

SoftSensors in Water Quality Monitoring online cloudbased SoftSensor-related Monitoring

© Siemens AG 2020

www.siemens.at/water

Solution Architecture for Monitoring Systems

Functionality of a SoftSensor

Sensor Input	Simulation	Referencing	Output
 diverse parameters 	model building	legal provisions	monitor
 spread sensor locations 	algorithmic processing	historical data	understand
different process steps	pot. artificial intelligence	spezific targets	improve

Business Case Surface Water Monitoring

- The basis is represented by the 2000/60/EC EU Water Framework Directive
- Goal: commit EU member states to achieve good ecological and chemical water status until 2027
- Challenges in surface water monitoring:
 - lab analyses are done on a monthly basis. This is time consuming (sampling done manually) and costly (transport cooling, lab equipment, reagents)
 - current sensors cannot measure online as many parameters as lab measurements
 - current measurements also require expert interpretation to classify water status (e.g. water biology)
- Solution
 - continuous monitoring of water bodies through installation of a system of online monitoring stations including transparent vizulisation
 - SoftSensor applied to indirectly measure parameters and improve transparency

Online Sensor Technology (UV-Vis-Spectometry)

© Siemens AG 2020 page 5

SIEMENS

Monitoring via a Water Quality Index (WQI)

- The Water Quality Index includes specific parameters selected and weighted according to local conditions and gives an overall indication of the water quality.
- $WQI = \sum_{i=1}^{n} q_i w_i$
- Where: WQI Water quality index, qi parameter subindex, wi parameter weight
- Result is a number used to rank water quality in 5 levels

Rank	WQI	
Excellent	100-90	
Good	90-70	
Fair	70-50	
Marginal	50-25	
Poor	25-0	

Vision of Cross-Network Water Quality Monitoring

© Siemens AG 2020

SIEMENS

Pilot of a Cloudbased Online Monitoring Station

Visualization of Data in MindSphere

SIEMENS

- data visualized by using MindSphere Apps
 "Performance Insight"
- line-charts, value widgets and gantt diagrams
- dashboards can be configured individually without programming knowledge

page 9