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Next Level Industrial Al —
Augmenting Human
Intelligence




Product Configuration and Design — SIEMENS
Augmented by Artificial Intelligence lngenuity for life
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» Discovery of Alternatives

» Automation of repeating tasks
» Al engineering assistant

Next Product

Product Production utomation
Design Design ngineering
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Al in Production Engineering — SIEMENS
Fast and Efficient Engineering and Commissioning

Optimizing machines
throughput

= ML for tool relocation and
changeover times

--- =

= Convex optimization
methods to find exact
optimal solutions

= Algorithm is implemented on
edge device | :
» Productivity up by up to o o e 2 g pEEo
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Al for Performance Optimization — SIEMENS
Al Autonomous Learning of Turbine Control lngenuity for ife

— Al learns from the
behavior of a gas turbine
In operation as well as

fleet data

— Learns a control strategy
that outperform manually : e, B I
tuned turbines BRSNS - |

Actual Value

— Artificial Intelligence J FRE oA 1 MW

autonomously lowers the E Simulation without
g _ - = - Autonomous Learning
NOXx emissions 3 R
Z . Simulation V\{Ith
s Deep Learning and _ Autonomous Learning
Reinforcement Learning , , , :
Time O 50 100 150 200
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Al in Production Planning —
Recommending automation system configurations

Data: configurations from
90.000 customer projects

A planning project can be
represented as a
knowledge graph

Generates design-specific
recommendations for
automation equipment

Combining planning
history with deep domain
knowledge
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Al for Product Configuration — SIEMENS
Safe design for Railway Interlocking Control Systems lngenuity for life

Challenge - >10% possible
configurations and complex
constraints of railway control

equipment

Solution - Al logic solver for = . .

determining configurations, *% i

optimization to find best b= <2 /e s productsrucur
configuration from > . " ; :

Knowledge Graph

Configuration
Services

Outcome - Configurators biie o ¥

Data visualization

Secure correct interlockings | 774 |, : :
and highest Ievel Of traln " /ﬂ : /’/ﬁ / ‘ ‘ Visualize

control /Railway Inteflfcking
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Production execution — Al will enable autonomous machines SIEMENS
,hgehui(y‘for&}[t

Self-operation

Self-adaptation (based on data)

Industrie 4.0 Vision

= Object recognition
using deep learning

= |_earning to pick objects

= Matching of skills to
tasks by reasoning on
knowledge graph

= Autonomous action and
motion generation

Vision: Self-x without detailed programming or engineering
... and without human supervision
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Knowledge Graph Adoption @ Siemens SIEMENS

Ilag,ehuify for (Xft

~3 1 6 8 16

FY16 FY17 FY18

In product development Proof-of-concept




Next Level Industrial Al —
Knowledge

Graphs make the
Difference




Industrial Knowledge Graph

Domain Vocabulary
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Industry Ontology

SubClassOf( TwoRotor Turbine ObjectMi

inality(2 hasPart Rotor))
SubClassOf( TwoRotor Turbine ObjectMaxCardinality(2 hasPart Rotor))

Equipment(?z) < Turbine(?z)
hasSpeed(?x, 7y) < hasRotorSpeed(?x, 7y)
hasPart(?x,?z) < hasPart(?x, ?y) A hasPart(?y,?z)

Packaging(?y) « Conveying(?x) A followedBy(?z, 7y)

SIEMENS
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TEAMCENTER
Active Workspace

T\ | TN

SIEMENS

g Bentley

Advaneing Inlrasiruciune:

Industrial Content
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So what’s new? SIEMENS

Ihg,u\uffy‘foruft
Knowledge graphs combine existing ideas in a package
that works in practice for large organisations.
graph paradigm : WordNet
® Semantic networks A lexical database for English
reasoning _ _ oC
® |ogic-based knowledge representation Q)
| ; i inoloai SWI Prolog a
arge reference terminologies K.A

® Ontologies OWL2 T, RDF

global hierarchical IDs

® Linked Open Data
clusters, scale-out e
e BigData FRciaien TBoophr
data + meta data Pl
® Smart Data -.,f:’; SCHEMA.ORG \'
| # Google ":
» Knowledge Graphs R s Scale to real

world problems!
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https://wordnet.princeton.edu/wordnet/
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Next Level Industrial Al —
Driven by
“Data Thinking”




Al for industrial applications — data and know-how feed algorithms SJEMENS
’h%huf\‘yfor(i{t
Machine data

Domain Know-How

NOy [ppm]

Time 0 50 100 150 200

+

Public data sources

EU Open Data
Portal

www.open-data.europa.eu
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Data is Key for Knowledge Graphs SIEMENS
— but becoming data-driven is not easy ... lngenuity for life

Companies accelerate their investments in Big Data and Al

Investment in Big Data/Al 2018 2019
Greater than $500 m 12.7% 21.1%
$50 - 500 m 27.0% 33.9%
Under $50 m 60.3% 45.0%
... they are failing in their efforts to become data-driven
B Ut Created a data-driven organization 2017 2018 2019
wEa Yes 37.1% 32.4% 31.0%
No 62.9% 67.6% 69.0%
People and processes are the main challenges Biggest challenge to business adoption 2018 2019
Principle challenge to becoming data-driven 2018 2019 Lack of organizational alignment/agility 25.0%  40.3%
People 48.5% 62.5% Cultural resistance 32.5% 23.6%
Process 32 4% 30.0% Understanding data as an asset 30.0% 13.9%
Technology 19.1% 7 5% Executive leardership 7.5% 7.0%
Technology solutions 5.0% 5.0%

Harvard Business Review, Feburary 2019, https://hbr.org/2019/02/companies-are-failing-in-their-efforts-to-become-data-driven#comment-section
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Why we need a data strategy: 80% of time in Al projects is spent for SIEMENS

data preparation and not for analytics lngenuity for life
0 10 20 30 40 50 60 70 80 90 100 T —
I I I I I I I I I I | %time '
N achine learn Reduce cost and time
Data Gathering , Clearing, and Preparation for data provisioning
Business benefits:
.y ed a first protot Grow digital
) expected a first prototype ﬂ -
We have supported >100 for my use case in 6 weeks. It finally SUSIESE
data analytics projects last year. took 6 months before | saw some first Time to market

In total approx. € xx Mio. have been spent

! _ models. Are we really digital?"
just for data preparation”

Cost down

N

N

Risk down
Customer

"By reducing the amount of
r double data in my stock | can
reduce XYZ"

7 0

Corporate Technology

Data scientist

Engineer
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Co-creation with customers in Siemens Al Lab China SIEMENS
,hgehui(y‘for&}[t

Siemens Al Lab China is aiming to

* be the Al driven knowledge exchange and co-
creation hub in Asia

* support Siemens global Al innovation network
together with Al Lab Munich and Al Lab
Berkeley

* bridge customers’ Al hopes with Siemens’ real

world solutions.

In Siemens Al Lab China, customers will team
up with Siemens experts in Data Analytics & Al

and Design Thinking based on Siemens 30
years experience of use cases and solutions

across different industries.
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‘ ‘ - 400 |
Beijing - uzhou Shangha ustomer Site
-

I (Al Lab China location) (On demand Service) (On demand gerwce) demand Service)

-~
BN

Siemens Al Lab Siemens DA&AI Team is Building Up the
Pipeline with Reusable Use Cases & Assets

Proof of Concept

= Maintenance su
» Cost reduction

Solution / MVP Dev.
Duration: Months~ 1ear

v

/ Deployment & Optimization

"\ Duration: Weeks ~ Manths
\

Decision Support

Duration: Years

Corporate Technology



How to scale up data analytics & Al business in China

Siemens Al Lab Siemens DA&AI Team is Building Up the
Pipeline with Reusable Use Cases & Assets

Co-creation
Duration: Weeks

Proof of Concept Pilot

Knowhow: DT, Al experience Duration: Weeks ~ Months Duration: Months

& blocks

* Maintenance support
= Cost reduction Prediction

Optimization

Use Case Reasoning

Solution / MVP Dev.

Duration: Months ~ 1 Year

Decision Support Deployment & Optimization
Duration: Years Duration: Weeks ~ Months
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Ideation

= TB data per year
= Frustrated: how to use ?



Siemens Al lab China: programs of FY19

R Suzhou
. (on-demand)

Beijing
(physical location)

Shanghai
(on-demand)

Target audience

I. Starter
Pac

Day 1
Intro to Data-driven
innovation

Day 2
Intro to Design Thinking

Day 3
Build your own demo

Sales, service, marketing, etc.

II. Innovation
Pac

DEVANI
Define

1
LN11na

Day 3
Ideation/Prototyping

Day 4 Ideation/Prototyping

Day 5
BizzMo

Sales, service, product
managers, etc.

III. Co-Creation

i

E A

Preparation

Day 3
Hacking II

DEVA

Hacking III

Day 5
Demo + pitching

Sales, service, product
managers, data scientists, etc.

IV. Booster
Pac

Week 1

Value proposition

for co-innovationl.,

Week 6 - Week 9
Developing MVP

Week 10 -Week 11

Pivot/persevere

Week 12
Demo + pitching

Sales, service, product
managers, data scientists and
developers, testing, etc.

Outcome of programs

Sense and knowledge of Al

Executable requirements

Feasible solutions/
Prototype

Minimum viable product



Next Level of Industrial Al

SIEMENS

— Frameworks for Rapid Industrial Al Adoption

DOMAIN &
PROCESS
EXPERTISE

M|l CORE:
INDUSTRIAL
Al
FRAMEWORS

Q

DATA &
PRODUCTS
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Al Tools & Workflows

Industrial Algorithmic Services & Modules

Al Hardware

Pretrained Models

Industrial Knowledge Graphs

Al Libraries

Ihga\uffy for Uft

T A S 2
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