At a glance
Island network and autonomous microgrids combine essential opportunities for distribution sources, but pose special challenges in system operation as they are especially vulnerable to system instabilities. Siemens Power Technologies International (Siemens PTI) can help find an individual solution adapted to the needs of any island network, to increase the stability of the system and thus avoid system outages.

Siemens PTI supports customers in the following tasks:

- Evaluating an independent energy supply against a connection to the main grid
- Defining the specific optimum between technical and economical feasibility
- Substituting expensive generation units by efficient sources depending on the specific availability
- Detecting the causes for power supply faults and providing state-of-the-art simulation tools from the PSS® product suite to model system performances and identify possible solutions
- Considering voltage and frequency control aspects and implementing the changes which will increase the stability of the island network

The challenge
Island networks, like the bulk power grid, generate, distribute and regulate the flow of electricity in island operation, and are also used for military bases, industrial applications, airports, hospitals, colleges and business campuses, at the utility distribution level and for rural electrification in developing countries. Due to their size island networks react more critically to dynamic performances than networks which are connected to the main grid.

In case of connection to the main grid:
- Is it cost effective to build a connection to the main grid?
- What are the parameters for the decoupling and protection of the network in the event of falling into isolated operation?
- What is the reaction of the island grid regarding transient stability, voltage recovery and frequency?

Our solution
Siemens PTI is a global provider of independent, technical consulting services for power generation, transmission and distribution systems. Our power system consulting team has extensive experience in determining the best island network design possible from a technical and economic perspective. Our analysis accounts for optimal DER location, size, dispatch mix and technology, while considering protection coordination, power flow, reliability improvement, cost, and interconnection requirements.

[siemens.com/power-technologies]
Siemens PTI has developed a holistic planning approach that assists our customers with island network studies on any electrical network topology, regardless of size, voltage level or location, and provides detailed analyses ranging from strategic steady state power flow simulations to dynamic and transient studies.

Strategic techno-economic evaluation of island grids

Based on a given electrical network, selected generation and demand response (DR) participation, the island network study calculates the following:

- Potential N-0 thermal overloads and/or voltage violations
- Estimated cost of operation based on the power flow results (accounting for capital costs, fuel costs, O&M, cost of money, heat savings from CHP)
- Reliability indices, i.e. SAIFI, SAIDI and EENS
- Priority-based economic DER dispatch

The simulations deliver detailed information about the operation of the available generation resources, like fuel consumption or number of starts and stops of thermal power units, number of cycles of battery storage units or the share of renewable energy sources to the total energy consumption of the energy system.

Dynamic evaluations

As island or off-grid networks are extremely sensitive to faults, the dynamic behavior of the system has to be evaluated to ensure system stability.

A power system fault can be detected by means of suitable indicators. These indicators can be current, voltage, power, phase, frequency or frequency gradient. Simulations are used to model all power system faults and to determine the response of the generation (and storage) units in terms of stability, voltage recovery and frequency. This makes it possible to derive parameters for protecting electrical equipment with regard to size and time, so that the stability of the generators and voltage recovery are ensured when there is a transition to isolated operation.

![Figure 3: Generator stability and voltage recovery after short circuit](image)

As the outage of a generator is the most critical fault, it must be compensated with the reserve of the other machines or by load shedding. In this case, the operating conditions and technically realizable possibilities need to be synchronized to ensure a continuous and reliable operation. Load shedding can be activated by signal in reaction to a generator outage or by frequency reduction, depending on whether fast frequency stabilization is required. Generator outages not only lead to a lack in active power, but in reactive power, which, among others, can cause the voltage to collapse.

Additionally, the demand for reactive power can be critical after short circuits, since motors or groups of motors have to accelerate again and therefore have a higher demand for reactive power at longer fault times, which cannot be supplied by the generators in the isolated network. Based on the evaluations the system can be coordinated and the measures adjusted (reserve, disconnection of generators, protection, disconnection of loads, storage etc.).

Benefits for the customer

By performing network structure development and dynamic studies for island networks, we can provide several benefits to our customers:

- Identification of weak points in the existing network and development of optimal network concept
- A load management system for the control and design of each operation mode as well as interconnections for an automated adjustment of the operation and start-up of generators ensure smooth and secure operation
- Verification of an appropriate network performance by analyzing defined KPIs and development of a detailed transition master plan ensuring optimal investment utilization

The investment in a strategic network planning study is very low compared to the capital and operation costs that can be saved by an optimal development of the network. With Siemens PTI’s industry leading expertise and software, we offer a broad spectrum of island and off-grid network studies based on a thorough understanding of processes and aligned with the need for enhanced planning capabilities.

Published by
Siemens AG 2018

Energy Management Division
Freyeslebenstrasse 1
91058 Erlangen, Germany

For more information, please contact power-technologies.energy@siemens.com

AL=N, ECCN=N

Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.