

Critical Environment Technology

Measurement, control, and monitoring of air volume flows and room pressures in buildings. **siemens.com/life-science**

CET – Critical Environment Technology

Critical Environment Technology (CET) is a range of reliable air volume flow controllers and supplementary components for the secure, precise, and fast measurement, control, and monitoring of air volume flows and room pressures in buildings. CET can be easily integrated into building automation systems. The overall system thus provides maximum **efficiency, cost effectiveness,** and **security.**

CET is basically designed for:

- Room ventilation and general extractions
- Room pressure control
- Laboratory fume hood control
- Room air conditioning

CET is suitable for the following areas of application:

- Chemistry room
- Clean room
- Laboratory room
- Operating room
- Isolation room
- Patient room
- Production room
- Storage room
- Laboratory fume hood
- Canopy hoods and extractions

This manual describes the CET components and uses many application examples to demonstrate how individual solutions can be implemented.

Contents

Following a thorough introduction to the system, practical application examples are presented that demonstrate how basic and supplementary components can be combined for various room, laboratory fume hood, canopy hood, and extraction applications.

The "Functions" chapter describes the basic functionalities implemented in CET applications and the feasible system functions. The "Design" chapters contain additional technical details to support project planning.

Additional chapters on "Room automation," "Building Automation," "Building solutions," and "Building services" provide complementary information on the overall applicability of the system in a building with critical environments.

Glossary

- CET Critical Environment Technology
- ATEX ATmosphères EXplosibles
- CAV Constant air volume flow
- VAV Variable air volume flow

CET – components at a glance – examples	4
Supplementary components – legend	6
We support compliance with the following codes and standards	8
Certified laboratory fume hood control according to EN 14175 Part 6	9
Basic components at a glance	10
Supplementary components at a glance	11
Communication and system integration	15
Control principles at a glance	16
Application examples	18
Functions	38
Design	50
An integrated solution	59
Room automation	63
Building automation	72
Building solutions	81
Building services	93

CET – components at a glance – examples

-

1

Supplementary component Supplementary component

Fast, precise VAV damper

VNCF

Standard

VAV damper

Basic component

B Air volume flow control and monitoring

. .

DXR2.E17C

The CET system – the combination of basic and supplementary components

A

Supplementary component

Air volume flow orifice plate

10

VCM

Communicating VAV control units comprise a combination of **basic components** and **supplementary components** for the air duct and additional supplementary components such as sensors and operator units.

Example: Laboratory room

Functior

Supplementary component

Differential

pressure sensor

Design

Room automation

Building automation

Building services

Basic components

B Air volume flow control and monitoring

The <u>basic components</u> are communicating, independently functioning control units on which the parameterizable, exchangeable applications run. The application determines the functions of the particular basic component.

Supplementary components

As far as possible, the <u>supplementary</u> <u>components</u> have no integrated control units. They are controlled by the basic components or supply these components with information, such as room temperature or pressure.

Example: Laboratory fume hood

Building solutions

Building services

Supplementary components – legend

The supplementary components are divided into five groups.

Group 1: V = Air volume flow

This group includes the entire range of VAV dampers and air volume flow orifice plates. Within the group, these devices are sorted by application (VN, VC, VA) and property (VxC, VxM and VxxF, VxxS, VxxC, VxxV). If the application and desired property are known, the appropriate supplementary component can be quickly and easily identified.

With the aid of the detailed description of the components in the "Supplementary components" chapter and the information in the "Design" chapter, the VAV damper or air volume flow orifice plate is clearly specified and designated by the **VAV damper type code.**

Group 2: P = Pressure Group 3: T = Temperature Group 4: O = Operation Group 5: F = Laboratory fume hood sash

These four groups comprise supplementary products that were selected for CET areas of application. They are also sorted by application and property.

Application examples

Building automation

Example of an implementation for this system: Fast, precise VAV damper (VCCF)

We support compliance with the following codes and standards

合

American Society of Heating,	ASHRAE 110	Method of testing performance of laboratory fume hoods
Engineers	ASHRAE 170	Ventilation rate and room pressurization requirements for distinct types of spaces in hospitals
American Society of Safety Engineers	AIHA/ASSE Z9.5	Applies to the ventilation in most laboratories. Emphasis on providing a safe laboratory
Scientific Equipment & Furniture Association	SEFA	Promoting quality and safety in the design, manufacture, and utilization of laboratory-grade furniture and equipment
Occupational Safety and Health Standards	OSHA	Ensure safe and healthy working conditions
European committee for standardization	CEN EN14175	Offer assistance in the construction, controlling as well as testing of fume cupboards

Certified laboratory fume hood control according to EN 14175 Part 6

Certification to EN 14175 Part 6

The communicating VAV control unit, consisting of the basic component DXR2.E17C and the supplementary components VCCF, FV, FS, and OD, is specifically designed for controlling and monitoring the exhaust air volume flow of laboratory fume hoods. This VAV control unit was tested and certified in accordance with the ventilation test required in EN 14175 Part 6.

Test as per EN 14175 Part 6

The test to EN 14175 Part 6 is a type test for laboratory fume hood control components that is performed on a standardized test unit under comparable, ideal conditions – even flow of supply and extract air with low turbulence, precise acquisition of air volume flow parameters, etc.

Basic components at a glance

DXR2.E17C Air volume flow control and monitoring For VAV [*] applications with 1 Segment with 30 datapoints			
Communicating controller with <u>VAV application</u> <u>HvacLgtShd14</u> <u>HvacLgtShd15</u> <u>HvacLgt16</u>			
DXR2.E17CX Air volume flow control and monitoring	For VAV* applications with 2 Segments with 60 datapoints		
Communicating controller with <u>VAV application</u> <u>HvacLgtShd14</u> <u>HvacLgtShd15</u> <u>HvacLgt16</u>			
	Simens uses not only its own laboratories for testing but also euba-accredited testing facilitation according to European standards for building automation used worldwide. Independent testing and certification according to European standards for building automation used worldwide. Independent testing and certification activities the also according to European standards for building automation used worldwide. Independent testing and certification activities and testing testing testing testing testing and according to European standards for building automation used worldwide. Independent testing and certification activities and testing testing testing testing testing and testing and testing and testing and testing and activities automation standard for building automation used worldwide. Independent testing and testing and the testing and testing and testing according to European standards for building automation used worldwide. Independent testing and testing according to BACnet testing and testing and the the reliability of BACnet testing and testing and testing and the testing and testing and the testing and testing and testing and the testing and tes		

合

VNCF Fast, precise VAV [*] damper	For fast and precise air volume flow control, Clean air		
VAV damper with mounted high-speed actuator and pressure sensor			
VNCS Standard VAV damper	For air volume flow control (modular), room supply, and exhaust air	Clean air	
VAV damper with mounted actuator and pressure sensor		M dp	
VNCC Compact VAV damper	For air volume flow control, room supply, and exhaust air	Clean air	
VAV damper with mounted VAV compact controller			
VNM Air volume flow orifice plate For air volume flow acquisition Clean air			
Orifice plate with mounted pressure sensor		dp	
VNMV Flow sensor	For air volume flow acquisition	Clean air	
Sensor		V	
V Air volume flow N Clean air C	Control E Fast S Standard C Compact Measurement V Air velocity Control F Fast S Standard		
	Control Measurement	11	

Building Room automation automation

Building services

合

VCCF Fast, precise VAV* damper	For fast and precise air volume flow control, laboratory fume hood, extractions, room exhaust air Contaminated air			
VAV damper with mounted high-speed actuator and pressure sensor				
VCCS Standard VAV damper	For air volume flow control (modular), extractions, room exhaust air	Contaminated air		
VAV damper with mounted actuator and pressure sensor				
VCM Air volume flow orifice plate	For air volume flow acquisition	Contaminated air		
Orifice plate with mounted pressure sensor		dp		
VAC ATEX** VAV damper	For fast air volume flow control in Ex areas***	Contaminated air		
VAV damper with mounted high-speed actuator and pressure sensor				
VAM ATEX air volume flow orifice plate	For air volume flow acquisition in Ex areas	Contaminated air		
Orifice plate with mounted pressure sensor	<u></u>	dp		
 ✓ Air volume flow N Clean air C Control M Measurement C Compact M Measurement C Control F Fast F Fast C Control F Fast S Standard C Compact This directive contains guidelines for explosion protection. *** Ex area: potentially explosive atmosphere 				

Application examples

Room automation

Building automation

Building solutions

Building services

俞

Ρ	Differential pressure sensor	For room pressure acquisition	
Sensor			dp
PZ	Certified differential pressure sensor	For room pressure acquisition	
Sensor with ca special cable o	alibration certificate and connection		dp
т	Temperature sensor	For temperature acquisition	In room or air duct
Sensor			Т
OD	Operator and display unit	For room condition monitoring	For critical environment rooms
OD Operator and	Operator and display unit display unit	For room condition monitoring	For critical environment rooms
OD Operator and OD	Operator and display unit display unit Operator and display unit	For room condition monitoring	For critical environment rooms
OD Operator and OD Operator and	Operator and display unit display unit Operator and display unit display unit	For room condition monitoring For monitoring and control	For critical environment rooms

俞

OD	Operator and display unit	For monitoring and control	For laboratory fume hood
Operator and display unit			
OD	Operator and display unit	For monitoring and control	For laboratory fume hood
Operator and display unit			
FS	Draw-wire sensor	For sash position measurement	Vertical
Sensor			S
	п	=	
FV	Flow sensor	For sash position measurement	vertical and norizontal
F V Sensor	Flow sensor		
FV Sensor F	Flow sensor	For sash opening surface measurement	Vertical and horizontal
F V Sensor F Sensor access	Flow sensor Front sash aggregator ory	For sash opening surface measurement	Vertical and horizontal

Application examples

Functions

15

Communication and system integration

Communication between the controllers is via BACnet/IP. The components are fitted with a 2-port Ethernet switch. The devices can also communicate directly with the Desigo CC^{M} building management platform and other

BACnet automation stations, e.g. PX, with no need for gateways. Parameterization can be performed using the Siemens ABT Site Tool or directly via the controller's password-protected web server.

Video surveillance Evacuation Fire detection

Intrusion protection

Control principles at a glance

Principle of air volume flow control

At the VAV damper, a differential pressure is measured at the integrated measuring device. The pressure is measured by the mounted static pressure sensor.

The linear pressure signal is converted to the air volume flow signal \dot{V} in the electronic control unit.

This air volume flow signal is regarded as an actual value by the air volume flow controller and is compared with the air volume flow set point. Based on the control difference, the VAV controller specifies the necessary damper angle.

Building automation

Principle of room pressure control

Room pressure is measured by means of a static room pressure sensor. The room pressure is cascade-controlled with supportive balancing. This type of control is highly precise, fast, and stable. Door contacts, which would freeze the room pressure control during door opening, can be eliminated.

The basis for room pressure control is a balancing of the air volume flows in the room.

The balancing limits to a large extent the set point of the VAV damper 2 that controls the room pressure. The room pressure controller corrects this balance within limits (lim). The VAV controller 2 adjusts the air volume flow set point for a constant room pressure. The set point of the VAV damper 1, i.e. the room air volume flow set point can be changed independently of the room pressure set point. The actual value of the VAV damper 1 is the basis for the room air balancing.

Application examples

 \land

The CET system is suitable for the measurement, control, and monitoring of air volume flows and room pressures in simple and complex applications. This chapter contains examples of useful combinations of basic and supplementary components for the applications room, laboratory fume hood, canopy hood, and extraction. For other applications and for specific requirements, other combinations of the components are also possible.

Application e	xamples
----------------------	---------

Code	Description	Suitable for	Page
RC1	Room with simple VAV ventilation (example: corridor)	VAV duct system	23
RC2	Two room segments with simple VAV ventilation	VAV duct system	23
RC3	Room ventilation	VAV duct system	24
RC4	Pressure-controlled room with variable air volume flow	VAV duct system	24
RC5	Room with VAV ventilation and extraction	VAV duct system	25
RC6	Pressure-controlled room with VAV ventilation and extraction	VAV duct system	25
RC7	Pressure-controlled room with high air exchange rates	VAV duct system	26
RC8	Pressure-controlled room with filter monitoring	VAV duct system	26
RC9	Laboratory room ventilation	VAV duct system	27
RC10	Pressure-controlled laboratory room with ventilation	VAV duct system	27
RC11	Open-space laboratory room	VAV duct system	28
RC12	Laboratory room ventilation with 24-hour CAV duct system for chemical cabinets and floor extraction	VAV duct system	28

斧

Application examples

Application	exampl	es
-------------	--------	----

Code	Description	Suitable for	Page
	Laboratory fume hood	VAV duct system	29
FC2	Low-bench laboratory fume hood	VAV duct system	29
FC3	Walk-in laboratory fume hood	VAV duct system	30
FC4	Laboratory fume hood	VAV duct system	30
FC5	Laboratory fume hood	VAV duct system	31
FC6	Laboratory fume hood control by face velocity	VAV duct system	31
FC7	Laboratory fume hood with stabilizing jet	VAV duct system	32
FC8	Pass-through fume hood acc. to EN 14175 Part 6	VAV duct system	32
FC9	Day/night laboratory fume hood	VAV duct system	33
FC10	High-temperature laboratory fume hood	VAV duct system	33
FC11	Filter/fume scrubber laboratory fume hood	VAV duct system	34
FC12	24-hour constant controlled laboratory fume hood	CAV duct system	34
HC1	Canopy hood with 2-step switch	VAV duct system	35
HC2	Canopy hood, automated	VAV duct system	35
SC1	Extraction arm, 24/7	VAV duct system	36
SC2	Extraction arm, manually switched	VAV duct system	36
SC3	Extraction arms, manually switched (variant 1)	VAV duct system	37
SC4	Extraction arms, manually switched (variant 2)	VAV duct system	37

Room	Laboratory fume hood	od Canopy hood		Extra	Extraction	
RC5 Room with VAV v	entilation and extraction	Clean air		For VAV duct system	Code	Applica
Situation • VAV supply air • VAV exhaust air			VAV controller with application	DXR2.E17CX HvacLgtShd14	DXR2. E17	su
Switchable extraction unit Control Room air balancing Dynamic set points		M dp	Fast, precise VAV damper	<u>VNCF-Type</u> GAP191.1E DXA.S04P1-B	VNCF	Functio
for room air volume flow Monitoring • VAV air volume flows			Fast, precise VAV damper	<u>VNCF-Type</u> GAP191.1E DXA.S04P1-B	VNCF	
Min. room air volume flow Also suitable for Single fan with variable- speed drive		dp	Air volume flow orifice plate	<u>VNM-Type</u> <u>QBM3020-3</u>	VNM	Design
	ed room with VAV ventilation and extraction) Clean air	_	For VAV duct system	Code	oom mation
Situation			VAV controller	DXR2.E17CX		Reauto
• VAV supply air • VAV exhaust air			with application	HvacLgtShd14	E17	c
Switchable extraction unit Control Room air balancing and room pressure control in cascade		M dp	Fast, precise VAV damper	<u>VNCF-Type</u> <u>GAP191.1E</u> DXA.S04P1-B	VNCF	uilding tomatio
• Dynamic set points for room air volume flow Monitoring			Fast, precise VAV damper	<u>VNCF-Type</u> GAP191.1E DXA.S04P1-B	VNCF	an
VAV air volume flows Min. room air volume flow Room pressure		dp	Air volume flow orifice plate	<u>VNM-Type</u> <u>QBM3020-3</u>	VNM	ilding utions
Single fan with variable-			Differential pressure	OBM3020-111		Bu

dp

sensor

DI AI

Optional door contact

Ai SCOM/ Al/AO

Single fan

SCOM/ AI/AO

合

Also suitable for • Single fan with variable-

25

<u>QBM3020-1U</u> Alternative: <u>QBM4100-1U</u>

Laboratory fume hood

Room	Laboratory fume hood	Canopy hood	Extra	tion	tion les
RC9 Laboratory room	ventilation	Contaminated air	For VAV duct system	Code	Applica examp
Situation • VAV supply air • VAV exhaust air		VAV controller with application	DXR2.E17C HvacLgtShd14	DXR2. E17	SU
• VAV laboratory fume hoods Control Room air balancing Demand-controlled room		Fast, precise VAV damper	<u>VCCF-Type</u> <u>GAP191.1E</u> DXA.S04P1-B	VCCF	Functio
air volume flow Monitoring • VAV air volume flows		Fast, precise VAV damper	<u>VNCF-Type</u> <u>GAP191.1E</u> DXA.S04P1-B	VNCF	
Min. room air volume flow Also suitable for Single fan with variable- speed drive					Design
					5
RC10 Pressure-controll	ed laboratory room with ventilation	Contaminated air	For VAV duct system	Code	Room tomati
Situation • VAV supply air • VAV exhaust air		VAV controller with application	DXR2.E17C HvacLgtShd14	DXR2. E17	an
• VAV laboratory fume hoods Control • Room air balancing and room prossure control in cascade		Fast, precise VAV damper	VCCF-Type GAP191.1E DXA.S04P1-B	VCCF	uilding omatior
Demand-controlled room air volume flow		Fast, precise VAV damper	<u>VNCF-Type</u> GAP191.1E DXA.S04P1-B	VNCF	aut
• VAV air volume flows • Min. room air volume flow • Room pressure		Operator and display unit	PXM30	OD	ilding utions
Also suitable for • Single fan with variable- speed drive	AI PL-Lnk DI SCOM/ 1-2 Σ	Differential pressu dp sensor	ure <u>QBM3020-1U</u> Alternative: <u>QBM4100-</u>	<u>IU</u> P	Buj

Laboratory fume hood Optional lighting door contact

1

27

Building services

Room	Laboratory fume hood	Canopy hood	Extra	ction	tion
RC11 Open-space labor	ratory room	Contaminated air	For VAV duct system	Code	Applica examp
Situation • VAV supply air, n-times • VAV exhaust air, n-times • Air volume flow orifice plate, n-times • VAV laboratory fume hoods Control • Room air balancing		VAV controller with application VAV controller with application	DXR2.E17CX HvacLgtShd14 DXR2.E17C HvacLgtShd14	DXR2. E17 DXR2. E17	Functions
Demand-controlled room air volume flow Monitoring		VAV damper	GAP191.1E DXA.S04P1-B	VCCF	u
• VAV air volume flows • Min. room air volume flow Also suitable for • Single fap with variable.		VAV damper	<u>UNCF-1ype</u> <u>GAP191.1E</u> <u>DXA.S04P1-B</u>	VNCF	Desiç
speed drive					m ation
RC12 Laboratory room ve for chemical cabine	entilation with 24-hour CAV duct system ets and floor extraction	Contaminated ai	For VAV duct system	Code	Roo tom:
Situation • VAV supply air • VAV exhaust air • VAV laboratory fume boods	24-hour CAV duct system	VAV controller with application	<u>DXR2.E17CX</u> HvacLgtShd14	DXR2. E17	au
• 24-hour chemical cabinets • 24-hour floor extraction Control		Fast, precise VAV damper	<u>VNCF-Type</u> <u>GAP191.1E</u> DXA.S04P1-B	VCCF	uilding tomatio
 Room balancing, including room-specific 24-hour fixed values Demand-controlled room 		Fast, precise VAV damper	VNCF-Type GAP191.1E DXA SO4P1 P	VNCF	aŭ
	• • • •		DXA.304F1-B		
air volume flow Monitoring • VAV air volume flows • Min. room air volume flow			<u>UAA.304F1-B</u>		Building
air volume flow Monitoring • VAV air volume flows • Min. room air volume flow Also suitable for • Single fan with variable- speed drive			<u>UAA.304FT-B</u>		Building

Room	Laboratory fume hood	Cano	opy hood	Extract	ion	tion
C1 Laboratory fume h	lood	Contaminated	air	For VAV duct system	Code	Applica
tuation aboratory fume hood with vertically and horizontally	<u>\</u>		AV controller vith application	<u>DXR2.E17C</u> HvacLgt16	DXR2. E17	, st
pening sash ontrol Continuous, sash opening- tongadoat air volumo flavy		H M v	ast, precise AV damper	<u>VCCF-Type</u> <u>GAP191.1E</u> DXA.S04P1-B	VCCF	Eunctior
ontrol of laboratory fume ood exhaust air onitoring		S	raw-wire sensor	<u>DXA.B130</u>	FS	
ir volume flow lace velocity lash opening		F	low sensor	<u>QVE3001</u>	FV	Design
	DI PL-Link PL-Link AI AI SCOM/ (Lighting relay) Al/AO	C d	perator and isplay unit	<u>QMX3.P87</u> or <u>QMX3.P88</u>	OD	
C2 Low-bench labora	tory fume hood	Contaminated	air		Codo	E.
					Coue	<u>8</u>
tuation ow-bench laboratory fume ood with vertically and			AV controller /ith application	DXR2.E17C HvacLgt16	DXR2. E17	Ro
tuation .ow-bench laboratory fume hood with vertically and horizontally opening sash ntrol ontinuous, sash opening- conserved as velume flow			AV controller vith application ast, precise AV damper	DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B	DXR2. E17 VCCF	uilding Ro
tuation ow-bench laboratory fume nood with vertically and norizontally opening sash ntrol continuous, sash opening- lependent air volume flow ontrol of laboratory fume ood exhaust air poitoring			AV controller iith application ast, precise AV damper raw-wire sensor	DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B DXA.B200	DXR2. E17 VCCF FS	Building
tuation .ow-bench laboratory fume nood with vertically and porizontally opening sash patrol Continuous, sash opening- lependent air volume flow ontrol of laboratory fume nood exhaust air onitoring sir volume flow ace velocity ash opening		v v v v v v v v v v v v	AV controller vith application ast, precise AV damper raw-wire sensor low sensor	DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B DXA.B200 QVE3001	DXR2. E17 VCCF FS FV	ilding Building Ro
tuation .ow-bench laboratory fume nood with vertically and horizontally opening sash patrol Continuous, sash opening- lependent air volume flow control of laboratory fume hood exhaust air onitoring sir volume flow ace velocity ash opening	DI PL-Link PL-Link AI AI SCOM/ (Lighting relay) AI AI SCOM/ AI/AO		AV controller vith application ast, precise AV damper raw-wire sensor low sensor perator and isplay unit	DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B DXA.S04P1-B QVE3001 QMX3.P87 or QMX3.P88	DXR2. E17 VCCF FS FV OD	Building Building Ro

Room		Laboratory fume hood	Ca	nopy hood	Extra	action	tion
FC3 Walk	c-in laboratory	/ fume hood	Contaminat	ted air	For VAV duct system	Code	Applica
Situation • Walk-in laboratory fur with vertically and ho	me hood prizontally	<u>\</u>		VAV controller with application	DXR2.E17C HvacLgt16	DXR2. E17	st st
opening sash Control • Continuous, sash ope	ening- e flow		M dp	Fast, precise VAV damper	VCCF-Type <u>GAP191.1E</u> <u>DXA.S04P1-B</u>	VCCF	Functior
control of laboratory hood exhaust air Monitoring			S	Draw-wire sensor	<u>DXA.B200</u>	FS	
Air volume flow Face velocity Sash opening – 500 n			V	Flow sensor	<u>QVE3001</u>	FV	Design
		DI PL-Link PL-Link AI AI SCOM/	8	Operator and display unit	<u>QMX3.P87</u> or <u>QMX3.P</u>	<u>88</u> OD	
		(Lighting relay) Al/AO	8				
FC4 Labo	pratory fume h	(Lighting relay) Al/AO	Contaminat	ted air	For VAV duct system	Code	Room
FC4 Labo Situation Laboratory fume hoov vertically and horizon	o ratory fume h Id with Itally	nood with flow sensor	Contaminat	ted air VAV controller with application	For VAV duct system <u> DXR2.E17C</u> HvacLgt16	Code DXR2. E17	Room
FC4 Labo Situation • Laboratory fume hoor vertically and horizon opening sash Control • Continuous, sash ope denendent air volume	oratory fume h d with itally e flow	sood with flow sensor	Contaminat	ted air VAV controller with application Fast, precise VAV damper	For VAV duct system DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B	Code DXR2. E17 VCCF	uilding Room
FC4 Labo Situation Laboratory fume hood vertically and horizon opening sash Control Control Control of laboratory thood exhaust air by fl sensor	oratory fume h d with ntally ening- e flow fume low	nood with flow sensor	Contaminat	ted air VAV controller with application Fast, precise VAV damper Flow sensor	For VAV duct system DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B QVE3001	Code DXR2. E17 VCCF FV	Building Room
FC4 Labo Situation • Laboratory fume hoor vertically and horizon opening sash Control • Continuous, sash ope dependent air volume control of laboratory hood exhaust air by fl sensor Monitoring • Air volume flow • Face velocity • Sash opening – 500 m	oratory fume h d with ntally ening- e flow fume low	sood with flow sensor	Contaminat Contaminat	ted air VAV controller with application Fast, precise VAV damper Flow sensor Operator and display unit	For VAV duct system DXR2.E17C HvacLgt16 WCCF-Type GAP191.1E DXA.S04P1-B QVE3001 QMX3.P87 or QMX3.P	Code DXR2. E17 VCCF FV 88 OD	uilding Building Room
FC4 Labo Situation • Laboratory fume hoor vertically and horizon opening sash Control • Continuous, sash ope dependent air volume control of laboratory hood exhaust air by fl sensor Monitoring • Air volume flow • Face velocity • Sash opening – 500 m	ening- ening- flow fume low	nood with flow sensor	Contaminat	ted air VAV controller with application Fast, precise VAV damper Flow sensor Operator and display unit	For VAV duct system DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B QVE3001 QMX3.P87 or QMX3.P	Code DXR2. E17 VCCF FV 88 OD	Building Building Room solutions automation

Room	Laboratory fume hood	Canopy hood	Extrac	tion	tion
FC5 Laboratory fum	hood	Contaminated air	For VAV duct system	Code	Applica
Situation • Laboratory fume hood with vertically opening sash		VAV controller with application	DXR2.E17C HvacLgt16	DXR2. E17	
Control • Continuous, sash opening- dependent air volume flow control of laboratory fume		Fast, precise VAV damper	VCCF-Type GAP191.1E DXA.S04P1-B	VCCF	Euschiov
hood exhaust air Monitoring Sash opening – 500 mm		Draw-wire sensor	<u>DXA.B130</u>	FS	
Air volume flow		Operator and display unit	<u>QMX3.P87</u> or <u>QMX3.P88</u>	OD	Decida
	PL-Link PL-Link AI SCOM/ (Lighting relay) Al/AO		0		Ę
FC6 Laboratory fum	hood control by face velocity	Contaminated air	For VAV duct system	Code	Se la compañía
iituation Laboratory fume hood with vertically and horizontally		VAV controller with application	<u>DXR2.E17C</u> HvacLgt16	DXR2. E17	
opening sash Control • Sash opening-dependent		Fast, precise VAV damper	VCCF-Type GAP191.1E	VCCF	lding
control of tace velocity			DXA.S04P1-B		
control of face velocity Monitoring • Air volume flow • Face velocity		Draw-wire sensor	<u>DXA.S04P1-B</u> <u>DXA.B130</u>	FS	Bui
control of face velocity Monitoring • Air volume flow • Face velocity • Sash opening – 500 mm		S Draw-wire sensor Flow sensor	<u>DXA.S04P1-B</u> <u>DXA.B130</u> <u>QVE3001</u>	FS	ilding Bui
control of face velocity Monitoring • Air volume flow • Face velocity • Sash opening – 500 mm	PL-Link PL-Link AI AI SCOM/ (Lighting relay) AI AI SCOM/ AI/AO	S Draw-wire sensor V Flow sensor Image: S Operator and display unit	DXA.S04P1-B DXA.B130 QVE3001 QMX3.P87 or QMX3.P88	FS FV OD	Building Bui
Control of face velocity Monitoring • Air volume flow • Face velocity • Sash opening – 500 mm	PL-Link PL-Link AI AI SCOM/ AI/AO	S Draw-wire sensor V Flow sensor Operator and display unit	<u>DXA.S04P1-B</u> <u>DXA.B130</u> <u>QVE3001</u> <u>QMX3.P87</u> or <u>QMX3.P88</u>	FS FV OD	

Room	Laboratory fume hood	Ca	nopy hood	Extract	ion	tion
FC7 Laboratory fume	hood with stabilizing jet	Contaminat	ed air	For VAV duct system	Code	Applica examp
Situation • Laboratory fume hood with stabilizing jet and vertically			VAV controller with application	<u>DXR2.E17C</u> HvacLgt16	DXR2. E17	s
and horizontally opening sash Control Continuous, sash opening-		\₩/ M dp	Fast, precise VAV damper	<u>VCCF-Type</u> <u>GAP191.1E</u> DXA.S04P1-B	VCCF	Function
control of laboratory fume hood exhaust air		S	Draw-wire sensor	<u>DXA.B130</u>	FS	
• Air volume flow • Face velocity • Sash opening – 500 mm		V	Flow sensor	<u>QVE3001</u>	FV	Design
	DO PL-Link PL-Link DI AI AI SCOM (Lighting relay) Al/AO		Operator and display unit	<u>QMX3.P87</u> or <u>QMX3.P88</u>	OD	Ę
FC8 Pass-through fum	e hood	Contaminat	ed air	For VAV duct system	Code	Room tomatio
Situation • Pass-through fume hood with 2 vertically and horizontally			VAV controller with application	DXR2.E17C HvacLgt16	DXR2. E17	au
opening sashes Control • Continuous, sash opening- dependent air volume flow		M dp	Fast, precise VAV damper	<u>VCCF-Type</u> <u>GAP191.1E</u> DXA.S04P1-B	VCCF	uilding omation
control of laboratory fume hood exhaust air		S	Draw-wire sensor	<u>DXA.B130</u>	FS	aut
• Air volume flow • Face velocity • Sash opening – 500 mm		V	Flow sensor	<u>QVE3001</u>	FV	ilding utions
	PL-Link PL-Link AI AI AI AI SCOM/ (Lighting relay) AI/AO		Operator and display unit	<u>QMX3.P87</u> or <u>QMX3.P88</u>	OD	Bu
	Stabilizing - dp Laboratory fume	\otimes			32	lding vices

Room		Laboratory fume hood	Can	opy hood	Extraction	on	tion oles
FC9 Þ	Day/night laborate	ory fume hood	Contaminated	lair 📗 Fo	r VAV duct system	Code	Applica examp
Situation • Laboratory fume l vertically opening Control • On/off switching of fume hood exhau Monitoring • Aircolume flow	hood with g sash of laboratory ust air			VAV controller with application Fast, precise VAV damper	<u>DXR2.E17C</u> HvacLgt16 <u>VCCF-Type</u> GAP191.1E (GDB161.1E) <u>DXA.S04P1-B</u>	DXR2. E17 VCCF (VCCS)	Functions
Face velocity Sash opening – 50	500 mm	PL-Link (Liahting relay) DI DI SCOM/ Al/AO					Design
EC10	1			11			om lation
		laboratory fumo bood	Contominator	lair II Eo	r VAV duct system	Codo	ΧE
Situation • Laboratory fume l	hood with	laboratory fume hood	Contaminated	A air Fo VAV controller with application	r VAV duct system DXR2.E17C HvacLgt16	Code DXR2. E17	Roc autom
Situation • Laboratory fume l vertically opening Control • Continuous, sash dependent air vol	hood with g sash n opening- mperature- lume flow	laboratory fume hood	Contaminated	d air Fo VAV controller with application Fast, precise VAV damper	VAV duct system DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B	Code DXR2. E17 VCCF	uilding Roc tomation autom
Situation • Laboratory fume l vertically opening Control • Continuous, sash dependent or tem dependent air vol control of laborate hood exhaust air Monitoring	hood with g sash n opening- nperature- lume flow tory fume	laboratory fume hood	Contaminated	d air Fo	DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B	Code DXR2. E17 VCCF FS	Building Roc automation autom
Situation • Laboratory fume l vertically opening Control • Continuous, sash dependent or tem dependent air vol control of laborat hood exhaust air Monitoring • Air volume flow • Face velocity • Sash opening – 50 • Temperature	hood with g sash n opening- nperature- lume flow tory fume	laboratory fume hood	Contaminated	d air Fo VAV controller with application Fast, precise VAV damper Draw-wire sensor Operator and display unit	r VAV duct system DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B DXA.B130 QMX3.P87 or QMX3.P88	Code DXR2. E17 VCCF FS OD	Building Building Roc solutions automation autom
Situation • Laboratory fume l vertically opening Control • Continuous, sash dependent or terr dependent or terr dependent or terr dependent air vol control of laborate hood exhaust air Monitoring • Air volume flow • Face velocity • Sash opening – 50 • Temperature	hood with g sash n opening- nperature- lume flow tory fume	laboratory fume hood	Contaminated	d air Fo VAV controller with application Fast, precise VAV damper Draw-wire sensor Operator and display unit	r VAV duct system DXR2.E17C HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B DXA.B130 QMX3.P87 or QMX3.P88	Code DXR2. E177 VCCF FS OD	Building Building Roc solutions automation autom

Room	Laboratory fume hood	Canopy hood	Extract	ion	ition oles
FC11 Filter/fume scrub	per laboratory fume hood	Contaminated air	For VAV duct system	Code	Applica examp
Situation • Laboratory fume hood with vertically opening sash		VAV controller with application	<u>DXR2.E17C</u> HvacLgt16	DXR2. E17	s
Control • Continuous, sash opening- dependent air volume flow		Fast, precise VAV damper	<u>VCCF-Type</u> <u>GAP191.1E</u> DXA.S04P1-B	VCCF	Functior
hood exhaust air Monitoring • Air volume flow		Draw-wire sensor	<u>DXA.B130</u>	FS	
• Face velocity • Sash opening – 500 mm • Fume scrubber		Operator and display unit	<u>QMX3.P87</u> or <u>QMX3.P88</u>	OD	Design
	DI PL-Link PL-Link AI SCOM/ (Lighting relay) AI/AO				Ę
FC12 24-hour constant	controlled laboratory fume hood	Contaminated air	For CAV duct system	Code	Room tomati
Situation • Laboratory fume hood with vertically opening sash		VAV controller with application	<u>DXR2.E17C</u> HvacLgt16	DXR2. E17	au
Monitoring • Air volume flow • Face velocity		Air volume flow orifice plate	VCM-Type DXA.S04P1-B	∨см	ilding
• Sash opening – Suu mm					30
		Operator and display unit	<u>QMX3.P87</u> or <u>QMX3.P88</u>	OD	Bu auto
		Operator and display unit	<u>QMX3.P87</u> or <u>QMX3.P88</u>	OD	ilding Bu utions auto
	PL-Link PL-Link (Lighting relay)	Operator and display unit	<u>QMX3.P87</u> or <u>QMX3.P88</u>	OD	Building Bu solutions auto

Room	Laboratory fume hood	Canopy hood	Extrac	tion	
HC1 Canopy hood wit	h 2-step switch	Contaminated air	For VAV duct system	Code	
Situation • Canopy hood with step switch via room VAV controller Control • Two-step constant air volume flow control • Display off/1/2 Monitoring		Fast, precise VAV damper	<u>VCCF-Type</u> <u>GAP191.1E</u> (<u>GDB161.1E</u> <u>DXA.S04P1-B</u>	VCCF (VCCS)	
	Compared to the second				
HC2 Canopy hood, au	tomated	Contaminated air	For VAV duct system	Code	
HC2 Canopy hood, au Situation • Canopy hood with presence detector	tomated	Contaminated air VAV controller with application	For VAV duct system <u>DXR2.E17CX</u> HvacLgt16	Code DXR2. E17	
HC2 Canopy hood, au Situation • Canopy hood with presence detector Control • Multi-step constant air volume flow control	tomated	Contaminated air VAV controller with application Fast, precise VAV damper	For VAV duct system DXR2.E17CX HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B	Code DXR2. E17 VCCF	
HC2 Canopy hood, au Situation • Canopy hood with presence detector Control • Multi-step constant air volume flow control Monitoring • Air volume flow	tomated	Contaminated air VAV controller with application VAV controller with application Fast, precise VAV damper Operator and display unit	For VAV duct system DXR2.E17CX HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B QMX3.P87	Code Code Code Code Code Code Code Code	
HC2 Canopy hood, au Situation • Canopy hood with presence detector Control • Multi-step constant air volume flow control Monitoring • Air volume flow	tomated	Contaminated air Image: Controller with application Image: Controller with applicati	For VAV duct system DXR2.E17CX HvacLgt16 VCCF-Type GAP191.1E DXA.S04P1-B QMX3.P87	Code DXR2. E17 VCCF OD	

Build servi

	om	Laboratory fume hood	Canopy hood	Extra	action	ition
SC1	Extraction arm, 2	4/7	Contaminated air	For VAV duct system	Code	Applica
Situation • Constant varioom air ba • Constant varioon • Consta	alue is part of lancing alue connected to <u>DXR2.E17C</u> with 114 alue connection					Functions
in overall ro Monitoring • None	oom balance					Design
						n Ation
SC2	Extraction arm, m	anually switched	Contaminated air	For VAV duct system	Code	Roo
SC2 Situation Extraction a mechanica manual dar Air volume is part of rc Control	Extraction arm, m arm with ly operated on/off nper flow measured value iom air balancing	anually switched	Contaminated air Air volume flow orifice plate	For VAV duct system	Code VCM	Building Roo utomation autom
SC2 Situation • Extraction a mechanica manual dar • Air volume is part of roc Control • Constant va in overall ro Monitoring • None	Extraction arm, m arm with ly operated on/off mper flow measured value oom air balancing alue connection oom balance	anually switched	Contaminated air Air volume flow orifice plate	For VAV duct system	Code	uilding Building Roo Jurions automation autom
Room	Laboratory fume hood	Canopy hood	Extra	ction	ition oles	
---	---------------------------------	------------------------------------	--------------------------------	-------	--------------------------	--
SC3	, manually switched (variant 1)	Contaminated air	For VAV duct system	Code	Applica examp	
Situation • Extraction arms with – CAV controller – mechanically operated on/off manual damper • Air volume flow measured value is part of room air balancing Control		Air volume flow orifice plate	<u>VCM-Type</u> DXA.S04P1-B	VCM	Functions	
Collective volume measurement integrated into overall room balance Monitoring None					Design	
					om ation	
SC4 Extraction arms	, manually switched (variant 2)	Contaminated air	For VAV duct system	Code	Roc utom	
Situation • Extraction arms with - CAV controller - mechanically operated on/off manual damper • Air volume flow measured value is part of room air balancing Control • Collective volume measurement		dp Air volume now orifice plate	<u>VCM-Type</u> DXA.S04P1-B	VCM	Building automation a	
integrated into overall room balance Monitoring • None					Building solutions	
	Control unit CAV controller			37	Building services	

Functions

 \sim

CET is a VAV control system based on the described basic and supplementary components. All components in the system are connected using interfaces according to open standards. The system can also be expanded by adding components from third-party suppliers, and it can be easily integrated into a building automation system. This gives users the necessary flexibility to ensure the total functionality of the building automation system.

The CET applications implement basic functionalities such as air volume flow control, laboratory fume hood control, and room pressure control. System functions result from the connection of multiple CET controllers. The expanded functions are produced by integrating the system into building automation.

CET basic functionality – VAV functionality	40	Laboratory fume hood functionality	
Measuring, controlling, regulating, and monitoring air volume flows	40	Laboratory fume hood air volume flow control and monitoring	
Emergency functions	41	Laboratory fume hood – alarm signaling,	
Test and override functions	41	emergency, additional functions	
Room functions	42	Expanded functions	
Room air volume flow	42	Demand-controlled room air conditioning	
Expanded functionality: room air volume flow	43	Demand-based fan activation	
Room balancing and room pressure control	44	Room occupancy concept	
J			

Reports and analyses

Additional information and application descriptions are available at www.siemens.com/lifescience

45

45

47 48

-unctions

CET basic functionality – VAV functionality

Measuring, controlling, regulating, and monitoring air volume flows	In HvacLgtShd14, HvacLgtShd15, HvacLgt16
 • Measuring • Any 010 V or 420 mA indicating pressure, velocity or flow • Supports multiple air flow sensing technologies. Optimized for fast, high resolution digital APS* • Evaluating linear and square-root extracted, analog air volume flow signals DC 0(2)10 V • Open loop controlling • Modulating control via DC 0(2)10 V signal or PL-Link • Suitable for continuous standard, rapid response, and VAV compact actuators • Closed loop controlling • Pl control algorithm • Open and closed loop control operation • Monitoring • Parameterizable alarm limits and delay times • Communication interface according to BACnet/IP 	 Prioritized set point setting Emergency functions Test and overwrite functions Direct set point settings by operating mode (closed, min, mid, max, nominal value) over digital inputs or network variables Application (e.g. sash position, room pressure controller, balancing) Possibility of allocating air volume flow set points to multiple air volume flow controllers (parallel operation) Measurement signal filter, zero point, control parameters and set point ramps adjustable Relay activation for automatic zero-point calibration with magnetic value Configurable failure modes Maintenance free pressure sensor with auto calibration and diaphram sensor and digital communication (SCOM)
APS Air pressure sensor	

41

CET basic functionality – VAV functionality

In HvacLgtShd14, HvacLgtShd15, HvacLgt16 **Emergency functions** Emergency functions have highest priority among Available emergency functions the set points. • Emergency negative pressure: open exhaust Triggering emergency functions air dampers, close supply air dampers - Via digital inputs on controller (HvacLqt16) • Emergency positive pressure: open supply air – Via building automation dampers, close exhaust air dampers Indication of active emergency functions on the • Emergency purge: open all dampers 4 operator unit • Emergency closing: close all dampers • Emergency purge button to force the purge • Fire: close or open the dampers, depending

Test and override functions

In HvacLgtShd14, HvacLgtShd15, HvacLgt	t16	
--	-----	--

- Individual opening or closing of air volume flow controllers at time of commissioning and for test purposes
- Command individual flow controller to a named, functional level
- Command multiple dampers through mass operation function in tool

Room functions

Room air volume flow

- Setting of minimum room air volume flow using - Variable minimum room air volume flow
- Stepwise setting based on occupancy and use of the laboratory (4 laboratory room operating modes) using schedule, button, presence detector, laboratory fume hood
- operating mode, room operator unit • Monitoring of room air volume flow
- Monitoring of room air volume flow
- Parameterizable alarm limits and delay times
- Ensuring minimum room air volume flow by means of room exhaust air increase and parameterizable set point increase of the laboratory fume hood air volume flows
- Increase in room air volume flow by increasing room exhaust air with subsequent increase in laboratory fume hood air volume flows
- Reduction in room exhaust air possible when laboratory fume hood exhaust air increases (open sash), at constant supply air set point
- Room exhaust air increase possible through temperature control; with readjustment of supply air for a constant room pressure

In HvacLgtShd14, HvacLgtShd15

- Room air balancing: Room/segment concept accommodates expansion
- Calculation of set points for room supply and exhaust air, taking into account the air volume flows of laboratory fume hoods, additional extractions, operating modes and room temperature and humidity control
- Functions only in the HvacLgtShd14, HvacLgtShd15 application
- 4 room occupancy operating modes
- Network variables to display the actual and set point total room air volume flow, to specify the room air volume flow, and to trigger room air volume flow alarms

Room functions

俞

Expanded functionality: rooi	n air volume flow	In HvacLgtShd14, HvacLgtShd15
	 Maximum simultaneous utilization monitoring of air volume flows in one room Alarm at all laboratory fume hoods in the room if more laboratory fume hoods are open at the same time than specified in the design; user is instructed to close laboratory fume hoods to avoid a negative effect on other rooms and to ensure a sufficient supply air volume flow. 	

Room functions

俞

Room balancing and room p	pressure control	In HvacLgtShd14, HvacLgtShd15
الحق	 Room pressure control through room air balancing and constant difference between total supply air and total exhaust air Room pressure control Room air balancing with correcting overlaid cascade room pressure control for very fast, stable control behavior Use of supply air or exhaust air controller as room pressure control ler possible Simple room pressure control also possible without cascade control and balancing Room pressure monitoring Parameterizable alarm limits and delay times 	 Adjustable control parameters for pressure control Network variables to display the actual and set point room pressure, to specify the room pressure, and to trigger room pressure alarms Door contacts to freeze controllers can be added

Laboratory fume hood functionality

Laboratory fume hood air volume flow control and monitoring

• The system provides components to equip a laboratory fume hood, from laboratory fume hood monitoring to sash position-dependent controls according to EN 14175 Part 6.

Possible variants

- Air volume flow monitoring for constant controlled laboratory fume hoods
- Monitoring of air volume flow
- Monitoring of face velocity
- Monitoring of air volume flow and face velocity
- Air volume flow monitoring and control based on operating mode-dependent set points
- Monitoring and control of air volume flow
- Monitoring of face velocity
- Monitoring of air volume flow and face velocity
- Air volume flow monitoring and control based on operating mode-dependent and sash positiondependent set points
- Monitoring and control of air volume flow
- Monitoring and control of face velocity
- Monitoring and control of air volume flow and face velocity

| In HvacLgt16

- Suitable for laboratory fume hoods from any manufacturer
- Operator and display unit with clear signaling of safe laboratory fume hood operation
- Measuring sash position using wire sensor, flow sensor, and switches
- Air volume flow and face velocity set points possible
- Warning if 500 mm sash opening is exceeded
- Communication monitoring of the operator and display unit
- Control signals for direct activation of an individual fan (continuous)
- Activation and monitoring of stabilizing jet fans
- Increased safety due to simultaneous monitoring of face velocity and air volume flow
- Network variables to display sash position, face velocity, etc.
- Support of simultaneous utilization function
- Support of variable minimum air volume flow settings, e.g. to increase the laboratory fume hood air volume flow based on the temperature control
- Maintenance free pressure sensor with auto calibration and diaphram sensor and digital communication (SCOM)

Laboratory fume hood functionality

Â

Laboratory fume hood – ala	rm signaling, emergency, additional functions	s In HvacLgt16
	 Operating mode setting using Operator and display unit Presence detector Room controller/presence button/ occupancy schedule Sash opening Local display of the current operating modes Acoustic signaling indicates automatic change of operating mode Red alarm LED and buzzer for alarm Yellow warning LED and buzzer for warning Green display showing safe operation Display of air volume flow set point or face velocity on the operator and display unit Laboratory fume hood lighting is switchable using button on the operator and display unit Activation of a sash closing device using button on the operator and display unit Emergency function activation using digital inputs, e.g. fire detectors for emergency closing or emergency opening of air volume flow controller 	 Up to 20 laboratory fume hood operating modes can be used or blocked depending on individual project. Acoustic signals indicating automatic change of operating mode are parameterizable Automatic reduction of operating mode only possible if front sash is closed (parameterizable) Automation of laboratory fume hood lighting via controller or module Acoustic reminder function to instruct users to close sash

Expanded functions

Demand-controlled room ai	r conditioning	In HvacLgtShd14 and HvacLgtShd15
	 Possibility to expand CET applications to include integrated room temperature 	 Connection of NI1000 or PT1000 temperature sensors and others are possible for the application Connection available for heating and cooling valves

Demand-based fan activation

- Information about damper positions

 All CET air volume flow controllers provide this information (exception: air volume flow
 - controllers with compact controllers).
 - Can be used to optimize the duct pressure set point

Room occupancy concept

- Integration of CET controllers into occupancy concepts of the building and room automation is possible across systems (temperature, blinds, lighting, access, schedules), example: switching on the lighting can be used as occupancy information
- This information can be used for switching operating modes in the CET applications

In HvacLgtShd14, HvacLgtShd15, HvacLgt16

Room automation

Expanded functions

Operation and monitoring

- Graphic visualization on the user interface of the management station: clear presentation of the abundant information provided by the CET controllers
- Information on every air volume flow controller
- Actual air volume flow
- Damper position
- Air volume flow set point
- Air volume flow alarm
- Emergency ventilation level can be set by user in room or remotely
- Room air exchange rate may be set as constant, vary with operating mode, or change dynamically based on measured contaminants
- Ability to set flow rates in physical units or air changes per hour or flow per unit of floor space
- Ability to see room air flow driver dynamically
- Ability to display calculated flow levels:
- Total supply
- Total extract
- Transfer flow (difference)
- Ability to display alarm indicators for the calculated flows:
- Transfer
- Ventilation (can be supply or extract)
- Occupancy
 - Setting of room occupancy
 - Current room occupancy

In HvacLgtShd14, HvacLgtShd15, HvacLgt16

- Room pressure
- Actual room pressure
- Room pressure set point
- Room pressure alarm
- Setting of room pressure
- Status of door contac
- Laboratory fume hood
- Current laboratory fume hood operating mode
- Current fume hood air flow or the total of the fume hood air flows in the room
- Status of presence detector
- Setting of laboratory fume hood operating mode
- Sash
- Total opening area
- Current face velocity set point
- Current face velocity
- Additional information
- Alarm status
- Warning status
- Setting of alarms, warnings, blocked operation

48

Room automation

Building automation

Expanded functions

Â

Reports and analyses		In HvacLgtShd14, HvacLgtShd15, HvacLgt16
NU NU NU NU NU NU NU NU NU NU	 All information of the data points is suitable for detecting trends and generating reports. Air flow driver object answers the most important energy analysis questions Calculated alarm objects for room and hood make it easy to confirm safe operation over any time interval 	

Design

Â

This chapter contains tables with more detailed technical information regarding the design of VAV dampers and air volume flow orifice plates.

Air volume flow, pressure drop – VAV dampers and orifice plates made of plastic, round, with pressure sensor DXA.SO4P1-B	5
Air volume flow, pressure drop –VAV dampers and orifice plates made of plastic, round , with pressure sensor QBM	52
Air volume flow, pressure drop – VAV dampers and orifice plates made of metal, round, with pressure sensor DXA.S04P1-B	53
Air volume flow, pressure drop – VAV dampers and orifice plates made of metal, round, with pressure sensor QBM	54
Air volume flow \dot{V}_{nom} [m ³ /h], $\dot{V}_{5m/s}$ [m ³ /h] – VAV dampers made of metal, rectangular, with pressure sensor DXA.S04P1-B	55
Air volume flow \dot{V}_{nom} [m ³ /h], $\dot{V}_{5m/s}$ [m ³ /h] – VAV dampers made of metal, rectangular, with pressure sensor QBM	56
Air volume flow \dot{V}_{nom} [CFM // m³/h] – Venturi terminal unit	57

Air volume flow, pressure drop – VAV dampers and orifice plates made of plastic, round, with pressure sensor <u>DXA.S04P1-B</u>

DN [mm]	Length* installed [mm]	V _{nom} [m³/h]	└ _{2m/s} [m³/h]***	└ _{5 m/s} [m³/h]***	V _{7 m/s} [m³/h]***	Pressure drop** at V _{7 m/s} [Pa]	6
160	310	630	140	360	510	18	
200	350	850	230	570	790	18	
250	400	1400	350	880	1240	18	
315	490	2370	560	1400	1960	18	
110	400	300	70	170	240	33	
125	400	400	90	220	310	33	
140	400	500	110	280	390	33	
160	450	650	140	360	510	33	Typical standa
180	490	840	180	460	640	33	sizes
200	510	1020	230	570	790	33	Other sizes
225	700	1300	290	720	1000	33	
250	700	1600	350	880	1240	33	
280	760	2000	440	1110	1550	33	
315	760	2540	560	1400	1960	33	
355	1050	3230	710	1780	2490	33	Additional informa-
400	1100	4100	900	2260	3170	33	tion and data sheet
450	1250	5180	1150	2860	4010	33	can be found at
500	1400	6410	1410	3530	4950	33	lifescience

 \dot{V}_{nom} : Nominal air volume flows are based on 250 Pa pressure sensors.

Lengths are based on dampers with a plug-in connection. The lengths of dampers with a flanged connection or orifice plates may differ from the information in this table. Additional information is provided in the damper data sheet.

** Pressure drop values apply only to VAV dampers.

** Air volume flow value at 2 m/s, 5 m/s, 7 m/s air velocity in the damper.

Air volume flow, pressure drop – VAV dampers and orifice plates made of plastic, round, with pressure sensor <u>QBM</u>

n/s	√5 m/s [m³/h]***	V₂m/s [m³/h]***	V _{nom} [m³/h]	Length* installed [mm]	DN [mm]
50 510 18	360	140	690	310	160
70 790 18	570	230	930	350	200
30 1240 18	880	350	1530	400	250
00 1960 18	1400	560	2600	490	315
70 240 33	170	70	330	400	110
20 310 33	220	90	440	400	125
30 390 33	280	110	550	400	140
50 510 33	360	140	710	450	160
50 640 33	460	180	920	490	180
70 790 33	570	230	1120	510	200
20 1000 33	720	290	1420	700	225
30 1240 33	880	350	1750	700	250
10 1550 33 Typical stand	1110	440	2200	760	280
00 1960 33 sizes	1400	560	2780	760	315
30 2490 33 Other sizes	1780	710	3540	1050	355
50 3170 33	2260	900	4490	1100	400
50 4010 33 Additional inform	2860	1150	5670	1250	450
30 4950 33 tion and data she	3530	1410	7020	1400	500

 \dot{V}_{nom} : Nominal air volume flows are based on 300 Pa pressure sensors.

Lengths are based on dampers with a plug-in connection. The lengths of dampers with a flanged connection or orifice plates may differ from the information in this table. Additional information is provided in the damper data sheet.

** Pressure drop values apply only to VAV dampers.

** Air volume flow value at 2 m/s, 5 m/s, 7 m/s air velocity in the damper.

Functions

Design

www.siemens.com/

52

lifescience

Air volume flow, pressure drop – VAV dampers and orifice plates made of metal, round, with pressure sensor DXA.S04P1-B

DN [mm]	Length* installed [mm]	V _{nom} [m³/h]	└ _{2 m/s} [m³/h]***	└ _{5 m/s} [m³/h]***	[.] V _{7 m/s} [m³/h]***	Pressure drop** at V _{7 m/s} [Pa]	
100	298	250	60	140	200	60	
125	298	410	90	220	310	60	
140	298	520	110	280	390	60	
150	298	550	130	320	450	60	
160	308	700	140	360	510	60	(ETTO)
180	318	890	180	460	640	60	
200	328	1120	230	570	790	60	
224	353	1420	290	720	1000	60	
250	363	1900	350	880	1240	60	Typical standar
280	393	2150	440	1110	1550	60	Other sizes
300	423	2150	510	1270	1780	60	
315	423	2690	560	1400	1960	60	
355	492	3480	710	1780	2490	60	
400	553	4280	900	2260	3170	60	
450	590	4280	1150	2860	4010	60	Additional informa-
500	700	5380	1410	3530	4950	60	tion and data sheets
560	740	6450	1770	4430	6210	60	can be found at
630	800	8060	2240	5610	7860	60	lifescience

Building automation

Room automati<u>on</u>

Application examples

Building solutions

Building services

Vnom: Nominal air volume flows are based on 250 Pa pressure sensors.

Lengths are based on dampers with a plug-in connection. The length of dampers with a flanged connection or orifice plates may differ from the information in this table.

Pressure drop values apply only to VAV dampers.

* * * Air volume flow value at 2 m/s, 5 m/s, 7 m/s air velocity in the damper.

Air volume flow, pressure drop – VAV dampers and orifice plates made of metal, round, with pressure sensor <u>QBM</u>

DN [mm]	Length* installed [mm]	V _{nom} [m³/h]	└ _{2m/s} [m³/h]***	V _{5 m/s} [m³/h]***	V _{7 m/s} [m³/h]***	Pressure drop** at V _{7 m/s} [Pa]	N
100	298	280	60	140	200	60	
125	298	450	90	220	310	60	
140	298	570	110	280	390	60	
150	298	600	130	320	450	60	
160	308	760	140	360	510	60	- And
180	318	970	180	460	640	60	
200	328	1230	230	570	790	60	
224	353	1560	290	720	1000	60	
250	363	2080	350	880	1240	60	
280	393	2356	440	1110	1550	60	(de la
300	423	2356	510	1270	1780	60	
315	423	2940	560	1400	1960	60	
355	492	3810	710	1780	2490	60	
400	553	4690	900	2260	3170	60	Typical standa
450	590	4690	1150	2860	4010	60	sizes
500	700	5890	1410	3530	4950	60	Other sizes
560	740	7070	1770	4430	6210	60	Additional informa
630	800	8830	2240	5610	7860	60	tion and data sheet

 \dot{V}_{nom} : Nominal air volume flows are based on 300 Pa pressure sensors.

Lengths are based on dampers with a plug-in connection. The length of dampers with a flanged connection or orifice plates may differ from the information in this table.

** Pressure drop values apply only to VAV dampers.

*** Air volume flow value at 2 m/s, 5 m/s, 7 m/s air velocity in the damper.

Functions Application examples

Design

Building solutions

Building services

can be found at

lifescience

www.siemens.com/

Air volume flow \dot{V}_{nom} [m³/h], $\dot{V}_{5m/s}$ [m³/h] – VAV dampers made of metal, rectangular, with pressure sensor <u>DXA.S04P1-B</u>

Height Width 100 140 150	100 250 180 250 250 250	140	150 520	160	180	200	220	250	300	320	350	400	450	500	550	600	700	800	900	1000	
160 180	250		410 520 430 520 490			1120															
200 220 250	360 360 - - 500		520 540 520 590 820			720 720 1120 790 1120		2150													
300 320	450 750 540 750 -		1040 810 1040 860			1390 1080 1390 1390 1150		2150 1350 2150 1440	3470 1620 3470 1728												Typical standar sizes
350 400	750 630 1010 720 1010		1040 950 1230 1080 1560			1770 1260 2240 1440 2240		2150 1580 2850 1800 3790	3470 1890 3470 2160 3470		3470 2210 3470 2520 3470	4280 2880 4280	7580								Other sizes
430 500 550	810 1260 900 1260 990		1220 1560 1350 2080 1490			1620 2650 1800 3360 1980		2030 4300 2250 4300 2480	2430 4300 2700 5370 2970		2840 4300 3150 5370 3470	3240 4280 3600 5370 3960	3650 7580 4050 7580 4460	8600 4500 8600 4950	8600 5450						
600 700	1510 1080		2080 1620 2600 1890			3360 2160 3540 2520		4300 2700 5690 3150	6950 3240 6950 3780		6950 3780 6950 4410	6950 4320 6950 5040	9010 4860 11380 5670	8600 5400 11380 6300	8600 5940 11380 6930	13910 6480 13910 7560	13910 8820	17140			Additional informa-
800 900 1000			2160 3130 2430			2880 4520 3240		3600 7580 4050	4320 10430 4860		5040 10430 5670	5760 10430 6480	6480 15170 7290	7200 15170 8100	7920 15170 8910	8640 20870 9720	10080 20870 11340	11520 20870 12960	31300 14580		tion and data sheets can be found at www.siemens.com/ lifescience

 \dot{V}_{nom} : Nominal air volume flows are based on 250 Pa pressure sensors – upper value in cell is \dot{V}_{nom} [m³/h]; bottom value in cell is $\dot{V}_{5 m/s}$ [m³/h]. $\dot{V}_{5 m/s}$; Air volume flow value at 5 m/s air velocity in the damper.

Air volume flow \dot{V}_{nom} [m³/h], $\dot{V}_{5m/s}$ [m³/h] – VAV dampers made of metal, rectangular, with pressure sensor <u>QBM</u>

																					<i>A</i> =
Height Width	100	140	150	160	180	200	220	250	300	320	350	400	450	500	550	600	700	800	900	1000	
100	270 180																				
140	270 250																				
150	270 270	570 380	570 410																		
160	270		570 430																		
180	270		570 490																		
200	550 360	570 500	570 540	760 580	960 650	1220 720															Sha b
220	270		570 590			1220 790															
250	550 450	900 630	900 680	900 720	960 810	1220 900	1550 990	2350 1130													
300	830 540	1140 760	1140 810	1520 860	1520 970	1520 1080	1550 1190	2350 1350	3810 1620												Typical standar
320	830		1140 860			1520 1150		2350 1440	3810 1728												sizes
350	830 630	1140 880	1140 950	1520 1010	1930 1130	1930 1260	1930 1390	2350 1580	3810 1890	3810 2020	3810 2210										Other sizes
400	1100 720	1350 1010	1350 1080	1520 1150	1930 1300	2450 1440	3110 1580	3110 1800	3810 2160	3810 2300	3810 2520	4690 2880									
450	1100 810	1710 1130	1710 1220	2280 1300	2280 1460	2450 1620	3110 1780	4150 2030	3810 2430	3810 2590	3810 2840	4690 3240	8310 3650								
500	1380 900	1710 1260	1710 1350	2280 1440	2900 1620	2900 1800	3110 1980	4710 2250	4710 2700	4710 2880	4710 3150	4690 3600	8310 4050	9420 4500							
550	1380 990	2280 1390	2280 1490	2280 1580	2900 1780	3680 1980	3680 2180	4710 2480	5880 2970	5880 3170	5880 3470	5880 3960	8310 4460	9420 4950	9420 5450						
600	1660 1080	2280 1510	2280 1620	3040 1730	3040 1940	3680 2160	4670 2380	4710 2700	7620 3240	7620 3460	7620 3780	7620 4320	9870 4860	9420 5400	9420 5940	15240 6480					
700		2850 1760	2850 1890	3040 2020	3870 2270	3870 2520	4670 2770	6230 3150	7620 3780	7620 4030	7620 4410	7620 5040	12470 5670	12470 6300	12470 6930	15240 7560	15240 8820				Additional informa-
800		3420 2020	3420 2160	3810 2300	3870 2590	4910 2880	6230 3170	7060 3600	7620 4320	7620 4610	7620 5040	9380 5760	12470 6480	14130 7200	14130 7920	15240 8640	15240 10080	18770 11520			tion and data sheets
900		3420	3420	4570	4840	4950	6230 3560	8310 4050	11430 4860	11430	11430	11430	16620	16620	16620	22860	22860	22860	34290		can be found at
1000		2270	2450	2390	2920	5240	5500		4300	5100	5070	0400	,290	0100	0910	5720	11340	12900	14500		www.siemens.com/
1000																					lifescience

V_{nom}: Nominal air volume flows are based on 300 Pa pressure sensors – upper value in cell is V_{nom} [m³/h]; bottom value in cell is V_{5 m/s} [m³/h].

 $\dot{V}_{5 m/s}$: Air volume flow value at 5 m/s air velocity in the damper.

56

Application examples

Function

Air volume flow V_{nom} [CFM // m³/h] – Venturi terminal unit

	DN [Zoll // mm]	Length installed [Zoll // mm]	V@1.8 m/s [CFM // m3/h]	75 to 750 Pa Low min [CFM // m³/h]	75 to 750 Pa Low max [CFM // m3/h]	150 to 750 Pa Medium min [CFM // m³/h]	150 to 750 Pa Medium max [CFM // m3/h]	
	Single venturi flow o	controller						
106	5 15/16 // 151	21 3/4 // 552	70 // 120	30 // 40	200 // 340	40 // 70	250 // 425	
108	7 7/8 // 200	27 1/2 // 699	125 // 210	40 // 70	400 // 680	40 // 70	500 // 850	
110	9 7/8 // 251	27 // 686	190 // 325	60 // 100	700 // 1190	60 // 100	1000 // 1700	
112	11 7/8 // 302	32 1/8 // 816	275 // 470	100 // 170	1250 // 2125	100 // 170	1500 // 2550	
114	13 7/8 // 353	35 1/2 // 902	373 // 630	200 // 345	1500 // 2550	200 // 345	2500 // 4250	
	Dual venturi flow o	controller (Single v	enturi flow control	ler Dimension)				
210	9 7/8 // 251	27 // 686	380 // 650	80 // 208	1400 // 2380	120 // 200	2000 // 3400	
212	11 7/8 // 302	32 1/8 // 816	550 // 930	200 // 345	2500 // 4250	200 // 345	3000 // 5100	
214	13 7/8 // 353	35 1/2 // 902	747 // 1270	400 // 690	3000 // 5100	400 // 680	5000 // 8500	Additional informa-
	Triple venturi flow	controller (Single	venturi flow contro	ller Dimension)				tion and data sheet
312	11 7/8 // 302	32 1/8 // 816	825 // 1400	300 // 510	3750 // 6370	300 // 510	4500 // 7650	can be found at
								www.siemens.com

For details see data sheet

Altitude Correction: Airflow @ Altitude = (Sea Level Flow)*EXP(-0.000019028*[Altitude in feet]).

(* = Consult with factory customer service for details)

unctions

Critical Environment Technology in the world of Building Automation

Siemens Building Technologies offers a comprehensive technology and solution portfolio for critical environments of all sizes and complexity. The following chapters give you a brief overview of the areas of Room Automation, Building Automation, Building Solutions, and Services with respect to special functions required by each area. This is supplemented by a description of the special services and functional areas for operation in critical environments.

59

An integrated solution

An integrated solution for critical environments.

 \sim

The Siemens Smart infrastructure division offers a comprehensive technology and solution portfolio for room and building automation for critical environments of all sizes and complexity. This portfolio offers solutions for clean rooms, laboratories, operating rooms, etc. These solutions combine our range of reliable flow controllers and additional components for the safe, accurate, and fast measurement, control, and monitoring of volume flows and room pressures in buildings. An integrated solution like this is available only from Siemens, making for easier planning, faster delivery, seamless commissioning, and optimized performance.

An integrated solution for critical environments

- Automatic and manual adaptations to optimize system
- Balancing comfort, safety, and energy demands
- Powerful reports and data analysis

Safety and Security

- Compliance with rules and regulations
- Active personal and asset protection
- Alarming and response
 on events
- Integration of all disciplines for a safe environment

Room Automation

- Local control
- Room temperature/humidity
- Lighting/shading

Building Automation

- Room Automation
- and remote and local control
- and scalability for small and large projects

Building Solution

- Building Automation
- and fire safety
- and access and security
- Integrated solution

Application examples

Functi

Design

Room automation

Building automation

Building solutions

Building services

Functions

Room automation

Building automation

Building services

Comprehensive Building Automation and Control System Critical Environment Technology (CET) subsystems Dedicated solutions for clean rooms laboratories operating rooms, etc.

Desigo and CET – a perfect match

Highest efficiency, safety, and security and optimized comfort are equally desirable in ordinary rooms and critical environments. The difference is that they are harder to come by in critical environments because of their highly specialized requirements. However, our integrated approach takes care of that, from high-quality single components to a comprehensive overall system, from simplified planning to time-optimized commissioning. The combination of our Desigo CC room and building automation systems and our CET portfolio enables our customers to operate their buildings with optimized efficiency, safety, and security. Comfort and flexibility will also rise to a higher level.

+

From room automation to an integrated CET solution

The basic structure of this chapter is the presentation of the areas of room automation, building automation, total building solutions, and services and their respective typical functions and supplements that result from the special CET requirements. The fold-out page above serves as an overview of the entire system and its benefits.

Room automation

 \sim

Room automation for maximum productivity and assured comfort.

Today, most buildings feature independent controls for lighting, shading, and HVAC, and the individual rooms have a rather limited functionality. Desigo Room Automation (DRA) integrates intelligent functionalities from all disciplines into coordinated interaction. The result: substantial energy savings and productivity gains, and utmost flexibility.

Functions

Desigo DRA for profitable rooms

- Maximized productivity and comfort made to measure
- Intuitive operation and unrivaled quality
- True cost savings and investment protection

Desigo DRA – the powers of integration

- Overcome the boundaries between disciplines
- From the single-discipline solution for HVAC, lighting, and shading to a coordinated approach
- Coordinated approach of optimizing the individual disciplines to achieve an overall optimization of the room's condition

Desigo DRA - at the core of the process

- Intuitive and customizable operation, easy adaptation to local requirements
- Optimum flexibility in changing room layouts by assigning control functions to areas rather than rooms, even in operation without rewiring
- Involving the room user for additional energy savings, change of user's mindsets

Desigo DRA – the benefits

- Higher energy efficiency for the building savings of up to 25% in energy by involving room users
- Intelligent comfort ensures optimal working environment: pleasant room climate, good air quality and optimal lighting conditions with as little energy as possible, at the touch of a button
- More flexibility for future plans: easy adaptation of Desigo DRA for long-term investment protection.
- Maximum safety and reliability from an experienced partner
- Configuration instead of programming: ease of installation and operation
- Distributed functionality in multiple segments or rooms

Room Automation – Features & Functions

Desigo DRA – everything under control

- Central function viewer for the visualization and management of all rooms in a building and their individual functions
- Control of all rooms disciplines including HVAC, lighting, and shading, easy reconfiguration and setting of new room layout assignment
- More security through control of emergency lighting applications and reports on test runs
- Flexible room management by detailed information on room configuration, device settings, events, and the status of all objects of a discipline (e.g. lights or blinds)
- Embedded Room Automation web server access

BACnet is an open communication standard for building automation used worldwide. Independent testing and certification authorities guarantee the reliability of BACnet devices.

Desigo room automation stations use BACnet to communicate with each other and with the management level. This ensures universal communication from the room to the management level.

Desigo RoomOptiControl for room user involvement

- Green Leaf signals an energetically favorable setting of the room's parameters
- If energy saving settings are manually changed, the Green Leaf symbol will turn red
- By touching the Green Leaf symbol, favorable room parameter settings will be restored
- · Easy rules for automatic decision making

Communication in all directions

- Direct control of fan coils, radiators, VAV, chilled ceilings, and lighting with communication controllers
- Individual settings with communicating room thermostats
- Predefined applications for HVAC and basic settings for lighting and shading
- Integration of using open protocol networks into a building automation solution for additional functions
- Energy savings of up to 14% through eu.bac-certified single-room controllers

unctions

Design

Room automation

Building automation

67

Green Leaf makes energy consumption visible and enables room users to actively save up to 25% in energy

RoomOptiControl automatically detects unnecessary energy consumption in the room

Room operates energy-optimized

Potential for energy savings → Press symbol and return to most energy-efficient operation

Room automation and CET

Critical environments place particular demands on room automation, especially in the areas of comfort, efficiency, flexibility, and safety and security. This chapter presents selected features and characteristics of the Siemens CET solutions for these four areas.

Comfort:

Optimized comfort in critical environments

The effects of proper comfort on work results are frequently underestimated in critical environments in favor of technical room infrastructures. However, good room climate and optimal lighting are an integral part of the technical prerequisites under which work is being carried out here, especially because the level of comfort is responsible not only for productivity, but also for a significant proportion of energy consumption and thus operating costs. Room Automation for CET sensitizes employees to these contexts.

- Room controls with the Green Leaf button help to restore room conditions in case of a manual override of the ideal settings, combining optimized comfort and energy consumption
- Shading forms an integral part of lighting control to support room users with as much natural light as possible
- Room control can be achieved through various interfaces, from the local room control unit to remote control, from a web browser to apps for cell phones and other mobile devices

Efficiency: Highest efficiency for critical environments

- The cost-effectiveness of critical environments depends not only on the productivity of employees but also on the effort required by the rooms to fulfill their respective functions. In the long term, the energy consumption with which they do this becomes the decisive factor. With Total Room Automation, there are numerous possibilities that go far beyond the scope of conventional room control devices – in particular, optimization measures within the framework of a scheduled use of the rooms:
- Intelligent room operating modes to match the increased complexity of the rooms with a variety of control points; analysis of the target values in coordination with the customer
- The occupancy and utilization criteria of the rooms are used to define fixed operating modes within the concept of Total Room Automation, whose energy consumption optimally reflect the task of the room and the comfort for the employees (e.g. energy saving mode)
- 24/7 remote control of room conditions through web browser or even mobile devices; optimization around the clock even in times of unplanned room usage (ex-schedule)
- Integration of fume hood lighting into the overall room lighting controls

• Shading as an integral part of the room lighting concept saves energy by ensuring as much natural light and as little artificial light as possible

69

SIEMENS

 \triangle

OK

1

~

Flexibility: Already prepared for changes at the planning stage

Even if the tasks of a critical environment can change with time, the basic requirements of efficient, reliable room operation stay the same. Within the concept of Desigo Room Automation, a high degree of flexible room usage is built in from the outset to allow the working environment to be aligned to the needs of the processes and/or employees:

- Tailor-made concepts for every application (research, clean room, operating room) with high flexibility
- Rearrangement of the devices in the DRA concept possible at any time easy adaptation of the rooms to new tasks
- Forming of working islands with related functions anywhere in the room
- Optional combination of, for example, clean room and offices (e.g. in a manufacturing area, with less strict requirements in terms of air quality)

Safety and security: Safety and security for critical environments

In critical environments, security and fire safety are of particular importance. For example, in laboratories the future of the entire company may be at stake. Therefore, a dedicated safety and fire protection system can be installed. In addition, the security applications of the room automation system restricts access to the premises or individual equipment to authorized persons.

- Added security through access verification (e.g. for fume hoods to ensure operation only by authorized personnel)
- Discussion of set values for air quality, temperature, lighting, and safety of employees, patients, etc., depending on room usage to ensure proper conditions at any time and under all circumstances
- In clean rooms, monitoring of air filter and room pressure (overpressure or negative pressure maintained) are important issues (especially in the pharmaceutical industry, in hospitals, health services, and with disaster protection, etc.)
- Specific fire extinguishing systems for laboratory fume hoods, possibly integrated into a superior fire extinguishing system and controlled by a building automation system

- Additional fire safety through coupled functions, such as opening the shading in the event of a fire to give easier access through the windows for the fire brigade
- Fire alarms will be presented on the central control level and initiate mass notification and the evacuation of the building

72

Building automation

 \sim

Building automation with Desigo CC - more intelligence, less complexity.

The Desigo CC building management platform integrates various disciplines and allows operator access from any stationary device or web client anytime, anywhere. Open by design, Desigo CC paves the way to greater safety and comfort, better performance and image, as well as significantly lower costs in building operation. Profit from simplified work processes, consistent workflows, and standardized interfaces for single- to multi-discipline applications in all building types.
Desigo CC for complete transparency

- HVAC, shading, and lighting integration into one platform
- Additional features for value-added performance
- Intuitive operation, few training requirements

Desigo CC – the powers of perfect control

- Comprehensive control of HVAC, shading, and lighting disciplines
- More insight and improved performance through interdisciplinary analysis
- Workflows, trend analysis, and dedicated notification for optimized awareness of possible problems and corresponding actions

Desigo CC – future-proof application libraries

- More than 200 tested and proven applications for room functions such as HVAC, shading, and lighting, for reliable performance
- Comprehensive documentation, allowing for excellent service even after many years
- Compatible application library for optimum investment protection
- >25 energy saving applications

Desigo CC – for faster project realization

- Higher flexibility with prefab, adaptable applications
- Shorter configuration time thanks to flexible library structure
- Dedicated components and aggregates serve to realize individual customer requirements
- Detailed components, units, and systems description

Desigo AirOptiControl

- Maximum reduction of air volume flow combined with the best possible comfort to maximize energy savings
- Combination of demand-controlled valve pressure control and supply air temperature control for any number of rooms with Desigo DRA
- Direct exchange of demand signals from the room with the primary air handling unit
- With a reduced pressure drop across the VAV boxes, a smaller fan is sufficient – with correspondingly lower operating costs
- Control of the supply and exhaust air cascade's pressure set point for improved comfort and energy efficiency compared to plants with constant pressure / air temperature regulation

Multifunctional user interface

- Workflow-driven, state-of-the-art identical users and client user interfaces to simplify tasks and processes
- Simplified and streamlined navigation with breadcrumbs and extended filter options
- Trend analytics for better tracking of abnormal system behavior and fast, profound decision making
- Report generation using standard templates for faster decisions; root cause analysis improves emergency procedure plans
- Scheduling for all BACnet schedule, calendar, and command objects with easy-to-use user interface for optimized energy costs
- Log Viewer application and Detailed Log for history data and long-term analysis of all historical system and user events

- Openness for easy integration of third-party products and systems
- Standardized web services interface for exchanging data between Desigo CC and external facility management systems, enterprise applications, mobile applications, or other value-added services
- Secure access protection allows for different user authorization levels (e.g. system operation, maintenance, etc.)
- Optimized IT security with encrypted client and server communication, software signing, firewall support, etc.

Building automation and CET

Within the context of operating an entire building, critical environments are only one of many issues. However, in terms of complexity of integration, energy consumption, and special automation requirements, they are a true challenge, calling for highly qualified solutions and high-performance equipment.

Critical environments place particular demands on building automation, especially in the areas of efficiency, safety and security, flexibility, and reliability. This chapter presents selected features and characteristics of the Siemens CET solutions for these four areas.

Building services

Efficiency: Optimizing efficiency in critical environment buildings

When it comes to the cost-effectiveness of critical environments, the primary focus after the initial investments is the optimization of operating costs. Here, energy consumption is the major issue. To keep it as low as possible, we rely on proven, qualified standard HVAC systems, which we upgrade with a range of supplementary components for these challenging tasks. Together with an intelligent control system and integrated into an overall system for building automation, we are able to maintain the required functionality of a critical spaces and rooms, optimize the comfort for the room users, and at the same time lower the energy consumption of the entire building.

- Reduce pressure loss across VAV dampers by applying optimized damper positions in the CET system triggered by actual demand. Instead of reducing a constantvolume flow individually for each room, the system uses a variable-volume flow with most dampers in 80 percent open position to take care of standard demand: Thus, the overall ventilation can be substantially reduced
- Variable channel pressure (pressure sensors and/or air flow sensors)
- Demand-controlled ventilation system provides minimum air change rate at all times.

- Operating cycles in accordance with room usage schedules (e.g. low demand during night hours)
- Time-saving, intuitive user interface thanks to visualization of laboratory devices (graphic libraries) and operating options in Desigo CC

Safety and security: Integration means improved safety and security for the building

Desigo CC integrates security and fire safety into a common platform. With combined functionality, extra benefits can be achieved. In this context, integration means using data and intelligence from other disciplines to improve safety and security, setting new standards of work safety.

- Desigo CC has direct access to switch on/off the ventilation system in case of an emergency, and react according to preset scenarios for fire, contamination (alarm function), and alarm
- Continued recording of operation data, whenever a set point is changed
- Continued reporting allows for long-term analysis, graphical data visualization and evaluation, as well as training purposes, e.g. for showing improvements
- Integration of specific laboratory extinguishing systems into the building automation platform, combining them with other systems in the building to multiple extinguishing systems
- Desigo CC also collects and provides data on the system state (e.g., on/off, or extinguishing agent filling)

79

For first installations and later changes Desigo offers optimum flexibility even for critical environments. With simplified planning and commissioning, our building automation system helps save time and costs.

Re Re

Reliability: Economical service and maintenance offerings

Even though a building automation system requires little to no maintenance, things are different for critical environments. They require high-performance ventilation systems and components in order to keep the failure probability low and to increase the reliability, we offer tailored services:

- Provision of spares with shortest notice, e.g. keeping spares available in the nearest service center
- Predictive maintenance: checking on relevant parameters to detect possible future faults in time for a planned outage, thus reducing maintenance time and avoiding extra costs
- Benchmarking of different systems to offer the best alternatives for retrofits or optimizations
- Remote maintenance of operating units, etc.

Building solutions

Building services

Building solutions and CET

 \sim

Total building solutions with Desigo CC – one platform for all requirements.

Operators of modern buildings often have to satisfy a wide range of demands for optimized work conditions, low energy consumption, highest fire safety, reliable security, etc. A Total Building Solution from Siemens reduces the complexity of satisfying these demands, since we know how to effectively coordinate the disciplines and thus make buildings safer, more comfortable, more economical, and more efficient. Our solution includes defining specific scenarios, testing suitable solution packages, and finally certifying them for use with Desigo CC, our integrated building management platform.

Desigo CC for simplified operation

- Open for global standards by design; improved performance and easy third-party integration
- Reduced complexity for the operation of all kinds of buildings; consistent workflows
- Operational by authorized users from any stationary control room or through web clients from anywhere, at any time
- One intuitive user interface for all disciplines fewer mistakes

Desigo CC for perfect working environments

- Fire safety and security in an integrated solution
- Perfect room climate, meeting both individual settings and overall control strategies
- Comprehensive monitoring and reporting for continuous optimization
- Control of undesirable events and simplified maintenance

Desigo CC – perfect control of operating costs

- Coordination of HVAC, shading, and lighting disciplines for lowest energy consumption
- More insight and improved performance through interdisciplinary analysis
- Future-proof investment with openness for new technologies and services
- Scalable to any project size, easy adaptation to the building lifecycles, secure investment

Desigo CC – integrated functionality

- Desigo PX Eco Monitoring, using the Green Leaf concept for real-time monitoring and reporting on energy consumption
- Native Support of fire safety subsystems EN and UL – with uniform information display and integration of legacy fire protection systems:
 - Sinteso FS20
 - Algorex CS1140 via NK823x gateway (new)
 - STT20 Centralisateur de Mise en Sécurité Incendie
 - Desigo fire safety FS20 UL
 - Xnet FireFinder XLS and MXL
- Support of Siveillance VMS video surveillance and Milestone Xprotect Expert/Corporate v7.0c/7.0d for live video, recording and replay, PTZ control and predefined PTZ positions, video device controls, and event-handling procedures (e.g. alarm verification)
- Support of SiPass integrated (SiPass 2.65 SP2) for access control, monitoring door, area, and device events (e.g. door locked, door forced, anti-passback)
- Intrusion detection by supporting SPC series (v 3.4.5 and v 3.6.5) and an intruder alarm system using infrared detectors, magnetic door contacts, and I/Os as well as video verification

83

Integrated functions of a Desigo CC-based Total Building Solution

When we talk about the advantages of integrating different disciplines, we specifically mean their interaction in order to achieve an improved state of the room or building. In this respect it is irrelevant whether we have to deal with an emergency such as fire or intrusion, or an everyday situation in the office. Here you can find typical scenarios and typical solutions with Desigo CC (along with results for different stakeholders):

Sample scenario: Fire

If a fire is detected, the alarm can be verified using a surveillance camera. If there is a verification, the alarm is activated, and the ventilation system stops the intake of fresh air. At the same time, power in the room is adjusted and evacuation lights are switched on. With

A

Desigo CC the manager receives an excellent safety image, while the operator can quickly react to emergencies and staff knows they are safe, while the IT manager has easy access to information from all network devices. Building automation

Building solutions

Sample scenario: Everyday

In an everyday work situation, Desigo will notice a person entering the room, and then activate power and light as well as temperature and climate control according to the individual settings to provide a productive and comfortable working environment. The fire check runs irrespective of whether the room is in use or not. Application examples

Building services

Sample scenario: Intrusion

In case of an intrusion, the surveillance camera will activate an alarm, and Desigo CC will activate the lights in the room to assist guards or official forces investigating. The fire check is active all the time. With Desigo CC, the management can be sure their investments are well protected,

合

and the building users know their working environment is safe. The building operator knows everything is under control. And the IT manager is happy to provide information from all networks to all parties involved in the incident.

Sample scenario

Desigo selects all data ... and turns data into concrete actions to save money.

Desigo CC – basic features and functions

System	Engineering	Alarms and events	Operations	Reports
 Client/server architecture Windows, web, mobile app Multiple screen approach Multilingualism UL- and ULC-certified EN-compliant BTL- and OPC-certified Virtual and redundant deployment 	 Online engineering Vector graphics Floor and plant graphic 2D and 3D symbols AutoCAD import Multilayer Native graphic editor Rich symbol libraries Drag & drop function Coverage areas BACnet auto discovery 	 Summary bar Event list Fast treatment Investigative treatment Assisted event treatment Event logging Remote event notification Related items Journaling and printing 	 Workflow-driven navigation Current status and commands Related items Graphical operations Historical and dynamic trend, time-shift comparison 	 Extensive report libraries Customizable reports Graphics, tables and trend plots PDF, CSV export Report scheduling
Scheduling Schedulers like MS Outlook Automatic associations to control objects Timeline view Time triggered commands 	Logging • Flexible deployment of historical database • Protected database • Log Viewer application with Detailed Log • Powerful filtering	 Macro and reactions Programmable execution of command sequences Cross-discipline interactions Time and event-based triggers Logic operators 	Openness • BACnet (B-AWS) • OPC client • OPC server • ONVIF • SNMP • Modbus • Web services	User management and IT security • Windows authentication • Application and object rights • User groups • User profiles • IT security SL1+ • IT certificates

With a total building solution based on Desigo CC, building managers and operators profit from numerous built-in advantages and functions,

from an intelligent system setup to excellent reporting, from workflowdriven operation to scheduling and logging for long-term reliability. Functio

Design

Room automation

Building automation

Building solutions

89

Total Building Solutions for CET

Your laboratory must meet high standards for safety and compliance. Today, energy efficiency is another benchmark that will define your success. To meet these challenges, you will need to manage consumption, reduce costs and document sustainability achievements at the same time. We can support our customers in many ways, combining advanced automation technology with extensive industry expertise. We offer unrivaled expertise in achieving critical environment and sustainability goals in a concise, four-step approach:

- Assessing your current operations to identify opportunities
- Implementing energy-saving automation technologies to gain control
- Managing facility operations data for higher efficiency
- Maintaining energy efficiencies and sustainability excellence

As a result, our customers profit from comprehensive solutions for their critical environments, including assessment, technology, information management, and services.

Our energy efficiency solutions are based on our marketleading expertise in designing technologies for critical environments. This includes a complete portfolio of laboratory controls and experience in integrating thirdparty controls into our solutions for university, healthcare, government, and industrial laboratories and other critical environments.

Desigo for biocontainment solutions

Desigo in order can be adapted to support customers in handling biohazards safely and efficiently with an integrated solution, taking care of economic as well as organizational and regulatory requirements:

- Compliance with applicable regulatory and accreditation requirements
- Improved staff productivity by integrating third-party systems and devices to develop a turnkey operation and to provide proper workplace ambience
- Secure environment to protect staff, product, and research integrity
- Minimized risk and liability in safe and healthy work conditions
- State-of-the-art environment conducive to recruiting and retaining staff
- Optimized solutions for meeting current biosafety guidelines, as well as our customers' long- and short-term goals, program objectives, and monitoring and reporting needs

Desigo and critical storage

For critical storage of vital products/materials used in the treatment of patients and the manufacture or research of drugs/therapeutics, we offer comprehensive Desigo solutions based on an approach covering the entire lifecycle. This begins with an assessment of your current situation and your future goals so we can develop a solution specific to your long-term needs. The final solution incorporates an engineered monitoring/control infrastructure and information management system that monitors, alarms, and reports on temperature in critical storage areas and helps you meet regulatory/accreditation requirements with the least amount of time and resources:

- Concise control of all room climate and air quality measurements
- Consistent monitoring of all critical storage parameters with reports for quality documentation
- Standardized solutions specialized for areas storing vital products or materials used in the treatment of patients, or the manufacture/research of drugs and pharmaceuticals

Lab security and efficiency

We have developed a Desigo solution set for laboratory facilities that takes a comprehensive approach to meeting the safety and security as well as efficiency challenges you face every day. From the initial assessment through ongoing support, we provide the systems, the services, and the resources to ensure that your facility is as compliant, efficient, cost-effective, secure, and safe as it can possibly be. Combining advanced automation technology with extensive industry expertise, the strength of our solution lies in the close integration of its technological and procedural-based elements.

- Better performance and higher energy efficiency by using data from all relevant disciplines and processes
- Improved laboratory performance through improved ambient conditions
- Automatic collection of critical data without manual input meter readings via email
- Optimum accessibility through local control, centralized control center, web client, or mobile applications
- Scalability to support business growth without standstills/interruptions
- Data security with our proprietary, secure servers
- A more thorough approach to lab service

Building services

 $\widehat{}$

Building services

Building services concepts for CET

Our intelligent service concepts for CET are as diverse as the application areas of these technologies. Their highly modular nature allows us to develop individual service offerings for each customer, which are essentially grouped in the areas of lifecycle services and managed services. Our intelligent service concepts have three main objectives:

- Protecting investments
- Increasing efficiency
- Managing risks and costs

To allow for best possible support, our service concepts combine local service and maintenance activities at the customer's premises with remote services, e.g. long-term monitoring of critical equipment, and data analysis. All of our services are available around the world whenever and wherever our customers need us.

Building services concepts for CET*

Dedicated services for best performance

With a special focus on strengthening CET operators' business continuity, we have designed specialized service modules for tailored support in the most important business areas of CET.

Operational assistance, diagnosis, and repair

- Minimal interruption
- Lower running costs
- High operating and system availability

Performance reporting and consulting

- Increased safety for people, systems, processes
- Energy efficiency and savings through system optimization
- Compliance with legal requirements

Intelligent service concepts

Event monitoring and response

- High business continuity
- Maximum protection through 24/7 monitoring
- High transparency

Maintaining an established state of control

With the relevant service modules in place, we can ensure your day-to-day operations are maintained to established standards on a 24/7 basis. Our Service Solutions will help you maintain the state of control needed to meet regulatory requirements, improve operational efficiencies, support a 24/7 operation, ensure immediate recovery, and lock in long-term system performance. Within our global organization, we have local service technicians who are highly experienced to provide quality service when and where you need it.

We offer a full complement of services, including Customer Support, Compliance Services, Facility Information Services, and a wide range of Technical Support Services to keep your systems up and running now and in the future.

The Green Labs solution^{*}

合

Preinstallation phase		
Assessment	Technical solutions (FIMs**)	
 Lab safety & compliance assessment Lab energy assessment & recommendations Report 	 Lab ventilation rate management Constant volume to VAV Demand control ventilation Fume hood sash management Equipment decommissioning 	
•	•	
Postinstallation phase		
Measurement and Verification (M&V)	Services	
 Navigator & lab dashboards Real-time monitoring Data trending & archiving Reporting Alarm information & remote notification 	 Navigator analytics Continuous commissioning Room pressurization services Chemical fume hood testing Calibration services Validation services 	
* Services may differ depending on local expertise		

BPS value proposition

Functions

Published by Siemens Switzerland Ltd

Smart Infrastructure Global Headquarters Theilerstrasse 1a 6300 Zug Switzerland Tel +41 58 724 24 24

For the U.S. published by Siemens Industry Inc.

800 North Point Parkway Suite 450 Alpharetta, GA 30005 United States Smart Infrastructure intelligently connects energy systems, buildings and industries, enhancing the way we live and work to significantly improve efficiency and sustainability.

We work together with customers and partners to create an ecosystem that both intuitively responds to the needs of people and helps customers achieve their business goals.

It helps our customers to thrive, communities to progress and supports sustainable development to protect our planet for the next generation.

Creating environments that care. siemens.com/life-science

Status 05/2021

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

© Siemens 2021

