

Strategy and benefits Migration, implementation and blockers Ideas on open challenges

ETCS Level 3

Strategy and Benefits

Cost benefits

- Less trackside equipment
- Less trackside work improved work safety
- Simplified interlocking functions
- Improved track utilization
- Significant energy savings with DAS and ATO

But

- Efforts for storing operational situations: "state of the railway"
- Challenge to reach full interoperability in an international context
- Challenges for introduction into an existing network (migration)

High-density mainlines

- Capacity increase
- High availability
- Interoperability
- Improved
 cost/performance ratio
- High safety/security requirements

- Low-density secondary lines
- Low CAPEX

and OPEX ...

cost, cost, cost

Freight	Mining
 Reduced costs of operation Higher degree of automation Autonomous driving 	 High availability DTO/UTO Pit-to-port: integrated solutions Precise stopping Robustness

Goal: Towards a high-capacity and highly available ETCS-Level-3-only railway

There are several Railways in Europe considering ETCS Level 3

Italy: ETCS L3 for "Urban Nodes" Implied by Future Developments

ERTMS Migration with an initial overlapping of SCMT: TEN-T Corridors, HD Urban Nodes and Regional Lines

0

2016

2021

Scenario 2021

Scenario 2026

2026

United Kingdom: High Capacity ATP System

A keystone to cope with the huge Challenges Railway is facing in the UK

SIEMENS Digital Railway nuity for life

The Netherlands: ETCS Level 3 Hybrid A pragmatic approach towards a High Capacity Railway

Source: ProRail, Railway Gazette

France: Already in 2010 SNCF considered ETCS Level 3 like approaches for High Speed Lines and to reduce Costs on Regional Lines

SIEMENS

Ingenuity for life

Next steps

- Automatic train operation (ATO)
- Moving block
- IP radio
- Train integrity
- Satellite positioning

Future developments

- Station/platform functions
- Automatic train regulation
- Autonomous driving in depots and on open track

Conclusion

- ETCS Level 3 is a step change
- ETCS Level 3 provides significant benefits to the rail sector
- Interoperability will become an even bigger challenge
- Consensus on operational rules is a key for success
- All next steps require more cooperation within the sector

Migration, Implementation & Blockers

Migration, Implementation & Blockers

Migration

- Complex landscape
- Many start and end-states
- Variety between and within countries

Implementation

- Dealing with the Migration Steps
- Getting the railway from start to end-state(s)
- Dealing with the challenges & blockers

Migration, Implementation & Blockers

1. Migration paths

- Complexity and variety
- Which are plausible/ likely?
- Technology starting points?

2. Implementation of Migration Paths

- How can migration be achieved in practice?
- What are the challenges and solutions?

Migration Paths to L3

ETCS Migration Matrix

Level 3 Implementation - Methods

Implementing optimal migration

- Probable stages/ phases within each migration step
- Key considerations / what <u>really</u> matters?
- How to achieve?
 - Minimise disruption or 'Big Bang'?
 - Train fitment
 - Trackside fitment overlay
 - Phased infrastructure upgrades
 - Phased operations changes
 - Integration and Test

Implementation Challenges

- What difficulties are presented at each step?
- How might these be addressed or avoided?
 - Unique migration technologies/ solutions
 - Operational methods

Addressing Migration Challenges

Avoid mixed fleet operation with day / night separation

- Level 3 during day with fitted trains
- Level 2 during night with a unfitted fleet

Onboard Unit is kept in Level 2 – but with Level 3 operation

- closing the gap until all specifications are ready
- ETCS Trackside to evaluate if a train is L3 ready

Shadow Mode implementation

Install the whole system in parallel with existing and run in the background / switch in & out for test

Cloud-based

signaling

The second of 14

Automated driving

evel 3

Intelligent Traffic

ETCS L3 - Ideas on Open Challenges

Content ETCS L3 Open challenges

// Definitions of ETCS L3
// Introduction to 4 System types
// Assumptions for L3 operation
// Safety analysis on L3
// Accuracy of Train Length

ETCS Level 3 Definitions according to specs and a baseline conclusion

Subset - 023		Su	Subset - 026		Functional Requirements Specification v5.0 (Baseline 2 only)	
"	A level of ERTMS/ETCS that uses radio to pass movement authorities to the train. Level 3 uses train reported position and integrity to determine if it is safe to issue the movement authority. "	"	Train position and train integrity supervision are performed by the trackside radio block centre in co- operation with the train (which sends position reports and train integrity information). "	"	Same as level 2 except that train integrity is provided by onboard and therefore trackside train detection is optional . "	
	The Baseline: ETCS Level 3 uses train reporte	d posi	tion and integrity and by this is r	not de	ependent on trackside vacancy	

detection.

ETCS Level 3 Four Main principles

Core Building Blocks of ETCS L3 are:

- ETCS On-Board unit enhanced by Train Integrity
- Interlocking and RBC at trackside
- Eurobalise

Main system principles

1. Virtual Block with TVD (following *unfitted* **train)**

2. Virtual Block *w/o* TVD (following fitted train)

3. Moving Block with TVD

4. Moving Block w/o TVD

System Type 1 Virtual Block with TVD (= Hybrid L3)

Two sources of train position information:

- The ETCS position report (incl. train integrity info)
- Track Vacancy Detection.

- Trackside must decide how to combine/prioritize the TVD and virtual block information.
- For trains reporting integrity info, the MA calculation for following train is based on virtual blocks.
- For trains NOT reporting integrity info, the underlying TVD info can be used for MA calculation.

System Type 2 Virtual Block without TVD

One source of train position information:

- The ETCS position report (including train integrity information)
- Trackside is divided into fixed virtual blocks.
- The blocks are occupied/cleared based on info in the position report.

System Type 3 Moving Block with TVD

System Type 4 Moving Block without TVD

One source of train position information:

- the ETCS position report (including train integrity information)
- The reserved block moves with the train.

Assumptions & Preconditions ETCS Level 3

- All trains also non-ETCS-equipped are known by ETCS trackside
- On-Board and trackside always try to communicate inside L3 areas
- ETCS On-Board is in charge to transmit Train Data, Train Integrity and Train Length as safety relevant information
- RBC calculates MA of train and secures the route in collaboration with Interlocking
- Cold Movement Detection essential on-board provision
- Accurate Train Length and Train Integrity Info to determine End of Train
- Other systems (e.g. ATO) can be attached and/or integrated
- No trackside signals nor track vacancy detection required

Safety Analysis on Level 3 shall provide framework for solution development

Solutions on train integrity can be derived accordingly

- Current specs miss a safety analysis for ETCS Level 3
- Focus on difference between Level 2 and 3
- Check suitability of mission profile of L1/L2
- Apportionment of THRs to equipment
- FMEA based on operational scenarios and/or user requirements

Benefits of accurate Train Length

With an accurate train length information, these challenges can be covered:

- The validation process during Start of Mission becomes easier
- The obstacle definition after End of Mission can be minimized
- The intentional Joining and Splitting can be better automized

The next specs shall specify the accuracy level of L_TRAIN

We turn your vision into reality.