

Model 3000+ Grade Crossing Predictor/Motion Sensor

Field Manual

DOCUMENT NO. SIG-00-18-01

VERSION A.4

REVISED DECEMBER 2020 & APRIL 2021

PROPRIETARY INFORMATION

The material contained herein constitutes proprietary and confidential information, and is the intellectual property of Siemens Mobility, Inc., protected under United States patent, copyright and/or other laws and international treaty provisions. This information and the software it describes are for authorized use only, and may not be: (i) modified, translated, reverse engineered, decompiled, disassembled or used to create derivative works; (ii) copied or reproduced for any reason other than specific application needs; or (iii) rented, leased, lent, sublicensed, distributed, remarketed, or in any way transferred; without the prior written authorization of Siemens. This proprietary notice and any other associated labels may not be removed.

TRANSLATIONS

The manuals and product information of Siemens Mobility, Inc. are intended to be produced and read in English. Any translation of the manuals and product information are unofficial and can be imprecise and inaccurate in whole or in part. Siemens Mobility, Inc. does not warrant the accuracy, reliability, or timeliness of any information contained in any translation of manual or product information from its original official released version in English and shall not be liable for any losses caused by such reliance on the accuracy, reliability, or timeliness of such information. Any person or entity that relies on translated information does so at his or her own risk.

WARRANTY INFORMATION

Siemens Mobility, Inc. warranty policy is as stated in the current Terms and Conditions of Sale document. Warranty adjustments will not be allowed for products or components which have been subjected to abuse, alteration, improper handling or installation, or which have not been operated in accordance with Seller's instructions. Alteration or removal of any serial number or identification mark voids the warranty.

FCC RULES COMPLIANCE

The equipment covered in this manual has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his/her own expense.

See back cover for contact information.

Copyright © 2018 - 2021 Siemens Mobility, Inc., All rights reserved.

Table of Contents

PROPRIETARY INFORMATION	1
TRANSLATIONS	1
WARRANTY INFORMATION	1
FCC RULES COMPLIANCE	2
HOW TO USE THIS MANUAL	7
SYSTEM CUTOVER	8
CIRCUIT AND PROGRAMMING VERIFICATION	8
VERIFY OFFICE CONFIGURATION CHECK NUMBER	RS 9
WIRING OF KEYED INTERFACE CONNECTORS	
CALIBRATION	12
RECALIBRATION & REPROGRAMMING REQUIREMENTS DUE TO MODULE REPLACEMENT	Γ 12
RECALIBRATION REQUIREMENTS DUE TO PROGRECHANGES	
RECALIBRATION REQUIREMENTS DUE TO TRACK EQUIPMENT CHANGES	
CALIBRATION PROCEDURES	14
TUNING THE 62785-F TUNED JOINT COUPLER	16
CALIBRATING A TRACK MODULE	21
TCN and FCN	35
GCP OPERATIONAL CHECKS	36
TROUBLESHOOTING	40
SYSTEM STATUS INDICATORS AND LOGS	
SYSTEM TROUBLESHOOTING	45
TESTING TRACKSIDE EQUIPMENT	69
TESTING FOR TRACK CIRCUIT ISSUES	70
OUT OF SERVICE FEATURE	78
SOFTWARE VERSIONS	83
PROGRAMMING	83
USB FILE STRUCTURE	84
UPLOAD CONFIGURATION FILE TO GCP	86
UPLOADING SOFTWARE USING A USB DEVICE	87
HARDWARE	99
CHASSIS CONFIGURATION	99
PLUG-IN MODULES AND SUBASSEMBLIES	102
CPU III MODULE (A80903) OPERATION	108
ATCS SITE ID ENTRY	134
Installation of Ferrite Beads	136
GLOSSARY	139

List of Figures

Figure 1	Inserting Wire in Cage Clamp Type Connecto	
Figure 2	Tuned Joint Coupler, 62785-f	
Figure 3	Shunt Placement for 62785-f Bypass Coupler	18
Figure 4	Opening the Calibration Window	22
Figure 5	Start Calibration	23
Figure 6	Calibration In Progress and Complete	23
Figure 7	Midpoint Location	25
Figure 8	Enter New Values	28
Figure 9	Linearization Values	29
Figure 10	Island Calibration Window	31
Figure 11	Island Calibration Window	32
Figure 12	Check Numbers Screen	35
Figure 13	CPU Not Driving Transfer	40
Figure 14	CPU Driving Transfer	41
Figure 15	Transfer Time Extended	41
Figure 16	Track Detail Screen	42
Figure 17	Unhealthy Track Module Diagnostics	46
Figure 18	Troubleshooting Flowchart (Part 1)	67
Figure 19	Troubleshooting Flowchart (Part 2)	68
Figure 20	Track Out of Service Menu	79
Figure 21	Track Out of Service Screen	80
Figure 22	Put GCP Back in Service	82
Figure 23	Main Program Menu	83
Figure 24	Null Modem Adapter	89
Figure 25	USB Menu	98
Figure 26	A80740 Dual Two Track Case	100
Figure 27	A80740 Case with Modules Installed	100
Figure 28	CPU II+ Front Panel	103
•	CPU III Indicators, Controls, and Connectors	
ū	Track Module Front Panel	
J	RIO Module Front Panel	
Figure 32	• •	
Figure 33	•	
Figure 34 Position	Transfer Module Assembly, A80468, S3 Swi	
Figure 35	Transfer Module (A80468) Fuse Positions .	127
Figure 36	Echelon LAN Bus Wiring	133
Figure 37	Ferrite Bead Sizes	136

List of Tables

Table 1 Wire S	Strip Lengths by Connector	10
	bration & Reprogramming Requirements Chassis Replacement	
	bration Requirements Due to Program	13
	bration Requirements Due to Track nges	14
Coupled with Tu	um Distance to Insulated Joints when unable Insulated Joint Bypass Coupler,	18
Table 6 Field 1	Funing Procedure #1	18
Table 7 Field 1	Funing Procedure #2 for Couplers	20
	Calibration	
	ach & Linearization Calibration Bypass	24
Table 10 Appro	oach Calibration and Linearization Steps	25
Table 11 Calib	ration Value History Form, 1st Approach	29
Table 12 Calib	ration Value History Form 2nd Approach	30
Table 13 Islan	d Calibration	31
Table 14 Islan	d Calibration Secondary Procedure	32
Table 15 Islan	d Shunt Distance	33
Table 16 Stan	dby Module Calibration	34
Table 17 GCP	Operational Checks	37
Table 18 Diag	nosing CPU Module Problems	47
Table 19: Track	Module Indications (Module States)	51
Table 20: Track	Module Indications (Remedies)	54
Table 21 Insul	ated Joint Coupler Test	69
Table 22 Rail I	Bond Tests	69
Table 23 Term	ination Shunt Test	70
Table 24 Low	EZ Qualification Test	71
Table 25 Nuisa	ance Activation Rail Phase Check	72
Table 26 Troul	bleshooting a De-energized Predictor	73
Table 27 Troul	bleshooting Inputs	75
Table 28 3000	+ GCP Case Feature Overview	99
Table 29 Modu	ule to Interface Connector Relationship 1	01
Table 30 CPU	II+ User Interface1	03
Table 31 Setu	p Menu Display1	07
Table 32 CPU I	II Indicators, Controls, and Connectors 1	80
Table 33 LED Ir	ndications1	10

Table 34	CPU III GCP Display Messages 115
Table 35	Track Module User Interface 118
Table 36	RIO Module User Interface 121
Table 37	Transfer Module User Interface 123
	Transfer Delay Interval Table (for S3 on A80468 ssembly)
Table 39	CPU Connectors
Table 40	Track 1 Connectors
Table 41	Track 2 Connectors 131
Table 42	RIO Connectors
Table 43	Modify SIN Number 135
Table 44	Ferrite Bead Ordering Information 138

HOW TO USE THIS MANUAL

General Information

This handbook is intended to provide guidance to maintenance personnel on the following topics:

System Cutover Page 8
Calibration Page 12
Operational Checks Page 36
Troubleshooting Page 40

WARNING

Railroads or agencies are responsible for ensuring only properly trained and authorized personnel have access to the model 3000+ gcp.

Warning devices may not operate as intended during installation, cutover, module change out, module software updates, reboot and calibration procedures. Take alternate means to warn vehicular traffic, pedestrians, and employees.

Before placing the model 3000+ GCP into service following installation, programming change, hardware changes, or wiring changes:

- Verify tracks are free of any and all track related issues.
- Verify the proper components are used, wired, and programmed as specified by the railroad's or agency's approved wiring/installation diagrams and procedures.
- Verify complete system operation as specified by the railroad's or agency's test procedures.
- Failure to follow these guidelines may lead to incorrect or unsafe operation of the track circuit.

SYSTEM CUTOVER

NOTE

This procedure does not supersede procedures of the maintaining railroad. This procedure is designed to supplement railroad procedures. In case of conflicts between procedures, the most restrictive procedure should govern.

Model 3000+ GCP System Cutover Form

The Model 3000+ GCP System Cutover Form, found in SIG-00-17-03 (Table 6-14), is used when installing, physically modifying, or after disarrangement of a Model 3000+ GCP.

NOTE

Modules may be removed and/or replaced from the case without removing power.

CIRCUIT AND PROGRAMMING VERIFICATION

Verify the Model 3000+ GCP modules shown on the circuit plans are properly inserted and secured into their appropriate slots (main/standby).

NOTE

The Main and Standby modules do not require independent programming. Both sets of modules operate from the same stored application program.

STEP 1

- Remove all connectors (green screw type and orange cage clamp) to the Model 3000+ GCP.
- Close battery buss to Model 3000+ GCP system case.
- Verify the voltage and polarity of the B and N wiring to the green plug connectors for the GCP.
- Insert only the green power plug connector above the CPU module and verify programming after system boots.
- If used, set the Model 3000+ GCP Transfer Timer Assembly 80468 timer transfer switch to MAIN.
- Review the program in the Model 3000+ GCP selecting 3) GCP Programming and verify the programming via the Main Program Menu's submenus.
- Verify the programming per the approved site drawing, adding field measured parameters (approach, DAX offset and island distances, etc.).
- Scroll to Program View. Verify the OCCN against the site drawing and note the values on the System Cutover Form.

- Select 1) SITE Setup > 1 Site Configuration.
 The Site Configuration screen appears.
- If required, enter any data needed so that all parameters match the approved site drawing.

STEP 2

- If used, verify the Echelon LAN wiring and termination is in place.
- Before connecting power to other GCP connectors, verify wiring to Model 3000+ GCP system, case wiring, wiring to surge panels, track, warning devices, and cable circuits to other locations.
- Connect track cable at house termination points.
- Connect other cable circuits at house termination points.

WARNING

Take adequate precautions to warn any pedestrians, personnel, trains, and vehicles in the area until proper system operation is verified.

STEP 3

The wiring to loads must be applied in the following sequence to avoid damage:

- Verify battery polarity on green power plugs and orange input plug connector(s).
- Connect warning device wiring and cables at house termination points.
- Connect all other connectors to Model 3000+ GCP system.
- Connect all other electronic equipment to the battery busses.

VERIFY OFFICE CONFIGURATION CHECK NUMBERS

There are two methods to validate that the Office Configuration Check Number is per the circuit plan, either:

- Scroll to Program View
- Review the numbers presented in 1) Site Configuration
- Or from the System View screen, scroll left to the Diags and Reports screen
- When the Diags and Reports screen opens, select 3) Check Numbers

This completes the Model 3000+ system check out procedure.

WIRING OF KEYED INTERFACE CONNECTORS

WARNING

Incorrect wiring and installation will lead to unsafe functioning of the GCP. The user must follow correct installation procedures and perform installation testing to verify correctness of the wiring and system programming parameters before placing the GCP in service.

External Wiring Connectors and Wire Size

All external wiring to a Model 3000+ GCP Assembly is by means of plug-in connectors.

The orange cage-clamp connectors for the signal circuits should use 16 to 12 AWG wire.

The orange cage-clamp connector for the Echelon Lon Talk should use communication grade twisted wires of at least 20 AWG.

The green Screw-Lock connectors for the CPU should use 10 AWG wire.

Wire Preparation

Strip insulation from the end of the wire as indicated in Figure 1.

Table 1 Wire Strip Lengths by Connector

Type of Connection Strip Length	
Screw-down	0.28" (7 mm)
Cage clamp	0.32" – 0.35" (8 – 9 mm)

It is recommended that a stripping tool be used which allows the strip length to be set accurately. The addition of ferrules is not required. Prepare all wires in this fashion.

Wire Insertion

For screw-down type connectors:

- Insert stripped end of a wire into the wire receptor of the connector until it stops.
- Verify that no portion of the wire insulation is in contact with the wire receptor.
- Tighten screw to a torque of 4.5 inch pounds (0.5 0.6 Nm). (About the same tightness as required when tightening a signal terminal nut.)
- Pull on wire to determine that it does not move within the connector. (Pull with about the same amount of force as when tightening boot laces.)

- If a wire is suspected of moving when pulled, remove the wire and run the wire receptor through its full range of motion. Repeat the above steps for this wire.
- Repeat the above steps for each wire being attached to the connector.

If any wire receptor fails to hold the wire securely, replace the screw-type connector with an appropriate cage-clamp style connector.

Wires are secured to the cage-clamp connector as follows:

- 1. Place a flat bladed screwdriver in the rectangular slot in the connector next to the wire receptor (see Figure 1)
- 2. Use a screwdriver blade 0.10 in. wide and 0.020 in. thick (2.5mm x 0.5mm)
- 3. Lever the wire cage clamp open by pressing straight down on the screwdriver
- 4. Insert the stripped end of a wire into the fullyopen wire receptor until it stops
- 5. Hold the wire in place and release the screwdriver blade pressure
- 6. The wire receptor closes on the stripped end of the wire

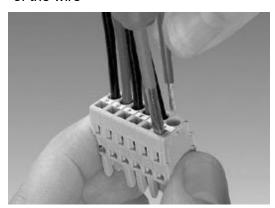


Figure 1 Inserting Wire in Cage Clamp Type Connector

CAUTION

Use the correct screwdriver size to prevent damage to the connector.

NOTE

The recommended flat-bladed screwdriver blade size is 0.10" wide, 0.020" thick (2.5mm x 0.5mm).

CALIBRATION

The Model 3000+ GCP is programmed through the use of the A80485-1 Display or by the Web User Interface (Web U/I).

Model 3000+ GCP System Calibration consists of GCP Calibration and System Checkout.

WARNING

If island status is changed from no to internal, island recalibration may be required.

NOTE

If the CPU module MCF or the Track Module MEF is changed, requisite programming and recalibration will be required.

RECALIBRATION & REPROGRAMMING REQUIREMENTS DUE TO MODULE REPLACEMENT

The recalibration requirements due to the replacement of a module are shown in the following table.

Table 2 Recalibration & Reprogramming Requirements Due to Module/Chassis Replacement

Module/Assembly Replacement		Calibration Required				Rep F
		GCP CAL	GCP APP	GCP LIN	ISL CAL	Reprogramming Required
A80403	CPU	No	No	No	No	No
A40418	Track	Yes ¹	Yes/ No ²	Yes/ No ²	Yes	No
A40413	RIO (I/O)	No	No	No	No	No
A80406	Transfer	No	No	No	No	No
A80485	Display	No	No	No	No	No
A80438-2	ECD ³	No	No	No	No	Yes
A80740	Chassis	Yes	Yes	Yes	Yes	Yes

Notes:

- 1. For track with changed A80418
- May be bypassed using BYPASS button instead of the START button in calibration procedure
- 3. Plug-in located on chassis behind CPU Module. Requires same MCF as previously in use.

RECALIBRATION REQUIREMENTS DUE TO PROGRAM CHANGES

The GCP program changes that require track recalibration are indicated in the following table.

Table 3 Recalibration Requirements Due to Program Changes

	Calibration Required				Repro
Program Changes	GCP CAL	GCP APP	GCP LIN	ISL CAL	Reprogramming Required
Increased Number of Tracks	Yes ¹	Yes ¹	Yes ¹	Yes ²	Yes ¹
GCP Frequency Change	Yes ³	Yes ³	Yes ³	No	No
Island Frequency Change	No	No	No	Yes ⁴	No
Application changed from: Unidirectional to Bidirectional or Bidirectional to Unidirectional					
Transmit Level Changed from Medium to High or High to Medium	Yes ⁵	Yes ⁵	Yes ⁵	No	No
Approach Length Changed					
Ballast Compensation Value Changed					
Island Operation Changed from No/External/T1 Isl to Internal or from Internal to No/External/T1 Isl	Yes ⁶	No ⁷	No ⁷	Yes ⁸	No
Set to Default selected (and track parameters listed above changed from original settings)	Yes ⁹	Yes ⁹	Yes ⁹	Yes ⁹	Yes ¹⁰

Notes:

- 1. For added tracks only
- 2. If island is used
- 3. For tracks with new GCP frequencies
- 4. For tracks with new island frequencies
- 5. For changed tracks only
 6. If EZ varies more than 2
 7. Can be bypassed
 8. If changed to internal

- 9. For all tracks
- 10. Complete reprogramming required

RECALIBRATION REQUIREMENTS DUE TO

TRACK EQUIPMENT CHANGES

Changes made to the existing track equipment that require track recalibration are shown in the following table.

Table 4 Recalibration Requirements Due to Track Equipment Changes

	Calibration Required			
Program Changes	GCP CAL	GCP APP	GCP LIN	ISL CAL
Termination Shunts Changed	Yes ¹	No	No	No
Termination Shunts Moved to New Location ³	Yes ¹	Yes ¹	Yes ¹	No
Termination Shunts of Other Frequencies Added, Removed from, or Moved Within the GCP 3000+ Approach(es)	Yes ¹	Yes ¹	Yes ¹	No
Wide band Insulated Joint Couplers (8A076 or 8A077) Replaced in GCP 3000+ Approach(es)	Yes ¹	No ²	No ²	No
Tuned Insulated Joint Couplers (62785-F) Replaced in GCP 3000+ Approach(es)	Yes ¹	Yes ¹	Yes ¹	No
GCP 3000+ Track Wire(s) Replaced	Yes ¹	No ²	No ²	Yes

Notes:

- 1. For changed tracks only.
- 2. Calibration can be bypassed.
- Approach distance in the Program menu must be changed to reflect the new approach distance prior to the start of track calibration. Otherwise, the system will prompt for recalibration.

CALIBRATION PROCEDURES

WARNING

GCP tracks must be verified to be free of any and all track-related issues prior to being placed in service. Any track-related issues that are identified must be corrected and verified to be correct prior to final calibration and linearization.

NOTE

If the outlined procedures fail, they should be repeated once. If the error repeats, refer to the Troubleshooting section.

GCP Calibration is divided into the following automated procedures:

- GCP Calibration (GCP CAL)
- Approach Distance Calibration (APP CAL)
- Approach Linearization (LIN CAL)
- Island Calibration (ISL CAL)

GCP Calibration may also include the following manual procedure:

Tuning the Tuned Joint Coupler (TJC)

WARNING

The approach and linearization procedures require the recording of the computed approach distances in feet (not the EZ value).

When editing the computed approach distances, enter the value in feet (not the EZ value).

Failure to enter distances in feet may result in shorter warning times than intended.

Perform the following tuning procedures on the tuned joint coupler prior to beginning the linearization process.

TUNING THE 62785-F TUNED JOINT COUPLER

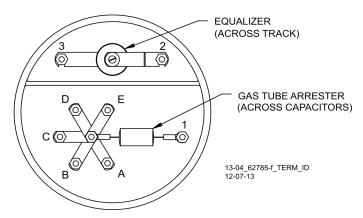


Figure 2 Tuned Joint Coupler, 62785-f

The Tunable Insulated Joint Bypass Coupler, 62785-f is the only tuned bypass coupler to be used with the Model 3000+ GCP for bypassing insulated joints in DC coded track. The 62785-f Coupler is available in standard Siemens frequencies of 156 Hz through 970 Hz.

WARNING

Insulated joint bypass couplers, 62531-f and 62631-f, must not be used with the model 3000+ GCP.

When the model 3000+ GCP is programmed as a predictor, the 62785-f coupler cannot be used to bypass insulated joints within the inner two-thirds of an approach, except as specified in Table 5

The tuned joint coupler must be tuned prior to performing setup for approach length and linearization procedures during the track calibration process.

Only 62785-f tuned bypass couplers may be used to bypass insulated joints in coded dc track circuits.

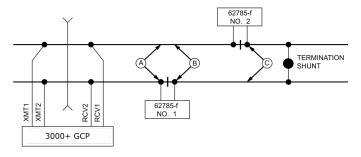
The application guidelines for Tunable Insulated Joint Bypass Coupler, 62785-f when used only with the Model 3000+ GCP have been expanded as follows:

- In DC coded track circuits, the insulated joints within an approach may be bypassed using the Siemens 62785-f Tunable Insulated Joint Bypass Coupler, provided the minimum distances specified in Table 5 are observed.
- The 62785-f Coupler must be field-tuned to pass the Model 3000+ GCP operating frequency (f)

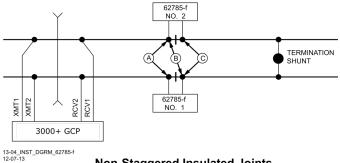
- around insulated joints in DC or coded DC track circuits.
- Field tuning of the Coupler enables precise frequency adjustment for track and joint parameters.
- The Coupler must be located within 10 feet of the insulated joints that it is coupling.
- The minimum distance to the insulated joints is generally a function of the Model 3000+ GCP operating frequency; i.e., the lower the operating frequency, the longer the minimum distance.

Two sets of insulated joints may be coupled in any single approach, provided the minimum operating distances specified in Table 5 are observed.

Table 5 indicates the minimum operating distances (in feet) to the first and second set of insulated joints that are coupled with 62785-f couplers for model 3000+ GCP operation.


WARNING

Ensure that a standard AREMA nut is tightened securely against each gold nut on terminals a through e, including the terminals that are not tightened down.


NOTE

While field turning the 62785-f Bypass Coupler, tightening the nut on terminal E produces maximum change in EZ value. Tightening the nut on terminal A produces minimum change.

The 62785-f Coupler is tuned by means of five standard AREMA binding posts which are labeled A through E (see Figure 3) and equipped with a special gold AREMA adjustment nut.

Staggered Insulated Joints

Non-Staggered Insulated Joints

Figure 3 Shunt Placement for 62785-f Bypass Coupler

Table 5 Minimum Distance to Insulated Joints when Coupled with Tunable Insulated Joint Bypass Coupler, 62785-f

FREQUENCY (HZ)	MINIMUM DISTANCE TO FIRST SET OF INSULATED JOINTS (FEET)	MINIMUM DISTANCE TO SECOND SET OF INSULATED JOINTS (FEET)
86	N/A	N/A
114	N/A	N/A
151 – 211	1500/458	2200/671
212 – 348	1000/305	1400/427
349 – 560	700/214	1000/305
561 – 790	500/153	800/244
791 – 979	400/122	700/214

^{*}Distance applies to insulated joints located on the same side of the crossing.

Table 6 Field Tuning Procedure #1

See Figure 3 above for locations referred to in this table.		
Step 1 Tighten the gold nut securely on terminal E of each coupler.		
Step 2 Calibrate the Model 3000+ GCP so that the EZ value is 100.		
Step 3 Place a hardwire test shunt across the		

	track at location A (refer to Figure 3)
Step 4	Make note of the EZ value appearing on the Model 3000+ GCP display.
Step 5	Move the test shunt to location B.
Step 6	 Tune the Tunable Insulated Joint Bypass Coupler #1 to the same EZ value noted in Step 4. Tighten the gold nut on the Coupler #1 terminals labeled D, C, B, and A, in sequence beginning with terminal D. If tightening a nut results in an EZ value that is lower than the value recorded in Step 4, loosen the nut and tighten the next nut in sequence. If, after tightening a nut, the EZ value remains higher than the value recorded in Step 4, leave the nut tightened and tighten the next nut in sequence. Continue to tighten nuts D through A as necessary to obtain an EZ value that is approximately the same as that recorded in Step 4.
Step 7	Move the test shunt to location C.
Step 8	 Tune the No. 2 Tunable Insulated Joint Bypass Coupler to the EZ value noted in Step 4. Tighten the gold nut on the Coupler #1 terminals labeled D, C, B, and A, in sequence beginning with terminal D. If tightening a nut results in an EZ value that is lower than the value recorded in Step 4, loosen the nut and tighten the next nut in sequence. If, after tightening a nut, the EZ value remains higher than the value recorded in Step 4, leave the nut tightened and tighten the next nut in sequence. Continue to tighten nuts D through A as necessary to obtain an EZ value that is approximately the same as that recorded in Step 4.
Step 9	Remove the test shunt and tighten a standard AREMA nut against each gold nut to ensure all nuts are securely locked in position.
Step 10	Completely recalibrate the Model 3000+ GCP to perform all operational checks while observing the smooth change in the EZ value across the couplers during a train move.

WARNING

Ensure that a standard AREMA nut is tightened securely against each gold nut on terminals A through E, including the terminals that are not tightened down.

 Table 7
 Field Tuning Procedure #2 for Couplers

See Figure 3 above for locations referred to in this table.		
Step 1	Tighten the gold nut securely on terminal E of each coupler.	
Step 2	Calibrate the Model 3000+ GCP EZ value to 100.	
Step 3	Place a hardwire test shunt across the track at location A (refer to Figure 7).	
Step 4	Make a note of the EZ and EX values on the Model 3000+ GCP display.	
Step 5	Move the test shunt to location B.	
Step 6	Tune the Tunable Insulated Joint Bypass Coupler #1 EX value to above 75. The EZ value may be as much as 8 points above the value noted in Step 4.	
Step 7	Move the test shunt to location C.	
Step 8	Tune the Tunable Insulated Joint Bypass Coupler #2 so the EX value stays above 75. The EZ value may be as much as 16 points above the value note in Step 4.	
Step 9	Remove the test shunt and tighten a standard AREMA nut against each gold nut to ensure all nuts are securely locked in position.	
Step 10	Completely recalibrate the Model 3000+ GCP and perform all the operational checks while observing the relatively smooth change in the EZ value across the couplers during a train move.	

CALIBRATING A TRACK MODULE

WARNING

Do not recalibrate if an in-service track suddenly has a large jump in EZ or high signal error. The cause may be a track, bond, coupler or shunt related problem which must investigated and corrected before considering recalibration. Before starting calibration, ensure that track bonding is good, that all termination shunts, insulated joint couplers, and isolation track devices are installed and that no trains are in the GCP approaches.

NOTE

During approach calibration of the Model 3000+ GCP, when the island is de-energized, the EX value is locked to 100. During a new installation, an upgrade. or а Track replacement, with the EX locked at 100, the EZ may appear abnormally low. Once the island is energized, the EX unlocks and the EX and EZ display actual approach values based upon field conditions. The island for a given track module does not necessarily have to be on that particular module (or any module if an external island), depending upon circuit arrangement.

Track Module calibration is required if the Display's Track Detail screen depicts:

- GCP Calib Req
- Island Calib Req

Calibration screens depict:

- GCP Calib Req
- Approach Calib Req
- Linearization Calib Req
- Island Calib Req

During calibration, the Track Module 4-character display shows one of the following:

- GCAL GCP Calibration in process
- GAPP Approach Calibration in process
- GLIN Linearization Calibration in process
- ICAL Island Calibration in process

The Calibration screen indicates which calibrations are required with an empty box in each calibration

select button. A check mark is displayed in the box when the indicated calibration is complete.

Table 8 GCP Calibration

	T						
Step 1	If transfer module A80468 is present, set the transfer switch to MAIN .						
Step 2	If a 60 or 100 Hz Cab Signal is in use, turn it off at this time.						
Step 3	From the System View menu, select the track to calibrate, i.e. 1 or 2 by entering that number on the keypad. The menu only shows enabled tracks.						
© Diag	gs 🛕 System View 10©						
Trk 1 1 1 2 1 2	C EZ EX MPH ISL L GCP Cal Req CReq M						
	TRK1 COMMS RIO COMMS EVT REC COMMS						
	GCP RLY DAX A DAX B DAX C DAX D						
© Diag	Track 1 Options						
Trk	Detail view						
1 🔥 1 2 🔥 2	2 Plagriostics						
	2 3 Calibration 4 Out Of Service						
	٩						
Fig	ure 4 Opening the Calibration Window						
	From the Track Options menu, select 3)						
	Calibration (See above).						
	The Track "N" Window appears, depicting the Calibration status of:						
	GCP, along with EZ and EX values						
	Approach, along with Computed						
Step 4	Distance						
	Linearization, along with Linearization Stand						
	StepsIsland, along with Island Status and Z						
	Level						
	If Calib Req appears on any of the above						
	lines, calibration is required.						

Select 1) GCP.

The Track "N" GCP Calibration Window opens, listing 1) Start Calibration and 2) Add Comment.

Select 1) Start Calibration. The display depicts Initiating, In Progress messages during calibration.

If calibration is successful:

Step 5

Passed, Please Wait appears in the window.

EZ should be 98 to 102 and the 1) GCP line has a green check next to Calibrated.

If calibration is not successful, the display shows a **Failed** message. If a **Failed** message is received, try the calibration again. If it fails a second time, verify that the wiring is correct.

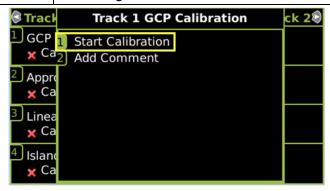


Figure 5 Start Calibration

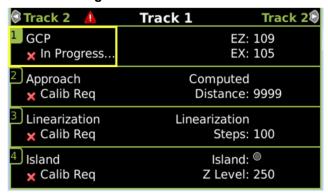


Figure 6 Calibration In Progress and Complete

Step 6

To record the date and time stamped reason for the recalibration and store it in the log, select the 1) GCP button and then the 2) Add Comment button. Type any notes on the reason for recalibration and select Enter to save the entry. The Comment Entry window closes and the display returns to the GCP Calibration window.

Step 7 If the cab signal was turned off in Step 2, turn it on.

The linearization procedure compensates for lumped loads in the Model 3000+ GCP approach that can affect the linearity of EZ over the length of the approach as a train approaches the crossing. The linearization is essential to improving warning time accuracy. Linearization may be affected by: narrow band shunts in other frequencies, which may occur when other GCP approaches overlap the GCP approach circuit; other track equipment in the GCP approach such as audio frequency, overlay track circuits, coded track circuits, etc.; and missing or incorrect track battery chokes.

WARNING

Use the following bypass procedure only if the current computed approach distance and linearization values are known to be correct.

NOTE

If an in-service 3000+ GCP requires only that the GCP Calibration procedure be performed, the BYPASS procedure must be completed for both Approach and Linearization.

Table 9 Approach & Linearization Calibration Bypass Procedure

Step 1	Once GCP Calibration is completed, bypass the approach calibration by first selecting 2) Approach. After the Track "N" Approach Calibration Window opens, select 3) Bypass. Do not select 1) Start Calibration.
Step 2	Bypass the linearization calibration by first selecting 3) Linearization. After the Track "N" Linearization Calibration Window opens, select 3) Bypass. Do not select 1) Start Calibration.

WARNING

The approach and linearization procedures require the recording of the computed approach distances in feet (not the EZ value). Failure to enter distances in feet may result in

shorter warning times than intended.

NOTE

Calibration Distance and Linearization Steps values are site historical data and must be recorded as specified in Table 11 and Table 12 in this manual as well as in SIG-00-17-03 Table 6-14 on both the History Card and the Site Cutover form.

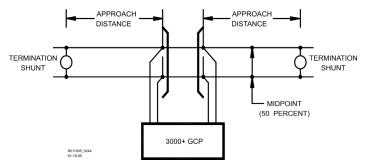


Figure 7 Midpoint Location

Table 10 Approach Calibration and Linearization Steps

Step 1	Record the EZ and EX values for the track (before installing the hardwire shunt) in the Step 1 column (Calibrated Values) on the Calibration Values History form (Table 11 and Table 12). Then, temporarily place a hardwire shunt across the termination shunt. For bidirectional installation, use the termination shunt farthest from the crossing.	
Step 2	Record the EZ and EX values for the track in the First Approach, Step 2 column on the Calibration Values History form (Table 11 and Table 12).	
Step 3	Select the 2) Approach. The Track "N" Approach Calibration Window opens, listing 1) Start Calibration, 2) Edit, 3) Bypass and 4) Add Comment.	

	Select 1) Start Calibration. The display reports Initiating, then In Progress during the calibration.					
Step 4	If calibration is successful:					
	Passed, Please Wait appears in the window, followed by Calibrated.					
	 The Computed Distance value appears and the 2) Approach line has a green check next to Calibrated. 					
	If calibration is not successful, the display shows a Failed message.					
Step 5	Record the computed approach distance in feet for the track in First Approach , Step 5 column (Comp Dist) on Calibration Values History form (Table 11 and Table 12).					
Step 6	Accurately (within 1%) locate the midpoint of the longest approach and move the hardwire shunt to that point on the rails (see Figure 7).					
Step 7	Select 3) Linearization. The Track "N" Linearization Calibration Window opens, listing 1) Start Calibration, 2) Edit, 3) Bypass and 4) Add Comment.					
Step 8	Select 1) Start Calibration. The display reports Initiating, then In Progress during the calibration. If calibration is successful: Passed, Please Wait appears in the window, followed by Calibrated. The Linearization Steps value appears and the 3) Linearization line has a green check next to Calibrated. If calibration is not successful, the display shows a Failed message.					
Step 9	Record the linearization step value for the track in the First Approach , Step 9 column (Linearization Steps) on the Calibration Values History form (Table 11 and Table 12). The value should be between 68 and 132. If not, refer to Troubleshooting.					
Step 10	Verify that the computed approach distance in feet (Comp Dist, Step 5) and the linearization steps (Linearization Steps, Step 9) values recorded on the Calibration Values History form (Table 11 and Table 12) are the same as the values displayed on the Track "N" window.					
Step 11	Remove the hardwire shunt from the track.					
- 1						

Step 12	If the approach is unidirectional or simulated bidirectional, go to Step 31. If the track is bidirectional, go to Step 13.					
Step 13	Temporarily place a hardwire shunt across the termination shunt of the other approach.					
Step 14	Record the EZ and EX values for the track in the Second Approach, Step 14 column on the Calibration Values History form (Table 11 and Table 12).					
Step 15	Select 2) Approach. The Track "N" Approach Calibration Window opens, listing 1) Start Calibration, 2) Edit 3) Bypass, and 4) Add Comment.					
Step 16	 Select 1) Start Calibration. The display reports Initiating, then In Progress during the calibration. If calibration is successful: Passed, Please Wait appears in the window, followed by Calibrated. The Computed Distance value appears and the 2) Approach line has a green check next to Calibrated. If calibration is not successful, the display shows a Failed message. 					
Step 17	Record the computed approach distance in feet for the track in the Second Approach, Step 16 column (Comp Dist) on the Calibration Values History form (Table 11 and Table 12)					
Step 18	Accurately (within 1%) locate the midpoint of this approach and move the hardwire shunt to that point on the rails (see Figure 7)					
Step 19	Select 3) Linearization. The Track "N" Linearization Calibration Window opens, listing 1) Start Calibration, 2) Edit, 3) Bypass and 4) Add Comment					
Step 20	Select 1) Start Calibration. The display reports Initiating, then In Progress during the calibration. If calibration is successful:					
Step 21	Record the linearization (Linearization Steps) for the track in the Second Approach , Step 21 column (Linearization Steps) on the Calibration Values History form (Table 11 and Table 12). Value between 68 and 132.					

	Verify that the computed approach distance in feet (Computed Distance, Step 17) and the linearization steps (Linearization Steps, Step 21) values recorded are the same as the values displayed on the Calibration Select window.
Step 22	Remove the hardwire shunt from the track.
Step 23	If the Linearization Steps value for the second approach, Step 21, is greater than or the same as the Linearization Steps value recorded for the first approach Calibration Values History form (Table 11 and Table 12), Step 9, go to Step 31. If the Linearization Steps value for the second approach (Table 11 and Table 12), Step 21, is less than the value recorded for the first approach, Step 9, go to Step 24.
Step 24	Select 3) Linearization. The Track "N" Linearization Calibration Window opens: listing 1) Start Calibration, 2) Edit, and 3) Bypass, 4) Add Comment.
Step 25	Select 2) Edit button. The New Value dialog box, Figure 8, appears.

Figure 8 Enter New Values

Step 26	Enter the Linearization Step Value (Linearization Steps) recorded for the first approach, Step 9, Calibration Values History form (Table 11 and Table 12) into the New Value field using the keypad numbers and select ENTER . The entered value appears on 3) Linearization .
Step 27	Select 2) Approach. The Track "N" Approach Calibration Window opens, listing 1) Start Calibration, 2) Edit, 3) Bypass, and 4) Add Comment.
Step 28	Select the 2) Edit button The Computed Approach Distance dialog box appears.

Step 29	Enter the computed approach distance (Computed Distance) value (in feet) recorded for the first approach, Calibration Values History form (Table 11 and Table 12), Step 5, into the New Value field using the keypad numbers and select Enter .
	The entered value appears on 2) Approach.
Step 30	Verify that the computed approach distance (Comp Dist, Step 5) and the linearization steps (Linearization Steps, Step 9) values recorded on the Calibration Values History form (Table 11 and Table 12) for the first approach are the same as those displayed on the Track "N" window (see Figure 9).

Figure 9 Linearization Values

To record the reason for the Calibration and store it in the event log, select 3)

Step 31

Linearization and then 4) Add Comment.

Type any notes about the calibration and select Enter to save the entry.

Table 11 Calibration Value History Form, 1st Approach

1	CALIBRATION VALUES HISTORY FORM (APPROACH AND LINEARIZATION CALIBRATION)									
GCP#	<u> </u>									
Date	of Ca	alib	ration:							
Name	e:									
Locat	ion Ir	nfoi	mation: _							
			CALIB	RATION VAL	UES HISTORY					
			1 st Appro	1 st Approach E/W()						
				N/S ()						
		Calibrated Values (Step 1)		Hardwire Across Termination Shunt (Step 2)	Computed Approach Distance (Ft) (Computed Distance)	Linearization Step Value (Linearization Steps) (Step 9)				

					(Step 5)	
	ΕZ	EX	EZ	EX		
Track 1						
Track 2						

Table 12 Calibration Value History Form 2nd Approach

1	CA	CALIBRATION VALUES HISTORY FORM (APPROACH AND LINEARIZATION CALIBRATION)					
GCP#							
Date o	f Ca	alibrat	ion:				
Name:							
Location	on I	nform	ation: _				
			CALIB	RATIO	N VAL	UES HISTORY	
		2 ⁿ	2 nd Approach E/W ()
				N	/S ()
		Calibrated Values (Step 1)		Acr Termi Shunt	lwire oss nation (Step 4)	Computed Approach Distance (Ft) (Computed Distance) (Step 17)	Linearization Step Value (Linearization Steps) (Step 21)
		ΕZ	EX	EZ	EX		
Track	1						
Track	2						

NOTE

This completes Approach and Linearization Calibration. If the system includes an internal island, proceed to Island Calibration (Island). If not, proceed to.

The island can be calibrated to respond to a shunting sensitivity of 0.12, 0.3, 0.4, or 0.5 ohms. A hardwire shunt is used for calibration.

NOTE

Island track circuit calibration is generally performed using 0.12 ohm shunting sensitivity. In an area where poor shunting is experienced or anticipated, a minimum of 0.3 ohm shunting sensitivity is recommended.

In areas of passenger operation, a minimum of 0.3 ohm shunting sensitivity is recommended.

Table 13 Island Calibration

Step 1

If an Island circuit is used, select **4) Island** from the Display Main Screen.

The Island Calibration Window appears.

Figure 10 Island Calibration Window

	Figure 10 Island Calibration Window					
Step 2	Temporarily install a hardwire shunt beyond the island receiver rail connections at the appropriate distance specified below the Calibration Required message.					
	 Shunt distances for island frequencies are provided in the table following the Island Calibration procedure. The appropriate ones for the configured island frequency are also shown on the calibration screen as shown in Figure 10. Ensure EZ value is less than or equal to 5. 					
Step 3	Select 1) Start Calibration. The display reports Initiating, then In Progress during the calibration. If calibration is successful: Passed, Please Wait appears in the window, followed by Calibrated. The Z Level value appears and the 4) Island line has a green check next to Calibrated. If calibration is not successful, the display shows a Failed message (see Troubleshooting).					
Step 4	Verify that the Island indicator on the 4) Island line is grey and remove the hardwire shunt. The island indicator is now green. Proceed to the Island Calibration Secondary Procedure (Table 14)					

Table 14 Island Calibration Secondary Procedure

Step 1	Ensure that no external equipment is connected to the serial port on the track board.
Step 2	Following railroad policies concerning the use of jumper wires. Place a jumper wire across the RCV1 and RCV2 receiver wires at the main terminal board and verify the EZ value is less than or equal to 5. If the EZ value is greater than 5 and the jumper is confirmed to be securely connected, use additional jumper wires in parallel until an EZ less than or equal to 5 is achieved. The crossing should activate. Note the Island Z value. See Figure 11.

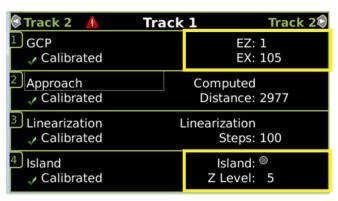


Figure 11 Island Calibration Window

Step 3	Remove the jumper(s) and allow the crossing to recover.		
Step 4	Following railroad policies concerning the use of jumper wires. Place a jumper wire across the XMT1 and XMT2 transmitter wires at the main terminal board and verify the EZ value is less than or equal to 5. If the EZ value is greater than 5 and the jumper is confirmed to be securely connected, use additional jumper wires in parallel until an EZ less than or equal to 5 is achieved. The crossing should activate. Note the Island Z value.		
Step 5	Remove the jumper(s) and allow the crossing to recover.		
Step 6	If either Island Z value is 40 or greater, perform a full island calibration as detailed in Table 13 Island Calibration.		

Step 7	The full calibration in Table 13 Island Calibration includes repeating the steps in this procedure. Performing a full calibration will confirm if the board requires repair or just calibration.			
Step 8	If either Island Z value is still 40 or greater after this calibration procedure, remove the board from service and contact Siemens Rail Automation Technical Support at (800) 793-7233 Option 1. Inform the operator you have a track board that failed functional checks. Be prepared to provide the following information: 1. Your contact information 2. Part number 3. Serial number and hardware version 4. The EZ and Island Z values recorded during the test.			

When GCP approach, linearization, and island calibrations are complete for each remaining MAIN side Track Module installed, do the following:

 If a Standby set of modules is present, go to Standby Modules Calibration.

Table 15 Island Shunt Distance

Island	Shunt Distance (Feet/Meters)			
Frequency (kHz)	0.12 ohm Sensitivity	0.3 ohm Sensitivity	0.4 ohm Sensitivity	0.5 ohm Sensitivity
2.14	20/6.10	50/15.24	67/20.42	84/25.60
2.63	17/5.18	43/13.11	58/17.68	72/21.95
3.24	13/3.96	33/10.06	44/13.41	55/16.76
4.0	10.5/3.20	27/8.23	36/10.97	45/13.72
4.9	9.0/2.74	23/7.01	31/9.45	39/11.89
5.9	7.5/2.29	19/5.79	26/7.92	32/9.75
7.1	6.5/1.98	17/5.18	23/7.01	29/8.84
8.3	6.0/1.82	15/4.57	20/6.10	25/7.62
10.0	5.0/1.50	13/3.96	18/5.49	22/6.71
11.5	4.5/1.37	12/3.66	16/4.88	20/6.10
13.2	4.0/1.22	10/3.20	14/4.27	17/5.18
15.2	3.5/1.07	9/2.74	12/3.66	15/4.57
17.5	3.0/0.91	8/2.44	11/3.35	14/4.27
20.2	3.0/0.91	8/2.44	11/3.35	14/4.27

Table 16 Standby Module Calibration

Step 1	On Transfer module A80468, set the transfer switch to STBY .			
Step 2	If a 60 or 100 Hz Cab Signal is in use, turn it off at this time.			
Step 3	From the System View menu, select the track to calibrate, i.e., 1 or 2 by entering that number on the keypad. The menu shows only enabled tracks.			
Step 4	From the Track Options menu, select 3) Calibration. The Track "N" Window appears, depicting the Calibration status of: 1) GCP, along with EZ and EX values 2) Approach, along with Computed Distance 3) Linearization, along with Linearization Steps 4) Island, along with Island Status and Island Z Level If Calibration Required appears on any of the above lines, calibration is required.			
Step 5	Follow the Calibration steps listed in Table 8 GCP Calibration.			
Step 6	Follow the Calibration steps listed in Table 9 Approach & Linearization Calibration Bypass Procedure.			
Step 7	Fill out the Calibration steps listed in Table 11 Calibration Value History Form, 1st Approach for the first approach, then the steps in Table 12 Calibration Value History Form 2nd Approach for the second approach.			
Step 8	Follow the Calibration steps in Table 13 Island Calibration and Table 14 Island Calibration Secondary Procedure to complete the Calibration process for the Standby Module.			
Step 9	To record the reason for the Calibration and store it in the event log, select the appropriate Menu item (1-4) and then 4) Add Comment. Type any notes about the calibration and select Enter to save the entry.			
Step 10	Repeat Steps 1 through 8 if a second standby-side Track Module is installed.			

TCN AND FCN

The GCP 3000+ provides a Track Check Number (TCN) for each track. The TCN provides a way for the Maintainer to know if any track calibration changes have been made since they recorded the TCN value. This check number changes whenever any of the following are performed:

- The main and standby track cards will have different TCNs as they are calibrated at different times.
- The main and standby will have different FCNs, if any TCN changes it will cause the FCN to change. The Field Check Number (FCN) is a combination of all the track check numbers.
- The check numbers screen has been improved in display versions after 1.5.7r to show the main and standby TCNs and FCNs.

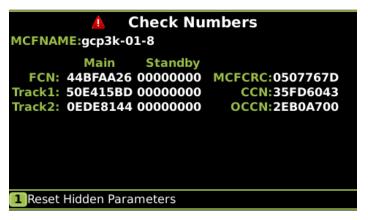


Figure 12 Check Numbers Screen

The TCN and FCN will show a value of 0 if the track card is not fully configured and calibrated and in session with the CPU (for the powered side).

If a parameter is changed which causes the GCP to require calibration, then the TCNs for both main and standby will show zero. When the main is then fully calibrated its values will be non-zero, the standby TCNs will still be at zero, thus providing an indication that the unpowered standby side has not yet been calibrated (see Figure 12).

NOTE

If a parameter that affects the TCN is changed, so calibration is required, but then it is changed back to its original value, the GCP will no longer require calibration, but the TCN is updated to a new value, as the TCN is recalculated when the GCP goes from

an uncalibrated to a calibrated state.

The FCN is an overall check number covering the TCNs for all used tracks. It will also show 0 if any track is not calibrated.

The configuration report lists the main and standby TCNs and FCNs.

NOTE

The main/standby TCNs and FCN, and OCCN out of date indication are only available on the Display if the Display Software version is later than 1.5.7r AND if the CPU II+ version after ncg05_30.mef or later or if the CPU III is used its version is 9VC72-V3H01_10.mef or later. The main/standby TCNs and FCN, and OCCN out of date indication are available on the CP Web IO for CP versions after 1.1.61r.

GCP OPERATIONAL CHECKS

Prior to placing a system in service, tests must be performed to verify proper system operation and I/O wiring. Proceed to next step if a feature is not used.

WARNING

After initial programming or programming module, track, or wiring changes, tests must be performed to verify proper operation of the GCP prior to placing a system in service.

WARNING

If a rapid change occurs in the value of EZ at any time the train is moving within the termination shunts, track discontinuity caused by a high resistance bond or a defective coupler is indicated. Locate and correct the problem immediately.

WARNING

The railroad procedures governing how to take a track circuit out of service shall be followed. The instructions in this section may be followed only if allowed by the railroad.

Table 17 GCP Operational Checks

	Check tracks for:	
Step 1	 Open transmit wire Crossing activates EZ = 0 Open receive wire Crossing activates EZ = 0 	
Step 2	 UAX, ENABLE input(s), if these features are used: Crossing activates when each remote DAX line circuit that controls a UAX or ENABLE input (controlling the crossing) is de-energized or opened from the far end of the circuit. Pickup Delay time is correct when input closes. 	
Step 3	 DAX outputs, if these features are used: Downstream crossing activates when the appropriate DAX output is deenergized DAX Pickup Delay time is correct 	
Step 4		

	Island detection:
Step 5	 When used, observe the ISLAND symbol on tracks on the Main Status display Place a 0.06 ohm shunt on island track wires ISLAND RLY output de-energizes (OUT 2 on track module) and Island symbol is GRAY on display Observe island LED on track module as shunt is removed and while ISLAND Pickup Delay is timing ISLAND LED is flashing After the island pickup delay time
	expires on module and island LED is steady RED
	ISLAND symbol on Main display is GREEN, and warning devices are deactivated.
	Out of Service, OOS, if this feature is used on the Display:
	 Take each track out of service using the display. Observe display indicates track is OOS
	Return track to service
	 Display indicates track is back in service If Display + OOS IP input is used, then for each track:
Step 6	 Turn on OOS input for the track (observe input on I/O view). Take track OOS using the display Display indicates track is OOS Turn off OOS input
	Display indicates track is back in service.
	If OOS IP Input is used: Turn on OOS input for the track If OOS IP Input is used:
	(observe input on I/O view).Main Display indicates track is OOS
	Turn off OOS inputDisplay indicates track is back in service

Step 7	 Train Detection, Warning Times and Crossing Operation EZ continuity check on train moves: Crossing devices activate and EZ value decreases smoothly (without rapid change) for an approaching train. Crossing devices turn off when island recovers after train move and the EZ rises smoothly (without rapid change) as the train recedes. For MAIN and STANDBY, check warning times for inbound train moves on each approach including DAX operation.
Step 8	 Maintenance Call (MC) Light, if this feature is used: Verify that the light is illuminated Verify that the MC extinguishes when one of the following occurs: The track is taken out of service, or an out-of-service input is energized. The CPU module is removed from the chassis (which will activate the crossing also). Restore the track, or CPU module to operation and the MC light should turn on.
Step 9	If Positive Start, and/or Sudden Shunt Detection are used: Shunt at the appropriate point Take the required measurements Reprogram EZ threshold levels as required

TROUBLESHOOTING

The GCP Display is the main diagnostic tool available to maintenance personnel.

The EZ and EX are shown for each track. A track status area is displayed for each track module in the system. The approximate speed of a train approaching the crossing is shown as a positive (+) number. The approximate speed of a train moving away from the crossing is shown as negative (-) number.

NOTE

If the Display is replaced, the logs remain on the removed Display, and any logs stored on the new Display will be shown when called.

Whenever any files are being saved using the Display, they may be saved either to another computer or to a USB Device.

SYSTEM STATUS INDICATORS AND LOGS

Transfer Time Extension and Indication

The display module versions after 1.5.7r when used with CPU II+ version ncg05_40.mef /CPU III version 9VC72-V3H01_10.mef or later will show whether the main or standby side of a redundant GCP is powered and whether the CPU is driving the transfer output. On the local UI this shows as XFER icon which indicates main or standby. If the icon is grey the CPU is not driving the transfer output and if the switch on the transfer module is set to auto the transfer module will count down and switch power to the other side.

Figure 13 CPU Not Driving Transfer

If the icon is green the CPU is driving the transfer output and the transfer module will not be counting down.

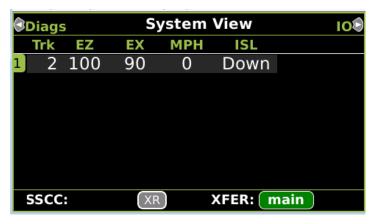


Figure 14 CPU Driving Transfer

The GCP has a new feature (available in CPU software ncg05_40.mef or later) where the CPU will extend the transfer time by 5mins if it detects that it has the same problem on the main side as the standby side. This feature has been added so that in the case whether the transfer timer is set to a low value (2 or 3mins for example) the display has time to connect to the CPU and then provide time for the maintainer to take a track out of service if necessary. In this state the display module will show a yellow icon to indicate the transfer time has been extended. When the icon goes back to grey, the transfer timer on the transfer module will start counting down if the switch is in the auto position.

Figure 15 Transfer Time Extended

NOTE

The XFER icon is not shown if:

- 1. Display Software is version 1.5.7r or earlier,
- 2. CPU III CP software is version 1.1.61r or earlier,
- CPU II+ CP software is version NCG05_30.mef or earlier.

The extended transfer feature is only available with:

- CPU II+ CP software version NCG05_30.mef or later.
- 2. CPU III CP software version 9VC72-V3H01 10.mef or later.

The Web UI also shows the XFER icon in the same manner.

Detail View Track Status Window Color Scheme

From the System View screen, select the number of a Track to review. When the **Track "N" Options** window opens, select **1) Detail View**. The Module Details window opens.

Figure 16 Track Detail Screen

The Module Details window has two sections. The left section utilizes the following colors:

- Green: The module is currently active and healthy
- Red: The module is currently active and unhealthy
- Grey: The module/slot is inactive and is depicted by <EMPTY>

The right section displays various information, with the type of information displayed depending upon the type of module depicted:

- VLP/CP Module
- RIO Module
- Track Module

Selecting the VLP/CP Module line provides:

- Battery Voltage
- Internal Voltage
- Internal Temperature

Selecting the RIO Module line provides:

- Vital relay output states
- Vital relay input states

Selecting the Track Module line provides information on four screens. The default screen depicts:

- Track Status details to include status colors
 - Gray: The Track Module is healthy, and no train is in the approach
 - White: The Track Module is healthy, and a Train is in the approach
 - Red: The Track Module is unhealthy
 - Flashing blue: The GCP or the GCP/Island is out of service.
- Predictor Status: selecting the Right Arrow once depicts:
 - Island Status
 - I/O Status
- Selecting the Right Arrow three times depicts the Track Programming values
- Selecting the Right Arrow a third time depicts TCN Status
- Selecting the Right Arrow a fourth time depicts EZ/EX Limits Status

Track Function Status: the status of optional track functions is displayed at the end of each row depicting active tracks.

- Enhanced Detection
 - "ed" indicates enhanced detection has been activated for the current train movement.
 - "ed" is only displayed when "Enhanced Detection Used" is set to YES and inbound poor shunting is detected.
- Xfer Delay MS to GCP
 - "m" indicates that the predictor switched to a motion sensor due to MS GCP Ctrl input being low or Xfer Delay MS to GCP timer is running.

System status:

- No Red DIAG triangle on top row = system is healthy
 - o all tracks are calibrated
 - track conditions are within normal operating parameters
 - o system is fully functional

- Red DIAG triangle on top row = unhealthy system or track condition exists.
 - displays system status
 - status window for affected track also displays red

Additional information is obtained by selecting the item number, which opens the **Track "N" Options** window and selecting **1) Detail View**. The **Module Details** window opens.

The 2) Diagnostics, 3) Calibration, and 4) Out Of Service menus are also available when the track section is tapped in the main status window.

NOTE

The recorder speed information is intended solely as a maintenance tool.

The train speeds are relative and may be affected by track parameters that include:

- Insulated joint proximity
- Insulated joint couplers
- Overlapping termination shunts
- Lumped ballast loads

The speed values are only intended to assist maintenance personnel in:

- Identifying slow versus fast train movements
- Distinguishing between accelerating, decelerating, and relatively constant speed train movements

The primary function of the recording is to document warning time.

Speed values are secondary and may not be consistent with recordings made by devices specifically designed to record train speed.

Reports and Logs

NOTE

If the Display is replaced, the logs remain on the removed Display, and any logs stored on the new Display will be shown when called.

There are three types of logs and one report that may be accessed as listed below:

- Event Log
- Diagnostic Log
- Train History Log
- Configuration Report

Event Log

The Event Log contains events generated by the CPU and sent to the display where they are time stamped, added to a log, and stored on the Display. In a redundant 3000+ system the Display log will contain events from both the Main and Standby systems.

Diagnostic Log

Combines entries for both Main and Standby.

Contains entries for whenever a diagnostic message is generated or cleared. The events in here are generated by the CPU and sent to the display where they are time-stamped and added to the log.

Train History Log

Contains a log of the last 20 train moves. The log shows which track the train was detected on, the recorded warning time in seconds, the detected train speed, the train speed at the island, and the average train speed.

Can be cleared by maintainer after review.

Select a train move entry and then the **VIEW** button to display the Train Move History Detail screen which includes:

- Average speed of train move
- Route of the train move, which is useful when multiple track circuits are used

Configuration Report

The Configuration Report can be created from the Configuration menu. It will show all the configuration parameters and version numbers.

SYSTEM TROUBLESHOOTING

This subsection describes the method of troubleshooting a problem in a system that has previously been in service.

The first step in troubleshooting a problem is to determine whether the GCP track circuit continuity is functioning properly and the components of the 3000+ GCP system are healthy.

When a 3000+ GCP system is healthy it shows the following:

- Track windows:
 - Have no trouble icons present on Display
 - Have no "Calibration Required" messages on Display
- Health LEDs on all modules (CPU, Track, RIO) are flashing slowly (1Hz)
- Transfer Module display time is not counting down

- CPU LED 1 is illuminated, indicating that the Maintenance Call output is on
- CPU LED 2 is illuminated, indicating that the transfer signal is not allowing transfer
- Power LEDs on all modules are on and steady

If the system is unhealthy, use the System Diagnostics or the Track Diagnostics to locate the problem.

Diagnostics

Each module also has diagnostic LEDs, and may have a four-character display, that assists in setup, calibration, diagnostics and troubleshooting. Refer to the Table of Contents at the front of this handbook to locate the exact Module required for LED and four-character display information.

When an unhealthy system or track condition exists, a red warning triangle is displayed. The status line for the affected track also displays a red warning triangle.

System Diagnostics

The Diagnostics Window can be accessed by:

 Selecting the track by pressing the requisite button, then selecting 2) Diagnostics. The DIAG screen opens.

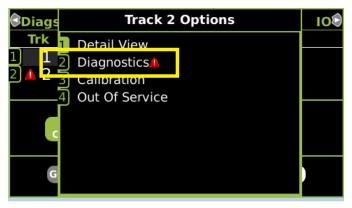


Figure 17 Unhealthy Track Module Diagnostics

Selecting one of the displayed error descriptions displays the diagnostic message shown in Table 18.

This screen lists the cause and remedies for the selected error. Use the UP and DOWN buttons as needed to view all of the data.

Troubleshooting the Modules

The normal sequence of messages seen on the four character display when a CPU III is booting up is shown below:

CPU3 > Boot > Init > E087 > ICHK > CP MEF > VLP MEF > GCP 3k MCF

If a CPU III is inserted into a system that does not have the MCF loaded it will need to load the MCF from the ECD, in this case the boot up message sequence is shown below:

CPU3 > Boot > Init > E087 > ICHK > CRC UCFG > NRBT > Loading MCF > Burning MCF > DONE > Boot > IP : Laptop > Init > ICHK > CP MEF > VLP ME > GCP 3k MCF

Note the E087 may or may not be present in the sequence above.

If the CPU III has been unpowered for more than a week and then it is inserted into a system, the boot up sequence may show the following:

CPU3 > Boot > Init > E087 > ICHK > CRC.. UCFG.. ERR ..ECD

In this case, leave the CPU III installed in the system with power on for 1 minute, then remove the CPU III module and reinsert it and it should boot up normally showing one of the first two sequences shown above.

Use the following tables to troubleshoot the individual modules.

Table 18 Diagnosing CPU Module Problems

Display				
Panel	Diag / Desc	Cause	Remedy	
CAP / MCF Capability Error (Diag3016) / The CPU is not capable of running this MCF		Usually occurs when using a recent MCF on an old CPU	Purchase a CPU with a higher capability or obtain an MCF requiring lower capability CPU	
CCN / Incorrect (Diag3021) / The CCN is incorrect for the configuration		After loading a configuration file, the CCN is incorrect	Reload the configuration file and repower the CPU card. If error continues, perform Set to Default and reprogram the unit.	

Display			
Panel	Diag / Desc	Cause	Remedy
Event Recorder Health (Diag3021) / Event Recorder not in session		The Event Recorder is selected as used but is not in session with the CPU	If no Event Recorder is required, Set 'External Evt Recorder' to No in GCP3000+ configuration. If Event Recorder is an Argus/WI, check the recorder and GCP are connected on the Echelon or Ethernet (CPUIII only). If the wiring correct, check Event Recorder and GCP ATCS addresses have the same RRR, LLL, GGG and when connected via Echelon that the GCP Subnode matches the SS part of the GCP's ATCS address.
CIC / CIC Access Error (Diag3022) / CPU unable to access data stored in CIC		If CIC access error is on MAIN CPU	1. Remove Standby CPU and repower unit. 2. If CIC error clears, the Standby CPU is bad; replace bad card. 3. If error does not clear, remove Main CPU, return Standby CPU to original slot, and switch to Standby. 4. If error clears, MAIN CPU is bad; replace card. 5. If error does not clear, CIC is bad; replace GCP chassis.

Display			
Panel	Diag / Desc	Cause	Remedy
CIC / CIC Access Error (Diag3022) / CPU unable to access data stored in CIC		If CIC access error is on STANDBY CPU Card	1. Remove Main CPU and repower unit. 2. If CIC error clears, the Main CPU is bad; replace bad card. 3. If error does not clear, remove Standby CPU, return Main CPU to original slot, and switch to Main. 4. If error clears, Standby CPU is bad; replace card. 5. If error does not clear, CIC is bad; replace GCP chassis.
CRC / N	ICF CRC	MCF CRC entered is incorrect (Diag 3004)	Reload MCF CRC
(Diag30 MCF	orrect 04) / The CRC is	MCF is corrupt (Diag 3003)	Reload MCF
incorrect for the current MCF		The executive (MEF) file is corrupt (Diag 3014)	Reload the MEF
Chec Inco (Diag30 MCF did	/ MCF cksum prrect 03) / The d not load rectly	The MCF is corrupt	Reload MCF
DFT / Default Values set (Diag3001) / Operating parameters have been set to default		New MCF has been loaded	Set the operating parameter
DFT / Vital Cfg Parms set to default (Diag3002) / Vital Cfg parameters have been set to default		New MCF has been loaded or UCN changed	Set the Vital Cfg parameters to the required values

Display				
Panel	Diag / Desc	Cause	Remedy	
DFT / Configuration set to default (Diag3017) / Configuration set to default		The configuration parameters have been set back to default due to either: MCF change Template change User setting default	Wait. The error will clear itself.	
INIT / No VLP Comms (Diag3020) / The VLP/CP LED on the CPU card does not light		The VLP is rebooting or is in its Initial State and performing its initial checks. This may occur after a VLP reset, or after changing templates.	Wait for a minute for the VLP to power up. If the VLP does not power up, check to see if it is continuously rebooting by checking the VLP Health LED.	
MCF / MCF Checks failed (Diag3005) / Verification of MCF data failed		The MCF is invalid	Obtain and load a valid MCF.	
MCF / MCF Compatibility incorrect (Diag3013) / MCF and MEF are incompatible		The installed MCF is incompatible with the MEF software	Obtain compatible MCF or MEF software.	
MOD / Module Type Error (Diag3006) / The MEF software is incompatible with the module hardware The MEF is incompatible with this hardware		incompatible with this	Reload a valid MEF for this hardware.	
UCFG / VLP Unconfigured (Diag3018) / VLP is unconfigured and not communicating with I/O modules		Usually due to: Incorrect MCF CRC MCF not loaded MCF not stored in ECD (ECD replaced)	Check other diagnostic message for exact cause.	

Table 19: Track Module Indications (Module States)

Indication	Meaning	Module State
СНК1	The receive wire EZ reading is very low in comparison with the check wire EZ	All predictors are de-energized
СНК2	CHK2 The check wire EZ reading is very low in comparison with the receive wire EZ	
СНКЗ	The receiver and check wires have low reading (train at EZ=0), but island is not occupied. (Only shows when GCP and Island share same pair of transmit wires).	All predictors are de-energized
СНК4	The check wire and receive wire readings are more than 50 points different	All predictors are de-energized
The check wire phase is incorrect		All predictors are de-energized
GAPP GCP Approach Calibration is required		All predictors are de-energized
GCAL GCP Calibration is required		All predictors are de-energized
GEXP GCP detected decreasing phase which could be a bad bond		All predictors are de-energized
GFRQ	GFRQ GCP frequency not set	
GHWR	GCP hardware error	All predictors are de-energized
Enhanced detection is turned on and the GCP detects poor shunting		Prime and Preempt de- energized (any zero offset predictors)

Table 19: Track Module Indications (Module States)

Indication	Magning	Madula Otata	
indication	Meaning	Module State	
GLCK	EZ or check EZ is below 3 after GCP has booted up Refer to the Trouble- shooting section	All predictors are de-energized	
GLIN	GCP Linearization Calibration is required	All predictors are de-energized	
GOFS	MS/GCP Operation is Out of Service	All used predictors are energized All unused predictors are deenergized	
GPRM	The Track Module is configured to expect an island and the prime has a non-zero offset value Set the prime to zero offset, if applicable If island is used at remote location, use a DAX not the prime Set the Island Connection to No Islands if no island is intended	All predictors are de-energized	
GRCV	GCP receiver error	All predictors are de-energized	
GSLV	SLV GCP slaving error No effect predictor		
GSTB	GCP is stabilizing after transmitter was turned on	All predictors are de-energized	
GXMT	GCP transmitter error	All predictors are de-energized	
HIEZ	High EZ (>115) detected on main or check wires All predict de-energis		
IIC:AI		Island is de- energized	

Table 19: Track Module Indications (Module States)

Indication	Meaning	Module State
ICON	Island Connect Error. The GCP Island Connection indicates an island is connected, but no island is turned on.	All predictors are de-energized
IFRQ	Island frequency not set	Island is de- energized
IOFS	Island Operation is Out of Service	Island energized
ISTB	Island is stabilizing after transmitter has been turned on	Island deenergizes
IXMT	IXMT Island transmitter error.	
LWEX	Low EX detected Low EX Adjustment is usually 39	All predictors are de-energized
LWEZ	Low EZ detection is turned on and EZ has remained below the low detection level for longer than the low EZ detection time.	All predictors are de-energized
RECV (Recovery)	The GCP is running a 30 second Recovery Time-out after an error has cleared.	All predictors are de-energized
RECV (Recovery)	The Island is running a 30 second Recovery Time-out after an error has cleared.	Island is occupied
RXEX	The receive wire phase is incorrect	All predictors are de-energized
UCFG	Track module is unconfigured	All predictors are de-energized; Island is deenergized. Outputs are deenergized; Inputs are de-energized

Table 19: Track Module Indications (Module States)

Indication Meaning		Module State
VOER OUT	Output hardware failure detected. Output is commanded on but is detected as off	Failed output(s) de-energized

Table 20: Track Module Indications (Remedies)

	ī	T	T
Panel Indication – Diagnosis	Description	Cause	Remedy
CHK1 Gain Check – Receive Wire Error (Diag1008)	Receive signal level is low while check signal level is normal. Check EZ is normal and track EZ is very low value	High resistance or open connection in a receive wire.	Locate and repair open connection in the receive wires
CHK2 Gain Check - Check Wire Error (Diag1007)	Check signal level is low while transmit and receive levels are normal. Check EZ is very low while track EZ is normal value	High resis- tance or open connection in a check wire.	Locate and repair high resistance or open connection in check wires.
СНКЗ	The receiver and check wires have low reading (train at EZ=0), but island is not occupied. (Only shows when GCP and Island share same pair of transmit wires).	Poor connection of receive/check wires or poor shunting or bad calibration data.	Locate and repair high resistance or open connection in check/receive wires. Recalibrate island.

Table 20: Track Module Indications (Remedies)

	•		,
Panel Indication – Diagnosis	Description	Cause	Remedy
CHK4 Gain Check Error (Diag1010)	Receiver and check signal levels differ by a significant amount	If a train is present: High resistance in transmitter track wires	Locate and repair: • High resistance connections in transmitter track wires
CHK4 Gain Check Error (Diag1010)	Receiver and check signal levels differ by a significant amount	If no train is present: High resistance in receiver or check receiver track wires open track connection	Locate and repair: High resistance connections in receive or check track wires open connections in receive or check track wires
CKEX Check Wire EX Error (Diag1006)	Check wires and transmit wires are out of phase Generally, occurs at cutover with 6-wire installations	The check wires and transmit wires are misphased.	Change the check wires connections so that: T1 & C1 are tied together T2 and C2 are tied together

Table 20: Track Module Indications (Remedies)

Panel Indication – Diagnosis	Description	Cause	Remedy
GAPP GCP Approach Calibration Required (Diag1021)	GCP Approach Calibration Required	Approach is uncalibrated An approach reverts to its uncalibrated state when the: GCP is recalibrated Track Module is replaced Template is set to default or a new template is selected Programmed approach distance is changed MCF is changed	Access the appropriate GCP Calibration Window If the computed approach distance is correct, select the BYPASS button If the computed approach distance is known for this track from a previous calibration, enter the correct value by selecting the EDIT button. If the computed approach distance is incorrect and is unknown, perform the approach calibration as described in Table 10

Table 20: Track Module Indications (Remedies)

Panel Indication – Diagnosis	Description	Cause	Remedy
GCAL GCP Calibration Required (Diag1020)	GCP Calibration Required	The Track Module is uncalibrated. A Track Module reverts to its uncalibrated state when the: Track Module is replaced MCF software is changed Template is set to default or a new template is selected Track Frequency is changed Approach distance is changed Compensation value is changed Transmit level is changed Directional (bi/uni) mode is changed	Access the appropriate Calibration Select Window and calibrate the GCP as described in Table 8
GEXP EX Process Error (Diag1016)	Phase (EX) decreases as train approaches crossing	Possibly caused by: poor shunting high resistance bond generally located near the GCP track wires	Locate and repair high resistance bonds

Table 20: Track Module Indications (Remedies)

Panel Indication – Diagnosis	Description	Cause	Remedy
GFRQ No GCP frequency Selected (Diag1012)	No track frequency set	MS/GCP Operation has been programmed as ON, but no GCP frequency has been selected	Select a GCP frequency from the GCP: track n program menu
GHWR Track Hardware Error (Diag1019)	Track Hardware Error	This occurs when the Track Module detects that its hardware is not operating correctly	Replace the module
GIPS IPS Mode (Diag1013	Inbound poor shunting (IPS) detected	IPS Mode is shown when the Track Module is configured with the Enhanced Detection option On and the module detects inbound poor shunting	None
GLCK Power Up Lockout Error (Diag1018)	EZ or Check EZ low after reboot	The EZ or Check EZ values are less than three after a power up. This could be caused by a train shunting the tracks near the feed point open receive or check wires	If a train is present, clear the lockout by selecting the Release Track icon on diagnostic terminal Status Screen If no trains are present repair the check and/or receive wires as required.

Table 20: Track Module Indications (Remedies)

Panel Indication – Diagnosis	Description	Cause	Remedy
GLIN GCP Linearizatio n Required (Diag1022)	GCP Linearizatio n Calibration Required	Linearization is uncalibrated Linearization reverts to its uncalibrated state when the: GCP is recalibrated Track Module is replaced Template is set to default or a new template is selected Programmed approach distance is changed MCF is changed	Go to the Setup Track Linearization Screen. If the linearization value is correct, select the BYPASS button. If the linearization value is known for this track from a previous calibration, enter the correct value by selecting the EDIT button. If the linearization value is incorrect or not known perform a linearization calibration as described in Table 10.
GOFS Out of Service Error	MS/GCP Operation is Out of Service		
GPRM Program- Error	The Track Module is configured to expect an island and the prime has a non- zero offset value	Prime is set not set to zero.	Set the prime to zero offset, if applicable. If island is used at remote location, use a DAX not the prime.

Table 20: Track Module Indications (Remedies)

Panel			
Indication – Diagnosis	Description	Cause	Remedy
GRCV Receiver Error (Diag1014) or (Diag1015)	Track Module internal receiver channels differ	Unacceptable difference between the redundant receivers on the Track Module is detected	Replace Track Module
GSTB GCP Stabilizing (Diag1001)	20 sec. stabilization period prior to start of normal operation.	System startup	Wait
		All installation:	
GXMT Transmitter Error (Diag1011)	Transmitter cannot maintain a constant current	 High resistance or open transmit track wire High resistance or open track wire rail connection 	Locate and repair open transmit wires or high resistance transmit wires connections.
GXMT Transmitter Error (Diag1011)	Transmitter cannot maintain a constant current	Unidirectional installations only: • open termination • open coupler • open bond	Locate and repair: open termination open coupler open bond
HIEZ High EZ (Diag1002)	High EZ or high EZ check value detected	Ballast has increased significantly since calibration	Recalibrate only after verifying that no other cause exists.
HIEZ High EZ (Diag1002)	High EZ or high EZ check value detected	Broken rail	Repair broken rail
HIEZ High EZ (Diag1002)	High EZ or high EZ check value detected	Defective insulated joint coupler	Replace defective insulated joint coupler

Table 20: Track Module Indications (Remedies)

1			
Panel Indication – Diagnosis	Description	Cause	Remedy
HIEZ High EZ (Diag1002)	High EZ or high EZ check value detected	Defective termination shunt	Repair defective termination shunt
HIEZ High EZ (Diag1002)	High EZ or high EZ check value detected	High resis- tance termina- tion shunt connection	Repair high resistance connection to termination shunt
HIEZ High EZ (Diag1002)	High EZ or high EZ check value detected	High-resis- tance track bond wire connection	Repair high resistance bond
HIEZ High EZ (Diag1002)	High EZ or high EZ check value detected	Poor calibration	Recalibrate only after verifying that no other cause exists.
ICAL Island Calibration Required (Diag1305)	Island requires calibration	Calibration is required when the: Track Module is replaced MCF is changed Template is set to default or a new template is selected Island frequency is changed	Access the appropriate Calibration Select Window and calibrate the island as described in Table 13.
ICON Island Connect Error	The GCP Island Connection indicates that an island is connected, but no island is turned on.	Faulty programming.	Verify programming against plan.

Table 20: Track Module Indications (Remedies)

Panel Indication – Diagnosis	Description	Cause	Remedy
IFRQ No Island Frequency Selected (Diag1300)	No island frequency has been programme d	An Island Operation is requested but no island frequency is selected	Select an island frequency from the Program menu
ISTB Island Stabilizing (Diag1301)	Island stabilizing after a power up	On startup the Track module initiates a 20 second timeout to allow the island output to stabilize	Wait
IXMT Island Transmitter Error (Diag1304)	Island cannot supply a constant current	All installations Track Module detects: high resistance transmit track wire open transmit track wire high resis- tance or open track wire rail connection	Locate and repair defective wiring or connections
IXMT Island Transmitter Error (Diag1304)	Island cannot supply a constant current	Unidirectional installations Track Module also detects: open termination open joint coupler open bond	Locate and repair open termination, joint coupler, or bond
LWEX Low EX (Diag1003)	Low track ballast resistance detected.	Broken rail	Repair broken rail
LWEX Low EX (Diag1003)	Low track ballast resistance detected.	Low ballast	Determine cause of low ballast and compensate

Table 20: Track Module Indications (Remedies)

		7	1
Panel Indication – Diagnosis	Description	Cause	Remedy
LWEX Low EX (Diag1003)	Low track ballast resistance detected.	Low ballast and defective insulated joint coupler	Replace defective insulated joint coupler
LWEX Low EX (Diag1003)	Low track ballast resistance detected.	Low ballast and high resistance bond	Repair high resistance bond
LWEX Low EX (Diag1003)	Low track ballast resistance detected.	Mud or other contaminants within ballast	Verify EX Adjust as described in Table 24.
LWEX Low EX (Diag1003)	Low track ballast resistance detected.	Poor drainage at crossing	Temporarily shorten the approach (see WARNING on Pg. 75)
LWEX Low EX (Diag1003)	Low track ballast resistance detected.	Salted crossing	Use a lower GCP frequency
LWEZ Low EZ (Diag1004)	Low EZ Detection is programme d ON and its timer interval is exceeded.	A false shunt on the track	Remove false shunts from the track
LWEZ Low EZ (Diag1004	Low EZ Detection is programme d ON and its timer interval is exceeded.	A false shunt on the track	Check that EZ returns to normal after false shunt removal.
LWEZ Low EZ (Diag1004	Low EZ Detection is programme d ON and its timer interval is exceeded.	A train is on the approach for a time longer than the timer setting.	Temporarily turn off low EZ detection until train has left.

Table 20: Track Module Indications (Remedies)

	1	T	1
Panel Indication – Diagnosis	Description	Cause	Remedy
LWEZ Low EZ (Diag1004	Low EZ Detection is programme d ON and its timer interval is exceeded.	Open receive track wire	Repair
RECV GCP Recovering (Diag1000)	30 sec. recovery time-out	Clearing of system error	Wait
RECV Island Recovering (Diag1303	Island recovering after self test	The Track module initiates a 30-second recovery timeout after an island error has cleared.	Wait
RXEX Receive Wire EX Error (Diag1005)	Transmit and receive wires are out of phase Generally observed at cutover	The receive and transmit wires are connected to the wrong rail (misphased)	Change the track wire connections so that: T1 & R1 are connected to rail 1 T2 & R2 are connected to rail 2
UCFG No Communica tions (Diag1017)	No communi- cation to a Track Module.	Track Module is not communicating with the CPU.	Verify that a module is in appropriate slot
UCFG No Communica tions (Diag1017)	No communi- cation to a Track Module.	Track Module is not communicating with the CPU.	Replace the module if the Track Module is continuously rebooting. BOOT displays on 4-character display at one minute (approximate) intervals.

Table 20: Track Module Indications (Remedies)

-			
Panel Indication – Diagnosis	Description	Cause	Remedy
UCFG No Communica tions (Diag1017)	No communi- cation to a Track Module.	Track Module is not communicating with the CPU.	If the Track Module is not continuously rebooting determine if UCFG is shown on the module's display. If only this module displays UCFG, replace it if all Track
			Modules display UCFG replace the CPU Module
VOER OUT Correspond ence Check Error (Diag1200)	No Vital output voltage	A vital output is commanded to be on, but is producing no voltage. May be caused by: Open or shorted output	Check for an open or shorted output and repair as required. If the output is not open or shorted,
		Defective Track Module.	replace the Track Module
G3KN / G3KN (Diag1306) / The track module does not support GCP 3000+ operation	Old software in track module	Load software GCP04_50.me f or later	

Lockout and Release Track

If an EZ or check EZ value below 3 is detected when the track module powers up, this may be an indication of a broken wire, or a train standing on the track. A "LockOut" message is displayed as an added precaution during the power up and the GCP RLY and DAX output will remain de-energized. If this is caused by a train and the train leaves the circuit, the LockOut will clear automatically.

The user can clear the lockout from the keypad on the display by selecting the track number (1 or 2) then when the **Track "N" Options** window opens, select **5) Release Track**.

To clear the "LockOut" from the Web UI, click the yellow Lock-out message.

This will cause the following Local User presence message to be displayed:

Web User Permission

Do you allow Web User to change Protected Values and Update Software?

Press Back to deny

Or

Enter to allow

To confirm that someone is present in the field, select **OK**, then acknowledge the message on the display. The lockout message will then be cleared.

Transfer Output

When the 3000+ GCP system is healthy, the transfer output is energized (on) as shown by LED2 lit on the active CPU module.

 This output level stops the Transfer Module from counting down and transferring to the opposite side when the Transfer Module is in the Auto mode.

If the transfer output LED is flashing this means that CPU has extended the transfer time, see page 41 for details

The transfer output is de-energized (off) when:

- A module is programmed as used but is not communicating with the CPU.
- MS/GCP or Island operation on a Track Module is unhealthy.
- The module cannot provide the 12-volt output.

Troubleshooting information regarding each module may be found in Table 18 and **Error! Reference** source not found..

Troubleshooting Flowchart

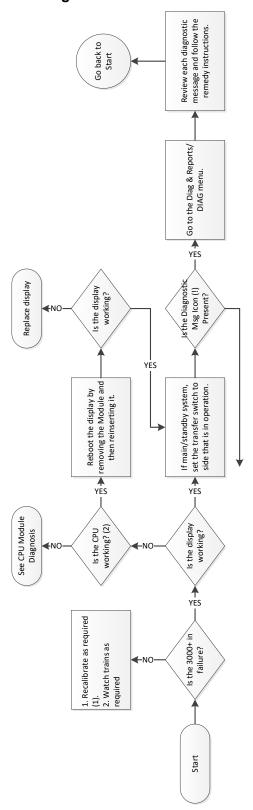


Figure 18 Troubleshooting Flowchart (Part 1)

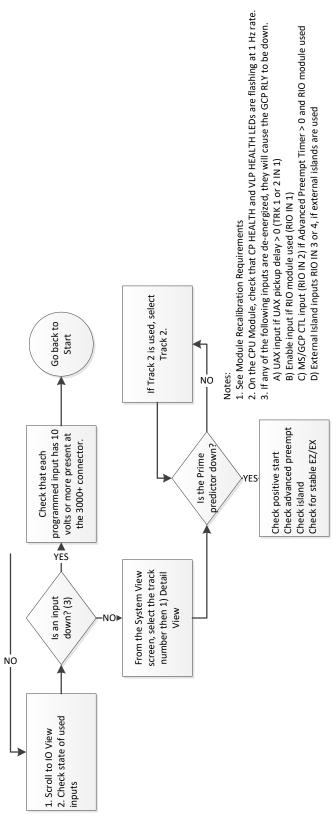


Figure 19 Troubleshooting Flowchart (Part 2)

TESTING TRACKSIDE EQUIPMENT

Test trackside equipment as per the steps listed below.

Table 21 Insulated Joint Coupler Test

Step 1	Connect a hardwire shunt on the crossing side of the joint coupler.	
Step 2	Record the EZ value:	
Step 3	Move the hardwire shunt to the termination side of the joint coupler.	
Step 4	Record the EZ value:	
Step 5	Remove the hardwire shunt.	
Step 6	 Determine the difference in the EZ values recorded in Steps 2 and 4. If the coupler is a wideband shunt, and the difference in EZ is more than ± 2, the wideband shunt is defective. If the coupler is a TIJC (located in the outer half of the approach), and the EZ difference is more than ± 3, the TIJC may be mistuned or defective. 	

Table 22 Rail Bond Tests

Step 1	Record the EX value with no shunt:		
Step 2	Place a hardwire shunt at the 50% point of the approach.		
Step 3	Record the EX value:		
Step 4	 Note the difference in EX values recorded in Steps 1 and 3. EX always increases as a shunt is placed closer to the crossing. Whether the shunt is a train or hardwire, EX must increase. If the EX value recorded in Step 3 is greater than the EX value in Step 1, the bad bond is between the hardwire shunt and the termination. If the EX value recorded in Step 3 is lower than the EX value in Step 1, the bad bond is between the hardwire shunt and the crossing. 		
Step 5	Continue placing the hardwire shunt closer or farther away from the starting point based on the value noted in Step 4. • Where EX increases in value, the last bond passed in the defective bond.		

EZ must be greater than 15 for this test to work.

Testing Termination Shunts: Hardwire, Wideband, and Narrow Band (NBS)

Table 23 Termination Shunt Test

Step 1	Record the EZ value:	
Step 2	Install a hardwire shunt across the termination.	
Step 3	 Record the change in EZ:	

TESTING FOR TRACK CIRCUIT ISSUES

Track Circuit Problems

When a failure occurs in a bi-directional GCP track circuit, the EZ and CHECK EZ on the Detailed Status View will generally change in relationship to the normal range and possibly to each other as follows:

- If EZ and Check EZ move higher or lower than normal, but remain relatively equal to each other, the track circuit problem lies on the transmitter side of the crossing.
- If EZ and Check EZ move higher or lower than normal, but their values differ by more than 5, the track circuit problem most likely lies on the receiver side of the crossing or within the island circuit including the feed wires.

Low EX

If a Low EX condition is occurring at a cutover of a new installation, check the following:

- Defective Bonds
- Defective insulated joint couplers
- Missing battery choke in approaches
- Defective gauge rods or switch rods
- Open termination shunt
- Improper application of other frequency NBS in the approaches.

When Low EX occurs at an in-service crossing, use Table 24 Low EZ Qualification Test to determine

whether the Low EX Adjustment can safely be lowered below 39.

 Low EX condition commonly occurs at an inservice crossing when track conditions are extremely wet and possibly salted.

WARNING

Do not lower the low ex adjustment below 39 if there is not a five-point drop in EZ.

Table 24 Low EZ Qualification Test

Step 1	With EX below 39, connect a hardwire shunt at the termination shunt of the longest approach.
Step 2	Record the EZ value:
Step 3	Move the hardwire shunt in to the 90% point of the approach.
Step 4	Record the EZ value: If the EZ value at the 90% point is at least 5 less than the EZ value at the termination shunt (Step 2), the Low EX Adjustment can safely be lowered below 39, proceed to Step 5. If the EZ value does not drop 5 points, the Low EX Adjustment cannot be safely lowered below 39. Do not continue.
Step 5	Scroll to Program View > 2) GCP Programming > 5) Track Maintenance. The Track Maintenance screen opens.
Step 6	Select the Next button until the GCP: track 1 MS Control window displays.
Step 7	Enter a new EX adjustment value for the required track between 0 and 5, press Enter . The new value appears as the Low EX Adjustment entry value.
Step 8	Press the Back button until Program View appears again.

Nuisance Activation - Rail Phase Check

In situations where the EZ value is shifting between 5 to 20 points concurrently with the EX value shifting from 2 to 5 points, checking the rail to ground voltage is required. From within the enclosure at the terminal block, measure the AC voltage from RCV1 to ground, and then measure the AC voltage from RCV2 to ground. The ideal measurement is identical. When VRCV1 differs from VRCV2 by approximately 0.75V or higher, nuisance activations may occur. Typically, the cause of this problem is a failing insulating joint or arrestor in the signal block.

Table 25 Nuisance Activation Rail Phase Check

Step 1	V _{RCV1} to ground value:	VAC
Step 2	V _{RCV2} to ground value:	VAC
Step 3	Note the difference:	he cause

WARNING

Do not use a narrow band shunt to replace a defective coupler.

CAUTION

FOLLOWING INSTALLATION OF TUNABLE JOINT COUPLERS OR WIDE BAND SHUNTS AROUND INSULATED JOINTS, VERIFY PROPER OPERATION OF THE TRACK CIRCUIT PRIOR TO PLACING IT INTO OPERATION.

Troubleshooting a De-energized Predictor

This subsection describes the method of troubleshooting a problem in a system that has previously been in service.

The first step in troubleshooting a problem is to determine whether the GCP track circuit is functioning properly and the components of the 3000+ GCP system are healthy.

When a 3000+ GCP system is healthy it shows the following:

- Track windows:
 - Have no trouble icons present on Display

- Have no "Calibration Required" messages on Display
- Health LEDs on all modules (CPU, Track, RIO) are flashing slowly (1Hz)
- Transfer Module display time is not counting down
- CPU LED 1 is illuminated, indicating that the Maintenance Call output is on
- CPU LED 2 is illuminated, indicating that the transfer signal is not allowing transfer
- Power LEDs on all modules are on and steady

If the system is unhealthy, use the System Diagnostics or the Track Diagnostics to locate the problem.

Refer to the Troubleshooting Flow Charts to assist in system and track problem diagnosis. If the track module is healthy, predictors can be de-energized for the reasons shown in the following table.

Table 26 Troubleshooting a De-energized Predictor

Reason	Cause	
The track module senses that EZ is decreasing at a rate that is fast enough to trigger the prediction.	An approaching train	
The predictor (usually Prime and Preempt) has a zero offset distance and the island used by the MS/GCP is de- energized	If the Island LED on the CPU (5 for ISL 1, 6 for ISL 2) is off, the island is de-energized.	
The predictor is running its pickup delay	If the Track Module LED for this predictor is flashing or the Track Detail View shows an hour glass symbol for the predictor, the predictor is running its pickup delay. If the predictor does not recover after its programmed pickup delay time, it should be treated as de-energized.	

Reason	Cause	
Positive Start is enabled and the EZ level is below the programmed Positive Start EZ Level	Positive Start is de-energizing the predictor. Positive Start is used, i.e. Positive Start EZ Level > 0 in the Trk n: GCP Advanced program menu. Predictor will remain deenergized while the EZ is less than the Positive Start EZ Level plus 5. The current Track Module's EZ is shown on the module's 4-character display and on the Display System View.	
A UAX input is de- energized	The UAX is used, i.e. UAX Pickup Delay > 0 on Trk n: GCP Prime menu and the UAX input is not energized or is running the configured UAX Pickup delay.	
The Enable input is de-energized	The RIO module is used and the ENABLE input (IN1) is deenergized.	
Interference is causing large EZ fluctuations which appear to be an approaching train	The rapid fluctuation of the displayed track EZ level by 5 to 10 points (or more) indicates the presence of interference. System View shows ED, Track Module's display shows GIPS	

High EZ and Low EX History & Calibrated Approach

Review of the high EZ and low EX history (HEZ LEX) and the Computed Approach distance for a track can assist in troubleshooting efforts. The HEZ and LEX values are useful in determining when the EZ was high and when the EX was low.

To review the information:

- From the System View screen, select the number of the Track to review.
- When the Track "N" Options window opens, select 1) Detail View. The Module Details window opens.

•	Press the Left Arrow once to view the screen	
	showing the HEZ LEX. Record the HEZ value	
	() and the LEX value (_)

 Press the Left Arrow three times more to view the screen showing the Computed Distance. Record the Computed Distance (______).

The maintainer may reset the HEZ LEX information after review.

Troubleshooting a Physical 3000+ GCP Input

After it is determined that a problem is caused by a de-energized physical input, use Table 27 Troubleshooting Inputs to isolate the cause.

NOTE

Removal of DC power from the Model 3000+ GCP case is not required before removing or installing modules.

To determine the status of the physical inputs and outputs, scroll to I/O View. This shows the states of all the inputs and outputs on the 3000+ GCP.

- White = Not Used
- Grey = De-energized
- Green = Energized
- Red = Output is Unhealthy

After it is determined that a problem is caused by a de-energized physical input, use the following procedure to isolate the cause.

Table 27 Troubleshooting Inputs

Step 1	Determine the connections to the physical inputs by referring to the circuit plans for the location. These inputs may include: • A DAX circuit from a remote site connected to a UAX input • External Island • Other external inputs	
Step 2	If the input is connected to other equipment not in the bungalow, go to Step 5.	
Step 3	Verify that the output of the other equipment is energized using either the indications from that equipment or a meter.	
Step 4	If the output of the other equipment is energized, but the GCP input is not, check the wiring between the equipment and the GCP.	

Step 5

Using a meter, check the remote connection input at the point it enters the bungalow.

- If the input is de-energized, check the wiring from this point through to the GCP terminals.
- If the input is energized, go to the remote site and check the output.

WARNING

If approach length is reduced, maximum train speed must also be correspondingly reduced.

NOTE

A power up lockout is caused by EZ or check EZ being less than 3 when the track card powers up. This is indicated by a Release Track message that appears at the end of the corresponding Track Status line. If it has been determined that the lockout is caused by the train shunt, it may be cleared by selecting the track number on the display then selecting the option **5)** Release Track.

Troubleshooting Maintenance Call (MC) Light Problems

There are several operations in the 3000+ GCP system that will turn off the MAINT CALL (MC) light. This procedure assumes:

- The warning devices are not activated and modules are healthy, including external event recorder (Argus/SEAR II) if used.
- No track is out-of-service
- MC operation is being placed in service for the first time and wiring must be checked.

The following procedure checks the most common items first. If the MAINT CALL light does not turn on after a step, proceed to the next step.

- 1. Observe LED 1 on CPU module, or Maint Call on I/O Status screen
 - If LED 1 is on, or Maint Call is Green, go to Step 3.
 - If LED 1 is off, or Maint Call is Red, go to Step 2.
- 2. Determine that the MC light functions by testing the lamp circuit as follows:

- Measure DC voltage between B (+ meter lead) and MAINT CALL (MC) out (- meter lead) on the green connector above the CPU.
 - If voltage is within 0.5 volts of B, then the lamp or lamp circuit is open and must be repaired.
 - If voltage is more than 1.0 volt, go to next step.
- Measure between N (- meter lead) and MC (+ meter lead) on the green connector.
 - If voltage is within 0.5 volts of B, then the lamp circuit is okay, but the MC output is off.
 - o If LED 1 is on, replace CPU module
 - o If LED 1 is off, go to the next step
- If an external event recorder, such as the Argus or SEAR II is used, it may monitor power off inputs (POK), external Battery Monitor or other Recorder Application Program specific logic.
 - Temporarily turning the event recorder off may isolate the MC problem:
 - On the display, select the Program View > GCP Programming > General Configuration
 - Change External Evt Recorder to No
 - If the MC light turns on, turn the event recorder back on:
 - On the display, select the Program View > GCP Programming > General Configuration
 - Change External Evt Recorder to Yes
 - Refer to the circuit plans for the location and:
 - Verify that the event recorder's Site Setup is accurate.
 - Verify all POK inputs are on.
 - If used, verify that the Application Program MC related parameters are correct. (Refer to Application Configuration Summary)
 - See appropriate event recorder manual for more details.
- 4. If unit is redundant, transfer to opposite set of modules.
 - If the MC lamp turns on, replace the initial CPU module.

If the MC lamp stays off, call Siemens Technical Support.

OUT OF SERVICE FEATURE

WARNING

The railroad procedures governing how to take a track circuit out of service shall be followed. The instructions in this section may be followed only if allowed by the railroad.

Required operational tests shall be performed in accordance with railroad procedures when restoring tracks to service.

The railroad procedures for applying temporary jumpers must be followed when energizing the "out of service" input(s).

This section describes:

- How to take a track out of service using either: the display keypad, the display plus Out Of Service Inputs, or just the Out Of Service Inputs.
- What logic functions are bypassed and the effect of that bypass on other modules and I/O
- How to place the track circuits(s) back in operation

The Out of Service selection has a timer option, which will restore the track back to service after the specified time. The default setting for the timer is 1 hour. The range is 0 to 23 hours. The value 0 means the Out of Service Timeout is not used. When 0 is selected the display will show it as NOT USED.

The OOS Timeout can be viewed and changed from either the Track "N" OOS menu under item 3)

Settings, or from the GCP Programming / General Configuration menu.

The display can be used to take the 3000+ GCP approach circuit and the island circuit out of service. There are three methods of using the Out Of Service feature on the 3000+. The method used is selected in the GCP Programming by using OOS Control parameter. The options are:

- Display
- Display + OOS IPs
- OOS IPs

WARNING

Inputs for "out of service" should be wired in a permanent manner in accordance with circuit plans. Do not use test terminals or switches that can vibrate closed to energize oos inputs.

When **OOS Control** is set to **Display**, the display module by itself can be used to take a GCP approach or island out of service.

When **OOS Control** is set to **Display+OOS IPs**, the display module is used in conjunction with the Trk Out of Service inputs (IN 2 on the each track module) to take a GCP approach or island out of service.

When **OOS Control** is set to **OOS IPs**, the display module is not used in taking the GCP approach and island out of service, only the Trk Out of service inputs are used.

WARNING

When OOS Control is set to OOS IPS, energizing a track's OOS Input will take both the gcp approach and the island out of service.

To Take a Track Out of Service

Access the **Out of Service** menu on the display by selecting the desired track in the **System View** window on the display. The **Track "N"** window opens. Select the **4) Out Of Service** option from the track options menu to see the **Out of Service** screen, shown below.

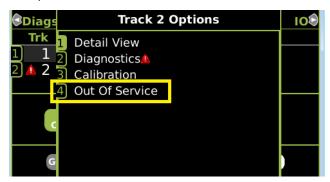


Figure 20 Track Out of Service Menu

Figure 21 Track Out of Service Screen

First, select the Out of Service timeout. When the GCP or Island is taken out of service, this timer will start. When the timer expires, the GCP and island will be put back in service. The timer is selectable between 0 and 23 hours, where 0 means the timer is not used.

NOTE

The Out of Service Timeout covers all tracks taken out of service with one time interval.

If the timer is running for one track out of service, and it is desired to take the other track out of service for an added amount of time, do the following:

- Return the first track to service
- Edit the Out of Service Timeout to the new value
- Take both tracks out of service

If the Transfer Module transfers while a track is out of service, the track will be returned to service and may activate the warning devices.

If **OOS Control** is set to **Display+OOS IPS**, energize the Trk OOS Input on the track module (IN2) before continuing.

To take the GCP approach circuit out of service, press 1 on the keypad, this will bring up the confirmation screen showing:

Are you sure you want to take GCP Out of Service?

Press Enter to Confirm and Continue

OR

Press Back to Cancel Request

Press the 1 again to continue to take the GCP out of service. This will then bring up the second confirmation screen on the right. Press **Enter** to continue. Once the GCP approach is taken out of service the **Track "N" OOS** window shows **1) GCP Out of Service**.

To take the island out of service, first take the GCP out of service, then press 2 on the keypad. This will

bring up the Track "N" ISL Out of Service menu, press 1) Take Track "N" ISL Out of Service to continue taking the island out of service. This will bring up the second confirmation screen showing:

Are you sure you want to take ISL Out of Service?

Press Enter to Confirm and Continue

OR

Press Back to Cancel Request

Press the **Enter** to continue. Once the Island is taken out of service the **Track "N" OOS** window will show the Island as Out Of Service.

Returning a Track to Service

To return the GCP to service, if **OOS Control** is set to **Display+OOS IPs**, de-energize the track OOS Input on the track module.

If **OOS Control** is set to **Display**, use the display module as follows: Select the **Track Options Out of Service** menu as before, press 1 to select the GCP; this will show the screen illustrated in Figure 22. Press 1 from the keypad, this will put the GCP back in service with no further confirmations.

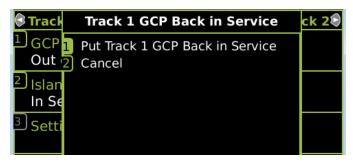


Figure 22 Put GCP Back in Service

NOTE

When a GCP is OOS but the island remains in service, the crossing will activate when the island is occupied. Putting the GCP back in service will also put the island back in service if it was out of service.

If the OOS Control is set to **Display+OOS IPs** and the Trk OOS Input is still energized, performing the above step will put the track back in service; however, the maintenance lamp call will remain on while the Trk OOS input is still energized. Similarly, if the Out of Service timer expires and the Trk OOS input is still energized, the maintenance call lamp will remain on.

WARNING

Ensure that track out of service inputs are returned to de-energized when the track is put back into service.

NOTE

The island cannot be taken out of service by itself; the GCP has to be first taken out of service.

If **OOS Control** is set to **OOS IPs**, the options to take the GCP out of service will not be enabled on the Display.

WARNING

The railroad procedures for applying temporary jumpers must be followed when energizing the "out of service" input(s).

SOFTWARE VERSIONS

To determine the software versions, scroll to **Diags & Reports > 2) Configuration Report**. The Configuration Report window opens. Select **3) Software Information**. The Software Information for Slots 1-3 and the display are listed. Scroll down to see the information.

PROGRAMMING

The 3000+ GCP programming is divided into three sections:

- Site Configuration
- GCP Programming
- Display Configuration

<u>NOTE</u>

Please refer to the Railroad Installation Drawing or the Installation Plans for the exact parameters to be entered when programming the Model 3000+ GCP.

Site Configuration

This section is used to set non-vital information, such as the Location, DOT number, ATCS address, etc.

GCP Programming

The Main Program Menu provides submenus that allow the user to navigate to different sections of the program.

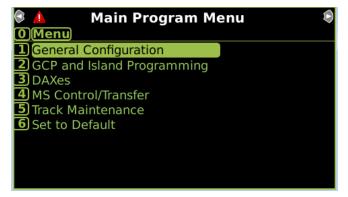


Figure 23 Main Program Menu

Display Configuration

This section is used to set non-vital parameters used by the display.

SECURITY

There are two security settings: None, and Maintainer. The default setting is None. When security is set to **Maintainer**, the maintainer level password is enabled and the GCP Programming parameters cannot be changed using the display keypad unless the correct Maintainer password is entered.

USB FILE STRUCTURE

Setting up a USB Device for Use

New software issued by Siemens Rail Automation for the Model 3000+ GCP is installed via the A80485-1 Display using a USB Device.

WARNING

Uploading a new configuration, MEF, or MCF will place the GCP in a restrictive state and activate the crossing warning system.

Before uploading begins, take adequate precautions to warn any pedestrians, personnel, trains, and vehicles in the area until proper system operation is verified.

During module change out, software revision, reboot and calibration procedures, warning devices may not operate as intended. Take alternate means to warn vehicular traffic, pedestrians, and employees.

Tests must be performed to verify proper operation of GCP prior to placing the system back in service.

CAUTION

To minimize the time that the crossing is active, if the existing configuration needs to be saved, save it prior to selecting "upload configuration" from the usb wizard menu.

NOTE

Due to software commonality issues, the USB Display device utilizes folders titled GCP4000 rather than GCP 3000+.

Follow railroad specific procedures for installing software in vital signal equipment. Companies may restrict who may install software and what additional documentation and operational checks are required.

Current software configuration requires installing a serial cable with a null modem adapter between the A80485-1 Display's DIAG connector and the DIAG connector on the individual modules.

When working with transferring files, the following definitions apply:

- Download The transfer of data from GCP to USB.
- Upload The transfer of data from USB to GCP.

Future software revisions will be issued with instructions that describe which module the software is to be loaded into. Such software instructions may supersede portions of this manual.

The following Model 3000+ GCP file types can be uploaded from a USB drive connected to the Display Module:

- Module Configuration Files (MCF)
- Module Executable Files (MEF)
- Configuration Files (PAC)

Creating the USB Device File Structure

Uploading or downloading files between the GCP and the USB Device requires that a specific file structure be created on the USB Device. The system looks for specific file folders to find or place Application, Executive, Configuration or Report files.

The file structure is as follows:

- SIEMENS
 - O <DOT#>-<SITE NAME>
 - GCP4000
 - CONFIGURATIONS
 - .PAC FILES
 - REPORTS
 - <YYYY><MON>
- GCP4000
 - APPLICATIONS
 - .MCF
 - .PAC
 - EXECUTIVES
 - .MEF
 - .TGZ
 - .BIN

PAC files or MCFs to be uploaded should be placed under the GCP4000\Applications.

Executive software to be uploaded should be placed under the GCP4000\Executives.

Downloaded files are placed under the Siemens\<DOT#>-<Sitename>\GCP4000 folder.

Download/Upload Configuration (Pac) Files via USB Device

To download configuration file to USB perform the following actions:

- 1. Insert the USB Drive in the USB slot on the front of the Display
- 2. If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to Step 3.
- 3. Select 1) Download Configuration.
- The Download configuration window opens, stating: Download PAC File...Please do not Remove USB.
- 5. When the file has downloaded from the display to the USB Drive, the PAC File Download window opens, stating: **Download Completed** then listing the file location, and stating: **Press Any Key to Continue**.

The PAC file name is created from the combination of the DOT number and date and time, e.g. CONFIG – {DOT#}-PAC-{date}-{time}.PAC.

The downloaded PAC file will be stored on the USB stick under a folder called:

Siemens\<DOT#>-<Site

NAME>\GCP4000\Configurations

UPLOAD CONFIGURATION FILE TO GCP

The PAC file to be loaded first needs to be put on the USB stick in a folder called GCP4000\applications as described in preceding section.

Perform the following actions:

- 1. Insert USB Drive in USB slot on front of Display
- 2. If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to Step 3.
- 3. Select 2) Upload Configuration.
- 4. The Unlock Warning window opens, displaying the message Upload configuration will place the GCP in a restrictive state and activate the crossing warning system. Do you want to continue? Enter to continue Or Press Back to cancel request.
- 5. The Save Configuration window opens, displaying the following message: Do you want to save current configuration? Press Back to skip saving the existing configuration Or Enter to continue.

- Selecting the **Back** button on the Save Configuration window skips saving the current configuration but does continue with the process of uploading the new configuration.
- 7. Select **Enter**. The **Download Configuration** window opens, displaying the message shown in the figure below. This may take a few minutes. While the file is downloading, progress will be indicated on the bottom line of the window.
- 8. When the file has downloaded from the Display to the USB Drive, the PAC File Download window opens, stating: Download Completed. File is saved at (the actual file location on the USB Drive). Press any key to continue.
- 9. The **Select File** window opens. Scroll down to select the correct PAC file. Select **Enter**.
- 10. The Upload Configuration window opens, stating: **Uploading configuration file...**
- 11. The Save window opens, stating: Press the SEL or NAV button and then select Enter to save parameters. The File name, Dot Number, Mile Post, Site Name, SIN, and CCN data then appear. Press the SEL or NAV buttons on the CPU Card and then select Enter.
- 12. The Upload configuration window opens, stating: System will now reboot to load the new settings. Press any key to continue.

NOTE

The display module will reboot as well as the CPU.

Checking OCCN

After uploading a new configuration (PAC file) or manually programming the system via the Program Menu, verify that the OCCN matches what is on the prints by scrolling to the Program menu and checking the OCCN in the top right corner.

UPLOADING SOFTWARE USING A USB DEVICE

Insert the USB drive in the USB port on the Display Module to automatically open the USB menu.

A **USB Detected** window opens, stating "USB detected." Press **Back** to continue or **Enter** for USB Menu. The USB window opens. This menu may be returned to at any time by pressing the **Back** button, providing the USB drive is still inserted in the port.

Installing Software on CPU II+ Module

WARNING

Uploading a new configuration, MEF, or MCF will place the GCP in a restrictive state and activate the crossing warning system.

Before uploading begins, take adequate precautions to warn any pedestrians, personnel, trains, and vehicles in the area until proper system operation is verified.

During module change out. software revision. reboot and calibration procedures, warning may not operate devices intended. Take alternate means to warn vehicular traffic, pedestrians, and employees.

Tests must be performed to verify proper operation of GCP prior to placing the system back in service.

CAUTION

To minimize the time that the crossing is active, if the existing configuration needs to be saved, save it prior to selecting "upload configuration" from the USB wizard menu.

The examples in this section are used to explain how to install software via the display using USB devices. The software and version names may not be the same as seen in an actual GCP. The example will also assume the GCP is a Dual unit and the main modules are loaded first. The procedure is repeated for the standby modules.

There is no specified order when installing/updating software in the Model 3000+ GCP. If replacing the CPU II+ MEFs and the MCF as part of the same upgrade; the order of installation is immaterial; however, the MEFs must be loaded prior to attempting to place the GCP back into operation.

Current software configuration requires installing a serial cable with a null modem adapter between the A80485-1 Display's DIAG connector and the DIAG port on the CPU II+ or I/O modules.

Figure 24 Null Modem Adapter

In this example, the following files will be loaded into the indicated modules and data port:

- CPU II+ Module
 - VLP Port File: VPH04_80.MEF (CPU II+ VLP executive software begins with VPH)
 - DIAG (CP) Port File: NCG04_80.MEF (CPU II+ CP executive software begins with NCG)
 - DIAG (CP) Port File: GCP3K-01-00.mcf, CRC= 2CF3E617
- Track Module
 - DIAG Port File: GCP04_80.mef (GCP Track module executive software starts with GCP)

The files should be copied to the GCP4000/executive folder of the USB drive.

Replace the CPU II+ VLP MEF

Perform the following actions:

- 1. Insert USB Drive in USB slot on front of Display.
- 2. If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to Step 3.
- Connect the serial cable between the Diag port on the Display and the VLP port of the CPU II+ module.
- 4. From the USB menu Select 1) Software Updates > 1) Module Updates.
- 5. The Upload to System window opens stating: "Please check the serial cable connection before uploading. Press any key to continue."
- Verify that the serial cable is well seated on both ends, then press any key. The Setup program begins loading.
- 7. Select **1) Change MEF**. When asked by the Setup program to Erase the MEF, select **1) Yes**.
- 8. The **Select File** window opens. Scroll down to select the file to be installed. Select **Enter.**
- The new MEF begins loading. This may take a few minutes. While the file is downloading, progress will be indicated on the bottom line of the window.
- 10. When complete, the Display text provides all of the module update options. Select **0) Exit Setup**.

- 11. The **Upload to System** window opens and states: "Exit software finished rebooting the module."
- 12. Press the Back button.

Replace the CPU II+ CP MEF

Perform the following actions:

- 1. Insert USB Drive in USB slot on front of Display
- 2. If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to Step 3.
- 3. Connect the serial cable between the Diag port on the Display and the DIAG (CP) port of the CPU II+ module.
- 4. From the USB menu, select 1) Software Updates > 1) Module Updates.
- The Upload to System window opens stating: Please check the serial cable connection before uploading.
- 6. Verify that the serial cable is well seated on both ends, then press any key. The Setup program begins loading.
- 7. Select 3) Change MEF.
- 8. When asked by the Setup program to Erase the MEF, select **1) Yes**.
- The Select File window opens. Scroll down to select the file to be installed, in this example: NCG04 80.MEF. Select Enter.
- 10. The new MEF begins loading. This may take a few minutes. While the file is downloading, progress will be indicated on the bottom line of the window.
- 11. When complete, the Display text provides all of the module update options. If a new MCF needs loading, go to Step 6 in the next section, otherwise select **0) Exit Setup**.
- 12. The **Upload to System** window opens and states: **Exit software finished rebooting the module**.
- 13. Press the Back button. The USB SW Updates menu is shown.

Change the CPU II+ MCF

Perform the following actions:

- 1. Insert USB Drive in USB slot on front of Display
- 2. If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to Step 3.
- 3. Connect the serial cable between the Diag port on the Display and the DIAG (CP) port of the CPU II+ module.
- From the USB menu select 1) Software Updates
 1) Module Updates. The Upload to System window opens stating: Please check the serial cable connection before uploading.

- 5. Verify that the serial cable is well seated on both ends, then press any key. The Setup program begins loading. Select **2) Change MCF**.
- 6. When asked by the Setup program to Erase the MCF Flash, select **1) Yes**.
- The Select File window opens. Scroll down to select the file to be installed, in this example gcp3k-01-00.mcf. Select Enter.
- 8. The new MCF begins loading. This may take a few minutes. While the file is downloading, progress will be indicated on the bottom line of the window.

NOTE

After the progress bar reaches 100% and stops, the CPU loads a copy of the file to the ECD on the chassis. This will be indicated on the Display screen by the field turning to a grey background, and on the 4-character the CPU II+ display on DOWNLOADING MCF then COPYING MCF TO ECD. Wait until this process completes and the text field has a black background before proceeding. The 4-character display will show SETUP.

Change the MCFCRC on the CPU II+

- 1. Select 1) Change MCFCRC. The Enter MCF CRC for GCP window opens.
- Use the back arrow to clear the number that appears in the window. Use the keypad to enter the CRC issued with the software revision instructions. The CRC will always be 8 characters consisting of 0-9 and A-F. Once the number has been entered and verified correct, select **Enter**.
- When complete, the Display text provides all of the module update options. Select 0) Exit Setup. The Upload to System window opens and states: Exit software finished rebooting the module
- 4. Press the Back button. Select **0) Exit View**. This completes "Installing Software on the CPU II+ Card."

Replace the CPU III CP MEF via USB Drive Perform the following actions:

- Insert USB Drive in USB slot on front of Display
- If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to step 3.

- 3. Connect the Ethernet cable between the Laptop port on the Display and the Laptop port of the CPU III module.
- 4. From the USB menu, select 3) Software Updates > 3) CPU-III Update
- 5. Install an Ethernet cable from the Laptop port on the Display to the Laptop port on the CPU III unit. Verify that the Ethernet cable is well seated on both ends, then press any key.
- 6. Select 1) Change CP MEF.
- 7. When asked by the Setup program to Erase the MEF, select **1) Yes**.
- 8. The **Select File** window opens.
- 9. Scroll down to select the file to be installed. Press **Enter**.
- 10. The new MEF begins loading. This may take a few minutes. While the file is uploading, progress will be indicated on the bottom line of the window.
- 11. When complete, the Display text provides all of the module update options. If a new MCF needs loading, go to step 6 in the next section, otherwise select **0) Exit Setup**.
- 12. The **Upload to System** window opens and states: **Exit software finished rebooting the module**.
- 13. Press the Back button. The USB SW Updates menu is shown (as per Step 4).

Replace the CPU III VLP MEF via USB Drive Perform the following actions:

- Insert USB Drive in USB slot on front of Display.
- If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to step 3.
- Connect an Ethernet cable between the Laptop port on the Display and the Laptop port of the CPU III module.
- 4. From the USB menu Select 1) Software Updates > 3) CPU-III Update.
- 5. Verify that the Ethernet cable is well seated on both ends.
- 6. Select 2) Update VLP MEF.
- 7. When asked by the Setup program to Erase the MEF, select **1) Yes**.
- 8. The **Select File** window opens.
- 9. Scroll down to select the file to be installed. Select **Enter**.

- 10. The new MEF begins loading. This may take a few minutes. While the file is uploading, progress will be indicated on the bottom line of the window.
- 11. When complete, the Display text provides all of the module update options. Select **0) Exit Setup**.
- 12. The Upload to System window opens and states: **Exit software finished rebooting the module**.
- 13. Press the **Back** button.

Replace the CPU III CP MEF via Web UI

- Connect Ethernet cable from laptop to Laptop port on the front of the CPU III unit
- 2. Locate the IP address of the GCP 3000+ unit via the selector buttons on the front of the CPU III unit. Type into a compatible web browser with https:// in front of it.

NOTE

The option to set up the WebUI access as secure (https) or non-secure (http) is available by selecting the **Configuration** menu from the WebUI tool bar, then the Non-Vital Configuration menu from the drop-down menus on the left of the screen, finally access the Web Server menu and select either Non-Secure or Secure Browser Access. The system defaults to Secure, so the first-time login must be done with https.

- 3. Log into the WebUI using the appropriate User Name and Password.
- 4. From the menu on the left, select **CP MEF**, then click **Unlock**.
- Confirm user presence with button on the front of the CPU module, click **OK** on the popup window, then select **Browse** to locate the desired file.
- Once the correct file is selected, click the **Update** button (located next to the **Unlock** button).
- The uploading status will show until complete.
 Once complete the message MEF file uploaded successfully will display.

Replace the CPU III VLP MEF via Web UI

Perform the following actions:

- Locate the IP address of the GCP 3000+ unit via the selector buttons on the front of the CPU III unit. Type into a compatible web browser with https:// in front of it.
- 2. Login to the WebUI using the appropriate User Name and Password.
- 3. From the menu on the left, select **VLP MEF**, then click **Unlock**.
- Confirm user presence with button on the front of the CPU III module, click **OK**, then select **Browse** and locate the desired file.
- 5. Click the **Update** button located next to the **Unlock** button.
- The uploading status will show until complete.
 Once complete, the message MEF file uploaded successfully will display.

Replace the MCF on CPU III via USB

Perform the following actions:

- Insert USB Drive in USB slot on front of Display.
- If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to step 3.
- 3. Connect an Ethernet cable between the Laptop port on the Display and the Laptop port of the CPU III module.
- 4. From the USB menu Select 1) Software Updates > 3) CPU-III Update.
- 5. Verify that the Ethernet cable is well seated on both ends.
- 6. Select 3) Update MCF.
- 7. When asked by the Setup program to Erase the MCF Flash, select **1) Yes**.
- 8. The **Select File** window opens.
- 9. Scroll down to select the file to be installed, in this example GCP3K-01-8.mcf. Select **Enter**.
- 10. The new MCF begins loading. This may take a few minutes. While the file is downloading, progress will be indicated on the bottom line of the window.

NOTE

After the progress bar reaches 100% and stops, the CPU loads a copy of the file to the ECD on the chassis. This will be indicated on the Display screen by the field turning to a grey background and on

the 4-character display on the CPU as DOWNLOADING MCF then COPYING MCF TO ECD. Wait until this process completes and the text field has a black background before proceeding, 4-character display shows SETUP.

Replace the MCF CRC on CPU III via USB

- 1. Select 1) Change MCFCRC.
- 2. The Enter MCF CRC for GCP window opens.
- 3. Use the back arrow to clear the number that appears in the window, then use the keypad to enter the CRC issued with the software revision instructions. The CRC will always be 8 characters consisting of 0 through 9 and A through F. Once the number has been entered and verified correct, select **Enter**.
- When complete, the Display text provides all of the module update options. Select 0) Exit Setup. The Upload to System window opens and states: Exit software finished rebooting the module.
- 5. Press the Back button. Select **0) Exit View**.

Replace the MCF on CPU III via Web UI

- Locate the IP address of the GCP 3000+ unit via the NAV and SEL buttons on the front of the CPU III unit. Type into a compatible web browser with https:// in front of it.
- 2. Login to the WebUI using the appropriate User Name and Password.
- 3. From the menu on the left, select **VLP MCF**, then click **Unlock**.
- Click the Browse button and select the correct file. (Note the MCFCRC for entry into the Enter MCFCRC field as well).
- Select the Update button. Once the file has finished loading the message MCFCRC uploaded successfully and MCF file uploaded successfully.

This completes **Installing Software on the CPU III Module**.

Installing Software on the Track Module

To install the GCP04_50.mef files on the Track Modules, perform the following actions:

- 1. Insert USB Drive in USB slot on front of Display
- 2. If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to Step 3.

- 3. Connect the serial cable between the Diag port on the Display and the DIAG (CP) port of the Track module to be updated.
- 4. From the USB menu, select 1) Software Updates > 1) Module Updates. The Upload to System window opens stating: "Please check the serial cable connection before uploading."
- Verify that the serial cable is well seated on both ends, then press any key. The Setup program begins loading.
- Select 1) Change MEF. When asked by the Setup program to Erase the MEF, select 1) Yes.
- 7. The **Select File** window opens. Scroll down to select the file to be installed, then select **Enter**.
- 8. The new MEF begins loading. This may take a few minutes. While the file is downloading, progress will be indicated on the bottom line of the window.
- When complete, the Display text provides all of the module update options. Select 0) Exit Setup. The Upload to System window opens and states: "Exit software finished rebooting the module."
- Press the **Back** button. If there is a second track module, repeat the procedure for the other track modules in the MAIN section of the GCP.

Installing Software on the RIO Module
To install the RIO01_07.MEF files on the RIO Modules.

Perform the following actions:

- 1. Insert USB Drive in USB slot on front of Display.
- 2. If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to Step 3.
- Connect the serial cable between the Diag port on the Display and the DIAG (CP) port of the RIO module to be updated.
- From the USB menu select 1) Software Updates
 1) Module Updates. The Upload to System window opens stating: Please check the serial cable connection before uploading.
- 5. Verify that the serial cable is well seated on both ends, then press any key. The Setup program begins loading.
- 6. Select 1) Change MEF.
- When asked by the Setup program to Erase the MEF, select 1) Yes. The Select File window opens.
- 8. Scroll down to select the file to be installed, in this example RIO01 07.MEF. Select **Enter**.

- The new MEF begins loading. This may take a few minutes. While the file is downloading, progress will be indicated on the bottom line of the window.
- 10. When complete, the Display text provides all of the module update options. Select 0) Exit Setup. The Upload to System window opens and states: Exit software finished rebooting the module.
- 11. Press the Back button.

Repeat the above procedures for installing all files on the STANDBY modules after transferring the system to STANDBY side.

Installing Software on A80485 Display Module

To install the Non-Vital MEF files on the A80485-1 Display Module.

Perform the following actions:

- 1. Insert USB Drive in USB slot on front of Display
- If Maintainer security has been enabled, enter the password. The password is case sensitive. If security is not enabled, proceed to Step 3.
- 3. Select 1) Software Updates > 2) Display Executive Update.
- The Select File window opens. Select the correct file to load, in this example NG5K MEF 1.4.47R.TGZ.. Select Enter.
- 5. The Upload NV Executive window opens, stating: Please wait. Request sent to Executive... The new MEF begins loading. This may take a few minutes. While the file is downloading, progress will be indicated on the bottom line of the window.
- When complete, the Upload to NV
 Executive window opens and states:
 Uploaded NV Executive. Press Enter to Reboot or Back to Reboot later.
- 7. Select **Enter**. The Display reboots.
- 8. Press the **Back** button. Select **0) Exit View**.

Transfer Card, A80468

The Transfer Card software is not field upgradeable and software changes must be performed at the factory.

Downloading Reports and Logs

When a USB stick is inserted in to the Display, the menu shown in the following figure will appear. This menu can also be accessed by using left arrows from the System View screen, or right arrows from the Diags and Report screen.

The menu allows various reports to be downloaded on to the USB stick, or software uploaded from the USB stick to the Model 3000+ GCP system.

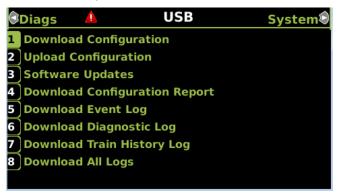


Figure 25 USB Menu

Download Configuration Report

Use this option to download a copy of the configuration report for the system. The display will show the status of the download as **In Progress**, **Finalizing** then **Complete**.

The file will be stored on the USB stick in a folder called:

Siemens\<DOT#>-<Site NAME>\gcp4000\Reports\yyyymmdd With a file name given by: system_report_dd-mmyyyy.txt

NOTE

Due to software commonality issues, the USB Display device utilizes folders titled GCP4000 rather than GCP3000+.

Repeat the above procedure for downloading any other desired log.

HARDWARE

CHASSIS CONFIGURATION

Each 3000+ GCP consists of:

- a case assembly
- a motherboard
- plug-in circuit modules
- plug-in external wiring connectors

Case Assemblies

Each 3000+ GCP case assembly consists of:

- powder-coated steel case
- backplane-mounted motherboard

Table 28 3000+ GCP Case Feature Overview

CASE		FEATU	RE	
PART NO.	No. of Track Modules	Main/Standby Transfer Sys	I/O (RIO) Module	Echelon LAN Functions
A80740	1 or 2 tracks	Yes	0, 1	Yes ^[1]

[1] The CPU II+ provides Echelon, the CPU III is available with or without Echelon: 8000-80903-4021 – with Echelon 8000-80903-4022 – without Echelon

Motherboard

The motherboard for each assembly provides:

- GCP unit wiring
- Circuit module connectors
- External Configuration Device Connector(s)
- Chassis Identification Chip socket(s)
- **DIAG** (diagnostic) port connector
- Interface connectors for external wiring connectors
- Echelon LONTALK® PROTOCOL LAN connector

Plug-In Circuit Modules

Each 3000+ GCP plug-in circuit module is equipped with:

- dual 43-pin connector on one edge which plugs into a corresponding edge connector on the motherboard
- locking ejector levers at the top and bottom of each module to facilitate removal from the case

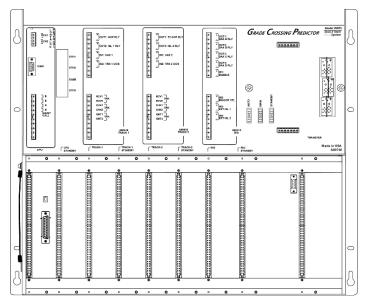


Figure 26 A80740 Dual Two Track Case

3000+ Case Modules and Subassembly

The A80740 case with the following modules installed is shown in Figure 27:

- A80403/A80903 Central Processor Unit Plus (CPU II+/CPU III) modules in slot positions M1 and M2
- Four A80418 Track modules in slot positions M3 – M6
- Two A80413 RIO modules in slot positions M7 and M8
- A80485 Display Module in slot position M9
- A80468 Transfer module located in the center of the top connector interface panel (slot position M11)

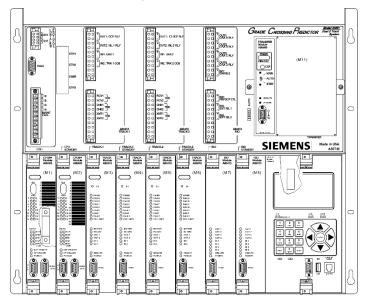


Figure 27 A80740 Case with Modules Installed

During normal operation, power is applied to the module set selected from the A80468 Transfer assembly.

Power is applied to the main module set when the A80468 is set to MAIN.

Power is applied to the standby module set when the A80468 is set to STBY.

Power is initially applied to the main modules when the A80468 is set to AUTO and is automatically transferred to the standby modules when a main module failure is detected.

Refer to paragraph on selecting Transfer Interval Time for further information and details on how to use the 3000+ GCP without the transfer module.

Backup (standby) modules are not provided for the:

- 1. A80485 Display module assembly
- 2. A80468 Transfer assembly

Interface Connector to Module Relationship

The relationship between the interface connectors and the modules is shown in Table 29.

Table 29 Module to Interface Connector Relationship

MODULE	SLOT POSITION	INTERFACE CONNECTOR
A80403/A80903	M1	CPU
A80403	M2	CPU Standby
A80418	M3	Track-1
A80418	M4	Track-1 Standby
A80418	M5	Track-2
A80418	M6	Track-2 Standby
A80413	M7	RIO
A80413	M8	RIO Standby
A80485	M13	Display
A80468	M11	Transfer

Track Card Compatibility

The GCP 3000+ will need to be fitted with the ferrite bead kits K8018-1 as described in Appendix B and CSB 3-15E if it is to be used with any hardware version of the track module A80418.

If the GCP 3000+ is restricted to using only the Rev L (and later) A80418 modules there is no need to

install the ferrite beads kits and perform the additional island calibration steps.

The latest GCP 3000+ MCF (gcp3k-01-8.mcf) enforces the use of rev L modules. If a Rev D A80418 module is installed in the chassis running this MCF it will remain unhealthy and will display VERS on its display. See the trouble shooting section (Table 20) for a detailed description of diagnostic messages seen with various combinations of CPU and track software and hardware. In this case no ferrite beads are required

If MCFs prior to gcp3k-01-8.mcf are used, the ferrite beads must be fitted as described in Appendix A and the additional calibration step of checking the island Z and EZ values described in Table 14.

A WARNING

If the GCP 3000+ is used with an MCF prior to gcp3k-01-8.mcf, the GCP 3000+ chassis must have ferrite beads installed on the track XMT and RCV wires as described in Appendix A installation of ferrite beads in order to avoid possible shunting issues if a Rev D or earlier A80418 track module is installed in chassis.

PLUG-IN MODULES AND SUBASSEMBLIES

CPU II+ Module, A80403

The A80403 CPU II+ Module is a central processing unit that:

- provides all vital logic processing functions for all 3000+ GCP chassis
- controls GCP LAN and non-vital serial communications
- interfaces with front panel CPU connectors

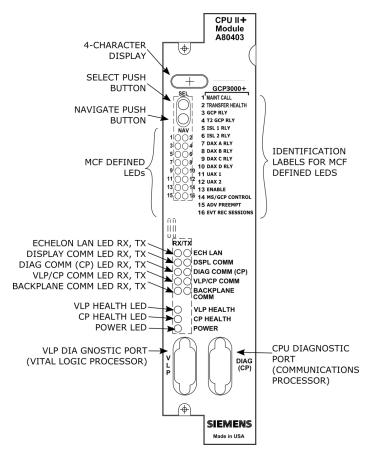


Figure 28 CPU II+ Front Panel

Table 30 CPU II+ User Interface

Component	Function		
4-Character Display	Displays alphanumeric representation of currently selected function menu item.		
Select Push Button (SEL)	Used to select menu items displayed on 4- Character Display.		
Navigate Push Button (NAV)	Used to select an available function menu.		
16 MCF Defined LEDs	Color Function Indication		Indication
1 (MAINT CALL)	Red	Maintenanc e Call: see maintenanc e call logic section	On – maintenance call output on Off – maintenance call output off

Component		Fund	ction
2 (TRANSFER HEALTH)	Red	Transfer Output: see transfer output section	On – transfer signal is being generated, transfer cards should not be counting down
			Off- transfer signal is not being generated, if transfer card is in AUTO it should be counting down
3 (GCP RLY)	Red	GCP RLY output state	On – GCP RLY is energized Off – GCP RLY is de-energized
4 (T2 GCP RLY)	Red	Track 2 GCP RLY output state	On – Track 2 GCP RLY output is energized or Not Used
			Off – Track 2 GCP RLY output is In Use and de- energized or has an error
5 (ISL 1 RLY)	Red	Island 1 Relay output state	On – Island 1 is unoccupied or Island 1 is not used
			Off – Island 1 is occupied
6 (ISL 2 RLY)	Red	Island 2 Relay output state	On – Island 2 is unoccupied or Island 2 is not used
			Off – Island 2 is occupied
7 (DAX A RLY)	Red	DAX A Relay output state	On – DAX A RLY output is energized or DAX A RLY is not used
			Off – DAX A RLY output is de- energized
8 (DAX B RLY)	Red	DAX B Relay output state	On – DAX B RLY output is energized or DAX B RLY is not used
			Off – DAX B RLY output is de- energized

Component		Fund	ction
9 (DAX C RLY)	Red	DAX C Relay output state	On – DAX C RLY output is energized or DAX C RLY is not used
			Off – DAX C RLY output is de- energized
10 (DAX D RLY)	Red	DAX D relay output state	On – DAX D RLY output is energized or DAX D RLY is not used
			Off – DAX D RLY output is de- energized
11 (UAX 1)	Red	Track 1 UAX input state	On – Track 1 UAX input is energized or Track 1 UAX input is not used
			Off – Track 1 UAX input is de- energized
12 (UAX 2)	Red	Track 2 UAX input state	On – Track 2 UAX input is energized or Track 2 UAX input is not used
			Off – Track 2 UAX input is de- energized
13 (ENABLE)	Red	Enable input state	On – Enable input is energized or not used (i.e. RIO not used)
			Off – Enable input is de-energized
14 (MS/GCP CONTROL)	Red	MS/GCP Control input state	On – MS/Control input is energized or not used (i.e. RIO not used or Adv Preemption used)
			Off – MS/Control input is de-energized

Component	Function			
15 (ADV PREEMPT IP)	Red	ADV Preempt Control Input state	On – Advance Preemption input is energized or not used (i.e. RIO not used or Advance Preemption input is de-energized and Advance Preemption is used	
16 (EVT REC SESSION)	Red	External Event recorder session state	On – external event recorder is in session or no external event record used Off – external event recorder is used but not in session	
ECH LAN	TX flashes red when the CPU II+ is transmitting an ATCS message via the LONTALK® LAN.			
LEDs	RX flashes green when the CPU II+ is receiving an ATCS message via the LONTALK® LAN.			
DSPL COMM	TX flashes red when the CPU II+ is transmitting data to the Display Panel.			
LEDs		RX flashes green when the CPU II+ is receiving data from the Display Panel.		
DIAG COMM	TX flashes red when the CPU II+ is transmitting data on the communications processor diagnostic (DIAG CP) serial port.			
(CP) LEDs	RX flashes green when the CPU II+ is receiving data from the communications processor diagnostic (DIAG CP) serial port.			
VLP/CP COMM	TX flashes red when the Vital Logic Processor (VLP) is transmitting data to the Communications Processor (CP).			
LEDs	RX flashes green when the Vital Logic Processor (VLP) is receiving data from the Communications Processor (CP).			
BACK PLANE	TX flashes red when the Vital Logic Processor (VLP) is sending data onto the serial bus.		J	
COMM LEDs	RX flashes green when the Vital Logic Processor (VLP) is receiving data from the serial bus.			

Component	Function	
VLP HEALTH LED	Flashes yellow to indicate that the Vital Logic Processor is functioning normally.	
CP HEALTH LED	Flashes yellow to indicate that the Communications Processor is functioning normally.	
POWER LED	Illuminates green to indicate that power is applied to the CPU II+ module.	
VLP Serial Port	9-pin diagnostic serial port for Vital Logic Processor.	
DIAG (CP) Serial Port	9-pin diagnostic serial port for Communications Processor.	

NOTE

The state of LEDs 1-16 are chosen so that in a normal healthy 3000+ GCP, with the GCP RLY output energized, all 16 LEDS will be on. If an LED is off, it will either represent an input or output that is currently in use is deenergized, or an unhealthy condition exists.

The CPU has two processors: The Communications Processor (CP) and the Vital Logic Processor (VLP). When new software is installed into the CP, the VLP continues running without interruption until the CP setup is complete.

This means that if the Model 3000+ GCP system is healthy and the crossing is not active, the VLP continues to correctly control the crossing while the new software installation into the CP is in progress. However, while the software transfer is in progress, the CP is not capable of logging state changes.

Table 31 Setup Menu Display

Indication	Mode	Meaning
DOWNLOAD- ING SETUP	Scrolls	The setup program is being down-loaded into the CP.
SETUP	Scrolls	The CP is in setup mode; i.e., MCF, MCF CRC, or CP MEF is being changed.
WAIT	Steady	CP is erasing flash memory.
WAITING FOR MEF	Scrolls	CP is waiting for a new MEF.
DOWNLOAD-	Scrolls	A new MEF is being

Indication	Mode	Meaning
ING MEF		downloaded into the CP.
WAITING FOR MCF	Scrolls	CP is waiting for a new MCF.
DOWNLOAD- ING MCF	Scrolls	A new MCF is being downloaded into the CP.
DONE	Steady	Setup mode is ending.
воот	Steady	The CP is rebooting.

CPU III MODULE (A80903) OPERATION

Indicators, Controls, and Connectors

Table 32 CPU III Indicators, Controls, and Connectors

Item	Name	Function
Displays	4- character display	Used with the SEL and NAV push buttons to provide a maintainer interface.
Controls	2-Push Button Select/N avigate	Select (SEL) button steps through each menu The Navigate (NAV) button steps through each sub menu of the selected menu.
Indicators	16 LEDs (red)	See Table 33
Connectors	RS-232 (DTE) Serial Port (DB-9)	RS-232 (DTE) used to interface the CPU III Communication Processor externally to other modules in the GCP chassis for the purpose of programming the modules
	LAPTOP Ethernet (RJ-45)	RJ-45 Ethernet port used to interface the CPU Vital Communication Processor with a laptop / personal computer. Provides access to external communication configuration files via the Web User Interface (Web UI)

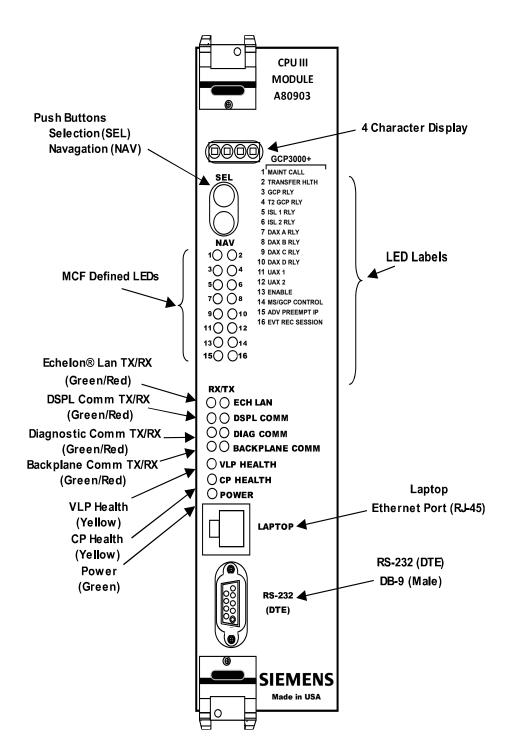


Figure 29 CPU III Indicators, Controls, and Connectors

CPU III Local User Interface

The CPU III Local User Interface consists of a 4 Digit Display and two push buttons, Select (SEL) and Navigate (NAV) buttons enable the user to see the MCF and MEF name and view the CPU III IP address.

Using the Select and Navigate Push Buttons

The Select and Navigate push buttons are used in the following manner. The Select (SEL) button is pushed to go to the next main menu. The Navigate (NAV) button is pushed to step through the sub menus. The Select (SEL) button will select the displayed parameter when the parameter is being modified. It also will select the displayed parameter allowing the Navigate (NAV) button to navigate submenu items of the displayed parameter. To back up to the previous sub menu, double click the Navigate (NAV) button. Continue to double click the NAV button to step back to the previous sub menu until the main menu is reached. The 4 Digit Display will show the current menu selected. Long titles will scroll across the display.

CPU III Local User for GCP

The following Tables describe the LED Indicators and Display Messages.

Table 33 LED Indications

LED			
NAME	Color	Function	Description
1 Maint Call	Red	Maintenance Call	On – maintenance call output on (system healthy, Maintenance Lamp Call is off)
			Off - maintenance call output off (system unhealthy, Maintenance Lamp Call is on)

LED			
NAME	Color	Function	Description
2 Transfer Health	Red	Transfer Health	On – transfer signal is being generated
			Off – transfer signal is being not being generated. In a redundant system if transfer card is on AUTO it will be counting down.
			Flashing – the CPU is extending the transfer time as same error detected on main and standby side.
3 GCP RLY	Red	GCP RLY output state	On – GCP RLY is energized Off – GCP RLY is de-energized
4 T2 GCP RLY	Red	Track 2 GCP RLY output state	On – T2 GCP RLY is energized Off – T2 GCP RLY is de- energized
5 ISL 1 RLY	Red	Island 1 Relay output state	On – Island 1 is unoccupied or Island 1 is not used Off – Island 1 is occupied
6 ISL 2 RLY	Red	Island 2 Relay output state	On – Island 2 is unoccupied or Island 2 is not used Off – Island 2 is occupied
7 DAX A RLY	Red	DAX A relay output state	On – DAX A RLY output is energized or DAX A RLY is not used Off – DAX A RLY output is de- energized

LED			
NAME	Color	Function	Description
8 DAX B RLY	Red	DAX B relay output state	On – DAX B RLY output is energized or DAX B RLY is not used Off – DAX B RLY output is de- energized
9 DAX C RLY	Red	DAX C relay output state	On – DAX C RLY output is energized or DAX C RLY is not used Off – DAX C RLY output is de- energized
10 DAX D RLY	Red	DAX D relay output state	On – DAX D RLY output is energized or DAX D RLY is not used Off – DAX D RLY
			output is de- energized
11 UAX 1	Red	Track 1 UAX input state	On – Track 1 UAX input is energized or Track 1 UAX input is not used Off – Track 1 UAX input is de- energized
12 UAX 2	Red	Track 2 UAX input state	On – Track 2 UAX input is energized or Track 2 UAX input is not used Off – Track 2 UAX input is de- energized
13 ENABLE	Red	Enable input state	On – Enable input is energized or not used (i.e. RIO not used) Off – Enable input is de-energized
		1	

LED			
NAME	Color	Function	Description
14 MS/GCP CONTROL IP	Red	MS/GCP Control input state	On – MS/Control input is energized or not used (i.e. RIO not used or Advance Preemption used) Off – MS/Control input is deenergized
15 ADV PREEMPT IP	Red	ADV Preempt Control Input state	On – Advance Preemption input is energized or not used (i.e. RIO not used or Advance Preemption input is de-energized and Advance Preemption is used
16 EVT REC SESSION	Red	External Event recorder session state	On – external event recorder is in session or no external event record used Off – external event recorder is used but not in session
ECH LAN RX	Grn	Echelon Message Received	Flashes when the CPU is receiving an ATCS message via the Echelon LAN.
ECH LAN TX	Red	Echelon Message Sent	Flashes when the CPU is transmitting an ATCS message via the Echelon LAN.
DSPL COMM RX	Grn	Display Port Message Received	Flashes when the CPU is receiving data from the display module.

LED			
NAME	Color	Function	Description
DSPL COMM TX	Red	Display Port Message Sent	Flashes when the CPU is sending data to the display module.
DIAG COMM (CP) RX	Grn	Diag Port Message Received	Flashes when the CPU is receiving data from the communications processor diagnostic (DIAG CP) serial port.
DIAG COMM (CP) TX	Red	Diag Port Message Sent	Flashes when the CPU is transmitting data on the communications processor diagnostic (DIAG CP) serial port.
BACK-PLANE COMM RX	Grn	Backplane Message Received	Flashes when the VLP is receiving data from the serial bus.
BACK-PLANE COMM TX	Red	Backplane Message Sent	Flashes when the VLP is sending data onto the serial bus.
VLP HEALTH	Yel	VLP Health Status	Flashes slowly (1Hz) when the CPU VLP is functioning normally.
			Flashes fast (4Hz) when the VLP is unhealthy
CP HEALTH	Yel	CP Health Status	Flashes slowly (1Hz) when the CP is functioning normally.
POWER	Grn	Power Indication	On steadily when power is applied to the module.

Table 34 CPU III GCP Display Messages

Display	Mode	Meaning	System State
MCF Name; e.g. GCP3K- 01-8	Scrolling	VLP is healthy	CPU is healthy.
воот	Steady	CPU is booting up.	CPU is booting up. Crossing is activated.
CRC*	Steady	MCF CRC is incorrect for the current MCF	Entered CRC does not match CRC of MCF. Crossing is activated.
MCF*	Steady	CPU is not healthy because the MCF is not valid.	Reboot CPU or reload MCF. Crossing is activated.
SIN*	Steady	Site Identification Number is invalid.	Enter valid SIN. Crossing is activated.
VLP UCFG	Scrolling	VLP is unconfigured.	No comm to I/O modules. Crossing is activated.
VLP INITIAL	Scrolling	The CP is transferring the configuration from NVRAM to the VLP.	No comm to I/O modules. Crossing is activated.
BURNING MCF	Scrolling	The CP is copying the MCF from the ECD into flash memory.	No comm to I/O modules. Crossing is activated.
NO VLP COMMS	Scrolling	The CP is not communicating with the VLP. VLP could be rebooting or performing its initial configuration checks	No comm to I/O modules. Crossing is activated.
ERASING	Scrolling	Erasing its flash	No comm to I/O

Display	Mode	Meaning	System State
THE ECD		memory in preparation for copying the MCF from the ECD into flash memory.	modules. Crossing is activated.
INI*	Steady	Rebooting	System Reboot - Crossing is activated.
Exxx	Steady	Internal error, System will reboot. xxx is 3 digit hex number	Reload MCF - Crossing is activated.
LMCF	Steady	Rebooting	System Reboot - Crossing is activated.
ІСНК	Steady	Rebooting	System Reboot - Crossing is activated.

NOTE

Steady messages may alternate with other messages.

The CPU has two processors: the Communications Processor (CP) and the Vital Logic Processor (VLP). When new software is installed into the CP, the VLP continues running without interruption until the CP setup is complete. When the CP software has been downloaded it will reboot the CP, this will also cause the VLP to reboot.

This means that if the Model 3000+ GCP system is healthy and the crossing is not active, the VLP continues to correctly control the crossing while the new software installation into the CP is in progress. If the Display Module is being used, uploading an MEF into the CPU III using the Ethernet port will render the crossing inoperable as the CPU III will be in the unconfigured state. The crossing will be restored once the CPU III configuration is reestablished.

Track Module, A80418

The A80418 Track module performs the predictor and island train detection functions.

Vital I/O functions:

Two isolated vital inputs

Two isolated vital outputs

Track Module Front Panel

The Track module front panel is shown is. The user interface is described in Table 35.



Figure 30 Track Module Front Panel

NOTE

The track module is common with 4000 GCP, 5000 GCP, 3000+ GCP and MS4000 systems. Some functions are not applicable when used in the 3000+ GCP.

Table 35 Track Module User Interface

Component	Function
4-Character Display	Displays module, track status, and diagnostic messages.
\$1 Push Button Switch	For future applications
PRIME LED (red)	On – Prime predictor is energized Off – Prime predictor is de- energized or not used Flashing – Prime predictor is running the programmed pickup delay See note [1]
DAX A – DAX D LEDS (red)	On – DAX A predictor is energized Off – DAX A predictor is deenergized or not used Flashing – DAX A predictor is running its pickup delay See note [2]
DAX E - DAX G LEDS (red)	These are not used in the 3000+ GCP and will be off
PRE-EMPT LED (red)	This is not used in the 3000+ GCP and will be off
MOTION LED (red)	On – GCP has not detected motion Off – GCP has detected motion
ISLAND LED (red)	On – Internal Island is used and unoccupied Off – Internal Island is not used or Internal Island is occupied Flashing – Island is running its pickup delay See note [3]
OUT 1 LED (red)	On – output energized Off – output de-energized Flashes – output unhealthy
OUT 2 LED (red)	On – output energized Off – output de-energized Flashes – output unhealthy
IN 1 LED (red)	On – input energized Off – input de-energized or not used
IN 2 LED (red)	On – input energized

	Off – input de-energized or not used
	Slow (1Hz) – module is healthy and communicating with CPU
HEALTH LED (yellow)	Fast (2Hz) – module is healthy but not communicating with the CPU
	Very Fast (4Hz) – module is unhealthy and communicating with CPU
POWER LED (green)	LED is on steady when power is applied to the module
DIAG Serial Port	9-pin diagnostic serial port for Track module

NOTE

The Prime predictor LED on a track module represents the state of the Prime prediction process from that track module. It does not represent the state of the final GCP RLY (or T2 GCP RLY) output. The track's Prime prediction process is an input into the final GCP RLY / T2 GCP RLY output state. To see the actual state of the GCP RLY / T2 GCP RLY output look at CPU Module LEDs 3 and 4 respectively.

NOTE

The DAX predictor LEDs on a track module represent the state of the DAX prediction process from that track module. They do not represent the state of the final DAX RLY output. The track's DAX prediction process is an input into the final DAX RLY output state. To see the actual state of the DAX RLY output, look at CPU Module LEDs 7-10.

NOTE

The ISLAND LED on a track module represents the occupancy state from the internal island on that module. It does not represent the state of the final ISL RLY output. If the internal island is not being used, the ISLAND LED will be off. To see the actual state of the ISL RLY output look at CPU Module LEDs 5-6.

RIO Module, A80413

The A80413 RIO module provides four isolated vital inputs and four isolated vital outputs.

The I/O functions have predefined functions in the 3000+ GCP.

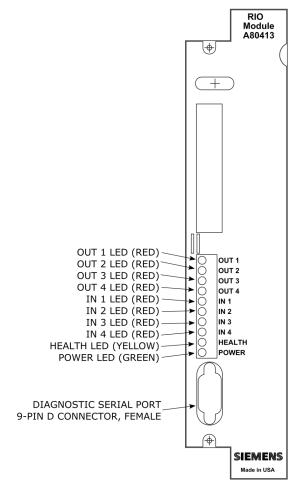


Figure 31 RIO Module Front Panel

Table 36 RIO Module User Interface

Component	Function
OUT 1 LED (red)	On – DAX A RLY output is energized. Flashes when output is unhealthy.
OUT 2 LED (red)	On – DAX B RLY output is energized. Flashes when output is unhealthy.
OUT 3 LED (red)	On – DAX C RLY output is energized. Flashes when output is unhealthy
OUT 4 LED (red)	On – DAX D RLY output is energized. Flashes when output is unhealthy.
IN 1 LED (red)	On – ENABLE input is energized.
IN 2 LED (red)	On – MS/GCP Control input is energized.
IN 3 LED (red)	On – External Island 1 input is energized.
IN 4 LED (red)	On – External Island 2 input is energized.
HEALTH LED (yellow)	Slow (1Hz) – module is healthy and communicating with CPU Fast (2Hz) – module is healthy but not communicating with the CPU Very Fast (4Hz) – module is unhealthy and communicating with CPU
POWER LED (green)	LED is on steady when power is applied to the module.
DIAG Diagnostic Serial Port	9-pin diagnostic serial port for RIO module.

Display Module, A80485

The A80485 display module, Figure 32, provides a touch-screen display to allow:

- Configuration programming
- Application programming
- Calibration programming
- System diagnostics
- System parameter display
- Track status display

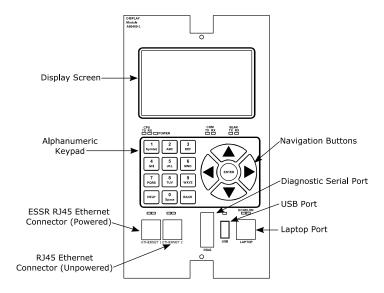


Figure 32 Display Module

Transfer Assembly, A80468

The A80468 Transfer assembly provides operational switchover from the main modules to the standby GCP modules when main module failure is detected. Switchover occurs after a set transfer delay interval.

NOTE

The standby modules are powered off and disconnected from the interface connectors until switchover occurs.

Transfer Assembly User Interface

The Transfer assembly front panel is shown in Figure 33. The user interface is described in Table 37.

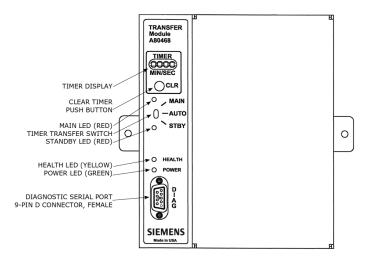


Figure 33 Transfer Assembly Front Panel

Table 37 Transfer Module User Interface

Component	Function
Timer Display	When transfer delay is set using the DIP switch (S3), the TIMER Display: 1. Shows the set transfer delay in minutes and seconds 2. Shows transfer timer delay count down in one second increments
CLR (Clear Timer) push button	Clears transfer delay time from the counter. When pressed during timer countdown: Sets the timer to the selected Transfer Delay Interval Initiates immediate transfer of GCP operation to opposite modules
MAIN LED (red)	On when: Main modules are enabled while the Transfer Timer Switch is set to AUTO Or Timer Transfer Switch is set to MAIN position

Component	Function		
Time Transfer Switch	 Three-position toggle switch: MAIN position enables only main module operation and will not automatically transfer. AUTO position enables automatic switch over to opposite set of modules: Transfers from main modules to standby modules when main module failure is detected, or transfers from standby modules to main modules when standby module failure is detected. STBY position enables only standby module operation and will not automatically transfer. To switch from one set of modules (MAIN or STBY) to the other set of modules when the transfer time is not counting down, move the switch from AUTO to the desired position (MAIN or STBY) then return switch to AUTO. 		
STANDBY LED (red)	On when: Standby modules are enabled while Transfer Timer Switch is set to AUTO Timer Transfer Switch is set to STBY position		
HEALTH LED (yellow)	Flashes to indicate that the Transfer module is functioning normally		
POWER LED (green)	LED is on steady when power is applied to the Transfer module.		
DIAG Diagnostic Port	9-pin diagnostic serial port for Transfer module		

NOTE

- 1. A switchover interval ranging from 1 to 31 minutes is selectable from the Transfer module.
- 2. The module is set at the factory for a switchover delay of three minutes.
- 3. During the switchover period, all vital outputs will be de-energized.

Transfer Interval Selection

The transfer time interval is preset in the factory for three minutes and normally does not require any change. A shorter time than three minutes is not recommended. If a longer time is desired, the interval time is selected by means of DIP switch S3 located on the Transfer Module.

The transfer timer interval is selected by means of DIP switch S3 located on the back of the A80468 Transfer Module as shown in Figure 34.

 The module is accessible by removing the mounting screws on either side of the A80468 assembly and unplugging the unit from the front of the Model 3000+ GCP case.

The switch levers of S3 are set to the positions designated in Table 38 to obtain the required delay time (see Figure 34).

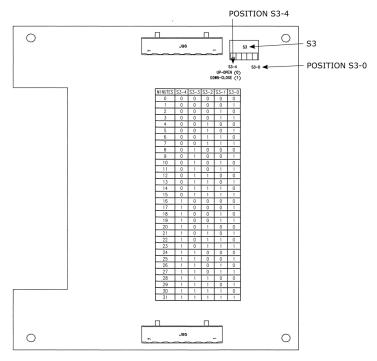


Figure 34 Transfer Module Assembly, A80468, S3
Switch Position

Table 38 Transfer Delay Interval Table (for S3 on A80468 Module Assembly)

MINUTES	S3-0	S3-1	S3-2	S3-3	S3-4
0	0	0	0	0	0
1	1	0	0	0	0
2	0	1	0	0	0
3	1	1	0	0	0
4	0	0	1	0	0
5	1	0	1	0	0
6	0	1	1	0	0
7	1	1	1	0	0
8	0	0	0	1	0
9	1	0	0	1	0
10	0	1	0	1	0
11	1	1	0	1	0
12	0	0	1	1	0
13	1	0	1	1	0
14	0	1	1	1	0
15	1	1	1	1	0
16	0	0	0	0	1
17	1	0	0	0	1
18	0	1	0	0	1
19	1	1	0	0	1
20	0	0	1	0	1
21	1	0	1	0	1
22	0	1	1	0	1
23	1	1	1	0	1
24	0	0	0	1	1
25	1	0	0	1	1
26	0	1	0	1	1
27	1	1	0	1	1
28	0	0	1	1	1
29	1	0	1	1	1
30	0	1	1	1	1

0 = OPEN 1 = CLOSED **Bold** = Default

Operation without Transfer Module Assembly, A80468

To disable the A80468 Transfer Module Assembly, remove the module from the chassis, then move the fuse from the terminal labeled AUTO and insert it into the fuse terminal for the side that is to be powered, either MAIN or STANDBY (see Figure 35).

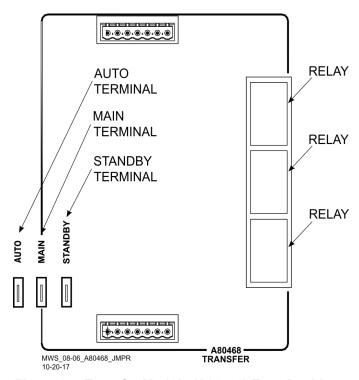


Figure 35 Transfer Module (A80468) Fuse Positions

External Configuration Device (ECD) A80435

The ECD is a factory installed plug-in device on the 3000+ GCP backplane. The ECD stores the module configuration file (MCF) application program for the 3000+ GCP. Both the Main and the Standby CPU Modules copy the MCF from the ECD. Used for vital system operation.

WARNING

If an ECD is replaced with an ECD containing a different mcf, the GCP will copy the new mcf into the flash on the CPU modules and set the system back to default values.

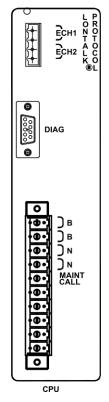
Chassis Identification Chip (CIC)

The CIC is:

A non-volatile memory chip

Installed adjacent to the ECD on the GCP backplane.

Each CIC stores site-specific information for both Main and Standby vital operations.


WARNING

If the CIC is replaced, the user must set the system back to defaults and reprogram the system. Failure to do this could result in the system running with the wrong configuration for the site.

Interface Connector Functions

The Model 3000+ GCP interface connector functions are described in Table 39 through Table 42.

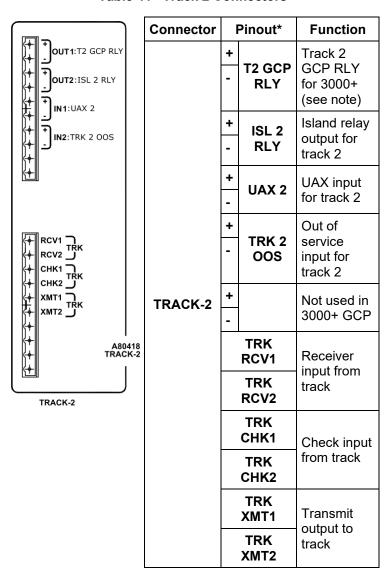
Table 39 CPU Connectors

Connector	Pinout	Function	
LONTALK®	ECH1	LAN Twisted pair	
PROTOCOL	ECH2	LAN Twisted pair	
	2	DT_TX (Not used in GCP3000+)	
DIAG	3	DT_RX (Not used in GCP3000+)	
	5	GROUND (Not used in GCP3000+)	
	В	Battery B input to GCP	
	N	Battery N input to GCP	
CPU	MAINT	Output to Maintenance Call lamp in crossing bungalow: • When no problem is detected within the GCP, the maintenance call output is held at the Battery N voltage level, causing the lamp to light. • When a problem is detected within the GCP, the voltage is removed and the lamp is extinguished.	

Track 1 Connectors

Table 40 Track 1 Connectors

	Connector	Pi	nout*	Function
OUT1: GCP RLY		+	GCP RLY	GCP RLY for 3000+ (see note)
IN1: UAX		-	ISL 1 RLY	Island relay output for track 1
(+) (+)		+	UAX 1	UAX input for track 1
		+	TRK 1 OOS	Out of service input for track 1
← RCV1 TRK RCV2 TRK CHK1 TRK	TRACK-1	+		Not used in 3000+ GCP
CHK2 J	418 К-1		TRK RCV1	Receiver input from
A80418 TRACK-1			TRK RCV2	track
			TRK CHK1	Check input
TRACK-1			TRK HK2	from track
			TRK (MT1	Transmit
			TRK	output to track

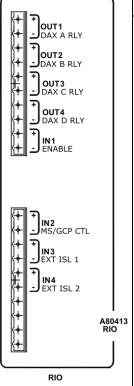

NOTE

XMT2

The GCP RLY output combines the track prime predictors from both track 1 and track 2 (if track 2 is used).

Track 2 Connectors

Table 41 Track 2 Connectors

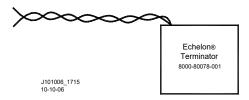

NOTE

The T2 GCP RLY output is the prime output for just track 2.

RIO Connectors

The RIO Module is an optional module on the 3000+ GCP and provides additional vital inputs and outputs. This module is required if DAX or DAX Preempt outputs, Enable, MS/GCP control, or external islands are used in the application.

Table 42 RIO Connectors


Connector	Pinout*		Function
	+	DAX A RLY	DAX A Relay output
	+	DAX B RLY	DAX B Relay output
	+	DAX C RLY	DAX C Relay output
RIO	+	DAX D RLY	DAX D Relay output
MO	+	ENABLE	Enable input
	+	MS/GCP CTRL	MS/GCP CTL input
	+	EXT ISL 1	External island 1 input
	+	EXT ISL 2	External island 2 input

LAN Communications

Each 3000+ GCP communicates with other Siemens equipment, such as the SEAR or Argus, via the LONTALK® LAN (Echelon®). Refer to Echelon manual (COM-00-07-09) for further information.

Rules for using Echelon® LAN

- Wire size required is from #22AWG to #16AWG, in a stranded twisted pair.
- Each connection (node) must be wired in a daisy chained bus configuration, no drops allowed (see Figure 36).
- Maximum wiring length of LAN bus wiring is 425 feet (130m) within a signal case or bungalow, but wiring should be kept as short as practical.
- A maximum of 8 connections (nodes) is recommended within 53 feet (16m) of cable. If necessary, additional cable may be added so that no more than 8 nodes are located within any 53 foot length. If additional connections are required, contact Siemens Technical Support for assistance.
- In general, the Echelon® network requires a terminator for proper data transmission performance.

- The Echelon network can be connected to ECH1 on the 3000+ GCP
- The Echelon terminator can be connected to ECH2 on the 3000+ GCP
- Order Network Echelon Termination Unit, P/N: 8000-80078-001

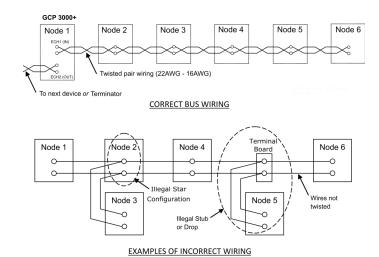


Figure 36 Echelon LAN Bus Wiring

CAUTION

Because the echelon® interface is not surge protected, network connections must be restricted to the equipment contained inside a signal case or bungalow.

NOTE

For additional information concerning the Echelon® LAN, contact Siemens Technical Support.

ATCS SITE ID ENTRY

Scroll to Program View and select 1) Site Configuration menu. This dialog window:

- Displays the current information pertaining to the site
- Allows the current SIN to be changed

A SIN may be changed as described in Table 43.

WARNING

Changing the site identification number will result in activation of warning devices. Before changing the site identification number, ensure that adequate precautions are taken to warn pedestrians, personnel, trains, and vehicles in the area until proper system operation has been verified.

Table 43 Modify SIN Number

Step 1	From Program View , scroll to 1) Site Configuration . The Site Configuration screen opens.
Step 2	Scroll down the menu to the following parameters and enter the required values from the approved site drawing by either using the Up or Down arrows to scroll to the required number or by directly entering the number using the keyboard:
	 On the ATCS – Railroad parameter, enter the RRR value. On the ATCS – Line parameter, enter the LLL value. On the ATCS – Group parameter, enter the GGG value. On the ATCS – CPU2+ Subnode parameter, enter the SS value.
Step 3	Select the Back button until the Program View screen is displayed.
Step 4	The CPU module identifies the new SIN as the current site address.

INSTALLATION OF FERRITE BEADS

A CAUTION

CAUTION

PRIOR TO INSTALLATION OF THE FERRITE BEADS, RECORD EZ/EX AND ISLAND Z VALUES FOR THE ACTIVE TRACK MODULES WHERE FERRITE BEADS ARE TO BE INSTALLED; THESE VALUES SHOULD BE RECORDED WITH THE GCP APPROACH CLEAR.

The following guidelines are for the application of Ferrite Beads to the transmitter (XMT1/XMT2) and receiver (RCV1/RCV2) wires [not the check wires] of an affected GCP that incorporates an internal island circuit. The ferrite beads shall be installed on all track slots at the termination point of the XMT1/XMT2 and RCV1/RCV2 wires on the GCP chassis as shown in Figure 37. There are two different sizes of ferrite beads. The smaller of the two is to be installed on the transmitter [XMT1/XMT2] wires. The larger of the two is to be installed on the receiver [RCV1/RCV2] wires.

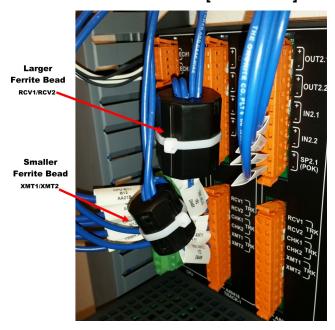


Figure 37 Ferrite Bead Sizes

The ferrite beads require a single wrap of the wires **[XMT1/XMT2] [RCV1/RCV2]** around the ferrite bead before securing the transmitter or receiver wires to the Wago connector as shown in Figure 38. The ferrite beads should be installed within two to three

inches of the Wago connector. The sleeve tag can be used as a reference to determine this distance as shown in Figure 38. Close the ferrite bead, ensuring the securing tabs have properly seated and have snapped into the locked position. Once ferrite bead is installed, a zip tie can be used to secure the ferrite bead and wires in place, preventing movement and the unintentional opening of the ferrite bead.

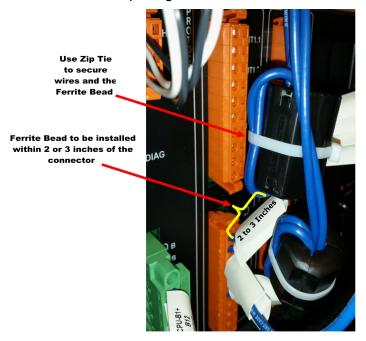


Figure 38 Ferrite Bead Installation Guide

A CAUTION

CAUTION

WITH FERRITE **BEADS** INSTALLED. AGAIN RECORD EZ/EX AND ISLAND Z VALUES OF ACTIVE TRACK MODULES [WITH APPROACH CLEAR] AND COMPARE TO READINGS PREVIOUSLY. **RECORDED** VALUES SHOULD DIFFER NO GREATER THAN 3 **POINTS** BETWEEN THE **TWO** RECORDED VALUES.

The installation of ferrite beads on the GCP does not require any re-calibration of the track circuits, and has no effect in the GCP's ability to detect trains.

The installation of ferrite beads is compatible with all hardware revisions of the 80418 Track Module.

Ferrite Bead Kit Ordering Information

A Ferrite Bead Kit for the 80418 Track Card will be provided by Siemens.

Table 44 Ferrite Bead Ordering Information

Part Number	Revision	Description
K80418-1	A	Kit, CSB 3-15E, 80418 Track Card

For additional kits contact Siemens Customer Service at (800) 626-2710

For technical assistance please contact Siemens Mobility Technical Support at (800) 793-7233 Option 1.

GLOSSARY

TERM	DEFINITION
Advance Preemption:	Notification of an approaching train is forwarded to the highway traffic signal controller by railroad equipment in advance of activating the railroad active warning devices.
Advance Preemption Time:	This period of time is the difference in the Maximum Preemption Time required for highway traffic signal operation and the Minimum Warning Time needed for railroad operation.
AND:	AND circuits require all inputs to be energized for the output to be energized.
GCP RLY	The output that controls the local crossing. Equivalent to the XR relay.
ATCS:	Advanced Train Control System – An industry standard used in the 3000+ GCP for communications.
CCN:	Configuration Check Number – The 32 bit CRC of the configuration data.
СНК:	CHECK receiver on a track module connected to transmit wires that perform track wire integrity checks.
CHK EZ:	Check EZ is a signal value compared to main receiver EZ that is useful in troubleshooting.
CIC:	Chassis Identification Chip - A non-volatile memory chip that is installed adjacent to the ECD on the GCP backplane. Stores site specific information for both Main and Standby operations.
Computed Approach Distance:	The track approach length calculated by the GCP. The calculated distance between the wire connections on the rail and the termination shunt connections.

TERM	DEFINITION
CP:	Communications Processor – One of two microprocessors on the CPUII+ or CPU III module, processes external communications for the GCP 3000+.
CRC:	Cyclical Redundancy Check - Used to determine that data has not been corrupted.
DAX:	Acronym for Downstream Adjacent Crossing (Xing). DAX outputs are used to send prediction information from an upstream GCP to a downstream GCP when insulated joints are in the approach circuit.
DIAG:	Diagnostic
Directionally Wired	Setting used to enable the GCP to determine train direction.
DOT Number:	Department Of Transportation crossing inventory number assigned to every highway-railroad crossing that consists of six numbers with an alpha suffix.
DT:	Diagnostic Terminal – The Diagnostic Terminal (DT) is a Siemens Rail Automation developed Windows® based software that can run on the Display Module or on a PC, which allows the user to perform programming, calibration, and troubleshooting.
ECD:	External Configuration Device – The non-volatile memory device on the GCP backplane used for storing the module configuration file.
Echelon:	A Local Area Network, LAN, used by the 3000+ GCP.
Enhanced Detection:	User selectable process that detects nonlinear fluctuations in track signal due to poor shunting and temporarily switches the track module from predictor to motion sensor.

TEDA	DEFINITION
TERM	DEFINITION
EX:	The EX value is a numerical indication of track ballast conditions relative to the leakage resistance between the rails. A value of 100 represents nominal good ballast. A value of 39 represents very poor ballast.
FCN	Field Check Number. The 32 bit CRC of the configuration data, including items that are protected by the Maintainer Password.
Flash Memory:	A type of non-volatile memory that can be reprogrammed in-circuit via software.
GCP:	Grade Crossing Predictor – A train detection device used as part of a highway-railroad grade crossing warning system to provide a relatively uniform warning time.
GCP APP:	GCP Approach length calibration into a hardwire shunt located at the termination shunt.
GCP CAL:	GCP Calibration into a termination shunt.
GCP LIN:	Approach Linearization calibration into a hardwire shunt located at the 50% point on the approach.
Highway- Railroad Grade Crossing Advance Warning Sign:	A traffic control sign (round yellow sign with RR and a black X) placed by the highway agency in advance of many highway-railroad grade crossings
Healthy:	The GCP system, modules and track circuit are operating as intended. Health is generally indicated by a yellow LED flashing at 1 Hz. Unhealthy conditions are indicated by faster flash rates (2 Hz and 4 Hz) or a dark Health LED.
Hz:	Hertz – Common reference for cycles per second or flashes per second.

TERM	DEFINITION
Interconnection	The electrical connection between the railroad active warning system and the traffic signal controller for the purpose of preemption.
IO or I/O:	Input/Output
ISL:	Island
ISL CAL:	Island calibration
kHz:	Kilohertz – 1000 Hz or 1000 cycles per second.
LAN:	Local Area Network – A limited network where the data transfer medium is generally wires or cable.
Linearization:	The linearization procedure compensates for lumped loads in the GCP approach that affects the linearity (slope) of EZ over the length of the approach.
Linearization Steps:	A calibration value that allows the GCP to compensate for non-linear EZ values within the approach circuit.
Lumped Load:	A section of track that has a lower ballast resistance than the rest of the approach because of switches, crossings, contamination, etc.
MAIN:	The primary GCP Modules (CPU, Track, and RIO Modules) that are in a dual GCP chassis.
Maintainer Password	The password set that allows field maintenance personnel access to field editable parameters.
MCF:	Module Configuration File – The GCP application logic file.
MEF:	Module Executable File – The GCP executive software program.
MS:	Motion Sensor – A train detection device used as part of a highway-railroad grade crossing warning system to provide a detection of a train approach.

TERM	DEFINITION
OCCN:	Office Configuration Check Number – The 32 bit CRC of the configuration data, excluding items that are protected by the Field Password.
OCE:	Office Configuration Editor – The PC version of the DT that can be used to create configuration package files (Pac files) for the Model 3000+ GCP system.
Offset Distance:	The distance between the track circuit connections of the remote GCP (sending DAX information) to the island track connections of the UAX GCP (receiving the information).
Out Of Service:	The process for taking one or more GCP approach circuits and / or approach and island circuits out of service.
PAC File:	A Model 3000+ GCP configuration Package File that can either be created in the office using the OCE, or downloaded from a Model 3000+ GCP system via the CP.
Pick Up Delay:	An internal delay time between when an input receives the signal to pick-up and when it actually responds.
Positive Start:	Activate crossing devices when EZ level is less than a programmed value.
Preemption:	The transfer of normal operation of traffic signals to a special control mode.
PRIME:	PRIME may be de-energized by a Track's prime predictor, UAX, advance preempt, and/or island, if zero offset is selected.
RIO:	Relay Input Output Module
RS232:	Industry standard serial port.
RX:	Receive

TERM	DEFINITION
SIN:	Site (Subnode) Identification Number - A twelve-digit ATCS address representing the module as a subnode on the network.
Standby:	The GCP Backup Modules (e.g., CPU, Track, and RIO modules) that are in a dual GCP chassis.
TCN	Track Check Number (TCN) is used to track changes due to recalibration and adjustments made to key Track Modules specific setup variables.
TX:	Transmit
UAX:	Acronym for Upstream Adjacent Crossing (Xing). UAX inputs are used to receive prediction information from an upstream GCP as inputs to a downstream GCP when insulated joints are in the approach circuit.
USB Port:	Universal Serial Bus Port
USB Drive:	A memory device that plugs into a USB port which is commonly called flash drive or memory stick.
VLP:	Vital Logic Processor – One of two microprocessors on the CPU II+ or CPU III modules, processes GCP vital system logic.
Z Level:	An Island calibration value. A calibrated island will have a nominal Z Level of approximately 250. The Z Level approaches 0 when shunted.

SIEMENS

Siemens Mobility, Inc. 700 East Waterfront Drive Munhall, Pennsylvania 15120 1-800-793-SAFE

Siemens Mobility, Inc. 939 S. Main Street Marion, Kentucky 42064 (800) 626-2710

Siemens Mobility, Inc. 2400 Nelson Miller Parkway Louisville, Kentucky 40223 (502) 618-8800

Rail-Automation Website