

Lab Session: Data Analytics/ Al

siemens.pt/digitalizacao

Artificial Intelligence & Deep Learning: Unlock the Potential with Al

 $\Gamma^{2}\dot{V} = X_{\omega}\dot{Y}_{\omega} - Y_{\omega}\dot{X}_{\omega} = \sqrt{\mu}P \qquad \dot{S}^{2} = \dot{X}_{\omega}$ $\dot{\Gamma}\Gamma = X_{\omega}\dot{X}_{\omega} + Y_{\omega}\dot{Y}_{\omega} = eY_{\omega}\sqrt{\mu}P = \sqrt{\mu}a/\Gamma\sqrt{a}E$

Car

 $M = \sqrt{\frac{\mu}{a}} = \frac{h}{k}$

É = Vi/rva

Dr. Ulli Waltinger, Siemens Corporate Technology Head of Research Group Machine Intelligence **Co-Head of the Siemens AI Lab**

Restricted © Siemens AG 2018

siemens.com/innovation

 $r\dot{y}_{\mu} = (\chi_{\omega} + er) \sqrt{\mu/P}$

 $\dot{y} = (\cos v + e) \sqrt{\mu/p}$

 $r's = \int \mu \alpha (1 - e^2 \cos^2 E)$

A Jw- axis

1+6 CO2A

=an-e sint

 $b = a(1 - e^{x})^{V_{2}} \qquad X_{\omega} = r \cos v = A(\omega E - e)$

 $C = ae = CF = CF_{2} j Y_{\omega} = r \sin v$ $\mu = m_{1} + m_{2} \qquad \qquad = a \overline{\mu - e} \sin v$ $n = \frac{2\pi}{P} = K \overline{\mu} a^{3/2} \qquad T = K(t - t_{0})$ $\vec{x} = \frac{dx}{dx} = -\frac{\mu x}{dx}$

 $\dot{S}^{2} = \dot{X}_{\omega}^{2} + \dot{Y}_{\omega}^{2} = \dot{r}^{2} + r^{2}\dot{v}^{2} = M(1 + 2e\cos v + e^{2})/P$

 $S^2 = \mathcal{M}\left(\frac{z}{r} - \frac{1}{a}\right)$

m, s2= p'2+r2-2p'r co27

 $\oint + \frac{1}{2} \omega^2 (\chi_c^2 + \gamma_c^2) + 2 \omega (\chi_c \dot{\gamma}_c - \gamma_c \dot{\chi}_c)$

= X + COL O. - Y sin O.

= X, sin B. + Y, cos B.

= Xx cos D. + Yx sin D.

 $V^{2} = \left(\frac{ds}{dr}\right)^{2} = K^{2} s^{2} = K \mu \left(\frac{2}{r} - \frac{1}{a}\right)$

Digitalization is disrupting entire customer value chains

Data analytics

Artificial Intelligence

Simulation tools

Cloud & platform technology

Secure connectivity

Cyber-Security

Enabling the next level of ...

productivity	flexibility	availability	
and time-to-market	and resilience	and efficiency	
Design and	Automation	Maintenance	
engineering	and operation	and services	

The passion...

Artificial Intelligence as the enabling technology of Digitalization is driven by entrepreneurial passion for technology...

PERSON 99.3%

Al & World

ROCK 82.8%

CREST 83.0%

OUTDOORS 83.1%

and the second

Female 0 100% Eyes are open 100% Happy 82.8% Smiling 75.8%

. Al & Siemens

Artificial Intelligence & Deep Learning Research Communities & Disciplines

Much of the progress of Artificial Intelligence over the past years is based on significant advances in Machine & Deep Learning

Artificial Intelligence

Making machines capable of performing intelligent tasks like human beings

Machine Learning

A set of algorithms used by intelligent systems to learn from experience.

Deep Learning

Building systems that use Deep Neural Network on a large set of data making nonlinear transformations

Page 8

The challenge...

Capturing all complexity and the unknown unknows in Industrial Artificial Intelligence applications

Research Trends and Challenges in AI & Deep Learning Capturing all complexity and the unknown unknows in AI research

AI & Data Scarcity

Deal with insufficient / unlabeled data?

Directions:

- Transfer learning
- Learn from rich simulations
- Learn generative models

AI & Companion

How to augment and who supports whom?

Directions:

- Models of people & tasks
- Model of complementarily
- Coordination of initiative

AI & Society

Provide explain- and responsibility?

Directions:

- Trust and safety
- Fairness and transparency
- Ethical / legal autonomy
- Jobs and economy

SIEMENS

Ingenuity for life

AI & Open World

Reliable predictions of unknown unknowns?

Directions:

- Expanded real-world testing
- Algorithmic portfolios
- Failsafe designs
- People + machines

Eric Horvitz: AI, People, and the Open World, ACM 2017 Lakkaraju et al: Identifying Unknown Unknowns in the Open World: Representations and Policies for Guided Exploration, AAAI 2017

Ulli Waltinger

Siemens has 20+ years of experience in Industrial Data Analytics and Artificial Intelligence research & applications

Siemens factory in Amberg

Root Cause Analysis & Failure Prediction

CERN Large Hadron Collider

Predictive Maintenance

> 20 high-speed trains at Renfe Spain

> 20 years online learning neural networks

Deployed in > 30 steel plants Unrestricted © Siemens 2018

Condition Monitoring & Wear Prediction

Power plants

Smart Grid, Seestadt Aspern, Vienna

Fusion of simulation with (deep) machine learning: New and more precise insights at reduced costs

Physical world

Industrial installed base – connected assets

Virtual world

Digital offerings (digital services and industrial applications)

01010010100101100101010101010101010101	CAx nanagement Analytics
Fleet management	software Smart grids Digital Factory
Image-guided 01101010010100101010010101010101010101	therapy Meter Data Management in the cloud PLM Embedded software Efficient buildings
010100101001011001010101 Decision supp 01011001010101010101010	ort Neural networks

The fundament...

Artificial Intelligence & Deep Learning Applied Research at Siemens

Fault Localization and Classification of Contingencies from Power Network for Online Decision Support in Power Grids

D. Krompass, V. Tresp: Method and apparatus for automatic recognizing similarities between perturbations in a network, IP 2017 **D. Krompaß**, M. Nickel, X. Jiang, V. Tresp. Non-Negative Tensor Factorization with RESCAL. ECML/PKDD 2013

Challenges:

 Recognize simulated contingencies (SIGUARD DSA) in data streams recorded by Phase Measurement Units (PMUs) placed on the lines in a power network.

Benefit:

- Recognizing disturbed simulated contingencies from a real power network (Thailand).
- Robust against noise, load change, single PMU failure, fuzzy anomaly detection. (Only neural approach)
- Robust against small topology changes.

Thailand Power Network

In-Field and Embedded Analytics – Deep Learning Models can be deployed and executed directly on Field Devices

J. Garrido, Light-weight Embedded Analytics Framework (LEAF), (IP, 2017)

Challenge:

- Faster Response. Work directly on local streams of sensor data. Low latency required for prescriptive analytics, e.g. actuator control.
- Limited Resources. Impossible or inefficient to send and store all device data on data centers.

Benefit:

- Fully parameterized building blocks.
- Execution of arbitrary topologies.
- Easy development of new operations.
- Efficient C++ implementation based on Eigen linear algebra library

Embedded Computer / Gateway

Field Deployment Classes

Deep Learning for Powder Bed Defect Classification for Additive Manufacturing

F. Buggenthin, C. Otte, M. Joblin, A. Reitinger et al, Machine intelligence #2 – Additive manufacturing, 2018

Challenges:

- Can we design a machine learning system that learns what is important in a powderbed image?
- Can this system differentiate between the defined error classes

Approach:

- Normalize image: Subtract median image of perfect powderbed samples
- Correct optical distortions: Mask regions that should not be taken into account by classifier
- Compute features: Augmentation
- Train ML Model (with Attention)

SIEMENS

Ingenuity for life

Unrestricted © Siemens 2018 Page 16

Artificial Intelligence & Deep Learning From Applied Research to Customer Value from Siemens

Siemens Digital Services – Combining technology with domain and context know-how for customer value

Smart data to business example: Optimization of gas turbine operation

Reduced NOx

Emissions

Extension of

service intervals

Results

Energy system	Gas turbines	Analytics
 Market drivers 	 Mechanical Engineering 	 Neural Networks
 Customer needs 	Thermodynamics	 Smart Data Architecture
 Product cycles 	Combustion chemistry	processes data from
	Sensor properties	2000 sensors per sec.

Productive Gas turbine optimization

Reducing NOx emissions of gas turbines with **artificial intelligence**

Machine learning algorithm automatically optimizes the control parameters **better than human experts**

Benefit: 15 – 20% more NOx reduction

EasyDetect – Identifying parts in 10 seconds, ordering in three minutes, delivering in 24 hours

- Parts are identified in 10 seconds, ordered in three minutes, delivered in 24 hours
 - Automated identification of parts via smartphone or tablet by state-of-the-art and new innovative technologies (e.g. 3D image analysis with CAD data) as part of the holistic service parts delivery

Material number: 2365789056 0

Machine learning and distributed analytics – Intelligent grid controllers

Challenge

- Reliably classifying and locating faults in power grids
- Conventional methods at ~80% reliability

Solution

- Machine learning applied to ~70,000 fault events
- Resulting optimized algorithms embedded in SIPROTEC[™] protection relays
- Real time streaming and interpretation of grid data

Outcome/benefit

- Considerably improved reliability of locating faults
- Faster recovery times, reduced maintenance cost
- Enabling large-scale integration of solar and wind
- Up to 10% operation costs

From autonomous optimization of gas turbines, improved monitoring of smart grids or predictive maintenance of industrial facilities - artificial intelligence harbors great potential

Digitalization & AI has had huge impact on products, value creation SIEMENS processes and business models

Digitally enhanced products

NOx emission reduction of gas turbines based on machine learning

Value chain

Machine learning & analytics for intelligent grid controllers

New business models

Availability guarantee for train service

Balancing out technology, data and use cases speed up Al innovations and lead us to the real business value

Bold. Committed. Open-minded.

Thank you!

Siemens Corporate Technology – Contact and further information

Ulli Waltinger

Head of Research Group Machine Intelligence Founder & (Co-) Head of the Siemens AI Lab

Siemens AG Corporate Technology Machine Intelligence Otto-Hahn-Ring 6 81739 München, Deutschland Mobil: +49 162 283 5720

LIS Airport Service 4.0

The machine

The Journey

1	Solving critical O&M problem
2	State of the art technology
3	Leverage unparalleled O&M knowledge to generate value added services

LIS Airport Service 4.0 Solving critical O&M problems

LIS Maintenance Analytics

Type Desc Corretiva Inspeção Reparação Causa Ext..

SIEMENS Ingenuity for life

LIS Airport Service 4.0 State of the art technology

This is MindSphere

Real Time IoT Data Analysis

MindSphere IoT Platform

LIS Airport Service 4.0 Value added services

Reliability Based Maintenance

Unrestricted © Siemens 2018

SIEMENS

Machine Condition Based Monitoring

SIEMENS enuity for life

"I have no special talents. I am only passionately curious"

A. Einstein

Contact

Karina Ospina Computer Science Engineer Siemens Postal, Parcel & Airport Logistics

Edifício Restelo XXI Av. Ilha da Madeira, 35, 4º Piso 1400-023 Lisboa

E-mail: karina.ospina@siemens.com

Page 42

Data Analytics rides e-Bike Sharing

Siemens.pt/digitalizacao

1

San and

SIEMENS

Ingenuity for life

Something new in Lisbon

Tel Co

+ Ella

Gira Bike Sharing | Key Stats

Data Overview

Operide™ – Improving eBike fleet performance with AI-driven **Operator Support System**

Customer challenge

- Establish new viable transportation mode
- System becomes imbalanced across the network
- Operator needs to manage complex network

Our solution in Lisbon

- Predict status of bikes & stations
- Provide guidance to operator on actions to balance the network
- **Optimize** operation

Transparency for

Understand Prediction of utilization of stations and bikes & integration of additional data sources

Act Recommendation to optimize performance of system

Operide[™] guides the operator to the most critical stations & provides recommendations for balancing the network

Overview

Sorted list of stations

🕗 Мар

 Color-code draws attention to highpriority / problematic stations

3 Station details

Selecting a station shows detailed information (e.g. docks available & in repair)

Predictions

Predictions of the station status for next 20, 40 and 60 provided to guide which stations are the most critical

6 Recommendations

- Guidance on what actions to take to improve station status
- Rebalancing itineraries provided on the map

Operide™ – From Predictions to Optimal Rebalancing

Predictive model driving optimal rebalancing in space & in time

Our recommendations ensure that bikes and docks are always available. Sometimes, we predict a recovery and in this case no action is required

How to go faster?

Make strong synergies with both the city and with core activities of ITS

Unrestricted © Siemens 2018

Page 50

Set the infrastructures standards to higher levels

Get in depth information to develop innovative Big Data solutions and rely on Data Analytics to develop new products

Afonso Pais de Sousa

How to go faster?

Know-how

Experienced partner

An innovative service

Contact

Afonso Pais de Sousa Head of Engineering Intelligent Traffic Systems

Rua Irmãos Siemens, 1 2720-093 Amadora

Mobile: +351 917 000 057

E-mail: afonso.sousa@siemens.com

LinkedIn: linkedin.com/in/afonsopaisdesousa/

siemens.pt

Thank You

