Termoflores
Reference D5/D5A
Gas Turbine Upgrades

Siemens Energy, Inc.
Tony Deal
Gas Turbine Modernizations

Zona Franca Celsia
Jose Rafael Serje Polo
Thermal Power Maintenance Leader
Table of Contents

- Project Description 3
- D5/D5A Si3D Turbine Upgrade 4
- D5/D5A Bolted Compressor Solution 7
- D5/D5A IIEP 2.0 Combustor Hardware 15
- Project Results 22
Project Overview

Customer
- Zona Franca Celsia

Location
- Barranquilla, Columbia

Gas Turbine Frame
- W501D5

Outages
- November 2017 Major
- April 2018 Major

Modernizations Applied
- Si3D Turbine Modernization
- Bolted Compressor Rotor
- IIEP 2.0 Combustor Hardware

Customer’s Objectives
- Increased Power
- Decreased Heat Rate (increased efficiency)
- Frame Lifetime Extension
- Interval Extension
- Increased Reliability
- Repair Cost Savings
Table of Contents

- Frame Technology Evolution / Experience
- D5/D5A Si3D Turbine Upgrade
- D5/D5A Bolted Compressor Solutions
- D5/D5A IIEP 2.0 Combustor Hardware
- Project Results
- Q/A
Si3D™ Turbine Upgrade

Package Features
- Aerodynamic redesign of stage 1 blade / vane & row 2 vane
- Cooling air savings – component cooling reduction & sealing improvements
- Leverage advanced frame technology

Expected Program Benefits
- Improved efficiency / increased power with Si3D re-aero
- Higher firing temp’s with IIEP 2.0 Combustors
- D5-D5A interchangeability (D5 requires D5A blade ring)

Expected GT Performance*
- D5: Up to ~5 MW; 300 BTU/kWhr
- D5 with FTI Up to ~10.5 MW; 333 BTU/kWhr

Heat rate and power improvement

* Performance increases depend on site specific configuration
Si3DTM Turbine Redesign (Stages 1-2)

- Si3DTM row 1 & 2 vanes with riffle seals
- Si3DTM row 1 blades with new sealing hardware
- TBC coated ring segments rows 1 & 2
- Upgraded thrust bearing pads
- Redesigned stage 2 thermocouples
- Row 2 interstage seal housing baffle plate modification
- Features already included in standard D5As:
 - Cooling flow modulation rows 2 & 3
Table of Contents

- Frame Technology Evolution / Experience
- D5/D5A Si3D Turbine Upgrade
- D5/D5A Bolted Compressor Solutions
- D5/D5A IIEP 2.0 Combustor Hardware
- Project Results
- Q/A
W501D5/D5A Bolted Compressor

Enhanced Design Features:

- Visible blade locking keys (no change in blade attachment)
- Retrofit to Turbine spindle (marriage coupling joint)
- Reparability-Individual disc replacement
- Shear pins to transfer torque
- Multiple Spindle bolt design
- Vibratory Response
- Enhanced Air-separator
- Improved Materials result in increased life
- Spigot fits from disc to disc support 10 minute fast start

Features adapted from 501F style compressor rotor
Bolted Compressor Enhancements

Shear pins throughout compressor

Collared nuts both ends

10 spindle bolts w/ rolled threads

Both EOST & mechanical overspeed & key phaser designs supported

All compressor discs / CTT use advanced materials
Bolted Rotor Configuration

Intended Benefits:
- Bolted configuration produces straighter rotor
- Improved materials results in increased life
- Bolted / spigot configuration supports 10 minute fast start

2-piece air separator to reduce potential imbalance, and less thermally sensitive

No change to static hardware

Standard D5/D5A blade locking
Rotor Dynamic Enhancements

- New stage 7 field balance plane (casing modification required)
- Additional shop balance plane at stage 12
- Bolted configuration intended to produce straighter / improved run-outs
- 2-piece air separator intended to reduce potential imbalance
Design Features
Two Piece Air-Separator

- Bolted on disc reduces radial motion of the torque tube mating flange by bolting mass to TD1
- Proven design. Multiple units with 150K+hrs with lead unit ~200K hours

New air separator designed to reduce potential for shifting / source of vibration
- Reduced mass of forward section
- Aft section bolted to rotor
Two Piece Air Separator Details

- **Torque Tube**
 - New Sealing Surface with reduced free-rotating mass is much stiffer

- **Bolted Disc**
 - Blade 1 cooling supply holes

- **Slots to clear TD1 cooling holes**

- **Assembly View**
 - Previous Sealing surface
 - Bolted Disc
 - New Sealing Surface
 - Torque Tube
 - TD1
W501D5/D5A Bolted Compressor Rotor Design – Fast Start Implementation

Current D5 Startup schedule: TG > FSNL = 20 min; Synch = 0.5 min; Load = 8.5 min
Total = ~29 min

- **Rotor** design is intended to allow “fast start” = 10 min to full load
- Improved GT acceleration rate
- Improved GT loading rate = 24 MW/min
- Controls modifications - “fast start button” added and firing curves modified
- Fast start factors (Equivalent starts) - 10x per fast start

Fast Start D5 Startup schedule: TG > FSNL = 8 min; Synch = 0.5 min; Load = 5.5 min
Total = ~14 min
Table of Contents

- Frame Technology Evolution / Experience
- D5/D5A Si3D Turbine Upgrade
- D5/D5A Bolted Compressor Solutions
- D5/D5A IIEP 2.0 Combustor Hardware
- Project Results
- Q/A
D5/D5A Redesigned Combustion System
IIEP 2.0 Combustor Hardware

- Redesigned Transition Cylinder
- Redesigned DF-42 Transition
- Redesigned Water Injection Nozzle
- Redesigned Basket
- Redesigned Cross Flame Tube

Outer Transition seal eliminated!

Improved LCC / designed to address identified distress modes, improve water spray and maintain current emissions and dynamics levels / 16k EBH / 1,600 ES inspection interval
Is 1600 ES equal to 16kEBH?

Jose Rafael Serje Polo, 10/1/2018
IIEP 2.0 Combustor Nozzle Details

- Improved Materials
- Heat shield added
- Improved water spray
- Improved oil spray

Water/Oil Interaction

Baseline through oil tip

New Water Spray

Improved Welds

Bellows

HA320 Heat Shield

Cooled Base Plate

Duplex Atomizer

Improved Welds

Material Upgrades

Thread

Locking tab

Cap

Primary circuit

Secondary circuit

Conical metal seal

Seal

Tony Deal / Siemens Energy, Inc.
Jose Serje / CELSIA
IIEP 2.0 Combustor Basket Detail

- IGCC Design Download – more efficient cooling (platefin)
- Extra cooling at key locations
- Cross Flame tube locations moved upstream
- Latest materials from Advanced frame turbines

Cooling Scoops

Double-fed Platefin

CFT Location

Stand offs will be used inside the basket

Exit Cooling
IIEP 2.0 Combustor Transitions

- Enhanced design
- Smoother shape to reduce stagnation areas
- Flow turned sooner to spread flow
- Thicker panels to resist deformation
- Advanced cooling concept throughout panels
- Effusion cooling where needed
- Integrated Exit Piece (IEP), eliminates outer seal
- Latest materials from advanced frames
IIEP 2.0 Bolted Combustor Coupling (BCC)

Bolted Combustor Coupling (BCC)

- Bolted flange design
- Reduced distortion
- Retrofittable to existing transitions
- No relative motion between mating parts expected
- Scallops between bolts for life extension
- Cooling holes at transition junction
- Hard face mating surface with basket

Design Experience:

- Installed in Siemens W701DA units since 2000
- Based on validation data – reparability is a goal
- No reported operational issues
IIEP 2.0 Combustor System Installed
Table of Contents

- **Frame Technology Evolution / Experience**
- **D5/D5A Si3D Turbine Upgrade**
- **D5/D5A Bolted Compressor Solutions**
- **D5/D5A IIEP 2.0 Combustor Hardware**
- **Project Results**
- **Q/A**
Termoflores Reference D5A
Project Results – Flores I

<table>
<thead>
<tr>
<th>Item</th>
<th>Improvement</th>
<th>Commercial Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity of 1X1 CC Plant</td>
<td>6 MW Increase</td>
<td>• More MWh available for sale annually</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Displaces duct firing</td>
</tr>
<tr>
<td>Heat Rate of 2X1 CC Plant</td>
<td>~376 BTU/kWh decrease</td>
<td>• Reduction in fuel gas costs due to increased GT efficiency</td>
</tr>
<tr>
<td>Recommended Inspection Interval</td>
<td>2 x current recommended inspection Interval</td>
<td>• Increased plant availability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reduction in O&M costs</td>
</tr>
</tbody>
</table>
New slide inserted for Flores 1 (CC 1x1)
Jose Rafael Serje Polo, 10/1/2018

It should be same as before
Jose Rafael Serje Polo, 10/1/2018
Termoflores Reference D5A
Project Results – Flores IV

<table>
<thead>
<tr>
<th>Item</th>
<th>Improvement</th>
<th>Commercial Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity of 2X1 CC Plant</td>
<td>~10 MW Increase</td>
<td>• More MWh available for sale annually</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Displaces duct firing</td>
</tr>
<tr>
<td>Heat Rate of 2X1 CC Plant</td>
<td>~287 BTU/kWh decrease</td>
<td>• Reduction in fuel gas costs due to increased GT efficiency</td>
</tr>
<tr>
<td>Recommended Inspection Interval</td>
<td>2 x current recommended</td>
<td>• Increased plant availability</td>
</tr>
<tr>
<td></td>
<td>inspection Interval</td>
<td>• Reduction in O&M costs</td>
</tr>
</tbody>
</table>

References:
- JRSP4
- JRSP5
- JRSP6
10 MW in the CC (8.5 Mw from the CT2)

-286.93 BTU/kWh with the CT2 upgrade

We pass from 10,600 to 16,000 EBH (combustor inspection interval).
Key Takeaways
(from all M&U Product Presentations)

- Advanced ULN combustion system can help achieve < 9 ppm NOx, while supporting advanced thermal performance upgrade products
- Wide array of performance upgrade products; e.g., FD2, per GT, up to 36 MW / - 620 BTU HR
- FD6 rotor technology (pre-swirler) can eliminate air separator and can significantly help improve performance
- Advanced Exhaust Solutions (SPEX and ATP) continue to perform very well
- Products for operating flexibility (LLTD, ALLTD, OTC+, GT-ACO, Inlet Heating) to support changing market demands
- Environmental Permitting and BoP equipment require necessary due diligence for proper implementation of M&U products
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as "expects", "anticipates", "intends", "plans", "believes", "seeks", "estimates", "will" or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens, its affiliates or their respective owners.
Thank You!!

Question and Answer