Flexibility Solutions
Solutions for your power plant optimization

This PDF offers an advanced interactive experience. For the best viewing experience, please use Acrobat Reader X or higher.
Optimize your plant with Siemens Flexibility Solutions

Siemens is the world's leading supplier of flexible combined cycle power plants with more than 1,500 references. Our power plants are designed, supplied, and built with flexibility features and are better able to compete in rapidly changing markets around the world. We offer variety of options which can be selected and optimized according to.

Opportunities for additional revenue generation include optimized participation in reserve power markets, improved start-up and shut down costs, and more possibilities to participate in ancillary services markets.

Demands on fossil-fired power plants have been changing dramatically. With the growth of weather-dependent wind and solar generation around the world, the generation mix needs to include a reliable, dispatchable, and flexible generation partner. Siemens Flexibility Solutions are designed to meet these demands with the ability to start, ramp, unload and reload fast, frequently, and reliably.

Siemens combined cycle power plant capabilities go beyond meeting operational requirements - they enhance the economic benefits of the plant. When a plant starts fast, the fuel efficiency of the start up transient is higher, enabling a start cost reduction of up to 50%. Avoiding traditional low load hold points also improves the environmental footprint of the plant, reducing start-up emissions up to 95%. Fast load changes and fast duct firing enhances the ability to support ancillary service needs, potentially opening new revenue streams.

Our Flexibility Solutions support renewable resources, enabling high reliability, low electricity costs, and an overall cleaner generating grid.

Siemens combined cycle power plants offer all of these capabilities while maintaining the traditional benefits of gas-fired combined cycles - economic, low emission, reliable power generation. Having a plant that can do everything well, maximizes the potential for revenue generation over a long plant life cycle.
Flexibility Solutions

Co-Start™
Fast hot start-up of the entire combined cycle

Quick-Stop™
Rapid shutdown of the plant

Go-Ready™
Fast and efficient plant warm start-up

Steam-Assist™
Enables fast start without dependence on auxiliary boiler

Energy Control™
Enables fast start of air-cooled plants without increased ACC capacity

Dash™
Fast-moving supplemental firing

Co-Start

Fast and efficient plant hot start-up at reduced fuel costs and predictable load profile allowing higher plant flexibility and profitability.

Start-up time
Fuel saving for one Co-Start approx.
30 minutes
850 GJ

Challenge	Solution	Benefits
Combined cycle power plants are operating mostly in intermediate and peak load. | Dispatch order is directly proportional to marginal cost and start-up cost. | Optimized start-stop operation required to be profitable.

For information only. Not guaranteed. Actual results are dependent on site specifics. Subject to changes and provided on an “as is” basis without any express or implied representation or warranty of any kind and without any verification as to accuracy, suitability or completeness; terms subject to a final contract between the parties. Actual benefits and results are dependent on a variety of factors such as plant specification, site specifics, operational profile and local market conditions.
Operational and economic benefits

Calculating economic benefit for base load alone is no longer an effective way to predict the value of a power plant. Dispatch efficiency calculates the total fuel usage for a dispatch of a given duration. Using dispatch efficiency instead of base load efficiency adds the cost of the transients in the plant evaluation, better reflecting future expectations.

Our Flexibility Solutions improve dispatch efficiency. Better dispatch efficiency increases profitability for shorter dispatch windows, opening up more opportunities for revenue generation with fluctuating demand.

Siemens Flexibility Solutions increase plant profitability. Fuel savings from higher efficiency and lower start charges lead to significant cost savings for plant owners and operators. Higher dispatch efficiency reduces greenhouse gas production which can also offer benefits like emission tax credits or certificates in countries where such mechanisms are in place.

For information only. Not guaranteed. Actual results are dependent on site specifics. Subject to changes and provided on an "as is" basis without any express or implied representation or warranty of any kind and without any verification as to accuracy, suitability or completeness; terms subject to a final contract between the parties. Actual benefits and results are dependent on a variety of factors such as plant specification, site specifics, operational profile and local market conditions.
Our Flexibility Solutions consist of a wide range of single technical measures and improvements, each of which helps to increase the overall plant flexibility. Here are some of our project highlights!
Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.
Appendix

Overview pages for print

Every solution on one page
Co-Start

Fast and efficient plant hot start-up at reduced fuel costs and predictable load profile allowing higher plant flexibility and profitability.

Challenge

- Combined cycle power plants are operating mostly in intermediate and peak load
- Dispatch order is directly proportional to marginal cost and start-up cost
- Optimized start-stop operation required to be profitable

Solution

- Enable gas turbine to start similar as in simple cycle mode with continuous load ramp up to base load – no load hold after synchronization
- Start steam turbine as early as possible to take HRSG steam before gas turbine is at base load
- High pressure ramp rates due to low steam production with limited HP bypass flow
- Early closing of HP/IP-bypass valves

Benefits

- Shorter plant hot start-up time
- Fuel saving during start-up
- More profitable operating hours
- Reduced CO₂ emissions and cost
- Reduces global warming potential
- Higher plant efficiency during start-up
- Increased dispatch opportunities
- Increased operating flexibility

Plant start-up on short notice with Co-Start

<table>
<thead>
<tr>
<th>Plant Load</th>
<th>Start-up Time</th>
<th>Fuel saving for one Co-Start approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>30 min</td>
<td>850 GJ</td>
</tr>
<tr>
<td>Co-Start</td>
<td>50 min</td>
<td></td>
</tr>
</tbody>
</table>

Published by Siemens AG 2016 | Power and Gas Division Energy Solutions | Freyteslebenstrasse 1, 91058 Erlangen, Germany | PGES: 810012-00-7600 | PUB 001144 OP 1116

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.
Flexibility Solutions

Quick-Stop

Fast and efficient plant shutdown at reduced fuel costs and predictable load profile for high plant flexibility.

Challenge

- Combined cycle power plants are operating mostly in intermediate and peak load
- Optimized start-stop operation required to be profitable
- High number of shutdown events at low lifetime expenditure required
- Low or no revenue for electricity during plant shutdown

Solution

- Simultaneous gas turbine & steam turbine shut-down (incl. ST load calculation for single-shaft)
- ST ramp rate is calculated with the same power output model as it is done during Co-Start
- No GT load hold
- HP steam bypass controls HP pressure to modified fixed pressure set point to keep more heat within the HRSG

Benefits

- Shorter plant shutdown time
- Fuel saving during shutdown
- More profitable operating hours
- Reduced CO₂ emissions
- Reduced global warming potential
- Higher plant efficiency during shutdown
- Increased operating flexibility

Quick-Stop reduces shutdown time

<table>
<thead>
<tr>
<th>Plant Load</th>
<th>Shutdown Time Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional shutdown</td>
<td>50 min</td>
</tr>
<tr>
<td>Quick-Stop</td>
<td>25 min</td>
</tr>
</tbody>
</table>

Typical fuel saving for one shutdown

850 GJ

Quick-Stop

Electricity production

Fuel consumption
Flexibility Solutions

Go-Ready

Fast and efficient plant warm start-up at reduced fuel cost and predictable load profile for high plant flexibility.

Challenge

- Combined cycle power plants are operating more and more in intermediate and peak load regime
- Impact of renewable power generation results in increased number of warm and cold starts
- Dispatch events are difficult to predict
- Optimized start-stop operation required to be profitable

Solution

- Plant warming system to keep HRSG, ST and BOP components warm during shutdown period
- Install electrical auxiliary steam generator (gas-fired optionally) to supply warming and ST seal steam to keep condenser vacuum
- Accelerated plant start-up based on Co-Start operating philosophy

Benefits

- Short plant start-up time even after few days shutdown time
- Lower fuel consumption during plant start-up
- Reduced CO₂ emissions
- Reduced global warming potential
- Higher plant efficiency during start-up
- Increased dispatch opportunities
- Increased operating flexibility

Go-Ready reduces start-up time

Start-up time

65 minutes

Typical fuel saving
for one start

800 GJ

Flexibility Solutions

Start-up time

65 minutes

Typical fuel saving
for one start

800 GJ

Published by Siemens AG 2016 | Power and Gas Division Energy Solutions | Freyteslenstrasse 1, 91058 Erlangen, Germany | PGES-810014-00-7600 | PUB 001144 OP 1116

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.
Steam-Assist

The Steam-Assist concept eliminates the auxiliary steam generator and instead uses the steam storage capacity of all HRSG stages to supply seal steam for a limited time during a plant shutdown and restart.

Challenge

- Reduce CAPEX and OPEX
- Achieve high operational flexibility with fast restart for shutdown durations < 16 hours
- Reduce emissions by eliminating or reducing run time of auxiliary boiler

Solution

- Eliminate the auxiliary steam generator
- Use the steam storage capacity of the HRSG during shutdown period and restart
- Modified start-up procedure taking full advantage of the steam supply from the HRSG

Benefits

- CAPEX savings from eliminating the auxiliary steam generator
- Decreased OPEX through lower fuel consumption during hot start-up
- Higher power output and efficiency by decreased auxiliary load
- Increased operating flexibility for hot and warm starts

Steam-Assist eliminates expensive auxiliary steam generator

Note: Incl. Aux. Boiler Energy Fuel during standstill app. 45 h. Actual benefit is dependent on plant configuration, operational profile and local market conditions.
Flexibility Solutions

Energy Control

Offers the ability for air-cooled power plants to start the gas turbines at full ramp rate without the need for an oversized air-cooled condenser (ACC).

Challenge

- Allow fast start of an air-cooled plant without increasing the size of the air cooled condenser
- Enables start of multiple GTs in multi-unit power train simultaneously for an air-cooled plant

Solution

- Energy Control is used to modify the flow of feedwater through the HRSG to create less steam during start-up without impacting the plant’s normal operation
- This is achieved by a combination of flow bypass and set point changes which reduce HRSG heat absorption until the system is ready to receive full steam flow

Advantage of Energy Control

Benefits

- Quick start-up time
- Low start-up emissions
- Low water usage
- Fuel savings
- ACC cell reduction savings
- Lower auxiliary power cost of ACC
- Faster megawatts on the grid

Note: Actual benefit is dependent on plant configuration, operational profile and local market conditions.

<table>
<thead>
<tr>
<th>Plant Power Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Control</td>
</tr>
<tr>
<td>GT</td>
</tr>
<tr>
<td>100% GT</td>
</tr>
<tr>
<td>GT + ST</td>
</tr>
<tr>
<td>Conventional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
</tr>
<tr>
<td>GT + ST</td>
</tr>
<tr>
<td>GT + ST</td>
</tr>
</tbody>
</table>

Start-up emissions reduction of >85%
Plant Capital Cost $5M
Benefits
• Rapid response to changing load demands through elimination of duct burner ramp limitation
• Ability to light off duct burners at lower gas turbine loads
• Ability to use the full power range of the power plant for fast response
• Eliminate the need to hold back gas fired MWs for ancillary service support

Note: Actual benefit is dependent on plant configuration, operational profile and local market conditions.

Dash™ vs. Conventional Plant Ramp

<table>
<thead>
<tr>
<th>Un-Duct Fired Plant Load</th>
<th>Conventional Plant Load</th>
<th>Dash™ Plant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Challenge
- Combined cycles operating with supplemental firing are limited by the slow reaction times of the duct burners
- Typical ramp rates for duct firing are in the range of 3 MW per minute
- This slow moving behavior prevents the use of power produced by supplemental firing for fast response

Solution
- Dash™ technology takes ramp rate limitations of the duct burners out of the equation
- The system dispatches the duct burners earlier, using the gas turbine and duct burners in concert to react to load demand changes quickly
- An advanced control algorithm and boiler design features keep temperatures and pressures within design limits during Dash™ operation, resulting in no impact to boiler operation

Flexibility Solutions

Dash™
Achieve high flexibility for duct fired power plants over the entire plant load range including supplemental firing.