

S7-1500T Motion Control

mit SINAMICS S210

Advanced Motion Control Workshop

Übungen

Inhalt:

Übersicht der Geräte / Topologie / IP-Adressen / PN-Namen

Übung Modul 1:	Positionieren (relativ/absolut)
----------------	---------------------------------

- Übung Modul 2: Gleichlauffunktionen
- Übung Modul 3: Kurvenscheibengleichlauf
- Übung Modul 4: Bewegungsführung einer Kinematik
- Übung Modul 5: Pick & Place Anwendung mit Bibliothek LKinCtrl

Übung

Übersicht der Geräte – Demokoffer mit CPU1505SP TF

PC-System_1 CPU 1515SP PC	IP: 192.168.0.10 Subnet 255.255.255.0 PN-Name: "mainplc.profinet onboard_1"
ioDevice IM 155-6 PN HF mainple	IP: 192.168.0.30 Subnet 255.255.255.0 PN-Name: "iodevice"
S210Slave	
S210 PN	IP: 192.168.0.140 Subnet 255.255.255.0 PN-Name: "s210slave"
X150:P1 X150:P2	
S210 Master S210 PN	IP: 192.168.0.120 Subnet 255.255.255.0 PN-Name: "s210master"
X150:P1 X150:P2	

Passwort Sicherheitsprogramm der SPS:siemens01Passwort Safety-Konfiguration SINAMICS:siemens01

Übersicht der Übungen

Zu jeder Übung existieren jeweils zwei TIA-Portal Archivdateien. Die Archivdatei mit der Endung "start" beinhalt alle notwendigen Projektierungs- und Programmteile, um mit der jeweiligen Übung zu beginnen. Die Variante mit der Endung "finished" beinhaltet die fertig projektierten und programmierten Übungen.

Die Übungen wurden für zwei verschiedene Demokoffertypen erstellt:

Demokoffer mit CPU1505SP TF (Softwarecontroller) → Name der Übungen "MCWS2020_1515SP…"

Demokoffer mit CPU1515TF → Name der Übungen "MCWS2020_1515TF…"

Übung Modul 1 - Positionieren (relativ/absolut)

In dieser Übung wird ein Schlitten über die PLCOpen-Bausteine "MC_MoveRelative" und "MC_MoveAbsolute" auf verschiedene Positionen bewegt.

Übung Modul 2 – Gleichlauffunktionen

In dieser Übung werden auf einem Transportband bewegte Produkte mit einem QR-Laser gekennzeichnet. Hierfür muss der QR-Laser auf das bewegte Produkt mit dem PLCOpen-Baustein "MC_GearInPos" aufsynchronisiert und anschließend wieder in Warteposition positioniert werden.

Übung Modul 3 – Kurvenscheibengleichlauf

In diesem Modul wird einer Presse über eine Zangeneinrichtung Material zugeführt. Hierfür wird die Zangenbewegung über eine Kurvenscheibe realisiert. Die Bausteine "MC_InterpolateCam" und "MC_CamIn" werden in diesem Beispiel verwendet.

Übung Modul 4 - Bewegungsführung einer Kinematik

Seite 4

In dem ersten Modul zu den Kinematiken werden die Standard-Bewegungsbausteine wie "MC_MoveLinearAbsolute" und "MC_MoveCircularAbsolute" verwendet, um eine 3D-Form mit dem TCP eines Delta-Pickers abzufahren.

Übung Modul 5 – Pfadbewegung einer Kinematik mit der Bibliothek "LKinCtrl"

In dem zweiten Modul zu den Kinematiken kommt die TIA-Portal Bibliothek "LKinCtrl" zum Einsatz. Mithilfe dieser Bibliothek wird die Ansteuerung der Kinematik und die Bewegungsausführung für "Pick & Place"-Bewegungen durchgeführt.

© Siemens AG, 2020

SIEMENS Ingenuity for life
sitionieren 🛛 🕷 🕷
Hikation: Relatives / Absolutes Positionieren Absolut S00mm 1.000mm 1.000mm 1.000mm 250 mm/s v2 = 100 mm/s
PP Te v1

- 1. De-archivieren Sie das TIA Portal Archiv "MCWS2020_xxxxx_PositionierenStart.zap16"
- 2. Passen Sie die Konfiguration von Technologieobjekt "Master" an:

Positionsgrenzen -> Softwareendschalter ->

Position negativer SW-Endschalter bei -2.0mm

Position positiver SW-Endschalter bei +1002.0mm

SW-Endschalter aktivierer	n		
Position negativer SW-Endschalter:		Position positiver SW-E	ndschalter:
-2.0	mm	1002.0	mm

- 3. Öffnen Sie den Funktionsbaustein "ÜbungPositionieren" und machen Sie sich mit bestehenden Netzwerken und PLCopen Motion Control Bausteinen vertraut.
 - MC_Power um den Antrieb ein- und auszuschalten
 - MC_Reset zum Quittieren von Alarmen
 - MC_Home um Achse zu referenzieren
 - MC_Halt um die Achse anzuhalten
 - Programmieren der weiteren Bewegungsbefehle

- Netzwerk 5: MC_MoveAbsolute um auf absolute Position von 500,0mm mit einer maximalen Geschwindigkeit von 250mm/s zu fahren
- Netzwerk 6: MC_MoveRelative1 um den Schlitten um 100,0mm von der aktuellen Position nach links mit einer Geschwindigkeit von 100,0mm/s zu positionieren.
- Netzwerk 7: MC_MoveRelative2 um den Schlitten um 100,0mm von der aktuellen Position nach rechts mit einer Geschwindigkeit von 100,0mm/s zu positionieren.

Die Steuerbefehle für die einzelnen Fahrbewegungen finden Sie in dem Datenbaustein "DBHMI":

	DB	HN	1				
	Name					Datentyp	5
1		-	St	atio			
2	-00		٠	M	aster	Struct	
З		1	۰	•	Command	*typeAxisBasicCo	om*
4	-00			•	ActValue	*typeAxisBasicSt	atus
5	-00	5		•	Aux	Struct	
6		1			StartRelNeg	Bool	
7	-00				StartRelPos	Bool	
8	-				StartAbs500	Bool	. 1
EN I		3	14		A 1.17A	A 10	

"StartRelNeg" für das Starten der relativen Pos. um 100.0mm in die negative Richtung "StartRelPos" für das Starten der relativen Pos. um 100.0mm in die positive Richtung "StartAbs500" für das Starten der absoluten Positionierung auf 500.0mm

- 5. Speichern Sie das Projekt.
- 6. Übertragen Sie alle Programmbausteine und starten die Steuerung

Werkzeuge

7. Starte Sie die HMI Simulation 🚈 🖥 🕮 🕮 🖉 Online verbinden und testen Sie die Funktionen

Hilfe

Fenster

- 8. Probieren Sie das Verhalten der Softwarenendschalter aus.
- 9. Beobachten Sie die Statuswerte Diagnosefenster des Technologieobjekts

10. Optional: Öffnen Sie die Diagnose- und Statusseiten der Technologieobjekte im Webserver der CPU.

Hierfür muss der Webserver der CPU erst aktiviert werden:

• CPU -> Gerätekonfiguration -> Eigenschaften -> Webserver:

 Vergeben Sie unter "Benutzerverwaltung" die Benutzer "Jeder" die Zugriffrechte auf Diagnoseseiten

- o Speichern/Übersetzen Sie die Hardwarekonfiguration
- o Übertragen Sie Hardwarekonfiguration in die Steuerung
- 11. Öffnen Sie einen Webbrowser und rufen die IP-Adresse 192.168.0.10 der Steuerung auf.
- 12. Navigieren zu den Diagnoseseiten der Motion Control Technologieobjekte

Falls noch etwas Zeit übrig ist... auf der nächsten Seite finden Sie eine Zusatzübung →

Zusatz Übung Positionieren (optional)

Verwendung der Hardware-Endschalter im Technologieobjekt "Master"

Für die Simulation der Endschalter werden die obersten Kippschalter am Demokoffer verwendet.

Oben/Links: Endschalter negative Richtung Oben/Rechts: Endschalter positive Richtung

- Aktivieren Sie die HW-Endschalter (1) im Technologieobjekt unter -> Eigenschaften -> Begrenzungen -> Positionsgrenzen
- Verschalten Sie die Eingänge "E_EndschNeg" für die negative Richtung und "E_EndschPos" für die positive Richtung. Beide Signale liefern in Ruhestellung ein FALSE-Signal "Oberer Pegel" (2).

HW-Endschalter aktivieren 1			
rden die Hardware-Endschalter überfahren, so	wird der Antrieb		
ort über die im Antrieb konfigurierte Schnellha	lterampe abgebrem	iL.	
ort über die im Antrieb konfigurierte Schnellha Eingang negativer HW-Endschalter:	lterampe abgebrem	t. Eingang positiver HW-End	schalter:
ort über die im Antrieb konfigurierte Schnellha Eingang negativer HW-Endschalter: E_EndschNeg	Iterampe abgebrem	Eingang positiver HW-End	schalter:
ort über die im Antrieb konfigurierte Schnellha Eingang negativer HW-Endschalter: E_EndschNeg Pegelauswahl negativer HW-Endschalte	Iterampe abgebrem	Eingang positiver HW-End E_EndschPos Pegelauswahl positiver H	schalter: WEndschalter:

Testen der Funktion:

- Schalten Sie beide Kippschalter für die Endschalter aus (Ruhestellung)
- Quittieren und schalten Sie Achse "Master" ein
- Führen Sie eine Fahrbewegung aus und schalten den der Fahrtrichtung entsprechenden Schalter ein (Endschalter betätigt)
- Die Achse wird mit Fehler stillgesetzt
- Überprüfen Sie die Diagnosemeldung

Hinweis:

Falls beide HW-Endschalter gleichzeitig aktiv sind oder bei einer Bewegung der entgegengesetzte Endschalter ausgelöst wird ist keine Bewegung dieser Achse mehr möglich. Dieser Zustand wird als Fehlerzustand gewertet und lässt sich nicht über den "normalen" Quittierbefehl beheben.

Um die Achse wieder zu aktivieren muss ein "Restart" des Technologieobjektes durchgeführt werden. Hierfür wird der "MC_Reset"-Baustein mit dem Parameter "Restart = true" ausgeführt. In der Übung kann dies über den Button "Restart TO" angestoßen werden.

Absoluter Gleichlauf Programmierung

SIEMENS

Ingenuity for life

Folgende Funktionen sollen realisiert werden:	Applikation: QR-Druck auf bewegten Pro	dukt
 Leitwertverschaltung an der Folgeachse (QR-Laser) Vervollständigung des Anwenderprogramms Testen des Programms 	Produkt 100mm/s	
QR-Laser Orr Orr Orr Orr Orr Orr Orr Orr Orr O	Technische Daten: v1 = 100 mm/s	erial OR Lacer 100 m

- De-archivieren Sie das TIA Portal Archiv "MCWS2020_xxxxx_GleichlaufStart.zap16"
- Damit "AxisQRLaser" sich auf "AxisMaterial" aufsynchronisieren kann muss diese Achse als möglicher Master für "AxisQRLaser" verschalten werden:

Konfiguration "AxisQRLaser": Leitwert von "AxisMaterial" als Sollwertkopplung verschalten

1			
Leitwe	riverschaltungen	·	
Ver	schaltungsübersicht		
	and the second	1	a set and the set of the set
	Mogliche Leitwerte	Leitwertquelle	Art der Kopplung
14	AxisMaterial	-	Sollwert
	<hinzufügen></hinzufügen>		Sollwert
	Leitwe	Leitwertverschaltungen Verschaltungsübersicht Mögliche Leitwerte AxisMaterial <hinzufügen></hinzufügen>	Leitwertverschaltungen Verschaltungsübersicht Mögliche Leitwerte Leitwertquelle AxisMaterial – <hinzufügen></hinzufügen>

In dem Funktionsbaustein "ÜbungGleichlauf" sind folgende MC-Anweisungen bereits fertig projektiert.

- MC_Power um das Materialband und den QR-Laser ein- und auszuschalten
- MC_Reset um Alarme des Materialbands und des QR-Lasers zu quittieren
- MC_Home um die Position des QR-Lasers auf 0.0 zu setzen
- MC_MoveVelocity um das Materialband mit 100.0 mm/s zu fahren und zu stoppen

Erweitern Sie das Anwenderprogramm in dem Funktionsbaustein "ÜbungGleichlauf" bei den Netzwerken 5 bis 7 um folgende Anweisungen:

 Mit dem Startbefehl "DBHMI.QRLaser.Autostart" oder nach Rückfahrt auf die Warteposition (#statMoveAbsDoneFA) wird ein neues Produkt 200.0mm vor der Warteposition des QR-Lasers auf dem Band erkannt.

 Der Befehl f
ür das Aufsynchronisieren mit MC_GEARINPOS erfolgt mit der R
ückmeldung "tmpHomeDoneLA"

Beide Achsen sollen 100 mm hinter der Warteposition des QR-Lasers synchron und damit für den Trennvorgang bereit sein:

- ➔ MasterSyncPosition := 100
- ➔ SlaveSyncPosition := 100

Es gibt verschiedene Möglichkeiten eine Folgeachse auf eine Leitachse aufzusynchronisieren.

Für ein **symmetrisches Aufsynchronisieren** gilt das der zurückgelegte Weg des Masters während der Synchronisation doppelt so lange ist wie der des Slaves:

➔ MasterStartDistance = 200.0

Um ein **aufholendes Aufsynchronisieren** zu erreichen können beide Synchronisierwege gleich lang gewählt werden. Dadurch das der QR-Laser erst beschleunigt wird sobald das Produkt an seiner Warteposition vorbeikommt muss dieser den Weg des Produktes aufholen.

Für ein **zurücklaufendes Aufsynchronisieren** zu erreichen kann die Synchronisationsposition gleich der Warteposition des QR-Lasers gesetzt werden.

- → MasterStartDistance = 100.0
- → SyncPos = 0.0

 Sobald die Achsen synchron sind wird der Beschriftungsvorgang über eine Zeitverzögerung von 1,5s simuliert. Anschließend soll der QRLaser zurück in die Warteposition bewegt werden.

- Übertragen Sie das vollständige Programm in die Steuerung und starten diese
- Testen Sie das Programm auf die gewünschte Funktion. Anschießend können Sie die Parameter an dem Baustein "MC_GearInPos" verändern, sodass die verschiedenen Arten zum Aufsynchronisieren erreicht werden.

TO Kurvenscheibe & Kurvengleichlauf

Konfiguration und Programmierung

SIEMENS

Ingenuity for life

Folgende Funktionen sollen realisiert werden:	Applikation: Pressenapplikation mit Zang	envorschub
 Kurvenscheibe anlegen und konfigurieren Vervollständigung des Anwenderprogramms Testen des Programms Hotion: Castrol Workshop 2020 H		
	Technische Daten: v1 = 360 ¹ /s	

In dieser Übung soll die Folgeachse ("Feeder") einer Kurvenscheibe folgen. Dabei dient die Sollposition des Schwungrades als Leitwert.

- 1. De-archivieren Sie das TIA Portal Archiv "MCWS2020_xxxxx_KurvenscheibeStart.zap16"
- 2. Passen Sie die Konfiguration der Achse "AxisPress" wie folgt an.
 - Grundparameter: Achse von Linear auf Rotatorisch umstellen
 - Modulo aktivieren
 - Modulo Startwert: 0.0°
 - Modulo Länge: 360.0°
- 3. Erstellen Sie ein Technologieobjekt TO_Cam

Konfigurieren Sie des Technologieobjekts wie folgt:

• Folgewertbereich der Kurvenscheibe von -10 bis 50

Darstellungsbereich des Leitwerts		
Anfang:	0.000000	
Ende:	360.000000	
Darstellungsbereich des Folgewerts		
Darstellungsbereich des Folgewerts Minimum:	-10.000000	

- Verlauf der Kurvenscheibe definieren
 - Gerade von X:0|Y:0 nach X:5|Y:0
 - Gerade von X:135|Y:40 nach X:225|Y:40

Gerade von X:270|Y:0 nach X:360|Y:0

Hinweis: Die grünen Linien werden von dem Anwender durch die drei Geraden vorgegeben, die violetten Übergänge werden nach dem gewählten Interpolationstyp entsprechend vom System erstellt.

- Transitionen auf VDIOptimization umstellen: Element -> Charakteristik
 - Markieren Sie den Übergangsbereich zwischen zwei definierten Geraden
 - Wechsel Sie bei der Eigenschaftenansicht auf Element -> Charakteristik
 - Wählen Sie als Optimierungsmethode: VDI-basierte Optimierung

• Effektive Runtime-Kurven:

Leitachse = AxisPress

Für die Überprüfung von Dynamikgrenzen (Geschwindigkeit, Beschleunigung, etc.) werden die Dynamikwerte der betroffenen Achsen benötigt. Diese können manuell eingegeben werden oder aus den Achseinstellungen kopiert werden.

Folgeachse = AxisFeeder

Einstellungen der Leit- und Folgeachse von Achse kopieren:

Allgemein		
Grafische Ansicht	Effective Puptiers Kusters	
Profil		
Allgemein	Einstellungen der Leitachse	
Optimierungsvoreinstellungen		
Systeminterpolation		Von Achse kopieren
Effektive Runtime-Kurven	Skalierungsfaktor:	1
Statistik	Einheit:	•
	Einheit der ersten Ableitung:	۹′5 ◄
	Geschwindigkeit:	18000
	Einstellungen der Folgeachse	
	•	Von Achse kopieren
	Skalierungsfaktor:	1
	Einheit:	mm
	Einheit der ersten Ableitung:	mm/s 💌
	Maximale Geschwindigkeit:	500
	Maximale Beschleunigung:	10000

In dem Funktionsbaustein "ÜbungKurvenscheibe" sind folgende MC-Anweisungen bereits fertig projektiert.

- MC_Power um die Achsen "AxisFeeder" und "AxisPress" ein- und auszuschalten
- MC_Reset um die Achsen "AxisFeeder" und "AxisPress" zu quittieren
- MC_Home um die Achsen "AxisFeeder" und "AxisPress" zu referenzieren
- MC_Halt um die Achsen "AxisFeeder" und "AxisPress" anzuhalten
- MC_MoveAbsolute um die Achse "AxisPress" in die Startposition (Stempel oben) zu bewegen
- MC_MoveVelocity um die Achse "AxisPress" auf die Sollgeschwindigkeit zu beschleunigen
- MC_MoveAbsolute um die Achse "AxisFeeder" auf die Ausgangsposition (Material holen) zu bewegen.

- 1. Vervollständigen Sie den Funktionsbaustein um die Netzwerke 8 und 9 mit folgenden Funktionen:
 - Die Kurvenscheibe muss vor der Verwendung mit dem Baustein "MC_INTERPOLATECAM" von der CPU interpoliert werden. Gestartet wird der Vorgang mit dem Signal "DBHMI.Vorschub.Start".

- Nachdem die Kurvenscheibe einmalig interpoliert wurde (MC_InterpolateCam.Done), wird MC_CamIn gestartet und so der Feeder über die Kurvenscheibe an die Presse gekoppelt.
 - Der Parameter "**SyncProfileReference**" wird auf "**0**" gesetzt, damit der Baustein den Weg zum Aufsynchronisieren eigenständig über die Dynamikwerte der Achse berechnet.
 - Der Parameter "**ApplicationMode**" wird auf "**1**" gesetzt, damit die Kurvenscheiben kontinuierlich durchläuft und nicht nach einem Vorgang beendet wird.

Die Eingangsparameter Master, Slave und Cam werden mit den entsprechenden Achsen belegt.

Der Kurvenscheibengleichlauf wird gestartet sobald die Interpolation der Kurve abgeschlossen ist:

→ Execute := Ausgangsbit "Done" von MC_InterpolateCam

- 2. Speichern Sie das Projekt und übertragen Sie das vollständige Programm in die Steuerung
- 3. Starte Sie die HMI Simulation
- 4. Optional Trace aufzeichnen

Parametrieren Sie ein Trace in der S7-1515T und belegen dieses mit folgenden Werten

- a. <TO>.ActualPosition für Vorschub und Presse
- b. <TO>.ActualVelocity für Vorschub und Presse
- c. MC_InterpolateCam.Done
- d. MC_CamIn.StartSync und .InSync

Aufzeichnungspunkt ist der Baustein "MC-Servo", definieren Sie eine geeignete Triggervariable (z.B. "DBHMI.Vorschub.Start" und definieren einen Pretrigger von 50 Messpunkten

5. Laden Sie das Trace in die CPU und starten Sie die Aufzeichnung

TO Kinematik

Konfiguration und Programmierung

SIEMENS

Übung Kinematik

Folgende Funktionen sollen realisiert werden:

- Konfiguration der Kinematik
 - Achsverschaltung
 - Geometrie
- Vervollständigung des Verfahrprogramms

1. De-archivieren Sie das TIA Portal Archiv "MCWS2020_xxxxx_KinematikStart.zap16"

2. Verschalten Sie die Kinematikachsen für TO Kinematics "Delta"

Wechsel Sie zu der Ansicht "Konfiguration" -> "Verschaltungen" und verschalten die einzelnen Positionierachsen "TO_Ax" auf die entsprechenden Kinematikachsen.

3. Geben Sie in der Ansicht "Geometrie" folgende Werte für die Transformationsparameter ein:

٠	Länge L1:	105.0mm

• Länge L2: 235	.0mm
-----------------	------

- Flanschlänge LF: 10.0mm
- Abstand D1: 35.0mm
- Abstand D2: 18.0mm
- Winkel A1 zu A2: 120.0°
- Winkel A2 zu A3: 120.0°
- 4. Passen Sie in der Ansicht Kinematikkoordinaten die Werte wie folgt an:
 - Position X: 0.0mm Y: 0.0mm Z=339.4mm
 - Drehung A: 0° B: 0° C: 0°
- 5. Machen Sie sich mit dem bereits programmierten Teil des Bausteines "ÜbungKinematik" vertraut
 - Grundbausteine für Einschalten, Referenzieren und Quittieren
 - Lineare und zirkulare Bewegung für die Positionen 1 bis 3

6. Programmvervollständigung

Ergänzen Sie den Funktionsbaustein "ÜbungKinematik" um die Bewegungen von Pos. 3 nach Pos.4 (linear) und von Pos.4 nach Pos 5. (zirkular).

Für die Ergänzung sind die Netzwerke 15 bis 18 bereits vorbereitet.

Alle Fahraufträge werden durch das Signal "DBHMI.Delta.Start" aufgerufen. Damit werden alle Fahraufträge direkt in den Zwischenspeicher der CPU geladen. Dies ist notwendig, um zwischen den Aufträgen ein Überschleifen der Positionen zu ermöglichen. Weiterhin wird der Wert von "DBHMI.Delta.Vmax" an den Geschwindigkeitsparameter der Bausteine für die Fahraufträge verwendet, um die maximale Geschwindigkeit des TCPs zu begrenzen.

Netzwerk 15		
Positionsdaten vorbereiten:	Zielposition X:	-40.0mm
	Zielposition Y:	-20.0mm
	Zielposition Z:	50.0mm
	Zielposition A:	180.0°
	Überschleifabstand:	-1.0mm (maximaler Überschleifabstand)

Netzwerk 16

Lineare Bewegung auf Position 4 ausführen Rufen Sie hier den Baustein für eine absolute lineare Bewegung mit der vorbereiteten Zielposition und Überschleifparametern auf.

<u>Netzwerk 17</u> Positionsdaten vorbereiten:	Zielposition X: Zielposition Y: Zielposition Z: Zielposition A:	-40.0mm(nicht relevant)20.0mm(nicht relevant)50.0mm(nicht relevant)0.0 °(nicht relevant)
Kreismittelpunkt	Hilfsposition X: Hilfsposition Y: Hilfsposition Z:	-40.0mm 0.0mm 50.0mm
	Überschleifabstand:	0.0mm (keine Überschleifung)

Hinweis:

Bei dieser zirkularen Bahnbewegung (Mode = 1) wird nicht der Zielpunkt (mit Ausnahme der Zielposition Orientierungsachse), sondern ein Hilfspunkt mit als Positionsdaten übergeben. Dieser Hilfspunkt wird zur Definition der Kreisbahn als Kreismittelpunkt verwendet. Zusätzlich werden die Angaben zum Radius, Richtung und Ebene der Kreisbahn am Baustein benötigt.

Netzwerk 18

Zirkulare Bahnbewegung auf Position 5 ausführen

Rufen Sie hier den Baustein für eine absolute zirkulare Bewegung mit der vorbereiteten Hilfsposition, Radius, Winkel und Überschleifparametern auf.

- 7. Übertragen Sie das vollständige Programm in die Steuerung und starten Sie diese.
- 8. Starte Sie die HMI Simulation Bewegungsablauf.

Den genauen Bewegungsablauf können Sie mit dem Kinematik-Trace aufzeichnen und anschließend in gewünschter Geschwindigkeit wieder abgespielt werden.

Traceaufzeichnung eines vollständigen Bewegungsablaufs:

TO Kinematik

Konfiguration und Programmierung

SIEMENS Ingenuity for life

Übung Kinematik mit LKinCtrl

Folgende Funktionen sollen realisiert werden:

- Erstellung einer Pick & Place Bewegung mit Ansteuerung des Aufnahmemittels
- Optimierung der Fahrbewegung mithilfe der Überschleiffunktion

Applikation: Pick & Place mit LKinCtrl und LKinMan

Motion Control Workshop 2020

In dieser Übung geht es um das Einlernen und Programmieren von Kinematik Pfadbewegungen. Die Software wurde mithilfe der Bibliothek "LKinCtrl" soweit vorbereitet, dass die Kinematik im manuellen Betrieb verfahren werden kann und Bewegungsaufträge über die Visualisierung parametriert werden können.

- 1. De-archivieren Sie das TIA Portal Archiv "MCWS2020 xxxxx LKinStart.zap16"
- 2. Übertragen Sie das vollständige Programm in die Steuerung und starten diese.

Motion Control Workshop 2020 Kinematik mit Bibliothek "LKinCtrl"	Pfadbewegungen
TCP Tippen	Pfadeditor öffnen
Y: - +0,0mm + Y: +15mm/s	
Z: - +138,0mm + V: +10mm/s	
0	

- 4. Schalten Sie die Kinematik mit allen Achsen ein
- 5. Betätigen Sie den "Home"-Button, um die gesamte Kinematik zu referenzieren.
- 6. Quittieren Sie evtl. noch anstehende Fehler (Reset-Button ist rot umrandet)
- 7. Prüfen Sie ob die Kinematik im Tippbetrieb bewegt werden kann
- 8. Wechsel Sie über den Button "Pfadeditor öffnen" zum Pfadeditor

Der Pfadeditor dient zum Editieren der einzelnen Bewegungsschritte eines Bewegungspfades.

Nr.		Aktiv?		
	. < >	Ja III	Typ Linear absolute	
	Aktuelle Position	Zielposition	Hilfspunkt für Kreisbew.	Parameter Kreisbewegung
х	+0,0 mm	+0,0 mm	+0,0 mm Mo	de: Pkt.auf Kreisb. 🗸
Y	+0,0 mm	+0,0 mm	+0,0 mm Pfa	d: pos.Richt.(kürz.) ▽
z	+138,0 mm	+138,0 mm	+0,0 mm	keine Angabe nötig
A	+0,0 °	+0,0 °	Ebo	ene: X/Z-Ebene 🗸
	> Kopie	eren>	Flags	Radius: +0,00 mm
	Or Richt : kürze	ster Wea 🗸 🗸		Winkel: +0,0 °
		, stor mag	Dynamikparameter	
			Vmax -1	,0 mm/s
	Speic	hern	Überschleifen der Fahr	aufträge
	1		Modus: Au	IS 🗸
	<< Zu	ırück	Überschleifra	adius: -1,0 mm

Aktuelle Schrittnummer

Links oben wird die aktuell sichtbare Schrittnummer angezeigt. Mit den beiden Buttons kann die angezeigt Schrittnummer gewechselt werden.

Aktivierung

Hiermit wird festgelegt, ob der Schritt bei einem Pfaddurchlauf berücksichtigt oder übersprungen wird.

Schritttyp

Auswahl der Funktion für den aktuellen Schritt.

Koordinatensystem

Auswahl des Koordinatensystems, auf das die Positionsangaben bezogen sind.

Positionsdaten

	Aktuelle Position	Zielposition
X	+0,0 mm	+0,0 mm
Y	+0,0 mm	+0,0 mm
z	+138,0 mm	+138,0 mm
A	+0,0 °	+0,0 °
	> Kop	ieren>

Neben der aktuellen Istposition des TCPs können die Zielkoordinaten eingeben werden. Mit dem Button "Kopieren" werden die aktuellen Istwerte auf die Zielkoordinaten kopiert.

Flags (externe Signale)

Mit dem Button "Flags" wird die Detailansicht der "Flags"-Bearbeitung aufgerufen. Hier können die Werte der Hilfssignale für jeden Bewegungsschritt verändert werden.

Flag: マ Wert: +0,00 Mode: Vorher setzen, ohne Rücksetzen マ Restweg bis Zielpos.: -1,0 mm Flag: マ Wert: +0,00
Mode: Vorher setzen, ohne Rücksetzen ▽ Restweg bis Zielpos.: -1,0 mm Flag: ▽ Wert: +0,00
Restweg bis Zielpos.: -1,0 mm Flag: ▽ Wert: +0,00
Flag: ▽ Wert: +0,00
Mode: Vorher setzen, ohne Rücksetzen \bigtriangledown
Restweg bis Zielpos.: -1,0 mm
Flag: Vert: +0,00
Mode: Vorher setzen, ohne Rücksetzen \bigtriangledown
Restweg bis Zielpos.: -1,0 mm

Maximale Geschwindigkeit und Überschleiffunktion

Dynamikparamete	r	
Vmax	-1,0 mm/s	
Überschleifen der	Fahraufträge	
Modus:	Aus 🗸	
Überschle	eifradius: [-1,0 mm	

Über den Dynamikparameter "Vmax" kann die maximalen TCP Geschwindigkeit in mm/s vorgegeben werden.

Die Überschleiffunktion kann über die Auswahl "Modus" aktiviert und der dazugehörige Überschleifradius vorgegeben werden.

Hinweis:

Die Eingaben pro Schritt müssen abschließend immer manuell gespeichert werden. Sobald eine Änderung erkannt wurde, beginnt der "Speichern"-Button zu blinken. Wird dieser betätigt, so werden alle Schrittdaten im Datenbaustein gespeichert und automatisch der nachfolgende Schritt zur Bearbeitung aufgerufen.

9. Eingabe der einzelnen Bewegungsschritte mit Ansteuerung des Greifers und des Transportbandes

In der nachfolgenden Tabelle sind die Details der einzelnen Schrittbewegungen aufgeführt:

Ablaut	f für einen Block							
Schritt	Тур	×	٢	Z	A	Flag 1	Flag 2	Beschreibung
1	Lin. abs.	0.0	0.0	138.0	0.0	-	1	Homepos.
2	Lin. abs.	0.0	142.0	168.0	0.0	-	-	über mittlere Fach
3	Lin. abs.	0.0	142.0	124.0	0.0	-	-	auf mittlere Fach
4	Warten 1200ms	0.0	0.0	0.0	0.0	Vorher setzen, ohne Rücks.	1	Greifer schließen und warten
5	Lin. abs.	0.0	142.0	168.0	0.0	-	1	über mittlere Fach
9	Lin. abs.	-80.0	- 100.0	155.0	180.0	-	1	über Band
7	Lin. abs.	-80.0	- 100.0	130.0	180.0	Vorher setzen, am Ende Rücks.	-	auf Band
8	Warten 1200ms	0.0	0.0	0.0	0.0		-	Warten auf Greifer offen
6	Lin. abs.	-80.0	- 100.0	165.0	180.0	-	1	über Band
10	Lin. abs.	0.0	0.0	138.0	0.0	-	Vorher setzen, am Ende Rücks.	zurück auf Wartepos

10. Wechsel Sie zurück zur Übersicht und rufen dort über den Button "Pfadbewegung" die Seite für den automatischen Bewegungsablauf auf.

Auf der linken Seite wird das Modell in Vogelperspektive und Frontansicht schematisch dargestellt.

Auf der rechten Seite kann der Bewegungspfad gestartet, unterbrochen und gestoppt werden. Über die Auswahl "Mode" kann bestimmt werden, ob die einzelnen Bewegungsschritte selbständig nacheinander ausgeführt werden oder ob nach jedem Schritt der Ablauf pausiert und über den Button "Start" fortgesetzt wird.

Weiterhin kann die maximale Geschwindigkeit des TCPs über den Slider von 0 – 100% vorgegeben werden.

Die Ausgabebits (Flags) und Ausgabewerte, die in jedem Schritt verändert werden können, werden unterhalb der Bedienflächen dargestellt.

In dieser Übung dient Flag 1 zur Ansteuerung des Greifers (Schließen) und Flag 2 zum Starten des Bandes für den Abtransport.

Notizen:

Übung

Notizen: