

SITOP power supply

El corazón de la automatización.

Unrestricted © Siemens 2020

 \Box

siemens.com/sitop

PN/IE 11

Agenda

L	Portfolio general	de SITOP

PSU8600, una solución completa

³ PSU6200, una fuente convencional con diagnosis completa

- ⁴ Redundancia, concepto y posibilidades
- 5 UPS1600, respaldo de cargas cuando falla la alimentación
- Selectividad, protectión de circuitos y localización de fallos

Maleta virtual, PSU6200 y SEL1200

Agenda

SITOP – The heart of automation® Top innovation for over 25 years

Industrial power supplies for the most diverse automation requirements

Top reliability

- High plant availability
- Excellent load behavior
- Global certifications
- Add-on modules as protection against faults
- Redundant product solutions
- Global customer service
- Delivery ex stock

SITOP Power supplies

Top integration

- Engineering in the TIA Portal and SITOP Manager
- Visualization in WinCC, PCS 7 library and SITOP Manager
- Communication via Ethernet/PROFINET and OPC UA for integration in automation applications

Top efficiency

- High degree of efficiency
- Minimized losses even in no-load operation
- Diagnostics capability
- Compact design
- Optimum support for the planning process with CAX data and TIA Selection Tool, for example

SITOP power supply – »Developed and produced« in Europe

Top integration. Top efficiency. Top reliability. SITOP power supplies

Advanced		Standard		Basic			SIMATIC design	DC/DC converter	Special designs
SITOP PSU8600 The power supply system with TIA integration and open communication up to	SITOP PSU8200 The technology power supply for demanding solutions	SITOP PSU6200 The all-around power supply for a wide range of applications	SITOP smart The high- performance power supply	SITOP lite The cost- effective basic power supply	LOGO!Power The flat power supply for distribution boards	SITOP compact The slim power supply unit for control boxes	SITOP in SIMATIC design The optimal power supply for SIMATIC S7 and more	SITOP DC/DC converter Stable supply despite fluctuating DC voltage	Special designs Equipped for special tasks and conditions
the Cloud				SITOP PSU100L					

... individual extendable to all-round protection

SITOP Redundancy modules	SITOP Selectivity modules	SITOP Buffer module	SITOP DCUPS		
		Ann	with capacitors	with battery modules	
Failure of a	Overload in		Power failure on the input side		
power supply	24 V circuit	Up to seconds	Up to minutes	Up to hours	

Agenda

Highlights Unique functions

+

Integrated Ethernet/Profinet communication for optimum integration in the machine or plant automation

Multiple individually configurable outputs with high efficiency and an extremely narrow width

saves time and costs during engineering and in operation

Integration in TIA Portal

Support of **energy management** by capturing energy data and on/off switching of outputs

Complete monitoring and **diagnostics in operation** for preventive maintenance

Modular expansion without wiring effort for selective monitoring of the outputs and buffering of power failures

...with SITOP PSU8600, the power supply becomes an integral part of automation solutions

-

Customer benefits Integrated value-added

Top integration

- Integrated PROFINET communication permits comprehensive data exchanges.
- Complete integration into TIA enables simple engineering in TIA Portal, comprehensive evaluations of operational data and diagnostic information as well as power management functions.
- Integrated web server allows easy remote diagnosis via the Internet
- Flexible, open and manufacturer independent communication enabled by OPC UA Server

Customer benefits Integrated value-added

Top reliability

- Outputs can be individually monitored which leads to reduced downtimes.
- System-specific buffer modules bridge brief power failures.
- System-specific UPS module and battery modules bridge mains failures up to hours
- Comprehensive diagnostics ease preventive maintenance.

Customer benefits Integrated value-added

Top efficiency

- Compact design saves space in the control cabinet.
- System Clip Link reduces the amount of wiring.
- Comprehensive software support simplifies configuration and design.
- Can be configured manually for commissioning.
- High functionality opens up new possibilities including additional supply voltages.
- PROFlenergy and power management support ensure efficient energy use.

Hardware Modular system

System integration

- Communication via Ethernet interface and OPC UA or PROFINET
- Complete integration in networked automation applications
- Configuration of device. Re-configuration also in ongoing process
- Setting of values at the power supply
- Supply of operation and diagnostic data
- But also: open manufacturer independent communication via OPC UA (certified) and remote monitoring/diagnosis

Network-compatible power supply system PSU8600

Program-controlled settings:

- Voltage of each output
- Switching on and off each output

Diagnostic options:

- Overload states and advance warning of an overload
- Status message for outputs
- Power failures
- Recording of energy data
- Monitoring of input voltage

Ordering data and logistics SITOP PSU8600

	Basic units				Can be expanded using additional modules (can be combined as required)						ed)			
					max. 4		max. 2				max. 5			
	PSU8	600 basi	c unit		CNX8600 expansion modules		BUF8600 buffer modules			UPS 8600	-	module 8600		
1 ph. DC 24 V/ 20 A 4 x 5 A	3 ph. DC 24 V/ 20 A 4 x 5 A	3 ph. DC 24 V/ 20 A	3 ph. DC 24 V/ 40 A 4 x 10 A	3 ph. DC 24 V/ 40 A	4 x 5 A	4 x 10 A	8 x 2,5 A	100 ms bei 40 A	300 ms bei 40 A	4 s bei 40 A	10 s bei 40 A		Pb, 10 min./ 960 W	LiFePO4, 14 min./ 960 W
6EP3336 -8MB00- 2CY0	6EP3436 -8MB00- 2CY0	6EP3436 -8SB00- 2AY0	6EP3437 -8MB00- 2CY0	6EP3437 -8SB00- 2AY0	6EP4436 -8XB00- 0CY0	6EP4437 -8XB00- 0CY0	6EP4436 -8XB00- 0DY0	6EP4297- 8HB00- 0XY0	6EP4297- 8HB10- 0XY0	6EP4293- 8HB00- 0XY0	6EP4295- 8HB00- 0XY0	6EP4197- 8AB00- 0XY0	6EP4145- 8GB00- 0XY0	6EP4143- 8JB00- 0XY0

... can be expanded individually depending on requirements

Agenda

Top integration. Top efficiency. Top reliability. SITOP power supplies

Advanced		Standard		Basic			SIMATIC design	DC/DC converter	Special designs
SITOP PSU8600 The power supply system with TIA integration and open communication up to	SITOP PSU8200 The technology power supply for demanding solutions	SITOP PSU6200 The all-around power supply for a wide range of applications	SITOP smart The high- performance power supply	SITOP lite The cost- effective basic power supply	LOGO!Power The flat power supply for distribution boards	SITOP compact The slim power supply unit for control boxes	SITOP in SIMATIC design The optimal power supply for SIMATIC S7 and more	SITOP DC/DC converter Stable supply despite fluctuating DC voltage	Special designs Equipped for special tasks and conditions
the Cloud		New: 3 phase		Tooring and					

... individual extendable to all-round protection

SITOP Redundancy modules	SITOP Selectivity modules	SITOP Buffer module	SITOP DCUPS	
			with capacitors	with battery modules
		THREE ALL ALL ALL ALL ALL ALL ALL ALL ALL A		
Failure of a	Overload in		Power failure on the input side	
power supply	24 V circuit	Up to seconds	Up to minutes	Up to hours

SITOP PSU6200 – Many features – Top device

SITOP PSU6200 – Product highlights at a glance

Diagnostics monitor

LED display DC o.k., indication of utilization and operating hours

Diagnostics interface

 Provision of important operating parameters (e.g. power, voltage, overload, etc.)

High degree of efficiency

• Up to 96%

Push-in terminals

- Easy, time-saving installation without need for tools
- Separate ground terminal

Robust AC input

Active PFC

AC

 In case of phase failure constant operation with 2 phases possible

+

DC

Na

Narrow overall width

 For direct side-by-side mounting without lateral installation clearances

Integrated product family

• Comprehensive range of products for a wide range of requirements

DC capability / wide range input

- Flexible use also on DC networks
- Reliable in spite of power fluctuations

High performance. Focused diagnostics. The all-around power supply for a wide range of applications

Diagnostics interface – Provision of the essential operating parameters and status

Transmission to only one digital input on the PLC (every 3 seconds)

Evaluation by means of preassembled function block as ready-to-use code for SIMATIC S7 (simple adaptation for external PLCs)

Easy, space-saving and economical integration into the PLC or plant and machine monitoring

- Clear presentation of the operating parameters • for preventive maintenance
- Fast and reliable integration into PLC
- Instructions in the Siemens Online Support (SIOS) • for integration of the function block

Operating parameters (available as of 10 A device)

Output voltage	Resolution 100 mV
Output current	Resolution 1 A
Temperature	< 40° C/< 60° C/< 70° C/overtemperature
Operating hours	Less/more than 90 % of the total service life
DC voltage deviation	Detection of short-term undervoltage or overvoltage at the output end (signal in case of undervoltage as of 20 V or 23 V, in case of overvoltage as of 33 V)
SITOP PSU6200 type	Manufacturing date, article number

Function blocks for SIMATIC S7-1200, S7-1500, S7-300 Faceplate for PSU6200 available free of charge in SIOS

State	Output	Information	Trends	
Output voltage:	23	3.9 V		
Output current:	(D A		
Counter Glitch overvolta	ge:	0 Coun Glitch	ter undervoltage:	0

SITOP PSU6200

State	Output	Information	Trends	
Device name:	PS	U6200	Device type:	24 V / 20 A
Serial number:	Q6	/LO	Product state:	0
Article number:	6EP3336-	7SB00-3AX0	Firmware version:	0
Operating hour	rs: < 1000 h			

SITOP PSU6200

SITOP PSU6200

Integrated product family SITOP PSU6200 – Comprehensive product range

	SITOP PSU6	200					
	Single-phase			3 phase	S		
Input	85 V	AC	264 V	323 V	AC	576 V	
Input	85/99)/110 V D (C 275 V	V 4	50 V	DC 6	600
Output		7 A, 12 A , 2,5 A , 3,7 A, 5 nuous output pov			5 A, 10 A, 20 A continuous output	t power up to 45°	С

- Standardized family design for all product variants
- Uniform handling

) V

 Simple planning by means of fast and intuitive selection and configuration including for different power requirements

Agenda

Top integration. Top efficiency. Top reliability. SITOP power supplies

... individual extendable to all-round protection

SITOP Redundancy modules	SITOP Selectivity modules	SITOP Buffer module	SITOP DCUPS	
new			with capacitors	with battery modules
Failure of a	Overload in		Power failure on the input side	
power supply	24 V circuit	Up to seconds	Up to minutes	Up to hours

SITOP Power Supply

Redundancy modules SITOP RED1200 Highlights

Redundant design in case of power supply failure

 Stable DC voltage by redundant switching of two equal power supplies

+

Redundant design in case of power failures

• Feed in by power supplies out of two different power networks

Redundant power supply design for

DC voltages from 12 to 48 V

Decoupling diode for parallel connection of more than two power supplies to increase current

• Protection against back current

connection of two power supplies to increase voltageFor protecting power supplies even

Protecting diode for serial

SIEMENS

Ingenuity for life

 For protecting power supplies ever in case of minimally time-delayed switch on

Simple commissioning

- Narrow width
- Push-In connection technology

Solutions for different performance areas

- SITOP RED1200 20 A: decoupling of 1 or 2 power supplies
- SITOP RED1200 40 A: decoupling of 1 or 2 power supplies

Redundant design offer high security for 24 V supply

SITOP redundancy modules Why do power supplies have to be decoupled??

Simple parallel connection without decoupling:

- The power outage could have been caused by a short circuit on the secondary side in the device
- · The short circuit affects the intact device and overloads it
- The 24 V supply breaks down

Parallel connection with decoupling:

- In case of a short circuit in a defective power supply, the diode prevents the intact device from being affected
- The 24 V supply remains intact

Only for SITOP redundancy module RED1200

Serial connection with protecting diodes – excepting SITOP PSU6200, 20 A:

- In case of not absolutely simultaneous power-up of the power supplies the diodes prevent the supply of current from the faster power supply in the "–"output of the slower power supply. So also an impermissibly discharge of the output electrolytic capacitor within the slower power supply is prevented. (Catalog KT10.1, Technical information and configuration). The SITOP RED1200 reduces the reverse voltage at the electrolytic output capacitor on less than 1 V.
- For output voltages of 12 V, 24 V and 48 V an voltage increase on 24 V or 48 V or 96 V is enabled

SITOP redundancy modules – protection of consumers in case of power supply failure

Redundancia 20+20=40A

Redundant design in case of power supply failure

Protection by two equal power supplies up to max. 20 A
 → use of one redundancy module

or

- Protection by two equal power supplies bigger than 20 A
 - \rightarrow us \uparrow two redundancy modules

Supply of all consumers by two redundant connected power supplies feeding in each with circa 50 %

Stable DC voltage by redundant connection of two equal power supplies even in case of power supply failure

Redundancy module decouples the both power supplies in case of power supply defect

SITOP redundancy modules protection of consumers in case of power failure

SITOP redundancy modules – decoupling or protecting diode in case of parallel or serial connection

Decoupling diode for parallel connection of more than two power supplies to increase current

- Performance increase by parallel connection of divers power supplies from 3 x 20 A on 60 A
- For redundant protection: load design for $2 \times 20 \text{ A} = 40 \text{ A}$
- → Protected supply of connected loads by protection diode per power supply
- \rightarrow Redundancy module prevents recovery current in case of failure

Only for SITOP redundancy module RED1200

Protecting diode <mark>for serial connection</mark> of two power supplies to increase voltage

- Voltage increase by serial connection from 12 V to 24 V DC
- → Protection of power supplies even in case of minimally time-delayed switch on

Redundancy module SITOP RED1200 Features

Redundancy modules SITOP Technical data

	Redundancy mod	ules SITOP RED1200	R	edundancy modules SITOP PSE2	02U
Article No.	6EP4346-7RB00-0AX0	6EP4347-7RB00-0AX0	6EP1964-2BA00	6EP1962-2BA00	6EP1961-3BA21
Rated input voltage – Range	DC 12 V, 24 V, 48 V DC 3100 V	DC 12 V, 24 V, 48 V DC 3100 V	DC 24 V DC 1929 V	DC 24 V DC 1929 V	DC 24 V DC 2428,8 V
Relays contact	-	-	Yes	Yes	Yes
LED signal	-	-	"Infeed 1 and 2 o.k."	"Infeed 1 and 2 o.k."	"Infeed 1 and 2 o.k."
Switching threshold	-	-	Between 20 and 25 V adjustable	Between 20 and 25 V adjustable	Between 20 and 25 V adjustable
Decoupling of connected power supplies (p.s.)	Two p.s. each up to 10 A or one p.s. up to 20 A	Two p.s. each up to 20 A or one p.s. up to 40 A	Two p.s. each up to 5 A or one p.s. up to 10 A	Two p.s. each up to 40 A or one p.s. up to 40 A	Two p.s. each up to 20 A or one p.s. up to 40 A
Limitation of output	-	-	-	NEC Class 2 Limit (100 VA)	-
Rated output current	20 A (total output current)	40 A (total output current)	10 A (total output current)	3.5 A ¹⁾	40 A (total output current)
Efficiency at rated values, approx.	Ca. 97,5 %	Ca. 97,5 %	Ca. 97 %	Ca. 95 %	Ca. 97 %
Connection technology	Push-in terminal	Push-in terminal	Screw terminal	Screw terminal	Screw terminal
Radio interference suppression (EN 55022)	Class B	Class B	Class B	Class B	Class B
Reverse voltage protection	200 V	200 V	52 V	52 V	52 V
Degree of protection (EN 60529)	IP20	IP20	IP20	IP20	IP20
Ambient temperature	-25°C + 70 °C	-25°C + 70 °C	–20…+70 °C	–20…+70 °C	–25…+60 °C
Dimensions (W x H x D) in mm	35 x 135 x 125	45 x 135 x 125	30 x 80 x 100	30 x 80 x 100	70 x 125 x 125
Certification	CE, cULus, DNV GL, ABS	CE, cULus, DNV GL, ABS	CE, cULus	CE, cULus, NEC Class 2	CE, cULus, cCSAus Class I Div 2, ATEX, IECEx, DNV GL, ABS

¹⁾ Max. 8 A summation current in fault case in accordance with NEC Class 2

Agenda

Power supply SITOP Portfolio overview

individual extendable to	all-round protection			
SITOP Redundancy modules	SITOP Selectivity modules	SITOP Buffer module	with capacitors	SITOP DC UPS with battery modules
	D D TID			
			•	
Failure of a power supply	Overload in 24 V circuit	up to seconds	Power failure on the inp. up to minutes	ut side up to hours

For every range of application there is an appropriate energy storage unit

SITOP PSE201U buffer module SITOP BUF8600 buffer module with electrolytic capacitors	SITOP UPS500S / SITOP UPS500P / SITOP BUF8600 buffer module with double-layer capacitors	SITOP UPS1600 with lead batteries or lithium batteries
 Inexpensive protection against power failures up to seconds High load current up to 40 A SITOP PSE201U supports the power supply unit for temporarily increased power requirements 	 Saving process data and correct shutdown of applications up to minutes Totally maintenance-free Long life even at high temperatures High ambient temperature up to +60 °C No ventilation of the installation site required since no gas is emitted Decentralized use without control cabinets Software tool for easy configuration and complete integration into PC-based systems 	 Buffering up to hours to continue processes or to start generators Optional communication via USB or Industrial Ethernet/PROFINET Easy configuration with automatic detection of battery modules Highly secure due to monitoring of operating status Remote monitoring via Web server Engineering in PC-based systems Producer-independent communication via OPC UA Server Complete integration into TIA
Bridging grids with brief voltage fluctuations	Bridging of power failures for organized shutdown of systems	Bridging of power failure for continuous plant operation

SITOP UPS1600 Mains buffering secures continuous plant operation

...with SITOP uninterruptable power supplies

SITOP UPS1600 Functions and benefits - UPS1600

50 x 125 x 125 (10 A, 20 A) 70 x 125 x 150 (40 A)

(WxHxD)

Feature/Function

Bridging up to hours

All diagnostic data and alarms available via USB and Ethernet/PROFINET

High dynamic overload capacity according to SITOP modular and smart

OPC UA server functionality

Integrated Web server

SITOP UPS Manager

System integration into TIA

Integration into SIMATIC PCS 7 via SITOP library

E	Benefit
	Jninterrupted plant operation even n case of power failure
	All diagnostic data and alarms can be communicated and analyzed
f	Frouble-free plant operation even or temporarily increased power equirements
	Flexible, producer-independent
F	Remote diagnostics via Internet
E	Easy configuration and monitoring
	Saves time and money n planning and operation
	Saves time and money n planning and operation
SITOP UPS1600 Functions and benefits - UPS1100

Service life of energy storage unit

When capacity falls to 50% of original capacity, depending on battery temperature, approx.

Ambient temperature	Lead battery	Pure lead battery	LiFePo-battery
20 °C	4 years	10 years	15 years
30 °C	2 years	7 years	10 years
40 °C	1 years	3 years	9 years
50 °C	0,5 years	1,5 years	2 years
60 °C		1 year	

Feature/Function

Bridging up to hours, depending on load current

Battery modules 1,2 Ah – 12 Ah with lead batteries

Battery module 2,5 Ah with pure lead batteries

Battery module 5 Ah with LiFePobatteries (lithium iron phosphate)

Battery module UPS1100 with integrated electronics and communication with UPS1600 via "Energy Storage Link"

UPS1600 with intelligent battery management for UPS1100

Benefit

►

- Uninterrupted plant operation even in case of power failure
- Low cost, maintenance-free and reliable battery
- High ambient temperature for applications up to 60 °C

Long lifetime, even at high temperatures

Automatic detection through

UPS1600 and communication of operating status

> Optimal, temperature-dependent charging and continuous monitoring

Engineeri	ng and monitoring with SITOP UPS Manager	Ingenuity for life
	SITOP UPS Manager	
Engineering	 Configuration of all relevant parameters, e.g. PC response to DC-UPS operating status Communication via USB or Ethernet Configuration of "not coded" batteries (without Energy Storage Link) Safe shutdown of various PCs according to the master-slave principle OPC UA Server: Flexible, producer-independent communication Remote monitoring via integrated Web server 	SEMENS DC UPS MONITOR • 40 Cardingradow • Mator Logoar Language Egader • Alarmi • Same and Base and Errain and and and and and and and and and an
Diagnosis uninterruptable power supply and battery module	 Hardware configuration Normal operation and buffer mode Battery charging status, buffing readiness, reached buffer time Alarm messages, e.g. broken wire Current and voltage of UPS and battery Battery temperature Monitoring long-term developments via trend charts 	CELOCADS VALUE STOP UPS Manager Stemens Stop State Stat

SITOP UPS1600

UPS Manager offers interfaces to PCs and external systems

SIEMENS

SITOP UPS1600 Engineering and monitoring with TIA Portal

	TIA Portal integration		
Engineering	 Comfortable Engineering of SITOP UPS1600 in the TIA Portal Fast product selection and network integration into PROFINET Easy integration into STEP 7 user programs with function blocks for SIMATIC S7 Fast integration into HMI with "UPS faceplates" for SIMATIC WinCC 	SITOP_Fertig_V2	S7_1500
Diagnosis uninterruptable power supply and battery module	 Hardware configuration Normal operation and buffer mode Battery charging status, buffing readiness, reached buffer time Alarm messages, e.g. broken wire Current and voltage of UPS and battery Battery temperature Monitoring long-term developments via trend charts 	WinCC Faceplate	SIEMENS SIMATIC HMI SIEMENS STOP UPS1600 X VPS dde information Dept voltage: 24.02 V Remail mode Output voltage: 24.02 V Remail mode Output voltage: 24.01 V Remail mode Textbollow Textbollow Textbollow

Comprehensive integration into TIA saves time and money in planning and operation

SITOP UPS1600 Engineering and monitoring with SIMATIC PCS 7

	SIMATIC PCS 7 integration	on
Engineering	 Comfortable integration of DC-UPS into SIMATIC PCS 7 via SITOP library with function blocks and faceplates SW blocks in SIMATIC S7 Supply the faceplate for the user interface of the process control system with operating and diagnosis data Generates messages Enables Integration into the maintenance system of SIMATIC PCS 7 	1901/16 1422-31.34 1 STOP24V 2 1 STEMENS PCS 7 Process STOP 24V 2 2 SEMENS Redundant 24V Power Supply Drinterruptible Power Supply Selectivity Module Image: State of the sta
Diagnosis uninterruptable power supply and battery module	 Normal operation and buffer mode Battery charging status, buffing readiness, reached buffer time Alarm messages, e.g. broken wire Current and voltage of UPS and battery Battery temperature Monitoring long-term developments via trend charts 	

Comprehensive integration into SIMATIC PCS 7 saves time and money in planning and operation

SITOP UPS1600 Engineering und monitoring with OPC UA

	Integrated OPC UA Serve	er
Engineering	 Communication over Ethernet and OPC UA or PROFINET simultaneously Platform independent integration in automation applications Access to all UPS software parameters and functions (i.e. Firmware update routine) 	OPC UA Client
Diagnosis uninterruptable power supply and battery module	 Full data model for device information Status information for UPS including batteries Pending alarms and alarm history Load current / input voltage levels Remaining buffer time Battery temperature / buffering availability / battery charging current 	severage subsection of the second sec

Complete Library of Engineering and Diagnostic Tools available with OPC UA

Agenda

Top integration. Top efficiency. Top reliability. SITOP power supplies

Advanced		Standard		Basic			SIMATIC design	DC/DC converter	Special designs
SITOP PSU8600 The power supply system with TIA integration and open communication up to	SITOP PSU8200 The technology power supply for demanding solutions	SITOP PSU6200 The all-around power supply for a wide range of applications	SITOP smart The high- performance power supply	SITOP lite The cost- effective basic power supply	LOGO!Power The flat power supply for distribution boards	SITOP compact The slim power supply unit for control boxes	SITOP in SIMATIC design The optimal power supply for SIMATIC S7 and more	SITOP DC/DC converter Stable supply despite fluctuating DC voltage	Special designs Equipped for special tasks and conditions
the Cloud									

... individual extendable to all-round protection

SITOP Redundancy modules	SITOP Selectivity modules	SITOP Buffer module	SITOP DCUPS	
	new		with capacitors	with battery modules
Failure of a	Overload in		Power failure on the input side	
power supply	24 V circuit	Up to seconds	Up to minutes	Up to hours

Selectivity modules SITOP Optimal and reliable protection for 24-V loads

No protection

Insufficient protection

Inadequate protection

rotection

High protection

Optimal protection

• An overload or short circuit in just one circuit can interrupt the power supply, resulting in a complete failure of the 24 V power supply throughout the system.

- Distribution of current via miniature circuit breakers in various load circuits
 → low-cost solution for consumers which are not sensitive to voltage dips
- In case of short circuit or overload standard switching devices do not supply the current required for immediate tripping
 → consumers such as PLC, PC or HMI devices are not reliably protected.

- Speed up tripping of the miniature circuit breakers by high overload capability of the power supply (power boost up to 3 x rated current, for example)
- In case of short circuit or overload with limited shortcircuit current, caused by high line resistance for example, the tripping current cannot flow properly
 → inadequate protection of sensitive loads

 Switching electronic characteristics

Current partitioning with selectivity module

- In case of short circuit or overload the affected circuit is protectively electronically tripped
- \rightarrow reliable protection of all other consumers
- Optimal coordination of selectivity modules with standard power supplies
- Easy integration of selectivity modules in system diagnostics (common signaling contact, single-channel signaling, remote reset)

• Limiting electronic characteristics

SITOP Power Supplies

Selectivity modules SITOP SEL1200/SEL1400 Highlights

Increase of availability in case of short circuit or overload

- Reliable tripping of defect load circuits
- Uninterruptible supply of all other load circuits

+

Fast fault diagnostics

- LED status display at the device
- Diagnostics interface
 - Common signaling contact or
 - Single-channel signaling

+

Relief of power supply

 Avoidance of high inrush currents by sequential switching of output channels

Flexible use

- Individual adjustable response threshold for each output
- Parallel use of 2 outputs for
- performance increase up to
- 7.5 or 15 A

Tripping during operation only in case of failure

SIEMENS

Ingenuity for life

• Bridging of high start-up peaks

Easy commissioning

- Manual switch on/off using reset button
- 4 or 8 output per module
- Compact design
- Push-In terminal

Solution for high and highest operation protection

- Selectivity module SEL1400 with limiting electronic characteristics
- Selectivity module SEL1200 with switching electronic characteristics

Complete 24 V DC monitoring and fast fault diagnostics

Selectivity modules SITOP SEL1200/SEL1400 Device features

Selectivity modules SITOP SEL1200/SEL1400 Comparison limiting/switching characteristics

¹⁾ Variants SITOP PSE200U with NEC Class 2: 110%

Ejemplo, SIMATIC HMI TP1200 Comfort 6AV2124-0MC01-0AX0

In t(s)

Icierre 0

l²t

$\begin{array}{c} 3,5 \\ 3\\ 2,5\\ 1\\ 1\\ 0,5\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	Tensión de alimentación		0,5	0,85	0	0
Value nominal (DC) 24 V Rango admisible, limite inferior (DC) 19.2 V Rango admisible, limite inferior (DC) 28.8 V Consume (value nominal) 0.85 Å Intensidad transitoria de conexión Pt 0.5 Å*s Potencia 0.5 0.86 0.075 0.256 0.180 0.275 0.228067977 Consume (value nominal) 0.85 Å Consume (value nominal) 0.5 Å*s Potencia 0.5 0.86 0.220 1.1825711858 0.5 0.86 0.225 1.490711985 0.5 0.86 0.225 1.490711985 0.5 0.86 0.225 1.490711985 0.5 0.86 0.225 1.490711985 0.5 0.86 0.225 1.490711985 0.5 0.86 0.225 1.490711985 0.5 0.86 0.225 1.490711985 0.5 0.86 0.325 0.12413622 0.5 0.86 0.325 0.19522800 0.5 0.86 0.325 1.141213622 0.5 0.86 0.325 0.1952978052 0.5 0.86 0.325 1.1434399252 0.5 0.86 0.325 0.1952978052 0.5 0.86 0.325 1.154700538 0.5 0.86 0.425 1.084652289 0.5 0.86 0.425 1.084652289 0.5 0.86 0.425 1.025978352 0.5 0.86 0.425 1.025978352 0.5 0.86 0.500 1.195228600 0.5 0.86 0.500 1.195228600 0.5 0.86 0.500 0.9750 0.980 0.950 0.980 0.950 0	Tipo de tensión de la alimentación	DC	0,5	0,85	0,025	4,472135955
Range admisble limite interior (DC) 19.2 V Range admisble limite interior (DC) 28.8 V Intersidad de entrada 0.5 0.85 0.075 2.581988897 Consumo (valor nominal) 0.85 A Intersidad da entrada 0.5 0.85 0.100 2.223060797 Potencia 0.5 0.85 0.100 0.223060797 Consumo (valor nominal) 0.5 0.85 0.125 2 Ocsumo (valor nominal) 0.5 0.85 0.175 1.690308500 Ocsumo de potencia activa, tip. 20 W Consumo de potencia activa, tip. 20 W <	5 F	24 V				
Ranglo 2dmisble 0,5 0,85 0,100 2,236067977 Unlensidad translota de conesión Pt 0,5 A 0,5 0,85 0,175 1,690308509 Consumo de potencia activa, tip. 20 W 0,5 0,85 0,175 1,690308509 Consumo de potencia activa, tip. 20 W 0,5 0,85 0,175 1,690308509 0,5 0,85 0,175 1,690308509 0,5 0,85 0,175 1,690308509 0,5 0,85 0,200 1,825741858 0,5 0,85 0,175 1,690308509 0,5 0,85 0,200 1,41213562 0,5 0,85 0,250 1,414213562 0,5 0,85 0,300 1,29094449 0,5 0,85 0,300 1,29094449 0,5 0,85 0,300 1,195228609 0,5 0,85 0,300 1,195228609 0,5 0,85 0,425 1,046652289 0,5 0,85 0,425 1,046652286 0,5 0,85 0,50 0,85 0,50 0,85 0,50 0,50 0,50 0,55 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>,</td></t<>						,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		28,8 V				
Intensided transitionia de conexión IP 0.5 A*s Potencia 0,5 0,85 0,150 1,825741858 Consumo de potencia activa, típ. 20 W Consumo de pot						2,200001011
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1 8257/1858
Consumo de potencia activa, tip. 20 W 0,5 0,85 0,200 1,58113883 0,5 0,85 0,225 1,490711985 0,5 0,85 0,225 1,490711985 0,5 0,85 0,225 1,490711985 0,5 0,85 0,225 1,348399725 0,5 0,85 0,300 1,290994449 0,5 0,85 0,300 1,290994449 0,5 0,85 0,300 1,290994449 0,5 0,85 0,300 1,195228609 0,5 0,85 0,300 1,195228609 0,5 0,85 0,400 1,118033989 0,5 0,85 0,400 1,118033989 0,5 0,85 0,400 1,118033989 0,5 0,85 0,400 1,118033989 0,5 0,85 0,400 1,118033989 0,5 0,85 0,400 1,118033898 0,5 0,85 0,405 1,025978352 0,5 0,85 0,450 1,054092553 0,5 0,85 0,450 1,054092553 0,5 0,85 0,550 0,953462589 0,5 0,85 0,550 0,953462589 0,5 0,85 0,550 0,953462589 0,5 0,85 0,550 0,953462589 0,5 0,85 0,655 0,550 0,953462589 0,5 0,85 0,655 0,550 0,953462589 0,5 0,85 0,655 0,550 0,953462589 0,5 0,85 0,655 0,550		0,5 A²·s				
$\begin{array}{c} 0,5 & 0,85 & 0,225 & 1,490711985\\ 0,5 & 0,85 & 0,275 & 1,348399725\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,425 & 1,025978352\\ 0,5 & 0,85 & 0,425 & 1,025978352\\ 0,5 & 0,85 & 0,425 & 1,025978352\\ 0,5 & 0,85 & 0,525 & 0,97590073\\ 0,5 & 0,85 & 0,550 & 0,950 & 500 & 500 & 1\\ 0,5 & 0,85 & 0,550 & 0,950 & 500 & 500 & 500 & 500 & 500 & 500 & 500 \\ 0,5 & 0,85 & 0,550 & 0,950 & 500 & $						
$\begin{array}{c} 0,5 & 0,85 & 0,250 & 1,414213662\\ 0,5 & 0,85 & 0,300 & 1,20994449\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,240347346\\ 0,5 & 0,85 & 0,325 & 1,154700538\\ 0,5 & 0,85 & 0,325 & 1,154700538\\ 0,5 & 0,85 & 0,325 & 1,154700538\\ 0,5 & 0,85 & 0,400 & 1,118033989\\ 0,5 & 0,85 & 0,400 & 1,118033989\\ 0,5 & 0,85 & 0,400 & 1,118033989\\ 0,5 & 0,85 & 0,400 & 1,10520809\\ 0,5 & 0,85 & 0,400 & 1,10520809\\ 0,5 & 0,85 & 0,400 & 1,10520809\\ 0,5 & 0,85 & 0,400 & 1,1054092553\\ 0,5 & 0,85 & 0,475 & 1,054092553\\ 0,5 & 0,85 & 0,475 & 1,054092553\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,932504808\\ 0,5 & 0,85 & 0,575 & 0,86062966\\ 0,5 & 0,85 & 0,575 & 0,86062966\\ 0,5 & 0,85 & 0,575 & 0,86062966\\ 0,5 & 0,85 & 0,575 & 0,86062966\\ 0,5 & 0,85 & 0,700 & 0,85\\ 0,5 & 0,85 & 0,700 $	Consumo de potencia activa, tip.	20 W				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,
$ \begin{array}{c} & & & \\ & $			· · · · ·			,
$ \underbrace{ Evolución I_cierre}_{0,5} 0,85 \\ 0,325 \\ 0,5 \\ 0,85 \\ 0,35 \\ 0,5 \\ 0,85 \\ 0,375 \\ 0,5 \\ 0,85 \\ 0,400 \\ 1,18033989 \\ 0,5 \\ 0,85 \\ 0,425 \\ 1,084652289 \\ 0,5 \\ 0,85 \\ 0,425 \\ 1,084652289 \\ 0,5 \\ 0,85 \\ 0,450 \\ 1,054092553 \\ 0,5 \\ 0,85 \\ 0,500 \\ 1 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,85 \\ 0,550 \\ 0,85 \\ 0,550 \\ 0,85 \\ 0,550 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,950 \\ 0,950 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,9750 \\ 0,986 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,975900073 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,9750 \\ 0,986 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,9750 \\ 0,85 \\ 0,550 \\ 0,877058019 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,575 \\ 0,86062966 \\ 0,5 \\ 0,85 \\ 0,700 \\ 0,85$						
$\begin{array}{c} 0,5 \\ 0,85 \\ 0,350 \\ 0,5 \\ 0,85 \\ 0,400 \\ 1,11803389 \\ 0,5 \\ 0,85 \\ 0,400 \\ 1,11803389 \\ 0,5 \\ 0,85 \\ 0,400 \\ 1,11803389 \\ 0,5 \\ 0,85 \\ 0,475 \\ 1,02597852 \\ 0,5 \\ 0,85 \\ 0,500 \\ 1 \\ 0,5 \\ 0,85 \\ 0,500 \\ 1 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,932504808 \\ 0,5 \\ 0,85 \\ 0,575 \\ 0,86062966 \\ 0,5 \\ 0,5 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,85 \\ 0,700 \\ 0,85 \\ 0,7$,
5 0,5 0,85 0,375 1,154700538 4,5 0,5 0,85 0,400 1,118033989 3,5 0,5 0,85 0,400 1,118033989 0,5 0,85 0,450 1,054092553 0,5 0,85 0,450 1,054092553 0,5 0,85 0,450 1,054092553 0,5 0,85 0,450 1,054092553 0,5 0,85 0,550 0,975900073 0,5 0,85 0,550 0,975900073 0,5 0,85 0,550 0,975900073 0,5 0,85 0,550 0,975900073 0,5 0,85 0,550 0,975900073 0,5 0,85 0,550 0,975900073 0,5 0,85 0,550 0,97590073 0,5 0,85 0,550 0,97590073 0,5 0,85 0,600 0,912870929 0,5 0,85 0,650 0,877058019 0,5 0,85 0,650 0,877058019 0,5 0,85 0,655	Evolu	ición l_cierre				,
$ \underbrace{ \begin{array}{c} 0,5 \\ 0,85 \\ 0,85 \\ 0,85 \\ 0,85 \\ 0,400 \\ 1,118033989 \\ 0,5 \\ 0,85 \\ 0,425 \\ 1,084652289 \\ 0,5 \\ 0,85 \\ 0,425 \\ 1,084652289 \\ 0,5 \\ 0,85 \\ 0,425 \\ 1,084652289 \\ 0,5 \\ 0,85 \\ 0,425 \\ 1,084652289 \\ 0,5 \\ 0,85 \\ 0,450 \\ 1,054092553 \\ 0,5 \\ 0,85 \\ 0,500 \\ 1 \\ 0,5 \\ 0,85 \\ 0,500 \\ 1 \\ 0,5 \\ 0,85 \\ 0,550 \\ 0,950 \\ 0,150$	5					
$\underbrace{\underbrace{(4)}}_{3,5} \\ \underbrace{(5)}_{3,5} \\ \underbrace$						
$\begin{array}{c} 3,5 \\ 3\\ 2,5\\ 1\\ 0,5\\ 0,5\\ 0\\ 0,5\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	4,5		0,5			1,118033989
$\begin{array}{c} \underbrace{3}_{2,5} \\ \underbrace{3}_{2,5} \\ 1,5 \\ 0 \\ 0,5 \\ 0 \\ 0,5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	4		0,5			1,084652289
$\underbrace{\underline{S}}_{2,5} \\ \underbrace{\underline{S}}_{1,5} \\ \underbrace{\underline{S}}_{1,5$	3,5		0,5	0,85	0,450	1,054092553
$\begin{array}{c} 0,5 \\ 0,5 \\ 0,5 \\ 0 \\ 0,5 \\ 0 \\ 0,5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	3		0,5	0,85	0,475	1,025978352
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2.5		0,5	0,85	0,500	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0,5	0,85	0,525	0,975900073
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0,5	0,85	0,550	0,953462589
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5		0,5			0,932504808
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						· · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,5					
$^{\circ}$ $_{0}$ 0 $_{0}$ 0 0 $^{15^{\circ}}$ $_{0}$ $^{2^{\circ}}$ $^{3^{\circ}}$ $^{3^{\circ}}$ $^{3^{\circ}}$ $^{5^{\circ}}$ 5	0 +					
t (s) 0,5 0,85 0,700 0,85	0,050,100,150,200,250,300,350,400	ASO 500 550 600 650 100 150 800 850 900 950 00				
U.51 U.851 U.7251 U.851		L (S)	0,5	,	,	0,85

Selectivity modules SITOP SEL1200 / SEL1400 Function blocks for SIMATIC S7-1200, S7-1500, S7-300

SITO	P SEI	1400								
1	State	e	Outpu	ıts	Informatio	n	Trends			
No.:	1		Limit	5 A	Output	0 A	Position	СОМ		
	2		Output	2 A	Current:	0 A	DIP switches:	TD1		
	3		Current:	2 A		0 A		TD2		
	4			9 A		0 A	Ctartum co que			
	5			7 A		0 A	Startup seque	ence:		
	6			10 A		0 A	Load-depend	endent startup		
	7			10 A		0 A	Outerter			
	8			10 A		0 A	Outputs:	RESET		

SITOP SEL1400									
State		Outputs	Information		Trends				
Output 1	Output 2	Output 3	Output 4	Output 5	Output 6	Output 7	Output 8		
State:		Manua	Manually switched off						
Reason switch off:	:								
Output current:		0 A		Limit Output	t put current:		5 A		

Faceplate for SEL1200 and SEL1400 available free of charge in SIOS

SITOP SEL1400				
State	Outputs	Information	Trends	
Device name:	SE	L1400	Device type:	24 V / 10 A
Serial number:	Q6	/LD	Product state:	0
Article number:	6EP4438-	7EB00-3DX0	Firmware version:	0
Outputs number:		8		

Selectivity modules SITOP SEL1200/1400 Technical data

		Marine				
Technical data	SITOP SEL1200 4 chan., 10 A	SITOP SEL1400 4 chan., 10 A	SITOP SEL1200 8 chan., 5 A	SITOP SEL1400 8 chan., 5 A	SITOP SEL1200 8 chan., 10 A	SITOP SEL1400 8 chan., 10 A
Order no.	6EP4437-7FB00-3CX0	6EP4437-7EB00-3CX0	6EP4437-7FB00-3DX0	6EP4437-7EB00-3DX0	6EP4438-7FB00-3DX0	6EP4438-7EB00-3DX0
Rated input voltage – range	24 V DC 20.430 V DC	24 V DC 20.430 V DC	24 V DC 20.430 V DC	24 V DC 20.430 V DC	24 V DC 20.430 V DC	24 V DC 20.430 V DC
Input current			max	. 63 A		
Rated output current – Setting range	4 x 10 A 2 10 A	4 x 10 A 2 10 A	8 x 5 A 1 5 A	8 x 5 A 1 5 A	8 x 10 A 2 10 A	8 x 10 A 2 10 A
Load circuits individually switched on	Yes	Yes	Yes	Yes	Yes	Yes
Safety fuse	15 A	15 A	6 A	6 A	15 A	15 A
Diagnostics interface	For al	I outputs one setting selectable: 0	Common signal interface or chanr	nel specific interface for load circu	it specific evaluation: Current, thr	eshold,
Status indication		3-coloured LED: Green: o	connected, Orange: manually disc	connected , Red: disconnected du	e to overload / short circuit	
Remote/button reset per channel	Yes	Yes	Yes	Yes	Yes	Yes
Switch-off characteristics	Switching	Limited	Switching	Limited	Switching	Limited
Current measuring point for poti	No	No	No	No	No	No
Efficiency at rated values, approx.	98%	98%	98%	98%	98%	98%
Parallel switching	Yes, max. 15 A	Yes, max. 15 A	Yes, max. 15 A	Yes, max. 15 A	Yes, max. 15 A	Yes, max. 15 A
Connection technology	Push-in	Push-in	Push-in	Push-in	Push-in	Push-in
Electronic short-circuit protection	Ja	Ja	Ja	Ja	Ja	Ja
Radio interference suppression (EN 55022)	Class B	Class B	Class B	Class B	Class B	Class B
Degree of protection (EN 60529)	IP 20	IP 20	IP 20	IP 20	IP 20	IP 20
Ambient temperature	-25+70 °C	-25+70 °C	-25+70 °C	-25+70 °C	-25+70 °C	-25+70 °C
Dimensions (W x H x D) in mm	45 x 135 x 125	45 x 135 x 125	45 x 135 x 125	45 x 135 x 125	45 x 135 x 125	45 x 135 x 125
Weight approx.	0.3 kg	0.3 kg	0.3 kg	0.3 kg	0.3 kg	0.3 kg
Certification		CE, UL, cUL	us, CB, cCSAus, CSA, ATEX, IEC	CEx , in preparation: Class I Div 2	2, GL und ABS	

Selectivity modules SITOP PSE200U Technical data

		STOLES IN COLOR		
Technical data	SITOP PSE200U with common signal interface		SITOP PSE200U with single channel signal	
Article No. Article No. with NEC Class 2	6EP1961-2BA11 6EP1961-2BA51	6EP1961-2BA21	6EP1961-2BA31 6EP1961-2BA61	6EP1961-2BA41
Rated input voltage – Range	24 V DC 2230 V DC			
Input voltage	max. 40 A			
Rated output current – Setting range	4 x 3 A 0,53 A	4 x 10 A 310 A	4 x 3 A 0,53 A	4 x 10 A 310 A
Individual load circuits to be switched on sequentially	Yes		Yes	
Diagnostics interface	Common signal interface		Signal interface for channel-specific evaluation (SIMATIC 7 function block)	
Status indication via 3-color LED per channel	3-coloured LED: Green: connected, Orange: manually disconnected , Red: disconnected due to overload / short circuit			
Remote reset with 24-V signal and reset via push button per channel;	Yes		Yes	
Switch-off characteristics	Limited electronic – for higher protection requirements			
Current measuring point for potentiometer	Yes	Yes	Yes	Yes
Efficiency at rated values, approx.	97%	99%	97%	99%
Parallel switching of 2 outputs	No			
Terminal technology	Screw terminal		Screw terminal	
Electronic short-circuit protection	Yes			
Radio interference suppression (EN 55022)	Class B			
Degree of protection (EN 60529)	IP20			
Ambient temperature	0 +60 °C (-25 +85 °C transport/ storage)			
Dimensions (W x H x D) in mm	72 × 80 × 72	72 × 80 × 72	72 × 80 × 72	72 × 80 × 72
Weight approx.	ca. 170 g	ca. 220 g	ca. 170 g	ca. 220 g
Certification	UR (UL 2367), cURus (UL 508, CSA C22.2 No. 107.1) cCSAus (Class I Div 2), ATEX (EN 60079-0, -15), GL 1), ABS 1), 6EP1961-2BA51/6EP1961-2BA61: NEC Class 2			

Agenda

Contacto

Jesús Arranz **SITOP** power supplies **Product Manager** Ronda de Europa 5 28760 Tres Cantos Mobile: +34 607 07 81 18 jesus.arranz@siemens.com E-Mail:

siemens.com/sitop