Efficiency: More value to your facility

Siemens steam turbine portfolio
Steam turbines from 10 kW to 1,900 MW
With over a century of experience and continuous development in steam turbine technology, Siemens has stayed at the forefront of development and is a prime partner for your business. With a fleet of more than 60,000 steam turbines worldwide, Siemens is a reliable and experienced partner.

Siemens Steam Turbines are an essential piece of turbo machinery to many power plants worldwide. They are applied either as a generator drive or a mechanical drive for pumps and compressors. The modular design concept of all steam turbines ensures high flexibility, availability and a reduction of time-to-market.
Steam turbines overview

<table>
<thead>
<tr>
<th>Output (MW)</th>
<th>10</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST-9000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-4000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-3000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-700/900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-800/1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST-200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utility Steam Turbines

Industrial Steam Turbines
Steam Turbines Overview

<table>
<thead>
<tr>
<th>Output (kW)</th>
<th>100</th>
<th>1,000</th>
<th>5,000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-R RLA / RLVA</td>
<td>745</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-R RLH</td>
<td></td>
<td>1,865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-R SST 350</td>
<td>750</td>
<td></td>
<td>2,600</td>
<td></td>
</tr>
<tr>
<td>D-R SST 500</td>
<td></td>
<td>3,000</td>
<td></td>
<td>3,750</td>
</tr>
<tr>
<td>D-R SST 700</td>
<td></td>
<td></td>
<td></td>
<td>4,500</td>
</tr>
<tr>
<td>D-R 2TA</td>
<td></td>
<td></td>
<td></td>
<td>3,600</td>
</tr>
<tr>
<td>D-R AVT TW/GTW</td>
<td></td>
<td></td>
<td></td>
<td>4,000</td>
</tr>
<tr>
<td>D-R C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-R GAF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-R K</td>
<td></td>
<td></td>
<td></td>
<td>4,850</td>
</tr>
<tr>
<td>D-R R / RS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-R B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-R Tandem (B-B, B-C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All output values are in kW.
Siemens offers a comprehensive range of steam turbine products in the power output range from 90 to 1,900 MW. These are used in conventional fossil-fired steam power plants as well as in nuclear and combined cycle power plants. With more than 8,000 steam turbines in service worldwide we provide proven technology, adapted to the specific local conditions.
Flexible steam turbine for applications in single-shaft and multi-shaft combined cycle configurations

The SST-3000 series steam turbine is a compact arrangement, that features a two-cylinder design with an axial exhaust for use in combined cycle power plants. Steam turbines of SST-3000 series are exceptionally compact machines for use in combined cycle power plants.

The SST-3000 series covers the power output range from 90 to 250 MW. It features a separate high-pressure (HP) turbine and combined intermediate-pressure / low-pressure (IP/ LP) turbine with single flow axial exhaust for 50 and 60 Hz applications.

SST-3000

Utility steam turbine package

- High turbine efficiency
- Enhanced operational flexibility, high availability and long lifetime
- Low complexity and low total plant costs
- Short project schedule and installation time

Ribatejo, Portugal

The Ribatejo power plant was one of the most technologically advanced combined cycle power plants at the time of construction. In operation: unit1: 02/2004, unit2: 10/2004, unit3: 03/2006

Net plant output: 3 x 390 MW

Steam turbine output: 3 x 142 MW

Scope of supply: 3 x SGT5-4000F, 3 x SST5-3000, 3 x SGen5-2000H

Main steam conditions:

- Inlet pressure: up to 177 bar / 2,567 psi
- Inlet temperature: up to 565°C / 1,050°F

Reheat steam conditions:

- Temperature: up to 610°C / 1,130°F

Last stage blade length:

- 50 Hz: 80 cm to 115 cm / 31 inches to 45 inches
- 60 Hz: 76 cm to 95 cm / 30 inches to 38 inches

"High turbine efficiency"

Enhanced operational flexibility, high availability and long lifetime

"Low complexity and low total plant costs"

"Short project schedule and installation time"

Ribatejo, Portugal

Flexible steam turbine for applications in single-shaft and multi-shaft combined cycle configurations

In our Siemens Steam Turbine portfolio, we offer with the SST-3000 series steam turbine a compact arrangement, that features a two-cylinder design with an axial exhaust for use in combined cycle power plants. Steam turbines of SST-3000 series are exceptionally compact machines for use in combined cycle power plants.

The SST-3000 series covers the power output range from 90 to 250 MW. It features a separate high-pressure (HP) turbine and combined intermediate-pressure / low-pressure (IP/ LP) turbine with single flow axial exhaust for 50 and 60 Hz applications.
Bearing

Single bearing arrangement between IP and LP turbine cylinders for simple alignment and stable operation.

High pressure turbine

Barrel type HP turbine, no half joint flange connection,
Single flow high pressure turbine with circular inner and outer casing, optimum internal loading and small clearances.

Intermediate pressure / low pressure turbine

HP-IP turbine with circular inner and outer casing for minimal thermal deflection and minimal clearances for high efficiency. The exhaust area is designed in a modular way, which can be adapted to meet customers’ site conditions. The condenser is installed in axial direction to create a compact machine house.

Combined stop and control valve

For easy opening of steam turbine casing valves are connected to the lower part of the outer casing via bolt connection.
The SST-4000 series is our specialized turbine for non-reheat, combined-cycle applications. With the specialized design of the blade path, the entire power range from 100 to 500 MW can be covered with the highest reliability and availability. More than 40 turbines of this type are already in operation or in the commissioning stage, with a total installed capacity of approximately 8,200 MW.

The SST-4000 series consists of an intermediate-pressure and a low-pressure turbine. The installation is either high or low level arrangement with down, double-side or single-side exhaust. The turbine is able to provide process steam e.g. for industries or sea water desalination and can provide industrial heating.

Thanks to its systematically modular design, the SST-4000 series can easily be adapted to the individual operating conditions and thermal cycle design of the plant. Its fast installation, thanks to prefabricated, tested modules delivered ready for connection, is of additional advantage.

Al Ezzel, Bahrain

The power plant makes an important contribution towards meeting the country’s growing power demand in an economic and environmentally compatible manner.

Customer: Al Ezzel Power Company
Plant type: SCC5-2000E multi shaft 2 x 1
Power output: 2 x 475 MW (power plant)

Suitable for operations in condensation and back-pressure mode
Proven designs for highly efficient, continuous operation
Low space requirement due to compact design, low investment costs
Short start-up times
Modular of variable-reaction type
Long service intervals lead to low maintenance costs and high availability

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant output</td>
<td>100 up to 500 MW</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 or 60 Hz</td>
</tr>
<tr>
<td>Steam conditions</td>
<td></td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>up to 105 bar / 1,523 psi</td>
</tr>
<tr>
<td>Inlet temperature</td>
<td>up to 565° C / 1,049° F</td>
</tr>
<tr>
<td>Last stage blade length</td>
<td>50 Hz 80 cm to 115 cm / 31 inches to 45 inches 60 Hz 76 cm to 95 cm / 30 inches to 38 inches</td>
</tr>
</tbody>
</table>

Al Ezzel, Bahrain
Combined stop and control valve

Valve connection below the horizontal flange of the IP turbine for easy maintenance.

Intermediate pressure turbine

IP turbine with circular inner and outer casing for minimal thermal deflection and minimal clearances for high efficiency.

Low pressure turbine

Inner and outer casing of the double flow turbine are mechanically decoupled. This allows minimal radial clearances resulting in maximum efficiency. The condenser is installed on one side and as a special requirement below, or on both sides of the low pressure turbine.

Single crossover pipe

Crossover pipe designed to minimize losses, reduces plant complexity and minimizes footprints.

Bearing

Single bearing arrangement between IP and LP turbine cylinders for simple alignment and stable operation.
SST-5000 Utility steam turbine package

A steam turbine with short start-up times and variable start-up modes to ensure grid stability

Siemens Steam Turbines of the SST-5000 series are operated in combined cycle power plants (CCPP) and in coal-fired steam power plants (SPP). The SST-5000 steam turbine combined with an SGT-8000H gas turbine achieves a class record net plant efficiency of more than 63 percent in combined cycle applications.

The SST-5000 is suitable for supercritical and ultra-supercritical steam power plants. Due to its higher pressure and temperature ratings, power plant efficiency increases to more than 46 percent and overall performance is improved. In steam power plants the SST-5000 consists of a combined high pressure/intermediate pressure turbine, and one or two low pressure turbines with down exhaust, single-sided or double-sided exhaust. It is installed in a low-or high-level arrangement. Various extractions (up to 9 stages) contribute to an optimized plant efficiency.

Product Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CCPP</th>
<th>SPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>120 MW to 650 MW</td>
<td>200 MW to 500 MW</td>
</tr>
<tr>
<td>Efficiency</td>
<td>61.5%</td>
<td>43%</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 or 60 Hz</td>
<td>50 or 60 Hz</td>
</tr>
<tr>
<td>Main steam conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>up to 177 bar</td>
<td>up to 260 bar</td>
</tr>
<tr>
<td>Inlet temperature</td>
<td>up to 600 °C</td>
<td>up to 600 °C</td>
</tr>
<tr>
<td>Reheat steam conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>up to 615 °C</td>
<td>up to 630 °C</td>
</tr>
<tr>
<td>Last stage blade length</td>
<td>66 cm to 95 cm</td>
<td>66 cm to 56 inches</td>
</tr>
</tbody>
</table>

Lausward “Fortuna”, Germany

The combined cycle power plant set three world records: in the acceptance test a maximum electrical net output of 603.8 MW was achieved and the net energy conversion efficiency was around 61.5 percent.

- Overall plant efficiency considering thermal extraction was above 85% - 100 MW thermal power extraction through one steam turbine train.

Plant type: SGT-8000H 1S (single shaft)
Power output: 604 MW
Efficiency: 61.5%
Combined stop & control valve

Value connection below the horizontal flange of the HP/IP turbine for easy maintenance.

High-pressure / intermediate-pressure turbine

Combined HP turbine with circular inner and outer casing for minimal thermal deflection and minimal clearances for high efficiency.

Low-pressure turbine

Inner and outer casing of the double-flow turbine are mechanically decoupled. That allows minimal radial clearances resulting in maximum efficiency. The condenser is installed either below, on one side or on both sides of the low-pressure turbine.

Single crossover pipe

Crossover pipe designed to minimize losses, reduce plant complexity and minimize footprint.

Bearing

Single bearing arrangement between HP/IP and LP turbine cylinders for simple alignment and stable operation.
Reduced lifecycle costs with the SST-6000 steam turbine

Siemens Steam Turbines of the SST-6000 series are widely operated in steam power plants with a power output up to 1,200 MW and net plant efficiencies of more than 46 percent.

Turbine trains of the SST-6000 series consist of a high-pressure turbine, an intermediate-pressure turbine, and up to three low-pressure turbines for 50 and 60 Hz.

The SST-6000 is installed in a high-level arrangement with down exhaust. Various extractions (up to 10 stages) are available for feed-water preheating, process steam, and district heating.

The globally installed capacity of the SST-6000 fleet is more than 100,000 MW.

Eemshaven, Netherlands

Thanks to a highly efficient power plant process, the Eemshaven steam power plant consumes less hard coal compared to the average of coal-fired power plants. This leads to a reduction in CO₂ emissions of 2.5 million metric tons per year.

Power output: 2 × 800 MW
Efficiency: 46.2 %
Main Steam: 275 bar/597 °C / 4,089 psi / 1,107 °F
Reheat Steam: 629 °C / 1,152 °F
Commissioning: 2014

Reduced lifecycle costs with the SST-6000 steam turbine

The SST-6000 is installed in a high-level arrangement with down exhaust. Various extractions (up to 10 stages) are available for feed-water preheating, process steam, and district heating.

The globally installed capacity of the SST-6000 fleet is more than 100,000 MW.

Eemshaven, Netherlands

Thanks to a highly efficient power plant process, the Eemshaven steam power plant consumes less hard coal compared to the average of coal-fired power plants. This leads to a reduction in CO₂ emissions of 2.5 million metric tons per year.

Power output: 2 × 800 MW
Efficiency: 46.2 %
Main Steam: 275 bar/597 °C / 4,089 psi / 1,107 °F
Reheat Steam: 629 °C / 1,152 °F
Commissioning: 2014

Eemshaven, Netherlands

Thanks to a highly efficient power plant process, the Eemshaven steam power plant consumes less hard coal compared to the average of coal-fired power plants. This leads to a reduction in CO₂ emissions of 2.5 million metric tons per year.

Power output: 2 × 800 MW
Efficiency: 46.2 %
Main Steam: 275 bar/597 °C / 4,089 psi / 1,107 °F
Reheat Steam: 629 °C / 1,152 °F
Commissioning: 2014
Intermediate-pressure turbine

- Double-flow intermediate-pressure turbine
- Circular inner and outer casing for minimum thermal deformation and minimum clearances for high efficiency
- Shipped to site fully assembled for smooth erection and start

High-pressure turbine

- Barrel type HP turbine, no half joint flange connection
- Single-flow high-pressure turbine with circular inner and outer casing, optimum thermal loading and small clearances.

Bearing

- Fixed bearing
- Single, fixed bearing arrangement between HP and IP turbine cylinders for simple alignment and stable operation. Fixed bearing pedestals on foundation crossbeams.

Crossover pipe

- Single crossover pipe
- Large diameter pipe to minimize losses and to reduce plant complexity and steam turbine footprint.

Low-pressure turbines

- Double-flow low-pressure turbines
- Inner and outer casing are mechanically decoupled preventing displacement and deformation of the inner casing. That allows minimal radial clearances resulting in maximum efficiency.
- The outer casing is directly welded on the condenser underneath the low pressure turbine casing.

Valve

- Combined stop & control valve
- For easy opening of steam turbine casing valves are connected to the lower part of the outer casing via bolt connection.
SST-9000
Utility steam turbine package

Leading technology for efficient, flexible and reliable power generation

The SST-9000 is a highly reliable steam turbine for applications in the conventional islands of advanced pressurized water reactors in nuclear power plants, with a power output up to 1,900 MW. The half-speed SST-9000 features a double-flow saturated steam high-pressure (HP) turbine and up to three double-flow low-pressure (LP) turbines with shrunk-on disk rotors.

Robust and reliable design, thanks to state-of-the-art engineering and proven service concepts.

Olkiluoto 3, Finland
Nuclear Power Plant

Customer:
Teollisuuden Voima Oyj (TVO)

Scope of supply:
Conventional Island

Commercial Operation:
Jan 2020 (planned)

Power Output:
Approx. 1,600 MW (net)

Grid Frequency:
50 Hz

Turbine Frequency:
25 Hz

Maximum reliability and availability
High operational flexibility
Low life cycle costs due to long inspection intervals
Extended lifetime, thanks to state-of-the-art engineering and proven service concepts

Maximum reliability and availability

High operational flexibility

Extended lifetime, thanks to state-of-the-art engineering and proven service concepts

Photo: @TVO
As a market leader for industrial steam turbines, we offer a comprehensive range of reliable and versatile steam turbines for the power output range from 2 to 250 MW. Our industrial steam turbines are designed for easy constructability, fast start-up and economical operation.
The Siemens SST-200 Siemens industrial steam turbine product line is based on the reaction blade technology. The turbine series follows a modular product philosophy, ensuring a high level of performance and reliability. The ability to combine standardized casing modules enable optimal design flexibility. This allows the turbine series to achieve high performance in combination with an optimal cost position. Each steam path is customized for optimal fit to the specific thermal cycle requirements providing high efficiency over the entire operating range.

The inlet and exhaust sections are configured to cover different plant configuration needs and are used in condensing configurations as well as in back pressure applications. With this flexible approach the SST-200 covers the range of both industrial mechanical drive and industrial power generation applications. The product design closely follows API 612 requirements.

Typical applications
- Generator and mechanical drive
- Chemical and petrochemical industry, such as Ethylene plants, Ammonia and fertilizer plants, Methanol plants
- Sugar mills
- Biomass plants
- Metals & mining
- Energy from waste plants

Specifications
- **SST-200**
 - Industrial steam turbine
 - **Power output**
 - up to 20 MW
 - **Speed**
 - up to 14,600 rpm
 - **Inlet temperature**
 - up to 540 °C / 1,004 °F
 - **Exhaust steam parameters**
 - Water-Cooled Condenser: 0.05–0.15 bar (a)
 - Air-Cooled Condenser: 0.15–0.50 bar (a)
 - Backpressure Turbines: 2–20 bar (a)
 - **Steam extraction**
 - Control (up to 4) up to 16 bar / 230 psi up to 350 °C / 560° F
 - Uncontrolled 60 bar / 870 psi

Tamoil, Switzerland
2 turbines producing on average 3.5 MW each in mechanical drive application

Steam turbine: 2 x SST-200
Power output: 3.5 MW each
Mechanical drive

SST-200 Industrial steam turbine
The SST-300 is an optimal solution for a wide range of applications due to the implementation of the best technology combined with over 20 years of experience. In the last decade alone, this turbine has been installed in over 500 industrial and power applications by customers all over the world.

The flexible configuration of the SST-300 enables it to be used in diverse applications such as waste-to-energy, chemical processing, pulp and paper, cement and many more.

Waste-to-energy plant, Lincolnshire, UK

In operation since 2014, the Lincolnshire Waste-to-energy facility provides a safe, sustainable and affordable waste treatment solution to dispose of household waste, with a useful and profitable by-product: electricity. It burns 150,000 t of waste a year.

Power output: 25.15 MW

Speed: 5,300 rpm

Live steam pressure: 58 bar / 841 psi

Live steam temperature: 397 °C / 746 °F

Exhaust steam pressure: 0.07 bar / 1 psi

All components and auxiliaries including the lube oil system are mounted on a common base frame. The turbine can be configured with either an upward, downward or axial exhaust orientation depending on the layout of the plant. The turbine can also accommodate multiple steam extraction/steam induction points as well. The compact design and simple layout of the turbine significantly reduce the cost and time associated with its construction, inspection and maintenance.

Typical applications

- Biomass plants
- Chemical and petrochemical industry
- Cement industry
- Combined cycle power plants and combined heat and power plants
- Concentrated solar power plants
- District heating
- Waste-to-energy plants (waste incineration)
- Pulp and paper mills
- Sugar industry
- Steel works and mines
Valve arrangement

Internal valve arrangements (or adaptive stages) control the steam flow and maintain constant process steam extraction pressures over a wide flow range.

Base frame

SST-300 turbines are delivered as packaged units with simple or integrated base frame. The air-cool is inside the base frame.

Only a minimal number of external connections, which are clearly defined according to standards, ensure fast and easy installation.

Exhaust

Equipped with upward, downward or axial exhaust orientation.

Turbine Casing

The nearly symmetrical casing allows short start-up times and quick load changes.

Reaction Blading

The rotor is fitted with resonance-proof fully shrouded blading. The last stage is free-standing with a damping wire (condensing steam turbine)
The SST-400 is a single casing steam turbine, providing geared or direct drive to 50 and 60 Hz generators, or to compressors and pumps. The symmetrical casing with horizontal joint flange enables the SST-400 to achieve short start-up times and rapid load changes.

The modular package design allows a wide variety of configurations to satisfy the customer’s individual needs in the most economical way. The utilization of selected proven components assures high reliability and easy maintenance.

The SST-400 can be equipped with upward, downward or axial exhaust to fit with the selected installation. The turbine skid can be combined with standardized gearbox-oil units and generators to a turboset, according to the customer’s needs.

Waste-to-energy plant, Mallorca/Spain

Tourism shapes the local development and welfare of the Mediterranean island. The significant number of visitors results in the population to vary between about 1 million in winter and 6 million in summer. This poses a challenging task for the proper disposal of daily waste. The EfW-plant in Palma de Mallorca has a capacity of about 430,000 t per year. Mallorca reached zero landfill waste.

Power output: 38 MW (steam turbine)
Speed: 4,500 rpm
Inlet temperature: 397 °C / 746 °F
Inlet pressure: 50 bar / 725 psi

Waste-to-energy plant, Mallorca/Spain

Tourism drives the local development and welfare of the Mediterranean island. The significant number of visitors results in the population to vary between about 1 million in winter and 6 million in summer. This poses a challenging task for the proper disposal of daily waste. The EfW-plant in Palma de Mallorca has a capacity of about 430,000 t per year. Mallorca reached zero landfill waste.

Power output: 38 MW (steam turbine)
Speed: 4,500 rpm
Inlet temperature: 397 °C / 746 °F
Inlet pressure: 50 bar / 725 psi
SST-600

Flexible condensing or back-pressure steam turbine

Typical applications
- Chemical and petrochemical industry
- Pulp and paper mills
- Steel works
- Mines
- Power plants
- Seawater desalination plants
- Biomass and Waste-to-energy plants (waste incineration)

Generator drive in various packages

We deliver a standard steam turbine generator set including the SST-600 (with or without soft reheat), a generator, oil system, piping and instrumentation and the control system.

The standard package can be extended to include a condenser, condensing plant or pre-heating system. The SST-600 with its reliable and flexible design is available with axial or radial exhaust.

Mechanical drive

The SST-600 is also an efficient and economic mechanical drive. Since the 1970s, hundreds of projects have been successfully implemented all over the world using the SST-600 to directly drive everything from the smallest boiler feedwater pump just as reliably as the largest compressor even in the most complex processes. The SST-600 complies with regulations including the API standard.

Biomass district heating plant, Västergötland / Sweden

The district heating plant operated by Stadsholm Energic Supplies 1500th thermal power and 20 MW electric.

It has been in operation since 2009 and uses wood as fuel. Siemens delivered the complete turbine system (SST-600 and generator).

Power output: 25 MW

- Live steam temperature: 510°C/950°F
- Exhaust steam pressure: 7.5 bar / 110 psi
- Speed: 5,000 rpm

SST-600

- Power output up to 200 MW
- Speed: 1,500 to 18,000 rpm
- **Live steam parameters**
 - Pressure: up to 120 bar / up to 1,760 psi
 - Temperature: up to 565°C / 1,050°F
- **Exhaust steam parameters**
 - Back pressure: up to 0.5 bar / 7 psi
 - Condensing: up to 1.0 bar / 15 psi
- **Controlled extractions**
 - Pressure: up to 72 bar / 1,044 psi
 - Temperature: up to 480°C / 895°F
- **Uncontrolled extractions**
 - Pressure: up to 85 bar / 1,233 psi

Biomass district heating plant, Västergötland / Sweden

The district heating plant operated by Mölndal Energie supplies 91 MW thermal power and 23 MW electricity. It has been in operation since 2009 and uses wood as fuel. Siemens delivered the complete turboset (SST-600 and generator).

Power output: 25 MW

- Live steam temperature: 510°C / 950°F
- Exhaust steam pressure: 7.5 bar / 110 psi
- Speed: 5,000 rpm

Outstanding efficiency
- Soft reheat up to 400°C
- Fast start-up times
- Economic installation and operation
- Flexibility for complex, industrial processes
The possibility of applying up to 3 balancing pistons minimizes thrust and allows smaller axial bearings. Thanks to improved journal bearings, less oil and a smaller oil tank are needed.

The symmetrical design of the upper and lower halves avoids material concentrations and ensures improved thermal behavior and an improved start-up time.

A wide range of exhaust sizes and types is available for back-pressure and condensing applications.

The improved sealing system allows more sealing strips per blade row at both moving and stationary blades.

The improved cylindrical high pressure blades and tapered intermediate pressure blades allow longer airfoils and contribute to the overall high efficiency.

Can be designed for straight flow, or equipped with uncontrolled and/or controlled extractions.
Typical applications

- Combined cycle power plants (CCPP)
- Combined heat and power plants (CHP)
- Oil & Gas industries
- Industrial power plants (e.g. captive power plants in chemical and petrochemical industries, manufacturing industries, paper mills, mines, metal and cement plants, waste heat recovery)
- District heating plants
- Biomass plants and waste-to-energy plants (WtE)
- Concentrated solar power plants (CSP)

Steam turbine for pulp & paper industry SST-800, Klabin / Brazil

Two Siemens SST-800 steam turbines are supplying electricity and process steam to a pulp factory in Brazil. The SST-800 has a capacity of 190 megawatts (MW), making it among the largest steam turbines in use in the pulp and paper industry worldwide.

- Power output: 190 MW
- Speed: 3,600 rpm
- Inlet steam pressure: 100 bar / 1,450 psi
- Inlet steam temperature: 498 °C / 928 °F

Steam turbine for the pulp plant Klabin, Brazil

The SST-800 steam turbine can be used for both condensing and back-pressure applications. It is built up from pre-designed modules combined into a single unit for optimum matching of the required parameters. Turbine auxiliary systems are also designed as pre-engineered modules covering the complete range of turbine sizes.

The SST-800 turbine is equipped with impulse control stage and reaction blading fixed in blade carriers. Furthermore the turbine is offered with throttle controlled inlets. The turbine can be arranged on a foundation or as a package (including oil system and on a base frame). The SST-800 steam turbine design is in accordance with DIN or API standards.

The SST-800 is a single casing steam turbine with center steam admission and reverse steam flow inner casing, designed for a direct coupled generator or mechanical drive. The power output with dual casing solution is up to 250 MW.

The highly customized turbine provides for an outstanding efficiency, fast start-up times and high reliability and availability. It supports all requirements for economical installation and operation in combination with highest flexibility for complex industrial processes. A double or even multicasing solution can also be provided.

Typical applications

- Combined cycle power plants (CCPP)
- Combined heat and power plants (CHP)
- Oil & Gas industries
- Industrial power plants (e.g. captive power plants in chemical and petrochemical industries, manufacturing industries, paper mills, mines, metal and cement plants, waste heat recovery)
- District heating plants
- Biomass plants and waste-to-energy plants (WtE)
- Concentrated solar power plants (CSP)

Power output

- Up to 200 MW
- 1,650 to 1,800 rpm

Steam parameters

- Inlet pressure up to 165 bar / up to 2,393 psi
- Inlet temperature up to 565 °C / up to 1,050 °F
- Exhaust conditions
 - Back pressure up to 72 bar / 1,044 psi
 - Controlled extractions (up to 2)
 - Pressure, ext. valve up to 72 bar / 1,044 psi
 - Uncontrolled extractions (up to 7)
 - Various pressure levels

Steam turbine for pulp & paper industry SST-800, Klabin, Brazil

Two Siemens SST-800 steam turbines are supplying electricity and process steam to a pulp factory in Brazil. The SST-800 has a capacity of 190 megawatts (MW), making it among the largest steam turbines in use in the pulp and paper industry worldwide.
Center steam admission
The reverse flow adjusts the thrust and relieves the bearings of large steam turbines.

Steam path
Highly customized section with up to 3 internally or externally controlled extractions and up to 7 uncontrolled extractions.

Bearings
Simplified maintenance due to horizontal casing split and/or independently accessible bearings.

Exhaust section
Axial or downward connection for condensing, upward or downward connection for back pressure is provided.

Casing
The steam turbine casing is based on a combined housing concept featuring a cast steel and welded design. The material mix ensures high availability and reduced delivery times.
The SST-500 is a single casing, double exhaust flow steam turbine, which can be used as an entire drive or as the low- pressure module of a multiple casing turboset, directly driven or geared. This turbine, with its capacity to operate over a wide range of speed and power, is ideal for large steam volume flows. Steam flows into the turbine via non-tangential inlets to equalize thermal loading and blade stress. Emergency stop valves and control valves are installed in the steam inlet pipes. The steam flows tangentially into the inner casing and then axially to both exhausts. The customized design of the steam path allows exact adjustment to surpass general physical limitations of the last stage blades. Double-end drive is available, if required, e.g. for booster pump drive.

SST-800/500 Double-exhaust flow steam turbine in a single or multi-casing solution

Typical applications

- Solar thermal power plants
- Combined cycle plants
- Pump drive (e.g. feedwater pump for large boilers)
- Generator drive
- Compressor drive
- Chemical industry
- Steel works
- Waste to energy, e.g. waste incinerators
- Waste heat from chemical processes

BSolarthermal power plant, Morocco

Customer: Masen, Ouarzazate Solar Power Station

Project: Three dual-casing steam turbines put into service at the Noor II (a solar tower plant) in a SST-500/800 Power output: 200 MW

Inlet temperature: 380 °C / 716 °F

Inlet pressure: 105 bar(a) / 1,522 psi

Inlet temperature: 380 °C / 716 °F

Inlet pressure: 105 bar(a) / 1,522 psi

Power output:

<table>
<thead>
<tr>
<th>SST-500</th>
<th>SST-800/800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>up to 100 MW</td>
</tr>
<tr>
<td>Speed</td>
<td>up to 15,000 rpm</td>
</tr>
<tr>
<td>Live steam parameters</td>
<td></td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>up to 30 bar / 435 psi</td>
</tr>
<tr>
<td>Inlet temperature</td>
<td>up to 400 °C / 750 °F</td>
</tr>
<tr>
<td>Exhaust steam parameters</td>
<td></td>
</tr>
<tr>
<td>District heating</td>
<td>up to 1.5 bar / 21.75 psi</td>
</tr>
<tr>
<td>Condensing</td>
<td>up to 0.5 bar / 7.25 psi</td>
</tr>
<tr>
<td>Steam extraction</td>
<td>Various pressure levels</td>
</tr>
</tbody>
</table>
SST-700 / 900
Industrial steam turbine

Economical dual casing steam turbine for reheat applications

The SST-700 / 900 is a standard turbine solution with short delivery time due to its fixed pre-engineered design. Predefined modules enable a short manufacturing period, cost-efficient material supply and a fast ex-works delivery. The straight flow turbine solution with power output of up to 250 MW consists of a geared high-pressure steam turbine (backpressure), an intermediate/low-pressure steam turbine (condensing), both driving a generator installed in between.

The dual casing reheat turbine configuration with inner casing is a competitive and optimized product for combined cycle power plants and concentrated solar power plants.

Parabolic trough technology in Morocco

On February 4, 2016, the King of Morocco, Mohammed VI, inaugurated the Noor I unit of Ouarzazate Solar Power Station. This is the first of four phased Noor projects at Ouarzazate site which are expected to provide a total electrical generating capacity of 580 megawatts, making it the largest complex of its kind in the world. Siemens is supplying three turbine-generator sets for the power station.

Steam turbine SST-700/900
Power output: 160 MW
Inlet steam temperature: 380°C / 716°F
Inlet steam pressure: 168 bar(a) / 2,437 psi
Exhaust pressure: 0.06 bar(a) / 0.87 psi

Table: SST-900 for the CSP-plant NOOR III, Morocco

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>up to 250 MW (CCPP: 230 MW)</td>
</tr>
<tr>
<td>Speed</td>
<td>3,000 to 3,600 rpm</td>
</tr>
<tr>
<td>Live steam parameters</td>
<td></td>
</tr>
<tr>
<td>Inlet pressure</td>
<td>up to 180 bar(a) / up to 2,611 psi</td>
</tr>
<tr>
<td>Inlet temperature</td>
<td>up to 585°C / up to 1,085°F</td>
</tr>
<tr>
<td>Exhaust steam parameters</td>
<td></td>
</tr>
<tr>
<td>Back pressure</td>
<td>0.3 bar(a) / 4.4 psi</td>
</tr>
<tr>
<td>Steam extraction</td>
<td>Controlled: 72 bar(a) / 1,044 psi</td>
</tr>
<tr>
<td></td>
<td>Uncontrolled: up to 72 bar(a) / 1,044 psi</td>
</tr>
</tbody>
</table>

Typical applications

- Combined cycle power plants
- Concentrated solar thermal power plants
- Biomass-fired power plants
With the D-R steam turbine portfolio Siemens has the most comprehensive range of API turbines available on the market, including:

- Standard single stage turbines for pump, fan & small compressor drives according to API 611 General Purpose (GP) standard
- Standard and engineered single stage turbines as generator drives for waste heat recovery applications
- Engineered single stage turbines for applications according to API 611 (General Purpose — GP) or API 612 (Special Purpose — SP) standards
- Standard multistage turbines for larger pumps, fans & compressors to API 611 or API 612 standards, or for power generation
- Turbines for geothermal plants
- Turbines for expansion of ORC and process fluids

As required either bare ST drivers to OEMs, or complete packages including gears, lube oil systems and controls are supplied

Benefits:

- Highest levels of quality & reliability for the most critical services in the business
- All units factory tested in accordance with API and customer requirements
- Units with modular designs, but engineered to order, according to customer project specifications, standards and local environmental requirements
D-R SST 350 / 500 / 700

Standard single stage steam turbine

- Rugged, versatile design
- Woodward TG Oil Relay NEMA Class A constant speed governor or electronic governor
- Horizontally split casing with centerline support
- Overspeed mechanical trip valve, separated from governor valve
- Carbon ring or labyrinth sealing glands
- Built-in, removable steam strainer
- API style blanket lagging / insulation (API applications)
- Oil ring lubricated with forced pressure lubrication or circulating oil cooling options
- Rolling element or Tiltpad thrust bearings
- Broad range of controls and accessories available
- WORTHINGTON heritage

Typical applications

- Refineries
- Petrochemical plants
- Palm oil plants
- Food processing
- Steel industry
- Pulp & Paper
- Institutional
- Process waste heat recovery
- Replacement of steam pressure reduction valve
- Feed water pumps
- Process pump drives
- Cooling water pumps
- Fans
- Compressors
- Generators

Technical Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power/Load</td>
<td>2,460 kW / 3,500 HP</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 12,000 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 482°C / 900°F</td>
</tr>
<tr>
<td>Inlet steam pressure</td>
<td>≤ 63 bar / 914 psi</td>
</tr>
<tr>
<td>Back pressure</td>
<td>21 bar / 315 psi</td>
</tr>
<tr>
<td>Type of wheel / blades</td>
<td>Curtis / Impulse</td>
</tr>
<tr>
<td>API 611 and API 612</td>
<td>Yes</td>
</tr>
<tr>
<td>Bearings</td>
<td>Sleeve, Ball or Tiltpad</td>
</tr>
</tbody>
</table>

Standard single stage steam turbine

- Power output: 2,460 kW / 3,500 HP
- Turbine speed: ≤ 12,000 rpm
- Inlet steam temperature: ≤ 482°C / 900°F
- Inlet steam pressure: ≤ 63 bar / 914 psi
- Back pressure: 21 bar / 315 psi
- Type of wheel / blades: Curtis / Impulse
- API 611 and API 612: Yes
- Bearings: Sleeve, Ball or Tiltpad
D-R RLA / D-R RLVA

Standard single stage steam turbine

Typical applications
- Refineries
- Petrochemical and chemical plants
- Food processing
- Institutional
- Process pump drives
- Process waste heat recovery
- Replacement of steam pressure reduction valve
- Lube oil pumps

RLA
- Rugged, versatile design
- Radially split casing with centerline support
- Woodward TG Oil Relay NEMA Class A constant speed governor
- API 611 compliant, positive seating, mechanical overspeed trip valve
- Separate double seated governor valve
- Built-in removable steam strainer
- Removable carbon ring sealing glands
- API style blanket lagging/insulation (API applications)
- Oil ring lubricated
- Broad range of controls and accessories available
- COPPUS heritage

RLVA
- Rugged, versatile design
- Radially split casing
- Vertical shaft design with NEMA motor mounting flange & various ball thrust bearing configurations
- Woodward TG Oil Relay NEMA Class A constant speed governor
- API 611 compliant, positive seating, mechanical overspeed trip valve
- Separate double seated governor valve
- Built-in removable steam strainer
- Removable carbon ring sealing glands
- API style blanket lagging/insulation (API applications)
- Grease lubricated with circulating oil options
- Broad range of controls and accessories available
- COPPUS heritage

Technical Data

<table>
<thead>
<tr>
<th>D-R RLA/RLVA</th>
<th>Power (kW)</th>
<th>745 kW / 1,000 HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine speed</td>
<td>rpm</td>
<td>up to 6,000 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>°C / °F</td>
<td>up to 440 °C / 825 °F</td>
</tr>
<tr>
<td>Inlet steam pressure</td>
<td>bar(a) / psi</td>
<td>≤ 47 / 682 psi</td>
</tr>
<tr>
<td>Back pressure</td>
<td>bar(a) / psi</td>
<td>≤ 12 / 179 psi</td>
</tr>
<tr>
<td>Type of wheel/Blades</td>
<td>Curtis / Impulse</td>
<td></td>
</tr>
<tr>
<td>API 611 compliant</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bearings</td>
<td>Ball bearing journal & thrust</td>
<td></td>
</tr>
</tbody>
</table>

Typical applications
- Refineries
- Petrochemical and chemical plants
- Institutional
- Process pump drives
- Lube oil pump drives
- Fan driven
D-R RLH

Standard single stage steam turbine

Typical applications
- Refineries
- Petrochemical plants
- Food processing
- Institutional
- Process waste heat recovery
- Replacement of steam pressure reduction valve
- Process pump drives
- Feed water pumps
- Lube oil pumps

D-R RLH
- Rugged, versatile design
- Woodward TG Oil Relay NEMA Class A constant speed governor or electronic governor
- Horizontally split casing with centerline support
- API 611 compliant, positive seating, mechanical overspeed trip valve
- Separate double seated governor valve
- Built-in removable steam strainer
- Carbon ring sealing glands
- API style blanket (lagging) insulation (API applications)
- Carbon ring sealing glands
- Oil ring lubricated with forced pressure lubrication or circulating of cooling options
- Broad range of controls and accessories available
- COPPUS heritage

Technical Data

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>1,865 kW / 2,500 HP</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>6,000 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 482°C / 900°F</td>
</tr>
<tr>
<td>Inlet steam pressure</td>
<td>≤ 97 bar(a) / 1.414 psi</td>
</tr>
<tr>
<td>Back pressure</td>
<td>≤ 22 bar(a) / 314 psi</td>
</tr>
<tr>
<td>Type of wheel / blades</td>
<td>Curtis / Impulse</td>
</tr>
<tr>
<td>API 611 compliant</td>
<td>Yes</td>
</tr>
<tr>
<td>Bearings</td>
<td>Ball and sleeve bearing designs</td>
</tr>
</tbody>
</table>
D-R 2TA

Single stage steam turbine

- Horizontally split casings
- Between bearing design
- Multi-Valve or Single Valve Inlet
- Solid or built-up rotor
- Carbon ring or labyrinth glands
- Electronic governor

Typical applications
- Pumps and fans drives
- Compressors drives

Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>D-R 2TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>3,640 kW / 4,880 HP</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 12,500 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 530 °C / ≤ 986 °F</td>
</tr>
<tr>
<td>Net steam pressure</td>
<td>≤ 104 bar(a) / ≤ 1,515 psi</td>
</tr>
<tr>
<td>Back pressure (boiler)</td>
<td>≤ 33 bar(a) / ≤ 480 psi</td>
</tr>
<tr>
<td>Type of wheel blades</td>
<td>Curtis / Rateau impulse</td>
</tr>
<tr>
<td>API 611 & 612 compliant</td>
<td>Yes</td>
</tr>
<tr>
<td>Bearings</td>
<td>Tilting Pad / Sleeve</td>
</tr>
</tbody>
</table>

- Electronic overspeed trip
- Separate mechanical or hydraulic trip and throttle valves (option w/o exerciser)
- Auto / quick start capability
- Terry heritage

Single stage steam turbine

- Single stage steam turbine
- Power output 3,640 kW / 4,880 HP
- Turbine speed ≤ 12,500 rpm
- Inlet steam temperature ≤ 530 °C / ≤ 986 °F
- Inlet steam pressure ≤ 104 bar(a) / ≤ 1,515 psi
- Back pressure (boiler) ≤ 33 bar(a) / ≤ 480 psi
- Type of wheel blades Curtis / Rateau impulse
- API 611 & 612 compliant Yes
- Bearings Tilting Pad / Sleeve

Typical applications
- Pumps and fans drives
- Compressors drives

- Electronic overspeed trip
- Separate mechanical or hydraulic trip and throttle valves (option w/o exerciser)
- Auto / quick start capability
- Terry heritage

Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>D-R 2TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>3,640 kW / 4,880 HP</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 12,500 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 530 °C / ≤ 986 °F</td>
</tr>
<tr>
<td>Net steam pressure</td>
<td>≤ 104 bar(a) / ≤ 1,515 psi</td>
</tr>
<tr>
<td>Back pressure (boiler)</td>
<td>≤ 33 bar(a) / ≤ 480 psi</td>
</tr>
<tr>
<td>Type of wheel blades</td>
<td>Curtis / Rateau impulse</td>
</tr>
<tr>
<td>API 611 & 612 compliant</td>
<td>Yes</td>
</tr>
<tr>
<td>Bearings</td>
<td>Tilting Pad / Sleeve</td>
</tr>
</tbody>
</table>
D-R AVTTW / GTW

Single stage steam turbine

- Radially split casings
- Direct drive or Integral Gear operation
- Overhung rotor design
- Multi-Valve or Single Valve Inlet
- Marine Classification approval
- Auto/Quick start ability
- Carbon ring or labyrinth glands
- Nadrowski heritage

Typical applications
- Waste to Energy
- Biomass Plants
- Marine Applications
- Chemical Industries
- Paper / Sugar Mills
- ORC
- Waste heat recovery

Technical Data

<table>
<thead>
<tr>
<th>D-R AVTTW / GTW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output: 4,500 kW / 6,000 HP</td>
</tr>
<tr>
<td>Turbine speed: ≤ 14,500 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature: ≤ 550 °C / ≤ 1,022 °F</td>
</tr>
<tr>
<td>Inlet steam pressure: ≤ 125 bar (1,813 psi)</td>
</tr>
<tr>
<td>Back pressure: 21 bar (315 psi)</td>
</tr>
</tbody>
</table>

Type of wheel / blades: Curtis / Rateau Impulse

API 611 compliant: Yes (with comments)

Bearings: Tilting pad / sleeve

D-R AVTTW / GTW

Technical Data

<table>
<thead>
<tr>
<th>D-R C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output: 2,500 kW / 3,250 HP</td>
</tr>
<tr>
<td>Turbine speed: ≤ 8,500 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature: ≤ 520 °C / 986 °F</td>
</tr>
<tr>
<td>Inlet steam pressure: ≤ 120 bar (1,740 psi)</td>
</tr>
</tbody>
</table>

Type of wheel / blades: Curtis / Rateau Impulse

API 611 & 612 compliance: with exception

Bearings: Tilting pad / sleeve

Typical applications
- Pump and fan drives
- Compressor drives

Technical Data

<table>
<thead>
<tr>
<th>D-R C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output: 4,500 kW / 6,000 HP</td>
</tr>
<tr>
<td>Turbine speed: ≤ 14,500 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature: ≤ 550 °C / ≤ 1,022 °F</td>
</tr>
<tr>
<td>Inlet steam pressure: ≤ 125 bar (1,813 psi)</td>
</tr>
</tbody>
</table>

Type of wheel / blades: Curtis / Rateau Impulse

API 611 compliant: Yes (with comments)

Bearings: Tilting pad / sleeve
D-R GAF

Standard multi-stage steam turbine

Typical applications
- API mechanical drive (e.g. pump fans)
- Turbogenerator sets

D-R GAF
- Condensing or back pressure steam turbine
- Horizontal casing split
- Between bearings rotor design
- Max. 6 stages
- Single valve inlet
- API 611 or 612 design
- Terry heritage

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>D-R GAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>2,500 kW / 3,345 HP</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 6,000 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 450 °C / 842 °F</td>
</tr>
<tr>
<td>Inlet steam pressure</td>
<td>≤ 49 bar (715 psi)</td>
</tr>
<tr>
<td>Back pressure</td>
<td>≤ 6 bar (87 psi)</td>
</tr>
<tr>
<td>Condensing pressure</td>
<td>vacuum</td>
</tr>
<tr>
<td>Type of Blading</td>
<td>Impulse</td>
</tr>
<tr>
<td>API 611 & 612 compliance</td>
<td>Yes</td>
</tr>
<tr>
<td>Bearings</td>
<td>Tilting/Thrust</td>
</tr>
</tbody>
</table>

Power output: 3,500 kW / 4,690 HP
Turbine speed: ≤ 6,000 rpm
Inlet steam temperature: ≤ 440 °C / 825 °F
Inlet steam pressure: ≤ 49 bar / 715 psi
Back pressure: ≤ 6 bar / 87 psi
Condensing pressure: vacuum
Type of Blading: Impulse
API 611 & 612 compliance: Yes
Bearings: Tilting/Thrust
D-R B
Standard multi-stage steam turbine

- Low cost design for high efficiency
- Multivalve inlets
- Multiple uncontrolled bleeds
- External controlled induction
- Double shaft end

Available as single casing or multiple (tandem) casing machine
- Compact integral package designs
- Multiple externally controlled bleeds

D-R B Tandem
- Multivalve inlets
- Multiple uncontrolled bleeds
- Single automatic controlled extraction/induction
- Extraction pressure up to 40 bar
- Nadrowski heritage

Typical applications
- Turbogenerator sets
- Mechanical drives
- Sugar mills
- Pulp and paper mills
- Metal & Steel
- Waste to energy plants
- Marine applications
- Waste heat recovery

Typical applications
- Turbogenerator sets
- Mechanical drives
- Sugar mills
- Pulp and paper mills
- Metal & Steel
- Waste to energy plants
- Marine applications
- Waste heat recovery

Technical Data

<table>
<thead>
<tr>
<th></th>
<th>D-R B</th>
<th>D-R B Tandem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Power output</td>
<td>11 MW</td>
<td>12.5 MW</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 6,500 rpm</td>
<td>≤ 6,500 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 500°C / 932°F</td>
<td>≤ 530°C / 986°F</td>
</tr>
<tr>
<td>Inlet Steam pressure</td>
<td>≤ 65 bar(a) / 942 psi</td>
<td>≤ 121 bar(a) / 1,750 psi</td>
</tr>
<tr>
<td>Back pressure</td>
<td>≤ 13 bar(a) / 189 psi</td>
<td>≤ 13 bar(a) / 188 psi</td>
</tr>
<tr>
<td>Condensing pressure</td>
<td>vacuum</td>
<td>vacuum</td>
</tr>
<tr>
<td>Type of wheel blades</td>
<td>Impulse</td>
<td>Impulse</td>
</tr>
<tr>
<td>API 611 & 612 compliant</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Bleedings / Extractions</td>
<td>Multiple / 1</td>
<td>Multiple / 1</td>
</tr>
<tr>
<td>Bearings</td>
<td>Tilting sleeve bearings</td>
<td>Tilting sleeve bearings</td>
</tr>
</tbody>
</table>

D-S-B Tandem
- Multivalve inlets
- Multiple uncontrolled bleeds
- Single automatic controlled extraction/induction
- Extraction pressure up to 40 bar
- Nadrowski heritage

Technical Data

<table>
<thead>
<tr>
<th></th>
<th>D-S-B Tandem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Power output</td>
<td>11.5 MW</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 6,500 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 500°C / 932°F</td>
</tr>
<tr>
<td>Inlet Steam pressure</td>
<td>≤ 65 bar(a) / 942 psi</td>
</tr>
<tr>
<td>Back pressure</td>
<td>≤ 13 bar(a) / 189 psi</td>
</tr>
<tr>
<td>Condensing pressure</td>
<td>vacuum</td>
</tr>
<tr>
<td>Type of wheel blades</td>
<td>Impulse</td>
</tr>
<tr>
<td>API 611 & 612 compliant</td>
<td>No</td>
</tr>
<tr>
<td>Bleedings / Extractions</td>
<td>Multiple / 1</td>
</tr>
<tr>
<td>Bearings</td>
<td>Tilting sleeve bearings</td>
</tr>
</tbody>
</table>

D-S-B Tandem
- Multivalve inlets
- Multiple uncontrolled bleeds
- Single automatic controlled extraction/induction
- Extraction pressure up to 40 bar
- Nadrowski heritage

Technical Data

<table>
<thead>
<tr>
<th></th>
<th>D-S-B Tandem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Power output</td>
<td>11.5 MW</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 6,500 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 500°C / 932°F</td>
</tr>
<tr>
<td>Inlet Steam pressure</td>
<td>≤ 65 bar(a) / 942 psi</td>
</tr>
<tr>
<td>Back pressure</td>
<td>≤ 13 bar(a) / 189 psi</td>
</tr>
<tr>
<td>Condensing pressure</td>
<td>vacuum</td>
</tr>
<tr>
<td>Type of wheel blades</td>
<td>Impulse</td>
</tr>
<tr>
<td>API 611 & 612 compliant</td>
<td>No</td>
</tr>
<tr>
<td>Bleedings / Extractions</td>
<td>Multiple / 1</td>
</tr>
<tr>
<td>Bearings</td>
<td>Tilting sleeve bearings</td>
</tr>
</tbody>
</table>
D-R R/RS

Standard multi-stage steam turbines

- Single valve or multivalve inlets
- Multiple uncontrolled bleeds
- Single automatic controlled extraction/induction
- Dual-acting, hydrodynamic, Tiltpad thrust bearing
- Spherically seated or Tiltpad-type journal bearings

Technical Data

<table>
<thead>
<tr>
<th>Specification</th>
<th>D-R R/RS</th>
<th>D-R K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>25,000 kW / 33,500 HP</td>
<td>4,850 kW / 6,500 HP</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 15,000 rpm</td>
<td>≤ 10,000 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 510 °C / ≤ 950 °F</td>
<td>≤ 389 °C / ≤ 750 °F</td>
</tr>
<tr>
<td>Inlet steam pressure</td>
<td>≤ 67 bar(a) / ≤ 972 psi</td>
<td>≤ 28.5 bar(a) / ≤ 415 psi</td>
</tr>
<tr>
<td>Back pressure</td>
<td>≤ 19 bar(a) / ≤ 415 psi</td>
<td>≤ 6 bar(a) / ≤ 90 psi</td>
</tr>
<tr>
<td>Condenser pressure</td>
<td>vacuum</td>
<td>vacuum</td>
</tr>
<tr>
<td>Type of Blading</td>
<td>Impulse</td>
<td>Impulse</td>
</tr>
<tr>
<td>API 611 & 612 compliance</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Bearings</td>
<td>Tiltpad or sleeve</td>
<td>Tiltpad, Sleeve</td>
</tr>
<tr>
<td>Pressure capability increases above 900 psig at reduced temperature.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical applications

- API 611/612 compressor, fan and pump drives
- Turbogenerator sets, oil & gas and industrial
- Oil & gas, refineries
- Chemical plants
- Food and beverage
- Sugar mills
- Pulp & paper mills
- Waste to energy plants
- Biorefinery plants
- Waste heat recovery

D-R K

Standard multi-stage steam turbine

- Condensing or back pressure
- Low cost applications
- Single valve inlet
- For wide range of speeds throughout continuous operation
- Up to 12 stages
- Murray heritage

Technical Data

<table>
<thead>
<tr>
<th>Specification</th>
<th>D-R K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>4,850 kW / 6,500 HP</td>
</tr>
<tr>
<td>Turbine speed</td>
<td>≤ 10,000 rpm</td>
</tr>
<tr>
<td>Inlet steam temperature</td>
<td>≤ 389 °C / ≤ 750 °F</td>
</tr>
<tr>
<td>Inlet steam pressure</td>
<td>≤ 28.5 bar(a) / ≤ 415 psig</td>
</tr>
<tr>
<td>Back pressure</td>
<td>≤ 5 bar(a) / 90 psi</td>
</tr>
<tr>
<td>Condenser pressure</td>
<td>vacuum</td>
</tr>
</tbody>
</table>

Type of Blading

- Impulse

API 611 & 612 compliance

- No

Bearings

- Tiltpad, Sleeve
Our steam turbines meet customer requirements for economic installation and operation as well as providing excellent flexibility for complex processes. Worldwide, hundreds of successfully installed generator drives for power generation or mechanical drives for compressors, blowers and pumps are in operation and reliably provide power.
Reference examples Steam Power Plants

Ultra-supercritical steam power plant Lünen, Germany
Lünen is the cleanest and most efficient hard-coal-fired power plant in Europe.
It provides electricity for around 1.5 million households.
It also supplies the city of Lünen with district heating.
Using leading-edge Siemens technology makes it possible to save up to a million tons of CO₂ every year.

- **Power output:** 812 MW
- **Efficiency:** 46%
- **Commercial operation:** 2013

Ultra-supercritical steam power plant Waigaoqiao III, China
Since startup in 2008, Waigaoqiao III has compared to an average Chinese coal-fired power plant saved 400,000 million metric tons of raw coal. The plant reaches an efficiency of up to 45% making it a highly efficient coal plant.

- **Power output:** 2 × 1,000 MW
- **Efficiency:** 47%
- **Commercial operation:** 2008

Ultra-supercritical steam power plant Isogo, Japan
At the time, Siemens was the first company to supply a machine for this temperature range.

- **Power output:** 600 MW
- **Steam conditions:** 600 °C/610 °C
- **Commercial operation:** 2002

Ultra-supercritical steam power plant Yuhuan, China
In 2008, Yuhuan was China’s most advanced coal-fired power plant and got the “Asian Power Award”.

- **Power output:** 4 × 1,000 MW
- **Efficiency:** 45%
- **Commercial operation:** 2007
Reference examples Combined Cycle Power Plants

Combined cycle power plant Dangjin III
South Korea

Siemens turbines are making Dangjin III the most efficient combined cycle power plant currently operating in Asia.

- **Power output:** 400 MW
- **Efficiency:** 60%
- **Commercial operation:** 2013

Power output: 760 MW
- **Efficiency:** 57%
- **Commercial operation:** 2011

Combined cycle power plant for the mining industry
Diamantina, Australia

Two Power Islands each performing at well in excess of 51% efficiency. The plant provides a total capacity of 242 MW to supply affordable electricity to local miners and to people living in the region.

- **Power output:** 242 MW
- **Commercial operation:** 2013

Combined cycle power plant
Panda Sherman Power Project, Texas, USA

The Panda Sherman Power Project utilizes the latest, most advanced emissions control technology, making it one of the cleanest, natural gas-fueled power plants in the United States. The 758 MW combined cycle generating facility can supply the energy needs of up to 750,000 homes.

- **Plant type:** SCC6-5000F 2 × 1 Flex-Plant™
- **Power Output:** 758 MW

Power block for combined cycle power plant
Nhon Trach 2, Vietnam

The power plant reaches an efficiency of over 57 percent and has very low nitrogen oxide emissions. It entered commercial operation after just 28.5 months.

- **Power output:** 760 MW
- **Efficiency:** 57%
- **Commercial operation:** 2011
Igelsta, Södertalje, Sweden
SST-800: Biomass District Heating Plant
Sweden's largest biomass plant
Inaugurated in March 2010, the plant uses a biomass fuel mix consisting of about 90% renewable fuels like forest refuse, wood chips, tree bark, and 10% non-recyclable waste paper and plastic. It produces 200 MW heat and 85 MW electricity, the equivalent of heating 50,000 households and generating electricity for 100,000 residences.
Steam turbine: SST-800
Power output: 90 MW
Inlet pressure: 83 bar (1,235 psi)
Inlet temperature: 540 °C (1,004 °F)

Afval Energie Bedrijf, Amsterdam/Netherlands
Afval Energie Bedrijf (AEB, Waste and Energy Company Amsterdam) burns 1.7 million tonnes of waste per year and has recently increased its energy generation efficiency from 22% to 30%. The 8% increase resulted from installing a new SST-700 with a steam reheat system. AEB not only generates power from Amsterdam’s municipal waste, but also recovers and sells material from the waste stream such as metals and gypsum.
Steam turbine: SST-700, Reheat
Power output: 74 MW
Inlet pressure: 123 bar (1,813 psi)
Inlet temperature: 440 °C (824 °F)
Fuel: Municipal solid waste

Biomass Power Plant Simmering, Vienna, Austria
The Simmering biomass power plant, owned by the Viennese utility Wien Energie, is exclusively fed with fresh wood from the forest. Producing 23.4 MWc electricity in summer and 15.06 MWc plus 37 MWth for district heating in winter, the plant reduces Vienna’s CO2 emissions by 144,000 tons per annum. In operation with heat extraction, total efficiency is 83%.
Steam turbine: SST-400, Reheat
Power output: 23.4 MW
Inlet pressure: 120 bar (1,740 psi)
Inlet temperature: 520 °C (968 °F)
Fuel: Fresh wood

SST-300 North Hykeham, Lincoln, UK
“We would definitely recommend Siemens. First because we would work again with them, they have provided a machine that is hard to make and hard to integrate into such a kind of plant, and they have been successful with this project”
Tangay Carrabin, Project manager at CNIM
Power output: 25.15 MW
Speed: 5,300 rpm
Live steam pressure: 58 bar(a)
Live steam temperature: 312°C
Customer: CNIM
Operator: FCC Environment
Reference examples Concentrated solar plants

ANDASOL 1 + 2, Granada, Spain
The two CSP plants are located in the Granada area, each covering a field of 1.95 km² of which the mirror field size is about 510,000 m². Both Andasol plants have a thermal storage system using molten salt to absorb part of the heat produced in the solar field during the day. This process almost doubles the number of operational hours per year at the solar thermal power plant. Andasol I went online in 2008 and Andasol II in 2009.

Parabolic trough (DTH)
40 MW(e) each
Steam turbine: 2 × Siemens SST-700
Power output: 2 × 50 MW(e)
Inlet steam pressure: 100 bar / 1,450 psi
Inlet steam temperature: 377 °C / 711 °F

IVANPAH SOLAR POWER COMPLEX, California, USA
BrightSource Energy, a privately-owned energy company, developed the Ivanpah Solar Energy Generating System in California’s Mojave Desert. It consists of three separate plants using tower technology and provides approximately 400 MW electricity to the US Southern California Edison. The whole complex generates enough electricity to power more than 140,000 homes.

Solar Power Tower (Water/Direct Steam)
3 plants, 392 MW(e) in total
Steam turbine: 3 × Siemens SST-120
Power output: 3 × 123 MW(e)
Inlet steam pressure: 160 bar / 2,321 psi
Inlet steam temperature: 540 °C / 1,004 °F

PARQUE ERRADO 1 (PE1), Calasparra, Spain
The PE1 Linear Fresnel demonstration plant, developed by Novatec Biosol AG, commenced selling power to the Spanish grid in March 2009. The 1.4 MW plant, located in Calasparra in the region of Murcia, Spain, has two rows of receivers, each with a length of 860 m, providing direct steam to the steam turbine. Each receiver uses 16 parallel lines of mirrors with a total surface of 18,662 m². A Ruth heat storage system, which utilizes hot water and saturated steam, is used for steam buffering.

Linear Fresnel (Water/Direct Steam)
1.4 MW(e)
Steam turbine: Siemens SST-120
Power output: 1.4 MW(e)
Inlet steam pressure: 55 bar / 798 psi
Inlet steam temperature: 270 °C / 518 °F (saturated steam)

IVANPAH SOLAR POWER COMPLEX, California, USA
BrightSource Energy, a privately-owned energy company, developed the Ivanpah Solar Energy Generating System in California’s Mojave Desert. It consists of three separate plants using tower technology and provides approximately 400 MW electricity to the US Southern California Edison. The whole complex generates enough electricity to power more than 140,000 homes.

Solar Power Tower (Water/Direct Steam)
3 plants, 392 MW(e) in total
Steam turbine: 3 × Siemens SST-120
Power output: 3 × 123 MW(e)
Inlet steam pressure: 160 bar / 2,321 psi
Inlet steam temperature: 540 °C / 1,004 °F

PARQUE ERRADO 1 (PE1), Calasparra, Spain
The PE1 Linear Fresnel demonstration plant, developed by Novatec Biosol AG, commenced selling power to the Spanish grid in March 2009. The 1.4 MW plant, located in Calasparra in the region of Murcia, Spain, has two rows of receivers, each with a length of 860 m, providing direct steam to the steam turbine. Each receiver uses 16 parallel lines of mirrors with a total surface of 18,662 m². A Ruth heat storage system, which utilizes hot water and saturated steam, is used for steam buffering.

Linear Fresnel (Water/Direct Steam)
1.4 MW(e)
Steam turbine: Siemens SST-120
Power output: 1.4 MW(e)
Inlet steam pressure: 55 bar / 798 psi
Inlet steam temperature: 270 °C / 518 °F (saturated steam)

NOOR / Ouarzazate, Morocco
On February 4, 2016, the King of Morocco, Mohammed VI, dedicated the Noor I unit of Ouarzazate Solar Power Station. This is the first of four phased Noor projects at Ouarzazate site which are expected to provide a total electrical generating capacity of 580 megawatts, making it the largest complex of its kind in the world. Siemens is supplying three turbine-generator sets for the power station.

Steam turbine: SST-700 / 900
Power output: 160 MW
Inlet steam temperature: 380 °C / 716 °F
Inlet steam pressure: 168 bar(a) / 2,437 psi
Exhaust pressure: 0.06 bar(a) / 0.87 psi

Reference examples Concentrated solar plants

ANDASOL 1 + 2, Granada, Spain
The two CSP plants are located in the Granada area, each covering a field of 1.95 km² of which the mirror field size is about 510,000 m². Both Andasol plants have a thermal storage system using molten salt to absorb part of the heat produced in the solar field during the day. This process almost doubles the number of operational hours per year at the solar thermal power plant. Andasol I went online in 2008 and Andasol II in 2009.

Parabolic trough (DTH)
40 MW(e) each
Steam turbine: 2 × Siemens SST-700
Power output: 2 × 50 MW(e)
Inlet steam pressure: 100 bar / 1,450 psi
Inlet steam temperature: 377 °C / 711 °F

IVANPAH SOLAR POWER COMPLEX, California, USA
BrightSource Energy, a privately-owned energy company, developed the Ivanpah Solar Energy Generating System in California’s Mojave Desert. It consists of three separate plants using tower technology and provides approximately 400 MW electricity to the US Southern California Edison. The whole complex generates enough electricity to power more than 140,000 homes.

Solar Power Tower (Water/Direct Steam)
3 plants, 392 MW(e) in total
Steam turbine: 3 × Siemens SST-120
Power output: 3 × 123 MW(e)
Inlet steam pressure: 160 bar / 2,321 psi
Inlet steam temperature: 540 °C / 1,004 °F

PARQUE ERRADO 1 (PE1), Calasparra, Spain
The PE1 Linear Fresnel demonstration plant, developed by Novatec Biosol AG, commenced selling power to the Spanish grid in March 2009. The 1.4 MW plant, located in Calasparra in the region of Murcia, Spain, has two rows of receivers, each with a length of 860 m, providing direct steam to the steam turbine. Each receiver uses 16 parallel lines of mirrors with a total surface of 18,662 m². A Ruth heat storage system, which utilizes hot water and saturated steam, is used for steam buffering.

Linear Fresnel (Water/Direct Steam)
1.4 MW(e)
Steam turbine: Siemens SST-120
Power output: 1.4 MW(e)
Inlet steam pressure: 55 bar / 798 psi
Inlet steam temperature: 270 °C / 518 °F (saturated steam)

NOOR / Ouarzazate, Morocco
On February 4, 2016, the King of Morocco, Mohammed VI, dedicated the Noor I unit of Ouarzazate Solar Power Station. This is the first of four phased Noor projects at Ouarzazate site which are expected to provide a total electrical generating capacity of 580 megawatts, making it the largest complex of its kind in the world. Siemens is supplying three turbine-generator sets for the power station.

Steam turbine: SST-700 / 900
Power output: 160 MW
Inlet steam temperature: 380 °C / 716 °F
Inlet steam pressure: 168 bar(a) / 2,437 psi
Exhaust pressure: 0.06 bar(a) / 0.87 psi

Reference examples Concentrated solar plants

ANDASOL 1 + 2, Granada, Spain
The two CSP plants are located in the Granada area, each covering a field of 1.95 km² of which the mirror field size is about 510,000 m². Both Andasol plants have a thermal storage system using molten salt to absorb part of the heat produced in the solar field during the day. This process almost doubles the number of operational hours per year at the solar thermal power plant. Andasol I went online in 2008 and Andasol II in 2009.

Parabolic trough (DTH)
40 MW(e) each
Steam turbine: 2 × Siemens SST-700
Power output: 2 × 50 MW(e)
Inlet steam pressure: 100 bar / 1,450 psi
Inlet steam temperature: 377 °C / 711 °F

IVANPAH SOLAR POWER COMPLEX, California, USA
BrightSource Energy, a privately-owned energy company, developed the Ivanpah Solar Energy Generating System in California’s Mojave Desert. It consists of three separate plants using tower technology and provides approximately 400 MW electricity to the US Southern California Edison. The whole complex generates enough electricity to power more than 140,000 homes.

Solar Power Tower (Water/Direct Steam)
3 plants, 392 MW(e) in total
Steam turbine: 3 × Siemens SST-120
Power output: 3 × 123 MW(e)
Inlet steam pressure: 160 bar / 2,321 psi
Inlet steam temperature: 540 °C / 1,004 °F

PARQUE ERRADO 1 (PE1), Calasparra, Spain
The PE1 Linear Fresnel demonstration plant, developed by Novatec Biosol AG, commenced selling power to the Spanish grid in March 2009. The 1.4 MW plant, located in Calasparra in the region of Murcia, Spain, has two rows of receivers, each with a length of 860 m, providing direct steam to the steam turbine. Each receiver uses 16 parallel lines of mirrors with a total surface of 18,662 m². A Ruth heat storage system, which utilizes hot water and saturated steam, is used for steam buffering.

Linear Fresnel (Water/Direct Steam)
1.4 MW(e)
Steam turbine: Siemens SST-120
Power output: 1.4 MW(e)
Inlet steam pressure: 55 bar / 798 psi
Inlet steam temperature: 270 °C / 518 °F (saturated steam)

NOOR / Ouarzazate, Morocco
On February 4, 2016, the King of Morocco, Mohammed VI, dedicated the Noor I unit of Ouarzazate Solar Power Station. This is the first of four phased Noor projects at Ouarzazate site which are expected to provide a total electrical generating capacity of 580 megawatts, making it the largest complex of its kind in the world. Siemens is supplying three turbine-generator sets for the power station.

Steam turbine: SST-700 / 900
Power output: 160 MW
Inlet steam temperature: 380 °C / 716 °F
Inlet steam pressure: 168 bar(a) / 2,437 psi
Exhaust pressure: 0.06 bar(a) / 0.87 psi
Reference examples Sugar Mills

Khanh Hoa (Cam Ranh), Sugar Plant, Vietnam

The Khanh Hoa Sugar Plant is located in the Cam Lam District in central coastal Khanh Hoa Province. It handles roughly 3,000 tons of sugarcane per day.

Technology: SST-300
Completion: 1999
Power output: 25 MW
Speed: 7,161 rpm
Inlet steam pressure: ≤ 46 bar(a) / 667 psi
Inlet steam temperature: ≤ 450 °C / 842 °F
Exhaust pressure: 2.5 bar(a) / 36.3 psi

Mitr Phol, Sugar Plant, Thailand

In 1946 Mitr Phol sugar business was initially established in Ratchaburi province as a small family business producing and trading condensed syrup to sugar mills. Meanwhile, it has become an internationally integrated enterprise acting in China, Laos, Australia and other countries.

With a transparent management system that is accountable to the public and takes good care of natural environment for more than 55 years, Mitr Phol Group has been honored with a number of prestigious awards both at the national and international levels, e.g. ASEAN Energy Awards 2011.

Technology: SST-300
Completion: 2010
Power output: 26 MW
Switchable bleed for deaerator

Grupo Delta Sucrenergia / Brazil

The efficiency of the SST-600 steam turbine convinced the customer Grupo Delta Sucrenergia. Siemens installed the biggest steam turbine in the sugar-ethanol sector with an power output of 73.5 MW. It is also the first turbine in Brazil to waive the use of gears with direct drive for the generator.

Power output: 73.5 MW
Inlet steam temperature: 520°C
Inlet steam pressure: 67 bar(a)
Exhaust: radial downward
Length: 8.5 m
Weight: 130 t

Simbhaoli Sugar, Sugar Plant, India

Simbhaoli Sugars is a technology company with a business mix that spans specialty sugars, quality liquor, technology consultancy, co-generated power, extra neutral alcohol (ENA), ethanol and bio-moments. As India’s largest integrated sugar refinery, the Company has pioneered path-breaking innovations in sugar refining (Defeco-Remelt Phosphotation and Ion Exchange technologies), high value, niche products (specialty sugars) and clean energy (ethanol).

Power output: 18 MW
Speed: 6,800 rpm
Inlet steam pressure: 86 ata
Inlet steam temperature: 510°C / 950°F
Exhaust steam pressure: 0.1 ata
Steam Turbines for Pulp & Paper Industry SST-800, Hainan Island / China

Siemens Industrial Technologies was appointed as general contractor for the entire electrical engineering, while Siemens Energy won the order for the Hainan Pulp Mill's power plant.

Technology: SST-800
Complete: 2004
Power output: 120 MW (each)
Inlet steam temperature: 475 °C / 887 °F
Inlet steam pressure: 80.5 bar / 1,167.5 psi
Speed: 3,000 rpm
Extraction steam pressure: 6.5 bar / 94.3 psi
Exhaust steam pressure: 0.13 bar / 1.88 psi

Steam Turbines for Pulp & Paper Industry SST-800, Klabin / Brazil

Two Siemens SST-800 steam turbines are supplying electricity and process steam to a pulp factory in Brazil. The SST-800 has a capacity of 190 megawatts (MW), making it among the largest steam turbines in use in the pulp and paper industry worldwide.

The plant has a total capacity of 270 MW. The customer is Klabin, a leading manufacturer and exporter of paper and packaging.

Technology: SST-800
Power output: 190 MW
Speed: 3,600 rpm
Inlet steam pressure: 100 bar / 1,450 psi
Inlet steam temperature: 498 °C / 928 °F
Extraction pressure: 10 bar / 145 psi
Exhaust pressure: 5.4 bar / 78.3 psi

SST-300 for UPM Caledonian, Scotland / United Kingdom

UPM's mill is responsible for a third of all industrial and commercial electricity consumed across Scotland. With huge amounts of electricity and heat required to drive processes in the pulp and paper industry, UPM was keen to explore ways of reducing its energy costs while improving site competitiveness.

Siemens custom designed its SST-300 steam turbine to meet UPM's specific requirements at the plant and also provided the control systems. The plant, incorporating Siemens technologies, has enabled the mill to meet all its steam requirements involved in the production of coated papers – and in particular, drying of the paper.

Technology: SST-300
Power output: 27 MW
Speed: 6,800 rpm
Inlet steam pressure: 90 bar / 1,305 psi

Reference examples Pulp and Paper
Kuwait is forging ahead with a new refinery project costing 4 billion Kuwaiti dinars (Dh49.7bn) despite the oil price slump, Kuwaiti officials said.

The construction of Al Zour refinery is part of plans to boost refining capacity to 1.4 million barrels per day (bpd) by 2019 from 940,000 bpd at present.

Scope of Supply: 57 SSTs for process and water pump drives
Models: Variety of models to meet power and steam condition
Construction year: 2018 expected completion

Morning Star Packing, 24 Single Stage Steam Turbines
California, USA

Application: Mechanical drive for feed water pumps, booster fans, hydraulics, generators, slurry pumps, fire systems.

The tomato processing window in the US is May through October. Six months of peak season production requires rugged, reliable equipment which in the reputation the RLH24 has earned over the years.

Scope of Supply: 24 Single Stage Turbines
Model: RLH24
Shipped: 2014

Steam Turbine Applied as a Gas Expander Emergency Shut Down Drive
Approximately 85 world wide

Dresser-Rand supplied special expander turbines which operate only when a power outage or other mechanical fault causes tripping of the process compressor and/or the main motor drive. When a "kill cycle" is initiated polyethylene or polypropylene reactor gases are routed from the compressor discharge to the turbine inlet (the turbine exhausts to flare) which starts the turbine and drives the compressor train through an SSS clutch at reduced speed and load for 10 minutes or less. This is adequate time for the process to be poisoned by a "kill gas" which is injected into the reactor vessel thus preventing "solidification" which could require personnel with jackhammers to enter and clean the reactor vessel at a cost of millions in lost production.
Performance data overview

<table>
<thead>
<tr>
<th>Steam turbine type</th>
<th>Dn/p @ MPa</th>
<th>Output @ MW</th>
<th>Net efficiency @ SPP %</th>
<th>Net efficiency @ CCPP %</th>
<th>Frequency</th>
<th>Inlet pressure @ bar / psi</th>
<th>Inlet temperature @ °C / °F</th>
<th>Reheat temperature @ °C / °F</th>
<th>Rotational Speed @ rpm</th>
<th>Controlled extraction @ bar / psi</th>
<th>Controlled extraction temperature @ °C / °F</th>
<th>Exhaust Pressure @ back bar / psi</th>
<th>Exhaust Pressure @ cond. bar / psi</th>
<th>Exhaust Pressure @ distr.bar / psi</th>
<th>Last stage blade length 50 Hz cm / inches</th>
<th>Last stage blade length 60 Hz</th>
<th>Last stage blade length 50 Hz cm / inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST­9000</td>
<td>1,000–1,900</td>
<td>50 / 60</td>
<td>80 / 1,160</td>
<td>310 / 590</td>
<td>3,000–3,600</td>
<td>117 to 183 / 46 to 72</td>
<td>107 to 142 / 42 to 56</td>
<td>79.8 to 114.6 / 31.4 to 45.1</td>
<td>76.2 to 95.4 / 30 to 37.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­6000</td>
<td>300–1,200</td>
<td>46,5 (Double reheat 48)</td>
<td>50 / 60</td>
<td>260 / 3,786</td>
<td>3,000–3,600</td>
<td>66 to 142 / 26 to 56</td>
<td>66 to 95 / 26 to 38</td>
<td>79.8 to 114.6 / 31.4 to 45.1</td>
<td>76.2 to 95.4 / 30 to 37.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­5000</td>
<td>200–500</td>
<td>43 (subcritical)</td>
<td>46,4 (supercritical)</td>
<td>260 / 3,786</td>
<td>3,000–3,600</td>
<td>66 to 142 / 26 to 56</td>
<td>66 to 95 / 26 to 38</td>
<td>79.8 to 114.6 / 31.4 to 45.1</td>
<td>76.2 to 95.4 / 30 to 37.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­4000</td>
<td>100–500</td>
<td>120–700</td>
<td>43 (subcritical)</td>
<td>120 / 700</td>
<td>3,000–3,600</td>
<td>80 to 115 / 31 to 45</td>
<td>76 to 95 / 30 to 38</td>
<td>79.8 to 114.6 / 31.4 to 45.1</td>
<td>76.2 to 95.4 / 30 to 37.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­3000</td>
<td>90–250</td>
<td>50 / 60</td>
<td>177 / 2,567</td>
<td>565 / 1,049</td>
<td>3,000–3,600</td>
<td>80 to 115 / 31 to 45</td>
<td>76 to 95 / 30 to 38</td>
<td>79.8 to 114.6 / 31.4 to 45.1</td>
<td>76.2 to 95.4 / 30 to 37.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­2000</td>
<td>≤ 200</td>
<td>≤ 200</td>
<td>≤ 230</td>
<td>≤ 230</td>
<td>3,000–18,000</td>
<td>Up to 7</td>
<td>72 to 117 / 26 to 45</td>
<td>79.8 to 114.6 / 31.4 to 45.1</td>
<td>76.2 to 95.4 / 30 to 37.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­1000 / 900</td>
<td>≤ 250</td>
<td>≤ 250</td>
<td>≤ 250</td>
<td>≤ 250</td>
<td>3,000–3,600</td>
<td>80 to 115 / 31 to 45</td>
<td>76 to 95 / 30 to 38</td>
<td>79.8 to 114.6 / 31.4 to 45.1</td>
<td>76.2 to 95.4 / 30 to 37.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­800</td>
<td>≤ 200</td>
<td>≤ 200</td>
<td>≤ 200</td>
<td>≤ 200</td>
<td>3,000–18,000</td>
<td>45 / 683 (up to 4)</td>
<td>450 / 843</td>
<td>63 to 80</td>
<td>72 to 117 / 26 to 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­600</td>
<td>≤ 200</td>
<td>≤ 200</td>
<td>≤ 200</td>
<td>≤ 200</td>
<td>3,000–3,600</td>
<td>45 / 683 (up to 4)</td>
<td>450 / 843</td>
<td>63 to 80</td>
<td>72 to 117 / 26 to 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­500</td>
<td>≤ 100</td>
<td>≤ 100</td>
<td>≤ 100</td>
<td>≤ 100</td>
<td>15,000</td>
<td>none</td>
<td>up to 15</td>
<td>60 to 90</td>
<td>90 / 160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­400</td>
<td>≤ 60</td>
<td>≤ 60</td>
<td>≤ 60</td>
<td>≤ 60</td>
<td>3,000–8,000</td>
<td>45 / 683 (up to 4)</td>
<td>450 / 843</td>
<td>63 to 80</td>
<td>72 to 117 / 26 to 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­300</td>
<td>≤ 45</td>
<td>≤ 45</td>
<td>≤ 45</td>
<td>≤ 45</td>
<td>12,000</td>
<td>25 / 363 (up to 2)</td>
<td>250 / 562</td>
<td>63 to 80</td>
<td>72 to 117 / 26 to 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST­200</td>
<td>≤ 20</td>
<td>≤ 20</td>
<td>≤ 20</td>
<td>≤ 20</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance data overview

<table>
<thead>
<tr>
<th>Steam Turbine Type</th>
<th>Power output (HP)</th>
<th>inlet Pressure (bar/psi)</th>
<th>inlet Temperature (°C/°F)</th>
<th>Rotational Speed (rpm)</th>
<th>Uncontrolled extraction pressure (bar/psi)</th>
<th>exhaust Pressure (back) (bar/psi)</th>
<th>exhaust Pressure (cond.) (bar/psi)</th>
<th>bearings</th>
<th>Type of wheel / blades</th>
<th>API compliant</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-R BLAZA</td>
<td>1,000</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R BLAZA</td>
<td>1,000</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>2,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R SST</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R SST</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
<tr>
<td>D-R RLH</td>
<td>3,500</td>
<td>47 / 682</td>
<td>940 / 1,740</td>
<td>6,000 - 9,000</td>
<td>22 / 325</td>
<td>full-bearing journal & thrust</td>
<td>impulse</td>
<td>D-R RLH</td>
<td>1,865</td>
<td>97 / 1,414</td>
</tr>
</tbody>
</table>