ore and manganese for 38 sites. Siemens executed the phases conception, implementation, integrated tests and assisted operation for

- Excavation
- Material Beneficiation
- Material Stock and Shipment

Customer Press Release on value of Digitalization MES for Vale Brazil, considered the biggest MES Project in the world

05/18/2017

Vale estimates saving more than USD 70 million with innovation

Developed in partnership with Chemtech, the new system is being implemented in the iron and manganese ore mines in Brazil

Vale, in partnership with Chemtech, is implementing a new management system for iron and manganese ore units of the company in Brazil, replacing 17 other systems that were being used. Overall, 38 mines, plants and warehouses will have the new system, called Vale Production Management - Mining (GPV-M). The implementation has been completed in 20 units of Minas Gerais, Maranhão and Pará. This initiative will provide more than USD 70 million in savings until 2020.

Source: Vale Internet Newsroom

http://saladeimprensa.vale.com/en/Paginas/Articles.aspx?r=Vale_estimates_saving_more_than_USD_70_million_with_innovation_&s=Innovation_Technology&rID=1007&sID=4

OCP Group, Morocco

Stockyard Management and Autonomous Machine Operation

Customer benefits

Increased efficiency of the reclaiming process and greater machine availability due to autonomous machines operation

Real-time operating data, such as status of machinery and overall stock levels

Development and implementation of a stockyard management systems MAQ for 17 potash stockyards (21 Reclaimers and 37 Stackers). Main functionalities include:

- Job handling (stacking/reclaiming)
- Autonomous operation of the machines
- Collision prevention
- Real-time material inventory, Reporting
- Interface to the plant's MES

Digitalization Focus Area

Asset Health Analytics for Critical Mining Equipment Gearless Mill Drives

Customer benefits

Cost savings and higher availability of equipment through optimized maintenance plans (corrective and preventive maintenance replaced by predictive maintenance) Earlier failure detection and real-time advisory for counter measures Comprehensive Condition Monitoring System for the Gearless Mill Drive and the mill, but also for other major process equipment (e.g. conveyor drives) based on **Siemens Drive Train Analyzer**.

Data analytics solution with detection of looming incidents based on GMD operational fingerprints and using AI algorithms to provide decision advisory for timely counter measures.

GMD Asset Health Analytics is currently operational within the **Drive Train Analytics** platform.

Digitalization Focus Area

Asset Health Analytics for Critical Mining Equipment Belt conveyors

	Actual Conveyor Status	Actual *	Conveyor Health Analy	tics			
Belt Conveyor Overview	Date: 08/20/2019	Shift: 22786	Initial Date : Fir	inal Date :	Data Input :		
Kohleband 1				08/29/2019 10:00 am	E-House Alarms	•	
Kohleband 2			Graph:	9			
Kohleband 3		- Anna -			ical 😑 Urgent Technical		
			15				
Kohleband 4							
Kohleband 5			12				
Kohleband 6		Interest 127					
Drive Train Overview	Brueton The O		1				
			6	Subcomponent		arms 📍	
Advanced Analytics (K21)					pung eigene Bandstrecke/Umlenke 400 V 2		
	Overview Alarms	? Technical *	,	Einspeisung 500V			
	Component : Classification	No. of Alarms Prequency Analysis		A	olidungg 230V AC ungeschaltet, ungestützt 1		
			TAN THE DIS THE THE THE THE	22750 2752 2753 2754 2753		THE DIRE DIRE DIRE DIRE	
					Shifts		
		There's no data for the selected Filter	Top Ten		Urgent Warnings	•	
	SIEMENS						Search 🔍 🌲 🚨
		Plant Reichwalde>Conveyor Kohleband 1>Driv	e Train 1B10				
	Landing Page						
	Plant Overview	Technical Overview	Past Shift		Drive Train Asset Health Analytics		
	Belt Conveyor Overview	Date: 08/20/2019		Shift: 22785	Initial Date :	Final Date :	
	Drive Train Overview				08/11/2019 08:00 pm	08/13/2019 10	3:00 pm
	Advanced Analytics (K21)	0.0			Data Input :		
					Average Motor Winding Temperature 30 Motor	Bearing Temperature D X	V Filter C 2
	Drive Train 1810			ue 1810	Speed/RPM Lower Limit Speed/RPM Lipper Li	mt Torque Lower Limit	Torme Lacer Limit Breidmice Time
	Drive Train 1820				90% 110%	15%	50% 2 min
	Drive Train 1840				92.42	🛑 Winding 👋 BearingD	
		Component Paramet	er Unit	Value			
		power	kW 125	50	05.56		
		Motor			78.70	-	
		speed	rpm 990	2	71.84	-	
					Q 64.58		
		Gearbox	- 15.3	15.2	50.12		
		Torque	kNm 185	Nem 185.2		~	\
					41.40	- \	
		Brake drum o	mm 630	>	37.54		
		Brake Coupling			30.68		1
		Brake lifting device	- EB 2	250/60			
Unrestricted ©	Siem				23.82 08/12/2019 08:00 am 08/12/2019 09.0	6 am 06/12/2019 01:57 pm	08/13/2019 05:37 am 08/13/2019 06:54 am
omestileted @						Operating Points	

1. Asset health condition overview

Asset specific alert and fault notification records, incl. most frequent and longest duration alerts

2. Asset data overview

Asset specific KPIs, such as operation hours, specific temperature points

3. Plant overview

Connected assets, incl. asset name, asset state and connection status

Reference Australia

Digital Twin of a Conveyor System

Customer benefits

1-1

The customer could define the best way to increase the capacity of the existing conveyor belt with limited investment Prediction of possible critical areas on the conveying system during operation

Creation of a digital twin of an existing conveyor in order to simulate equipment behavior:

- Formulate methodologies and design solutions for ramping up tonnage in conveyor from 1500 TPH to 1900 TPH.
- Combination of loading rate / speed that consumes the least amount of motor power, simulating effects on the conveying system
- Investigate largest losses, e.g. idler width/spacing and rotating mass

Simulation of belt conveyors Optimum start of full belt with variable speed drive

Siemens Minerals approach for implementing digital solutions Cutting-edge IT technologies to create mining applications

Highly flexible and **modular system architecture** offers the perfect environment to create customized applications:

- Modern user interface, with web and mobile access
- Solution based framework with standard basic modules
- Service-oriented architecture (SOA) with loosely coupled services
- Common data model (single source of truth)
- Open connectivity with API based interface between modules and with external systems

Minerals Digital Architecture Concept Major Benefits of a Structured Architecture

Thank you !

Roland Ehrl Minerals Siemens AG Schuhstraße 60 91052 Erlangen Roland.Ehrl@siemens.com www.siemens.com/mining